prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
from scipy.signal import butter, lfilter, resample, firwin, decimate from sklearn.decomposition import FastICA, PCA from sklearn import preprocessing import numpy as np import pandas as np import matplotlib.pyplot as plt import scipy import pandas as pd class SpectrogramImage: """ Plot spectrogram for each channel and convert it to numpy image array. """ def __init__(self, size=(224, 224, 4)): self.size = size def get_name(self): return 'img-spec-{}'.format(self.size) def drop_zeros(self, df): return df[(df.T != 0).any()] def apply(self, data): data = pd.DataFrame(data.T) data = self.drop_zeros(data) channels = [] for col in data.columns: plt.ioff() _, _, _, _ = plt.specgram(data[col], NFFT=2048, Fs=240000/600, noverlap=int((240000/600)*0.005), cmap=plt.cm.spectral) plt.axis('off') plt.savefig('spec.png', bbox_inches='tight', pad_inches=0) plt.close() im = scipy.misc.imread('spec.png', mode='RGB') im = scipy.misc.imresize(im, (224, 224, 3)) channels.append(im) return channels class UnitScale: """ Scale across the last axis. """ def get_name(self): return 'unit-scale' def apply(self, data): return preprocessing.scale(data, axis=data.ndim - 1) class UnitScaleFeat: """ Scale across the first axis, i.e. scale each feature. """ def get_name(self): return 'unit-scale-feat' def apply(self, data): return preprocessing.scale(data, axis=0) class FFT: """ Apply Fast Fourier Transform to the last axis. """ def get_name(self): return "fft" def apply(self, data): axis = data.ndim - 1 return np.fft.rfft(data, axis=axis) class ICA: """ apply ICA experimental! """ def __init__(self, n_components=None): self.n_components = n_components def get_name(self): if self.n_components != None: return "ICA%d" % (self.n_components) else: return 'ICA' def apply(self, data): # apply pca to each ica = FastICA() data = ica.fit_transform(da) return data class Resample: """ Resample time-series data. """ def __init__(self, sample_rate): self.f = sample_rate def get_name(self): return "resample%d" % self.f def apply(self, data): axis = data.ndim - 1 if data.shape[-1] > self.f: return resample(data, self.f, axis=axis) return data class Magnitude: """ Take magnitudes of Complex data """ def get_name(self): return "mag" def apply(self, data): return np.absolute(data) class LPF: """ Low-pass filter using FIR window """ def __init__(self, f): self.f = f def get_name(self): return 'lpf%d' % self.f def apply(self, data): nyq = self.f / 2.0 cutoff = min(self.f, nyq - 1) h = firwin(numtaps=101, cutoff=cutoff, nyq=nyq) # data[ch][dim0] # apply filter over each channel for j in range(len(data)): data[j] = lfilter(h, 1.0, data[j]) return data class Mean: """ extract channel means """ def get_name(self): return 'mean' def apply(self, data): axis = data.ndim - 1 return data.mean(axis=axis) class Abs: """ extract channel means """ def get_name(self): return 'abs' def apply(self, data): return np.abs(data) class Stats: """ Subtract the mean, then take (min, max, standard_deviation) for each channel. """ def get_name(self): return "stats" def apply(self, data): # data[ch][dim] shape = data.shape out = np.empty((shape[0], 3)) for i in range(len(data)): ch_data = data[i] ch_data = data[i] - np.mean(ch_data) outi = out[i] outi[0] = np.std(ch_data) outi[1] = np.min(ch_data) outi[2] = np.max(ch_data) return out class Interp: """ Interpolate zeros max --> min * 1.0 NOTE: try different methods later """ def get_name(self): return "interp" def apply(self, data): # interps 0 data before taking log indices = np.where(data <= 0) data[indices] = np.max(data) data[indices] = (np.min(data) * 0.1) return data class Log10: """ Apply Log10 """ def get_name(self): return "log10" def apply(self, data): # interps 0 data before taking log indices = np.where(data <= 0) data[indices] = np.max(data) data[indices] = (np.min(data) * 0.1) return np.log10(data) class Slice: """ Take a slice of the data on the last axis. e.g. Slice(1, 48) works like a normal python slice, that is 1-47 will be taken """ def __init__(self, start, end): self.start = start self.end = end def get_name(self): return "slice%d-%d" % (self.start, self.end) def apply(self, data): s = [slice(None), ] * data.ndim s[-1] = slice(self.start, self.end) return data[s] class CorrelationMatrix: """ Calculate correlation coefficients matrix across all EEG channels. """ def get_name(self): return 'corr-mat' def apply(self, data): return upper_right_triangle(np.corrcoef(data)) # Fix everything below here class Eigenvalues: """ Take eigenvalues of a matrix, and sort them by magnitude in order to make them useful as features (as they have no inherent order). """ def get_name(self): return 'eigenvalues' def apply(self, data): w, v = np.linalg.eig(data) w = np.absolute(w) w.sort() return w class FreqCorrelation: """ Correlation in the frequency domain. First take FFT with (start, end) slice options, then calculate correlation co-efficients on the FFT output, followed by calculating eigenvalues on the correlation co-efficients matrix. The output features are (fft, upper_right_diagonal(correlation_coefficients), eigenvalues) Features can be selected/omitted using the constructor arguments. """ def __init__(self, start, end, scale_option, with_fft=False, with_corr=True, with_eigen=True): self.start = start self.end = end self.scale_option = scale_option self.with_fft = with_fft self.with_corr = with_corr self.with_eigen = with_eigen assert scale_option in ('us', 'usf', 'none') assert with_corr or with_eigen def get_name(self): selections = [] if not self.with_corr: selections.append('nocorr') if not self.with_eigen: selections.append('noeig') if len(selections) > 0: selection_str = '-' + '-'.join(selections) else: selection_str = '' return 'freq-correlation-%d-%d-%s-%s%s' % (self.start, self.end, 'withfft' if self.with_fft else 'nofft', self.scale_option, selection_str) def apply(self, data): data1 = FFT().apply(data) data1 = Slice(self.start, self.end).apply(data1) data1 = Magnitude().apply(data1) data1 = Log10().apply(data1) data2 = data1 if self.scale_option == 'usf': data2 = UnitScaleFeat().apply(data2) elif self.scale_option == 'us': data2 = UnitScale().apply(data2) data2 = CorrelationMatrix().apply(data2) if self.with_eigen: w = Eigenvalues().apply(data2) out = [] if self.with_corr: data2 = upper_right_triangle(data2) out.append(data2) if self.with_eigen: out.append(w) if self.with_fft: data1 = data1.ravel() out.append(data1) for d in out: assert d.ndim == 1 return np.concatenate(out, axis=0) class TimeCorrelation: """ Correlation in the time domain. First downsample the data, then calculate correlation co-efficients followed by calculating eigenvalues on the correlation co-efficients matrix. The output features are (upper_right_diagonal(correlation_coefficients), eigenvalues) Features can be selected/omitted using the constructor arguments. """ def __init__(self, max_hz, scale_option, with_corr=True, with_eigen=True): self.max_hz = max_hz self.scale_option = scale_option self.with_corr = with_corr self.with_eigen = with_eigen assert scale_option in ('us', 'usf', 'none') assert with_corr or with_eigen def get_name(self): selections = [] if not self.with_corr: selections.append('nocorr') if not self.with_eigen: selections.append('noeig') if len(selections) > 0: selection_str = '-' + '-'.join(selections) else: selection_str = '' return 'time-correlation-r%d-%s%s' % (self.max_hz, self.scale_option, selection_str) def apply(self, data): # so that correlation matrix calculation doesn't crash for ch in data: if np.alltrue(ch == 0.0): ch[-1] += 0.00001 data1 = data if data1.shape[1] > self.max_hz: data1 = Resample(self.max_hz).apply(data1) if self.scale_option == 'usf': data1 = UnitScaleFeat().apply(data1) elif self.scale_option == 'us': data1 = UnitScale().apply(data1) data1 = CorrelationMatrix().apply(data1) if self.with_eigen: w = Eigenvalues().apply(data1) out = [] if self.with_corr: data1 = upper_right_triangle(data1) out.append(data1) if self.with_eigen: out.append(w) for d in out: assert d.ndim == 1 return np.concatenate(out, axis=0) class TimeFreqCorrelation: """ Combines time and frequency correlation, taking both correlation coefficients and eigenvalues. """ def __init__(self, start, end, max_hz, scale_option): self.start = start self.end = end self.max_hz = max_hz self.scale_option = scale_option assert scale_option in ('us', 'usf', 'none') def get_name(self): return 'time-freq-correlation-%d-%d-r%d-%s' % (self.start, self.end, self.max_hz, self.scale_option) def apply(self, data): data1 = TimeCorrelation(self.max_hz, self.scale_option).apply(data) data2 = FreqCorrelation(self.start, self.end, self.scale_option).apply(data) assert data1.ndim == data2.ndim return np.concatenate((data1, data2), axis=data1.ndim - 1) class FFTWithTimeFreqCorrelation: """ Combines FFT with time and frequency correlation, taking both correlation coefficients and eigenvalues. """ def __init__(self, start, end, max_hz, scale_option): self.start = start self.end = end self.max_hz = max_hz self.scale_option = scale_option def get_name(self): return 'fft-with-time-freq-corr-%d-%d-r%d-%s' % (self.start, self.end, self.max_hz, self.scale_option) def apply(self, data): data1 = TimeCorrelation(self.max_hz, self.scale_option).apply(data) data2 = FreqCorrelation(self.start, self.end, self.scale_option, with_fft=True).apply(data) assert data1.ndim == data2.ndim return np.concatenate((data1, data2), axis=data1.ndim - 1) def upper_right_triangle(matrix): indices =
np.triu_indices_from(matrix)
pandas.triu_indices_from
import numpy as np import pandas as pd import os def to_categorical(data, dtype=None): val_to_cat = {} cat = [] index = 0 for val in data: if dtype == 'ic': if val not in ['1', '2', '3', '4ER+', '4ER-', '5', '6', '7', '8', '9', '10']: val = '1' if val in ['4ER+','4ER-']: val='4' if val not in val_to_cat: val_to_cat[val] = index cat.append(index) index += 1 else: cat.append(val_to_cat[val]) return np.array(cat) def get_data(data): d = {} clin_fold = data[["METABRIC_ID"]] rna = data[[col for col in data if col.startswith('GE')]] rna = normalizeRNA(rna) cna = data[[col for col in data if col.startswith('CNA')]] d['ic'] = list(data['iC10'].values) d['pam50'] = list(data['Pam50Subtype'].values) d['er'] = list(data['ER_Expr'].values) d['pr'] = list(data['PR_Expr'].values) d['her2'] = list(data['Her2_Expr'].values) d['drnp'] = list(data['DR'].values) d['rnanp'] = rna.astype(np.float32).values d['cnanp'] = ((cna.astype(np.float32).values + 2.0) / 4.0) d['icnp'] = to_categorical(d['ic'], dtype='ic') d['pam50np'] = to_categorical(d['pam50']) d['ernp'] = to_categorical(d['er']) d['prnp'] = to_categorical(d['pr']) d['her2np'] = to_categorical(d['her2']) d['drnp'] = to_categorical(d['drnp']) """ preprocessing for clinical data to match current pipeline """ ## Clinical Data Quick Descriptions # clin["Age_At_Diagnosis"] # Truly numeric # clin["Breast_Tumour_Laterality"] # Categorical "L, R" (3 unique) # clin["NPI"] # Truly numeric # clin["Inferred_Menopausal_State"] # Categorical "Pre, Post" (3 unique) # clin["Lymph_Nodes_Positive"] # Ordinal ints 0-24 # clin["Grade"] # Ordinal string (come on) 1-3 + "?" # clin["Size"] # Truly Numeric # clin["Histological_Type"] # Categorical strings (9 unique) # clin["Cellularity"] # Categorical strings (4 unique) # clin["Breast_Surgery"] # Categorical strings (3 Unique) # clin["CT"] # Categorical strings (9 unique) # clin["HT"] # Categorical strings (9 Unique) # clin["RT"] # Categorical strings (9 Unique) ## Clinical Data Transformations # On the basis of the above we will keep some as numeric and others into one-hot encodings # (I am not comfortable binning the continuous numeric columns without some basis for their bins) # Or since we dont have that much anyway just one hot everything and use BCE Loss to train # We have to get the entire dataset, transform them into one-hots, bins complete_data = r"MB.csv" # complete_data = pd.read_csv(complete_data).set_index("METABRIC_ID") complete_data = pd.read_csv(complete_data, index_col=None, header=0) # Either we keep numerics as clin_numeric = complete_data[["METABRIC_ID","Age_At_Diagnosis", "NPI", "Size"]] # Numerical binned to arbitrary ranges then one-hot dummies metabric_id = complete_data[["METABRIC_ID"]] aad = pd.get_dummies(pd.cut(complete_data["NPI"],10, labels=[1,2,3,4,5,6,7,8,9,10]),prefix="aad", dummy_na = True) npi = pd.get_dummies(pd.cut(complete_data["NPI"],6, labels=[1,2,3,4,5,6]),prefix="npi", dummy_na = True) size = pd.get_dummies(complete_data["Size"], prefix = "size", dummy_na = True) # Categorical and ordinals to one-hot dummies btl =
pd.get_dummies(complete_data["Breast_Tumour_Laterality"], prefix = "btl", dummy_na = True)
pandas.get_dummies
import sys import pandas as pd import numpy as np import click sys.path.append('.') from src.data.preprocess_input import read_tsyg_data, prepare_dataset def gen_init_states(base, parameters, mu, sigma, num=100, sign=None): init = base.loc[np.repeat(base.index.values, num)].reset_index(drop=True) for i, p in enumerate(parameters): if sign is not None: s = sign[i] else: s = '' init[p] = np.random.normal(mu[i], sigma[i], size=init.shape[0]) if p == 'PDYN': s = 'pos' if s == 'pos': init[p] = init[p].apply(lambda x: abs(round(x*100)/100)+0.1) elif s == 'neg': init[p] = init[p].apply(lambda x: -abs(round(x*100)/100)+0.1) else: init[p] = init[p].apply(lambda x: round(x*100)/100) return init def generate_perturbed_input(data, column, mu, sigma, amount, sign): '''Generates Tsyganenko inputfile Generates inputfile useable by model TA15. It varies the value in column given, by picking randomly from a gaussian distribution The other values remain fixed. Input: column: name of variable to be varied mu: mean value of the gaussian distribution sigma: standard deviation of gaussian distribution amount: Total number of inputs - size of the ensemble sign: Set all random values to sign of mu if true Output: file named TA15_output, useable by model TA15. ''' allowed_columns = ['PDYN', 'B0y', 'B0z', 'XIND', 'VGSEX', 'VGSEY', 'VGSEZ'] for c in column: assert c in allowed_columns, "Error, unknown variable {}. Known variables: {}".format(c, allowed_columns) mu = [mu]*len(column) sigma = [sigma]*len(column) if len(column) > 1: deny = ['', 'yes', 'y', 'Y', 'YES', 'Yes', 'YEs', 'yes'] for i in range(1, len(column)): ans = input('> Keep same mu and sigma for the parameter {}? (Current value mu: {}, sigma: {}) [yes]'.format(c, mu[i], sigma[i])) if ans not in deny: try: nmu = input('Please add the desired value of mu for {}: '.format(c)) nmu = float(nmu) mu[i] = nmu nsg = input('Please add the desired value of sigma for {}: '.format(c)) nsg = float(nsg) sigma[i] = nsg except ValueError: print("Error, that is not a number.") base = pd.DataFrame(columns=allowed_columns, data=[[2.0, 1, 8, 0, -400.0, 0.0, 0.0]]) base.index.name = 'ID' if sign: sign = [] for m in mu: if m < 0: sign.append('neg') else: sign.append('pos') else: sign=None init = gen_init_states(base, column, mu, sigma, amount, sign) return init def generate_perturbed_input(data, variable, mu, sigma, amount, sign): # Perturbe a single variable for var in variable: assert var in list(data.columns), "Error, unknown variable {}. Known variables: {}".format(var, list(data.columns)) mu = [mu]*len(variable) sigma = [sigma]*len(variable) signs = [None]*len(variable) if sign: for i, m in enumerate(mu): if m < 0: signs[i] = 'neg' else: signs[i] = 'pos' init = data.loc[np.repeat(data.index.values, amount)].reset_index(drop=True) for i, var in enumerate(variable): generate_single_variable(init, var, mu[i], sigma[i], signs[i]) return prepare_dataset(init) def generate_single_variable(base, variable, mu, sigma, sign=None): if sign is not None: s = sign else: s = '' if variable == 'PDYN': s = 'pos' base[variable] = gaussian_dist(base[variable].to_numpy()[0], mu, sigma, size=base.shape[0]) if s == 'pos': base[variable] = base[variable].apply(lambda x: abs(round(x, 2))+0.1) elif s == 'neg': base[variable] = base[variable].apply(lambda x: -abs(round(x, 2))+0.1) else: base[variable] = base[variable].apply(lambda x: round(x, 2)) return base @click.command() @click.argument('variable', type=str, nargs=-1) @click.argument('mu', type=float, default=0) @click.argument('sigma', type=float, default=0.05) @click.argument('amount', type=int, default=50) @click.argument('name', type=str) @click.option('--sign', type=bool, default=False) def main(variable, mu, sigma, amount, sign, name): data = read_tsyg_data() rnge = pd.date_range('2004-05-08 09:05:00', '2004-05-08 13:05:00', freq='20min') for i in range(12): timestamp = str(rnge[i]) print(timestamp) values = extract_date_data(data, timestamp) #states = generate_perturbed_input(data, variable, mu, sigma, amount, sign) states = generate_perturbed_input(values, variable, mu, sigma, amount, sign) states = states.drop(columns=['Np']) print(states.head()) if i == 9: states.Bz += 1.9 states.to_csv('model/input/input{}{}.csv'.format(name, (i+1))) def gaussian_dist(base, mu, sigma, maxv=-363.0, minv=-583.0, size=50, seed=4255): np.random.seed(seed) rand = np.random.normal(mu, sigma, size=size) values = np.round(rand*base, 2) # cut of values for i, val in enumerate(values): if val > maxv: values[i] = maxv if val < minv: values[i] = minv return values def extract_date_data(data, timestamp): r =
pd.Timestamp(timestamp)
pandas.Timestamp
#!/usr/bin/python # -*- coding: UTF-8 -*- import json from django.http import HttpResponse import pandas as pd import numpy as np import tushare as ts class DateEncoder(json.JSONEncoder): def default(self, o): if isinstance(o,np.ndarray): return o.tolist() return json.JSONEncoder.default(self,o) def today_all(request): data = ts.get_today_all() data =
pd.DataFrame(data)
pandas.DataFrame
# -*- coding: utf-8 -*- # pylint: disable-msg=E1101,W0612 from datetime import datetime, timedelta import pytest import re from numpy import nan as NA import numpy as np from numpy.random import randint from pandas.compat import range, u import pandas.compat as compat from pandas import Index, Series, DataFrame, isna, MultiIndex, notna from pandas.util.testing import assert_series_equal import pandas.util.testing as tm import pandas.core.strings as strings class TestStringMethods(object): def test_api(self): # GH 6106, GH 9322 assert Series.str is strings.StringMethods assert isinstance(Series(['']).str, strings.StringMethods) # GH 9184 invalid = Series([1]) with tm.assert_raises_regex(AttributeError, "only use .str accessor"): invalid.str assert not hasattr(invalid, 'str') def test_iter(self): # GH3638 strs = 'google', 'wikimedia', 'wikipedia', 'wikitravel' ds = Series(strs) for s in ds.str: # iter must yield a Series assert isinstance(s, Series) # indices of each yielded Series should be equal to the index of # the original Series tm.assert_index_equal(s.index, ds.index) for el in s: # each element of the series is either a basestring/str or nan assert isinstance(el, compat.string_types) or isna(el) # desired behavior is to iterate until everything would be nan on the # next iter so make sure the last element of the iterator was 'l' in # this case since 'wikitravel' is the longest string assert s.dropna().values.item() == 'l' def test_iter_empty(self): ds = Series([], dtype=object) i, s = 100, 1 for i, s in enumerate(ds.str): pass # nothing to iterate over so nothing defined values should remain # unchanged assert i == 100 assert s == 1 def test_iter_single_element(self): ds = Series(['a']) for i, s in enumerate(ds.str): pass assert not i assert_series_equal(ds, s) def test_iter_object_try_string(self): ds = Series([slice(None, randint(10), randint(10, 20)) for _ in range( 4)]) i, s = 100, 'h' for i, s in enumerate(ds.str): pass assert i == 100 assert s == 'h' def test_cat(self): one = np.array(['a', 'a', 'b', 'b', 'c', NA], dtype=np.object_) two = np.array(['a', NA, 'b', 'd', 'foo', NA], dtype=np.object_) # single array result = strings.str_cat(one) exp = 'aabbc' assert result == exp result = strings.str_cat(one, na_rep='NA') exp = 'aabbcNA' assert result == exp result = strings.str_cat(one, na_rep='-') exp = 'aabbc-' assert result == exp result = strings.str_cat(one, sep='_', na_rep='NA') exp = 'a_a_b_b_c_NA' assert result == exp result = strings.str_cat(two, sep='-') exp = 'a-b-d-foo' assert result == exp # Multiple arrays result = strings.str_cat(one, [two], na_rep='NA') exp = np.array(['aa', 'aNA', 'bb', 'bd', 'cfoo', 'NANA'], dtype=np.object_) tm.assert_numpy_array_equal(result, exp) result = strings.str_cat(one, two) exp = np.array(['aa', NA, 'bb', 'bd', 'cfoo', NA], dtype=np.object_) tm.assert_almost_equal(result, exp) def test_count(self): values = np.array(['foo', 'foofoo', NA, 'foooofooofommmfoo'], dtype=np.object_) result = strings.str_count(values, 'f[o]+') exp = np.array([1, 2, NA, 4]) tm.assert_numpy_array_equal(result, exp) result = Series(values).str.count('f[o]+') exp = Series([1, 2, NA, 4]) assert isinstance(result, Series) tm.assert_series_equal(result, exp) # mixed mixed = ['a', NA, 'b', True, datetime.today(), 'foo', None, 1, 2.] rs = strings.str_count(mixed, 'a') xp = np.array([1, NA, 0, NA, NA, 0, NA, NA, NA]) tm.assert_numpy_array_equal(rs, xp) rs = Series(mixed).str.count('a') xp = Series([1, NA, 0, NA, NA, 0, NA, NA, NA]) assert isinstance(rs, Series) tm.assert_series_equal(rs, xp) # unicode values = [u('foo'), u('foofoo'), NA, u('foooofooofommmfoo')] result = strings.str_count(values, 'f[o]+') exp = np.array([1, 2, NA, 4]) tm.assert_numpy_array_equal(result, exp) result = Series(values).str.count('f[o]+') exp = Series([1, 2, NA, 4]) assert isinstance(result, Series) tm.assert_series_equal(result, exp) def test_contains(self): values = np.array(['foo', NA, 'fooommm__foo', 'mmm_', 'foommm[_]+bar'], dtype=np.object_) pat = 'mmm[_]+' result = strings.str_contains(values, pat) expected = np.array([False, NA, True, True, False], dtype=np.object_) tm.assert_numpy_array_equal(result, expected) result = strings.str_contains(values, pat, regex=False) expected = np.array([False, NA, False, False, True], dtype=np.object_) tm.assert_numpy_array_equal(result, expected) values = ['foo', 'xyz', 'fooommm__foo', 'mmm_'] result = strings.str_contains(values, pat) expected = np.array([False, False, True, True]) assert result.dtype == np.bool_ tm.assert_numpy_array_equal(result, expected) # case insensitive using regex values = ['Foo', 'xYz', 'fOOomMm__fOo', 'MMM_'] result = strings.str_contains(values, 'FOO|mmm', case=False) expected = np.array([True, False, True, True]) tm.assert_numpy_array_equal(result, expected) # case insensitive without regex result = strings.str_contains(values, 'foo', regex=False, case=False) expected = np.array([True, False, True, False]) tm.assert_numpy_array_equal(result, expected) # mixed mixed = ['a', NA, 'b', True, datetime.today(), 'foo', None, 1, 2.] rs = strings.str_contains(mixed, 'o') xp = np.array([False, NA, False, NA, NA, True, NA, NA, NA], dtype=np.object_) tm.assert_numpy_array_equal(rs, xp) rs = Series(mixed).str.contains('o') xp = Series([False, NA, False, NA, NA, True, NA, NA, NA]) assert isinstance(rs, Series) tm.assert_series_equal(rs, xp) # unicode values = np.array([u'foo', NA, u'fooommm__foo', u'mmm_'], dtype=np.object_) pat = 'mmm[_]+' result = strings.str_contains(values, pat) expected = np.array([False, np.nan, True, True], dtype=np.object_) tm.assert_numpy_array_equal(result, expected) result = strings.str_contains(values, pat, na=False) expected = np.array([False, False, True, True]) tm.assert_numpy_array_equal(result, expected) values = np.array(['foo', 'xyz', 'fooommm__foo', 'mmm_'], dtype=np.object_) result = strings.str_contains(values, pat) expected = np.array([False, False, True, True]) assert result.dtype == np.bool_ tm.assert_numpy_array_equal(result, expected) # na values = Series(['om', 'foo', np.nan]) res = values.str.contains('foo', na="foo") assert res.loc[2] == "foo" def test_startswith(self): values = Series(['om', NA, 'foo_nom', 'nom', 'bar_foo', NA, 'foo']) result = values.str.startswith('foo') exp = Series([False, NA, True, False, False, NA, True]) tm.assert_series_equal(result, exp) # mixed mixed = np.array(['a', NA, 'b', True, datetime.today(), 'foo', None, 1, 2.], dtype=np.object_) rs = strings.str_startswith(mixed, 'f') xp = np.array([False, NA, False, NA, NA, True, NA, NA, NA], dtype=np.object_) tm.assert_numpy_array_equal(rs, xp) rs = Series(mixed).str.startswith('f') assert isinstance(rs, Series) xp = Series([False, NA, False, NA, NA, True, NA, NA, NA]) tm.assert_series_equal(rs, xp) # unicode values = Series([u('om'), NA, u('foo_nom'), u('nom'), u('bar_foo'), NA, u('foo')]) result = values.str.startswith('foo') exp = Series([False, NA, True, False, False, NA, True]) tm.assert_series_equal(result, exp) result = values.str.startswith('foo', na=True) tm.assert_series_equal(result, exp.fillna(True).astype(bool)) def test_endswith(self): values = Series(['om', NA, 'foo_nom', 'nom', 'bar_foo', NA, 'foo']) result = values.str.endswith('foo') exp = Series([False, NA, False, False, True, NA, True]) tm.assert_series_equal(result, exp) # mixed mixed = ['a', NA, 'b', True, datetime.today(), 'foo', None, 1, 2.] rs = strings.str_endswith(mixed, 'f') xp = np.array([False, NA, False, NA, NA, False, NA, NA, NA], dtype=np.object_) tm.assert_numpy_array_equal(rs, xp) rs = Series(mixed).str.endswith('f') xp = Series([False, NA, False, NA, NA, False, NA, NA, NA]) assert isinstance(rs, Series) tm.assert_series_equal(rs, xp) # unicode values = Series([u('om'), NA, u('foo_nom'), u('nom'), u('bar_foo'), NA, u('foo')]) result = values.str.endswith('foo') exp = Series([False, NA, False, False, True, NA, True]) tm.assert_series_equal(result, exp) result = values.str.endswith('foo', na=False) tm.assert_series_equal(result, exp.fillna(False).astype(bool)) def test_title(self): values = Series(["FOO", "BAR", NA, "Blah", "blurg"]) result = values.str.title() exp = Series(["Foo", "Bar", NA, "Blah", "Blurg"]) tm.assert_series_equal(result, exp) # mixed mixed = Series(["FOO", NA, "bar", True, datetime.today(), "blah", None, 1, 2.]) mixed = mixed.str.title() exp = Series(["Foo", NA, "Bar", NA, NA, "Blah", NA, NA, NA]) tm.assert_almost_equal(mixed, exp) # unicode values = Series([u("FOO"), NA, u("bar"), u("Blurg")]) results = values.str.title() exp = Series([u("Foo"), NA, u("Bar"), u("Blurg")]) tm.assert_series_equal(results, exp) def test_lower_upper(self): values = Series(['om', NA, 'nom', 'nom']) result = values.str.upper() exp = Series(['OM', NA, 'NOM', 'NOM']) tm.assert_series_equal(result, exp) result = result.str.lower() tm.assert_series_equal(result, values) # mixed mixed = Series(['a', NA, 'b', True, datetime.today(), 'foo', None, 1, 2.]) mixed = mixed.str.upper() rs = Series(mixed).str.lower() xp = Series(['a', NA, 'b', NA, NA, 'foo', NA, NA, NA]) assert isinstance(rs, Series) tm.assert_series_equal(rs, xp) # unicode values = Series([u('om'), NA, u('nom'), u('nom')]) result = values.str.upper() exp = Series([u('OM'), NA, u('NOM'), u('NOM')]) tm.assert_series_equal(result, exp) result = result.str.lower() tm.assert_series_equal(result, values) def test_capitalize(self): values = Series(["FOO", "BAR", NA, "Blah", "blurg"]) result = values.str.capitalize() exp = Series(["Foo", "Bar", NA, "Blah", "Blurg"]) tm.assert_series_equal(result, exp) # mixed mixed = Series(["FOO", NA, "bar", True, datetime.today(), "blah", None, 1, 2.]) mixed = mixed.str.capitalize() exp = Series(["Foo", NA, "Bar", NA, NA, "Blah", NA, NA, NA])
tm.assert_almost_equal(mixed, exp)
pandas.util.testing.assert_almost_equal
import pandas as pd media =
pd.read_excel('./../data/CCLE/CCLE_Summary.xlsx', sheet_name='Media')
pandas.read_excel
import numpy as np import pandas as pd from scipy import stats stats.norm(10.,2.).rvs() x = np.ones(10) x *= 2.4 df =
pd.DataFrame([1,2,3])
pandas.DataFrame
# Import the pandas-PACKAGE import matplotlib.pyplot as plt import pandas as pd # gca stands for 'get current axis' ax = plt.gca() # 3D-paraboloid can be described with equation: # (x2/a2) + (y2/a2) = z # If the coefficient 'a' is set to 1 # then the radius at each cut will be equal to √z (square-root of z). # Your task is to create a dictionary that stores the mapping # from the pair of coordinates (x, y) to the z-coordinate # The list for 'x' and the list for 'y' are given: range_x = [0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0] range_y = [0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0] circ_paraboloid = dict() for x in range_x: for y in range_y: # Calculate the value for z # Equation: (x**2/a**2) + (y**2/a**2) = z # Coefficient (a) = 1 # => ( x**2 / (1**2) ) + ( y**2 / (1**2) ) = z p = x**2 / (1**2) q = y**2 / (1**2) z = ( p ) + ( q ) # Create a new key for the dictionary key = (x,y) # print("key (x,y): ", key) # Create a new key-value pair circ_paraboloid[key] = z # print (circ_paraboloid.items()) # print('circ_paraboloid: ', circ_paraboloid) # # Prints something like # ==================================== # [ # ((0.0, 0.0), 0.0), # ((0.0, 0.2), 0.04000000000000001), # .... # ] # ==================================== # print('circ_paraboloid[(1.8, 1.4)]: ', circ_paraboloid[(1.8, 1.4)]) my_paraboloid = dict() my_keys = [] my_keys_index = [] my_values = [] for key, value in circ_paraboloid.items(): my_keys.append(key) my_values.append(value) # my_paraboloid[key.index()] = value print(len(my_keys)) print(len(my_values)) for key in my_keys: my_keys_index.append(my_keys.index(key) + 1 ) # print(my_keys_index) # my_paraboloid = zip(my_keys_index, my_values) my_paraboloid= {} # print(my_paraboloid) # Create a dataframe CLASS object df =
pd.DataFrame(my_paraboloid)
pandas.DataFrame
import json import operator import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns from pandas.core.indexes import base from scipy import stats from sklearn.metrics import auc, roc_auc_score, roc_curve from tqdm.auto import tqdm from data_prep import gini_weight, normalise_matrix, prepare_matrix class NoResultsError(Exception): pass def convert_df_to_string(df): """ Takes a dataframe and converts it to a list and then to a sting separated by ';' """ if len(df.columns) > 1: df = df.T df = df.rename({df.columns[0]: 0}, axis=1) else: df = df.round(decimals=3) df_list = df[0].values.tolist() df_str = ";".join(map(str, df_list)) return df_str def output_data(results): res_best = results[0] print(res_best) def find_rank_file(elms, correct_res, metric, reverse=True): ranks = [] elms[metric].sort(key=operator.itemgetter("result"), reverse=reverse) for cr in correct_res: for i, e in enumerate(elms[metric]): if e["elm"] == cr: ranks.append(i) return ranks def find_rank_name(elms, pssm, metric, reverse=True): ranks = [] elms[metric].sort(key=operator.itemgetter("result"), reverse=reverse) for i, e in enumerate(elms[metric]): if e["elm"] == pssm: ranks.append(i) return ranks class MultiComparison: def __init__( self, data_file_1, data_file_2 = "", file_name = "", use_index = True, correct_results_file = "", ): self.multi_metrics = { "pearsons": {"match": [], "mismatch": []}, "kendalls": {"match": [], "mismatch": []}, "spearmans": {"match": [], "mismatch": []}, "dots": {"match": [], "mismatch": []}, "ssds": {"match": [], "mismatch": []}, "kls": {"match": [], "mismatch": []}, } self.best_match = {} self.all_ranks = {} self.all_results = {} self.pearson_rank = [] self.kendall_rank = [] self.spearman_rank = [] self.ssd_rank = [] self.dot_rank = [] self.kl_rank = [] if use_index: data_1_names = [] for pssm in data_file_1: # for the dms dataset data_1_names.append(pssm) # for the PropPD dataset # data_1_names.append(data_file_1[pssm]["motif"]) else: data_1_names = [file_name] col_names = [ "ELM", "Quality", "Comparison Results", "Motif 1", "Motif 2", "Consensus", "Comparison Windows", "Gini 1", "Gini 2", "Similarity", ] similarity_met_col_names = [ "Pearsons", "Kendalls", "Spearmans", "SSD", "Dot Product", "KL", ] self.best_df = pd.DataFrame(columns=col_names, index=data_1_names) self.similarity_df = pd.DataFrame( columns=similarity_met_col_names, index=data_1_names ) if data_file_2 != "": data_2_names = [] for pssm in data_file_2: # for dms data_2_names.append(pssm) # # for ELM # data_2_names.append(data_file_2[pssm]["motif"]) self.all_df = pd.DataFrame(columns=data_1_names, index=data_2_names) if correct_results_file != "": with open(correct_results_file) as crf: self.correct_results = json.load(crf) self.match = [] self.mismatch = [] def del_nan_values(self): for pssm in self.all_results: for key, value in list(self.all_results[pssm].items()): check_float = isinstance(value, float) if (check_float == False): del self.all_results[pssm][key] def create_ranks(self,correct_results_file): ranked = {} for pssm in self.all_results: ranked[pssm] = rank_dict(self.all_results[pssm]) correct_res_rank = {} if correct_results_file == "": for pssm_correct in ranked: if pssm_correct not in ranked[pssm_correct]: correct_res_rank[pssm_correct] = 0 else: correct_res_rank[pssm_correct] = ranked[pssm_correct][pssm_correct] else: for pssm_correct in ranked: print(pssm_correct) if pssm_correct not in self.correct_results: correct_result = 0 else: best_rank = {} for result in self.correct_results[pssm_correct]: if result in ranked[pssm_correct]: best_rank[result] = ranked[pssm_correct][result] best_rank_sorted = sorted(best_rank.items(), key=operator.itemgetter(1)) print(best_rank_sorted) if len(best_rank_sorted) == 0: correct_result = 0 else: correct_result = best_rank_sorted[0][1] correct_res_rank[pssm_correct] = correct_result # for comp_pssm in ranked[pssm_correct]: # if comp_pssm == correct_results_file[pssm_correct][0]: # correct_res_rank[pssm_correct] = ranked[pssm_correct][comp_pssm] # else: # correct_res_rank[pssm_correct] = 0 with open("ranked.json", "w") as ranked_file: json.dump(ranked, ranked_file) print("correct res rank") print(correct_res_rank) return ranked,correct_res_rank def add_rank_column(self, correct_res_rank): """ Creates a dataframe with all the correct results ranks and adds it to the output best_result dataframe """ # Turn Index to a Column self.best_df = self.best_df.reset_index() self.best_df = self.best_df.rename(columns={"index": "DMS"}) # Add the ranks column rank_df = pd.DataFrame([correct_res_rank]) rank_df = rank_df.T rank_df = rank_df.rename(columns={0: "Rank"}) rank_df = rank_df.reset_index() rank_df = rank_df.rename(columns={"index": "DMS"}) print("rank df") print(rank_df) self.best_df = self.best_df.merge(rank_df, on="DMS") # self.best_df = self.best_df.join(rank_df) # self.best_df["Correct Result Rank"] = rank_df['Rank'].values return self.best_df def create_top_5_file(self): """ Creates a json file and returns a dictionary with the top 5 results for each PSSM comparison """ # create a file with the top 5 results for each pssm top_5 = {} ranked = {} for k, v in self.all_results.items(): ranked[k] = rank_dict(v) res = sorted(v.items(), key=operator.itemgetter(1), reverse=True) top_5[k] = res[:5] with open("top_5.json", "w") as top_5_file: json.dump(top_5, top_5_file) return top_5 def create_file(self, correct_results_file): """ Final function to be called after each comparison. Creates all the output files of the program. """ # turn all the nan results to 0 for pssm in self.all_results: for key, value in list(self.all_results[pssm].items()): if pd.isna(value): del self.all_results[pssm][key] print("self.all_results") print(self.all_results) print("self.match") print(self.match) print("self.correct_rank") print(self.correct_rank) # create a file with the top 5 results for each pssm top_5 = self.create_top_5_file() # check the rank of the correct result ranked,correct_res_rank = self.create_ranks(correct_results_file) self.best_df = self.best_df.sort_values( by=["Comparison Results"], ascending=False ) # Add the ranks column self.best_df = self.add_rank_column(correct_res_rank) with open("all_results.json", "w") as all_results_file: json.dump(self.all_results, all_results_file) # TODO: use filenames self.best_df.to_csv("dms_vs_elm.csv") if hasattr(self, "all_df"): self.all_df.to_csv("elm-all.csv") # if hasattr(self, "similarity_df"): # self.similarity_df.to_csv("dms_similarity.csv") def plot_match(self): match_df =
pd.DataFrame(self.match, columns=["Match"])
pandas.DataFrame
import pandas as pd import numpy as np def create_empty_df(columns, dtypes, index=None): df = pd.DataFrame(index=index) for c,d in zip(columns, dtypes): df[c] =
pd.Series(dtype=d)
pandas.Series
# Fundamental libraries import os import re import sys import time import glob import random import datetime import warnings import itertools import numpy as np import pandas as pd import pickle as cp import seaborn as sns import multiprocessing from scipy import stats from pathlib import Path from ast import literal_eval import matplotlib.pyplot as plt from collections import Counter from argparse import ArgumentParser os.environ['CUDA_LAUNCH_BLOCKING'] = "1" warnings.filterwarnings(action="ignore") # PyTorch, PyTorch.Text, and Lightning-PyTorch methods import torch from torch import nn, optim, Tensor import torch.nn.functional as F from torch.utils.data import Dataset, DataLoader from torchtext.vocab import Vocab import pytorch_lightning as pl from pytorch_lightning.callbacks import ModelCheckpoint from pytorch_lightning.callbacks.early_stopping import EarlyStopping # SciKit-Learn methods from sklearn.metrics import confusion_matrix, accuracy_score, roc_auc_score from sklearn.preprocessing import LabelEncoder, KBinsDiscretizer, OneHotEncoder, StandardScaler from sklearn.model_selection import StratifiedShuffleSplit from sklearn.utils import resample from sklearn.utils.class_weight import compute_class_weight # TQDM for progress tracking from tqdm import tqdm # Custom methods from classes.datasets import CONCISE_PREDICTOR_SET from models.CPM import CPM_deep # Train CPM_deep def train_CPM_deep(TRAINING_SET, VAL_SET, TESTING_SET, TUNE_IDX, REPEAT, FOLD, OUTPUT_DIR, BATCH_SIZE, LEARNING_RATE, LAYERS, NEURONS, DROPOUT, ES_PATIENCE, EPOCHS, CLASS_WEIGHTS, OUTPUT_ACTIVATION): """ Args: TRAINING_SET (pd.DataFrame) VAL_SET (pd.DataFrame) TESTING_SET (pd.DataFrame) TUNE_IDX (str) REPEAT (int) FOLD (int) OUTPUT_DIR (str): directory to save model outputs BATCH_SIZE (int): size of minibatches during training LEARNING_RATE (float): Learning rate for ADAM optimizer LAYERS (int): number of hidden layers in feed forward neural network NEURONS (list of length layers): the number of neurons in each layer DROPOUT (flaot): the proportion of each dense layer dropped out during training ES_PATIENCE (int): patience during early stopping EPOCHS (int): maximum epochs during training CLASS_WEIGHTS (boolean): identifies whether loss should be weighted against class frequency OUTPUT_ACTIVATION (string): 'softmax' for DeepMN or 'sigmoid' for DeepOR """ # Create a directory within current repeat/fold combination to store outputs of current tuning configuration tune_model_dir = os.path.join(OUTPUT_DIR,'tune_'+TUNE_IDX) os.makedirs(tune_model_dir,exist_ok = True) # Create PyTorch Dataset objects train_Dataset = CONCISE_PREDICTOR_SET(TRAINING_SET,OUTPUT_ACTIVATION) val_Dataset = CONCISE_PREDICTOR_SET(VAL_SET,OUTPUT_ACTIVATION) test_Dataset = CONCISE_PREDICTOR_SET(TESTING_SET,OUTPUT_ACTIVATION) # Create PyTorch DataLoader objects curr_train_DL = DataLoader(train_Dataset, batch_size=int(BATCH_SIZE), shuffle=True) curr_val_DL = DataLoader(val_Dataset, batch_size=len(val_Dataset), shuffle=False) curr_test_DL = DataLoader(test_Dataset, batch_size=len(test_Dataset), shuffle=False) # Initialize current model class based on hyperparameter selections model = CPM_deep(train_Dataset.X.shape[1], LAYERS, NEURONS, DROPOUT, OUTPUT_ACTIVATION, LEARNING_RATE, CLASS_WEIGHTS, train_Dataset.y) early_stop_callback = EarlyStopping( monitor='val_AUROC', patience=ES_PATIENCE, mode='max' ) checkpoint_callback = ModelCheckpoint( monitor='val_AUROC', dirpath=tune_model_dir, filename='{epoch:02d}-{val_AUROC:.2f}', save_top_k=1, mode='max' ) csv_logger = pl.loggers.CSVLogger(save_dir=OUTPUT_DIR,name='tune_'+TUNE_IDX) trainer = pl.Trainer(logger = csv_logger, max_epochs = EPOCHS, enable_progress_bar = False, enable_model_summary = False, callbacks=[early_stop_callback,checkpoint_callback]) trainer.fit(model,curr_train_DL,curr_val_DL) best_model = CPM_deep.load_from_checkpoint(checkpoint_callback.best_model_path) best_model.eval() # Save validation set probabilities for i, (x,y) in enumerate(curr_val_DL): yhat = best_model(x) val_true_y = y.cpu().numpy() if OUTPUT_ACTIVATION == 'softmax': curr_val_probs = F.softmax(yhat.detach()).cpu().numpy() curr_val_preds = pd.DataFrame(curr_val_probs,columns=['Pr(GOSE=1)','Pr(GOSE=2/3)','Pr(GOSE=4)','Pr(GOSE=5)','Pr(GOSE=6)','Pr(GOSE=7)','Pr(GOSE=8)']) curr_val_preds['TrueLabel'] = val_true_y elif OUTPUT_ACTIVATION == 'sigmoid': curr_val_probs = F.sigmoid(yhat.detach()).cpu().numpy() curr_val_probs = pd.DataFrame(curr_val_probs,columns=['Pr(GOSE>1)','Pr(GOSE>3)','Pr(GOSE>4)','Pr(GOSE>5)','Pr(GOSE>6)','Pr(GOSE>7)']) curr_val_labels = pd.DataFrame(val_true_y,columns=['GOSE>1','GOSE>3','GOSE>4','GOSE>5','GOSE>6','GOSE>7']) curr_val_preds = pd.concat([curr_val_probs,curr_val_labels],axis = 1) else: raise ValueError("Invalid output layer type. Must be 'softmax' or 'sigmoid'") curr_val_preds.insert(loc=0, column='GUPI', value=VAL_SET.GUPI.values) curr_val_preds['TUNE_IDX'] = TUNE_IDX curr_val_preds.to_csv(os.path.join(tune_model_dir,'val_predictions.csv'),index=False) best_model.eval() # Save testing set probabilities for i, (x,y) in enumerate(curr_test_DL): yhat = best_model(x) test_true_y = y.cpu().numpy() if OUTPUT_ACTIVATION == 'softmax': curr_test_probs = F.softmax(yhat.detach()).cpu().numpy() curr_test_preds = pd.DataFrame(curr_test_probs,columns=['Pr(GOSE=1)','Pr(GOSE=2/3)','Pr(GOSE=4)','Pr(GOSE=5)','Pr(GOSE=6)','Pr(GOSE=7)','Pr(GOSE=8)']) curr_test_preds['TrueLabel'] = test_true_y elif OUTPUT_ACTIVATION == 'sigmoid': curr_test_probs = F.sigmoid(yhat.detach()).cpu().numpy() curr_test_probs = pd.DataFrame(curr_test_probs,columns=['Pr(GOSE>1)','Pr(GOSE>3)','Pr(GOSE>4)','Pr(GOSE>5)','Pr(GOSE>6)','Pr(GOSE>7)']) curr_test_labels = pd.DataFrame(test_true_y,columns=['GOSE>1','GOSE>3','GOSE>4','GOSE>5','GOSE>6','GOSE>7']) curr_test_preds = pd.concat([curr_test_probs,curr_test_labels],axis = 1) else: raise ValueError("Invalid output layer type. Must be 'softmax' or 'sigmoid'") curr_test_preds.insert(loc=0, column='GUPI', value=TESTING_SET.GUPI.values) curr_test_preds['TUNE_IDX'] = TUNE_IDX curr_test_preds.to_csv(os.path.join(tune_model_dir,'test_predictions.csv'),index=False) # Functions to collect validation metrics from files in parallel def collect_val_metrics( csv_file_list, n_cores, progress_bar=True, progress_bar_desc=''): # Establish sizes of files for each core sizes = [len(csv_file_list) // n_cores for _ in range(n_cores)] sizes[:(len(csv_file_list) - sum(sizes))] = [val+1 for val in sizes[:(len(csv_file_list) - sum(sizes))]] end_indices = np.cumsum(sizes) start_indices = np.insert(end_indices[:-1],0,0) # Build arguments for metric sub-functions arg_iterable = [( csv_file_list[start_indices[idx]:end_indices[idx]], progress_bar, progress_bar_desc) for idx in range(len(start_indices))] # Run metric sub-function in parallel with multiprocessing.Pool(n_cores) as pool: result = pool.starmap(_val_metric_par, arg_iterable) return pd.concat(result, ignore_index=True).sort_values(by=['fold','TUNE_IDX']).reset_index(drop=True) def _val_metric_par(sub_csv_file_list, progress_bar=True, progress_bar_desc=''): if progress_bar: iterator = tqdm(range(len(sub_csv_file_list)), desc=progress_bar_desc) else: iterator = range(len(sub_csv_file_list)) return pd.concat([val_metric_extraction(sub_csv_file_list[sub_file_idx]) for sub_file_idx in iterator], ignore_index=True) def val_metric_extraction(chosen_file): curr_metric_df = pd.read_csv(chosen_file) curr_metric_df = curr_metric_df.groupby(['epoch','step'],as_index=False)[curr_metric_df.columns[~curr_metric_df.columns.isin(['epoch', 'step'])]].max() curr_metric_df['TUNE_IDX'] = re.search('/tune_(.*)/version_', chosen_file).group(1) curr_metric_df['repeat'] = int(re.search('/repeat(.*)/fold', chosen_file).group(1)) curr_metric_df['fold'] = int(re.search('/fold(.*)/tune', chosen_file).group(1)) return(curr_metric_df) ### SURFACE FUNCTION def generate_resamples( pred_df, output_activation, num_resamples, n_cores, progress_bar=True, progress_bar_desc=''): # Establish number of resamples per each core sizes = [num_resamples // n_cores for _ in range(n_cores)] sizes[:(num_resamples - sum(sizes))] = [val+1 for val in sizes[:(num_resamples - sum(sizes))]] # Build arguments for metric sub-functions arg_iterable = [(pred_df, output_activation, s, progress_bar, progress_bar_desc) for s in sizes] # Run metric sub-function in parallel with multiprocessing.Pool(n_cores) as pool: result = pool.starmap(_bs_rs_generator, arg_iterable) # Add a core index to each resample dataframe for i in range(len(result)): curr_df = result[i] curr_df['core_idx'] = i result[i] = curr_df result = pd.concat(result) # From unique combinations of core_idx and core_sub_idx, assign resample IDs rs_combos = result[['core_sub_idx','core_idx']].drop_duplicates(ignore_index = True) rs_combos = rs_combos.sort_values(by=['core_idx','core_sub_idx']).reset_index(drop=True) rs_combos['rs_idx'] = [i for i in range(rs_combos.shape[0])] # Merge resample IDs result = pd.merge(result,rs_combos,how='left',on=['core_idx','core_sub_idx']) return result ## SUB-SURFACE and ACTIVE FUNCTION def _bs_rs_generator( pred_df, output_activation, size, progress_bar, progress_bar_desc): # Create random generator instance rs = np.random.RandomState() if output_activation == 'softmax': curr_outcomes = pred_df[['GUPI','TrueLabel']].drop_duplicates(ignore_index = True) elif output_activation == 'sigmoid': label_col = [col for col in pred_df if col.startswith('GOSE>')] label_col.insert(0,'GUPI') curr_outcomes = pred_df[label_col].drop_duplicates(ignore_index = True) curr_outcomes['TrueLabel'] = curr_outcomes[[col for col in curr_outcomes if col.startswith('GOSE>')]].sum(axis = 1) curr_outcomes = curr_outcomes.drop(columns = [col for col in curr_outcomes if col.startswith('GOSE>')]) else: raise ValueError("Invalid output layer type. Must be 'softmax' or 'sigmoid'") if progress_bar: iterator = tqdm(range(size), desc=progress_bar_desc) else: iterator = range(size) bs_subcore_resamples = [] for i in iterator: curr_bs_rs = resample(curr_outcomes,replace=True, random_state = rs, stratify = curr_outcomes.TrueLabel).drop_duplicates(ignore_index = True) curr_bs_rs['core_sub_idx'] = i bs_subcore_resamples.append(curr_bs_rs) return pd.concat(bs_subcore_resamples) # Function to bootstrap AUROC on optimal validation configuration def bootstrap_opt_val_metric( opt_preds_df, output_activation, bs_resamples, n_cores, progress_bar=True, progress_bar_desc=''): # Establish number of resamples for each core sizes = [len(bs_resamples.rs_idx.unique()) // n_cores for _ in range(n_cores)] sizes[:(len(bs_resamples.rs_idx.unique()) - sum(sizes))] = [val+1 for val in sizes[:(len(bs_resamples.rs_idx.unique()) - sum(sizes))]] end_indices = np.cumsum(sizes) start_indices = np.insert(end_indices[:-1],0,0) # Build arguments for metric sub-functions arg_iterable = [( opt_preds_df, output_activation, bs_resamples, bs_resamples.rs_idx.unique()[start_indices[idx]:end_indices[idx]], progress_bar, progress_bar_desc) for idx in range(len(start_indices))] # Run metric sub-function in parallel with multiprocessing.Pool(n_cores) as pool: result = pool.starmap(_opt_val_bs_par, arg_iterable) return pd.concat(result) ### SUB-SURFACE AND ACTIVE FUNCTOINS: def _opt_val_bs_par( opt_preds_df, output_activation, bs_resamples, curr_resamples, progress_bar, progress_bar_desc): # Initiate dataframe to store AUROCs from current core curr_rs_test_results = pd.DataFrame(columns=['TUNE_IDX','RESAMPLE_IDX','opt_AUROC']) if progress_bar: iterator = tqdm(curr_resamples, desc=progress_bar_desc) else: iterator = curr_resamples # Iterate through assigned resampling indices for curr_rs_idx in iterator: # Extract current bootstrapping resamples curr_bs_rs = bs_resamples[bs_resamples.rs_idx == curr_rs_idx] # Extract current optimal configuration in-sample predictions curr_rs_preds = opt_preds_df[opt_preds_df.GUPI.isin(curr_bs_rs.GUPI)] if output_activation == 'softmax': prob_cols = [col for col in curr_rs_preds if col.startswith('Pr(GOSE')] curr_config_auroc = roc_auc_score(curr_rs_preds.TrueLabel.values, curr_rs_preds[prob_cols].values, multi_class='ovo') elif output_activation == 'sigmoid': prob_cols = [col for col in curr_rs_preds if col.startswith('Pr(GOSE')] label_cols = [col for col in curr_rs_preds if col.startswith('GOSE>')] curr_config_auroc = roc_auc_score(curr_rs_preds[label_cols].values, curr_rs_preds[prob_cols].values, multi_class='macro') curr_rs_test_results = curr_rs_test_results.append(pd.DataFrame({'TUNE_IDX':opt_preds_df.TUNE_IDX.unique()[0], 'RESAMPLE_IDX':curr_rs_idx, 'opt_AUROC':curr_config_auroc},index=[0]),ignore_index=True) return curr_rs_test_results # Calculate trial configuration performance on bootstrap resamples in parallel def bootstrap_val_metric( trial_configurations, output_activation, bs_resamples, val_pred_file_info_df, repeat, n_cores, split_by_tune_idx, progress_bar=True, progress_bar_desc=''): if split_by_tune_idx: # Establish sizes of files for each core sizes = [len(trial_configurations) // n_cores for _ in range(n_cores)] sizes[:(len(trial_configurations) - sum(sizes))] = [val+1 for val in sizes[:(len(trial_configurations) - sum(sizes))]] end_indices = np.cumsum(sizes) start_indices = np.insert(end_indices[:-1],0,0) # Build arguments for metric sub-functions arg_iterable = [( trial_configurations[start_indices[idx]:end_indices[idx]], output_activation, bs_resamples, val_pred_file_info_df, repeat, progress_bar, progress_bar_desc) for idx in range(len(start_indices))] else: # Establish sizes of resamples for each core sizes = [len(bs_resamples.rs_idx.unique()) // n_cores for _ in range(n_cores)] sizes[:(len(bs_resamples.rs_idx.unique()) - sum(sizes))] = [val+1 for val in sizes[:(len(bs_resamples.rs_idx.unique()) - sum(sizes))]] end_indices = np.cumsum(sizes) start_indices = np.insert(end_indices[:-1],0,0) # Build arguments for metric sub-functions arg_iterable = [( trial_configurations, output_activation, bs_resamples[bs_resamples.rs_idx.isin([i for i in range(start_indices[idx],end_indices[idx])])], val_pred_file_info_df, repeat, progress_bar, progress_bar_desc) for idx in range(len(start_indices))] # Run metric sub-function in parallel with multiprocessing.Pool(n_cores) as pool: result = pool.starmap(_val_bs_par, arg_iterable) return pd.concat(result, ignore_index=True).sort_values(by=['TUNE_IDX','RESAMPLE_IDX']).reset_index(drop=True) ### SUB-SURFACE AND ACTIVE FUNCTOINS: def _val_bs_par( curr_trial_configs, output_activation, bs_resamples, val_pred_file_info_df, repeat, progress_bar, progress_bar_desc): # Initiate dataframe to store AUROCs from current core curr_rs_test_results = pd.DataFrame(columns=['TUNE_IDX','RESAMPLE_IDX','trial_AUROC']) if progress_bar: iterator = tqdm(curr_trial_configs.TUNE_IDX.values, desc=progress_bar_desc) else: iterator = curr_trial_configs.TUNE_IDX.values # Iterate through trial configurations for curr_trial_tune_idx in iterator: # Find available validation prediction files for current under-trial configuration curr_trial_candidate_dirs = val_pred_file_info_df.file[(val_pred_file_info_df.TUNE_IDX == curr_trial_tune_idx) & (val_pred_file_info_df.repeat <= repeat)].values curr_trial_candidate_dirs = [curr_cand_dir for curr_cand_dir in curr_trial_candidate_dirs if os.path.isfile(curr_cand_dir)] # Load and concatenate validation predictions for current trial tuning index curr_trial_val_preds_df = pd.concat([pd.read_csv(curr_dir) for curr_dir in curr_trial_candidate_dirs]) curr_trial_val_preds_df['TUNE_IDX'] = curr_trial_tune_idx # Iterate through bootstrapping resamples and calculate AUROC for current trial configuration tuning index for curr_rs_idx in bs_resamples.rs_idx.unique(): # Extract current bootstrapping resamples curr_bs_rs = bs_resamples[bs_resamples.rs_idx == curr_rs_idx] # Extract current trial configuration in-sample predictions curr_rs_preds = curr_trial_val_preds_df[curr_trial_val_preds_df.GUPI.isin(curr_bs_rs.GUPI)] if output_activation == 'softmax': prob_cols = [col for col in curr_rs_preds if col.startswith('Pr(GOSE')] curr_config_auroc = roc_auc_score(curr_rs_preds[curr_rs_preds.TUNE_IDX == curr_trial_tune_idx].TrueLabel.values, curr_rs_preds[curr_rs_preds.TUNE_IDX == curr_trial_tune_idx][prob_cols].values, multi_class='ovo') elif output_activation == 'sigmoid': prob_cols = [col for col in curr_rs_preds if col.startswith('Pr(GOSE')] label_cols = [col for col in curr_rs_preds if col.startswith('GOSE>')] curr_config_auroc = roc_auc_score(curr_rs_preds[curr_rs_preds.TUNE_IDX == curr_trial_tune_idx][label_cols].values, curr_rs_preds[curr_rs_preds.TUNE_IDX == curr_trial_tune_idx][prob_cols].values, multi_class='macro') curr_rs_test_results = curr_rs_test_results.append(pd.DataFrame({'TUNE_IDX':curr_trial_tune_idx, 'RESAMPLE_IDX':curr_rs_idx, 'trial_AUROC':curr_config_auroc},index=[0]),ignore_index=True) return curr_rs_test_results # Functions for Bootstrap Bias Corrected with Dropping CV (BBCD-CV) doi: 10.1007/s10994-018-5714-4 def interrepeat_dropout( REPEAT, MODEL_DIR, validation_perf, tuning_grid, grouping_vars, num_resamples, num_cores, save_perf_metrics, progress_bars ): # Find all validation prediction files within the current model directory val_pred_files = [] for path in Path(MODEL_DIR).rglob('*val_predictions.csv'): val_pred_files.append(str(path.resolve())) val_pred_file_info_df = pd.DataFrame({'file':val_pred_files, 'TUNE_IDX':[re.search('tune_(.*)/', curr_file).group(1) for curr_file in val_pred_files], 'VERSION':[re.search('IMPACT_model_outputs/v(.*)/repeat', curr_file).group(1) for curr_file in val_pred_files], 'repeat':[int(re.search('/repeat(.*)/fold', curr_file).group(1)) for curr_file in val_pred_files], 'fold':[int(re.search('/fold(.*)/tune_', curr_file).group(1)) for curr_file in val_pred_files] }).sort_values(by=['repeat','fold','TUNE_IDX','VERSION']).reset_index(drop=True) # Filter only validation prediction files available to current repeat and viable tuning indices val_pred_file_info_df = val_pred_file_info_df[val_pred_file_info_df.repeat <= REPEAT] val_pred_file_info_df = val_pred_file_info_df[val_pred_file_info_df.TUNE_IDX.isin(tuning_grid.TUNE_IDX)] # Filter only viable tuning indices validation_perf = validation_perf[validation_perf.TUNE_IDX.isin(tuning_grid.TUNE_IDX)] max_validation_perf = validation_perf.groupby(['TUNE_IDX','repeat','fold'],as_index=False)['val_AUROC'].max() max_validation_perf = pd.merge(max_validation_perf, tuning_grid, how="left", on=['TUNE_IDX']) if save_perf_metrics: max_validation_perf.to_csv(os.path.join(MODEL_DIR,'repeat'+str(REPEAT).zfill(2),'validation_performance.csv'),index=False) # Group by tuning index and average validation AUROC across_cv_perf = max_validation_perf.groupby(max_validation_perf.columns[~max_validation_perf.columns.isin(['repeat','fold','val_AUROC'])].values.tolist(),as_index=False)['val_AUROC'].mean() opt_tune_idx = across_cv_perf[across_cv_perf.groupby(grouping_vars)['val_AUROC'].transform(max) == across_cv_perf['val_AUROC']].reset_index(drop=True) # Non-ideal tuning configurations under trial trial_configs = across_cv_perf[~across_cv_perf.TUNE_IDX.isin(opt_tune_idx.TUNE_IDX)] # Initialize empty list to store droppped configurations dropped_idx = [] # Iterate through each unique combination of the grouping variables for combo_idx in range(opt_tune_idx.shape[0]): # Acquire current output activation from optimal configuration dataframe curr_output = opt_tune_idx.OUTPUT_ACTIVATION.values[combo_idx] # Acquire current optimal configuration tuning index curr_opt_tune_idx = opt_tune_idx.TUNE_IDX.values[combo_idx] # Set current progress bar label pb_label = ', '.join([name+': '+str(opt_tune_idx[name].values[combo_idx]) for name in grouping_vars]) # Find available validation prediction files for current optimal tuning index curr_opt_candidate_dirs = val_pred_file_info_df.file[(val_pred_file_info_df.TUNE_IDX == curr_opt_tune_idx) & (val_pred_file_info_df.repeat <= REPEAT)].values curr_opt_candidate_dirs = [curr_cand_dir for curr_cand_dir in curr_opt_candidate_dirs if os.path.isfile(curr_cand_dir)] # Compile current optimal configuration validation predictions curr_opt_val_preds_df = pd.concat([pd.read_csv(curr_cand_dir) for curr_cand_dir in curr_opt_candidate_dirs]) # Filter out under-trial configurations that match the current grouping combination curr_trial_configs = pd.merge(trial_configs,opt_tune_idx[opt_tune_idx.TUNE_IDX == curr_opt_tune_idx][grouping_vars],how='inner',on=grouping_vars).reset_index(drop=True) # Generate bootstrapping resamples bs_resamples = generate_resamples(curr_opt_val_preds_df, curr_output, num_resamples, num_cores, progress_bar=progress_bars, progress_bar_desc='Generating resamples '+pb_label) # Calculate optimal configuration performance on generated resamples opt_bs_AUC = bootstrap_opt_val_metric(curr_opt_val_preds_df, curr_output, bs_resamples, num_cores, progress_bar=progress_bars, progress_bar_desc='Bootstrapping optimal config AUC '+pb_label) bootstrapped_AUC = bootstrap_val_metric(curr_trial_configs, curr_output, bs_resamples, val_pred_file_info_df, REPEAT, num_cores, len(curr_trial_configs) >= num_cores, progress_bars, 'Bootstrapping AUC '+pb_label) bootstrapped_AUC = pd.merge(bootstrapped_AUC,opt_bs_AUC[['RESAMPLE_IDX','opt_AUROC']],on='RESAMPLE_IDX',how='left') bootstrapped_AUC['trial_win'] = bootstrapped_AUC['trial_AUROC'] >= bootstrapped_AUC['opt_AUROC'] bootstrap_pvals = bootstrapped_AUC.groupby(['TUNE_IDX'],as_index=False)['trial_win'].agg(['sum','size']).reset_index() bootstrap_pvals['pval'] = bootstrap_pvals['sum']/bootstrap_pvals['size'] dropped_idx.append(bootstrap_pvals[bootstrap_pvals['pval'] < 0.01].TUNE_IDX.values) print('Tuning indices droppped from '+pb_label+':') print(bootstrap_pvals[bootstrap_pvals['pval'] < 0.01].TUNE_IDX.values) # Concatenate arrays of dropped indices dropped_tune_idx = np.concatenate(dropped_idx) viable_tuning_grid = tuning_grid[~tuning_grid.TUNE_IDX.isin(dropped_tune_idx)] return (dropped_tune_idx,viable_tuning_grid) def calc_orc(pred_file_info, progress_bar = True, progress_bar_desc = ''): if progress_bar: iterator = tqdm(range(pred_file_info.shape[0]),desc=progress_bar_desc) else: iterator = range(pred_file_info.shape[0]) compiled_orc = [] for idx in iterator: curr_file = pred_file_info.file[idx] curr_output = pred_file_info.OUTPUT_ACTIVATION[idx] curr_preds = pd.read_csv(curr_file) prob_cols = [col for col in curr_preds if col.startswith('Pr(GOSE')] if curr_output == 'softmax': aucs = [] for ix, (a, b) in enumerate(itertools.combinations(np.sort(curr_preds.TrueLabel.unique()), 2)): filt_preds = curr_preds[curr_preds.TrueLabel.isin([a,b])].reset_index(drop=True) filt_preds['ConditProb'] = filt_preds[prob_cols[b]]/(filt_preds[prob_cols[a]] + filt_preds[prob_cols[b]]) filt_preds['ConditProb'] = np.nan_to_num(filt_preds['ConditProb'],nan=.5,posinf=1,neginf=0) filt_preds['ConditLabel'] = (filt_preds.TrueLabel == b).astype(int) aucs.append(roc_auc_score(filt_preds['ConditLabel'],filt_preds['ConditProb'])) curr_orc = np.mean(aucs) elif curr_output == 'sigmoid': label_cols = [col for col in curr_preds if col.startswith('GOSE>')] curr_train_probs = curr_preds[prob_cols].values train_probs = np.empty([curr_train_probs.shape[0], curr_train_probs.shape[1]+1]) train_probs[:,0] = 1 - curr_train_probs[:,0] train_probs[:,-1] = curr_train_probs[:,-1] for col_idx in range(1,(curr_train_probs.shape[1])): train_probs[:,col_idx] = curr_train_probs[:,col_idx-1] - curr_train_probs[:,col_idx] train_labels = curr_preds[label_cols].values.sum(1).astype(int) aucs = [] for ix, (a, b) in enumerate(itertools.combinations(np.sort(np.unique(train_labels)), 2)): a_mask = train_labels == a b_mask = train_labels == b ab_mask = np.logical_or(a_mask,b_mask) condit_probs = train_probs[ab_mask,b]/(train_probs[ab_mask,a]+train_probs[ab_mask,b]) condit_probs = np.nan_to_num(condit_probs,nan=.5,posinf=1,neginf=0) condit_labels = b_mask[ab_mask].astype(int) aucs.append(roc_auc_score(condit_labels,condit_probs)) curr_orc = np.mean(aucs) curr_info_row = pred_file_info[pred_file_info.file == curr_file].reset_index(drop=True) curr_info_row['val_ORC'] = curr_orc compiled_orc.append(curr_info_row) return pd.concat(compiled_orc,ignore_index = True) def bs_dropout_auroc(bs_combos, val_file_info, bs_rs_GUPIs, curr_output, progress_bar = True, progress_bar_desc = ''): compiled_auroc = [] curr_tis = bs_combos.TUNE_IDX.unique() if progress_bar: iterator = tqdm(curr_tis,desc=progress_bar_desc) else: iterator = curr_tis for ti in curr_tis: ti_preds = pd.concat([pd.read_csv(curr_file) for curr_file in val_file_info.file[val_file_info.TUNE_IDX == ti].values],ignore_index=True) curr_ti_combos = bs_combos[bs_combos.TUNE_IDX == ti] for curr_rs_index in curr_ti_combos.RESAMPLE: curr_rs_GUPIs = bs_rs_GUPIs[curr_rs_index - 1] curr_in_sample_preds = ti_preds[ti_preds.GUPI.isin(curr_rs_GUPIs)].reset_index(drop=True) prob_cols = [col for col in curr_in_sample_preds if col.startswith('Pr(GOSE')] if curr_output == 'softmax': curr_auroc = roc_auc_score(curr_in_sample_preds.TrueLabel.values, curr_in_sample_preds[prob_cols].values, multi_class='ovo') elif curr_output == 'sigmoid': label_cols = [col for col in curr_in_sample_preds if col.startswith('GOSE>')] curr_auroc = roc_auc_score(curr_in_sample_preds[label_cols].values, curr_in_sample_preds[prob_cols].values, multi_class='macro') compiled_auroc.append(pd.DataFrame({'TUNE_IDX':ti,'RESAMPLE':curr_rs_index,'val_AUROC':curr_auroc},index=[0])) return pd.concat(compiled_auroc,ignore_index = True) def collate_batch(batch): (gupis, idx_list, y_list, pt_offsets) = ([], [], [], [0]) for (curr_GUPI, curr_Indices, curr_y) in batch: gupis.append(curr_GUPI) idx_list.append(torch.tensor(curr_Indices,dtype=torch.int64)) y_list.append(curr_y) pt_offsets.append(len(curr_Indices)) idx_list = torch.cat(idx_list) y_list = torch.tensor(y_list, dtype=torch.int64) pt_offsets = torch.tensor(pt_offsets[:-1]).cumsum(dim=0) return (gupis, idx_list, y_list, pt_offsets) def collect_agg_weights(model_ckpt_info, progress_bar = True, progress_bar_desc = ''): if progress_bar: iterator = tqdm(range(model_ckpt_info.shape[0]),desc=progress_bar_desc) else: iterator = range(model_ckpt_info.shape[0]) compiled_df = [] for i in iterator: # Extract current checkpoint information curr_file = model_ckpt_info.file[i] curr_TUNE_IDX = model_ckpt_info.TUNE_IDX[i] curr_repeat = model_ckpt_info.repeat[i] curr_fold = model_ckpt_info.fold[i] # Load current token dictionary curr_vocab = cp.load(open('/home/sb2406/rds/hpc-work/CENTER-TBI_tokens/repeat'+str(curr_repeat).zfill(2)+'/fold'+str(curr_fold)+'/token_dictionary.pkl',"rb")) # Load current model weights from checkpoint file model = deepCENTERTBI.load_from_checkpoint(curr_file) model.eval() with torch.no_grad(): #curr_embedX = model.embedX.weight.numpy() curr_embedW = np.exp(model.embedW.weight.numpy()) # Get validation performance of current tuning index, repeat, and fold curr_val_ORC = val_performance[(val_performance.TUNE_IDX==curr_TUNE_IDX)&(val_performance.repeat==curr_repeat)&(val_performance.fold==curr_fold)].val_AUROC.values[0] compiled_df.append(pd.DataFrame({'TUNE_IDX':curr_TUNE_IDX, 'Token':curr_vocab.get_itos(),'AggWeight':curr_embedW.reshape(-1), 'repeat':curr_repeat, 'fold':curr_fold, 'val_ORC':curr_val_ORC})) return pd.concat(compiled_df,ignore_index=True) def format_shap(shap_matrix,idx,token_labels,testing_set): shap_df = pd.DataFrame(shap_matrix,columns=token_labels) shap_df['GUPI'] = testing_set.GUPI shap_df = shap_df.melt(id_vars = 'GUPI', var_name = 'Token', value_name = 'SHAP') shap_df['label'] = idx return shap_df def collect_shap_values(shap_info_df, model_dir, progress_bar = True, progress_bar_desc = ''): #shap_dfs = [] if progress_bar: iterator = tqdm(range(shap_info_df.shape[0]),desc=progress_bar_desc) else: iterator = range(shap_info_df.shape[0]) for i in iterator: # Extract current file, repeat, and fold information curr_file = shap_info_df.file[i] curr_repeat = shap_info_df.repeat[i] curr_fold = shap_info_df.fold[i] curr_output_type = shap_info_df.output_type[i] # Define current fold directory based on current information tune_dir = os.path.join(model_dir,'repeat'+str(curr_repeat).zfill(2),'fold'+str(curr_fold),'tune_0008') # Load current token dictionary curr_vocab = cp.load(open('/home/sb2406/rds/hpc-work/CENTER-TBI_tokens/repeat'+str(curr_repeat).zfill(2)+'/fold'+str(curr_fold)+'/token_dictionary.pkl',"rb")) # Extract current testing set for current repeat and fold combination testing_set = pd.read_pickle('/home/sb2406/rds/hpc-work/CENTER-TBI_tokens/repeat'+str(curr_repeat).zfill(2)+'/fold'+str(curr_fold)+'/testing_indices.pkl') testing_set['seq_len'] = testing_set.Index.apply(len) testing_set['unknowns'] = testing_set.Index.apply(lambda x: x.count(0)) # Number of columns to add cols_to_add = testing_set['unknowns'].max() - 1 # Initialize empty dataframe for multihot encoding of testing set multihot_matrix = np.zeros([testing_set.shape[0],len(curr_vocab)+cols_to_add]) # Encode testing set into multihot encoded matrix for i in range(testing_set.shape[0]): curr_indices = np.array(testing_set.Index[i]) if sum(curr_indices == 0) > 1: zero_indices = np.where(curr_indices == 0)[0] curr_indices[zero_indices[1:]] = [len(curr_vocab) + i for i in range(sum(curr_indices == 0)-1)] multihot_matrix[i,curr_indices] = 1 # Define token labels token_labels = curr_vocab.get_itos() + [curr_vocab.get_itos()[0]+'_'+str(i+1).zfill(3) for i in range(cols_to_add)] token_labels[0] = token_labels[0]+'_000' # Load current shap value matrix shap_values = cp.load(open(os.path.join(tune_dir,'shap_arrays_'+curr_output_type+'.pkl'),"rb")) # Convert each SHAP matrix to formatted dataframe and concatenate across labels shap_df = pd.concat([format_shap(curr_matrix,idx,token_labels,testing_set) for idx,curr_matrix in enumerate(shap_values)],ignore_index=True) shap_df['repeat'] = curr_repeat shap_df['fold'] = curr_fold # Convert multihot encoded matrix into formatted dataframe for token indicators indicator_df =
pd.DataFrame(multihot_matrix,columns=token_labels)
pandas.DataFrame
import json from typing import List, Dict from lppinstru.discovery import Discovery, c_int, trigsrcAnalogOut1 import time, datetime import zmq, math import sys, traceback import functools import numpy as np import pandas as pds import peakutils import signal,atexit from threading import Thread from juice_scm_gse.analysis import noise,fft from juice_scm_gse import config as cfg from juice_scm_gse.utils import mkdir from juice_scm_gse.utils import Q_,ureg import logging as log commands = {} class DiscoCommand: def __init__(self, func): functools.update_wrapper(self, func) self.func = func commands[func.__name__] = func #Creat a dictionnary of the commands with their names as keys def make_cmd(self, channel, **kwargs): payload = { "CMD": self.func.__name__, "channel": channel, "args": kwargs } log.info(f"Build cmd with {payload}") return json.dumps(payload) def __call__(self, *args, **kwargs): return self.func(*args, **kwargs) class Disco_Driver(Discovery): def __init__(self, card=-1): super().__init__(card=card) self.digital_io_output_enable(0x0001) def turn_on(self): #to turn on & off the asic self.digital_io = 1 def turn_off(self): self.digital_io = 0 def set_dc_output(disco: Disco_Driver, dc_value): disco.analog_out_gen(shape='DC', channel=0, offset=dc_value) time.sleep(.2) res = disco.analog_in_read(ch1=False, ch2=True, frequency=disco.max_sampling_buffer * 4, samplesCount=disco.max_sampling_buffer, ch1range=10.) return np.median(res[0][0]) def remove_offset(disco: Disco_Driver): v_min, v_max = 2.35, 2.65 offset1 = set_dc_output(disco,v_min) offset2 = set_dc_output(disco,v_max) a = (offset2-offset1)/(v_max-v_min) b = offset2 - (a*v_max) command = max(min(-b/a,5.),-5.) offset = set_dc_output(disco, command) log.info(f"Minimized offset to {offset}V with {command}V") return command @DiscoCommand def do_psd(disco: Disco_Driver,progress_func, psd_output_dir, psd_snapshots_count=10, psd_sampling_freq=[100000], **kwargs): mkdir(psd_output_dir) snapshot_asic_out = [] sampling_freq_chx = int() remove_offset(disco) progress_func("psd",0.,"", 0.) for f in psd_sampling_freq: for step in range(psd_snapshots_count): progress_func("psd",0.,f"Current snapshot {step}/{psd_snapshots_count}",float(step)/float(psd_snapshots_count)) res = disco.analog_in_read(ch1=False, ch2=True, frequency=f, samplesCount=disco.max_sampling_buffer) sampling_freq_chx = res[1] snapshot_asic_out.append(res[0][0]) progress_func("psd analysis", 0.,"", 0.) for i in range(len(snapshot_asic_out)): progress_func("psd analysis", 0., f"Saving snapshot {i}/{len(snapshot_asic_out)}", float(i)/float(len(snapshot_asic_out))) np.savetxt(psd_output_dir + f"/snapshot_psd_{f}Hz_{i}_asic_out.csv.gz", snapshot_asic_out[i]) freq_ch1, psd = noise.psd(snapshot_asic_out, sampling_freq_chx, window=True, removeMean=True) progress_func("psd analysis", 0.,"", 1.) df = pds.DataFrame(data={"PSD_ASIC_OUTPUT": psd}, index=freq_ch1) df.to_csv(psd_output_dir + f"/psd_{f}Hz.csv.gz") @DiscoCommand def do_dynamic_tf(disco: Disco_Driver,progress_func, d_tf_output_dir, d_tf_frequencies=np.logspace(0,6,num=200), **kwargs): mkdir(d_tf_output_dir) tf_g = [] tf_phi = [] tf_f = [] progress_func("TF",0.,"", 0.) i = 0. dc = remove_offset(disco) for f in d_tf_frequencies: progress_func("TF", 0., f"Current frequency {f:.1f}Hz", i/len(d_tf_frequencies)) i+=1. disco.analog_out_gen(frequency=f, shape='Sine', channel=0, amplitude=.2,offset=dc) time.sleep(.3) res = disco.analog_in_read(ch1=True, ch2=True, frequency=min(f*disco.max_sampling_buffer/10.,disco.max_sampling_freq), samplesCount=disco.max_sampling_buffer, ch1range=10.) real_fs = res[1] data = pds.DataFrame(data={"input": res[0][0], "output": res[0][1]}, index=np.arange(0., disco.max_sampling_buffer/real_fs, 1. / real_fs)) data.to_csv(d_tf_output_dir + f"/dynamic_tf_snapshot_{f}Hz.csv.gz") window = np.hanning(len(res[0][0])) in_spect = fft.fft(waveform=res[0][0], sampling_frequency=real_fs, window=window, remove_mean=True) out_spect = fft.fft(waveform=res[0][1], sampling_frequency=real_fs, window=window, remove_mean=True) freq = in_spect["f"] peaks = peakutils.indexes(in_spect["mod"], min_dist=2) for peak in peaks: f = in_spect["f"][peak] g = 20. * np.log10(out_spect["mod"][peak] / in_spect["mod"][peak]) tf_phi.append(out_spect["phi"][peak] - in_spect["phi"][peak]) tf_g.append(g) tf_f.append(f) progress_func("TF done!", 0., "", 1.) tf = pds.DataFrame(data={"G(dB)":tf_g,"Phi(rad)":tf_phi},index=tf_f) tf.to_csv(d_tf_output_dir + f"/dynamic_tf.csv.gz") disco.analog_out_disable(channel=0) @DiscoCommand def do_static_tf(disco: Disco_Driver,progress_func, s_tf_output_dir,s_tf_amplitude=.5,s_tf_steps=100, **kwargs): mkdir(s_tf_output_dir) tf_vin = [] tf_vout = [] v_min = 2.5-s_tf_amplitude v_max = 2.5+s_tf_amplitude progress_func("Static TF",0., "", 0.) input_range = np.arange(v_min, v_max, (v_max-v_min)/s_tf_steps) i = 0. for step in input_range: progress_func("Static TF", 0., f"Current voltage = {step:.3f}V", i/len(input_range)) i+=1. disco.analog_out_gen(shape='DC', channel=0,offset=step) time.sleep(.3) res = disco.analog_in_read(ch1=True, ch2=True, frequency=disco.max_sampling_buffer*4, samplesCount=disco.max_sampling_buffer, ch1range=10.) real_fs = res[1] data = pds.DataFrame(data={"input": res[0][0], "output": res[0][1]}, index=np.arange(0., disco.max_sampling_buffer / real_fs, 1. / real_fs)) data.to_csv(s_tf_output_dir + f"/static_tf_snapshot_{step}V.csv.gz") tf_vin.append(np.mean(res[0][0])) tf_vout.append(np.mean(res[0][1])) progress_func("Static TF done!", 0., "",1.) tf =
pds.DataFrame(data={"Vout": tf_vout}, index=tf_vin)
pandas.DataFrame
# !/usr/bin/env python3 from math import isnan import os import shutil import numpy as np import random from numpy.lib.function_base import average import pandas as pd import seaborn as sn import matplotlib.pyplot as plt import cv2 # import simpledorff from pandas.core.frame import DataFrame from sklearn import decomposition, datasets import sklearn from sklearn.preprocessing import StandardScaler from sklearn.linear_model import LinearRegression from sklearn.metrics import cohen_kappa_score class analyse: def __init__(self, dataPath, drive, mergedDataFile, modelDataFile, results_folder): # Docstring "Class container for analysing functions." self.modelDataFile = modelDataFile # Set paths self.dataPath = dataPath self.drive = drive self.results_folder = results_folder # Load data self.merge_data = pd.read_csv(mergedDataFile) print('Created analyse class') def get_responses(self): # Get response per frame indices = [] all_responses = [] for key in self.merge_data.keys(): for stimulus_index in range(0, len(self.merge_data.keys())): response_column = 'Stimulus %s: response' % stimulus_index if response_column in key: indices.append(int(stimulus_index)) all_responses.append(self.merge_data[response_column]) # Create response DataFrame self.response_data = pd.DataFrame(all_responses, index=indices) self.response_data.sort_index(inplace=True) self.response_data.columns = self.merge_data['Meta:worker_code'] self.response_data = self.response_data.transpose() # Get mean and std of responses self.response_mean = self.response_data.mean(skipna=True) self.response_std = self.response_data.std(skipna=True) # Get normalized response self.response_normal = ( self.response_data-self.response_mean.mean())/self.response_std.mean() # Save responses response_data = pd.DataFrame(self.response_data) response_data.to_csv(self.results_folder + 'filtered_responses/' + 'response_data.csv') # Get anonymous data survey_data = pd.DataFrame( self.merge_data.loc[:, 'about_how_many_kilometers_miles_did_you_drive_in_the_last_12_months':'which_input_device_are_you_using_now']) survey_data.index = survey_data['Meta:worker_code'] survey_data.pop('Meta:worker_code') self.survey_data = survey_data.join(response_data) self.survey_data.to_csv(self.results_folder + 'filtered_responses/' + 'survey_data.csv') # print(survey_data) print('Got responses') def find_outliers(self, thresh): # Find outliers self.bad_indices = [] for index in self.response_data.index: if(self.response_data.loc[index].std(skipna=True) < thresh): self.bad_indices.append(index) self.response_data = self.response_data.drop(index) print('Found outliers') def info(self): # Get mean and std of responses self.response_mean = self.response_data.mean(skipna=True) self.response_std = self.response_data.std(skipna=True) # Get general info on data self.data_description = self.response_data.describe() self.data_description.to_csv( self.results_folder + 'filtered_responses/' + 'self.data_description.csv') # print(self.data_description) print('Got info') def split(self, useNorm=False): # Chose usage of normalized data if useNorm == True: data = self.response_normal else: data = self.response_data # Get mean and std of responses self.response_mean = data.mean(skipna=True) self.response_std = data.std(skipna=True) # Find middle middle = int(round(len(self.response_data)/2)) # Get first half of data self.response_data_first = data[0:middle] self.response_mean_first = self.response_data_first.mean(skipna=True) self.response_std_first = self.response_data_first.std(skipna=True) # Get last half of data self.response_data_last = data[(middle+1):len(data)] self.response_mean_last = self.response_data_last.mean(skipna=True) self.response_std_last = self.response_data_last.std(skipna=True) # Get correlation of first and last half r_fl = self.response_mean_first.corr(self.response_mean_last) r2_fl = r_fl*r_fl # print('{:<25}'.format('autocorrelation') + ': R^2 =',f'{r2_fl:.5f}') # print('{:<25}'.format('autocorrelation') + ': R^2 =',f'{r2_fl:.5f}') # Plot correlation of first and last half plt.figure(figsize=(10,4)) self.plot_correlation(self.response_mean_first, self.response_mean_last, None, None, 'Group 1', 'Group 2', 'Autocorrelation', r=round(r_fl, 5)) # self.training_data = self.response_data middle_frame = int(round(self.response_data.shape[1])/2) self.data_training = self.response_data.iloc[:, 0:middle_frame] self.data_testing = self.response_data.iloc[:, middle_frame:self.response_data.shape[1]] plt.tight_layout() # plt.show() print('Split data') def random(self, useNorm=False, seed=100): # Chose usage of normalized data if useNorm == True: data = self.response_normal else: data = self.response_data # Get mean and std of responses data_response_mean = data.mean(skipna=True) data_response_std = data.std(skipna=True) # Chose random person random.seed(seed) random_person = random.randrange(0, len(data), 1) self.single_response = data.iloc[random_person] # Get correlation of data and random person correlations = [] for i in range(0, len(data)): single_response = data.iloc[i] r = single_response.corr(data_response_mean) correlations.append(r) r_sm = self.single_response.corr(data_response_mean) r2_sm = r_sm*r_sm print('{:<30}'.format('Single random') + ': N' + '{:<4}'.format(str(random_person)) + " vs Human R^2 = " + str(r_sm)) # Plot correlation of data and random person # self.plot_correlation(self.single_response, data_response_mean, # data_response_std, [], # ('Person n'+str(random_person)), 'Response mean', 'random', r2_sm) print('Got random correlation') pd_corr = pd.DataFrame(correlations) pd_corr.to_csv(self.results_folder + 'filtered_responses/' + 'individual_corr.csv') # plt.figure() # plt.boxplot(pd_corr) pd_corr.plot.box(vert=False, figsize=(10,2)) parts = plt.vlines(0.5,1,1) model = plt.vlines(0.58568,0.8,1.2,colors='orange') # plt.title("Participant correlation") # plt.ylabel("Participants") plt.xlabel("Correlation") plt.legend([parts, model],['Participants', 'Model']) plt.grid() plt.yticks([]) plt.tight_layout() plt.savefig(self.results_folder + 'filtered_responses/' + 'individual_corr' + '.png') # print(correlations) print("Average over correlation: {}, stdev: ".format(pd_corr.median())) def model(self, plotBool=True): self.model_data = pd.read_csv( self.results_folder + 'model_responses/' + self.modelDataFile) # Get keys self.parameter_keys = list(self.model_data) self.parameter_keys.remove('general_frame_number') self.model_data.pop('general_frame_number') for parameter in self.parameter_keys: # Get correlation r = self.model_data[parameter].corr(self.response_mean) # Print correlation print('{:<25}'.format(parameter) + ': r =',f'{r:.5f}') # Save figure correlation if plotBool == True: self.plot_correlation(self.model_data[parameter], self.response_mean, None, self.response_std, str(parameter), 'response_mean', parameter, r=round(r, 5)) # Check model cronbach alpha # self.cronbach_alpha(self.model_data[['model_type', 'model_imminence', 'model_probability']]) # Add mean response to correlation matrix self.model_data['response_mean_last'] = self.response_mean_last # Get correlation matrix corrMatrix = self.model_data.corr(method='pearson') # corrMatrix = corrMatrix.sort_values(by='response_mean') # Remove uppper triangle mask = np.zeros_like(corrMatrix) mask[np.triu_indices_from(mask, k=1)] = True # Get eigenvalues and vectors # Number of params n = len(self.parameter_keys) v = np.linalg.eig(corrMatrix.iloc[4:n, 4:n]) v_sum = np.sum(v[0]) v_csum = np.cumsum(v[0]) v_ccurve = v_csum/v_sum v_cutoff = len(v_ccurve[(v_ccurve <= 0.8)])+1 # print(v_cutoff) plt.clf() plt.plot(v[0], marker="o") plt.plot(np.ones(len(v[0]))) # plt.title('Scree plot') plt.xlabel('Component') plt.ylabel('Eigenvalue') plt.grid() # Save figure plt.savefig(self.results_folder + 'regression/' + 'scree_plot' + '.png') plt.clf() plt.plot(v_ccurve, marker ="o") # plt.title('Cumulative eigenvalue curve') plt.xlabel('Component') plt.ylabel('Cumulative eigenvalue') plt.grid() # Save figure plt.savefig(self.results_folder + 'regression/' + 'ccum_eigen_plot' + '.png') # Get significant params p_keys = self.model_data.keys()[4:n] # print(p_keys) significant_parameters = set([]) # print(v_cutoff) loading = v[1] * [v**0.5 for v in v[0]] for column in range(0, v_cutoff): for row in range(0, len(v[1])): if (abs(v[1][row, column]) >= 0.4): # if (abs(loading[row, column]) >= 0.8): # if (row <= 3): # pass # else: significant_parameters.add(p_keys[row]) self.sig_params = list(significant_parameters) # Plot corr of sigs # plt.clf() # sn.heatmap(self.model_data[self.].corr(method='pearson'),vmax = 1,vmin = -1,cmap = 'RdBu_r', linewidths=.5, annot=True,yticklabels=self.) # plt.title('Correlations of significant parameters') # plt.show() # Get eigenvector heatmap # plt.figure() # sn.heatmap(loading, vmax = 1,vmin = -1,cmap = 'RdBu_r', linewidths=.5, annot=True,yticklabels=p_keys,fmt='.2f') # # plt.title('Eigenvectors') # plt.xlabel('Loading of principle component') # plt.ylabel('Values') # plt.show() # Save figure # plt.savefig(self.results_folder + 'regression/' + 'eigenvector_matrix' + '.png') # Plot correlation matrix if (plotBool == True): plt.clf() sn.heatmap(corrMatrix, vmax=1, vmin=-1, cmap='RdBu_r', linewidths=.5, annot=True) # plt.show() print('Got model data and correlations') else: pass r = self.model_data['model_combination'].corr(self.response_mean) return r**2 def risky_images(self, model=False): # Get most risky and least risky images if (model == True): response_model_sorted = self.model_data['model_combination'].sort_values( ) least_risky = response_model_sorted.index[0:5] most_risky = response_model_sorted.tail(5).index[::-1] else: response_model_sorted = self.response_mean.sort_values() least_risky = response_model_sorted.index[0:5] most_risky = response_model_sorted.tail(5).index[::-1] # Save most and least risky images i = 1 for image in least_risky: # os.path.join(self.dataPath + self.drive + '/image_02/data') shutil.copyfile(self.dataPath + self.drive + '/image_02/data/' + str(image) + '.png', self.results_folder + 'most_least_risky_images/' + 'least_risky_%s.png' % i) i += 1 i = 1 for image in most_risky: # os.path.join(self.dataPath + self.drive + '/image_02/data') shutil.copyfile(self.dataPath + self.drive + '/image_02/data/' + str(image) + '.png', self.results_folder + 'most_least_risky_images/' + 'most_risky_%s.png' % i) i += 1 print('Got risky images') def risk_ranking(self): # Sort list of mean response values response_mean_sorted = self.response_mean.sort_values() # i = 0 # for image in response_mean_sorted.index: # shutil.copyfile(self.dataPath + self.drive + '/image_02/data/' + str( # image) + '.png', self.results_folder + 'risk_sorted_images/' + '%s.png' % i) # i += 1 # Sort list of model combination values response_model_sorted = pd.Series( self.model_data['model_combination']).sort_values() # i = 0 # for image in response_model_sorted.index: # shutil.copyfile(self.dataPath + self.drive + '/image_02/data/' + str(image) + # '.png', self.results_folder + 'risk_sorted_images/model' + '%s.png' % i) # i += 1 r = round(np.corrcoef(self.response_mean, self.model_data['model_combination'])[1][0],4) self.plot_correlation(self.response_mean, self.model_data['model_combination'], name1="Experiment result", name2="Model result", parameter="model_experiment", r=r) print(np.corrcoef(response_mean_sorted.index,response_model_sorted.index)) print('Ranked images on risk') def PCA(self): print("Starting PCA analysis") images = sorted(os.listdir( self.dataPath + self.drive + '/image_02/data/')) images_features_gray = [] images_features_blue = [] images_features_green = [] images_features_red = [] for image in images: image_features_gray = [] image_features_blue = [] image_features_green = [] image_features_red = [] full_path = self.dataPath + self.drive + '/image_02/data/' + image loaded_image = cv2.imread(full_path) gray = cv2.cvtColor(loaded_image, cv2.COLOR_BGR2GRAY) blue = loaded_image[:, :, 0] green = loaded_image[:, :, 1] red = loaded_image[:, :, 2] scaling = 1./2 gray_scaled = cv2.resize(gray, (0, 0), fx=(scaling), fy=(scaling)) blue_scaled = cv2.resize(blue, (0, 0), fx=(scaling), fy=(scaling)) green_scaled = cv2.resize( green, (0, 0), fx=(scaling), fy=(scaling)) red_scaled = cv2.resize(red, (0, 0), fx=(scaling), fy=(scaling)) scaled_shape = gray_scaled.shape for horizontal in gray_scaled: image_features_gray = image_features_gray + list(horizontal) images_features_gray.append(image_features_gray) for horizontal in blue_scaled: image_features_blue = image_features_blue + list(horizontal) images_features_blue.append(image_features_blue) for horizontal in green_scaled: image_features_green = image_features_green + list(horizontal) images_features_green.append(image_features_green) for horizontal in red_scaled: image_features_red = image_features_red + list(horizontal) images_features_red.append(image_features_red) # PCA decomposition print("Running decomposition") nc = 50 # number of model variables pca = decomposition.PCA(n_components=nc) std_gray = StandardScaler() gray_std = std_gray.fit_transform(images_features_gray) gray_pca = pca.fit_transform(gray_std) eigen_frames_gray = np.array(pca.components_.reshape( (nc, scaled_shape[0], scaled_shape[1]))) std_blue = StandardScaler() blue_std = std_blue.fit_transform(images_features_blue) blue_pca = pca.fit_transform(blue_std) eigen_frames_blue = np.array(pca.components_.reshape( (nc, scaled_shape[0], scaled_shape[1]))) std_green = StandardScaler() green_std = std_green.fit_transform(images_features_green) green_pca = pca.fit_transform(green_std) eigen_frames_green = np.array(pca.components_.reshape( (nc, scaled_shape[0], scaled_shape[1]))) std_red = StandardScaler() red_std = std_red.fit_transform(images_features_red) red_pca = pca.fit_transform(red_std) eigen_frames_red = np.array(pca.components_.reshape( (nc, scaled_shape[0], scaled_shape[1]))) # # Back tranform for check # back_transform = pca.inverse_transform(gray_pca) # back_transform_renormalize = std_gray.inverse_transform(back_transform) # # Show before and after # first_image = np.array(images_features[0]).reshape(scaled_shape) # cv2.imshow('Before PCA',first_image) # cv2.waitKey(0) # # second_image = np.array(back_transform_renormalize[0]).reshape(scaled_shape) # cv2.imshow('After PCA',second_image) # cv2.waitKey(0) gray_pca_df = pd.DataFrame(gray_pca) blue_pca_df = pd.DataFrame(blue_pca) green_pca_df = pd.DataFrame(green_pca) red_pca_df = pd.DataFrame(red_pca) self.pca = gray_pca_df r = round(gray_pca_df[2].corr(self.response_mean),5) self.plot_correlation(gray_pca_df[2],self.response_mean_last,name1='Gray pca component 2',name2='response_mean_last',r=r) print("Saving images") for i in range(0, nc): print('Feature: ', i) print('Gray correlation: ', gray_pca_df[i].corr(self.response_mean)) print('Blue correlation: ', blue_pca_df[i].corr(self.response_mean)) print('Green correlation: ', green_pca_df[i].corr(self.response_mean)) print('Red correlation: ', red_pca_df[i].corr(self.response_mean)) max_pixel_gray = np.max(abs(eigen_frames_gray[i])) max_pixel_blue = np.max(abs(eigen_frames_blue[i])) max_pixel_green = np.max(abs(eigen_frames_green[i])) max_pixel_red = np.max(abs(eigen_frames_red[i])) gray_channel = eigen_frames_gray[i]*1/max_pixel_gray*255 blue_channel = eigen_frames_blue[i]*1/max_pixel_blue*255 green_channel = eigen_frames_green[i]*1/max_pixel_green*255 red_channel = eigen_frames_red[i]*1/max_pixel_red*255 bgr_image = np.zeros((scaled_shape[0], scaled_shape[1], 3)) bgr_image[:, :, 0] = blue_channel bgr_image[:, :, 1] = green_channel bgr_image[:, :, 2] = red_channel cv2.imwrite(os.path.join(self.results_folder, 'pca', ('color ' + str(i)+'.png')), bgr_image) cv2.imwrite(os.path.join(self.results_folder, 'pca', ('gray ' + str(i)+'.png')), gray_channel) cv2.imwrite(os.path.join(self.results_folder, 'pca', ('blue ' + str(i)+'.png')), blue_channel) cv2.imwrite(os.path.join(self.results_folder, 'pca', ('green' + str(i)+'.png')), green_channel) cv2.imwrite(os.path.join(self.results_folder, 'pca', ('red ' + str(i)+'.png')), red_channel) print('Performed PCA') def multivariate_regression(self, pred='default'): # train = pd.DataFrame(self.pca, columns= ['0','1','2','3','4','5','6','7','8','9','10','11','12','13']) # train = self.pca.iloc[0:middle] # test = self.pca.iloc[middle:len(self.pca)] lr = LinearRegression(normalize=False, copy_X=True) # lr = LinearRegression() if (pred == 'default'): predictor_keys = ['general_velocity', 'general_distance_mean', 'general_number_bjects', 'manual_breaklight', 'occluded_mean'] elif(pred == 'sig'): predictor_keys = self.sig_params elif(pred == 'all'): predictor_keys = self.model_data.keys() else: print('Wrong input, changing to default') predictor_keys = ['general_velocity', 'general_distance_mean', 'general_number_bjects', 'manual_breaklight', 'occluded_mean'] predictors = self.model_data[predictor_keys] sc = StandardScaler() predictors_stand = sc.fit_transform(predictors) middle = int(round(predictors.shape[0]/2)) print(predictors_stand[middle]) # Fit regression print("Fitting regression model") print(self.sig_params) lr.fit(predictors_stand[0:middle], self.response_mean[0:middle]) predictions = lr.predict(predictors_stand[middle:predictors.shape[0]]) # print(predictors[0:middle]) # print(lr.predict(predictors[0:middle])) data = predictors_stand[0:middle] * lr.coef_ results = pd.DataFrame(data, columns=predictor_keys) results.insert(0, "intercept", lr.intercept_) results.to_csv(self.results_folder + 'regression/' + 'regression.csv') data2 = predictors_stand[middle:predictors.shape[0]] * lr.coef_ results2 = pd.DataFrame(data2, columns=predictor_keys) results2.insert(0, "intercept", lr.intercept_) results2.to_csv(self.results_folder + 'regression/' + 'regression2.csv') # Analyse result r = np.corrcoef( self.response_mean[middle:predictors.shape[0]], predictions)[0, 1] print('Correlation = {}'.format(r)) self.plot_correlation(predictions, self.response_mean[middle:len( self.response_mean)], name1="Multivariate regression", name2="Response test", parameter="regression_multivariate", r=round(r, 5)) print('Lr coef: {}'.format(lr.coef_)) print('Lr coef deep: {}'.format(lr.coef_[0])) # self.cronbach_alpha(self.model_data[predictor_keys]) print('Performed multivariate regression') def risk_accidents(self, plotBool=False): # Get accident answers accident_occurence = self.merge_data['how_many_accidents_were_you_involved_in_when_driving_a_car_in_the_last_3_years_please_include_all_accidents_regardless_of_how_they_were_caused_how_slight_they_were_or_where_they_happened'] # Filter no responses accident_occurence = [-1 if value == 'i_prefer_not_to_respond' else value for value in accident_occurence] accident_occurence = [ 6 if value == 'more_than_5' else value for value in accident_occurence] accident_occurence = [value if value == np.nan else float( value) for value in accident_occurence] # Group by accidents n_bins = 20 bins = np.linspace(0, 100, n_bins+1) binned = [] for value in self.response_data.mean(axis=1): for b in bins: if (value <= b): binned.append(b) # print("Value:{} < bin:{}".format(value,b)) break # Get accident occurence average_score = list(self.response_data.mean(axis=1)) risk_accidents = pd.DataFrame( {'Accidents': accident_occurence, 'Average_score': average_score}) r = risk_accidents.corr().values[0, 1] self.plot_correlation(
pd.Series(accident_occurence)
pandas.Series
""" Module for interacting with the NHL's open but undocumented API. """ import streamlit as st import pandas as pd from pandas.io.json import json_normalize import requests as rqsts ## data ingestion def get_seasons(streamlit=False): """ returns all seasons on record """ seasons_response = rqsts.get('https://statsapi.web.nhl.com/api/v1/seasons') try: seasons_response.raise_for_status() except rqsts.exceptions.HTTPError as e: if streamlit: st.write(e) else: print(e) raise e seasons = seasons_response.content seasons_df = pd.read_json(seasons) seasons_df = json_normalize(seasons_df.seasons) seasons_df.set_index('seasonId', inplace=True) return seasons_df def get_current_season(): season_response = rqsts.get('https://statsapi.web.nhl.com/api/v1/seasons/current') season = season_response.content season_df = pd.read_json(season) season_df = json_normalize(season_df.seasons) season_id = season_df.seasonId season_start = season_df.regularSeasonStartDate season_end = season_df.regularSeasonEndDate return season_id, season_start, season_end def get_teams(streamlit=False): """returns all teams FOR THE CURRENT SEASON""" teams_response = rqsts.get('https://statsapi.web.nhl.com/api/v1/teams') try: teams_response.raise_for_status() except rqsts.exceptions.HTTPError as e: if streamlit: st.write(e) else: print(e) raise e teams = teams_response.content teams_df = pd.read_json(teams) teams_df = json_normalize(teams_df.teams) return teams_df def get_schedule(start_date, end_date): # teams = get_teams() # st.dataframe(teams) # output_df = pd.DataFrame() schedule_response = rqsts.get('https://statsapi.web.nhl.com/api/v1/schedule?startDate={0}&endDate={1}'.format(start_date, end_date)) schedule = schedule_response.content schedule = pd.read_json(schedule) schedule = json_normalize(schedule.dates) output_df =
pd.DataFrame()
pandas.DataFrame
import pandas as pd from random import sample def random_selection(): fields = ['Index', 'Is Success'] # read specific columns mhm_path = './results/attack_mhm.csv' gi_path = './results/attack_genetic.csv' index_mhm = pd.read_csv(mhm_path, skipinitialspace=True, usecols=fields) index_gi = pd.read_csv(gi_path, skipinitialspace=True, usecols=fields) mhm_success = index_mhm[index_mhm['Is Success'] == 1] gi_success = index_gi[index_gi['Is Success'] == 1] print(type(gi_success)) intersect = list(set(mhm_success['Index'].values.tolist()).intersection(set(gi_success['Index'].values.tolist()))) print(len(intersect)) # samples = sample(intersect, 100) # # print(samples) # print(len(set(samples))) # return samples return intersect def filter_csv(index): mhm_path = './results/attack_mhm.csv' gi_path = './results/attack_genetic.csv' index_mhm = pd.read_csv(mhm_path) index_gi = pd.read_csv(gi_path) mhm = index_mhm.loc[index_mhm['Index'].isin(index)] gi = index_gi.loc[index_gi['Index'].isin(index)] data = [gi["Index"], gi["Original Code"], gi["Adversarial Code"], gi["Extracted Names"], gi["Replaced Names"], mhm["Adversarial Code"], mhm["Extracted Names"], mhm["Replaced Names"],] headers = ["Index", "Original", "GA_Adversarial Code", "GA_Extracted Names", "GA_Replaced Names", "mhm_Adversarial Code", "mhm_Extracted Names", "mhm_Replaced Names",] gi.to_csv('gi.csv', index=False) mhm.to_csv('mhm.csv', index=False) print(mhm) df3 =
pd.concat(data, axis=1, keys=headers)
pandas.concat
#Z0096 # import standards import pandas as pd # import stats tools from scipy.stats import chi2_contingency, ttest_ind # import modeling tools from sklearn.model_selection import GridSearchCV from sklearn.feature_selection import RFE from sklearn.metrics import classification_report, confusion_matrix #################### Explore Functions #################### def ttest_report(data, sample_mask_one, sample_mask_two, target, alpha=0.05): ''' ''' # get tstat and p value from ttest between two samples t, p = stats.ttest_ind(data[sample_mask_one][[target]], data[sample_mask_two][[target]]) # check p value relative to alpha if p < alpha: status = 'May reject' else: status = 'Fail to reject' # print results and hypothesis statement print(f''' T-Stat: {t} P-Value: {p} {status} the null hypotheses that "{target}" is the same between the two samples. ''') def chi_test(cat, target, alpha=0.05): ''' ''' # set observed DataFrame with crosstab observed =
pd.crosstab(cat, target)
pandas.crosstab
import numpy as np import pandas as pd import glob from pmdarima.arima import ndiffs from pandas.tseries.offsets import QuarterBegin, QuarterEnd from .hand_select import hand_select import pandas_datareader.data as web import xlrd, csv from openpyxl.workbook import Workbook from openpyxl.reader.excel import load_workbook, InvalidFileException def set_date_as_index(df): df.columns = [name.lower() for name in df.columns] df["date"] = pd.to_datetime(df["date"]) df.set_index("date", inplace=True) return df def make_float(df): df = df.replace(".", np.nan) df = df.astype(float) return df def read_files(paths, fillna=True): csv_list = [] xls_list = [] for path in paths: csv_files = glob.glob(path + "/*.csv") xls_files = glob.glob(path + "/*.xls") for elt in csv_files: df = pd.read_csv(elt) df = set_date_as_index(df) df = make_float(df) if fillna: df = df.fillna(method='ffill') csv_list.append(df) for elt in xls_files: try: df = pd.read_excel(elt) df = set_date_as_index(df) df = make_float(df) if fillna: df = df.fillna(method='ffill') xls_files.append(df) except Exception: pass return csv_list, xls_list def make_stationary(df): df = hand_select(df) df = df.dropna() columns = df.columns for name in columns: x = df[name].values d_kpss = ndiffs(x, test='kpss') d_adf = ndiffs(x, test='adf') d_pp = ndiffs(x, test='pp') d_ = max(d_kpss, d_adf, d_pp) if d_ > 0: new_name = name + '_diff' + str(d_) if d_ == 1: df[new_name] = df[name].diff() elif d_ == 2: df[new_name] = df[name].diff().diff() elif d_ > 2: raise ValueError('High order differentiation') else: raise Exception('Some thing is wrong') df = df.drop(columns=[name]) return df def open_xls_as_xlsx(filename): # first open using xlrd book = xlrd.open_workbook(filename) index = 0 nrows, ncols = 0, 0 while nrows * ncols == 0: sheet = book.sheet_by_index(index) nrows = sheet.nrows ncols = sheet.ncols index += 1 # prepare a xlsx sheet book1 = Workbook() sheet1 = book1.active for row in range(1, nrows): for col in range(1, ncols): sheet1.cell(row=row, column=col).value = sheet.cell_value(row, col) return book1 def read_data(path, sheet=False, header='infer'): file_format = path.split('.')[-1] if 'msci' in path: header = 6 if sheet is False: # if file_format == 'csv': # df = pd.read_csv(path, header=header) # elif file_format == 'xls': # df = open_xls_as_xlsx(path) # else: try: df =
pd.read_excel(path, header=header, engine='openpyxl')
pandas.read_excel
# %% [Algorithm 1c Loop] # # MUSHROOMS # %% [markdown] # ## Binary Classification # %% [markdown] # ### Imports # %% import os import pandas as pd import numpy as np import tensorflow as tf from tensorflow import keras import matplotlib.pyplot as plt # %% [markdown] # ### Load Data dataset = pd.read_csv(r"C:\Users\yxie367\Documents\GitHub\Mushrooms\DATA\mushrooms.csv") #dataset = pd.read_csv(r"C:\Users\xieya\Documents\GitHub\Mushrooms\DATA\mushrooms.csv") # %% [markdown] # ### View Data and Informations # %% dataset.head() # %% dataset.info() # %% edible, poisonous = dataset['class'].value_counts() # print("Edible:\t ", edible,"\nPoisonous:", poisonous) # %% # Categorical to numerical labels = {'e': 0, 'p': 1} dataset['class'].replace(labels, inplace=True) edible, poisonous = dataset['class'].value_counts() #print("0 - Edible: ", edible,"\n1 - Poisonous:", poisonous) # %% [markdown] # # NN1 Stalk Root - Rooted (r) # %% [markdown] # ### Split Dataset # %% [markdown] # #### Get the Labels # %% X, y = dataset.drop('class', axis=1), dataset['class'].copy() #print("X:",X.shape,"\ny:",y.shape) # %% [markdown] # #### Train Set and Test Set total_error_1 = 0 total_error_2 = 0 total_error_comb = 0 randnum = np.arange(2,44,4) num_trials = len(randnum) record = "" wrong_record = "" run = 1 # %% Data cleaning from sklearn.model_selection import train_test_split X_white = pd.DataFrame() X_not_white = pd.DataFrame() y_white = pd.Series(dtype='float64') y_not_white = pd.Series(dtype='float64') for i in range(0,len(X)): if X.loc[i,"stalk-root"] == "r": X_white = X_white.append(X.iloc[i,:]) y_white = y_white.append(pd.Series(y.iloc[i])) else: X_not_white = X_not_white.append(X.iloc[i,:]) y_not_white = y_not_white.append(pd.Series(y.iloc[i])) # %% Data cleaning pt2 X_green = pd.DataFrame() X_not_green = pd.DataFrame() y_green = pd.Series(dtype='float64') y_not_green = pd.Series(dtype='float64') for i in range(0,len(X)): if X.loc[i,"odor"] == "a": X_green = X_green.append(X.iloc[i,:]) y_green = y_green.append(pd.Series(y.iloc[i])) else: X_not_green = X_not_green.append(X.iloc[i,:]) y_not_green = y_not_green.append(pd.Series(y.iloc[i])) # %% for j in randnum: X_train_not_white, X_test_not_white, y_train_not_white, y_test_not_white = train_test_split(X_not_white, y_not_white, test_size=1-(6905/(8124-len(X_white))), random_state=j) X_train_not_green, X_test_not_green, y_train_not_green, y_test_not_green = train_test_split(X_not_green, y_not_green, test_size=1-(6905/(8124-len(X_green))), random_state=j) X_train_green = (X_train_not_green) y_train_green = (y_train_not_green) X_train_white = (X_train_not_white) y_train_white = (y_train_not_white) # %% from sklearn.utils import shuffle X_train_full1 = shuffle(X_train_white, random_state=j) X_test = shuffle(X, random_state=j).iloc[4000:8000] y_train_full1 = shuffle(y_train_white, random_state=j) y_test = shuffle(y, random_state=j).iloc[4000:8000] # %% [markdown] # #### Validation Set # %% X_valid1, X_train1 = X_train_full1[:500], X_train_full1[500:] y_valid1, y_train1 = y_train_full1[:500], y_train_full1[500:] # print("X_train:", X_train1.shape[0], "y_train", y_train1.shape[0]) # print("X_valid: ", X_valid1.shape[0], "y_valid ", y_valid1.shape[0]) # print("X_test: ", X_test.shape[0], "y_test ", X_test.shape[0]) # %% [markdown] # ### Prepare the Data # %% [markdown] # #### Data Transformation # %% from sklearn.pipeline import Pipeline from sklearn.preprocessing import OrdinalEncoder from sklearn.compose import ColumnTransformer cat_attr_pipeline = Pipeline([ ('encoder', OrdinalEncoder()) ]) cols = list(X) pipeline = ColumnTransformer([ ('cat_attr_pipeline', cat_attr_pipeline, cols) ]) X_train1 = pipeline.fit_transform(X_train1) X_valid1 = pipeline.fit_transform(X_valid1) X_test1 = pipeline.fit_transform(X_test) # %% [markdown] # ### Neural Network # %% [markdown] # #### Model # %% from tensorflow.keras.models import Sequential from tensorflow.keras.layers import InputLayer, Dense # %% # tf.random.set_seed(j) tf.random.set_random_seed(j) # %% model1 = Sequential([ InputLayer(input_shape=(22,)), # input layer Dense(45, activation='relu'), # hidden layer Dense(1, activation='sigmoid') # output layer ]) # %% #model1.summary() # %% [markdown] # #### Compile the Model # %% model1.compile(loss='binary_crossentropy', optimizer='sgd', metrics=['accuracy']) # %% [markdown] # #### Prepare Callbacks # %% from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping checkpoint_cb = ModelCheckpoint('../SavedModels/best_model.h5', save_best_only=True) early_stopping_cb = EarlyStopping(patience=3, restore_best_weights=True) # %% [markdown] # ### Training # %% train_model1 = model1.fit(X_train1, y_train1, epochs=100, validation_data=(X_valid1, y_valid1), callbacks=[checkpoint_cb, early_stopping_cb]) # %% [markdown] # ### Evaluate the Best Model on Test Set # %% results1 = model1.evaluate(X_test1, y_test) # print("test loss, test acc:", results1) # %% [markdown] # ### Make Some Predictions # %% X_new1 = X_test1[:5] y_prob1 = model1.predict(X_new1) # print(y_prob.round(3)) # %% y_pred1 = (model1.predict(X_new1) > 0.5).astype("int32") # print(y_pred) y_test_pred = (model1.predict(X_test1) > 0.5).astype("int32") # %% [markdown] # ## KL Divergence # %% # X_new = X_test[:5] X_df1 = pd.DataFrame(model1.predict(X_test1)) y_test_pred1 = pd.DataFrame(y_test_pred).reset_index(drop=True) X_df1 = pd.concat([X_df1, y_test_pred1], axis=1) y_test1 = y_test.reset_index(drop=True) X_df1 = pd.concat([X_df1, y_test1], axis=1) X_df1.columns = ["X_pred","y_pred","y_actual"] #print(X_df1) # %% import math table1 = pd.DataFrame(columns=["KL_div","abs_distance","correctness"]) for i in range(0,len(X_df1)): # KL divergence p = X_df1.loc[i,"X_pred"] try: kl = -(p*math.log(p) + (1-p)*math.log(1-p)) except: kl = 0 table1.loc[i,"KL_div"] = kl # absolute distance abs_dist = 2*abs(0.5-p) table1.loc[i,"abs_distance"] = abs_dist # correctness y_pred1 = X_df1.loc[i,"y_pred"] y_act1 = X_df1.loc[i,"y_actual"] if y_pred1 == y_act1: table1.loc[i,"correctness"] = 1 # correct prediction else: table1.loc[i,"correctness"] = 0 # wrong prediction table1.loc[i,"y_pred"] = y_pred1 #print(table1) # %% table1["count"] = 1 correctness1 = table1[["correctness","count"]].groupby(pd.cut(table1["KL_div"], np.arange(0, 0.8, 0.1))).apply(sum) correctness1["percent"] = 100*(correctness1["correctness"]/correctness1["count"]) #print(correctness1) # %% index = [] for i in (correctness1.index): index.append(str(i)) plt.bar(index,correctness1["percent"], width=0.7) for index,data in enumerate(correctness1["percent"]): plt.text(x=index , y =data+1 , s=f"{round(data,2)}" , fontdict=dict(fontsize=15),ha='center') plt.ylim(0,120) plt.xlabel("KL Divergence") plt.ylabel("% correct") # %% [markdown] # ### Confidence # %% kl1 = table1[["correctness","count"]].groupby(pd.cut(table1["KL_div"], np.arange(0, 0.80, 0.1))).apply(sum) kl1["percent"] = (kl1["correctness"]/kl1["count"]) kl1.dropna(inplace=True) plt.scatter(np.arange(0, 0.70, 0.1), kl1["percent"]) plt.xlabel("KL Divergence") plt.ylabel("% correct") # %% # Linear Regression from sklearn.linear_model import LinearRegression x_reg1 = np.arange(0, 0.70, 0.1).reshape((-1, 1)) y_reg1 = kl1["percent"] reg_model1 = LinearRegression().fit(x_reg1,y_reg1) # %% # print('intercept(alpha):', reg_model1.intercept_) # print('slope(theta):', reg_model1.coef_) # %% [markdown] # # NN2 Odor - Almond (a) # %% [markdown] # #### Train Set and Test Set # %% from sklearn.utils import shuffle X_train_full2 = shuffle(X_train_green, random_state=j) # X_test2 = shuffle(X_test_green, random_state=j) y_train_full2 = shuffle(y_train_green, random_state=j) # y_test2 = shuffle(y_test_green, random_state=j) # %% [markdown] # #### Validation Set # %% X_valid2, X_train2 = X_train_full2[:500], X_train_full2[500:] y_valid2, y_train2 = y_train_full2[:500], y_train_full2[500:] # print("X_train:", X_train2.shape[0], "y_train", y_train2.shape[0]) # print("X_valid: ", X_valid2.shape[0], "y_valid ", y_valid2.shape[0]) # print("X_test: ", X_test.shape[0], "y_test ", X_test.shape[0]) # %% [markdown] # ### Prepare the Data # %% [markdown] # #### Data Transformation # %% from sklearn.pipeline import Pipeline from sklearn.preprocessing import OrdinalEncoder from sklearn.compose import ColumnTransformer cat_attr_pipeline = Pipeline([ ('encoder', OrdinalEncoder()) ]) cols = list(X) pipeline = ColumnTransformer([ ('cat_attr_pipeline', cat_attr_pipeline, cols) ]) X_train2 = pipeline.fit_transform(X_train2) X_valid2 = pipeline.fit_transform(X_valid2) X_test2 = pipeline.fit_transform(X_test) y_test2 = y_test # %% [markdown] # ### Neural Network # %% [markdown] # #### Model # %% from tensorflow.keras.models import Sequential from tensorflow.keras.layers import InputLayer, Dense tf.random.set_random_seed(j) # %% model2 = Sequential([ InputLayer(input_shape=(22,)), # input layer Dense(45, activation='relu'), # hidden layer Dense(1, activation='sigmoid') # output layer ]) # %% #model2.summary() # %% [markdown] # #### Compile the Model # %% model2.compile(loss='binary_crossentropy', optimizer='sgd', metrics=['accuracy']) # %% [markdown] # #### Prepare Callbacks # %% from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping checkpoint_cb = ModelCheckpoint('../SavedModels/best_model.h5', save_best_only=True) early_stopping_cb = EarlyStopping(patience=3, restore_best_weights=True) # %% [markdown] # ### Training # %% train_model2 = model2.fit(X_train2, y_train2, epochs=100, validation_data=(X_valid2, y_valid2), callbacks=[checkpoint_cb, early_stopping_cb]) # %% [markdown] # ### Evaluate the Best Model on Test Set # %% results2 = model2.evaluate(X_test2, y_test2) # print("test loss, test acc:", results2) # %% [markdown] # ### Make Some Predictions # %% # y_pred2 = (model2.predict(X_new2) > 0.5).astype("int32") # print(y_pred2) y_test_pred2 = (model2.predict(X_test2) > 0.5).astype("int32") # %% [markdown] # ## KL Divergence # %% # X_new = X_test[:5] X_df2 = pd.DataFrame(model2.predict(X_test2)) y_test_pred2 = pd.DataFrame(y_test_pred2).reset_index(drop=True) X_df2 = pd.concat([X_df2, y_test_pred2], axis=1) y_test2 = y_test2.reset_index(drop=True) X_df2 = pd.concat([X_df2, y_test2], axis=1) X_df2.columns = ["X_pred","y_pred","y_actual"] #print(X_df2) # %% import math table2 = pd.DataFrame(columns=["KL_div","abs_distance","y_pred","correctness"]) for i in range(0,len(X_df2)): # KL divergence p = X_df2.loc[i,"X_pred"] if p > 0: kl = -(p*math.log(p) + (1-p)*math.log(1-p)) else: kl = 1 table2.loc[i,"KL_div"] = kl # absolute distance abs_dist = 2*abs(0.5-p) table2.loc[i,"abs_distance"] = abs_dist # correctness y_pred = X_df2.loc[i,"y_pred"] y_act = X_df2.loc[i,"y_actual"] if y_pred == y_act: table2.loc[i,"correctness"] = 1 # correct prediction else: table2.loc[i,"correctness"] = 0 # wrong prediction table2.loc[i,"y_pred"] = y_pred #print(table2) # %% table2["count"] = 1 correctness2 = table2[["correctness","count"]].groupby(pd.cut(table2["KL_div"], np.arange(0, 0.8, 0.1))).apply(sum) correctness2["percent"] = 100*(correctness2["correctness"]/correctness2["count"]) #print(correctness2) # %% index = [] for i in (correctness2.index): index.append(str(i)) plt.bar(index,correctness2["percent"], width=0.7) for index,data in enumerate(correctness2["percent"]): plt.text(x=index , y =data+1 , s=f"{round(data,2)}" , fontdict=dict(fontsize=15),ha='center') plt.ylim(0,120) plt.xlabel("KL Divergence") plt.ylabel("% correct") # %% [markdown] # ### Confidence # %% kl2 = table2[["correctness","count"]].groupby(pd.cut(table2["KL_div"], np.arange(0, 0.8, 0.1))).apply(sum) kl2["percent"] = (kl2["correctness"]/kl2["count"]) kl2.dropna(inplace=True) plt.scatter(np.arange(0, 0.70, 0.1), kl2["percent"]) # print(kl) # print(np.arange(0, 0.7, 0.05)) # %% # Linear Regression from sklearn.linear_model import LinearRegression x_reg2 = np.arange(0, 0.7, 0.1).reshape((-1, 1)) y_reg2 = kl2["percent"] reg_model2 = LinearRegression().fit(x_reg2,y_reg2) # %% # print('intercept(alpha):', reg_model2.intercept_) # print('slope(theta):', reg_model2.coef_) # %% [markdown] # ## Algorithm C: It = argmax(Ct,i) # %% # Correct answer ans =
pd.DataFrame(X_df2["y_actual"])
pandas.DataFrame
# gsheets_data.py from dotenv import load_dotenv import os import gspread from oauth2client.service_account import ServiceAccountCredentials import pandas as pd import matplotlib.pyplot as plt import matplotlib.cm as cm import io import sys from wordcloud import WordCloud, STOPWORDS import nltk from nltk.sentiment.vader import SentimentIntensityAnalyzer import sendgrid from sendgrid.helpers.mail import * def send_email(text, sub): load_dotenv() SENDGRID_API_KEY = os.environ.get("SENDGRID_API_KEY", "OOPS, please set env var called 'SENDGRID_API_KEY'") MY_EMAIL_ADDRESS = os.environ.get("MY_EMAIL_ADDRESS", "OOPS, please set env var called 'MY_EMAIL_ADDRESS'") CLIENT_EMAIL_ADDRESS = os.environ.get("MY_EMAIL_ADDRESS", "OOPS, please set env var called 'CLIENT_EMAIL_ADDRESS'") sg = sendgrid.SendGridAPIClient(apikey=SENDGRID_API_KEY) ### load email variables from_email = Email(MY_EMAIL_ADDRESS) to_email = Email(CLIENT_EMAIL_ADDRESS) subject = sub sub_text = text message_text = f"Dear User, \nThis is an automated email response. \n {sub_text}" content = Content("text/plain", message_text) mail = Mail(from_email, subject, to_email, content) response = sg.client.mail.send.post(request_body=mail.get()) return response def google_sheets_data(gsheet): load_dotenv() DOCUMENT_ID = os.environ.get("GOOGLE_SHEET_ID", "OOPS") SHEET_NAME = gsheet scope = ["https://spreadsheets.google.com/feeds",'https://www.googleapis.com/auth/spreadsheets',"https://www.googleapis.com/auth/drive.file","https://www.googleapis.com/auth/drive"] file_name = os.path.join(os.getcwd(), "google_credentials", "gcreds.json") creds = ServiceAccountCredentials.from_json_keyfile_name(file_name, scope) client = gspread.authorize(creds) doc = client.open_by_key(DOCUMENT_ID) sheet = doc.worksheet(SHEET_NAME) data = sheet.get_all_records() return data def quality(x): if x == 5: return 'Exceptional' elif x==4.5 or x==4: return 'Very Good' elif x==3.5 or x==3: return 'Average' else: return 'Poor' def savefile(fileandext): file_name = os.path.join(os.getcwd(), "plot_images", fileandext) if os.path.exists(file_name): os.remove(file_name) return file_name def float_format(data): x = "{0:.2f}".format(data) return x if __name__ == "__main__": ### Defining the initial datasets. THey will be used for the plots created below business_search = google_sheets_data('business_search') business_reviews = google_sheets_data('business_reviews') bs_data =
pd.DataFrame(business_search)
pandas.DataFrame
#!/usr/bin/env python # -*- coding: utf-8; -*- # Copyright (c) 2020, 2022 Oracle and/or its affiliates. # Licensed under the Universal Permissive License v 1.0 as shown at https://oss.oracle.com/licenses/upl/ import matplotlib.pyplot as plt import numpy as np import pandas as pd from IPython.core.display import display from cycler import cycler import matplotlib as mpl import re from ads.common import logger mpl.rcParams["image.cmap"] = "BuGn" mpl.rcParams["axes.prop_cycle"] = cycler( color=["teal", "blueviolet", "forestgreen", "peru", "y", "dodgerblue", "r"] ) from ads.evaluations.evaluation_plot import EvaluationPlot from ads.evaluations.statistical_metrics import ModelEvaluator from ads.dataset.dataset_with_target import ADSDatasetWithTarget from ads.common.model import ADSModel from ads.common.decorator.runtime_dependency import runtime_dependency class ADSEvaluator(object): """ADS Evaluator class. This class holds field and methods for creating and using ADS evaluator objects. Attributes ---------- evaluations : list[DataFrame] list of evaluations. is_classifier : bool Whether the model has a non-empty `classes_` attribute indicating the presence of class labels. legend_labels : dict List of legend labels. Defaults to `None`. metrics_to_show : list[str] Names of metrics to show. models : list[ads.common.model.ADSModel] The object built using `ADSModel.from_estimator()`. positive_class : str or int The class to report metrics for binary dataset, assumed to be true. show_full_name :bool Whether to show the name of the evaluator in relevant contexts. test_data : ads.common.data.ADSData Test data to evaluate model on. training_data : ads.common.data.ADSData Training data to evaluate model. Positive_Class_names : list Class attribute listing the ways to represent positive classes Methods ------- add_metrics(func, names) Adds the listed metics to the evaluator it is called on del_metrics(names) Removes listed metrics from the evaluator object it is called on add_models(models, show_full_name) Adds the listed models to the evaluator object del_models(names) Removes the listed models from the evaluator object show_in_notebook(plots, use_training_data, perfect, baseline, legend_labels) Visualize evalutation plots in the notebook calculate_cost(tn_weight, fp_weight, fn_weight, tp_weight, use_training_data) Returns a cost associated with the input weights """ Positive_Class_Names = ["yes", "y", "t", "true", "1"] def __init__( self, test_data, models, training_data=None, positive_class=None, legend_labels=None, show_full_name=False, ): """Creates an ads evaluator object. Parameters ---------- test_data : ads.common.data.ADSData instance Test data to evaluate model on. The object can be built using `ADSData.build()`. models : list[ads.common.model.ADSModel] The object can be built using `ADSModel.from_estimator()`. Maximum length of the list is 3 training_data : ads.common.data.ADSData instance, optional Training data to evaluate model on and compare metrics against test data. The object can be built using `ADSData.build()` positive_class : str or int, optional The class to report metrics for binary dataset. If the target classes is True or False, positive_class will be set to True by default. If the dataset is multiclass or multilabel, this will be ignored. legend_labels : dict, optional List of legend labels. Defaults to `None`. If legend_labels not specified class names will be used for plots. show_full_name : bool, optional Show the name of the evaluator object. Defaults to `False`. Examples -------- >>> train, test = ds.train_test_split() >>> model1 = MyModelClass1.train(train) >>> model2 = MyModelClass2.train(train) >>> evaluator = ADSEvaluator(test, [model1, model2]) >>> legend_labels={'class_0': 'one', 'class_1': 'two', 'class_2': 'three'} >>> multi_evaluator = ADSEvaluator(test, models=[model1, model2], ... legend_labels=legend_labels) """ self.evaluations = [] if isinstance(training_data, ADSDatasetWithTarget): training_data, _ = training_data.train_test_split(test_size=0.0) if isinstance(test_data, ADSDatasetWithTarget): test_data, _ = test_data.train_test_split(test_size=0.0) self.test_data = test_data self.training_data = training_data self.classes = [] self.is_classifier = ( hasattr(models[0], "classes_") and models[0].classes_ is not None ) pclass = positive_class if self.is_classifier: self.classes = list(models[0].classes_) if len(self.classes) == 2: self.metrics_to_show = [ "accuracy", "hamming_loss", "precision", "recall", "f1", "auc", ] if positive_class is None or positive_class not in self.classes: pclass = next( ( x for x in list(self.classes) if str(x).lower() in ADSEvaluator.Positive_Class_Names ), self.classes[0], ) logger.info( f"Using {pclass} as the positive class. Use `positive_class` to set this value." ) else: # Multi-class self.metrics_to_show = [ "accuracy", "hamming_loss", "precision_weighted", "precision_micro", "recall_weighted", "recall_micro", "f1_weighted", "f1_micro", ] else: # Regression self.metrics_to_show = ["r2_score", "mse", "mae"] self.positive_class = pclass self.legend_labels = legend_labels for m in models: if not (isinstance(m, ADSModel)): try: m = ADSModel.from_estimator(m.est) except: logger.info("This model cannot be converted to an ADS Model.") self.evaluations = [pd.DataFrame(), pd.DataFrame()] self.model_names = [] self.add_models(models, show_full_name=show_full_name) def add_metrics(self, funcs, names): """Adds the listed metrics to the evaluator object it is called on. Parameters ---------- funcs : list The list of metrics to be added. This function will be provided `y_true` and `y_pred`, the true and predicted values for each model. names : list[str]) The list of metric names corresponding to the functions. Returns ------- Nothing Examples -------- >>> def f1(y_true, y_pred): ... return np.max(y_true - y_pred) >>> evaluator = ADSEvaluator(test, [model1, model2]) >>> evaluator.add_metrics([f1], ['Max Residual']) >>> evaluator.metrics Output table will include the desired metric """ if len(funcs) != len(names): raise ValueError("Could not find 1 unique name for each function") for name, f in zip(names, funcs): f_res = [] for m in self.evaluations[1].columns: res = f( self.evaluations[1][m]["y_true"], self.evaluations[1][m]["y_pred"] ) f_res.append(res) pd_res = pd.DataFrame( [f_res], columns=self.evaluations[1].columns, index=[name] ) self.evaluations[1] = pd.concat([self.evaluations[1], pd_res]) if self.evaluations[0].shape != (0, 0): f_res = [] for m in self.evaluations[0].columns: res = f( self.evaluations[0][m]["y_true"], self.evaluations[0][m]["y_pred"], ) f_res.append(res) pd_res = pd.DataFrame( [f_res], columns=self.evaluations[0].columns, index=[name] ) self.evaluations[0] =
pd.concat([self.evaluations[0], pd_res])
pandas.concat
from pathlib import Path import re import numpy as np import pytest from pandas._libs.tslibs import Timestamp from pandas.compat import is_platform_windows import pandas as pd from pandas import ( DataFrame, HDFStore, Index, Series, _testing as tm, read_hdf, ) from pandas.tests.io.pytables.common import ( _maybe_remove, ensure_clean_path, ensure_clean_store, ) from pandas.util import _test_decorators as td from pandas.io.pytables import TableIterator pytestmark = pytest.mark.single def test_read_missing_key_close_store(setup_path): # GH 25766 with ensure_clean_path(setup_path) as path: df = DataFrame({"a": range(2), "b": range(2)}) df.to_hdf(path, "k1") with pytest.raises(KeyError, match="'No object named k2 in the file'"): read_hdf(path, "k2") # smoke test to test that file is properly closed after # read with KeyError before another write df.to_hdf(path, "k2") def test_read_missing_key_opened_store(setup_path): # GH 28699 with ensure_clean_path(setup_path) as path: df = DataFrame({"a": range(2), "b": range(2)}) df.to_hdf(path, "k1") with
HDFStore(path, "r")
pandas.HDFStore
from numpy import mean import pandas as pd import matplotlib matplotlib.use('Agg') from matplotlib import pyplot as plot import matplotlib.mlab as mlab import matplotlib.pylab as lab import matplotlib.patches as patches import matplotlib.ticker as plticker from matplotlib import rcParams from matplotlib import gridspec from matplotlib import cm import sys import time rcParams['font.sans-serif'] = 'Arial' infile = sys.argv[1] # which file to go over window = int(sys.argv[2]) # what size window was used? slide = int(sys.argv[3]) # what slide bottompanel = int(sys.argv[4]) # this is how often to plot points on the bottom panel scaffold_file = sys.argv[5] # file with the scaffold and length color_scheme = sys.argv[6] # what color scheme to use? outdir = sys.argv[7] # where to output the pdf # this is to process the file and output the shading correctly def scale_dict(info_file): info_read = open(info_file, "r") info_dict = {} final_lenny = 0 lenny = 0 for line in info_read: linetab = (line.rstrip()).split("\t") scaffy = linetab[0] final_lenny = final_lenny + lenny lenny = int(linetab[1]) info_dict[scaffy] = final_lenny info_read.close() return(info_dict) # processing the scaffold information shader = scale_dict(scaffold_file) maxx = sum(pd.read_csv(scaffold_file, sep="\t", header=None)[1]) print(maxx) midwin = window/2 outfiley = open(outdir+"/connected_fragments.txt", "w") b = pd.read_csv(infile) comparisons = list(b.columns[3:]) strains = [] ncomps = len(comparisons) for comp in comparisons: strainies = comp.split(";") if (strainies[0] in strains)==False: strains.append(strainies[0]) if comp == comparisons[ncomps-1]: strains.append(strainies[1]) nstrains = len(strains) print("nstrains", nstrains) grids = sum(range(nstrains+4))+25 print("grids", grids) fig = plot.figure(figsize=(grids, grids), dpi=10000) gs = gridspec.GridSpec(grids, grids) begger = 1 mover = nstrains-1 ender = begger + mover lastfirst = None boxcount = pd.Series() ## let's do colors ## have to normalize the data set first so that they're continuous norm = matplotlib.colors.Normalize(vmin=75, vmax=100) m = cm.ScalarMappable(norm=norm, cmap=color_scheme) for comparison in comparisons: print("%s: %s"%("processing", comparison)) compare = comparison.split(";") compcol = b[comparison] first = compare[0] if lastfirst == None: lastfirst = first ax = plot.subplot(gs[begger:ender, :]) standing = strains.index(first) remains = strains[standing+1:][::-1] ncomp = len(remains)-1 tickies = list(pd.Series(range(len(remains)))+0.5) # label offset needs to be .2 to worky well plotsizies = ender - begger tickplace = (plotsizies+0.25)/plotsizies ax.set_title(first, y=tickplace) #### ax.title.set_fontsize(80) # this is very awkward, but it the only way to do this ax.set_ylim(0,ender-begger) ax.set_xlim(0, max(b['total_med'])) yloc = plticker.FixedLocator(tickies) ax.yaxis.set_ticklabels(remains) ax.yaxis.set_tick_params(labelsize=60) ax.yaxis.set_major_locator(yloc) xloc = plticker.MultipleLocator(2000000) ax.xaxis.set_major_locator(xloc) lockyx = list(ax.xaxis.get_major_locator().tick_values(0,max(b['total_med']))) ax.xaxis.set_tick_params(labelsize=150, colors='black') # for better labeling: new_lockyx = [int(i) for i in lockyx] # this is to create labels with numbers xlabs = [] for i in new_lockyx: j = str(i) if len(str(j)) <= 2: xlabs.append(i/1) elif 3 <= len(str(j)) <= 6: xlabs.append(i/1000) elif 3 <= len(str(j)) <= 9: xlabs.append(i/1000000) else: xlabs.append(round(i/float(1000000000), 1)) ax.xaxis.set_ticklabels(xlabs) # this are the variables for the shading below old = None shade = True # here comes the shading for contig in sorted(shader): val = shader[contig] if old != None and shade == True: plot.axvspan(old, val, color='0.85', alpha=0.5) shade = False else: if old != None: shade = True old = shader[contig] # the last one if shade == True: plot.axvspan(old, maxx, color='0.85', alpha=0.5) else: if first == lastfirst: ncomp = ncomp- 1 pass else: standing = strains.index(first) remains = strains[standing+1:][::-1] ncomp = len(remains)-1 begger = ender + 4 mover = mover - 1 ender = begger + mover lastfirst = first ax = plot.subplot(gs[begger:ender, :]) tickies = list(pd.Series(range(len(remains)))+0.5) # label offset needs to be .2 to worky well plotsizies = ender - begger tickplace = (plotsizies+0.25)/plotsizies ax.set_title(first, y=tickplace) #### ax.title.set_fontsize(80) # this is very awkward, but it the only way to do this ax.set_ylim(0,ender-begger) ax.set_xlim(0, max(b['total_med'])) yloc = plticker.FixedLocator(tickies) ax.yaxis.set_ticklabels(remains) ax.yaxis.set_tick_params(labelsize=60) ax.yaxis.set_major_locator(yloc) xloc = plticker.MultipleLocator(2000000) ax.xaxis.set_major_locator(xloc) lockyx = list(ax.xaxis.get_major_locator().tick_values(0,max(b['total_med']))) ax.xaxis.set_tick_params(labelsize=150, colors='black') # for better labeling: new_lockyx = [int(i) for i in lockyx] # this is to create labels with numbers xlabs = [] for i in new_lockyx: j = str(i) if len(str(j)) <= 2: xlabs.append(i/1) elif 3 <= len(str(j)) <= 6: xlabs.append(i/1000) elif 3 <= len(str(j)) <= 9: xlabs.append(i/1000000) else: xlabs.append(round(i/float(1000000000), 1)) ax.xaxis.set_ticklabels(xlabs) # this are the variables for the shading below old = None shade = True # here comes the shading for contig in sorted(shader): val = shader[contig] if old != None and shade == True: plot.axvspan(old, val, color='0.85', alpha=0.5) shade = False else: if old != None: shade = True old = shader[contig] # the last one if shade == True: plot.axvspan(old, maxx, color='0.85', alpha=0.5) second = compare[1] ############################## 75 #################################### asel = compcol[(compcol >= 75) & (compcol < 83)] samies = list(asel.index) singletons = set(samies) if len(samies) > 0: print("processing 75-83% similar") backsies = pd.Series(samies[1:]+[-20]) fronties = pd.Series([-20]+samies[:-1]) normies = pd.Series(samies) topgo = backsies-samies bottomgo = samies-fronties tops = pd.Series([-20]+list(backsies[topgo == 1])) bottoms = pd.Series(list(fronties[bottomgo == 1])) cancels = tops-bottoms endies = list(tops[cancels != 0])[1:] # no need to +1 because end included with .loc beggies = list(bottoms[cancels != 0]) for terrier in range(len(endies)): slicey = b.loc[beggies[terrier]:endies[terrier],'total_med'] aver = int(mean(b.loc[beggies[terrier]:endies[terrier], comparison])) colori = m.to_rgba(aver) singletons = singletons - set(range(beggies[terrier],endies[terrier]+1)) begpos = min(slicey)-midwin endpos = max(slicey)+midwin outfiley.write("%s\t%s\t%s\t%s\t%s\n" %(first, second, str(begpos), str(endpos), str(75))) ax.add_patch(patches.Rectangle((begpos, ncomp),endpos-begpos, 1, fc = colori, ec=None)) # let's deal with singletons: for single in singletons: medwinpos = b.loc[single,'total_med'] begpos = medwinpos-midwin endpos = medwinpos+midwin outfiley.write("%s\t%s\t%s\t%s\t%s\n" %(first, second, str(begpos), str(endpos), str(75))) patchy = patches.Rectangle((begpos, ncomp),endpos-begpos, 1) ax.add_patch(patches.Rectangle((begpos, ncomp),endpos-begpos, 1, fc = colori, ec=None)) ############################## 83 #################################### asel = compcol[(compcol >= 83) & (compcol < 90)] samies = list(asel.index) singletons = set(samies) if len(samies) > 0: print("processing 83-90% similar") backsies = pd.Series(samies[1:]+[-20]) fronties = pd.Series([-20]+samies[:-1]) normies = pd.Series(samies) topgo = backsies-samies bottomgo = samies-fronties tops = pd.Series([-20]+list(backsies[topgo == 1])) bottoms = pd.Series(list(fronties[bottomgo == 1])) cancels = tops-bottoms endies = list(tops[cancels != 0])[1:] # no need to +1 because end included with .loc beggies = list(bottoms[cancels != 0]) for terrier in range(len(endies)): slicey = b.loc[beggies[terrier]:endies[terrier],'total_med'] aver = int(mean(b.loc[beggies[terrier]:endies[terrier], comparison])) colori = m.to_rgba(aver) singletons = singletons - set(range(beggies[terrier],endies[terrier]+1)) begpos = min(slicey)-midwin endpos = max(slicey)+midwin outfiley.write("%s\t%s\t%s\t%s\t%s\n" %(first, second, str(begpos), str(endpos), str(83))) ax.add_patch(patches.Rectangle((begpos, ncomp),endpos-begpos, 1, fc = colori, ec=None)) # let's deal with singletons: for single in singletons: medwinpos = b.loc[single,'total_med'] begpos = medwinpos-midwin endpos = medwinpos+midwin outfiley.write("%s\t%s\t%s\t%s\t%s\n" %(first, second, str(begpos), str(endpos), str(83))) patchy = patches.Rectangle((begpos, ncomp),endpos-begpos, 1) ax.add_patch(patches.Rectangle((begpos, ncomp),endpos-begpos, 1, fc = colori, ec=None)) ############################## 90 ############################################# asel = compcol[(compcol >= 90) & (compcol < 95)] samies = list(asel.index) singletons = set(samies) if len(samies) > 0: print("processing 90-95% similar") backsies = pd.Series(samies[1:]+[-20]) fronties = pd.Series([-20]+samies[:-1]) normies = pd.Series(samies) topgo = backsies-samies bottomgo = samies-fronties tops = pd.Series([-20]+list(backsies[topgo == 1])) bottoms = pd.Series(list(fronties[bottomgo == 1])) cancels = tops-bottoms endies = list(tops[cancels != 0])[1:] # no need to +1 because end included with .loc beggies = list(bottoms[cancels != 0]) for terrier in range(len(endies)): slicey = b.loc[beggies[terrier]:endies[terrier],'total_med'] aver = int(mean(b.loc[beggies[terrier]:endies[terrier], comparison])) colori = m.to_rgba(aver) singletons = singletons - set(range(beggies[terrier],endies[terrier]+1)) begpos = min(slicey)-midwin endpos = max(slicey)+midwin outfiley.write("%s\t%s\t%s\t%s\t%s\n" %(first, second, str(begpos), str(endpos), str(90))) ax.add_patch(patches.Rectangle((begpos, ncomp),endpos-begpos, 1, fc = colori, ec=None)) # let's deal with singletons: for single in singletons: medwinpos = b.loc[single,'total_med'] begpos = medwinpos-midwin endpos = medwinpos+midwin outfiley.write("%s\t%s\t%s\t%s\t%s\n" %(first, second, str(begpos), str(endpos), str(90))) ax.add_patch(patches.Rectangle((begpos, ncomp),endpos-begpos, 1, fc = colori, ec=None)) ############################## 95 ############################################# # these first, then the ones that are the same asel = compcol[compcol >= 95] samies = list(asel.index) singletons = set(samies) # let's plot these high values first # start with a boolean approach to identify long fragments of similarity if len(samies) > 0: print("processing 95% similar and higher") backsies = pd.Series(samies[1:]+[-20]) fronties = pd.Series([-20]+samies[:-1]) normies = pd.Series(samies) topgo = backsies-samies bottomgo = samies-fronties tops = pd.Series([-20]+list(backsies[topgo == 1])) bottoms = pd.Series(list(fronties[bottomgo == 1])) cancels = tops-bottoms endies = list(tops[cancels != 0])[1:] # no need to +1 because end included with .loc beggies = list(bottoms[cancels != 0]) keep_score = set([]) for terrier in range(len(endies)): slicey = b.loc[beggies[terrier]:endies[terrier],'total_med'] aver = int(mean(b.loc[beggies[terrier]:endies[terrier], comparison])) colori = m.to_rgba(aver) singletons = singletons - set(range(beggies[terrier],endies[terrier]+1)) begpos = min(slicey)-midwin endpos = max(slicey)+midwin ########## this is for frequency plotting later testbeg = begpos%bottompanel if testbeg == 0: shift = 0 else: shift = bottompanel-testbeg actualbeg = begpos + shift #end testend = endpos%bottompanel shift = bottompanel-testend actualend = endpos + shift # now get the stuff stellar = [i for i in range(actualbeg, actualend, bottompanel) if i not in keep_score] newvals =
pd.Series(stellar)
pandas.Series
import glob import math import uuid from enum import Enum from typing import Union, Optional, Tuple, Iterable, List, Dict import numpy as np import pandas as pd import os import ray Data = Union[str, List[str], np.ndarray, pd.DataFrame, pd.Series] class RayFileType(Enum): CSV = 1 PARQUET = 2 class RayShardingMode(Enum): INTERLEAVED = 1 BATCH = 2 class _RayDMatrixLoader: def __init__(self, data: Data, label: Optional[Data] = None, filetype: Optional[RayFileType] = None, ignore: Optional[List[str]] = None, **kwargs): self.data = data self.label = label self.filetype = filetype self.ignore = ignore self.kwargs = kwargs if isinstance(data, str): if not self.filetype: # Try to guess filetype from file ending if data.endswith(".csv"): self.filetype = RayFileType.CSV elif data.endswith(".parquet"): self.filetype = RayFileType.PARQUET else: raise ValueError( "File or stream specified as data source, but " "filetype could not be detected. " "\nFIX THIS by passing] " "the `filetype` parameter to the RayDMatrix. Use the " "`RayFileType` enum for this.") def _split_dataframe(self, local_data: pd.DataFrame) -> \ Tuple[pd.DataFrame, Optional[pd.DataFrame]]: """Split dataframe into `features`, `labels`""" if self.label is not None: if isinstance(self.label, str): x = local_data[local_data.columns.difference([self.label])] y = local_data[self.label] else: x = local_data if not isinstance(self.label, pd.DataFrame): y = pd.DataFrame(self.label) else: y = self.label return x, y return local_data, None def _load_data_numpy(self, data: Data): return pd.DataFrame( data, columns=[f"f{i}" for i in range(data.shape[1])]) def _load_data_pandas(self, data: Data): return data def _load_data_csv(self, data: Data): if isinstance(data, Iterable) and not isinstance(data, str): return pd.concat([
pd.read_csv(data_source, **self.kwargs)
pandas.read_csv
# pylint: disable-msg=W0612,E1101,W0141 import nose from numpy.random import randn import numpy as np from pandas.core.index import Index, MultiIndex from pandas import Panel, DataFrame, Series, notnull, isnull from pandas.util.testing import (assert_almost_equal, assert_series_equal, assert_frame_equal, assertRaisesRegexp) import pandas.core.common as com import pandas.util.testing as tm from pandas.compat import (range, lrange, StringIO, lzip, u, cPickle, product as cart_product, zip) import pandas as pd import pandas.index as _index class TestMultiLevel(tm.TestCase): _multiprocess_can_split_ = True def setUp(self): import warnings warnings.filterwarnings(action='ignore', category=FutureWarning) index = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux'], ['one', 'two', 'three']], labels=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], names=['first', 'second']) self.frame = DataFrame(np.random.randn(10, 3), index=index, columns=Index(['A', 'B', 'C'], name='exp')) self.single_level = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux']], labels=[[0, 1, 2, 3]], names=['first']) # create test series object arrays = [['bar', 'bar', 'baz', 'baz', 'qux', 'qux', 'foo', 'foo'], ['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two']] tuples = lzip(*arrays) index = MultiIndex.from_tuples(tuples) s = Series(randn(8), index=index) s[3] = np.NaN self.series = s tm.N = 100 self.tdf = tm.makeTimeDataFrame() self.ymd = self.tdf.groupby([lambda x: x.year, lambda x: x.month, lambda x: x.day]).sum() # use Int64Index, to make sure things work self.ymd.index.set_levels([lev.astype('i8') for lev in self.ymd.index.levels], inplace=True) self.ymd.index.set_names(['year', 'month', 'day'], inplace=True) def test_append(self): a, b = self.frame[:5], self.frame[5:] result = a.append(b) tm.assert_frame_equal(result, self.frame) result = a['A'].append(b['A']) tm.assert_series_equal(result, self.frame['A']) def test_dataframe_constructor(self): multi = DataFrame(np.random.randn(4, 4), index=[np.array(['a', 'a', 'b', 'b']), np.array(['x', 'y', 'x', 'y'])]) tm.assert_isinstance(multi.index, MultiIndex) self.assertNotIsInstance(multi.columns, MultiIndex) multi = DataFrame(np.random.randn(4, 4), columns=[['a', 'a', 'b', 'b'], ['x', 'y', 'x', 'y']]) tm.assert_isinstance(multi.columns, MultiIndex) def test_series_constructor(self): multi = Series(1., index=[np.array(['a', 'a', 'b', 'b']), np.array(['x', 'y', 'x', 'y'])]) tm.assert_isinstance(multi.index, MultiIndex) multi = Series(1., index=[['a', 'a', 'b', 'b'], ['x', 'y', 'x', 'y']]) tm.assert_isinstance(multi.index, MultiIndex) multi = Series(lrange(4), index=[['a', 'a', 'b', 'b'], ['x', 'y', 'x', 'y']]) tm.assert_isinstance(multi.index, MultiIndex) def test_reindex_level(self): # axis=0 month_sums = self.ymd.sum(level='month') result = month_sums.reindex(self.ymd.index, level=1) expected = self.ymd.groupby(level='month').transform(np.sum) assert_frame_equal(result, expected) # Series result = month_sums['A'].reindex(self.ymd.index, level=1) expected = self.ymd['A'].groupby(level='month').transform(np.sum) assert_series_equal(result, expected) # axis=1 month_sums = self.ymd.T.sum(axis=1, level='month') result = month_sums.reindex(columns=self.ymd.index, level=1) expected = self.ymd.groupby(level='month').transform(np.sum).T assert_frame_equal(result, expected) def test_binops_level(self): def _check_op(opname): op = getattr(DataFrame, opname) month_sums = self.ymd.sum(level='month') result = op(self.ymd, month_sums, level='month') broadcasted = self.ymd.groupby(level='month').transform(np.sum) expected = op(self.ymd, broadcasted) assert_frame_equal(result, expected) # Series op = getattr(Series, opname) result = op(self.ymd['A'], month_sums['A'], level='month') broadcasted = self.ymd['A'].groupby( level='month').transform(np.sum) expected = op(self.ymd['A'], broadcasted) assert_series_equal(result, expected) _check_op('sub') _check_op('add') _check_op('mul') _check_op('div') def test_pickle(self): def _test_roundtrip(frame): pickled = cPickle.dumps(frame) unpickled = cPickle.loads(pickled) assert_frame_equal(frame, unpickled) _test_roundtrip(self.frame) _test_roundtrip(self.frame.T) _test_roundtrip(self.ymd) _test_roundtrip(self.ymd.T) def test_reindex(self): reindexed = self.frame.ix[[('foo', 'one'), ('bar', 'one')]] expected = self.frame.ix[[0, 3]] assert_frame_equal(reindexed, expected) def test_reindex_preserve_levels(self): new_index = self.ymd.index[::10] chunk = self.ymd.reindex(new_index) self.assertIs(chunk.index, new_index) chunk = self.ymd.ix[new_index] self.assertIs(chunk.index, new_index) ymdT = self.ymd.T chunk = ymdT.reindex(columns=new_index) self.assertIs(chunk.columns, new_index) chunk = ymdT.ix[:, new_index] self.assertIs(chunk.columns, new_index) def test_sort_index_preserve_levels(self): result = self.frame.sort_index() self.assertEquals(result.index.names, self.frame.index.names) def test_repr_to_string(self): repr(self.frame) repr(self.ymd) repr(self.frame.T) repr(self.ymd.T) buf = StringIO() self.frame.to_string(buf=buf) self.ymd.to_string(buf=buf) self.frame.T.to_string(buf=buf) self.ymd.T.to_string(buf=buf) def test_repr_name_coincide(self): index = MultiIndex.from_tuples([('a', 0, 'foo'), ('b', 1, 'bar')], names=['a', 'b', 'c']) df = DataFrame({'value': [0, 1]}, index=index) lines = repr(df).split('\n') self.assert_(lines[2].startswith('a 0 foo')) def test_getitem_simple(self): df = self.frame.T col = df['foo', 'one'] assert_almost_equal(col.values, df.values[:, 0]) self.assertRaises(KeyError, df.__getitem__, ('foo', 'four')) self.assertRaises(KeyError, df.__getitem__, 'foobar') def test_series_getitem(self): s = self.ymd['A'] result = s[2000, 3] result2 = s.ix[2000, 3] expected = s.reindex(s.index[42:65]) expected.index = expected.index.droplevel(0).droplevel(0) assert_series_equal(result, expected) result = s[2000, 3, 10] expected = s[49] self.assertEquals(result, expected) # fancy result = s.ix[[(2000, 3, 10), (2000, 3, 13)]] expected = s.reindex(s.index[49:51]) assert_series_equal(result, expected) # key error self.assertRaises(KeyError, s.__getitem__, (2000, 3, 4)) def test_series_getitem_corner(self): s = self.ymd['A'] # don't segfault, GH #495 # out of bounds access self.assertRaises(IndexError, s.__getitem__, len(self.ymd)) # generator result = s[(x > 0 for x in s)] expected = s[s > 0] assert_series_equal(result, expected) def test_series_setitem(self): s = self.ymd['A'] s[2000, 3] = np.nan self.assert_(isnull(s.values[42:65]).all()) self.assert_(notnull(s.values[:42]).all()) self.assert_(notnull(s.values[65:]).all()) s[2000, 3, 10] = np.nan self.assert_(isnull(s[49])) def test_series_slice_partial(self): pass def test_frame_getitem_setitem_boolean(self): df = self.frame.T.copy() values = df.values result = df[df > 0] expected = df.where(df > 0) assert_frame_equal(result, expected) df[df > 0] = 5 values[values > 0] = 5 assert_almost_equal(df.values, values) df[df == 5] = 0 values[values == 5] = 0 assert_almost_equal(df.values, values) # a df that needs alignment first df[df[:-1] < 0] = 2 np.putmask(values[:-1], values[:-1] < 0, 2) assert_almost_equal(df.values, values) with assertRaisesRegexp(TypeError, 'boolean values only'): df[df * 0] = 2 def test_frame_getitem_setitem_slice(self): # getitem result = self.frame.ix[:4] expected = self.frame[:4] assert_frame_equal(result, expected) # setitem cp = self.frame.copy() cp.ix[:4] = 0 self.assert_((cp.values[:4] == 0).all()) self.assert_((cp.values[4:] != 0).all()) def test_frame_getitem_setitem_multislice(self): levels = [['t1', 't2'], ['a', 'b', 'c']] labels = [[0, 0, 0, 1, 1], [0, 1, 2, 0, 1]] midx = MultiIndex(labels=labels, levels=levels, names=[None, 'id']) df = DataFrame({'value': [1, 2, 3, 7, 8]}, index=midx) result = df.ix[:, 'value'] assert_series_equal(df['value'], result) result = df.ix[1:3, 'value'] assert_series_equal(df['value'][1:3], result) result = df.ix[:, :] assert_frame_equal(df, result) result = df df.ix[:, 'value'] = 10 result['value'] = 10 assert_frame_equal(df, result) df.ix[:, :] = 10 assert_frame_equal(df, result) def test_frame_getitem_multicolumn_empty_level(self): f = DataFrame({'a': ['1', '2', '3'], 'b': ['2', '3', '4']}) f.columns = [['level1 item1', 'level1 item2'], ['', 'level2 item2'], ['level3 item1', 'level3 item2']] result = f['level1 item1'] expected = DataFrame([['1'], ['2'], ['3']], index=f.index, columns=['level3 item1']) assert_frame_equal(result, expected) def test_frame_setitem_multi_column(self): df = DataFrame(randn(10, 4), columns=[['a', 'a', 'b', 'b'], [0, 1, 0, 1]]) cp = df.copy() cp['a'] = cp['b'] assert_frame_equal(cp['a'], cp['b']) # set with ndarray cp = df.copy() cp['a'] = cp['b'].values assert_frame_equal(cp['a'], cp['b']) #---------------------------------------- # #1803 columns = MultiIndex.from_tuples([('A', '1'), ('A', '2'), ('B', '1')]) df = DataFrame(index=[1, 3, 5], columns=columns) # Works, but adds a column instead of updating the two existing ones df['A'] = 0.0 # Doesn't work self.assertTrue((df['A'].values == 0).all()) # it broadcasts df['B', '1'] = [1, 2, 3] df['A'] = df['B', '1'] assert_series_equal(df['A', '1'], df['B', '1']) assert_series_equal(df['A', '2'], df['B', '1']) def test_getitem_tuple_plus_slice(self): # GH #671 df = DataFrame({'a': lrange(10), 'b': lrange(10), 'c': np.random.randn(10), 'd': np.random.randn(10)}) idf = df.set_index(['a', 'b']) result = idf.ix[(0, 0), :] expected = idf.ix[0, 0] expected2 = idf.xs((0, 0)) assert_series_equal(result, expected) assert_series_equal(result, expected2) def test_getitem_setitem_tuple_plus_columns(self): # GH #1013 df = self.ymd[:5] result = df.ix[(2000, 1, 6), ['A', 'B', 'C']] expected = df.ix[2000, 1, 6][['A', 'B', 'C']] assert_series_equal(result, expected) def test_getitem_multilevel_index_tuple_unsorted(self): index_columns = list("abc") df = DataFrame([[0, 1, 0, "x"], [0, 0, 1, "y"]], columns=index_columns + ["data"]) df = df.set_index(index_columns) query_index = df.index[:1] rs = df.ix[query_index, "data"] xp = Series(['x'], index=MultiIndex.from_tuples([(0, 1, 0)])) assert_series_equal(rs, xp) def test_xs(self): xs = self.frame.xs(('bar', 'two')) xs2 = self.frame.ix[('bar', 'two')] assert_series_equal(xs, xs2) assert_almost_equal(xs.values, self.frame.values[4]) # GH 6574 # missing values in returned index should be preserrved acc = [ ('a','abcde',1), ('b','bbcde',2), ('y','yzcde',25), ('z','xbcde',24), ('z',None,26), ('z','zbcde',25), ('z','ybcde',26), ] df = DataFrame(acc, columns=['a1','a2','cnt']).set_index(['a1','a2']) expected = DataFrame({ 'cnt' : [24,26,25,26] }, index=Index(['xbcde',np.nan,'zbcde','ybcde'],name='a2')) result = df.xs('z',level='a1') assert_frame_equal(result, expected) def test_xs_partial(self): result = self.frame.xs('foo') result2 = self.frame.ix['foo'] expected = self.frame.T['foo'].T assert_frame_equal(result, expected) assert_frame_equal(result, result2) result = self.ymd.xs((2000, 4)) expected = self.ymd.ix[2000, 4] assert_frame_equal(result, expected) # ex from #1796 index = MultiIndex(levels=[['foo', 'bar'], ['one', 'two'], [-1, 1]], labels=[[0, 0, 0, 0, 1, 1, 1, 1], [0, 0, 1, 1, 0, 0, 1, 1], [0, 1, 0, 1, 0, 1, 0, 1]]) df = DataFrame(np.random.randn(8, 4), index=index, columns=list('abcd')) result = df.xs(['foo', 'one']) expected = df.ix['foo', 'one'] assert_frame_equal(result, expected) def test_xs_level(self): result = self.frame.xs('two', level='second') expected = self.frame[self.frame.index.get_level_values(1) == 'two'] expected.index = expected.index.droplevel(1) assert_frame_equal(result, expected) index = MultiIndex.from_tuples([('x', 'y', 'z'), ('a', 'b', 'c'), ('p', 'q', 'r')]) df = DataFrame(np.random.randn(3, 5), index=index) result = df.xs('c', level=2) expected = df[1:2] expected.index = expected.index.droplevel(2) assert_frame_equal(result, expected) # this is a copy in 0.14 result = self.frame.xs('two', level='second') # setting this will give a SettingWithCopyError # as we are trying to write a view def f(x): x[:] = 10 self.assertRaises(com.SettingWithCopyError, f, result) def test_xs_level_multiple(self): from pandas import read_table text = """ A B C D E one two three four a b 10.0032 5 -0.5109 -2.3358 -0.4645 0.05076 0.3640 a q 20 4 0.4473 1.4152 0.2834 1.00661 0.1744 x q 30 3 -0.6662 -0.5243 -0.3580 0.89145 2.5838""" df = read_table(StringIO(text), sep='\s+', engine='python') result = df.xs(('a', 4), level=['one', 'four']) expected = df.xs('a').xs(4, level='four') assert_frame_equal(result, expected) # this is a copy in 0.14 result = df.xs(('a', 4), level=['one', 'four']) # setting this will give a SettingWithCopyError # as we are trying to write a view def f(x): x[:] = 10 self.assertRaises(com.SettingWithCopyError, f, result) # GH2107 dates = lrange(20111201, 20111205) ids = 'abcde' idx = MultiIndex.from_tuples([x for x in cart_product(dates, ids)]) idx.names = ['date', 'secid'] df = DataFrame(np.random.randn(len(idx), 3), idx, ['X', 'Y', 'Z']) rs = df.xs(20111201, level='date') xp = df.ix[20111201, :] assert_frame_equal(rs, xp) def test_xs_level0(self): from pandas import read_table text = """ A B C D E one two three four a b 10.0032 5 -0.5109 -2.3358 -0.4645 0.05076 0.3640 a q 20 4 0.4473 1.4152 0.2834 1.00661 0.1744 x q 30 3 -0.6662 -0.5243 -0.3580 0.89145 2.5838""" df = read_table(StringIO(text), sep='\s+', engine='python') result = df.xs('a', level=0) expected = df.xs('a') self.assertEqual(len(result), 2) assert_frame_equal(result, expected) def test_xs_level_series(self): s = self.frame['A'] result = s[:, 'two'] expected = self.frame.xs('two', level=1)['A'] assert_series_equal(result, expected) s = self.ymd['A'] result = s[2000, 5] expected = self.ymd.ix[2000, 5]['A'] assert_series_equal(result, expected) # not implementing this for now self.assertRaises(TypeError, s.__getitem__, (2000, slice(3, 4))) # result = s[2000, 3:4] # lv =s.index.get_level_values(1) # expected = s[(lv == 3) | (lv == 4)] # expected.index = expected.index.droplevel(0) # assert_series_equal(result, expected) # can do this though def test_get_loc_single_level(self): s = Series(np.random.randn(len(self.single_level)), index=self.single_level) for k in self.single_level.values: s[k] def test_getitem_toplevel(self): df = self.frame.T result = df['foo'] expected = df.reindex(columns=df.columns[:3]) expected.columns = expected.columns.droplevel(0) assert_frame_equal(result, expected) result = df['bar'] result2 = df.ix[:, 'bar'] expected = df.reindex(columns=df.columns[3:5]) expected.columns = expected.columns.droplevel(0) assert_frame_equal(result, expected) assert_frame_equal(result, result2) def test_getitem_setitem_slice_integers(self): index = MultiIndex(levels=[[0, 1, 2], [0, 2]], labels=[[0, 0, 1, 1, 2, 2], [0, 1, 0, 1, 0, 1]]) frame = DataFrame(np.random.randn(len(index), 4), index=index, columns=['a', 'b', 'c', 'd']) res = frame.ix[1:2] exp = frame.reindex(frame.index[2:]) assert_frame_equal(res, exp) frame.ix[1:2] = 7 self.assert_((frame.ix[1:2] == 7).values.all()) series = Series(np.random.randn(len(index)), index=index) res = series.ix[1:2] exp = series.reindex(series.index[2:]) assert_series_equal(res, exp) series.ix[1:2] = 7 self.assert_((series.ix[1:2] == 7).values.all()) def test_getitem_int(self): levels = [[0, 1], [0, 1, 2]] labels = [[0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 1, 2]] index = MultiIndex(levels=levels, labels=labels) frame = DataFrame(np.random.randn(6, 2), index=index) result = frame.ix[1] expected = frame[-3:] expected.index = expected.index.droplevel(0) assert_frame_equal(result, expected) # raises exception self.assertRaises(KeyError, frame.ix.__getitem__, 3) # however this will work result = self.frame.ix[2] expected = self.frame.xs(self.frame.index[2]) assert_series_equal(result, expected) def test_getitem_partial(self): ymd = self.ymd.T result = ymd[2000, 2] expected = ymd.reindex(columns=ymd.columns[ymd.columns.labels[1] == 1]) expected.columns = expected.columns.droplevel(0).droplevel(0) assert_frame_equal(result, expected) def test_getitem_slice_not_sorted(self): df = self.frame.sortlevel(1).T # buglet with int typechecking result = df.ix[:, :np.int32(3)] expected = df.reindex(columns=df.columns[:3]) assert_frame_equal(result, expected) def test_setitem_change_dtype(self): dft = self.frame.T s = dft['foo', 'two'] dft['foo', 'two'] = s > s.median() assert_series_equal(dft['foo', 'two'], s > s.median()) # tm.assert_isinstance(dft._data.blocks[1].items, MultiIndex) reindexed = dft.reindex(columns=[('foo', 'two')]) assert_series_equal(reindexed['foo', 'two'], s > s.median()) def test_frame_setitem_ix(self): self.frame.ix[('bar', 'two'), 'B'] = 5 self.assertEquals(self.frame.ix[('bar', 'two'), 'B'], 5) # with integer labels df = self.frame.copy() df.columns = lrange(3) df.ix[('bar', 'two'), 1] = 7 self.assertEquals(df.ix[('bar', 'two'), 1], 7) def test_fancy_slice_partial(self): result = self.frame.ix['bar':'baz'] expected = self.frame[3:7] assert_frame_equal(result, expected) result = self.ymd.ix[(2000, 2):(2000, 4)] lev = self.ymd.index.labels[1] expected = self.ymd[(lev >= 1) & (lev <= 3)] assert_frame_equal(result, expected) def test_getitem_partial_column_select(self): idx = MultiIndex(labels=[[0, 0, 0], [0, 1, 1], [1, 0, 1]], levels=[['a', 'b'], ['x', 'y'], ['p', 'q']]) df = DataFrame(np.random.rand(3, 2), index=idx) result = df.ix[('a', 'y'), :] expected = df.ix[('a', 'y')] assert_frame_equal(result, expected) result = df.ix[('a', 'y'), [1, 0]] expected = df.ix[('a', 'y')][[1, 0]] assert_frame_equal(result, expected) self.assertRaises(KeyError, df.ix.__getitem__, (('a', 'foo'), slice(None, None))) def test_sortlevel(self): df = self.frame.copy() df.index = np.arange(len(df)) assertRaisesRegexp(TypeError, 'hierarchical index', df.sortlevel, 0) # axis=1 # series a_sorted = self.frame['A'].sortlevel(0) with assertRaisesRegexp(TypeError, 'hierarchical index'): self.frame.reset_index()['A'].sortlevel() # preserve names self.assertEquals(a_sorted.index.names, self.frame.index.names) # inplace rs = self.frame.copy() rs.sortlevel(0, inplace=True) assert_frame_equal(rs, self.frame.sortlevel(0)) def test_sortlevel_large_cardinality(self): # #2684 (int64) index = MultiIndex.from_arrays([np.arange(4000)]*3) df = DataFrame(np.random.randn(4000), index=index, dtype = np.int64) # it works! result = df.sortlevel(0) self.assertTrue(result.index.lexsort_depth == 3) # #2684 (int32) index = MultiIndex.from_arrays([np.arange(4000)]*3) df = DataFrame(np.random.randn(4000), index=index, dtype = np.int32) # it works! result = df.sortlevel(0) self.assert_((result.dtypes.values == df.dtypes.values).all() == True) self.assertTrue(result.index.lexsort_depth == 3) def test_delevel_infer_dtype(self): tuples = [tuple for tuple in cart_product(['foo', 'bar'], [10, 20], [1.0, 1.1])] index = MultiIndex.from_tuples(tuples, names=['prm0', 'prm1', 'prm2']) df = DataFrame(np.random.randn(8, 3), columns=['A', 'B', 'C'], index=index) deleveled = df.reset_index() self.assert_(com.is_integer_dtype(deleveled['prm1'])) self.assert_(com.is_float_dtype(deleveled['prm2'])) def test_reset_index_with_drop(self): deleveled = self.ymd.reset_index(drop=True) self.assertEquals(len(deleveled.columns), len(self.ymd.columns)) deleveled = self.series.reset_index() tm.assert_isinstance(deleveled, DataFrame) self.assertEqual(len(deleveled.columns), len(self.series.index.levels) + 1) deleveled = self.series.reset_index(drop=True) tm.assert_isinstance(deleveled, Series) def test_sortlevel_by_name(self): self.frame.index.names = ['first', 'second'] result = self.frame.sortlevel(level='second') expected = self.frame.sortlevel(level=1) assert_frame_equal(result, expected) def test_sortlevel_mixed(self): sorted_before = self.frame.sortlevel(1) df = self.frame.copy() df['foo'] = 'bar' sorted_after = df.sortlevel(1) assert_frame_equal(sorted_before, sorted_after.drop(['foo'], axis=1)) dft = self.frame.T sorted_before = dft.sortlevel(1, axis=1) dft['foo', 'three'] = 'bar' sorted_after = dft.sortlevel(1, axis=1) assert_frame_equal(sorted_before.drop([('foo', 'three')], axis=1), sorted_after.drop([('foo', 'three')], axis=1)) def test_count_level(self): def _check_counts(frame, axis=0): index = frame._get_axis(axis) for i in range(index.nlevels): result = frame.count(axis=axis, level=i) expected = frame.groupby(axis=axis, level=i).count(axis=axis) expected = expected.reindex_like(result).astype('i8') assert_frame_equal(result, expected) self.frame.ix[1, [1, 2]] = np.nan self.frame.ix[7, [0, 1]] = np.nan self.ymd.ix[1, [1, 2]] = np.nan self.ymd.ix[7, [0, 1]] = np.nan _check_counts(self.frame) _check_counts(self.ymd) _check_counts(self.frame.T, axis=1) _check_counts(self.ymd.T, axis=1) # can't call with level on regular DataFrame df = tm.makeTimeDataFrame() assertRaisesRegexp(TypeError, 'hierarchical', df.count, level=0) self.frame['D'] = 'foo' result = self.frame.count(level=0, numeric_only=True) assert_almost_equal(result.columns, ['A', 'B', 'C']) def test_count_level_series(self): index = MultiIndex(levels=[['foo', 'bar', 'baz'], ['one', 'two', 'three', 'four']], labels=[[0, 0, 0, 2, 2], [2, 0, 1, 1, 2]]) s = Series(np.random.randn(len(index)), index=index) result = s.count(level=0) expected = s.groupby(level=0).count() assert_series_equal(result.astype('f8'), expected.reindex(result.index).fillna(0)) result = s.count(level=1) expected = s.groupby(level=1).count() assert_series_equal(result.astype('f8'), expected.reindex(result.index).fillna(0)) def test_count_level_corner(self): s = self.frame['A'][:0] result = s.count(level=0) expected = Series(0, index=s.index.levels[0]) assert_series_equal(result, expected) df = self.frame[:0] result = df.count(level=0) expected = DataFrame({}, index=s.index.levels[0], columns=df.columns).fillna(0).astype(np.int64) assert_frame_equal(result, expected) def test_unstack(self): # just check that it works for now unstacked = self.ymd.unstack() unstacked2 = unstacked.unstack() # test that ints work unstacked = self.ymd.astype(int).unstack() # test that int32 work unstacked = self.ymd.astype(np.int32).unstack() def test_unstack_multiple_no_empty_columns(self): index = MultiIndex.from_tuples([(0, 'foo', 0), (0, 'bar', 0), (1, 'baz', 1), (1, 'qux', 1)]) s = Series(np.random.randn(4), index=index) unstacked = s.unstack([1, 2]) expected = unstacked.dropna(axis=1, how='all') assert_frame_equal(unstacked, expected) def test_stack(self): # regular roundtrip unstacked = self.ymd.unstack() restacked = unstacked.stack() assert_frame_equal(restacked, self.ymd) unlexsorted = self.ymd.sortlevel(2) unstacked = unlexsorted.unstack(2) restacked = unstacked.stack() assert_frame_equal(restacked.sortlevel(0), self.ymd) unlexsorted = unlexsorted[::-1] unstacked = unlexsorted.unstack(1) restacked = unstacked.stack().swaplevel(1, 2) assert_frame_equal(restacked.sortlevel(0), self.ymd) unlexsorted = unlexsorted.swaplevel(0, 1) unstacked = unlexsorted.unstack(0).swaplevel(0, 1, axis=1) restacked = unstacked.stack(0).swaplevel(1, 2) assert_frame_equal(restacked.sortlevel(0), self.ymd) # columns unsorted unstacked = self.ymd.unstack() unstacked = unstacked.sort(axis=1, ascending=False) restacked = unstacked.stack() assert_frame_equal(restacked, self.ymd) # more than 2 levels in the columns unstacked = self.ymd.unstack(1).unstack(1) result = unstacked.stack(1) expected = self.ymd.unstack() assert_frame_equal(result, expected) result = unstacked.stack(2) expected = self.ymd.unstack(1) assert_frame_equal(result, expected) result = unstacked.stack(0) expected = self.ymd.stack().unstack(1).unstack(1) assert_frame_equal(result, expected) # not all levels present in each echelon unstacked = self.ymd.unstack(2).ix[:, ::3] stacked = unstacked.stack().stack() ymd_stacked = self.ymd.stack() assert_series_equal(stacked, ymd_stacked.reindex(stacked.index)) # stack with negative number result = self.ymd.unstack(0).stack(-2) expected = self.ymd.unstack(0).stack(0) def test_unstack_odd_failure(self): data = """day,time,smoker,sum,len Fri,Dinner,No,8.25,3. Fri,Dinner,Yes,27.03,9 Fri,Lunch,No,3.0,1 Fri,Lunch,Yes,13.68,6 Sat,Dinner,No,139.63,45 Sat,Dinner,Yes,120.77,42 Sun,Dinner,No,180.57,57 Sun,Dinner,Yes,66.82,19 Thur,Dinner,No,3.0,1 Thur,Lunch,No,117.32,44 Thur,Lunch,Yes,51.51,17""" df = pd.read_csv(StringIO(data)).set_index(['day', 'time', 'smoker']) # it works, #2100 result = df.unstack(2) recons = result.stack() assert_frame_equal(recons, df) def test_stack_mixed_dtype(self): df = self.frame.T df['foo', 'four'] = 'foo' df = df.sortlevel(1, axis=1) stacked = df.stack() assert_series_equal(stacked['foo'], df['foo'].stack()) self.assertEqual(stacked['bar'].dtype, np.float_) def test_unstack_bug(self): df = DataFrame({'state': ['naive', 'naive', 'naive', 'activ', 'activ', 'activ'], 'exp': ['a', 'b', 'b', 'b', 'a', 'a'], 'barcode': [1, 2, 3, 4, 1, 3], 'v': ['hi', 'hi', 'bye', 'bye', 'bye', 'peace'], 'extra': np.arange(6.)}) result = df.groupby(['state', 'exp', 'barcode', 'v']).apply(len) unstacked = result.unstack() restacked = unstacked.stack() assert_series_equal(restacked, result.reindex(restacked.index).astype(float)) def test_stack_unstack_preserve_names(self): unstacked = self.frame.unstack() self.assertEquals(unstacked.index.name, 'first') self.assertEquals(unstacked.columns.names, ['exp', 'second']) restacked = unstacked.stack() self.assertEquals(restacked.index.names, self.frame.index.names) def test_unstack_level_name(self): result = self.frame.unstack('second') expected = self.frame.unstack(level=1) assert_frame_equal(result, expected) def test_stack_level_name(self): unstacked = self.frame.unstack('second') result = unstacked.stack('exp') expected = self.frame.unstack().stack(0) assert_frame_equal(result, expected) result = self.frame.stack('exp') expected = self.frame.stack() assert_series_equal(result, expected) def test_stack_unstack_multiple(self): unstacked = self.ymd.unstack(['year', 'month']) expected = self.ymd.unstack('year').unstack('month') assert_frame_equal(unstacked, expected) self.assertEquals(unstacked.columns.names, expected.columns.names) # series s = self.ymd['A'] s_unstacked = s.unstack(['year', 'month']) assert_frame_equal(s_unstacked, expected['A']) restacked = unstacked.stack(['year', 'month']) restacked = restacked.swaplevel(0, 1).swaplevel(1, 2) restacked = restacked.sortlevel(0) assert_frame_equal(restacked, self.ymd) self.assertEquals(restacked.index.names, self.ymd.index.names) # GH #451 unstacked = self.ymd.unstack([1, 2]) expected = self.ymd.unstack(1).unstack(1).dropna(axis=1, how='all') assert_frame_equal(unstacked, expected) unstacked = self.ymd.unstack([2, 1]) expected = self.ymd.unstack(2).unstack(1).dropna(axis=1, how='all') assert_frame_equal(unstacked, expected.ix[:, unstacked.columns]) def test_unstack_period_series(self): # GH 4342 idx1 = pd.PeriodIndex(['2013-01', '2013-01', '2013-02', '2013-02', '2013-03', '2013-03'], freq='M', name='period') idx2 = Index(['A', 'B'] * 3, name='str') value = [1, 2, 3, 4, 5, 6] idx = MultiIndex.from_arrays([idx1, idx2]) s = Series(value, index=idx) result1 = s.unstack() result2 = s.unstack(level=1) result3 = s.unstack(level=0) e_idx = pd.PeriodIndex(['2013-01', '2013-02', '2013-03'], freq='M', name='period') expected = DataFrame({'A': [1, 3, 5], 'B': [2, 4, 6]}, index=e_idx, columns=['A', 'B']) expected.columns.name = 'str' assert_frame_equal(result1, expected) assert_frame_equal(result2, expected) assert_frame_equal(result3, expected.T) idx1 = pd.PeriodIndex(['2013-01', '2013-01', '2013-02', '2013-02', '2013-03', '2013-03'], freq='M', name='period1') idx2 = pd.PeriodIndex(['2013-12', '2013-11', '2013-10', '2013-09', '2013-08', '2013-07'], freq='M', name='period2') idx = pd.MultiIndex.from_arrays([idx1, idx2]) s = Series(value, index=idx) result1 = s.unstack() result2 = s.unstack(level=1) result3 = s.unstack(level=0) e_idx = pd.PeriodIndex(['2013-01', '2013-02', '2013-03'], freq='M', name='period1') e_cols = pd.PeriodIndex(['2013-07', '2013-08', '2013-09', '2013-10', '2013-11', '2013-12'], freq='M', name='period2') expected = DataFrame([[np.nan, np.nan, np.nan, np.nan, 2, 1], [np.nan, np.nan, 4, 3, np.nan, np.nan], [6, 5, np.nan, np.nan, np.nan, np.nan]], index=e_idx, columns=e_cols) assert_frame_equal(result1, expected) assert_frame_equal(result2, expected) assert_frame_equal(result3, expected.T) def test_unstack_period_frame(self): # GH 4342 idx1 = pd.PeriodIndex(['2014-01', '2014-02', '2014-02', '2014-02', '2014-01', '2014-01'], freq='M', name='period1') idx2 = pd.PeriodIndex(['2013-12', '2013-12', '2014-02', '2013-10', '2013-10', '2014-02'], freq='M', name='period2') value = {'A': [1, 2, 3, 4, 5, 6], 'B': [6, 5, 4, 3, 2, 1]} idx = pd.MultiIndex.from_arrays([idx1, idx2]) df = pd.DataFrame(value, index=idx) result1 = df.unstack() result2 = df.unstack(level=1) result3 = df.unstack(level=0) e_1 = pd.PeriodIndex(['2014-01', '2014-02'], freq='M', name='period1') e_2 = pd.PeriodIndex(['2013-10', '2013-12', '2014-02', '2013-10', '2013-12', '2014-02'], freq='M', name='period2') e_cols = pd.MultiIndex.from_arrays(['A A A B B B'.split(), e_2]) expected = DataFrame([[5, 1, 6, 2, 6, 1], [4, 2, 3, 3, 5, 4]], index=e_1, columns=e_cols) assert_frame_equal(result1, expected) assert_frame_equal(result2, expected) e_1 = pd.PeriodIndex(['2014-01', '2014-02', '2014-01', '2014-02'], freq='M', name='period1') e_2 = pd.PeriodIndex(['2013-10', '2013-12', '2014-02'], freq='M', name='period2') e_cols = pd.MultiIndex.from_arrays(['A A B B'.split(), e_1]) expected = DataFrame([[5, 4, 2, 3], [1, 2, 6, 5], [6, 3, 1, 4]], index=e_2, columns=e_cols) assert_frame_equal(result3, expected) def test_stack_multiple_bug(self): """ bug when some uniques are not present in the data #3170""" id_col = ([1] * 3) + ([2] * 3) name = (['a'] * 3) + (['b'] * 3) date = pd.to_datetime(['2013-01-03', '2013-01-04', '2013-01-05'] * 2) var1 = np.random.randint(0, 100, 6) df = DataFrame(dict(ID=id_col, NAME=name, DATE=date, VAR1=var1)) multi = df.set_index(['DATE', 'ID']) multi.columns.name = 'Params' unst = multi.unstack('ID') down = unst.resample('W-THU') rs = down.stack('ID') xp = unst.ix[:, ['VAR1']].resample('W-THU').stack('ID') xp.columns.name = 'Params' assert_frame_equal(rs, xp) def test_stack_dropna(self): # GH #3997 df = pd.DataFrame({'A': ['a1', 'a2'], 'B': ['b1', 'b2'], 'C': [1, 1]}) df = df.set_index(['A', 'B']) stacked = df.unstack().stack(dropna=False) self.assertTrue(len(stacked) > len(stacked.dropna())) stacked = df.unstack().stack(dropna=True) assert_frame_equal(stacked, stacked.dropna()) def test_unstack_multiple_hierarchical(self): df = DataFrame(index=[[0, 0, 0, 0, 1, 1, 1, 1], [0, 0, 1, 1, 0, 0, 1, 1], [0, 1, 0, 1, 0, 1, 0, 1]], columns=[[0, 0, 1, 1], [0, 1, 0, 1]]) df.index.names = ['a', 'b', 'c'] df.columns.names = ['d', 'e'] # it works! df.unstack(['b', 'c']) def test_groupby_transform(self): s = self.frame['A'] grouper = s.index.get_level_values(0) grouped = s.groupby(grouper) applied = grouped.apply(lambda x: x * 2) expected = grouped.transform(lambda x: x * 2) assert_series_equal(applied.reindex(expected.index), expected) def test_unstack_sparse_keyspace(self): # memory problems with naive impl #2278 # Generate Long File & Test Pivot NUM_ROWS = 1000 df = DataFrame({'A': np.random.randint(100, size=NUM_ROWS), 'B': np.random.randint(300, size=NUM_ROWS), 'C': np.random.randint(-7, 7, size=NUM_ROWS), 'D': np.random.randint(-19, 19, size=NUM_ROWS), 'E': np.random.randint(3000, size=NUM_ROWS), 'F': np.random.randn(NUM_ROWS)}) idf = df.set_index(['A', 'B', 'C', 'D', 'E']) # it works! is sufficient idf.unstack('E') def test_unstack_unobserved_keys(self): # related to #2278 refactoring levels = [[0, 1], [0, 1, 2, 3]] labels = [[0, 0, 1, 1], [0, 2, 0, 2]] index = MultiIndex(levels, labels) df = DataFrame(np.random.randn(4, 2), index=index) result = df.unstack() self.assertEquals(len(result.columns), 4) recons = result.stack() assert_frame_equal(recons, df) def test_groupby_corner(self): midx = MultiIndex(levels=[['foo'], ['bar'], ['baz']], labels=[[0], [0], [0]], names=['one', 'two', 'three']) df = DataFrame([np.random.rand(4)], columns=['a', 'b', 'c', 'd'], index=midx) # should work df.groupby(level='three') def test_groupby_level_no_obs(self): # #1697 midx = MultiIndex.from_tuples([('f1', 's1'), ('f1', 's2'), ('f2', 's1'), ('f2', 's2'), ('f3', 's1'), ('f3', 's2')]) df = DataFrame( [[1, 2, 3, 4, 5, 6], [7, 8, 9, 10, 11, 12]], columns=midx) df1 = df.select(lambda u: u[0] in ['f2', 'f3'], axis=1) grouped = df1.groupby(axis=1, level=0) result = grouped.sum() self.assert_((result.columns == ['f2', 'f3']).all()) def test_join(self): a = self.frame.ix[:5, ['A']] b = self.frame.ix[2:, ['B', 'C']] joined = a.join(b, how='outer').reindex(self.frame.index) expected = self.frame.copy() expected.values[np.isnan(joined.values)] = np.nan self.assert_(not np.isnan(joined.values).all()) assert_frame_equal(joined, expected, check_names=False) # TODO what should join do with names ? def test_swaplevel(self): swapped = self.frame['A'].swaplevel(0, 1) swapped2 = self.frame['A'].swaplevel('first', 'second') self.assert_(not swapped.index.equals(self.frame.index)) assert_series_equal(swapped, swapped2) back = swapped.swaplevel(0, 1) back2 = swapped.swaplevel('second', 'first') self.assert_(back.index.equals(self.frame.index)) assert_series_equal(back, back2) ft = self.frame.T swapped = ft.swaplevel('first', 'second', axis=1) exp = self.frame.swaplevel('first', 'second').T assert_frame_equal(swapped, exp) def test_swaplevel_panel(self): panel = Panel({'ItemA': self.frame, 'ItemB': self.frame * 2}) result = panel.swaplevel(0, 1, axis='major') expected = panel.copy() expected.major_axis = expected.major_axis.swaplevel(0, 1) tm.assert_panel_equal(result, expected) def test_reorder_levels(self): result = self.ymd.reorder_levels(['month', 'day', 'year']) expected = self.ymd.swaplevel(0, 1).swaplevel(1, 2) assert_frame_equal(result, expected) result = self.ymd['A'].reorder_levels(['month', 'day', 'year']) expected = self.ymd['A'].swaplevel(0, 1).swaplevel(1, 2) assert_series_equal(result, expected) result = self.ymd.T.reorder_levels(['month', 'day', 'year'], axis=1) expected = self.ymd.T.swaplevel(0, 1, axis=1).swaplevel(1, 2, axis=1) assert_frame_equal(result, expected) with assertRaisesRegexp(TypeError, 'hierarchical axis'): self.ymd.reorder_levels([1, 2], axis=1) with assertRaisesRegexp(IndexError, 'Too many levels'): self.ymd.index.reorder_levels([1, 2, 3]) def test_insert_index(self): df = self.ymd[:5].T df[2000, 1, 10] = df[2000, 1, 7] tm.assert_isinstance(df.columns, MultiIndex) self.assert_((df[2000, 1, 10] == df[2000, 1, 7]).all()) def test_alignment(self): x = Series(data=[1, 2, 3], index=MultiIndex.from_tuples([("A", 1), ("A", 2), ("B", 3)])) y = Series(data=[4, 5, 6], index=MultiIndex.from_tuples([("Z", 1), ("Z", 2), ("B", 3)])) res = x - y exp_index = x.index.union(y.index) exp = x.reindex(exp_index) - y.reindex(exp_index) assert_series_equal(res, exp) # hit non-monotonic code path res = x[::-1] - y[::-1] exp_index = x.index.union(y.index) exp = x.reindex(exp_index) - y.reindex(exp_index) assert_series_equal(res, exp) def test_is_lexsorted(self): levels = [[0, 1], [0, 1, 2]] index = MultiIndex(levels=levels, labels=[[0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 1, 2]]) self.assert_(index.is_lexsorted()) index = MultiIndex(levels=levels, labels=[[0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 2, 1]]) self.assert_(not index.is_lexsorted()) index = MultiIndex(levels=levels, labels=[[0, 0, 1, 0, 1, 1], [0, 1, 0, 2, 2, 1]]) self.assert_(not index.is_lexsorted()) self.assertEqual(index.lexsort_depth, 0) def test_frame_getitem_view(self): df = self.frame.T.copy() # this works because we are modifying the underlying array # really a no-no df['foo'].values[:] = 0 self.assert_((df['foo'].values == 0).all()) # but not if it's mixed-type df['foo', 'four'] = 'foo' df = df.sortlevel(0, axis=1) # this will work, but will raise/warn as its chained assignment def f(): df['foo']['one'] = 2 return df self.assertRaises(com.SettingWithCopyError, f) try: df = f() except: pass self.assert_((df['foo', 'one'] == 0).all()) def test_frame_getitem_not_sorted(self): df = self.frame.T df['foo', 'four'] = 'foo' arrays = [np.array(x) for x in zip(*df.columns._tuple_index)] result = df['foo'] result2 = df.ix[:, 'foo'] expected = df.reindex(columns=df.columns[arrays[0] == 'foo']) expected.columns = expected.columns.droplevel(0) assert_frame_equal(result, expected) assert_frame_equal(result2, expected) df = df.T result = df.xs('foo') result2 = df.ix['foo'] expected = df.reindex(df.index[arrays[0] == 'foo']) expected.index = expected.index.droplevel(0) assert_frame_equal(result, expected) assert_frame_equal(result2, expected) def test_series_getitem_not_sorted(self): arrays = [['bar', 'bar', 'baz', 'baz', 'qux', 'qux', 'foo', 'foo'], ['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two']] tuples = lzip(*arrays) index = MultiIndex.from_tuples(tuples) s = Series(randn(8), index=index) arrays = [np.array(x) for x in zip(*index._tuple_index)] result = s['qux'] result2 = s.ix['qux'] expected = s[arrays[0] == 'qux'] expected.index = expected.index.droplevel(0) assert_series_equal(result, expected) assert_series_equal(result2, expected) def test_count(self): frame = self.frame.copy() frame.index.names = ['a', 'b'] result = frame.count(level='b') expect = self.frame.count(level=1) assert_frame_equal(result, expect, check_names=False) result = frame.count(level='a') expect = self.frame.count(level=0) assert_frame_equal(result, expect, check_names=False) series = self.series.copy() series.index.names = ['a', 'b'] result = series.count(level='b') expect = self.series.count(level=1) assert_series_equal(result, expect) result = series.count(level='a') expect = self.series.count(level=0) assert_series_equal(result, expect) self.assertRaises(KeyError, series.count, 'x') self.assertRaises(KeyError, frame.count, level='x') AGG_FUNCTIONS = ['sum', 'prod', 'min', 'max', 'median', 'mean', 'skew', 'mad', 'std', 'var'] def test_series_group_min_max(self): for op, level, skipna in cart_product(self.AGG_FUNCTIONS, lrange(2), [False, True]): grouped = self.series.groupby(level=level) aggf = lambda x: getattr(x, op)(skipna=skipna) # skipna=True leftside = grouped.agg(aggf) rightside = getattr(self.series, op)(level=level, skipna=skipna) assert_series_equal(leftside, rightside) def test_frame_group_ops(self): self.frame.ix[1, [1, 2]] = np.nan self.frame.ix[7, [0, 1]] = np.nan for op, level, axis, skipna in cart_product(self.AGG_FUNCTIONS, lrange(2), lrange(2), [False, True]): if axis == 0: frame = self.frame else: frame = self.frame.T grouped = frame.groupby(level=level, axis=axis) pieces = [] def aggf(x): pieces.append(x) return getattr(x, op)(skipna=skipna, axis=axis) leftside = grouped.agg(aggf) rightside = getattr(frame, op)(level=level, axis=axis, skipna=skipna) # for good measure, groupby detail level_index = frame._get_axis(axis).levels[level] self.assert_(leftside._get_axis(axis).equals(level_index)) self.assert_(rightside._get_axis(axis).equals(level_index)) assert_frame_equal(leftside, rightside) def test_stat_op_corner(self): obj = Series([10.0], index=MultiIndex.from_tuples([(2, 3)])) result = obj.sum(level=0) expected = Series([10.0], index=[2]) assert_series_equal(result, expected) def test_frame_any_all_group(self): df = DataFrame( {'data': [False, False, True, False, True, False, True]}, index=[ ['one', 'one', 'two', 'one', 'two', 'two', 'two'], [0, 1, 0, 2, 1, 2, 3]]) result = df.any(level=0) ex = DataFrame({'data': [False, True]}, index=['one', 'two']) assert_frame_equal(result, ex) result = df.all(level=0) ex = DataFrame({'data': [False, False]}, index=['one', 'two']) assert_frame_equal(result, ex) def test_std_var_pass_ddof(self): index = MultiIndex.from_arrays([np.arange(5).repeat(10), np.tile(np.arange(10), 5)]) df = DataFrame(np.random.randn(len(index), 5), index=index) for meth in ['var', 'std']: ddof = 4 alt = lambda x: getattr(x, meth)(ddof=ddof) result = getattr(df[0], meth)(level=0, ddof=ddof) expected = df[0].groupby(level=0).agg(alt) assert_series_equal(result, expected) result = getattr(df, meth)(level=0, ddof=ddof) expected = df.groupby(level=0).agg(alt) assert_frame_equal(result, expected) def test_frame_series_agg_multiple_levels(self): result = self.ymd.sum(level=['year', 'month']) expected = self.ymd.groupby(level=['year', 'month']).sum() assert_frame_equal(result, expected) result = self.ymd['A'].sum(level=['year', 'month']) expected = self.ymd['A'].groupby(level=['year', 'month']).sum() assert_series_equal(result, expected) def test_groupby_multilevel(self): result = self.ymd.groupby(level=[0, 1]).mean() k1 = self.ymd.index.get_level_values(0) k2 = self.ymd.index.get_level_values(1) expected = self.ymd.groupby([k1, k2]).mean() assert_frame_equal(result, expected, check_names=False) # TODO groupby with level_values drops names self.assertEquals(result.index.names, self.ymd.index.names[:2]) result2 = self.ymd.groupby(level=self.ymd.index.names[:2]).mean() assert_frame_equal(result, result2) def test_groupby_multilevel_with_transform(self): pass def test_multilevel_consolidate(self): index = MultiIndex.from_tuples([('foo', 'one'), ('foo', 'two'), ('bar', 'one'), ('bar', 'two')]) df = DataFrame(np.random.randn(4, 4), index=index, columns=index) df['Totals', ''] = df.sum(1) df = df.consolidate() def test_ix_preserve_names(self): result = self.ymd.ix[2000] result2 = self.ymd['A'].ix[2000] self.assertEquals(result.index.names, self.ymd.index.names[1:]) self.assertEquals(result2.index.names, self.ymd.index.names[1:]) result = self.ymd.ix[2000, 2] result2 = self.ymd['A'].ix[2000, 2] self.assertEquals(result.index.name, self.ymd.index.names[2]) self.assertEquals(result2.index.name, self.ymd.index.names[2]) def test_partial_set(self): # GH #397 df = self.ymd.copy() exp = self.ymd.copy() df.ix[2000, 4] = 0 exp.ix[2000, 4].values[:] = 0 assert_frame_equal(df, exp) df['A'].ix[2000, 4] = 1 exp['A'].ix[2000, 4].values[:] = 1 assert_frame_equal(df, exp) df.ix[2000] = 5 exp.ix[2000].values[:] = 5 assert_frame_equal(df, exp) # this works...for now df['A'].ix[14] = 5 self.assertEquals(df['A'][14], 5) def test_unstack_preserve_types(self): # GH #403 self.ymd['E'] = 'foo' self.ymd['F'] = 2 unstacked = self.ymd.unstack('month') self.assertEqual(unstacked['A', 1].dtype, np.float64) self.assertEqual(unstacked['E', 1].dtype, np.object_) self.assertEqual(unstacked['F', 1].dtype, np.float64) def test_unstack_group_index_overflow(self): labels = np.tile(np.arange(500), 2) level = np.arange(500) index = MultiIndex(levels=[level] * 8 + [[0, 1]], labels=[labels] * 8 + [np.arange(2).repeat(500)]) s = Series(np.arange(1000), index=index) result = s.unstack() self.assertEqual(result.shape, (500, 2)) # test roundtrip stacked = result.stack() assert_series_equal(s, stacked.reindex(s.index)) # put it at beginning index = MultiIndex(levels=[[0, 1]] + [level] * 8, labels=[np.arange(2).repeat(500)] + [labels] * 8) s = Series(np.arange(1000), index=index) result = s.unstack(0) self.assertEqual(result.shape, (500, 2)) # put it in middle index = MultiIndex(levels=[level] * 4 + [[0, 1]] + [level] * 4, labels=([labels] * 4 + [np.arange(2).repeat(500)] + [labels] * 4)) s = Series(np.arange(1000), index=index) result = s.unstack(4) self.assertEqual(result.shape, (500, 2)) def test_getitem_lowerdim_corner(self): self.assertRaises(KeyError, self.frame.ix.__getitem__, (('bar', 'three'), 'B')) # in theory should be inserting in a sorted space???? self.frame.ix[('bar','three'),'B'] = 0 self.assertEqual(self.frame.sortlevel().ix[('bar','three'),'B'], 0) #---------------------------------------------------------------------- # AMBIGUOUS CASES! def test_partial_ix_missing(self): raise nose.SkipTest("skipping for now") result = self.ymd.ix[2000, 0] expected = self.ymd.ix[2000]['A'] assert_series_equal(result, expected) # need to put in some work here # self.ymd.ix[2000, 0] = 0 # self.assert_((self.ymd.ix[2000]['A'] == 0).all()) # Pretty sure the second (and maybe even the first) is already wrong. self.assertRaises(Exception, self.ymd.ix.__getitem__, (2000, 6)) self.assertRaises(Exception, self.ymd.ix.__getitem__, (2000, 6), 0) #---------------------------------------------------------------------- def test_to_html(self): self.ymd.columns.name = 'foo' self.ymd.to_html() self.ymd.T.to_html() def test_level_with_tuples(self): index = MultiIndex(levels=[[('foo', 'bar', 0), ('foo', 'baz', 0), ('foo', 'qux', 0)], [0, 1]], labels=[[0, 0, 1, 1, 2, 2], [0, 1, 0, 1, 0, 1]]) series = Series(np.random.randn(6), index=index) frame = DataFrame(np.random.randn(6, 4), index=index) result = series[('foo', 'bar', 0)] result2 = series.ix[('foo', 'bar', 0)] expected = series[:2] expected.index = expected.index.droplevel(0) assert_series_equal(result, expected) assert_series_equal(result2, expected) self.assertRaises(KeyError, series.__getitem__, (('foo', 'bar', 0), 2)) result = frame.ix[('foo', 'bar', 0)] result2 = frame.xs(('foo', 'bar', 0)) expected = frame[:2] expected.index = expected.index.droplevel(0) assert_frame_equal(result, expected) assert_frame_equal(result2, expected) index = MultiIndex(levels=[[('foo', 'bar'), ('foo', 'baz'), ('foo', 'qux')], [0, 1]], labels=[[0, 0, 1, 1, 2, 2], [0, 1, 0, 1, 0, 1]]) series = Series(np.random.randn(6), index=index) frame = DataFrame(np.random.randn(6, 4), index=index) result = series[('foo', 'bar')] result2 = series.ix[('foo', 'bar')] expected = series[:2] expected.index = expected.index.droplevel(0) assert_series_equal(result, expected) assert_series_equal(result2, expected) result = frame.ix[('foo', 'bar')] result2 = frame.xs(('foo', 'bar')) expected = frame[:2] expected.index = expected.index.droplevel(0) assert_frame_equal(result, expected) assert_frame_equal(result2, expected) def test_int_series_slicing(self): s = self.ymd['A'] result = s[5:] expected = s.reindex(s.index[5:]) assert_series_equal(result, expected) exp = self.ymd['A'].copy() s[5:] = 0 exp.values[5:] = 0 self.assert_numpy_array_equal(s.values, exp.values) result = self.ymd[5:] expected = self.ymd.reindex(s.index[5:]) assert_frame_equal(result, expected) def test_mixed_depth_get(self): arrays = [['a', 'top', 'top', 'routine1', 'routine1', 'routine2'], ['', 'OD', 'OD', 'result1', 'result2', 'result1'], ['', 'wx', 'wy', '', '', '']] tuples = sorted(zip(*arrays)) index = MultiIndex.from_tuples(tuples) df = DataFrame(randn(4, 6), columns=index) result = df['a'] expected = df['a', '', ''] assert_series_equal(result, expected) self.assertEquals(result.name, 'a') result = df['routine1', 'result1'] expected = df['routine1', 'result1', ''] assert_series_equal(result, expected) self.assertEquals(result.name, ('routine1', 'result1')) def test_mixed_depth_insert(self): arrays = [['a', 'top', 'top', 'routine1', 'routine1', 'routine2'], ['', 'OD', 'OD', 'result1', 'result2', 'result1'], ['', 'wx', 'wy', '', '', '']] tuples = sorted(zip(*arrays)) index = MultiIndex.from_tuples(tuples) df = DataFrame(randn(4, 6), columns=index) result = df.copy() expected = df.copy() result['b'] = [1, 2, 3, 4] expected['b', '', ''] = [1, 2, 3, 4] assert_frame_equal(result, expected) def test_mixed_depth_drop(self): arrays = [['a', 'top', 'top', 'routine1', 'routine1', 'routine2'], ['', 'OD', 'OD', 'result1', 'result2', 'result1'], ['', 'wx', 'wy', '', '', '']] tuples = sorted(zip(*arrays)) index = MultiIndex.from_tuples(tuples) df = DataFrame(randn(4, 6), columns=index) result = df.drop('a', axis=1) expected = df.drop([('a', '', '')], axis=1) assert_frame_equal(expected, result) result = df.drop(['top'], axis=1) expected = df.drop([('top', 'OD', 'wx')], axis=1) expected = expected.drop([('top', 'OD', 'wy')], axis=1) assert_frame_equal(expected, result) result = df.drop(('top', 'OD', 'wx'), axis=1) expected = df.drop([('top', 'OD', 'wx')], axis=1) assert_frame_equal(expected, result) expected = df.drop([('top', 'OD', 'wy')], axis=1) expected = df.drop('top', axis=1) result = df.drop('result1', level=1, axis=1) expected = df.drop([('routine1', 'result1', ''), ('routine2', 'result1', '')], axis=1) assert_frame_equal(expected, result) def test_drop_nonunique(self): df = DataFrame([["x-a", "x", "a", 1.5], ["x-a", "x", "a", 1.2], ["z-c", "z", "c", 3.1], ["x-a", "x", "a", 4.1], ["x-b", "x", "b", 5.1], ["x-b", "x", "b", 4.1], ["x-b", "x", "b", 2.2], ["y-a", "y", "a", 1.2], ["z-b", "z", "b", 2.1]], columns=["var1", "var2", "var3", "var4"]) grp_size = df.groupby("var1").size() drop_idx = grp_size.ix[grp_size == 1] idf = df.set_index(["var1", "var2", "var3"]) # it works! #2101 result = idf.drop(drop_idx.index, level=0).reset_index() expected = df[-df.var1.isin(drop_idx.index)] result.index = expected.index assert_frame_equal(result, expected) def test_mixed_depth_pop(self): arrays = [['a', 'top', 'top', 'routine1', 'routine1', 'routine2'], ['', 'OD', 'OD', 'result1', 'result2', 'result1'], ['', 'wx', 'wy', '', '', '']] tuples = sorted(
zip(*arrays)
pandas.compat.zip
from datetime import datetime, timedelta from io import StringIO import re import sys import numpy as np import pytest from pandas._libs.tslib import iNaT from pandas.compat import PYPY from pandas.compat.numpy import np_array_datetime64_compat from pandas.core.dtypes.common import ( is_datetime64_dtype, is_datetime64tz_dtype, is_object_dtype, is_timedelta64_dtype, needs_i8_conversion, ) from pandas.core.dtypes.dtypes import DatetimeTZDtype import pandas as pd from pandas import ( CategoricalIndex, DataFrame, DatetimeIndex, Index, Interval, IntervalIndex, PeriodIndex, Series, Timedelta, TimedeltaIndex, Timestamp, ) from pandas.core.accessor import PandasDelegate from pandas.core.arrays import DatetimeArray, PandasArray, TimedeltaArray from pandas.core.base import NoNewAttributesMixin, PandasObject from pandas.core.indexes.datetimelike import DatetimeIndexOpsMixin import pandas.util.testing as tm class CheckStringMixin: def test_string_methods_dont_fail(self): repr(self.container) str(self.container) bytes(self.container) def test_tricky_container(self): if not hasattr(self, "unicode_container"): pytest.skip("Need unicode_container to test with this") repr(self.unicode_container) str(self.unicode_container) class CheckImmutable: mutable_regex = re.compile("does not support mutable operations") def check_mutable_error(self, *args, **kwargs): # Pass whatever function you normally would to pytest.raises # (after the Exception kind). with pytest.raises(TypeError): self.mutable_regex(*args, **kwargs) def test_no_mutable_funcs(self): def setitem(): self.container[0] = 5 self.check_mutable_error(setitem) def setslice(): self.container[1:2] = 3 self.check_mutable_error(setslice) def delitem(): del self.container[0] self.check_mutable_error(delitem) def delslice(): del self.container[0:3] self.check_mutable_error(delslice) mutable_methods = getattr(self, "mutable_methods", []) for meth in mutable_methods: self.check_mutable_error(getattr(self.container, meth)) def test_slicing_maintains_type(self): result = self.container[1:2] expected = self.lst[1:2] self.check_result(result, expected) def check_result(self, result, expected, klass=None): klass = klass or self.klass assert isinstance(result, klass) assert result == expected class TestPandasDelegate: class Delegator: _properties = ["foo"] _methods = ["bar"] def _set_foo(self, value): self.foo = value def _get_foo(self): return self.foo foo = property(_get_foo, _set_foo, doc="foo property") def bar(self, *args, **kwargs): """ a test bar method """ pass class Delegate(PandasDelegate, PandasObject): def __init__(self, obj): self.obj = obj def setup_method(self, method): pass def test_invalid_delegation(self): # these show that in order for the delegation to work # the _delegate_* methods need to be overridden to not raise # a TypeError self.Delegate._add_delegate_accessors( delegate=self.Delegator, accessors=self.Delegator._properties, typ="property", ) self.Delegate._add_delegate_accessors( delegate=self.Delegator, accessors=self.Delegator._methods, typ="method" ) delegate = self.Delegate(self.Delegator()) with pytest.raises(TypeError): delegate.foo with pytest.raises(TypeError): delegate.foo = 5 with pytest.raises(TypeError): delegate.foo() @pytest.mark.skipif(PYPY, reason="not relevant for PyPy") def test_memory_usage(self): # Delegate does not implement memory_usage. # Check that we fall back to in-built `__sizeof__` # GH 12924 delegate = self.Delegate(self.Delegator()) sys.getsizeof(delegate) class Ops: def _allow_na_ops(self, obj): """Whether to skip test cases including NaN""" if (isinstance(obj, Index) and obj.is_boolean()) or not obj._can_hold_na: # don't test boolean / integer dtypes return False return True def setup_method(self, method): self.bool_index = tm.makeBoolIndex(10, name="a") self.int_index = tm.makeIntIndex(10, name="a") self.float_index = tm.makeFloatIndex(10, name="a") self.dt_index = tm.makeDateIndex(10, name="a") self.dt_tz_index = tm.makeDateIndex(10, name="a").tz_localize(tz="US/Eastern") self.period_index = tm.makePeriodIndex(10, name="a") self.string_index = tm.makeStringIndex(10, name="a") self.unicode_index = tm.makeUnicodeIndex(10, name="a") arr = np.random.randn(10) self.bool_series = Series(arr, index=self.bool_index, name="a") self.int_series = Series(arr, index=self.int_index, name="a") self.float_series = Series(arr, index=self.float_index, name="a") self.dt_series = Series(arr, index=self.dt_index, name="a") self.dt_tz_series = self.dt_tz_index.to_series(keep_tz=True) self.period_series = Series(arr, index=self.period_index, name="a") self.string_series = Series(arr, index=self.string_index, name="a") self.unicode_series = Series(arr, index=self.unicode_index, name="a") types = ["bool", "int", "float", "dt", "dt_tz", "period", "string", "unicode"] self.indexes = [getattr(self, "{}_index".format(t)) for t in types] self.series = [getattr(self, "{}_series".format(t)) for t in types] # To test narrow dtypes, we use narrower *data* elements, not *index* elements index = self.int_index self.float32_series = Series(arr.astype(np.float32), index=index, name="a") arr_int = np.random.choice(10, size=10, replace=False) self.int8_series = Series(arr_int.astype(np.int8), index=index, name="a") self.int16_series = Series(arr_int.astype(np.int16), index=index, name="a") self.int32_series = Series(arr_int.astype(np.int32), index=index, name="a") self.uint8_series = Series(arr_int.astype(np.uint8), index=index, name="a") self.uint16_series = Series(arr_int.astype(np.uint16), index=index, name="a") self.uint32_series = Series(arr_int.astype(np.uint32), index=index, name="a") nrw_types = ["float32", "int8", "int16", "int32", "uint8", "uint16", "uint32"] self.narrow_series = [getattr(self, "{}_series".format(t)) for t in nrw_types] self.objs = self.indexes + self.series + self.narrow_series def check_ops_properties(self, props, filter=None, ignore_failures=False): for op in props: for o in self.is_valid_objs: # if a filter, skip if it doesn't match if filter is not None: filt = o.index if isinstance(o, Series) else o if not filter(filt): continue try: if isinstance(o, Series): expected = Series(getattr(o.index, op), index=o.index, name="a") else: expected = getattr(o, op) except (AttributeError): if ignore_failures: continue result = getattr(o, op) # these could be series, arrays or scalars if isinstance(result, Series) and isinstance(expected, Series): tm.assert_series_equal(result, expected) elif isinstance(result, Index) and isinstance(expected, Index): tm.assert_index_equal(result, expected) elif isinstance(result, np.ndarray) and isinstance( expected, np.ndarray ): tm.assert_numpy_array_equal(result, expected) else: assert result == expected # freq raises AttributeError on an Int64Index because its not # defined we mostly care about Series here anyhow if not ignore_failures: for o in self.not_valid_objs: # an object that is datetimelike will raise a TypeError, # otherwise an AttributeError err = AttributeError if issubclass(type(o), DatetimeIndexOpsMixin): err = TypeError with pytest.raises(err): getattr(o, op) @pytest.mark.parametrize("klass", [Series, DataFrame]) def test_binary_ops_docs(self, klass): op_map = { "add": "+", "sub": "-", "mul": "*", "mod": "%", "pow": "**", "truediv": "/", "floordiv": "//", } for op_name in op_map: operand1 = klass.__name__.lower() operand2 = "other" op = op_map[op_name] expected_str = " ".join([operand1, op, operand2]) assert expected_str in getattr(klass, op_name).__doc__ # reverse version of the binary ops expected_str = " ".join([operand2, op, operand1]) assert expected_str in getattr(klass, "r" + op_name).__doc__ class TestIndexOps(Ops): def setup_method(self, method): super().setup_method(method) self.is_valid_objs = self.objs self.not_valid_objs = [] def test_none_comparison(self): # bug brought up by #1079 # changed from TypeError in 0.17.0 for o in self.is_valid_objs: if isinstance(o, Series): o[0] = np.nan # noinspection PyComparisonWithNone result = o == None # noqa assert not result.iat[0] assert not result.iat[1] # noinspection PyComparisonWithNone result = o != None # noqa assert result.iat[0] assert result.iat[1] result = None == o # noqa assert not result.iat[0] assert not result.iat[1] result = None != o # noqa assert result.iat[0] assert result.iat[1] if is_datetime64_dtype(o) or is_datetime64tz_dtype(o): # Following DatetimeIndex (and Timestamp) convention, # inequality comparisons with Series[datetime64] raise with pytest.raises(TypeError): None > o with pytest.raises(TypeError): o > None else: result = None > o assert not result.iat[0] assert not result.iat[1] result = o < None assert not result.iat[0] assert not result.iat[1] def test_ndarray_compat_properties(self): for o in self.objs: # Check that we work. for p in ["shape", "dtype", "T", "nbytes"]: assert getattr(o, p, None) is not None # deprecated properties for p in ["flags", "strides", "itemsize"]: with tm.assert_produces_warning(FutureWarning): assert getattr(o, p, None) is not None with tm.assert_produces_warning(FutureWarning): assert hasattr(o, "base") # If we have a datetime-like dtype then needs a view to work # but the user is responsible for that try: with tm.assert_produces_warning(FutureWarning): assert o.data is not None except ValueError: pass with pytest.raises(ValueError): with tm.assert_produces_warning(FutureWarning): o.item() # len > 1 assert o.ndim == 1 assert o.size == len(o) with tm.assert_produces_warning(FutureWarning): assert Index([1]).item() == 1 assert Series([1]).item() == 1 def test_value_counts_unique_nunique(self): for orig in self.objs: o = orig.copy() klass = type(o) values = o._values if isinstance(values, Index): # reset name not to affect latter process values.name = None # create repeated values, 'n'th element is repeated by n+1 times # skip boolean, because it only has 2 values at most if isinstance(o, Index) and o.is_boolean(): continue elif isinstance(o, Index): expected_index = Index(o[::-1]) expected_index.name = None o = o.repeat(range(1, len(o) + 1)) o.name = "a" else: expected_index = Index(values[::-1]) idx = o.index.repeat(range(1, len(o) + 1)) # take-based repeat indices = np.repeat(np.arange(len(o)), range(1, len(o) + 1)) rep = values.take(indices) o = klass(rep, index=idx, name="a") # check values has the same dtype as the original assert o.dtype == orig.dtype expected_s = Series( range(10, 0, -1), index=expected_index, dtype="int64", name="a" ) result = o.value_counts() tm.assert_series_equal(result, expected_s) assert result.index.name is None assert result.name == "a" result = o.unique() if isinstance(o, Index): assert isinstance(result, o.__class__) tm.assert_index_equal(result, orig) assert result.dtype == orig.dtype elif is_datetime64tz_dtype(o): # datetimetz Series returns array of Timestamp assert result[0] == orig[0] for r in result: assert isinstance(r, Timestamp) tm.assert_numpy_array_equal( result.astype(object), orig._values.astype(object) ) else: tm.assert_numpy_array_equal(result, orig.values) assert result.dtype == orig.dtype assert o.nunique() == len(np.unique(o.values)) @pytest.mark.parametrize("null_obj", [np.nan, None]) def test_value_counts_unique_nunique_null(self, null_obj): for orig in self.objs: o = orig.copy() klass = type(o) values = o._ndarray_values if not self._allow_na_ops(o): continue # special assign to the numpy array if is_datetime64tz_dtype(o): if isinstance(o, DatetimeIndex): v = o.asi8 v[0:2] = iNaT values = o._shallow_copy(v) else: o = o.copy() o[0:2] = pd.NaT values = o._values elif needs_i8_conversion(o): values[0:2] = iNaT values = o._shallow_copy(values) else: values[0:2] = null_obj # check values has the same dtype as the original assert values.dtype == o.dtype # create repeated values, 'n'th element is repeated by n+1 # times if isinstance(o, (DatetimeIndex, PeriodIndex)): expected_index = o.copy() expected_index.name = None # attach name to klass o = klass(values.repeat(range(1, len(o) + 1))) o.name = "a" else: if isinstance(o, DatetimeIndex): expected_index = orig._values._shallow_copy(values) else: expected_index = Index(values) expected_index.name = None o = o.repeat(range(1, len(o) + 1)) o.name = "a" # check values has the same dtype as the original assert o.dtype == orig.dtype # check values correctly have NaN nanloc = np.zeros(len(o), dtype=np.bool) nanloc[:3] = True if isinstance(o, Index): tm.assert_numpy_array_equal(pd.isna(o), nanloc) else: exp = Series(nanloc, o.index, name="a") tm.assert_series_equal(pd.isna(o), exp) expected_s_na = Series( list(range(10, 2, -1)) + [3], index=expected_index[9:0:-1], dtype="int64", name="a", ) expected_s = Series( list(range(10, 2, -1)), index=expected_index[9:1:-1], dtype="int64", name="a", ) result_s_na = o.value_counts(dropna=False) tm.assert_series_equal(result_s_na, expected_s_na) assert result_s_na.index.name is None assert result_s_na.name == "a" result_s = o.value_counts() tm.assert_series_equal(o.value_counts(), expected_s) assert result_s.index.name is None assert result_s.name == "a" result = o.unique() if isinstance(o, Index): tm.assert_index_equal(result, Index(values[1:], name="a")) elif is_datetime64tz_dtype(o): # unable to compare NaT / nan tm.assert_extension_array_equal(result[1:], values[2:]) assert result[0] is pd.NaT else: tm.assert_numpy_array_equal(result[1:], values[2:]) assert pd.isna(result[0]) assert result.dtype == orig.dtype assert o.nunique() == 8 assert o.nunique(dropna=False) == 9 @pytest.mark.parametrize("klass", [Index, Series]) def test_value_counts_inferred(self, klass): s_values = ["a", "b", "b", "b", "b", "c", "d", "d", "a", "a"] s = klass(s_values) expected = Series([4, 3, 2, 1], index=["b", "a", "d", "c"]) tm.assert_series_equal(s.value_counts(), expected) if isinstance(s, Index): exp = Index(np.unique(np.array(s_values, dtype=np.object_))) tm.assert_index_equal(s.unique(), exp) else: exp = np.unique(np.array(s_values, dtype=np.object_)) tm.assert_numpy_array_equal(s.unique(), exp) assert s.nunique() == 4 # don't sort, have to sort after the fact as not sorting is # platform-dep hist = s.value_counts(sort=False).sort_values() expected = Series([3, 1, 4, 2], index=list("acbd")).sort_values() tm.assert_series_equal(hist, expected) # sort ascending hist = s.value_counts(ascending=True) expected = Series([1, 2, 3, 4], index=list("cdab")) tm.assert_series_equal(hist, expected) # relative histogram. hist = s.value_counts(normalize=True) expected = Series([0.4, 0.3, 0.2, 0.1], index=["b", "a", "d", "c"]) tm.assert_series_equal(hist, expected) @pytest.mark.parametrize("klass", [Index, Series]) def test_value_counts_bins(self, klass): s_values = ["a", "b", "b", "b", "b", "c", "d", "d", "a", "a"] s = klass(s_values) # bins with pytest.raises(TypeError): s.value_counts(bins=1) s1 = Series([1, 1, 2, 3]) res1 = s1.value_counts(bins=1) exp1 = Series({Interval(0.997, 3.0): 4}) tm.assert_series_equal(res1, exp1) res1n = s1.value_counts(bins=1, normalize=True) exp1n = Series({Interval(0.997, 3.0): 1.0}) tm.assert_series_equal(res1n, exp1n) if isinstance(s1, Index): tm.assert_index_equal(s1.unique(), Index([1, 2, 3])) else: exp = np.array([1, 2, 3], dtype=np.int64) tm.assert_numpy_array_equal(s1.unique(), exp) assert s1.nunique() == 3 # these return the same res4 = s1.value_counts(bins=4, dropna=True) intervals = IntervalIndex.from_breaks([0.997, 1.5, 2.0, 2.5, 3.0]) exp4 = Series([2, 1, 1, 0], index=intervals.take([0, 3, 1, 2])) tm.assert_series_equal(res4, exp4) res4 = s1.value_counts(bins=4, dropna=False) intervals = IntervalIndex.from_breaks([0.997, 1.5, 2.0, 2.5, 3.0]) exp4 = Series([2, 1, 1, 0], index=intervals.take([0, 3, 1, 2])) tm.assert_series_equal(res4, exp4) res4n = s1.value_counts(bins=4, normalize=True) exp4n = Series([0.5, 0.25, 0.25, 0], index=intervals.take([0, 3, 1, 2])) tm.assert_series_equal(res4n, exp4n) # handle NA's properly s_values = ["a", "b", "b", "b", np.nan, np.nan, "d", "d", "a", "a", "b"] s = klass(s_values) expected = Series([4, 3, 2], index=["b", "a", "d"]) tm.assert_series_equal(s.value_counts(), expected) if isinstance(s, Index): exp = Index(["a", "b", np.nan, "d"]) tm.assert_index_equal(s.unique(), exp) else: exp = np.array(["a", "b", np.nan, "d"], dtype=object) tm.assert_numpy_array_equal(s.unique(), exp) assert s.nunique() == 3 s = klass({}) expected = Series([], dtype=np.int64) tm.assert_series_equal(s.value_counts(), expected, check_index_type=False) # returned dtype differs depending on original if isinstance(s, Index): tm.assert_index_equal(s.unique(), Index([]), exact=False) else: tm.assert_numpy_array_equal(s.unique(), np.array([]), check_dtype=False) assert s.nunique() == 0 @pytest.mark.parametrize("klass", [Index, Series]) def test_value_counts_datetime64(self, klass): # GH 3002, datetime64[ns] # don't test names though txt = "\n".join( [ "xxyyzz20100101PIE", "xxyyzz20100101GUM", "xxyyzz20100101EGG", "xxyyww20090101EGG", "foofoo20080909PIE", "foofoo20080909GUM", ] ) f = StringIO(txt) df = pd.read_fwf( f, widths=[6, 8, 3], names=["person_id", "dt", "food"], parse_dates=["dt"] ) s = klass(df["dt"].copy()) s.name = None idx = pd.to_datetime( ["2010-01-01 00:00:00", "2008-09-09 00:00:00", "2009-01-01 00:00:00"] ) expected_s = Series([3, 2, 1], index=idx) tm.assert_series_equal(s.value_counts(), expected_s) expected = np_array_datetime64_compat( ["2010-01-01 00:00:00", "2009-01-01 00:00:00", "2008-09-09 00:00:00"], dtype="datetime64[ns]", ) if isinstance(s, Index): tm.assert_index_equal(s.unique(), DatetimeIndex(expected)) else: tm.assert_numpy_array_equal(s.unique(), expected) assert s.nunique() == 3 # with NaT s = df["dt"].copy() s = klass(list(s.values) + [pd.NaT]) result = s.value_counts() assert result.index.dtype == "datetime64[ns]" tm.assert_series_equal(result, expected_s) result = s.value_counts(dropna=False) expected_s[pd.NaT] = 1 tm.assert_series_equal(result, expected_s) unique = s.unique() assert unique.dtype == "datetime64[ns]" # numpy_array_equal cannot compare pd.NaT if isinstance(s, Index): exp_idx = DatetimeIndex(expected.tolist() + [pd.NaT]) tm.assert_index_equal(unique, exp_idx) else: tm.assert_numpy_array_equal(unique[:3], expected) assert pd.isna(unique[3]) assert s.nunique() == 3 assert s.nunique(dropna=False) == 4 # timedelta64[ns] td = df.dt - df.dt + timedelta(1) td = klass(td, name="dt") result = td.value_counts() expected_s = Series([6], index=[Timedelta("1day")], name="dt") tm.assert_series_equal(result, expected_s) expected = TimedeltaIndex(["1 days"], name="dt") if isinstance(td, Index): tm.assert_index_equal(td.unique(), expected) else: tm.assert_numpy_array_equal(td.unique(), expected.values) td2 = timedelta(1) + (df.dt - df.dt) td2 = klass(td2, name="dt") result2 = td2.value_counts() tm.assert_series_equal(result2, expected_s) def test_factorize(self): for orig in self.objs: o = orig.copy() if isinstance(o, Index) and o.is_boolean(): exp_arr = np.array([0, 1] + [0] * 8, dtype=np.intp) exp_uniques = o exp_uniques = Index([False, True]) else: exp_arr = np.array(range(len(o)), dtype=np.intp) exp_uniques = o codes, uniques = o.factorize() tm.assert_numpy_array_equal(codes, exp_arr) if isinstance(o, Series): tm.assert_index_equal(uniques, Index(orig), check_names=False) else: # factorize explicitly resets name tm.assert_index_equal(uniques, exp_uniques, check_names=False) def test_factorize_repeated(self): for orig in self.objs: o = orig.copy() # don't test boolean if isinstance(o, Index) and o.is_boolean(): continue # sort by value, and create duplicates if isinstance(o, Series): o = o.sort_values() n = o.iloc[5:].append(o) else: indexer = o.argsort() o = o.take(indexer) n = o[5:].append(o) exp_arr = np.array( [5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9], dtype=np.intp ) codes, uniques = n.factorize(sort=True) tm.assert_numpy_array_equal(codes, exp_arr) if isinstance(o, Series): tm.assert_index_equal( uniques, Index(orig).sort_values(), check_names=False ) else: tm.assert_index_equal(uniques, o, check_names=False) exp_arr = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4], np.intp) codes, uniques = n.factorize(sort=False) tm.assert_numpy_array_equal(codes, exp_arr) if isinstance(o, Series): expected = Index(o.iloc[5:10].append(o.iloc[:5])) tm.assert_index_equal(uniques, expected, check_names=False) else: expected = o[5:10].append(o[:5]) tm.assert_index_equal(uniques, expected, check_names=False) def test_duplicated_drop_duplicates_index(self): # GH 4060 for original in self.objs: if isinstance(original, Index): # special case if original.is_boolean(): result = original.drop_duplicates() expected = Index([False, True], name="a") tm.assert_index_equal(result, expected) continue # original doesn't have duplicates expected = np.array([False] * len(original), dtype=bool) duplicated = original.duplicated() tm.assert_numpy_array_equal(duplicated, expected) assert duplicated.dtype == bool result = original.drop_duplicates() tm.assert_index_equal(result, original) assert result is not original # has_duplicates assert not original.has_duplicates # create repeated values, 3rd and 5th values are duplicated idx = original[list(range(len(original))) + [5, 3]] expected = np.array([False] * len(original) + [True, True], dtype=bool) duplicated = idx.duplicated() tm.assert_numpy_array_equal(duplicated, expected) assert duplicated.dtype == bool tm.assert_index_equal(idx.drop_duplicates(), original) base = [False] * len(idx) base[3] = True base[5] = True expected = np.array(base) duplicated = idx.duplicated(keep="last") tm.assert_numpy_array_equal(duplicated, expected) assert duplicated.dtype == bool result = idx.drop_duplicates(keep="last") tm.assert_index_equal(result, idx[~expected]) base = [False] * len(original) + [True, True] base[3] = True base[5] = True expected = np.array(base) duplicated = idx.duplicated(keep=False) tm.assert_numpy_array_equal(duplicated, expected) assert duplicated.dtype == bool result = idx.drop_duplicates(keep=False) tm.assert_index_equal(result, idx[~expected]) with pytest.raises( TypeError, match=( r"drop_duplicates\(\) got an " r"unexpected keyword argument" ), ): idx.drop_duplicates(inplace=True) else: expected = Series( [False] * len(original), index=original.index, name="a" ) tm.assert_series_equal(original.duplicated(), expected) result = original.drop_duplicates() tm.assert_series_equal(result, original) assert result is not original idx = original.index[list(range(len(original))) + [5, 3]] values = original._values[list(range(len(original))) + [5, 3]] s = Series(values, index=idx, name="a") expected = Series( [False] * len(original) + [True, True], index=idx, name="a" ) tm.assert_series_equal(s.duplicated(), expected) tm.assert_series_equal(s.drop_duplicates(), original) base = [False] * len(idx) base[3] = True base[5] = True expected = Series(base, index=idx, name="a") tm.assert_series_equal(s.duplicated(keep="last"), expected) tm.assert_series_equal( s.drop_duplicates(keep="last"), s[~np.array(base)] ) base = [False] * len(original) + [True, True] base[3] = True base[5] = True expected = Series(base, index=idx, name="a") tm.assert_series_equal(s.duplicated(keep=False), expected) tm.assert_series_equal( s.drop_duplicates(keep=False), s[~np.array(base)] ) s.drop_duplicates(inplace=True) tm.assert_series_equal(s, original) def test_drop_duplicates_series_vs_dataframe(self): # GH 14192 df = pd.DataFrame( { "a": [1, 1, 1, "one", "one"], "b": [2, 2, np.nan, np.nan, np.nan], "c": [3, 3, np.nan, np.nan, "three"], "d": [1, 2, 3, 4, 4], "e": [ datetime(2015, 1, 1), datetime(2015, 1, 1), datetime(2015, 2, 1), pd.NaT, pd.NaT, ], } ) for column in df.columns: for keep in ["first", "last", False]: dropped_frame = df[[column]].drop_duplicates(keep=keep) dropped_series = df[column].drop_duplicates(keep=keep) tm.assert_frame_equal(dropped_frame, dropped_series.to_frame()) def test_fillna(self): # # GH 11343 # though Index.fillna and Series.fillna has separate impl, # test here to confirm these works as the same for orig in self.objs: o = orig.copy() values = o.values # values will not be changed result = o.fillna(o.astype(object).values[0]) if isinstance(o, Index): tm.assert_index_equal(o, result) else: tm.assert_series_equal(o, result) # check shallow_copied assert o is not result for null_obj in [np.nan, None]: for orig in self.objs: o = orig.copy() klass = type(o) if not self._allow_na_ops(o): continue if needs_i8_conversion(o): values = o.astype(object).values fill_value = values[0] values[0:2] = pd.NaT else: values = o.values.copy() fill_value = o.values[0] values[0:2] = null_obj expected = [fill_value] * 2 + list(values[2:]) expected = klass(expected, dtype=orig.dtype) o = klass(values) # check values has the same dtype as the original assert o.dtype == orig.dtype result = o.fillna(fill_value) if isinstance(o, Index): tm.assert_index_equal(result, expected) else: tm.assert_series_equal(result, expected) # check shallow_copied assert o is not result @pytest.mark.skipif(PYPY, reason="not relevant for PyPy") def test_memory_usage(self): for o in self.objs: res = o.memory_usage() res_deep = o.memory_usage(deep=True) if is_object_dtype(o) or ( isinstance(o, Series) and is_object_dtype(o.index) ): # if there are objects, only deep will pick them up assert res_deep > res else: assert res == res_deep if isinstance(o, Series): assert ( o.memory_usage(index=False) + o.index.memory_usage() ) == o.memory_usage(index=True) # sys.getsizeof will call the .memory_usage with # deep=True, and add on some GC overhead diff = res_deep - sys.getsizeof(o) assert abs(diff) < 100 def test_searchsorted(self): # See gh-12238 for o in self.objs: index = np.searchsorted(o, max(o)) assert 0 <= index <= len(o) index = np.searchsorted(o, max(o), sorter=range(len(o))) assert 0 <= index <= len(o) def test_validate_bool_args(self): invalid_values = [1, "True", [1, 2, 3], 5.0] for value in invalid_values: with pytest.raises(ValueError): self.int_series.drop_duplicates(inplace=value) def test_getitem(self): for i in self.indexes: s = pd.Series(i) assert i[0] == s.iloc[0] assert i[5] == s.iloc[5] assert i[-1] == s.iloc[-1] assert i[-1] == i[9] with pytest.raises(IndexError): i[20] with pytest.raises(IndexError): s.iloc[20] @pytest.mark.parametrize("indexer_klass", [list, pd.Index]) @pytest.mark.parametrize( "indexer", [ [True] * 10, [False] * 10, [True, False, True, True, False, False, True, True, False, True], ], ) def test_bool_indexing(self, indexer_klass, indexer): # GH 22533 for idx in self.indexes: exp_idx = [i for i in range(len(indexer)) if indexer[i]] tm.assert_index_equal(idx[indexer_klass(indexer)], idx[exp_idx]) s = pd.Series(idx) tm.assert_series_equal(s[indexer_klass(indexer)], s.iloc[exp_idx]) def test_get_indexer_non_unique_dtype_mismatch(self): # GH 25459 indexes, missing = pd.Index(["A", "B"]).get_indexer_non_unique(pd.Index([0])) tm.assert_numpy_array_equal(np.array([-1], dtype=np.intp), indexes) tm.assert_numpy_array_equal(np.array([0], dtype=np.int64), missing) class TestTranspose(Ops): errmsg = "the 'axes' parameter is not supported" def test_transpose(self): for obj in self.objs: tm.assert_equal(obj.transpose(), obj) def test_transpose_non_default_axes(self): for obj in self.objs: with pytest.raises(ValueError, match=self.errmsg): obj.transpose(1) with pytest.raises(ValueError, match=self.errmsg): obj.transpose(axes=1) def test_numpy_transpose(self): for obj in self.objs: tm.assert_equal(np.transpose(obj), obj) with pytest.raises(ValueError, match=self.errmsg): np.transpose(obj, axes=1) class TestNoNewAttributesMixin: def test_mixin(self): class T(NoNewAttributesMixin): pass t = T() assert not hasattr(t, "__frozen") t.a = "test" assert t.a == "test" t._freeze() assert "__frozen" in dir(t) assert getattr(t, "__frozen") with pytest.raises(AttributeError): t.b = "test" assert not hasattr(t, "b") class TestToIterable: # test that we convert an iterable to python types dtypes = [ ("int8", int), ("int16", int), ("int32", int), ("int64", int), ("uint8", int), ("uint16", int), ("uint32", int), ("uint64", int), ("float16", float), ("float32", float), ("float64", float), ("datetime64[ns]", Timestamp), ("datetime64[ns, US/Eastern]", Timestamp), ("timedelta64[ns]", Timedelta), ] @pytest.mark.parametrize("dtype, rdtype", dtypes) @pytest.mark.parametrize( "method", [ lambda x: x.tolist(), lambda x: x.to_list(), lambda x: list(x), lambda x: list(x.__iter__()), ], ids=["tolist", "to_list", "list", "iter"], ) @pytest.mark.parametrize("typ", [Series, Index]) @pytest.mark.filterwarnings("ignore:\\n Passing:FutureWarning") # TODO(GH-24559): Remove the filterwarnings def test_iterable(self, typ, method, dtype, rdtype): # gh-10904 # gh-13258 # coerce iteration to underlying python / pandas types s = typ([1], dtype=dtype) result = method(s)[0] assert isinstance(result, rdtype) @pytest.mark.parametrize( "dtype, rdtype, obj", [ ("object", object, "a"), ("object", int, 1), ("category", object, "a"), ("category", int, 1), ], ) @pytest.mark.parametrize( "method", [ lambda x: x.tolist(), lambda x: x.to_list(), lambda x: list(x), lambda x: list(x.__iter__()), ], ids=["tolist", "to_list", "list", "iter"], ) @pytest.mark.parametrize("typ", [Series, Index]) def test_iterable_object_and_category(self, typ, method, dtype, rdtype, obj): # gh-10904 # gh-13258 # coerce iteration to underlying python / pandas types s = typ([obj], dtype=dtype) result = method(s)[0] assert isinstance(result, rdtype) @pytest.mark.parametrize("dtype, rdtype", dtypes) def test_iterable_items(self, dtype, rdtype): # gh-13258 # test if items yields the correct boxed scalars # this only applies to series s = Series([1], dtype=dtype) _, result = list(s.items())[0] assert isinstance(result, rdtype) _, result = list(s.items())[0] assert isinstance(result, rdtype) @pytest.mark.parametrize( "dtype, rdtype", dtypes + [("object", int), ("category", int)] ) @pytest.mark.parametrize("typ", [Series, Index]) @pytest.mark.filterwarnings("ignore:\\n Passing:FutureWarning") # TODO(GH-24559): Remove the filterwarnings def test_iterable_map(self, typ, dtype, rdtype): # gh-13236 # coerce iteration to underlying python / pandas types s = typ([1], dtype=dtype) result = s.map(type)[0] if not isinstance(rdtype, tuple): rdtype = tuple([rdtype]) assert result in rdtype @pytest.mark.parametrize( "method", [ lambda x: x.tolist(), lambda x: x.to_list(), lambda x: list(x), lambda x: list(x.__iter__()), ], ids=["tolist", "to_list", "list", "iter"], ) def test_categorial_datetimelike(self, method): i = CategoricalIndex([Timestamp("1999-12-31"), Timestamp("2000-12-31")]) result = method(i)[0] assert isinstance(result, Timestamp) def test_iter_box(self): vals = [Timestamp("2011-01-01"), Timestamp("2011-01-02")] s = Series(vals) assert s.dtype == "datetime64[ns]" for res, exp in zip(s, vals): assert isinstance(res, Timestamp) assert res.tz is None assert res == exp vals = [ Timestamp("2011-01-01", tz="US/Eastern"), Timestamp("2011-01-02", tz="US/Eastern"), ] s = Series(vals) assert s.dtype == "datetime64[ns, US/Eastern]" for res, exp in zip(s, vals): assert isinstance(res, Timestamp) assert res.tz == exp.tz assert res == exp # timedelta vals = [
Timedelta("1 days")
pandas.Timedelta
#!/usr/bin/python3 # -*- coding: utf-8 -*- # *****************************************************************************/ # * Authors: <NAME> # *****************************************************************************/ """transformCSV.py This module contains the basic functions for creating the content of a configuration file from CSV. Args: --inFile: Path for the configuration file where the time series data values CSV --outFile: Path for the configuration file where the time series data values INI --debug: Boolean flag to activate verbose printing for debug use Example: Default usage: $ python transformCSV.py Specific usage: $ python transformCSV.py --inFile C:\raad\src\software\time-series.csv --outFile C:\raad\src\software\time-series.ini --debug True """ import sys import datetime import optparse import traceback import pandas import numpy import os import pprint import csv if sys.version_info.major > 2: import configparser as cF else: import ConfigParser as cF class TransformMetaData(object): debug = False fileName = None fileLocation = None columnsList = None analysisFrameFormat = None uniqueLists = None analysisFrame = None def __init__(self, inputFileName=None, debug=False, transform=False, sectionName=None, outFolder=None, outFile='time-series-madness.ini'): if isinstance(debug, bool): self.debug = debug if inputFileName is None: return elif os.path.exists(os.path.abspath(inputFileName)): self.fileName = inputFileName self.fileLocation = os.path.exists(os.path.abspath(inputFileName)) (analysisFrame, analysisFrameFormat, uniqueLists, columnNamesList) = self.CSVtoFrame( inputFileName=self.fileName) self.analysisFrame = analysisFrame self.columnsList = columnNamesList self.analysisFrameFormat = analysisFrameFormat self.uniqueLists = uniqueLists if transform: passWrite = self.frameToINI(analysisFrame=analysisFrame, sectionName=sectionName, outFolder=outFolder, outFile=outFile) print(f"Pass Status is : {passWrite}") return def getColumnList(self): return self.columnsList def getAnalysisFrameFormat(self): return self.analysisFrameFormat def getuniqueLists(self): return self.uniqueLists def getAnalysisFrame(self): return self.analysisFrame @staticmethod def getDateParser(formatString="%Y-%m-%d %H:%M:%S.%f"): return (lambda x: pandas.datetime.strptime(x, formatString)) # 2020-06-09 19:14:00.000 def getHeaderFromFile(self, headerFilePath=None, method=1): if headerFilePath is None: return (None, None) if method == 1: fieldnames = pandas.read_csv(headerFilePath, index_col=0, nrows=0).columns.tolist() elif method == 2: with open(headerFilePath, 'r') as infile: reader = csv.DictReader(infile) fieldnames = list(reader.fieldnames) elif method == 3: fieldnames = list(pandas.read_csv(headerFilePath, nrows=1).columns) else: fieldnames = None fieldDict = {} for indexName, valueName in enumerate(fieldnames): fieldDict[valueName] = pandas.StringDtype() return (fieldnames, fieldDict) def CSVtoFrame(self, inputFileName=None): if inputFileName is None: return (None, None) # Load File print("Processing File: {0}...\n".format(inputFileName)) self.fileLocation = inputFileName # Create data frame analysisFrame = pandas.DataFrame() analysisFrameFormat = self._getDataFormat() inputDataFrame = pandas.read_csv(filepath_or_buffer=inputFileName, sep='\t', names=self._getDataFormat(), # dtype=self._getDataFormat() # header=None # float_precision='round_trip' # engine='c', # parse_dates=['date_column'], # date_parser=True, # na_values=['NULL'] ) if self.debug: # Preview data. print(inputDataFrame.head(5)) # analysisFrame.astype(dtype=analysisFrameFormat) # Cleanup data analysisFrame = inputDataFrame.copy(deep=True) analysisFrame.apply(pandas.to_numeric, errors='coerce') # Fill in bad data with Not-a-Number (NaN) # Create lists of unique strings uniqueLists = [] columnNamesList = [] for columnName in analysisFrame.columns: if self.debug: print('Column Name : ', columnName) print('Column Contents : ', analysisFrame[columnName].values) if isinstance(analysisFrame[columnName].dtypes, str): columnUniqueList = analysisFrame[columnName].unique().tolist() else: columnUniqueList = None columnNamesList.append(columnName) uniqueLists.append([columnName, columnUniqueList]) if self.debug: # Preview data. print(analysisFrame.head(5)) return (analysisFrame, analysisFrameFormat, uniqueLists, columnNamesList) def frameToINI(self, analysisFrame=None, sectionName='Unknown', outFolder=None, outFile='nil.ini'): if analysisFrame is None: return False try: if outFolder is None: outFolder = os.getcwd() configFilePath = os.path.join(outFolder, outFile) configINI = cF.ConfigParser() configINI.add_section(sectionName) for (columnName, columnData) in analysisFrame: if self.debug: print('Column Name : ', columnName) print('Column Contents : ', columnData.values) print("Column Contents Length:", len(columnData.values)) print("Column Contents Type", type(columnData.values)) writeList = "[" for colIndex, colValue in enumerate(columnData): writeList = f"{writeList}'{colValue}'" if colIndex < len(columnData) - 1: writeList = f"{writeList}, " writeList = f"{writeList}]" configINI.set(sectionName, columnName, writeList) if not os.path.exists(configFilePath) or os.stat(configFilePath).st_size == 0: with open(configFilePath, 'w') as configWritingFile: configINI.write(configWritingFile) noErrors = True except ValueError as e: errorString = ("ERROR in {__file__} @{framePrintNo} with {ErrorFound}".format(__file__=str(__file__), framePrintNo=str( sys._getframe().f_lineno), ErrorFound=e)) print(errorString) noErrors = False return noErrors @staticmethod def _validNumericalFloat(inValue): """ Determines if the value is a valid numerical object. Args: inValue: floating-point value Returns: Value in floating-point or Not-A-Number. """ try: return numpy.float128(inValue) except ValueError: return numpy.nan @staticmethod def _calculateMean(x): """ Calculates the mean in a multiplication method since division produces an infinity or NaN Args: x: Input data set. We use a data frame. Returns: Calculated mean for a vector data frame. """ try: mean = numpy.float128(numpy.average(x, weights=numpy.ones_like(numpy.float128(x)) / numpy.float128(x.size))) except ValueError: mean = 0 pass return mean def _calculateStd(self, data): """ Calculates the standard deviation in a multiplication method since division produces a infinity or NaN Args: data: Input data set. We use a data frame. Returns: Calculated standard deviation for a vector data frame. """ sd = 0 try: n = numpy.float128(data.size) if n <= 1: return numpy.float128(0.0) # Use multiplication version of mean since numpy bug causes infinity. mean = self._calculateMean(data) sd = numpy.float128(mean) # Calculate standard deviation for el in data: diff = numpy.float128(el) - numpy.float128(mean) sd += (diff) ** 2 points = numpy.float128(n - 1) sd = numpy.float128(numpy.sqrt(numpy.float128(sd) / numpy.float128(points))) except ValueError: pass return sd def _determineQuickStats(self, dataAnalysisFrame, columnName=None, multiplierSigma=3.0): """ Determines stats based on a vector to get the data shape. Args: dataAnalysisFrame: Dataframe to do analysis on. columnName: Column name of the data frame. multiplierSigma: Sigma range for the stats. Returns: Set of stats. """ meanValue = 0 sigmaValue = 0 sigmaRangeValue = 0 topValue = 0 try: # Clean out anomoly due to random invalid inputs. if (columnName is not None): meanValue = self._calculateMean(dataAnalysisFrame[columnName]) if meanValue == numpy.nan: meanValue = numpy.float128(1) sigmaValue = self._calculateStd(dataAnalysisFrame[columnName]) if float(sigmaValue) is float(numpy.nan): sigmaValue = numpy.float128(1) multiplier = numpy.float128(multiplierSigma) # Stats: 1 sigma = 68%, 2 sigma = 95%, 3 sigma = 99.7 sigmaRangeValue = (sigmaValue * multiplier) if float(sigmaRangeValue) is float(numpy.nan): sigmaRangeValue = numpy.float128(1) topValue = numpy.float128(meanValue + sigmaRangeValue) print("Name:{} Mean= {}, Sigma= {}, {}*Sigma= {}".format(columnName, meanValue, sigmaValue, multiplier, sigmaRangeValue)) except ValueError: pass return (meanValue, sigmaValue, sigmaRangeValue, topValue) def _cleanZerosForColumnInFrame(self, dataAnalysisFrame, columnName='cycles'): """ Cleans the data frame with data values that are invalid. I.E. inf, NaN Args: dataAnalysisFrame: Dataframe to do analysis on. columnName: Column name of the data frame. Returns: Cleaned dataframe. """ dataAnalysisCleaned = None try: # Clean out anomoly due to random invalid inputs. (meanValue, sigmaValue, sigmaRangeValue, topValue) = self._determineQuickStats( dataAnalysisFrame=dataAnalysisFrame, columnName=columnName) # dataAnalysisCleaned = dataAnalysisFrame[dataAnalysisFrame[columnName] != 0] # When the cycles are negative or zero we missed cleaning up a row. # logicVector = (dataAnalysisFrame[columnName] != 0) # dataAnalysisCleaned = dataAnalysisFrame[logicVector] logicVector = (dataAnalysisCleaned[columnName] >= 1) dataAnalysisCleaned = dataAnalysisCleaned[logicVector] # These timed out mean + 2 * sd logicVector = (dataAnalysisCleaned[columnName] < topValue) # Data range dataAnalysisCleaned = dataAnalysisCleaned[logicVector] except ValueError: pass return dataAnalysisCleaned def _cleanFrame(self, dataAnalysisTemp, cleanColumn=False, columnName='cycles'): """ Args: dataAnalysisTemp: Dataframe to do analysis on. cleanColumn: Flag to clean the data frame. columnName: Column name of the data frame. Returns: cleaned dataframe """ try: replacementList = [pandas.NaT, numpy.Infinity, numpy.NINF, 'NaN', 'inf', '-inf', 'NULL'] if cleanColumn is True: dataAnalysisTemp = self._cleanZerosForColumnInFrame(dataAnalysisTemp, columnName=columnName) dataAnalysisTemp = dataAnalysisTemp.replace(to_replace=replacementList, value=numpy.nan) dataAnalysisTemp = dataAnalysisTemp.dropna() except ValueError: pass return dataAnalysisTemp @staticmethod def _getDataFormat(): """ Return the dataframe setup for the CSV file generated from server. Returns: dictionary data format for pandas. """ dataFormat = { "Serial_Number": pandas.StringDtype(), "LogTime0": pandas.StringDtype(), # @todo force rename "Id0": pandas.StringDtype(), # @todo force rename "DriveId": pandas.StringDtype(), "JobRunId": pandas.StringDtype(), "LogTime1": pandas.StringDtype(), # @todo force rename "Comment0": pandas.StringDtype(), # @todo force rename "CriticalWarning": pandas.StringDtype(), "Temperature": pandas.StringDtype(), "AvailableSpare": pandas.StringDtype(), "AvailableSpareThreshold": pandas.StringDtype(), "PercentageUsed": pandas.StringDtype(), "DataUnitsReadL": pandas.StringDtype(), "DataUnitsReadU": pandas.StringDtype(), "DataUnitsWrittenL": pandas.StringDtype(), "DataUnitsWrittenU": pandas.StringDtype(), "HostReadCommandsL": pandas.StringDtype(), "HostReadCommandsU": pandas.StringDtype(), "HostWriteCommandsL": pandas.StringDtype(), "HostWriteCommandsU": pandas.StringDtype(), "ControllerBusyTimeL": pandas.StringDtype(), "ControllerBusyTimeU": pandas.StringDtype(), "PowerCyclesL": pandas.StringDtype(), "PowerCyclesU": pandas.StringDtype(), "PowerOnHoursL": pandas.StringDtype(), "PowerOnHoursU": pandas.StringDtype(), "UnsafeShutdownsL": pandas.StringDtype(), "UnsafeShutdownsU": pandas.StringDtype(), "MediaErrorsL": pandas.StringDtype(), "MediaErrorsU": pandas.StringDtype(), "NumErrorInfoLogsL": pandas.StringDtype(), "NumErrorInfoLogsU": pandas.StringDtype(), "ProgramFailCountN": pandas.StringDtype(), "ProgramFailCountR": pandas.StringDtype(), "EraseFailCountN": pandas.StringDtype(), "EraseFailCountR": pandas.StringDtype(), "WearLevelingCountN": pandas.StringDtype(), "WearLevelingCountR": pandas.StringDtype(), "E2EErrorDetectCountN": pandas.StringDtype(), "E2EErrorDetectCountR": pandas.StringDtype(), "CRCErrorCountN": pandas.StringDtype(), "CRCErrorCountR": pandas.StringDtype(), "MediaWearPercentageN": pandas.StringDtype(), "MediaWearPercentageR": pandas.StringDtype(), "HostReadsN": pandas.StringDtype(), "HostReadsR": pandas.StringDtype(), "TimedWorkloadN": pandas.StringDtype(), "TimedWorkloadR": pandas.StringDtype(), "ThermalThrottleStatusN": pandas.StringDtype(), "ThermalThrottleStatusR": pandas.StringDtype(), "RetryBuffOverflowCountN": pandas.StringDtype(), "RetryBuffOverflowCountR": pandas.StringDtype(), "PLLLockLossCounterN": pandas.StringDtype(), "PLLLockLossCounterR": pandas.StringDtype(), "NandBytesWrittenN": pandas.StringDtype(), "NandBytesWrittenR": pandas.StringDtype(), "HostBytesWrittenN": pandas.StringDtype(), "HostBytesWrittenR": pandas.StringDtype(), "SystemAreaLifeRemainingN": pandas.StringDtype(), "SystemAreaLifeRemainingR": pandas.StringDtype(), "RelocatableSectorCountN": pandas.StringDtype(), "RelocatableSectorCountR": pandas.StringDtype(), "SoftECCErrorRateN": pandas.StringDtype(), "SoftECCErrorRateR": pandas.StringDtype(), "UnexpectedPowerLossN": pandas.StringDtype(), "UnexpectedPowerLossR": pandas.StringDtype(), "MediaErrorCountN": pandas.StringDtype(), "MediaErrorCountR": pandas.StringDtype(), "NandBytesReadN": pandas.StringDtype(), "NandBytesReadR": pandas.StringDtype(), "WarningCompTempTime": pandas.StringDtype(), "CriticalCompTempTime": pandas.StringDtype(), "TempSensor1": pandas.StringDtype(), "TempSensor2": pandas.StringDtype(), "TempSensor3": pandas.StringDtype(), "TempSensor4": pandas.StringDtype(), "TempSensor5": pandas.StringDtype(), "TempSensor6": pandas.StringDtype(), "TempSensor7": pandas.StringDtype(), "TempSensor8": pandas.StringDtype(), "ThermalManagementTemp1TransitionCount": pandas.StringDtype(), "ThermalManagementTemp2TransitionCount": pandas.StringDtype(), "TotalTimeForThermalManagementTemp1": pandas.StringDtype(), "TotalTimeForThermalManagementTemp2": pandas.StringDtype(), "Core_Num": pandas.StringDtype(), "Id1": pandas.StringDtype(), # @todo force rename "Job_Run_Id": pandas.StringDtype(), "Stats_Time": pandas.StringDtype(), "HostReads": pandas.StringDtype(), "HostWrites": pandas.StringDtype(), "NandReads": pandas.StringDtype(), "NandWrites": pandas.StringDtype(), "ProgramErrors": pandas.StringDtype(), "EraseErrors": pandas.StringDtype(), "ErrorCount": pandas.StringDtype(), "BitErrorsHost1": pandas.StringDtype(), "BitErrorsHost2": pandas.StringDtype(), "BitErrorsHost3": pandas.StringDtype(), "BitErrorsHost4": pandas.StringDtype(), "BitErrorsHost5": pandas.StringDtype(), "BitErrorsHost6": pandas.StringDtype(), "BitErrorsHost7": pandas.StringDtype(), "BitErrorsHost8": pandas.StringDtype(), "BitErrorsHost9": pandas.StringDtype(), "BitErrorsHost10": pandas.StringDtype(), "BitErrorsHost11": pandas.StringDtype(), "BitErrorsHost12": pandas.StringDtype(), "BitErrorsHost13": pandas.StringDtype(), "BitErrorsHost14": pandas.StringDtype(), "BitErrorsHost15": pandas.StringDtype(), "ECCFail": pandas.StringDtype(), "GrownDefects": pandas.StringDtype(), "FreeMemory": pandas.StringDtype(), "WriteAllowance": pandas.StringDtype(), "ModelString": pandas.StringDtype(), "ValidBlocks": pandas.StringDtype(), "TokenBlocks": pandas.StringDtype(), "SpuriousPFCount": pandas.StringDtype(), "SpuriousPFLocations1": pandas.StringDtype(), "SpuriousPFLocations2": pandas.StringDtype(), "SpuriousPFLocations3": pandas.StringDtype(), "SpuriousPFLocations4": pandas.StringDtype(), "SpuriousPFLocations5": pandas.StringDtype(), "SpuriousPFLocations6": pandas.StringDtype(), "SpuriousPFLocations7": pandas.StringDtype(), "SpuriousPFLocations8": pandas.StringDtype(), "BitErrorsNonHost1": pandas.StringDtype(), "BitErrorsNonHost2": pandas.StringDtype(), "BitErrorsNonHost3": pandas.StringDtype(), "BitErrorsNonHost4": pandas.StringDtype(), "BitErrorsNonHost5": pandas.StringDtype(), "BitErrorsNonHost6": pandas.StringDtype(), "BitErrorsNonHost7": pandas.StringDtype(), "BitErrorsNonHost8": pandas.StringDtype(), "BitErrorsNonHost9": pandas.StringDtype(), "BitErrorsNonHost10": pandas.StringDtype(), "BitErrorsNonHost11": pandas.StringDtype(), "BitErrorsNonHost12": pandas.StringDtype(), "BitErrorsNonHost13": pandas.StringDtype(), "BitErrorsNonHost14": pandas.StringDtype(), "BitErrorsNonHost15": pandas.StringDtype(), "ECCFailNonHost": pandas.StringDtype(), "NSversion": pandas.StringDtype(), "numBands": pandas.StringDtype(), "minErase": pandas.StringDtype(), "maxErase": pandas.StringDtype(), "avgErase": pandas.StringDtype(), "minMVolt": pandas.StringDtype(), "maxMVolt": pandas.StringDtype(), "avgMVolt": pandas.StringDtype(), "minMAmp": pandas.StringDtype(), "maxMAmp": pandas.StringDtype(), "avgMAmp": pandas.StringDtype(), "comment1": pandas.StringDtype(), # @todo force rename "minMVolt12v": pandas.StringDtype(), "maxMVolt12v": pandas.StringDtype(), "avgMVolt12v": pandas.StringDtype(), "minMAmp12v": pandas.StringDtype(), "maxMAmp12v": pandas.StringDtype(), "avgMAmp12v": pandas.StringDtype(), "nearMissSector": pandas.StringDtype(), "nearMissDefect": pandas.StringDtype(), "nearMissOverflow": pandas.StringDtype(), "replayUNC": pandas.StringDtype(), "Drive_Id": pandas.StringDtype(), "indirectionMisses": pandas.StringDtype(), "BitErrorsHost16": pandas.StringDtype(), "BitErrorsHost17": pandas.StringDtype(), "BitErrorsHost18": pandas.StringDtype(), "BitErrorsHost19": pandas.StringDtype(), "BitErrorsHost20": pandas.StringDtype(), "BitErrorsHost21": pandas.StringDtype(), "BitErrorsHost22": pandas.StringDtype(), "BitErrorsHost23": pandas.StringDtype(), "BitErrorsHost24": pandas.StringDtype(), "BitErrorsHost25": pandas.StringDtype(), "BitErrorsHost26": pandas.StringDtype(), "BitErrorsHost27": pandas.StringDtype(), "BitErrorsHost28": pandas.StringDtype(), "BitErrorsHost29": pandas.StringDtype(), "BitErrorsHost30": pandas.StringDtype(), "BitErrorsHost31": pandas.StringDtype(), "BitErrorsHost32": pandas.StringDtype(), "BitErrorsHost33": pandas.StringDtype(), "BitErrorsHost34": pandas.StringDtype(), "BitErrorsHost35": pandas.StringDtype(), "BitErrorsHost36": pandas.StringDtype(), "BitErrorsHost37": pandas.StringDtype(), "BitErrorsHost38": pandas.StringDtype(), "BitErrorsHost39": pandas.StringDtype(), "BitErrorsHost40": pandas.StringDtype(), "XORRebuildSuccess": pandas.StringDtype(), "XORRebuildFail": pandas.StringDtype(), "BandReloForError": pandas.StringDtype(), "mrrSuccess": pandas.StringDtype(), "mrrFail": pandas.StringDtype(), "mrrNudgeSuccess": pandas.StringDtype(), "mrrNudgeHarmless": pandas.StringDtype(), "mrrNudgeFail": pandas.StringDtype(), "totalErases": pandas.StringDtype(), "dieOfflineCount": pandas.StringDtype(), "curtemp": pandas.StringDtype(), "mintemp": pandas.StringDtype(), "maxtemp": pandas.StringDtype(), "oventemp": pandas.StringDtype(), "allZeroSectors": pandas.StringDtype(), "ctxRecoveryEvents": pandas.StringDtype(), "ctxRecoveryErases": pandas.StringDtype(), "NSversionMinor": pandas.StringDtype(), "lifeMinTemp": pandas.StringDtype(), "lifeMaxTemp": pandas.StringDtype(), "powerCycles": pandas.StringDtype(), "systemReads": pandas.StringDtype(), "systemWrites": pandas.StringDtype(), "readRetryOverflow": pandas.StringDtype(), "unplannedPowerCycles": pandas.StringDtype(), "unsafeShutdowns": pandas.StringDtype(), "defragForcedReloCount": pandas.StringDtype(), "bandReloForBDR": pandas.StringDtype(), "bandReloForDieOffline": pandas.StringDtype(), "bandReloForPFail": pandas.StringDtype(), "bandReloForWL": pandas.StringDtype(), "provisionalDefects": pandas.StringDtype(), "uncorrectableProgErrors": pandas.StringDtype(), "powerOnSeconds": pandas.StringDtype(), "bandReloForChannelTimeout": pandas.StringDtype(), "fwDowngradeCount": pandas.StringDtype(), "dramCorrectablesTotal": pandas.StringDtype(), "hb_id": pandas.StringDtype(), "dramCorrectables1to1": pandas.StringDtype(), "dramCorrectables4to1": pandas.StringDtype(), "dramCorrectablesSram": pandas.StringDtype(), "dramCorrectablesUnknown": pandas.StringDtype(), "pliCapTestInterval": pandas.StringDtype(), "pliCapTestCount": pandas.StringDtype(), "pliCapTestResult": pandas.StringDtype(), "pliCapTestTimeStamp": pandas.StringDtype(), "channelHangSuccess": pandas.StringDtype(), "channelHangFail": pandas.StringDtype(), "BitErrorsHost41": pandas.StringDtype(), "BitErrorsHost42": pandas.StringDtype(), "BitErrorsHost43": pandas.StringDtype(), "BitErrorsHost44": pandas.StringDtype(), "BitErrorsHost45": pandas.StringDtype(), "BitErrorsHost46": pandas.StringDtype(), "BitErrorsHost47": pandas.StringDtype(), "BitErrorsHost48": pandas.StringDtype(), "BitErrorsHost49": pandas.StringDtype(), "BitErrorsHost50": pandas.StringDtype(), "BitErrorsHost51": pandas.StringDtype(), "BitErrorsHost52": pandas.StringDtype(), "BitErrorsHost53": pandas.StringDtype(), "BitErrorsHost54": pandas.StringDtype(), "BitErrorsHost55": pandas.StringDtype(), "BitErrorsHost56": pandas.StringDtype(), "mrrNearMiss": pandas.StringDtype(), "mrrRereadAvg": pandas.StringDtype(), "readDisturbEvictions": pandas.StringDtype(), "L1L2ParityError": pandas.StringDtype(), "pageDefects": pandas.StringDtype(), "pageProvisionalTotal": pandas.StringDtype(), "ASICTemp": pandas.StringDtype(), "PMICTemp": pandas.StringDtype(), "size": pandas.StringDtype(), "lastWrite": pandas.StringDtype(), "timesWritten": pandas.StringDtype(), "maxNumContextBands": pandas.StringDtype(), "blankCount": pandas.StringDtype(), "cleanBands": pandas.StringDtype(), "avgTprog": pandas.StringDtype(), "avgEraseCount": pandas.StringDtype(), "edtcHandledBandCnt": pandas.StringDtype(), "bandReloForNLBA": pandas.StringDtype(), "bandCrossingDuringPliCount": pandas.StringDtype(), "bitErrBucketNum": pandas.StringDtype(), "sramCorrectablesTotal": pandas.StringDtype(), "l1SramCorrErrCnt": pandas.StringDtype(), "l2SramCorrErrCnt": pandas.StringDtype(), "parityErrorValue": pandas.StringDtype(), "parityErrorType": pandas.StringDtype(), "mrr_LutValidDataSize": pandas.StringDtype(), "pageProvisionalDefects": pandas.StringDtype(), "plisWithErasesInProgress": pandas.StringDtype(), "lastReplayDebug": pandas.StringDtype(), "externalPreReadFatals": pandas.StringDtype(), "hostReadCmd": pandas.StringDtype(), "hostWriteCmd": pandas.StringDtype(), "trimmedSectors": pandas.StringDtype(), "trimTokens": pandas.StringDtype(), "mrrEventsInCodewords": pandas.StringDtype(), "mrrEventsInSectors": pandas.StringDtype(), "powerOnMicroseconds": pandas.StringDtype(), "mrrInXorRecEvents": pandas.StringDtype(), "mrrFailInXorRecEvents": pandas.StringDtype(), "mrrUpperpageEvents": pandas.StringDtype(), "mrrLowerpageEvents": pandas.StringDtype(), "mrrSlcpageEvents": pandas.StringDtype(), "mrrReReadTotal": pandas.StringDtype(), "powerOnResets": pandas.StringDtype(), "powerOnMinutes": pandas.StringDtype(), "throttleOnMilliseconds": pandas.StringDtype(), "ctxTailMagic": pandas.StringDtype(), "contextDropCount": pandas.StringDtype(), "lastCtxSequenceId": pandas.StringDtype(), "currCtxSequenceId": pandas.StringDtype(), "mbliEraseCount": pandas.StringDtype(), "pageAverageProgramCount": pandas.StringDtype(), "bandAverageEraseCount": pandas.StringDtype(), "bandTotalEraseCount": pandas.StringDtype(), "bandReloForXorRebuildFail": pandas.StringDtype(), "defragSpeculativeMiss": pandas.StringDtype(), "uncorrectableBackgroundScan": pandas.StringDtype(), "BitErrorsHost57": pandas.StringDtype(), "BitErrorsHost58": pandas.StringDtype(), "BitErrorsHost59": pandas.StringDtype(), "BitErrorsHost60": pandas.StringDtype(), "BitErrorsHost61": pandas.StringDtype(), "BitErrorsHost62": pandas.StringDtype(), "BitErrorsHost63": pandas.StringDtype(), "BitErrorsHost64": pandas.StringDtype(), "BitErrorsHost65": pandas.StringDtype(), "BitErrorsHost66": pandas.StringDtype(), "BitErrorsHost67": pandas.StringDtype(), "BitErrorsHost68": pandas.StringDtype(), "BitErrorsHost69": pandas.StringDtype(), "BitErrorsHost70": pandas.StringDtype(), "BitErrorsHost71": pandas.StringDtype(), "BitErrorsHost72": pandas.StringDtype(), "BitErrorsHost73": pandas.StringDtype(), "BitErrorsHost74": pandas.StringDtype(), "BitErrorsHost75": pandas.StringDtype(), "BitErrorsHost76": pandas.StringDtype(), "BitErrorsHost77": pandas.StringDtype(), "BitErrorsHost78": pandas.StringDtype(), "BitErrorsHost79": pandas.StringDtype(), "BitErrorsHost80": pandas.StringDtype(), "bitErrBucketArray1": pandas.StringDtype(), "bitErrBucketArray2": pandas.StringDtype(), "bitErrBucketArray3": pandas.StringDtype(), "bitErrBucketArray4": pandas.StringDtype(), "bitErrBucketArray5": pandas.StringDtype(), "bitErrBucketArray6": pandas.StringDtype(), "bitErrBucketArray7": pandas.StringDtype(), "bitErrBucketArray8": pandas.StringDtype(), "bitErrBucketArray9": pandas.StringDtype(), "bitErrBucketArray10": pandas.StringDtype(), "bitErrBucketArray11": pandas.StringDtype(), "bitErrBucketArray12": pandas.StringDtype(), "bitErrBucketArray13": pandas.StringDtype(), "bitErrBucketArray14": pandas.StringDtype(), "bitErrBucketArray15": pandas.StringDtype(), "bitErrBucketArray16": pandas.StringDtype(), "bitErrBucketArray17": pandas.StringDtype(), "bitErrBucketArray18": pandas.StringDtype(), "bitErrBucketArray19": pandas.StringDtype(), "bitErrBucketArray20": pandas.StringDtype(), "bitErrBucketArray21": pandas.StringDtype(), "bitErrBucketArray22": pandas.StringDtype(), "bitErrBucketArray23": pandas.StringDtype(), "bitErrBucketArray24": pandas.StringDtype(), "bitErrBucketArray25": pandas.StringDtype(), "bitErrBucketArray26": pandas.StringDtype(), "bitErrBucketArray27": pandas.StringDtype(), "bitErrBucketArray28": pandas.StringDtype(), "bitErrBucketArray29": pandas.StringDtype(), "bitErrBucketArray30": pandas.StringDtype(), "bitErrBucketArray31": pandas.StringDtype(), "bitErrBucketArray32": pandas.StringDtype(), "bitErrBucketArray33": pandas.StringDtype(), "bitErrBucketArray34": pandas.StringDtype(), "bitErrBucketArray35": pandas.StringDtype(), "bitErrBucketArray36": pandas.StringDtype(), "bitErrBucketArray37": pandas.StringDtype(), "bitErrBucketArray38": pandas.StringDtype(), "bitErrBucketArray39": pandas.StringDtype(), "bitErrBucketArray40": pandas.StringDtype(), "bitErrBucketArray41": pandas.StringDtype(), "bitErrBucketArray42": pandas.StringDtype(), "bitErrBucketArray43": pandas.StringDtype(), "bitErrBucketArray44": pandas.StringDtype(), "bitErrBucketArray45": pandas.StringDtype(), "bitErrBucketArray46": pandas.StringDtype(), "bitErrBucketArray47": pandas.StringDtype(), "bitErrBucketArray48": pandas.StringDtype(), "bitErrBucketArray49": pandas.StringDtype(), "bitErrBucketArray50": pandas.StringDtype(), "bitErrBucketArray51": pandas.StringDtype(), "bitErrBucketArray52": pandas.StringDtype(), "bitErrBucketArray53": pandas.StringDtype(), "bitErrBucketArray54": pandas.StringDtype(), "bitErrBucketArray55": pandas.StringDtype(), "bitErrBucketArray56": pandas.StringDtype(), "bitErrBucketArray57": pandas.StringDtype(), "bitErrBucketArray58": pandas.StringDtype(), "bitErrBucketArray59": pandas.StringDtype(), "bitErrBucketArray60": pandas.StringDtype(), "bitErrBucketArray61": pandas.StringDtype(), "bitErrBucketArray62": pandas.StringDtype(), "bitErrBucketArray63": pandas.StringDtype(), "bitErrBucketArray64": pandas.StringDtype(), "bitErrBucketArray65": pandas.StringDtype(), "bitErrBucketArray66": pandas.StringDtype(), "bitErrBucketArray67": pandas.StringDtype(), "bitErrBucketArray68": pandas.StringDtype(), "bitErrBucketArray69": pandas.StringDtype(), "bitErrBucketArray70": pandas.StringDtype(), "bitErrBucketArray71": pandas.StringDtype(), "bitErrBucketArray72": pandas.StringDtype(), "bitErrBucketArray73": pandas.StringDtype(), "bitErrBucketArray74": pandas.StringDtype(), "bitErrBucketArray75": pandas.StringDtype(), "bitErrBucketArray76": pandas.StringDtype(), "bitErrBucketArray77": pandas.StringDtype(), "bitErrBucketArray78": pandas.StringDtype(), "bitErrBucketArray79": pandas.StringDtype(), "bitErrBucketArray80": pandas.StringDtype(), "mrr_successDistribution1": pandas.StringDtype(), "mrr_successDistribution2": pandas.StringDtype(), "mrr_successDistribution3": pandas.StringDtype(), "mrr_successDistribution4": pandas.StringDtype(), "mrr_successDistribution5":
pandas.StringDtype()
pandas.StringDtype
from pandas_datareader import data import matplotlib.pyplot as plt import pandas as pd import datetime as dt import urllib.request, json import os import numpy as np import tensorflow as tf # This code has been tested with TensorFlow 1.6 from sklearn.preprocessing import MinMaxScaler import sys ds = None if (len(sys.argv) < 2): ds = 'kaggle' elif (len(sys.argv) == 2): if ((sys.argv[1] == "-k") or (sys.argv[1] == '--kaggle')): ds = 'kaggle' elif ((sys.argv[1] == "-a") or (sys.argv[1] == '--alphavantage')): ds = 'alphavantage' else: exit(1) #print (ds) data_source = ds # alphavantage or kaggle if data_source == 'alphavantage': # ====================== Loading Data from Alpha Vantage ================================== # TODO: read from file api_key = '<KEY>' # TODO: make kwarg # American Airlines stock market prices ticker = "AAL" # JSON file with all the stock market data for AAL from the last 20 years url_string = "https://www.alphavantage.co/query?function=TIME_SERIES_DAILY&symbol=%s&outputsize=full&apikey=%s"%(ticker,api_key) # Save data to this file file_to_save = 'stock_market_data-%s.csv'%ticker # If you haven't already saved data, # Go ahead and grab the data from the url # And store date, low, high, volume, close, open values to a Pandas DataFrame if not os.path.exists(file_to_save): with urllib.request.urlopen(url_string) as url: data = json.loads(url.read().decode()) # extract stock market data data = data['Time Series (Daily)'] df =
pd.DataFrame(columns=['Date','Low','High','Close','Open'])
pandas.DataFrame
import pandas as pd import numpy as np import seaborn as sns from scipy import stats import matplotlib.pyplot as plt import os import re from sklearn.model_selection import train_test_split import random import scorecardpy as sc # split train into train data and test data # os.chdir(r'D:\GWU\Aihan\DATS 6103 Data Mining\Final Project\Code') def split_data(inpath, target_name, test_size): df = pd.read_csv(inpath) y = df[target_name] #x = df1.loc[:,df1.columns!='loan_default'] x=df.drop(target_name,axis=1) # set a random seed for the data, so that we could get the same train and test set random.seed(12345) X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=test_size, random_state=1, stratify=y) training = pd.concat([X_train, y_train], axis=1) testing = pd.concat([X_test, y_test], axis=1) return training, testing class PreProcessing(): def __init__(self, df): self.Title = "Preprocessing Start" self.df = df # checking the null value and drop the null value def Null_value(self): self.df.isnull().sum() self.df_new = self.df.dropna() return self.df_new # convert the format of 'AVERAGE.ACCT.AGE' and 'CREDIT.HISTORY.LENGTH' from 'xyrs xmon' to numbers that represent month. def find_number(self, text): num = re.findall(r'[0-9]+',text) return int(num[0])*12 + int(num[1]) def comvert_format(self, colname): colname_new = self.df[colname].apply(lambda x: self.find_number(x)) self.df[colname] = colname_new # convert categorical string to numbers def convert_cate_to_num(self, colname_list): for colname in colname_list: self.df[colname] = self.df[colname].astype('category') cat_columns = self.df.select_dtypes(['category']).columns self.df[cat_columns] = self.df[cat_columns].apply(lambda x: x.cat.codes) def format_date(self, colname_list): for colname in colname_list: self.df[colname] = pd.to_datetime(self.df[colname], format = "%d-%m-%y",infer_datetime_format=True) def format_age_disbursal(self): self.df['Date.of.Birth'] = self.df['Date.of.Birth'].where(self.df['Date.of.Birth'] < pd.Timestamp('now'), self.df['Date.of.Birth'] - np.timedelta64(100, 'Y')) self.df['Age'] = (pd.Timestamp('now') - self.df['Date.of.Birth']).astype('<m8[Y]').astype(int) self.df['Disbursal_months'] = ((pd.Timestamp('now') - self.df['DisbursalDate']) / np.timedelta64(1, 'M')).astype(int) def bin_cutpoint(self, target_name, colname_list): for colname in colname_list: bins_disbursed_amount = sc.woebin(self.df, y=target_name, x=[colname]) sc.woebin_plot(bins_disbursed_amount) pd.concat(bins_disbursed_amount) list_break = pd.concat(bins_disbursed_amount).breaks.astype('float').to_list() list_break.insert(0, float('-inf')) # list_break self.df[colname] =
pd.cut(self.df[colname], list_break)
pandas.cut
#! /usr/bin/env python3 import argparse import json import logging import logging.config import os import sys import time from concurrent import futures from datetime import datetime import numpy as np import pandas as pd from sklearn.externals import joblib from sklearn.preprocessing import StandardScaler import ServerSideExtension_pb2 as SSE import grpc from SSEData_churn import FunctionType, \ get_func_type from ScriptEval_churn import ScriptEval _ONE_DAY_IN_SECONDS = 60 * 60 * 24 # LOAD THE SCALER scaler = joblib.load('Scaler/scaler.sav') class ExtensionService(SSE.ConnectorServicer): """ A simple SSE-plugin created for the ARIMA example. """ def __init__(self, funcdef_file): """ Class initializer. :param funcdef_file: a function definition JSON file """ self._function_definitions = funcdef_file self.scriptEval = ScriptEval() if not os.path.exists('logs'): os.mkdir('logs') logging.config.fileConfig('logger.config') logging.info('Logging enabled') @property def function_definitions(self): """ :return: json file with function definitions """ return self._function_definitions @property def functions(self): """ :return: Mapping of function id and implementation """ return { 0: '_churn' } @staticmethod def _get_function_id(context): """ Retrieve function id from header. :param context: context :return: function id """ metadata = dict(context.invocation_metadata()) header = SSE.FunctionRequestHeader() header.ParseFromString(metadata['qlik-functionrequestheader-bin']) return header.functionId """ Implementation of added functions. """ @staticmethod def _churn(request, context): # Disable caching. md = (('qlik-cache', 'no-store'),) context.send_initial_metadata(md) # instantiate list modelName = None columnNames = None dataList = [] for request_rows in request: for row in request_rows.rows: # model name - only grab once as it is repeated if not modelName: modelName = '' modelName = 'Models/' + [d.strData for d in row.duals][0] + '.pkl' # column names - only grab once as it is repeated if not columnNames: columnNames = '' columnNames = [d.strData.replace('\\',' ').replace('[','').replace(']','') for d in row.duals][1] columnNames = columnNames.split('|') # pull duals from each row, and the strData from duals data = [d.strData.split('|') for d in row.duals][2] dataList.append(data) churn_df =
pd.DataFrame(dataList)
pandas.DataFrame
import boto3 import json import pandas as pd import numpy as np import random import re import os from global_variables import API_PARAMETERS_FILE from global_variables import print_green, print_yellow, print_red from global_variables import service_dict from global_variables import default_feature_list def read_api_calls_file(): with open(API_PARAMETERS_FILE, "r") as log_file: data = json.load(log_file) return data def call_api_with_auto_generated_parameters(api, method, debug=True): try: client = boto3.client(api) except ValueError as e: print_red(str(e)) api_calls = read_api_calls_file() # normal api calls api_methods = json.loads(api_calls[api]) if debug: print_green("Print list of methods belong to {0}".format(api)) for method in api_methods: print(method) response = None try: parameters = api_methods[method] valued_params = {} for parm in parameters: valued_params[parm] = "random-value" callable_api = getattr(client, method) print_yellow(valued_params) response = callable_api(**valued_params) if debug: print_yellow("Response after calling {0}.{1}:{2}".format(api,method,response)) except ValueError as e: print_red(str(e)) return response def assign_random_user(): """ 75% user with temporary credential 25% root """ rand = random.randint(4) if rand >= 1: user = "AssumedRole" else: user = "Root" return user def generate_api_calls_based_on_aws_cloudtrail_logs(log_file, number_of_replication, produce_random_sample=False): """ NOT TO USE THIS FUNCTION """ # read the log file collected_logs = pd.read_csv(log_file) columns = collected_logs.columns.tolist() # first col: method, second api:request parameters for log in collected_logs: print(log) for i in range(number_of_replication): user = assign_random_user() # region = assign_random_region() for feature in columns: call_api_with_auto_generated_parameters() class AWSLogAnalyzer(object): def __init__(self, log_file, log_dir, read_all_file=False): self.log_file = log_dir + log_file if read_all_file: self.log_df =
pd.read_csv(log_dir + log_file)
pandas.read_csv
from __future__ import (absolute_import, division, print_function, unicode_literals) import numpy as np import pandas as pd import statsmodels.api as sm from statsmodels.nonparametric.smoothers_lowess import lowess as smlowess from statsmodels.sandbox.regression.predstd import wls_prediction_std from statsmodels.stats.outliers_influence import summary_table import scipy.stats as stats import datetime date_types = ( pd.Timestamp, pd.DatetimeIndex, pd.Period, pd.PeriodIndex, datetime.datetime, datetime.time ) _isdate = lambda x: isinstance(x, date_types) SPAN = 2 / 3. ALPHA = 0.05 # significance level for confidence interval def _snakify(txt): txt = txt.strip().lower() return '_'.join(txt.split()) def _plot_friendly(value): if not isinstance(value, (np.ndarray, pd.Series)): value = pd.Series(value) return value def lm(x, y, alpha=ALPHA): "fits an OLS from statsmodels. returns tuple." x_is_date = _isdate(x.iloc[0]) if x_is_date: x = np.array([i.toordinal() for i in x]) X = sm.add_constant(x) fit = sm.OLS(y, X).fit() prstd, iv_l, iv_u = wls_prediction_std(fit) _, summary_values, summary_names = summary_table(fit, alpha=alpha) df = pd.DataFrame(summary_values, columns=map(_snakify, summary_names)) # TODO: indexing w/ data frame is messing everything up fittedvalues = df['predicted_value'].values predict_mean_ci_low = df['mean_ci_95%_low'].values predict_mean_ci_upp = df['mean_ci_95%_upp'].values predict_ci_low = df['predict_ci_95%_low'].values predict_ci_upp = df['predict_ci_95%_upp'].values if x_is_date: x = [pd.Timestamp.fromordinal(int(i)) for i in x] return x, fittedvalues, predict_mean_ci_low, predict_mean_ci_upp def lowess(x, y, span=SPAN): "returns y-values estimated using the lowess function in statsmodels." """ for more see statsmodels.nonparametric.smoothers_lowess.lowess """ x, y = map(_plot_friendly, [x,y]) x_is_date = _isdate(x.iloc[0]) if x_is_date: x = np.array([i.toordinal() for i in x]) result = smlowess(np.array(y), np.array(x), frac=span) x = pd.Series(result[::,0]) y = pd.Series(result[::,1]) lower, upper = stats.t.interval(span, len(x), loc=0, scale=2) std = np.std(y) y1 = pd.Series(lower * std + y) y2 =
pd.Series(upper * std + y)
pandas.Series
from datetime import datetime import pandas as pd import pytest def test_params_1(): d1 = { "PIDN": [1, 1, 3], "DCDate": [datetime(2001, 3, 2), datetime(2001, 3, 2), datetime(2001, 8, 1)], "Col1": [7, 7, 9], } primary =
pd.DataFrame(data=d1)
pandas.DataFrame
import csv import os import pandas as pd import math import numpy as np POIEdges = {'Sathorn_Thai_1': ['L197#1', 'L197#2'], 'Sathorn_Thai_2': ['L30', 'L58#1', 'L58#2'], 'Charoenkrung_1': ['L30032'], 'Charoenkrung_2': ['L60', 'L73', 'L10149#1', 'L10149#2'], 'Charoenkrung_3': ['L67'], 'Silom_1': ['L138'], 'Silom_2': ['L133.25'], 'Silom_3': ['L49'], 'Mehasak': ['L64'], 'Surasak': ['L10130', 'L10189'], 'Charoen_Rat': ['L40'] } percentage = ['100%','1%','5%','10%','15%','20%','25%','30%','35%','40%','45%','50%'] resolution = ['1','5','10','15','20','25','30','35','40','45','50','55','60'] def createFileForMean(fileNo): # to get the current directory dirpath = 'c:/RetrieveOnly100%DATAFROMSUMO_RANDOMSEED(One time)-DATASET-WithoutReplicatedVID' os.mkdir(dirpath + '/' + str(fileNo) + '/statistics') for time_resolution in resolution: myfile1 = open( dirpath + '/'+str(fileNo)+'/statistics/' + str(time_resolution) + '_mean.csv', 'w', newline='') writer1 = csv.writer(myfile1) #print(len(percentage)) heading = ["Road Name",*percentage] writer1.writerow(heading) myfile1.close() def createFileForStd(fileNo): # to get the current directory dirpath = 'c:/RetrieveOnly100%DATAFROMSUMO_RANDOMSEED(One time)-DATASET-WithoutReplicatedVID' for freq in resolution: myfile1 = open( dirpath + '/'+str(fileNo)+'/statistics/' + str(freq) + '_std.csv', 'w', newline='') writer1 = csv.writer(myfile1) # print(len(percentage)) heading = ["Road Name", *percentage] writer1.writerow(heading) myfile1.close() def parseFloat(str): try: return float(str) except: str = str.strip() if str.endswith("%"): return float(str.strip("%").strip()) / 100 raise Exception("Don't know how to parse %s" % str) def statisticsForResolution_And_Percentage(fileNo): dirpath = 'c:/RetrieveOnly100%DATAFROMSUMO_RANDOMSEED(One time)-DATASET-WithoutReplicatedVID' ############################################### #https://www.geeksforgeeks.org/program- mplement-standard-error-mean/ # arr[] = {78.53, 79.62, 80.25, 81.05, 83.21, 83.46} # mean = (78.53 + 79.62 + 80.25 + 81.05 + 83.21 + 83.46) / 6 # = 486.12 / 6 # = 81.02 # Sample Standard deviation = sqrt((78.53 – 81.02) # 2 + (79.62 - 81.02) # 2 + ... # + (83.46 – 81.02) # 2 / (6 – 1)) # = sqrt(19.5036 / 5) # = 1.97502 # Standard error of mean = 1.97502 / sqrt(6) # = 0.8063 ############################################### for time_resolution in resolution: for edge, value in POIEdges.items(): meanSpeed = [] std = [] for pcent in percentage: path = dirpath + '/'+str(fileNo)+'/' + edge + '_' + time_resolution + '_' + pcent + '.csv' if (os.path.exists(path)): link_df = pd.read_csv(path) meanSpeed.append(link_df['Mean Speed (km/h)'].mean()) std.append(link_df['Mean Speed (km/h)'].std()) myfile = open( dirpath + '/'+str(fileNo)+'/statistics/' + str(time_resolution) + '_mean.csv', 'a', newline='') writer = csv.writer(myfile) with myfile: writer.writerow([edge, *meanSpeed]) myfile.close() myfile = open( dirpath + '/'+str(fileNo)+'/statistics/' + str(time_resolution) + '_std.csv', 'a', newline='') writer = csv.writer(myfile) with myfile: writer.writerow([edge, *std]) myfile.close() def stasticsforLoop(fileNo): dirpath = 'c:/RetrieveOnly100%DATAFROMSUMO_RANDOMSEED(One time)-DATASET-WithoutReplicatedVID' for time_resolution in resolution: ###################for standard deviation############################### temp_1 =[] temp_1.append('Mean of standard deviation for all edges') temp_2 = [] temp_2.append('Standard Error of Mean') path = dirpath + '/'+str(fileNo)+'/statistics/' + str(time_resolution) + '_std.csv' if (os.path.exists(path)): road_df = pd.read_csv(path) for column in (list(road_df)): if column !='Road Name': #print('Number of roads :', len(road_df)) temp_1.append(road_df[column].sum()/len(road_df)) # Mean of standard deviation for all edges percent = parseFloat(column) #print(time_resolution,column, road_df[column].sum()) #print(len(road_df)) temp_2.append((road_df[column].sum()/len(road_df))/math.sqrt(percent))# standard error of mean for all edges road_df.loc[len(road_df)] = temp_1 road_df.loc[len(road_df)+1] = temp_2 road_df.to_csv(dirpath + '/'+str(fileNo)+'/statistics/' + str(time_resolution) + '_std.csv', index=False) ##################for mean ############################### temp = [] temp.append('Mean Speed for all edges') path = dirpath + '/'+str(fileNo)+'/statistics/' + str(time_resolution) + '_mean.csv' if (os.path.exists(path)): road_df = pd.read_csv(path) for column in (list(road_df)): if column != 'Road Name': temp.append(road_df[column].sum() / len(road_df)) road_df.loc[len(road_df)] = temp road_df.to_csv(dirpath + '/'+str(fileNo)+'/statistics/' + str(time_resolution) + '_mean.csv', index=False) def readTotal(fileNo): dirpath = 'c:/RetrieveOnly100%DATAFROMSUMO_RANDOMSEED(One time)-DATASET-WithoutReplicatedVID' ####################for mean ########################################### myfile1 = open( dirpath + '/'+str(fileNo)+'/statistics/All_mean.csv', 'w', newline='') writer1 = csv.writer(myfile1) heading = ["Time Resolution",*percentage] writer1.writerow(heading) for time_resolution in resolution: temp =[] path = dirpath + '/'+str(fileNo)+'/statistics/' + str(time_resolution) + '_mean.csv' if (os.path.exists(path)): time_df = pd.read_csv(path) temp = time_df.iloc[-1,:].values.tolist() #print(temp) temp.pop(0) writer1.writerow([time_resolution,*temp]) myfile1.close() ##################for standard deviation ################################# myfile1 = open( dirpath + '/'+str(fileNo)+'/statistics/All_std.csv', 'w', newline='') writer1 = csv.writer(myfile1) heading = ["Time Resolution", *percentage] writer1.writerow(heading) for time_resolution in resolution: temp = [] path = dirpath + '/'+str(fileNo)+'/statistics/' + str(time_resolution) + '_std.csv' if (os.path.exists(path)): time_df = pd.read_csv(path) temp = time_df.iloc[-2,:].values.tolist() temp.pop(0) writer1.writerow([time_resolution,*temp]) myfile1.close() ###################for standard error of mean################################################ myfile1 = open( dirpath + '/'+str(fileNo)+'/statistics/All_stdError.csv', 'w', newline='') writer1 = csv.writer(myfile1) heading = ["Time Resolution", *percentage] writer1.writerow(heading) for time_resolution in resolution: temp = [] path = dirpath + '/'+str(fileNo)+'/statistics/' + str(time_resolution) + '_std.csv' if (os.path.exists(path)): time_df = pd.read_csv(path) temp = time_df.iloc[-1, :].values.tolist() temp.pop(0) writer1.writerow([time_resolution, *temp]) myfile1.close() def plotAllMean(fileNo): import pandas as pd import matplotlib.pyplot as plt dirpath = 'c:/RetrieveOnly100%DATAFROMSUMO_RANDOMSEED(One time)-DATASET-WithoutReplicatedVID' path = dirpath + '/'+str(fileNo)+'/statistics/All_mean.csv' if (os.path.exists(path) ): mean_all_df = pd.read_csv(path) colors = ['#CB4335', '#808000', '#616A6B', '#009E73', '#ABB2B9', '#E69F00', '#800000'] #percentage.pop(0) names = percentage #https://stackoverflow.com/questions/29498652/plot-bar-graph-from-pandas-dataframe mean_df = mean_all_df.set_index("Time Resolution") ax = mean_df[[*names]].plot(kind='bar', figsize=(15, 10), legend=True, color=colors) ax.set_xlabel("Time resolution", fontsize=20, fontname='Times New Roman') ax.set_ylabel("Mean", fontsize=20, fontname='Times New Roman') ax.legend(loc='center left', bbox_to_anchor=(1, 0.5), prop={'family': 'Times New Roman', 'size': 20}) # plt.legend(prop={'family' :'Times New Roman'}) plt.xticks(fontsize=20, fontname='Times New Roman', rotation=0) plt.yticks(fontsize=20, fontname='Times New Roman') # plt.rcParams.update({'font.family':'Times New Roman'}) plt.tight_layout() plt.savefig( dirpath + '/'+str(fileNo)+'/statistics/All_mean.png', width=1800, height=500) def plotAllStd(fileNo): import pandas as pd import matplotlib.pyplot as plt dirpath = 'c:/RetrieveOnly100%DATAFROMSUMO_RANDOMSEED(One time)-DATASET-WithoutReplicatedVID' path = dirpath + '/'+str(fileNo)+'/statistics/All_std.csv' if (os.path.exists(path)): std_all_df = pd.read_csv(path) #colors = ['#E69F00', '#56B4E9', '#F0E442', '#009E73', '#D55E00', '#2E4053', '#0000FF'] colors = ['#CB4335', '#808000', '#616A6B', '#009E73', '#ABB2B9', '#E69F00', '#0000FF'] #percentage.pop(0) names = percentage #https://stackoverflow.com/questions/29498652/plot-bar-graph-from-pandas-dataframe df = std_all_df.set_index("Time Resolution") ax = df[[*names]].plot(kind='bar', figsize=(15, 10), legend=True, color=colors) ax.set_xlabel("Time resolution", fontsize=20, fontname='Times New Roman') ax.set_ylabel("Standard deviation", fontsize=20, fontname='Times New Roman') ax.legend(loc='center left', bbox_to_anchor=(1, 0.5), prop={'family': 'Times New Roman', 'size': 20}) # plt.legend(prop={'family' :'Times New Roman'}) plt.xticks(fontsize=20, fontname='Times New Roman', rotation=0) plt.yticks(fontsize=20, fontname='Times New Roman') # plt.rcParams.update({'font.family':'Times New Roman'}) plt.tight_layout() plt.savefig( dirpath + '/'+str(fileNo)+'/statistics/All_std.png', width=1800, height=500) def plotAllStandardErrorOfMean(fileNo): import pandas as pd import matplotlib.pyplot as plt dirpath = 'c:/RetrieveOnly100%DATAFROMSUMO_RANDOMSEED(One time)-DATASET-WithoutReplicatedVID' path = dirpath + '/'+str(fileNo)+'/statistics/All_stdError.csv' if (os.path.exists(path)): stderror_all_df = pd.read_csv(path) #colors = ['#E69F00', '#56B4E9', '#F0E442', '#009E73', '#D55E00', '#2E4053', '#0000FF'] #colors = ['#CB4335', '#808000', '#616A6B', '#009E73', '#ABB2B9', '#E69F00', '#0000FF'] colors = ['#FFA07A', '#FF7F50', '#FFFFE0', '#98FB98', '#E0FFFF', '#B0E0E6', '#E6E6FA', '#FFC0CB', '#F0FFF0', '#DCDCDC', '#8B0000', '#FF8C00', '#FFFF00', '#6B8E23', '#008080', '#483D8B', '#4B0082', '#C71585', '#000000', '#800000'] names = percentage #https://stackoverflow.com/questions/29498652/plot-bar-graph-from-pandas-dataframe df = stderror_all_df.set_index("Time Resolution") ax = df[[*names]].plot(kind='bar',figsize=(15, 10), legend=True, color=colors) ax.set_xlabel("Time Resolution", fontsize=20, fontname ='Times New Roman') ax.set_ylabel("Standard Error of Mean", fontsize=20, fontname ='Times New Roman') ax.legend(loc='center left', bbox_to_anchor=(1, 0.5),prop={'family' :'Times New Roman','size':20}) #plt.legend(prop={'family' :'Times New Roman'}) plt.xticks(fontsize=20, fontname = 'Times New Roman',rotation=0) plt.yticks(fontsize=20,fontname = 'Times New Roman') #plt.rcParams.update({'font.family':'Times New Roman'}) plt.tight_layout() plt.savefig( dirpath + '/'+str(fileNo)+'/statistics/All_stdError.png', width=1800, height=500) def plotLineChart_AllStandardErrorOfMean(fileNo): import pandas as pd import matplotlib.pyplot as plt dirpath = 'c:/RetrieveOnly100%DATAFROMSUMO_RANDOMSEED(One time)-DATASET-WithoutReplicatedVID' path = dirpath + '/'+str(fileNo)+'/statistics/All_stdError.csv' if (os.path.exists(path)): stderror_all_df = pd.read_csv(path) #colors = ['#E69F00', '#56B4E9', '#F0E442', '#009E73', '#D55E00', '#2E4053', '#0000FF'] #colors = ['#CB4335', '#808000', '#616A6B', '#009E73', '#ABB2B9', '#E69F00', '#0000FF'] colors =['#FFA07A','#FF7F50','#FFFFE0','#98FB98','#E0FFFF','#B0E0E6','#E6E6FA','#FFC0CB', '#F0FFF0','#DCDCDC','#8B0000','#FF8C00', '#FFFF00', '#6B8E23', '#008080', '#483D8B', '#4B0082', '#C71585', '#000000', '#800000'] names = percentage #https://stackoverflow.com/questions/29498652/plot-bar-graph-from-pandas-dataframe df = stderror_all_df.set_index("Time Resolution") ax = df[[*names]].plot(kind='line',figsize=(15, 10), legend=True, color=colors) ax.set_xlabel("Time Resolution", fontsize=20, fontname ='Times New Roman') ax.set_ylabel("Standard Error of Mean", fontsize=20, fontname ='Times New Roman') ax.legend(loc='center left', bbox_to_anchor=(1, 0.5),prop={'family' :'Times New Roman','size':20}) #plt.legend(prop={'family' :'Times New Roman'}) plt.xticks(fontsize=20, fontname = 'Times New Roman',rotation=0) plt.yticks(fontsize=20,fontname = 'Times New Roman') #plt.rcParams.update({'font.family':'Times New Roman'}) plt.tight_layout() plt.savefig( dirpath + '/'+str(fileNo)+'/statistics/All_stdError_Line.png', width=1800, height=500) ################################################################ def diff(first, second): second = set(second) return [item for item in first if item not in second] # def detectionMetric(): # dirpath = 'c:/RetrieveOnly100%DATAFROMSUMO_RANDOMSEED(One time)-DATASET-WithoutReplicatedVID' # resolution = ['60'] # # myfile1 = open( # dirpath + '/'+str(fileNo)+'/statistics/detectionMetric.csv', 'w', newline='') # writer1 = csv.writer(myfile1) # # print(len(percentage)) # heading = ["Samples","NDPG","NTPG","NPFA","NTPA","DR_PG","FAR_PG","NDG","NTG","NFA","NTA","DR_G","FAR_G"] # writer1.writerow(heading) # # ############################# # #NTPG = Number of total potential gridlock # #NDPG = Number of detected potential gridlock # #NTPA = Number of total potential gridlock alarm # #NPFA = Number of potential gridlock false alarm # #DR_PG = Detected rate of potential gridlock # #FAR_PG = False alarm rate of potential gridlock # # # NTG = Number of total gridlock # # NDG = Number of detected gridlock # # NTA = Number of total gridlock alarm # # NFA = Number of gridlock false alarm # # DR_G = Detected rate of gridlock # # FAR_G = False alarm rate of gridlock # ############################# # # actual_data = pd.read_csv(dirpath + '/'+str(fileNo)+'/cluster/60_100%_AllCluster.csv') # # # NTPG_list = actual_data[actual_data['Gridlock']==1] # #print(NTPG_list) # NTPG = len(NTPG_list) # actual_potential_Index = actual_data.query('Gridlock == 1').index.tolist() # # # NTG_list = actual_data[actual_data['Gridlock']==2] # NTG = len(NTG_list) # actual_gridlock_Index = actual_data.query('Gridlock == 2').index.tolist() # # # # for time_resolution in resolution: # #percentage.pop(0) # #print(percentage) # # for pcent in percentage: # predicted_data = pd.read_csv(dirpath + '/'+str(fileNo)+'/cluster/' + time_resolution + '_' + pcent + '_AllCluster.csv') # # ####################### for potential gridlock #################### # predicted_potential_Index = predicted_data.query('Gridlock == 1').index.tolist() # NDPG = len(set(actual_potential_Index) & set(predicted_potential_Index)) # NTPA = len(predicted_potential_Index) # NPFA = len(diff(predicted_potential_Index,actual_potential_Index)) # # DR_PG = 0 # FAR_PG = 0 # # if NTPG !=0 and NTPA !=0: # DR_PG = (NDPG/NTPG) *100 # FAR_PG = (NPFA/NTPA) *100 # # # #####################for gridlock ################################# # predicted_gridlock_Index = predicted_data.query('Gridlock == 2').index.tolist() # NDG = len(set(actual_gridlock_Index) & set(predicted_gridlock_Index)) # NTA = len(predicted_gridlock_Index) # NFA = len(diff(predicted_gridlock_Index, actual_gridlock_Index)) # # DR_G = 0 # FAR_G = 0 # # if NTG != 0 and NTA != 0: # DR_G = (NDG / NTG) * 100 # FAR_G = (NFA / NTA) * 100# # ##################writing file##################### # writer1.writerow([pcent,NDPG,NTPG,NPFA,NTPA,DR_PG,FAR_PG,NDG,NTG,NFA,NTA,DR_G,FAR_G]) # # myfile1.close() def detectionMetricForEachLabel(fileNo): dirpath = 'c:/RetrieveOnly100%DATAFROMSUMO_RANDOMSEED(One time)-DATASET-WithoutReplicatedVID' resolution = ['60'] # To evaluate gridlock detection, I use only 60s time resoultion with various sample size for label in range(5): myfile1 = open( dirpath + '/'+str(fileNo)+'/statistics/detectionMetricForLabel_'+str(label+1)+'.csv', 'w', newline='') writer1 = csv.writer(myfile1) # print(len(percentage)) heading = ["Samples","ND_"+str(label+1),"NT_"+str(label+1),"NFA_"+str(label+1),"NTA_"+str(label+1),"DR_"+str(label+1),"FAR_"+str(label+1)] writer1.writerow(heading) ############################################ # NT = Number of total respective level # ND = Number of detected respective level # NTA = Number of total respective alarm # NFA = Number of respective false alarm # DR = Detected rate of respective level # FAR = False alarm rate of respective level ############################################ actual_data = pd.read_csv(dirpath + '/'+str(fileNo)+'/cluster/60_100%_AllCluster.csv') NT_list = actual_data[actual_data['Gridlock']==(label+1)] NT = len(NT_list) actual_Index = actual_data[actual_data['Gridlock'] ==(label+1)].index.tolist() for time_resolution in resolution: for pcent in percentage: predicted_data = pd.read_csv(dirpath + '/'+str(fileNo)+'/cluster/' + time_resolution + '_' + pcent + '_AllCluster.csv') ################################################# predicted_Index = predicted_data[predicted_data['Gridlock'] ==(label+1)].index.tolist() ND = len(set(actual_Index) & set(predicted_Index)) NTA = len(predicted_Index) NFA = len(diff(predicted_Index,actual_Index)) DR = 0 FAR = 0 if NT!=0 and NTA !=0: DR = (ND/NT) *100 FAR = (NFA/NTA) *100 ##################writing file#################### writer1.writerow([pcent,ND,NT,NFA,NTA,DR,FAR]) myfile1.close() def plotDetectionRate(fileNo): import pandas as pd import matplotlib.pyplot as plt dirpath = 'c:/RetrieveOnly100%DATAFROMSUMO_RANDOMSEED(One time)-DATASET-WithoutReplicatedVID' for label in range(5): path = dirpath + '/'+str(fileNo)+'/statistics/detectionMetricForLabel_'+str(label+1)+'.csv' if (os.path.exists(path)): all_df = pd.read_csv(path) #colors = ['#616A6B','#ABB2B9'] colors = ['#616A6B'] #names = ["DR_PG", "DR_G"] names = ["DR_"+str(label+1)] #https://stackoverflow.com/questions/29498652/plot-bar-graph-from-pandas-dataframe df = all_df.set_index("Samples") ax = df[[*names]].plot(kind='bar',figsize=(15, 10), legend=True, color=colors, width =0.8) ax.set_xlabel("Data Samples", fontsize=20, fontname ='Times New Roman') ax.set_ylabel("Detection Rate (%)", fontsize=20, fontname ='Times New Roman') ax.legend(loc='center left', bbox_to_anchor=(1, 0.5),prop={'family' :'Times New Roman','size':20}) ################################################################################ #https://robertmitchellv.com/blog-bar-chart-annotations-pandas-mpl.html # create a list to collect the plt.patches data totals = [] # find the values and append to list for i in ax.patches: totals.append(i.get_height()) # set individual bar lables using above list for i in ax.patches: # get_x pulls left or right; get_height pushes up or down ax.text(i.get_x() - .001, i.get_height() + .5, \ str(int(round((i.get_height())))) + '%', fontsize=10, color='red') ################################################################################ #plt.legend(prop={'family' :'Times New Roman'}) plt.xticks(fontsize=20, fontname = 'Times New Roman',rotation=0) plt.yticks(fontsize=20,fontname = 'Times New Roman') #plt.rcParams.update({'font.family':'Times New Roman'}) plt.tight_layout() plt.savefig( dirpath + '/'+str(fileNo)+'/statistics/DetectionRate_'+str(label+1)+'_.png', width=1800, height=500) def plotFalseAlarmRate(fileNo): import pandas as pd import matplotlib.pyplot as plt dirpath = 'c:/RetrieveOnly100%DATAFROMSUMO_RANDOMSEED(One time)-DATASET-WithoutReplicatedVID' for label in range(5): # print('False Alarm rate for class label :'+str(label+1)) path = dirpath + '/'+str(fileNo)+'/statistics/detectionMetricForLabel_'+str(label+1)+'.csv' if (os.path.exists(path)): all_df = pd.read_csv(path) #colors = ['#009E73', '#E69F00'] colors = ['#009E73'] #names = ["FAR_PG","FAR_G"] names = ["FAR_"+str(label+1)] #https://stackoverflow.com/questions/29498652/plot-bar-graph-from-pandas-dataframe df = all_df.set_index("Samples") ax = df[[*names]].plot(kind='bar',figsize=(15, 10), legend=True, color=colors, width =0.8) ax.set_xlabel("Data Samples", fontsize=20, fontname ='Times New Roman') ax.set_ylabel("False Alarm Rate (%)", fontsize=20, fontname ='Times New Roman') ax.legend(loc='center left', bbox_to_anchor=(1, 0.5),prop={'family' :'Times New Roman','size':20}) ################################################################################ #https://robertmitchellv.com/blog-bar-chart-annotations-pandas-mpl.html # create a list to collect the plt.patches data totals = [] # find the values and append to list for i in ax.patches: totals.append(i.get_height()) # set individual bar lables using above list for i in ax.patches: # get_x pulls left or right; get_height pushes up or down ax.text(i.get_x() - .001, i.get_height() + .5, \ str(int(round((i.get_height())))) + '%', fontsize=10, color='red') ################################################################################ #plt.legend(prop={'family' :'Times New Roman'}) plt.xticks(fontsize=20, fontname = 'Times New Roman',rotation=0) plt.yticks(fontsize=20,fontname = 'Times New Roman') #plt.rcParams.update({'font.family':'Times New Roman'}) plt.tight_layout() plt.savefig( dirpath + '/'+str(fileNo)+'/statistics/FalseAlarmRate_'+str(label+1)+'_.png', width=1800, height=500) #======================================================================================== def StandardErrorofMeanforEachEdge_TimeResolutionFileIndex(): # In my dataset, I used edge and road interchangeably, but both are same. dirpath = 'c:/RetrieveOnly100%DATAFROMSUMO_RANDOMSEED(One time)-DATASET-WithoutReplicatedVID' for time_resolution in resolution: temp_df = pd.DataFrame() temp_df['Road Name']= POIEdges.keys() for pcent in percentage: temp_1 = list() for edge, value in POIEdges.items(): percent = parseFloat(pcent) temp_2 = list() for fileNo in range(1, 101): path = dirpath + '/' + str(fileNo) + '/statistics/' + time_resolution + '_std.csv' if (os.path.exists(path)): df = pd.read_csv(path) #print(df[df['Road Name'] == edge][pcent].values[0]) temp_2.append(df[df['Road Name'] == edge][pcent].values/math.sqrt(percent)) # standard error of mean of speed of vehicles on this edge temp_1.append(np.mean(temp_2)) temp_df[pcent] = temp_1 temp_df.to_csv(dirpath + '/StandardErrorOfMeanForAllEdges/' + str(time_resolution) + '_std_ForAllEdges.csv', index=False) def plotStandardErrorOfMeanForEachLink_TimeResolutionFileIndex(): import pandas as pd import matplotlib.pyplot as plt dirpath = 'c:/RetrieveOnly100%DATAFROMSUMO_RANDOMSEED(One time)-DATASET-WithoutReplicatedVID/' print(dirpath) percentage.pop(0) for time_resoultion in resolution: path = dirpath + '/StandardErrorOfMeanForAllEdges/StandardErrorOfMeanForEachLink_TimeResolutionFileIndex/'+str(time_resoultion)+'_std_ForAllEdges.csv' if (os.path.exists(path)): stderror_all_df = pd.read_csv(path) colors = ['#CD5C5C', '#808080', '#808000', '#0000FF', '#000080', '#BDB76B', '#3CB371', '#D8BFD8'] names = percentage #https://stackoverflow.com/questions/29498652/plot-bar-graph-from-pandas-dataframe df = stderror_all_df.set_index("Road Name") #print(df) ax = df[[*names]].plot(kind='bar',figsize=(15, 10), legend=True, color=colors) ax.set_xlabel("Link Name", fontsize=20, fontname ='Times New Roman') ax.set_ylabel("Standard Error of Mean", fontsize=20, fontname ='Times New Roman') ax.legend(title = "Samples", loc='center left', bbox_to_anchor=(1, 0.5),prop={'family' :'Times New Roman','size':20}) #plt.legend(prop={'family' :'Times New Roman'}) plt.xticks(fontsize=20, fontname = 'Times New Roman',rotation=90) plt.yticks(fontsize=20,fontname = 'Times New Roman') plt.title('Standard Error of Mean Speed of Vehicles on each Link with time resoultion '+time_resoultion +'s',fontsize=20, fontname='Times New Roman') #plt.rcParams.update({'font.family':'Times New Roman'}) plt.tight_layout() plt.savefig(dirpath + '/StandardErrorOfMeanForAllEdges/' + str(time_resoultion) + '_std_ForAllEdges.png', width=1800, height=500) def StandardErrorofMeanforEachEdge_SamplesFileIndex(): # In my dataset, I used edge and road interchangeably, but both are same. dirpath = 'c:/RetrieveOnly100%DATAFROMSUMO_RANDOMSEED(One time)-DATASET-WithoutReplicatedVID' for pcent in percentage: temp_df = pd.DataFrame() temp_df['Road Name']= POIEdges.keys() for time_resolution in resolution: temp_1 = list() for edge, value in POIEdges.items(): percent = parseFloat(pcent) temp_2 = list() for fileNo in range(1, 101): path = dirpath + '/' + str(fileNo) + '/statistics/' + time_resolution + '_std.csv' if (os.path.exists(path)): df = pd.read_csv(path) #print(df[df['Road Name'] == edge][pcent].values[0]) temp_2.append(df[df['Road Name'] == edge][pcent].values/math.sqrt(percent)) # standard error of mean of speed of vehicles on this edge temp_1.append(np.mean(temp_2)) temp_df[time_resolution] = temp_1 temp_df.to_csv(dirpath + '/StandardErrorOfMeanForAllEdges/' + str(pcent) + '_std_ForAllEdges.csv', index=False) def plotStandardErrorOfMeanForEachLink_SamplesFileIndex(): import pandas as pd import matplotlib.pyplot as plt dirpath = 'c:/RetrieveOnly100%DATAFROMSUMO_RANDOMSEED(One time)-DATASET-WithoutReplicatedVID/' percentage.insert(0,'100%') for pcent in percentage: path = dirpath + '/StandardErrorOfMeanForAllEdges/StandardErrorOfMeanForEachLink_SamplesFileIndex/'+pcent+'_std_ForAllEdges - Copy.csv' if (os.path.exists(path)): print(percentage) stderror_all_df =
pd.read_csv(path)
pandas.read_csv
#!/usr/bin/env python # -*- coding: utf-8 -*- """Tests for `hotelling` package.""" import pytest import numpy as np import pandas as pd from pandas.testing import assert_series_equal, assert_frame_equal from hotelling.stats import hotelling_t2 def test_hotelling_test_array_two_sample(): x = np.asarray([[23, 45, 15], [40, 85, 18], [215, 307, 60], [110, 110, 50], [65, 105, 24]]) y = np.asarray([[277, 230, 63], [153, 80, 29], [306, 440, 105], [252, 350, 175], [143, 205, 42]]) res = hotelling_t2(x, y) assert round(res[0], 4) == 11.1037 # T2 assert round(res[1], 4) == 2.7759 # F assert round(res[2], 5) == 0.15004 # p value def test_hotelling_test_df_two_sample(): x = pd.DataFrame([[23, 45, 15], [40, 85, 18], [215, 307, 60], [110, 110, 50], [65, 105, 24]]) y = pd.DataFrame([[277, 230, 63], [153, 80, 29], [306, 440, 105], [252, 350, 175], [143, 205, 42]]) res = hotelling_t2(x, y) assert round(res[0], 4) == 11.1037 # T2 assert round(res[1], 4) == 2.7759 # F assert round(res[2], 5) == 0.15004 # p value def test_hotelling_test_df_two_sample_no_bessel(): x = pd.DataFrame([[23, 45, 15], [40, 85, 18], [215, 307, 60], [110, 110, 50], [65, 105, 24]]) y = pd.DataFrame([[277, 230, 63], [153, 80, 29], [306, 440, 105], [252, 350, 175], [143, 205, 42]]) res = hotelling_t2(x, y, bessel=False) assert round(res[0], 4) == 11.1037 # T2 assert round(res[1], 4) == 2.2207 # F assert round(res[2], 5) == 0.17337 def test_nutrients_data_integrity_means_procedure(): df = pd.read_csv('data/nutrient.txt', delimiter=' ', skipinitialspace=True, index_col=0) res = df.describe().T assert (res['count'] == [737, 737, 737, 737, 737]).all() # mean assert_series_equal(res['mean'], pd.Series([624.0492537, 11.1298996, 65.8034410, 839.6353460, 78.9284464], name='mean', index=pd.Index(['calcium', 'iron', 'protein', 'a', 'c'], dtype='object')), check_less_precise=7) # for the next one, SAS displays 1633.54 for 'a' - that is an error, inconsistent. everything else is 7 digits # standard deviation assert_series_equal(res['std'], pd.Series([397.2775401, 5.9841905, 30.5757564, 1633.5398283, 73.5952721], name='std', index=pd.Index(['calcium', 'iron', 'protein', 'a', 'c'], dtype='object')), check_less_precise=7) # min assert_series_equal(res['min'], pd.Series([7.4400000, 0, 0, 0, 0], name='min', index=pd.Index(['calcium', 'iron', 'protein', 'a', 'c'], dtype='object')), check_less_precise=7) # max assert_series_equal(res['max'], pd.Series([2866.44, 58.6680000, 251.0120000, 34434.27, 433.3390000], name='max', index=pd.Index(['calcium', 'iron', 'protein', 'a', 'c'], dtype='object')), check_less_precise=7) def test_nutrient_data_corr_procedure(): df = pd.read_csv('data/nutrient.txt', delimiter=' ', skipinitialspace=True, index_col=0) # Covariance matrix cov = df.cov() assert_frame_equal(cov, pd.DataFrame([[157829.444, 940.089, 6075.816, 102411.127, 6701.616], [940.089, 35.811, 114.058, 2383.153, 137.672], [6075.816, 114.058, 934.877, 7330.052, 477.200], [102411.127, 2383.153, 7330.052, 2668452.371, 22063.249], [6701.616, 137.672, 477.200, 22063.249, 5416.264] ], index=
pd.Index(['calcium', 'iron', 'protein', 'a', 'c'], dtype='object')
pandas.Index
# This Python 3 environment comes with many helpful analytics libraries installed # It is defined by the kaggle/python Docker image: https://github.com/kaggle/docker-python # For example, here's several helpful packages to load import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import datetime # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session data_df=
pd.read_csv('/kaggle/input/hotel-booking-demand/hotel_bookings.csv')
pandas.read_csv
import pandas as pd from pandas import DataFrame import pandas._testing as tm class TestConcatSort: def test_concat_sorts_columns(self, sort): # GH-4588 df1 = DataFrame({"a": [1, 2], "b": [1, 2]}, columns=["b", "a"]) df2 = DataFrame({"a": [3, 4], "c": [5, 6]}) # for sort=True/None expected = DataFrame( {"a": [1, 2, 3, 4], "b": [1, 2, None, None], "c": [None, None, 5, 6]}, columns=["a", "b", "c"], ) if sort is False: expected = expected[["b", "a", "c"]] # default with tm.assert_produces_warning(None): result = pd.concat([df1, df2], ignore_index=True, sort=sort) tm.assert_frame_equal(result, expected) def test_concat_sorts_index(self, sort): df1 = DataFrame({"a": [1, 2, 3]}, index=["c", "a", "b"]) df2 = DataFrame({"b": [1, 2]}, index=["a", "b"]) # For True/None expected = DataFrame( {"a": [2, 3, 1], "b": [1, 2, None]}, index=["a", "b", "c"], columns=["a", "b"], ) if sort is False: expected = expected.loc[["c", "a", "b"]] # Warn and sort by default with tm.assert_produces_warning(None): result = pd.concat([df1, df2], axis=1, sort=sort) tm.assert_frame_equal(result, expected) def test_concat_inner_sort(self, sort): # https://github.com/pandas-dev/pandas/pull/20613 df1 = DataFrame( {"a": [1, 2], "b": [1, 2], "c": [1, 2]}, columns=["b", "a", "c"] ) df2 = DataFrame({"a": [1, 2], "b": [3, 4]}, index=[3, 4]) with tm.assert_produces_warning(None): # unset sort should *not* warn for inner join # since that never sorted result = pd.concat([df1, df2], sort=sort, join="inner", ignore_index=True) expected = DataFrame({"b": [1, 2, 3, 4], "a": [1, 2, 1, 2]}, columns=["b", "a"]) if sort is True: expected = expected[["a", "b"]] tm.assert_frame_equal(result, expected) def test_concat_aligned_sort(self): # GH-4588 df = DataFrame({"c": [1, 2], "b": [3, 4], "a": [5, 6]}, columns=["c", "b", "a"]) result = pd.concat([df, df], sort=True, ignore_index=True) expected = DataFrame( {"a": [5, 6, 5, 6], "b": [3, 4, 3, 4], "c": [1, 2, 1, 2]}, columns=["a", "b", "c"], ) tm.assert_frame_equal(result, expected) result = pd.concat( [df, df[["c", "b"]]], join="inner", sort=True, ignore_index=True ) expected = expected[["b", "c"]] tm.assert_frame_equal(result, expected) def test_concat_aligned_sort_does_not_raise(self): # GH-4588 # We catch TypeErrors from sorting internally and do not re-raise. df = DataFrame({1: [1, 2], "a": [3, 4]}, columns=[1, "a"]) expected = DataFrame({1: [1, 2, 1, 2], "a": [3, 4, 3, 4]}, columns=[1, "a"]) result = pd.concat([df, df], ignore_index=True, sort=True)
tm.assert_frame_equal(result, expected)
pandas._testing.assert_frame_equal
# pylint: disable=E1101,E1103,W0232 from datetime import datetime, timedelta from pandas.compat import range, lrange, lzip, u, zip import operator import re import nose import warnings import os import numpy as np from numpy.testing import assert_array_equal from pandas import period_range, date_range from pandas.core.index import (Index, Float64Index, Int64Index, MultiIndex, InvalidIndexError, NumericIndex) from pandas.tseries.index import DatetimeIndex from pandas.tseries.tdi import TimedeltaIndex from pandas.tseries.period import PeriodIndex from pandas.core.series import Series from pandas.util.testing import (assert_almost_equal, assertRaisesRegexp, assert_copy) from pandas import compat from pandas.compat import long import pandas.util.testing as tm import pandas.core.config as cf from pandas.tseries.index import _to_m8 import pandas.tseries.offsets as offsets import pandas as pd from pandas.lib import Timestamp class Base(object): """ base class for index sub-class tests """ _holder = None _compat_props = ['shape', 'ndim', 'size', 'itemsize', 'nbytes'] def verify_pickle(self,index): unpickled = self.round_trip_pickle(index) self.assertTrue(index.equals(unpickled)) def test_pickle_compat_construction(self): # this is testing for pickle compat if self._holder is None: return # need an object to create with self.assertRaises(TypeError, self._holder) def test_numeric_compat(self): idx = self.create_index() tm.assertRaisesRegexp(TypeError, "cannot perform __mul__", lambda : idx * 1) tm.assertRaisesRegexp(TypeError, "cannot perform __mul__", lambda : 1 * idx) div_err = "cannot perform __truediv__" if compat.PY3 else "cannot perform __div__" tm.assertRaisesRegexp(TypeError, div_err, lambda : idx / 1) tm.assertRaisesRegexp(TypeError, div_err, lambda : 1 / idx) tm.assertRaisesRegexp(TypeError, "cannot perform __floordiv__", lambda : idx // 1) tm.assertRaisesRegexp(TypeError, "cannot perform __floordiv__", lambda : 1 // idx) def test_boolean_context_compat(self): # boolean context compat idx = self.create_index() def f(): if idx: pass tm.assertRaisesRegexp(ValueError,'The truth value of a',f) def test_ndarray_compat_properties(self): idx = self.create_index() self.assertTrue(idx.T.equals(idx)) self.assertTrue(idx.transpose().equals(idx)) values = idx.values for prop in self._compat_props: self.assertEqual(getattr(idx, prop), getattr(values, prop)) # test for validity idx.nbytes idx.values.nbytes class TestIndex(Base, tm.TestCase): _holder = Index _multiprocess_can_split_ = True def setUp(self): self.indices = dict( unicodeIndex = tm.makeUnicodeIndex(100), strIndex = tm.makeStringIndex(100), dateIndex = tm.makeDateIndex(100), intIndex = tm.makeIntIndex(100), floatIndex = tm.makeFloatIndex(100), boolIndex = Index([True,False]), empty = Index([]), tuples = MultiIndex.from_tuples(lzip(['foo', 'bar', 'baz'], [1, 2, 3])) ) for name, ind in self.indices.items(): setattr(self, name, ind) def create_index(self): return Index(list('abcde')) def test_wrong_number_names(self): def testit(ind): ind.names = ["apple", "banana", "carrot"] for ind in self.indices.values(): assertRaisesRegexp(ValueError, "^Length", testit, ind) def test_set_name_methods(self): new_name = "This is the new name for this index" indices = (self.dateIndex, self.intIndex, self.unicodeIndex, self.empty) for ind in indices: original_name = ind.name new_ind = ind.set_names([new_name]) self.assertEqual(new_ind.name, new_name) self.assertEqual(ind.name, original_name) res = ind.rename(new_name, inplace=True) # should return None self.assertIsNone(res) self.assertEqual(ind.name, new_name) self.assertEqual(ind.names, [new_name]) #with assertRaisesRegexp(TypeError, "list-like"): # # should still fail even if it would be the right length # ind.set_names("a") with assertRaisesRegexp(ValueError, "Level must be None"): ind.set_names("a", level=0) # rename in place just leaves tuples and other containers alone name = ('A', 'B') ind = self.intIndex ind.rename(name, inplace=True) self.assertEqual(ind.name, name) self.assertEqual(ind.names, [name]) def test_hash_error(self): with tm.assertRaisesRegexp(TypeError, "unhashable type: %r" % type(self.strIndex).__name__): hash(self.strIndex) def test_new_axis(self): new_index = self.dateIndex[None, :] self.assertEqual(new_index.ndim, 2) tm.assert_isinstance(new_index, np.ndarray) def test_copy_and_deepcopy(self): from copy import copy, deepcopy for func in (copy, deepcopy): idx_copy = func(self.strIndex) self.assertIsNot(idx_copy, self.strIndex) self.assertTrue(idx_copy.equals(self.strIndex)) new_copy = self.strIndex.copy(deep=True, name="banana") self.assertEqual(new_copy.name, "banana") new_copy2 = self.intIndex.copy(dtype=int) self.assertEqual(new_copy2.dtype.kind, 'i') def test_duplicates(self): idx = Index([0, 0, 0]) self.assertFalse(idx.is_unique) def test_sort(self): self.assertRaises(TypeError, self.strIndex.sort) def test_mutability(self): self.assertRaises(TypeError, self.strIndex.__setitem__, 0, 'foo') def test_constructor(self): # regular instance creation tm.assert_contains_all(self.strIndex, self.strIndex) tm.assert_contains_all(self.dateIndex, self.dateIndex) # casting arr = np.array(self.strIndex) index = Index(arr) tm.assert_contains_all(arr, index) self.assert_numpy_array_equal(self.strIndex, index) # copy arr = np.array(self.strIndex) index = Index(arr, copy=True, name='name') tm.assert_isinstance(index, Index) self.assertEqual(index.name, 'name') assert_array_equal(arr, index) arr[0] = "SOMEBIGLONGSTRING" self.assertNotEqual(index[0], "SOMEBIGLONGSTRING") # what to do here? # arr = np.array(5.) # self.assertRaises(Exception, arr.view, Index) def test_constructor_corner(self): # corner case self.assertRaises(TypeError, Index, 0) def test_constructor_from_series(self): expected = DatetimeIndex([Timestamp('20110101'),Timestamp('20120101'),Timestamp('20130101')]) s = Series([Timestamp('20110101'),Timestamp('20120101'),Timestamp('20130101')]) result = Index(s) self.assertTrue(result.equals(expected)) result = DatetimeIndex(s) self.assertTrue(result.equals(expected)) # GH 6273 # create from a series, passing a freq s = Series(pd.to_datetime(['1-1-1990', '2-1-1990', '3-1-1990', '4-1-1990', '5-1-1990'])) result = DatetimeIndex(s, freq='MS') expected = DatetimeIndex(['1-1-1990', '2-1-1990', '3-1-1990', '4-1-1990', '5-1-1990'],freq='MS') self.assertTrue(result.equals(expected)) df = pd.DataFrame(np.random.rand(5,3)) df['date'] = ['1-1-1990', '2-1-1990', '3-1-1990', '4-1-1990', '5-1-1990'] result = DatetimeIndex(df['date'], freq='MS') # GH 6274 # infer freq of same result = pd.infer_freq(df['date']) self.assertEqual(result,'MS') def test_constructor_ndarray_like(self): # GH 5460#issuecomment-44474502 # it should be possible to convert any object that satisfies the numpy # ndarray interface directly into an Index class ArrayLike(object): def __init__(self, array): self.array = array def __array__(self, dtype=None): return self.array for array in [np.arange(5), np.array(['a', 'b', 'c']), date_range('2000-01-01', periods=3).values]: expected = pd.Index(array) result = pd.Index(ArrayLike(array)) self.assertTrue(result.equals(expected)) def test_index_ctor_infer_periodindex(self): xp = period_range('2012-1-1', freq='M', periods=3) rs = Index(xp) assert_array_equal(rs, xp) tm.assert_isinstance(rs, PeriodIndex) def test_constructor_simple_new(self): idx = Index([1, 2, 3, 4, 5], name='int') result = idx._simple_new(idx, 'int') self.assertTrue(result.equals(idx)) idx = Index([1.1, np.nan, 2.2, 3.0], name='float') result = idx._simple_new(idx, 'float') self.assertTrue(result.equals(idx)) idx = Index(['A', 'B', 'C', np.nan], name='obj') result = idx._simple_new(idx, 'obj') self.assertTrue(result.equals(idx)) def test_copy(self): i = Index([], name='Foo') i_copy = i.copy() self.assertEqual(i_copy.name, 'Foo') def test_view(self): i = Index([], name='Foo') i_view = i.view() self.assertEqual(i_view.name, 'Foo') def test_legacy_pickle_identity(self): # GH 8431 pth = tm.get_data_path() s1 = pd.read_pickle(os.path.join(pth,'s1-0.12.0.pickle')) s2 = pd.read_pickle(os.path.join(pth,'s2-0.12.0.pickle')) self.assertFalse(s1.index.identical(s2.index)) self.assertFalse(s1.index.equals(s2.index)) def test_astype(self): casted = self.intIndex.astype('i8') # it works! casted.get_loc(5) # pass on name self.intIndex.name = 'foobar' casted = self.intIndex.astype('i8') self.assertEqual(casted.name, 'foobar') def test_compat(self): self.strIndex.tolist() def test_equals(self): # same self.assertTrue(Index(['a', 'b', 'c']).equals(Index(['a', 'b', 'c']))) # different length self.assertFalse(Index(['a', 'b', 'c']).equals(Index(['a', 'b']))) # same length, different values self.assertFalse(Index(['a', 'b', 'c']).equals(Index(['a', 'b', 'd']))) # Must also be an Index self.assertFalse(Index(['a', 'b', 'c']).equals(['a', 'b', 'c'])) def test_insert(self): # GH 7256 # validate neg/pos inserts result = Index(['b', 'c', 'd']) #test 0th element self.assertTrue(Index(['a', 'b', 'c', 'd']).equals( result.insert(0, 'a'))) #test Nth element that follows Python list behavior self.assertTrue(Index(['b', 'c', 'e', 'd']).equals( result.insert(-1, 'e'))) #test loc +/- neq (0, -1) self.assertTrue(result.insert(1, 'z').equals( result.insert(-2, 'z'))) #test empty null_index = Index([]) self.assertTrue(Index(['a']).equals( null_index.insert(0, 'a'))) def test_delete(self): idx = Index(['a', 'b', 'c', 'd'], name='idx') expected = Index(['b', 'c', 'd'], name='idx') result = idx.delete(0) self.assertTrue(result.equals(expected)) self.assertEqual(result.name, expected.name) expected = Index(['a', 'b', 'c'], name='idx') result = idx.delete(-1) self.assertTrue(result.equals(expected)) self.assertEqual(result.name, expected.name) with tm.assertRaises((IndexError, ValueError)): # either depeidnig on numpy version result = idx.delete(5) def test_identical(self): # index i1 = Index(['a', 'b', 'c']) i2 = Index(['a', 'b', 'c']) self.assertTrue(i1.identical(i2)) i1 = i1.rename('foo') self.assertTrue(i1.equals(i2)) self.assertFalse(i1.identical(i2)) i2 = i2.rename('foo') self.assertTrue(i1.identical(i2)) i3 = Index([('a', 'a'), ('a', 'b'), ('b', 'a')]) i4 = Index([('a', 'a'), ('a', 'b'), ('b', 'a')], tupleize_cols=False) self.assertFalse(i3.identical(i4)) def test_is_(self): ind = Index(range(10)) self.assertTrue(ind.is_(ind)) self.assertTrue(ind.is_(ind.view().view().view().view())) self.assertFalse(ind.is_(Index(range(10)))) self.assertFalse(ind.is_(ind.copy())) self.assertFalse(ind.is_(ind.copy(deep=False))) self.assertFalse(ind.is_(ind[:])) self.assertFalse(ind.is_(ind.view(np.ndarray).view(Index))) self.assertFalse(ind.is_(np.array(range(10)))) # quasi-implementation dependent self.assertTrue(ind.is_(ind.view())) ind2 = ind.view() ind2.name = 'bob' self.assertTrue(ind.is_(ind2)) self.assertTrue(ind2.is_(ind)) # doesn't matter if Indices are *actually* views of underlying data, self.assertFalse(ind.is_(Index(ind.values))) arr = np.array(range(1, 11)) ind1 = Index(arr, copy=False) ind2 = Index(arr, copy=False) self.assertFalse(ind1.is_(ind2)) def test_asof(self): d = self.dateIndex[0] self.assertIs(self.dateIndex.asof(d), d) self.assertTrue(np.isnan(self.dateIndex.asof(d - timedelta(1)))) d = self.dateIndex[-1] self.assertEqual(self.dateIndex.asof(d + timedelta(1)), d) d = self.dateIndex[0].to_datetime() tm.assert_isinstance(self.dateIndex.asof(d), Timestamp) def test_asof_datetime_partial(self): idx =
pd.date_range('2010-01-01', periods=2, freq='m')
pandas.date_range
# -*- coding: utf-8 -*- """ Automated Tool for Optimized Modelling (ATOM) Author: Mavs Description: Module containing utility constants, functions and classes. """ # Standard packages import math import logging import numpy as np import pandas as pd from copy import copy from typing import Union from scipy import sparse from shap import Explainer from functools import wraps from collections import deque from datetime import datetime from inspect import signature from collections.abc import MutableMapping from sklearn.preprocessing import ( StandardScaler, MinMaxScaler, MaxAbsScaler, RobustScaler, ) from sklearn.ensemble import IsolationForest from sklearn.covariance import EllipticEnvelope from sklearn.neighbors import LocalOutlierFactor from sklearn.svm import OneClassSVM from sklearn.cluster import DBSCAN, OPTICS from sklearn.utils import _print_elapsed_time # Encoders from category_encoders.backward_difference import BackwardDifferenceEncoder from category_encoders.basen import BaseNEncoder from category_encoders.binary import BinaryEncoder from category_encoders.cat_boost import CatBoostEncoder from category_encoders.helmert import HelmertEncoder from category_encoders.james_stein import JamesSteinEncoder from category_encoders.leave_one_out import LeaveOneOutEncoder from category_encoders.m_estimate import MEstimateEncoder from category_encoders.ordinal import OrdinalEncoder from category_encoders.polynomial import PolynomialEncoder from category_encoders.sum_coding import SumEncoder from category_encoders.target_encoder import TargetEncoder from category_encoders.woe import WOEEncoder # Balancers from imblearn.under_sampling import ( CondensedNearestNeighbour, EditedNearestNeighbours, RepeatedEditedNearestNeighbours, AllKNN, InstanceHardnessThreshold, NearMiss, NeighbourhoodCleaningRule, OneSidedSelection, RandomUnderSampler, TomekLinks, ) from imblearn.over_sampling import ( ADASYN, BorderlineSMOTE, KMeansSMOTE, RandomOverSampler, SMOTE, SMOTENC, SMOTEN, SVMSMOTE, ) from imblearn.combine import SMOTEENN, SMOTETomek # Sklearn from sklearn.metrics import ( SCORERS, make_scorer, confusion_matrix, matthews_corrcoef, ) from sklearn.utils import _safe_indexing from sklearn.inspection._partial_dependence import ( _grid_from_X, _partial_dependence_brute, ) # Plotting import matplotlib.pyplot as plt from matplotlib.gridspec import GridSpec # Global constants ================================================= >> SEQUENCE = (list, tuple, np.ndarray, pd.Series) # Variable types SCALAR = Union[int, float] SEQUENCE_TYPES = Union[SEQUENCE] X_TYPES = Union[iter, dict, list, tuple, np.ndarray, sparse.spmatrix, pd.DataFrame] Y_TYPES = Union[int, str, SEQUENCE_TYPES] # Non-sklearn models OPTIONAL_PACKAGES = dict(XGB="xgboost", LGB="lightgbm", CatB="catboost") # Attributes shared betwen atom and a pd.DataFrame DF_ATTRS = ( "size", "head", "tail", "loc", "iloc", "describe", "iterrows", "dtypes", "at", "iat", ) # List of available distributions DISTRIBUTIONS = ( "beta", "expon", "gamma", "invgauss", "lognorm", "norm", "pearson3", "triang", "uniform", "weibull_min", "weibull_max", ) # List of custom metrics for the evaluate method CUSTOM_METRICS = ( "cm", "tn", "fp", "fn", "tp", "lift", "fpr", "tpr", "fnr", "tnr", "sup", ) # Acronyms for some common scorers SCORERS_ACRONYMS = dict( ap="average_precision", ba="balanced_accuracy", auc="roc_auc", logloss="neg_log_loss", ev="explained_variance", me="max_error", mae="neg_mean_absolute_error", mse="neg_mean_squared_error", rmse="neg_root_mean_squared_error", msle="neg_mean_squared_log_error", mape="neg_mean_absolute_percentage_error", medae="neg_median_absolute_error", poisson="neg_mean_poisson_deviance", gamma="neg_mean_gamma_deviance", ) # All available scaling strategies SCALING_STRATS = dict( standard=StandardScaler, minmax=MinMaxScaler, maxabs=MaxAbsScaler, robust=RobustScaler, ) # All available encoding strategies ENCODING_STRATS = dict( backwarddifference=BackwardDifferenceEncoder, basen=BaseNEncoder, binary=BinaryEncoder, catboost=CatBoostEncoder, # hashing=HashingEncoder, helmert=HelmertEncoder, jamesstein=JamesSteinEncoder, leaveoneout=LeaveOneOutEncoder, mestimate=MEstimateEncoder, # onehot=OneHotEncoder, ordinal=OrdinalEncoder, polynomial=PolynomialEncoder, sum=SumEncoder, target=TargetEncoder, woe=WOEEncoder, ) # All available pruning strategies PRUNING_STRATS = dict( iforest=IsolationForest, ee=EllipticEnvelope, lof=LocalOutlierFactor, svm=OneClassSVM, dbscan=DBSCAN, optics=OPTICS, ) # All available balancing strategies BALANCING_STRATS = dict( # clustercentroids=ClusterCentroids, condensednearestneighbour=CondensedNearestNeighbour, editednearestneighborus=EditedNearestNeighbours, repeatededitednearestneighbours=RepeatedEditedNearestNeighbours, allknn=AllKNN, instancehardnessthreshold=InstanceHardnessThreshold, nearmiss=NearMiss, neighbourhoodcleaningrule=NeighbourhoodCleaningRule, onesidedselection=OneSidedSelection, randomundersampler=RandomUnderSampler, tomeklinks=TomekLinks, randomoversampler=RandomOverSampler, smote=SMOTE, smotenc=SMOTENC, smoten=SMOTEN, adasyn=ADASYN, borderlinesmote=BorderlineSMOTE, kmanssmote=KMeansSMOTE, svmsmote=SVMSMOTE, smoteenn=SMOTEENN, smotetomek=SMOTETomek, ) # Functions ======================================================== >> def flt(item): """Utility to reduce sequences with just one item.""" if isinstance(item, SEQUENCE) and len(item) == 1: return item[0] else: return item def lst(item): """Utility used to make sure an item is iterable.""" if isinstance(item, (dict, CustomDict, *SEQUENCE)): return item else: return [item] def it(item): """Utility to convert rounded floats to int.""" try: is_equal = int(item) == float(item) except ValueError: # Item may not be numerical return item return int(item) if is_equal else float(item) def divide(a, b): """Divide two numbers and return 0 if division by zero.""" return np.divide(a, b) if b != 0 else 0 def merge(X, y): """Merge a pd.DataFrame and pd.Series into one dataframe.""" return X.merge(y.to_frame(), left_index=True, right_index=True) def variable_return(X, y): """Return one or two arguments depending on which is None.""" if y is None: return X elif X is None: return y else: return X, y def is_multidim(df): """Check if the dataframe contains a multidimensional column.""" return df.columns[0] == "Multidimensional feature" and len(df.columns) <= 2 def check_dim(cls, method): """Raise an error if the dataset has more than two dimensions.""" if is_multidim(cls.X): raise PermissionError( f"The {method} method is not available for " f"datasets with more than two dimensions!" ) def check_goal(cls, method, goal): """Raise an error if the goal is invalid.""" if not goal.startswith(cls.goal): raise PermissionError( f"The {method} method is only available for {goal} tasks!" ) def check_binary_task(cls, method): """Raise an error if the task is invalid.""" if not cls.task.startswith("bin"): raise PermissionError( f"The {method} method is only available for binary classification tasks!" ) def check_predict_proba(models, method): """Raise an error if a model doesn't have a predict_proba method.""" for m in [m for m in models if m.name != "Vote"]: if not hasattr(m.estimator, "predict_proba"): raise AttributeError( f"The {method} method is only available for " f"models with a predict_proba method, got {m.name}." ) def get_proba_attr(model): """Get the predict_proba, decision_function or predict method.""" for attr in ("predict_proba", "decision_function", "predict"): if hasattr(model.estimator, attr): return attr def check_scaling(X): """Check if the data is scaled to mean=0 and std=1.""" mean = X.mean(numeric_only=True).mean() std = X.std(numeric_only=True).mean() return True if mean < 0.05 and 0.93 < std < 1.07 else False def get_corpus(X): """Get text column from dataframe.""" try: return [col for col in X if col.lower() == "corpus"][0] except IndexError: raise ValueError("The provided dataset does not contain a text corpus!") def get_pl_name(name, steps, counter=1): """Add a counter to a pipeline name if already in steps.""" og_name = name while name.lower() in [elem[0] for elem in steps]: counter += 1 name = og_name + str(counter) return name.lower() def get_best_score(item, metric=0): """Returns the bootstrap or test score of a model. Parameters ---------- item: model or pd.Series Model instance or row from the results dataframe. metric: int, optional (default=0) Index of the metric to use. """ if getattr(item, "mean_bootstrap", None): return lst(item.mean_bootstrap)[metric] else: return lst(item.metric_test)[metric] def time_to_str(t_init): """Convert time integer to string. Convert a time duration to a string of format 00h:00m:00s or 1.000s if under 1 min. Parameters ---------- t_init: datetime Time to convert (in seconds). Returns ------- time: str Time representation. """ t = datetime.now() - t_init h = t.seconds // 3600 m = t.seconds % 3600 // 60 s = t.seconds % 3600 % 60 + t.microseconds / 1e6 if not h and not m: # Only seconds return f"{s:.3f}s" elif not h: # Also minutes return f"{m}m:{s:02.0f}s" else: # Also hours return f"{h}h:{m:02.0f}m:{s:02.0f}s" def to_df(data, index=None, columns=None, dtypes=None): """Convert a dataset to pd.Dataframe. Parameters ---------- data: list, tuple, dict, np.array, sps.matrix, pd.DataFrame or None Dataset to convert to a dataframe. If already a dataframe or None, return unchanged. index: sequence or Index Values for the dataframe's index. columns: sequence or None, optional (default=None) Name of the columns. Use None for automatic naming. dtypes: str, dict, np.dtype or None, optional (default=None) Data types for the output columns. If None, the types are inferred from the data. Returns ------- df: pd.DataFrame or None Transformed dataframe. """ if data is not None and not isinstance(data, pd.DataFrame): if not isinstance(data, dict): # Dict already has column names if sparse.issparse(data): data = data.toarray() if columns is None: columns = [f"Feature {str(i)}" for i in range(1, len(data[0]) + 1)] data = pd.DataFrame(data, index=index, columns=columns) if dtypes is not None: data = data.astype(dtypes) return data def to_series(data, index=None, name="target", dtype=None): """Convert a column to pd.Series. Parameters ---------- data: sequence or None Data to convert. If None, return unchanged. index: sequence or Index, optional (default=None) Values for the indices. name: string, optional (default="target") Name of the target column. dtype: str, np.dtype or None, optional (default=None) Data type for the output series. If None, the type is inferred from the data. Returns ------- series: pd.Series or None Transformed series. """ if data is not None and not isinstance(data, pd.Series): data =
pd.Series(data, index=index, name=name, dtype=dtype)
pandas.Series
import os import warnings from six import BytesIO from six.moves import cPickle import numpy as np from numpy.testing import assert_almost_equal, assert_allclose import pandas as pd import pandas.util.testing as tm import pytest from sm2 import datasets from sm2.regression.linear_model import OLS from sm2.tsa.arima_model import AR, ARMA, ARIMA from sm2.tsa.arima_process import arma_generate_sample from sm2.tools.sm_exceptions import MissingDataError from .results import results_arma, results_arima DECIMAL_4 = 4 DECIMAL_3 = 3 DECIMAL_2 = 2 DECIMAL_1 = 1 current_path = os.path.dirname(os.path.abspath(__file__)) path = os.path.join(current_path, 'results', 'y_arma_data.csv') y_arma = pd.read_csv(path, float_precision='high').values cpi_dates = pd.PeriodIndex(start='1959q1', end='2009q3', freq='Q') sun_dates = pd.PeriodIndex(start='1700', end='2008', freq='A') cpi_predict_dates = pd.PeriodIndex(start='2009q3', end='2015q4', freq='Q') sun_predict_dates = pd.PeriodIndex(start='2008', end='2033', freq='A') @pytest.mark.not_vetted @pytest.mark.skip(reason="fa, Arma not ported from upstream") def test_compare_arma(): # dummies to avoid flake8 warnings until porting fa = None Arma = None # import statsmodels.sandbox.tsa.fftarma as fa # from statsmodels.tsa.arma_mle import Arma # this is a preliminary test to compare # arma_kf, arma_cond_ls and arma_cond_mle # the results returned by the fit methods are incomplete # for now without random.seed np.random.seed(9876565) famod = fa.ArmaFft([1, -0.5], [1., 0.4], 40) x = famod.generate_sample(nsample=200, burnin=1000) modkf = ARMA(x, (1, 1)) reskf = modkf.fit(trend='nc', disp=-1) dres = reskf modc = Arma(x) resls = modc.fit(order=(1, 1)) rescm = modc.fit_mle(order=(1, 1), start_params=[0.4, 0.4, 1.], disp=0) # decimal 1 corresponds to threshold of 5% difference # still different sign corrected assert_almost_equal(resls[0] / dres.params, np.ones(dres.params.shape), decimal=1) # TODO: Is the next comment still accurate. It is retained from upstream # where there was a commented-out assertion after the comment # rescm also contains variance estimate as last element of params assert_almost_equal(rescm.params[:-1] / dres.params, np.ones(dres.params.shape), decimal=1) @pytest.mark.not_vetted class CheckArmaResultsMixin(object): """ res2 are the results from gretl. They are in results/results_arma. res1 are from sm2 """ decimal_params = DECIMAL_4 def test_params(self): assert_almost_equal(self.res1.params, self.res2.params, self.decimal_params) decimal_aic = DECIMAL_4 def test_aic(self): assert_almost_equal(self.res1.aic, self.res2.aic, self.decimal_aic) decimal_bic = DECIMAL_4 def test_bic(self): assert_almost_equal(self.res1.bic, self.res2.bic, self.decimal_bic) decimal_arroots = DECIMAL_4 def test_arroots(self): assert_almost_equal(self.res1.arroots, self.res2.arroots, self.decimal_arroots) decimal_maroots = DECIMAL_4 def test_maroots(self): assert_almost_equal(self.res1.maroots, self.res2.maroots, self.decimal_maroots) decimal_bse = DECIMAL_2 def test_bse(self): assert_almost_equal(self.res1.bse, self.res2.bse, self.decimal_bse) decimal_cov_params = DECIMAL_4 def test_covparams(self): assert_almost_equal(self.res1.cov_params(), self.res2.cov_params, self.decimal_cov_params) decimal_hqic = DECIMAL_4 def test_hqic(self): assert_almost_equal(self.res1.hqic, self.res2.hqic, self.decimal_hqic) decimal_llf = DECIMAL_4 def test_llf(self): assert_almost_equal(self.res1.llf, self.res2.llf, self.decimal_llf) decimal_resid = DECIMAL_4 def test_resid(self): assert_almost_equal(self.res1.resid, self.res2.resid, self.decimal_resid) decimal_fittedvalues = DECIMAL_4 def test_fittedvalues(self): assert_almost_equal(self.res1.fittedvalues, self.res2.fittedvalues, self.decimal_fittedvalues) decimal_pvalues = DECIMAL_2 def test_pvalues(self): assert_almost_equal(self.res1.pvalues, self.res2.pvalues, self.decimal_pvalues) decimal_t = DECIMAL_2 # only 2 decimal places in gretl output def test_tvalues(self): assert_almost_equal(self.res1.tvalues, self.res2.tvalues, self.decimal_t) decimal_sigma2 = DECIMAL_4 def test_sigma2(self): assert_almost_equal(self.res1.sigma2, self.res2.sigma2, self.decimal_sigma2) @pytest.mark.smoke def test_summary(self): self.res1.summary() @pytest.mark.not_vetted class CheckForecastMixin(object): decimal_forecast = DECIMAL_4 def test_forecast(self): assert_almost_equal(self.res1.forecast_res, self.res2.forecast, self.decimal_forecast) decimal_forecasterr = DECIMAL_4 def test_forecasterr(self): assert_almost_equal(self.res1.forecast_err, self.res2.forecasterr, self.decimal_forecasterr) @pytest.mark.not_vetted class CheckDynamicForecastMixin(object): decimal_forecast_dyn = 4 def test_dynamic_forecast(self): assert_almost_equal(self.res1.forecast_res_dyn, self.res2.forecast_dyn, self.decimal_forecast_dyn) #def test_forecasterr(self): # assert_almost_equal(self.res1.forecast_err_dyn, # self.res2.forecasterr_dyn, # DECIMAL_4) @pytest.mark.not_vetted class CheckArimaResultsMixin(CheckArmaResultsMixin): def test_order(self): assert self.res1.k_diff == self.res2.k_diff assert self.res1.k_ar == self.res2.k_ar assert self.res1.k_ma == self.res2.k_ma decimal_predict_levels = DECIMAL_4 def test_predict_levels(self): assert_almost_equal(self.res1.predict(typ='levels'), self.res2.linear, self.decimal_predict_levels) @pytest.mark.not_vetted class Test_Y_ARMA11_NoConst(CheckArmaResultsMixin, CheckForecastMixin): @classmethod def setup_class(cls): endog = y_arma[:, 0] cls.res1 = ARMA(endog, order=(1, 1)).fit(trend='nc', disp=-1) fc_res, fc_err, ci = cls.res1.forecast(10) cls.res1.forecast_res = fc_res cls.res1.forecast_err = fc_err cls.res2 = results_arma.Y_arma11() # TODO: share with test_ar? other test classes? def test_pickle(self): fh = BytesIO() # test wrapped results load save pickle self.res1.save(fh) fh.seek(0, 0) res_unpickled = self.res1.__class__.load(fh) assert type(res_unpickled) is type(self.res1) # noqa:E721 # TODO: Test equality instead of just type equality? @pytest.mark.not_vetted class Test_Y_ARMA14_NoConst(CheckArmaResultsMixin): @classmethod def setup_class(cls): endog = y_arma[:, 1] cls.res1 = ARMA(endog, order=(1, 4)).fit(trend='nc', disp=-1) cls.res2 = results_arma.Y_arma14() @pytest.mark.not_vetted @pytest.mark.slow class Test_Y_ARMA41_NoConst(CheckArmaResultsMixin, CheckForecastMixin): decimal_maroots = DECIMAL_3 @classmethod def setup_class(cls): endog = y_arma[:, 2] cls.res1 = ARMA(endog, order=(4, 1)).fit(trend='nc', disp=-1) (cls.res1.forecast_res, cls.res1.forecast_err, confint) = cls.res1.forecast(10) cls.res2 = results_arma.Y_arma41() @pytest.mark.not_vetted class Test_Y_ARMA22_NoConst(CheckArmaResultsMixin): @classmethod def setup_class(cls): endog = y_arma[:, 3] cls.res1 = ARMA(endog, order=(2, 2)).fit(trend='nc', disp=-1) cls.res2 = results_arma.Y_arma22() @pytest.mark.not_vetted class Test_Y_ARMA50_NoConst(CheckArmaResultsMixin, CheckForecastMixin): @classmethod def setup_class(cls): endog = y_arma[:, 4] cls.res1 = ARMA(endog, order=(5, 0)).fit(trend='nc', disp=-1) (cls.res1.forecast_res, cls.res1.forecast_err, confint) = cls.res1.forecast(10) cls.res2 = results_arma.Y_arma50() @pytest.mark.not_vetted class Test_Y_ARMA02_NoConst(CheckArmaResultsMixin): @classmethod def setup_class(cls): endog = y_arma[:, 5] cls.res1 = ARMA(endog, order=(0, 2)).fit(trend='nc', disp=-1) cls.res2 = results_arma.Y_arma02() @pytest.mark.not_vetted class Test_Y_ARMA11_Const(CheckArmaResultsMixin, CheckForecastMixin): @classmethod def setup_class(cls): endog = y_arma[:, 6] cls.res1 = ARMA(endog, order=(1, 1)).fit(trend="c", disp=-1) (cls.res1.forecast_res, cls.res1.forecast_err, confint) = cls.res1.forecast(10) cls.res2 = results_arma.Y_arma11c() @pytest.mark.not_vetted class Test_Y_ARMA14_Const(CheckArmaResultsMixin): @classmethod def setup_class(cls): endog = y_arma[:, 7] cls.res1 = ARMA(endog, order=(1, 4)).fit(trend="c", disp=-1) cls.res2 = results_arma.Y_arma14c() @pytest.mark.not_vetted class Test_Y_ARMA41_Const(CheckArmaResultsMixin, CheckForecastMixin): decimal_cov_params = DECIMAL_3 decimal_fittedvalues = DECIMAL_3 decimal_resid = DECIMAL_3 decimal_params = DECIMAL_3 @classmethod def setup_class(cls): endog = y_arma[:, 8] cls.res2 = results_arma.Y_arma41c() cls.res1 = ARMA(endog, order=(4, 1)).fit(trend="c", disp=-1, start_params=cls.res2.params) (cls.res1.forecast_res, cls.res1.forecast_err, confint) = cls.res1.forecast(10) @pytest.mark.not_vetted class Test_Y_ARMA22_Const(CheckArmaResultsMixin): @classmethod def setup_class(cls): endog = y_arma[:, 9] cls.res1 = ARMA(endog, order=(2, 2)).fit(trend="c", disp=-1) cls.res2 = results_arma.Y_arma22c() @pytest.mark.not_vetted class Test_Y_ARMA50_Const(CheckArmaResultsMixin, CheckForecastMixin): @classmethod def setup_class(cls): endog = y_arma[:, 10] cls.res1 = ARMA(endog, order=(5, 0)).fit(trend="c", disp=-1) (cls.res1.forecast_res, cls.res1.forecast_err, confint) = cls.res1.forecast(10) cls.res2 = results_arma.Y_arma50c() @pytest.mark.not_vetted class Test_Y_ARMA02_Const(CheckArmaResultsMixin): @classmethod def setup_class(cls): endog = y_arma[:, 11] cls.res1 = ARMA(endog, order=(0, 2)).fit(trend="c", disp=-1) cls.res2 = results_arma.Y_arma02c() # cov_params and tvalues are off still but not as much vs. R @pytest.mark.not_vetted class Test_Y_ARMA11_NoConst_CSS(CheckArmaResultsMixin): decimal_t = DECIMAL_1 @classmethod def setup_class(cls): endog = y_arma[:, 0] cls.res1 = ARMA(endog, order=(1, 1)).fit(method="css", trend="nc", disp=-1) cls.res2 = results_arma.Y_arma11("css") # better vs. R @pytest.mark.not_vetted class Test_Y_ARMA14_NoConst_CSS(CheckArmaResultsMixin): decimal_fittedvalues = DECIMAL_3 decimal_resid = DECIMAL_3 decimal_t = DECIMAL_1 @classmethod def setup_class(cls): endog = y_arma[:, 1] cls.res1 = ARMA(endog, order=(1, 4)).fit(method="css", trend="nc", disp=-1) cls.res2 = results_arma.Y_arma14("css") # bse, etc. better vs. R # maroot is off because maparams is off a bit (adjust tolerance?) @pytest.mark.not_vetted class Test_Y_ARMA41_NoConst_CSS(CheckArmaResultsMixin): decimal_t = DECIMAL_1 decimal_pvalues = 0 decimal_cov_params = DECIMAL_3 decimal_maroots = DECIMAL_1 @classmethod def setup_class(cls): endog = y_arma[:, 2] cls.res1 = ARMA(endog, order=(4, 1)).fit(method="css", trend="nc", disp=-1) cls.res2 = results_arma.Y_arma41("css") # same notes as above @pytest.mark.not_vetted class Test_Y_ARMA22_NoConst_CSS(CheckArmaResultsMixin): decimal_t = DECIMAL_1 decimal_resid = DECIMAL_3 decimal_pvalues = DECIMAL_1 decimal_fittedvalues = DECIMAL_3 @classmethod def setup_class(cls): endog = y_arma[:, 3] cls.res1 = ARMA(endog, order=(2, 2)).fit(method="css", trend="nc", disp=-1) cls.res2 = results_arma.Y_arma22("css") # NOTE: gretl just uses least squares for AR CSS # so BIC, etc. is # -2*res1.llf + np.log(nobs)*(res1.q+res1.p+res1.k) # with no adjustment for p and no extra sigma estimate # NOTE: so our tests use x-12 arima results which agree with us and are # consistent with the rest of the models @pytest.mark.not_vetted class Test_Y_ARMA50_NoConst_CSS(CheckArmaResultsMixin): decimal_t = 0 decimal_llf = DECIMAL_1 # looks like rounding error? @classmethod def setup_class(cls): endog = y_arma[:, 4] cls.res1 = ARMA(endog, order=(5, 0)).fit(method="css", trend="nc", disp=-1) cls.res2 = results_arma.Y_arma50("css") @pytest.mark.not_vetted class Test_Y_ARMA02_NoConst_CSS(CheckArmaResultsMixin): @classmethod def setup_class(cls): endog = y_arma[:, 5] cls.res1 = ARMA(endog, order=(0, 2)).fit(method="css", trend="nc", disp=-1) cls.res2 = results_arma.Y_arma02("css") # NOTE: our results are close to --x-12-arima option and R @pytest.mark.not_vetted class Test_Y_ARMA11_Const_CSS(CheckArmaResultsMixin): decimal_params = DECIMAL_3 decimal_cov_params = DECIMAL_3 decimal_t = DECIMAL_1 @classmethod def setup_class(cls): endog = y_arma[:, 6] cls.res1 = ARMA(endog, order=(1, 1)).fit(trend="c", method="css", disp=-1) cls.res2 = results_arma.Y_arma11c("css") @pytest.mark.not_vetted class Test_Y_ARMA14_Const_CSS(CheckArmaResultsMixin): decimal_t = DECIMAL_1 decimal_pvalues = DECIMAL_1 @classmethod def setup_class(cls): endog = y_arma[:, 7] cls.res1 = ARMA(endog, order=(1, 4)).fit(trend="c", method="css", disp=-1) cls.res2 = results_arma.Y_arma14c("css") @pytest.mark.not_vetted class Test_Y_ARMA41_Const_CSS(CheckArmaResultsMixin): decimal_t = DECIMAL_1 decimal_cov_params = DECIMAL_1 decimal_maroots = DECIMAL_3 decimal_bse = DECIMAL_1 @classmethod def setup_class(cls): endog = y_arma[:, 8] cls.res1 = ARMA(endog, order=(4, 1)).fit(trend="c", method="css", disp=-1) cls.res2 = results_arma.Y_arma41c("css") @pytest.mark.not_vetted class Test_Y_ARMA22_Const_CSS(CheckArmaResultsMixin): decimal_t = 0 decimal_pvalues = DECIMAL_1 @classmethod def setup_class(cls): endog = y_arma[:, 9] cls.res1 = ARMA(endog, order=(2, 2)).fit(trend="c", method="css", disp=-1) cls.res2 = results_arma.Y_arma22c("css") @pytest.mark.not_vetted class Test_Y_ARMA50_Const_CSS(CheckArmaResultsMixin): decimal_t = DECIMAL_1 decimal_params = DECIMAL_3 decimal_cov_params = DECIMAL_2 @classmethod def setup_class(cls): endog = y_arma[:, 10] cls.res1 = ARMA(endog, order=(5, 0)).fit(trend="c", method="css", disp=-1) cls.res2 = results_arma.Y_arma50c("css") @pytest.mark.not_vetted class Test_Y_ARMA02_Const_CSS(CheckArmaResultsMixin): @classmethod def setup_class(cls): endog = y_arma[:, 11] cls.res1 = ARMA(endog, order=(0, 2)).fit(trend="c", method="css", disp=-1) cls.res2 = results_arma.Y_arma02c("css") @pytest.mark.not_vetted class Test_ARIMA101(CheckArmaResultsMixin): # just make sure this works @classmethod def setup_class(cls): endog = y_arma[:, 6] cls.res1 = ARIMA(endog, (1, 0, 1)).fit(trend="c", disp=-1) (cls.res1.forecast_res, cls.res1.forecast_err, confint) = cls.res1.forecast(10) cls.res2 = results_arma.Y_arma11c() cls.res2.k_diff = 0 cls.res2.k_ar = 1 cls.res2.k_ma = 1 @pytest.mark.not_vetted class Test_ARIMA111(CheckArimaResultsMixin, CheckForecastMixin, CheckDynamicForecastMixin): decimal_llf = 3 decimal_aic = 3 decimal_bic = 3 decimal_cov_params = 2 # this used to be better? decimal_t = 0 @classmethod def setup_class(cls): cpi = datasets.macrodata.load_pandas().data['cpi'].values cls.res1 = ARIMA(cpi, (1, 1, 1)).fit(disp=-1) cls.res2 = results_arima.ARIMA111() # make sure endog names changes to D.cpi (cls.res1.forecast_res, cls.res1.forecast_err, conf_int) = cls.res1.forecast(25) # TODO: fix the indexing for the end here, I don't think this is right # if we're going to treat it like indexing # the forecast from 2005Q1 through 2009Q4 is indices # 184 through 227 not 226 # note that the first one counts in the count so 164 + 64 is 65 # predictions cls.res1.forecast_res_dyn = cls.res1.predict(start=164, end=164 + 63, typ='levels', dynamic=True) def test_freq(self): assert_almost_equal(self.res1.arfreq, [0.0000], 4) assert_almost_equal(self.res1.mafreq, [0.0000], 4) @pytest.mark.not_vetted class Test_ARIMA111CSS(CheckArimaResultsMixin, CheckForecastMixin, CheckDynamicForecastMixin): decimal_forecast = 2 decimal_forecast_dyn = 2 decimal_forecasterr = 3 decimal_arroots = 3 decimal_cov_params = 3 decimal_hqic = 3 decimal_maroots = 3 decimal_t = 1 decimal_fittedvalues = 2 # because of rounding when copying decimal_resid = 2 decimal_predict_levels = DECIMAL_2 @classmethod def setup_class(cls): cpi = datasets.macrodata.load_pandas().data['cpi'].values cls.res1 = ARIMA(cpi, (1, 1, 1)).fit(disp=-1, method='css') cls.res2 = results_arima.ARIMA111(method='css') cls.res2.fittedvalues = - cpi[1:-1] + cls.res2.linear # make sure endog names changes to D.cpi (fc_res, fc_err, conf_int) = cls.res1.forecast(25) cls.res1.forecast_res = fc_res cls.res1.forecast_err = fc_err cls.res1.forecast_res_dyn = cls.res1.predict(start=164, end=164 + 63, typ='levels', dynamic=True) @pytest.mark.not_vetted class Test_ARIMA112CSS(CheckArimaResultsMixin): decimal_llf = 3 decimal_aic = 3 decimal_bic = 3 decimal_arroots = 3 decimal_maroots = 2 decimal_t = 1 decimal_resid = 2 decimal_fittedvalues = 3 decimal_predict_levels = DECIMAL_3 @classmethod def setup_class(cls): cpi = datasets.macrodata.load_pandas().data['cpi'].values cls.res1 = ARIMA(cpi, (1, 1, 2)).fit(disp=-1, method='css', start_params=[.905322, -.692425, 1.07366, 0.172024]) cls.res2 = results_arima.ARIMA112(method='css') cls.res2.fittedvalues = - cpi[1:-1] + cls.res2.linear # make sure endog names changes to D.cpi #(cls.res1.forecast_res, # cls.res1.forecast_err, # conf_int) = cls.res1.forecast(25) #cls.res1.forecast_res_dyn = cls.res1.predict(start=164, end=226, # typ='levels', # dynamic=True) # TODO: fix the indexing for the end here, I don't think this is right # if we're going to treat it like indexing # the forecast from 2005Q1 through 2009Q4 is indices # 184 through 227 not 226 # note that the first one counts in the count so 164 + 64 is 65 # predictions #cls.res1.forecast_res_dyn = self.predict(start=164, end=164+63, # typ='levels', dynamic=True) # since we got from gretl don't have linear prediction in differences def test_freq(self): assert_almost_equal(self.res1.arfreq, [0.5000], 4) assert_almost_equal(self.res1.mafreq, [0.5000, 0.5000], 4) #class Test_ARIMADates(CheckArmaResults, CheckForecast, CheckDynamicForecast): # @classmethod # def setup_class(cls): # cpi = datasets.macrodata.load_pandas().data['cpi'].values # dates = pd.date_range('1959', periods=203, freq='Q') # cls.res1 = ARIMA(cpi, dates=dates, freq='Q').fit(order=(1, 1, 1), # disp=-1) # cls.res2 = results_arima.ARIMA111() # # make sure endog names changes to D.cpi # cls.decimal_llf = 3 # cls.decimal_aic = 3 # cls.decimal_bic = 3 # (cls.res1.forecast_res, # cls.res1.forecast_err, # conf_int) = cls.res1.forecast(25) @pytest.mark.not_vetted @pytest.mark.slow def test_start_params_bug(): data = np.array([ 1368., 1187, 1090, 1439, 2362, 2783, 2869, 2512, 1804, 1544, 1028, 869, 1737, 2055, 1947, 1618, 1196, 867, 997, 1862, 2525, 3250, 4023, 4018, 3585, 3004, 2500, 2441, 2749, 2466, 2157, 1847, 1463, 1146, 851, 993, 1448, 1719, 1709, 1455, 1950, 1763, 2075, 2343, 3570, 4690, 3700, 2339, 1679, 1466, 998, 853, 835, 922, 851, 1125, 1299, 1105, 860, 701, 689, 774, 582, 419, 846, 1132, 902, 1058, 1341, 1551, 1167, 975, 786, 759, 751, 649, 876, 720, 498, 553, 459, 543, 447, 415, 377, 373, 324, 320, 306, 259, 220, 342, 558, 825, 994, 1267, 1473, 1601, 1896, 1890, 2012, 2198, 2393, 2825, 3411, 3406, 2464, 2891, 3685, 3638, 3746, 3373, 3190, 2681, 2846, 4129, 5054, 5002, 4801, 4934, 4903, 4713, 4745, 4736, 4622, 4642, 4478, 4510, 4758, 4457, 4356, 4170, 4658, 4546, 4402, 4183, 3574, 2586, 3326, 3948, 3983, 3997, 4422, 4496, 4276, 3467, 2753, 2582, 2921, 2768, 2789, 2824, 2482, 2773, 3005, 3641, 3699, 3774, 3698, 3628, 3180, 3306, 2841, 2014, 1910, 2560, 2980, 3012, 3210, 3457, 3158, 3344, 3609, 3327, 2913, 2264, 2326, 2596, 2225, 1767, 1190, 792, 669, 589, 496, 354, 246, 250, 323, 495, 924, 1536, 2081, 2660, 2814, 2992, 3115, 2962, 2272, 2151, 1889, 1481, 955, 631, 288, 103, 60, 82, 107, 185, 618, 1526, 2046, 2348, 2584, 2600, 2515, 2345, 2351, 2355, 2409, 2449, 2645, 2918, 3187, 2888, 2610, 2740, 2526, 2383, 2936, 2968, 2635, 2617, 2790, 3906, 4018, 4797, 4919, 4942, 4656, 4444, 3898, 3908, 3678, 3605, 3186, 2139, 2002, 1559, 1235, 1183, 1096, 673, 389, 223, 352, 308, 365, 525, 779, 894, 901, 1025, 1047, 981, 902, 759, 569, 519, 408, 263, 156, 72, 49, 31, 41, 192, 423, 492, 552, 564, 723, 921, 1525, 2768, 3531, 3824, 3835, 4294, 4533, 4173, 4221, 4064, 4641, 4685, 4026, 4323, 4585, 4836, 4822, 4631, 4614, 4326, 4790, 4736, 4104, 5099, 5154, 5121, 5384, 5274, 5225, 4899, 5382, 5295, 5349, 4977, 4597, 4069, 3733, 3439, 3052, 2626, 1939, 1064, 713, 916, 832, 658, 817, 921, 772, 764, 824, 967, 1127, 1153, 824, 912, 957, 990, 1218, 1684, 2030, 2119, 2233, 2657, 2652, 2682, 2498, 2429, 2346, 2298, 2129, 1829, 1816, 1225, 1010, 748, 627, 469, 576, 532, 475, 582, 641, 605, 699, 680, 714, 670, 666, 636, 672, 679, 446, 248, 134, 160, 178, 286, 413, 676, 1025, 1159, 952, 1398, 1833, 2045, 2072, 1798, 1799, 1358, 727, 353, 347, 844, 1377, 1829, 2118, 2272, 2745, 4263, 4314, 4530, 4354, 4645, 4547, 5391, 4855, 4739, 4520, 4573, 4305, 4196, 3773, 3368, 2596, 2596, 2305, 2756, 3747, 4078, 3415, 2369, 2210, 2316, 2263, 2672, 3571, 4131, 4167, 4077, 3924, 3738, 3712, 3510, 3182, 3179, 2951, 2453, 2078, 1999, 2486, 2581, 1891, 1997, 1366, 1294, 1536, 2794, 3211, 3242, 3406, 3121, 2425, 2016, 1787, 1508, 1304, 1060, 1342, 1589, 2361, 3452, 2659, 2857, 3255, 3322, 2852, 2964, 3132, 3033, 2931, 2636, 2818, 3310, 3396, 3179, 3232, 3543, 3759, 3503, 3758, 3658, 3425, 3053, 2620, 1837, 923, 712, 1054, 1376, 1556, 1498, 1523, 1088, 728, 890, 1413, 2524, 3295, 4097, 3993, 4116, 3874, 4074, 4142, 3975, 3908, 3907, 3918, 3755, 3648, 3778, 4293, 4385, 4360, 4352, 4528, 4365, 3846, 4098, 3860, 3230, 2820, 2916, 3201, 3721, 3397, 3055, 2141, 1623, 1825, 1716, 2232, 2939, 3735, 4838, 4560, 4307, 4975, 5173, 4859, 5268, 4992, 5100, 5070, 5270, 4760, 5135, 5059, 4682, 4492, 4933, 4737, 4611, 4634, 4789, 4811, 4379, 4689, 4284, 4191, 3313, 2770, 2543, 3105, 2967, 2420, 1996, 2247, 2564, 2726, 3021, 3427, 3509, 3759, 3324, 2988, 2849, 2340, 2443, 2364, 1252, 623, 742, 867, 684, 488, 348, 241, 187, 279, 355, 423, 678, 1375, 1497, 1434, 2116, 2411, 1929, 1628, 1635, 1609, 1757, 2090, 2085, 1790, 1846, 2038, 2360, 2342, 2401, 2920, 3030, 3132, 4385, 5483, 5865, 5595, 5485, 5727, 5553, 5560, 5233, 5478, 5159, 5155, 5312, 5079, 4510, 4628, 4535, 3656, 3698, 3443, 3146, 2562, 2304, 2181, 2293, 1950, 1930, 2197, 2796, 3441, 3649, 3815, 2850, 4005, 5305, 5550, 5641, 4717, 5131, 2831, 3518, 3354, 3115, 3515, 3552, 3244, 3658, 4407, 4935, 4299, 3166, 3335, 2728, 2488, 2573, 2002, 1717, 1645, 1977, 2049, 2125, 2376, 2551, 2578, 2629, 2750, 3150, 3699, 4062, 3959, 3264, 2671, 2205, 2128, 2133, 2095, 1964, 2006, 2074, 2201, 2506, 2449, 2465, 2064, 1446, 1382, 983, 898, 489, 319, 383, 332, 276, 224, 144, 101, 232, 429, 597, 750, 908, 960, 1076, 951, 1062, 1183, 1404, 1391, 1419, 1497, 1267, 963, 682, 777, 906, 1149, 1439, 1600, 1876, 1885, 1962, 2280, 2711, 2591, 2411]) with warnings.catch_warnings(): warnings.simplefilter("ignore") ARMA(data, order=(4, 1)).fit(start_ar_lags=5, disp=-1) @pytest.mark.not_vetted def test_arima_predict_mle_dates(): cpi = datasets.macrodata.load_pandas().data['cpi'].values res1 = ARIMA(cpi, (4, 1, 1), dates=cpi_dates, freq='Q').fit(disp=-1) path = os.path.join(current_path, 'results', 'results_arima_forecasts_all_mle.csv') arima_forecasts = pd.read_csv(path).values fc = arima_forecasts[:, 0] fcdyn = arima_forecasts[:, 1] fcdyn2 = arima_forecasts[:, 2] start, end = 2, 51 fv = res1.predict('1959Q3', '1971Q4', typ='levels') assert_almost_equal(fv, fc[start:end + 1], DECIMAL_4) tm.assert_index_equal(res1.data.predict_dates, cpi_dates[start:end + 1]) start, end = 202, 227 fv = res1.predict('2009Q3', '2015Q4', typ='levels') assert_almost_equal(fv, fc[start:end + 1], DECIMAL_4) tm.assert_index_equal(res1.data.predict_dates, cpi_predict_dates) # make sure dynamic works start, end = '1960q2', '1971q4' fv = res1.predict(start, end, dynamic=True, typ='levels') assert_almost_equal(fv, fcdyn[5:51 + 1], DECIMAL_4) start, end = '1965q1', '2015q4' fv = res1.predict(start, end, dynamic=True, typ='levels') assert_almost_equal(fv, fcdyn2[24:227 + 1], DECIMAL_4) @pytest.mark.not_vetted def test_arma_predict_mle_dates(): sunspots = datasets.sunspots.load_pandas().data['SUNACTIVITY'].values mod = ARMA(sunspots, (9, 0), dates=sun_dates, freq='A') mod.method = 'mle' with pytest.raises(ValueError): mod._get_prediction_index('1701', '1751', True) start, end = 2, 51 mod._get_prediction_index('1702', '1751', False) tm.assert_index_equal(mod.data.predict_dates, sun_dates[start:end + 1]) start, end = 308, 333 mod._get_prediction_index('2008', '2033', False) tm.assert_index_equal(mod.data.predict_dates, sun_predict_dates) @pytest.mark.not_vetted def test_arima_predict_css_dates(): cpi = datasets.macrodata.load_pandas().data['cpi'].values res1 = ARIMA(cpi, (4, 1, 1), dates=cpi_dates, freq='Q').fit(disp=-1, method='css', trend='nc') params = np.array([1.231272508473910, -0.282516097759915, 0.170052755782440, -0.118203728504945, -0.938783134717947]) path = os.path.join(current_path, 'results', 'results_arima_forecasts_all_css.csv') arima_forecasts = pd.read_csv(path).values fc = arima_forecasts[:, 0] fcdyn = arima_forecasts[:, 1] fcdyn2 = arima_forecasts[:, 2] start, end = 5, 51 fv = res1.model.predict(params, '1960Q2', '1971Q4', typ='levels') assert_almost_equal(fv, fc[start:end + 1], DECIMAL_4) tm.assert_index_equal(res1.data.predict_dates, cpi_dates[start:end + 1]) start, end = 202, 227 fv = res1.model.predict(params, '2009Q3', '2015Q4', typ='levels') assert_almost_equal(fv, fc[start:end + 1], DECIMAL_4) tm.assert_index_equal(res1.data.predict_dates, cpi_predict_dates) # make sure dynamic works start, end = 5, 51 fv = res1.model.predict(params, '1960Q2', '1971Q4', typ='levels', dynamic=True) assert_almost_equal(fv, fcdyn[start:end + 1], DECIMAL_4) start, end = '1965q1', '2015q4' fv = res1.model.predict(params, start, end, dynamic=True, typ='levels') assert_almost_equal(fv, fcdyn2[24:227 + 1], DECIMAL_4) @pytest.mark.not_vetted def test_arma_predict_css_dates(): # TODO: GH reference? sunspots = datasets.sunspots.load_pandas().data['SUNACTIVITY'].values mod = ARMA(sunspots, (9, 0), dates=sun_dates, freq='A') mod.method = 'css' with pytest.raises(ValueError): mod._get_prediction_index('1701', '1751', False) def test_arima_wrapper(): # test that names get attached to res.params correctly # TODO: GH reference? cpi = datasets.macrodata.load_pandas().data['cpi'] cpi.index = pd.Index(cpi_dates) res = ARIMA(cpi, (4, 1, 1), freq='Q').fit(disp=-1) expected_index = pd.Index(['const', 'ar.L1.D.cpi', 'ar.L2.D.cpi', 'ar.L3.D.cpi', 'ar.L4.D.cpi', 'ma.L1.D.cpi']) assert expected_index.equals(res.params.index)
tm.assert_index_equal(res.params.index, expected_index)
pandas.util.testing.assert_index_equal
""" test indexing with ix """ from warnings import catch_warnings import numpy as np import pandas as pd from pandas.types.common import is_scalar from pandas.compat import lrange from pandas import Series, DataFrame, option_context, MultiIndex from pandas.util import testing as tm from pandas.core.common import PerformanceWarning class TestIX(tm.TestCase): def test_ix_deprecation(self): # GH 15114 df = DataFrame({'A': [1, 2, 3]}) with tm.assert_produces_warning(DeprecationWarning, check_stacklevel=False): df.ix[1, 'A'] def test_ix_loc_setitem_consistency(self): # GH 5771 # loc with slice and series s = Series(0, index=[4, 5, 6]) s.loc[4:5] += 1 expected = Series([1, 1, 0], index=[4, 5, 6]) tm.assert_series_equal(s, expected) # GH 5928 # chained indexing assignment df =
DataFrame({'a': [0, 1, 2]})
pandas.DataFrame
# -*- coding: utf-8 -*- """Untitled0.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/1uPsIhY5eetnUG-xeLtHmKvq5K0mIr6wW """ import pandas as pd import numpy as np import matplotlib.pyplot as plt import keras import tensorflow as tf dataset =
pd.read_csv('Churn_Modelling.csv')
pandas.read_csv
# -*- coding: utf-8 -*- # --- # jupyter: # jupytext: # formats: ipynb,py:percent # text_representation: # extension: .py # format_name: percent # format_version: '1.2' # jupytext_version: 1.2.4 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # %% [markdown] # # Dynamic Allocation # # We really don't save money this way (defined amounts every month). In reality we would be better to set up a budget and allocate any leftover money to savings that is above and beyond our spending habits. # %% import pandas as pd import plotly.express as px import datetime import dash import dash_core_components as dcc import dash_html_components as html app = dash.Dash( __name__, meta_tags=[ {"name": "viewport", "content": "width=device-width, initial-scale=1"} ] ) app.title = "Savings" # %% {"code_folding": [0]} acct_info = html.Div( [ html.Div([ html.H4( "Savings" ), html.P( "Contribution Weight", className="control_label" ), dcc.Input( id='hi-contrib', type="number", value=1, placeholder="contribution weight", className="dcc_control" ), html.P( "Expected Return", className="control_label" ), dcc.Input( id="hi-interest", type="number", value=2, placeholder="interest (%)", className="dcc_control" ), html.P( "Starting Value", className="control_label" ), dcc.Input( id='hi-starting', type="number", placeholder="current balance", className="dcc_control" ), html.P( "End Value", className="control_label" ), dcc.Input( id='hi-limit', type="number", placeholder="hold the value here", className="dcc_control" ), html.H4( "Unregistered", style={"padding-top":"15px"} ), html.P( "Expected Return" ), dcc.Input( id="unreg-interest", type="number", value=3, placeholder="interest (%)", className="dcc_control" ), ], className="one-third column"), html.Div([ html.H4( "TFSA" ), html.P( "Contribution Weight", className="control_label" ), dcc.Input( id='tfsa-contrib-weight', type="number", placeholder="contribution weight", className="dcc_control" ), html.P( "Expected Return", className="control_label" ), dcc.Input( id="tfsa-interest", type="number", placeholder="interest (%)", className="dcc_control" ), html.P( "Starting Value", className="control_label" ), dcc.Input( id='tfsa-starting', type="number", placeholder="current balance", className="dcc_control" ), html.P( "End Value", className="control_label" ), dcc.Input( id="tfsa-limit", type="number", placeholder="hold the value here", className="dcc_control" ), html.P( "Contribution Room", className="control_label" ), dcc.Input( id="tfsa-contrib-room", type="number", placeholder="current room", className="dcc_control" ), html.P( "Contribution Reset", className="control_label" ), dcc.Input( id="tfsa-contrib-reset", type="number", value=5000, placeholder="added room each year", className="dcc_control" ), ], className="one-third column"), html.Div(children=[ html.H4( "RRSP" ), html.P( "Contribution Weight", className="control_label" ), dcc.Input( id='rrsp-contrib', type="number", placeholder="contribution weight", className="dcc_control" ), html.P( "Expected Return", className="control_label" ), dcc.Input( id="rrsp-interest", type="number", placeholder="interest (%)", className="dcc_control" ), html.P( "Starting Value", className="control_label" ), dcc.Input( id='rrsp-starting', type="number", placeholder="current balance", className="dcc_control" ), html.P( "End Value", className="control_label" ), dcc.Input( id="rrsp-limit", type="number", value=35000, placeholder="hold the value here", className="dcc_control" ), html.P( "Contribution Room", className="control_label" ), dcc.Input( id="rrsp-contrib-room", type="number", value=26500, placeholder="current room", className="dcc_control" ), html.P( "Contribution Reset", className="control_label" ), dcc.Input( id="rrsp-contrib-reset", type="number", value=26500, placeholder="added room each year", className="dcc_control" ), ], className="one-third column"), ], style={"padding-top":"20px"} ) # %% {"code_folding": [0]} main_view = dcc.Tabs( [ dcc.Tab(label="Accounts", children=[ acct_info ]), dcc.Tab(label="Savings", value="savings", children=[ html.Div( [ dcc.Graph( id='savings_graph', figure=px.area(pd.DataFrame(), width=600) ) ], id="countGraphContainer", style={"minHeight":"600px"} ) ]) ], id="input-tabs", ) # %% {"code_folding": [0]} summary_stats = [ html.Div( [ html.P("Total Saved"), html.H6( id="total-saved", className="info_text" ) ], className="mini_container", style={"flex":"4"} ), html.Div( [ html.P("Avg Saved"), html.H6( id="avg-saved", className="info_text" ) ], className="mini_container", style={"flex":"4"} ), html.Div( [ html.P("Capital Gains Tax"), html.H6( id="total-tax", className="info_text" ) ], className="mini_container", style={"flex":"4"} ), html.Div( [ html.P("Rent"), html.H6( id="total-rent", className="info_text" ) ], className="mini_container", style={"flex":"4"} ), ] # %% {"code_folding": [24, 98, 103]} # Create app layout app.layout = html.Div( [ html.Div( [ html.Div( [ html.Div( [ html.Img( src="assets/stonks.png", height=75, className="flex-display", style={"marginRight":"5px"} ), html.H2( 'When can I buy that house?', className="flex-display", ), ],className="flex-display"), html.H4( 'Investment Calculator', ) ], className='eight columns' ), ], id="header", className='row', ), html.Div( [ html.Div( [ html.H3("A little about you:"), html.P( "How much is a paycheck?", className="control_label" ), dcc.Input( id='biweekly_income', type="number", placeholder="biweekly income", className="dcc_control" ), html.P( 'How much will that grow each year(%)?', className="control_label" ), dcc.Input( id='expected_raise_pct', type="number", placeholder="percentage growth (%)", className="dcc_control" ), html.P( 'Is there a max(%)?', className="control_label" ), dcc.Input( id='salary_cap_pct', type="number", placeholder="salary cap (%)", className="dcc_control" ), html.P( 'How much do you spend per paycheck?', className="control_label" ), dcc.Input( id='biweekly_spend', type="number", placeholder="biweekly spend ($)", className="dcc_control" ), html.P( "What's rent every month?", className="control_label" ), dcc.Input( id='monthly_rent', type="number", placeholder="monthly rent ($)", className="dcc_control" ), html.P( "And how many years should be projected?", className="control_label" ), dcc.Input( id='projected_years', type="number", placeholder="years", className="dcc_control" ), html.H6( "We are going to invest all of your unspent money each month. Where it ends up depends on some limits and weights you define under 'Accounts'." ), ], className="pretty_container four columns" ), html.Div( [ html.Div( summary_stats, id="info-container", className="row container-display" ), html.Div(className="pretty_container", children= [ main_view ] ) ], id="right-column", className="eight columns" ) ], className="row flex-display", )], id="mainContainer" ) # %% [markdown] # ## Callbacks # # We made the wireframe, but now here's the hard part. # # We want to update the graph whenever: # # - Value on the left is changed (personal info) # - Clicked onto the "savings" tab # # We also want to make it easier(/obvious) to switch to the "Savings" tab to view the results. MAYBE IT SHOULD BE CALLED RESULTS? # %% from dash.dependencies import Output, Input, State # %% personal_info_inputs = [ Input("biweekly_income","value"), Input("expected_raise_pct","value"), Input("salary_cap_pct","value"), Input("biweekly_spend","value"), Input("monthly_rent","value"), Input("projected_years","value") ] # %% acct_info_ids = [child.id for kid in acct_info.children for child in kid.children if type(child)==dcc.Input] account_info_inputs = [ State(component_id,"value") for component_id in acct_info_ids] # %% {"code_folding": [0, 17, 26, 29, 37, 67]} @app.callback( [ Output(component_id="savings_graph", component_property="figure"), Output(component_id="total-saved", component_property="children"), Output(component_id="avg-saved", component_property="children"), Output(component_id="total-tax", component_property="children"), Output(component_id="total-rent", component_property="children"), ], [ *personal_info_inputs, Input(component_id="input-tabs", component_property="value") ], [ *account_info_inputs, State(component_id="savings_graph", component_property="figure") ] ) def calculate_cashflows( biweekly_income,expected_raise_pct,salary_cap_pct,biweekly_spend,monthly_rent,projected_years, tab, hi_contrib,hi_interest,hi_starting,hi_limit, unreg_interest, tfsa_contrib,tfsa_interest,tfsa_starting,tfsa_limit,tfsa_contrib_room,tfsa_contrib_reset, rrsp_contrib,rrsp_interest,rrsp_starting,rrsp_limit,rrsp_contrib_room,rrsp_contrib_reset, figure ): #if tab != "savings": # return [figure, "$—", "$—", "$—", "$—"] me = { 'biweekly_income': (biweekly_income or 0), 'expected_raise_pct': (expected_raise_pct or 0) * 0.01, 'salary_cap_pct': (salary_cap_pct or 0) * 0.01, 'biweekly_spend': (biweekly_spend or 0), 'monthly_rent': (monthly_rent or 0) } accounts_definition = [ { 'name':'tfsa', 'registered':True, 'rate': (tfsa_interest or 0)*0.01, 'starting_balance': (tfsa_starting or 0), 'biweekly_contribution': (tfsa_contrib or 0), 'contribution_room': (tfsa_contrib_room or 0), 'max_value': tfsa_limit or pd.np.inf, 'yearly_contrib': tfsa_contrib_reset or 0 # contrib room added each year }, { 'name':'rrsp', 'registered':True, 'rate': (rrsp_interest or 0)*0.01, 'starting_balance': rrsp_starting or 0, 'biweekly_contribution': rrsp_contrib or 0, 'max_value': rrsp_limit or pd.np.inf, #for first-time home buy 'contribution_room': rrsp_contrib_room or 0, 'yearly_contrib':rrsp_contrib_reset or 0 }, { 'name':'high_interest_savings', 'rate': (hi_interest or 0)*0.01, 'starting_balance': hi_starting or 0, 'max_value': hi_limit or pd.np.inf, #hold at this value 'biweekly_contribution':hi_contrib or 0 } ] unregistered = { 'name':'unregistered', 'rate': (unreg_interest or 0)*0.01, 'starting_balance': 0, } BW = projected_years * 26 if projected_years else 5 * 26 # years in 2-week chunks ## Income #Pure salary income, with option for it to grow annualy income = pd.np.ones(BW)*me.get("biweekly_income", 0) for year in range(BW//26): if me.get("salary_cap_pct") and (1 + me.get("salary_cap_pct", 0)) * me.get("biweekly_income", 0) < income[year*26]: break else: income[year*26:]*= 1 + me.get("expected_raise_pct",0) unregistered_balance = pd.np.ones(BW)*unregistered.get('starting_balance',0) spending = pd.np.ones(BW) * me.get("biweekly_spend",0) rent = pd.np.ones(BW) * me.get("monthly_rent",0) * 12/26 # biweekly rent? income -= spending + rent # this is our takehome invest = sum([acct.get("biweekly_contribution") for acct in accounts_definition])# amount invested biweekly for account in accounts_definition: amount = account.get("biweekly_contribution",0)/invest if invest else 0 account['ratio'] = amount ### Rules for distribution accts = [] taxes = 0 for account in accounts_definition: balance = pd.np.ones(BW)*account.get('starting_balance',0) contribution = pd.np.zeros(BW) interest =
pd.np.zeros(BW)
pandas.np.zeros
import os import pandas as pd FOLDER = 'data' FILENAME = 'gl.csv' COLUMNS = ['GL_Account', 'GL_Description', 'Amount'] class GeneralLedger(): def __init__(self, folder=FOLDER, filename=FILENAME, columns=COLUMNS): base_folder = os.path.abspath(os.path.dirname(__file__)) self.columns = columns self.filename = filename self.full_path = os.path.join(base_folder, folder) self.file_path = os.path.join(self.full_path, self.filename) if not os.path.exists(self.full_path) or not os.path.isdir(self.full_path): os.mkdir(self.full_path) if os.path.isfile(self.file_path): try: self.df = pd.read_csv(os.path.join(self.full_path, self.filename), index_col=0) except Exception as e: print('WARNING! Found gl file but could not load. {}. Creating empty gl.'.format(e)) self.df = pd.DataFrame() else: self.df = pd.DataFrame() def __repr__(self): return str(self.df) def save(self): self.df.to_csv(self.file_path) def record(self, new_row): self.df = self.df.append(
pd.DataFrame([new_row], columns=self.columns)
pandas.DataFrame
from datetime import datetime import numpy as np import pandas as pd import pytest from featuretools.primitives import ( Age, EmailAddressToDomain, IsFreeEmailDomain, TimeSince, URLToDomain, URLToProtocol, URLToTLD, Week, get_transform_primitives ) def test_time_since(): time_since = TimeSince() # class datetime.datetime(year, month, day[, hour[, minute[, second[, microsecond[, times = pd.Series([datetime(2019, 3, 1, 0, 0, 0, 1), datetime(2019, 3, 1, 0, 0, 1, 0), datetime(2019, 3, 1, 0, 2, 0, 0)]) cutoff_time = datetime(2019, 3, 1, 0, 0, 0, 0) values = time_since(array=times, time=cutoff_time) assert(list(map(int, values)) == [0, -1, -120]) time_since = TimeSince(unit='nanoseconds') values = time_since(array=times, time=cutoff_time) assert(list(map(round, values)) == [-1000, -1000000000, -120000000000]) time_since = TimeSince(unit='milliseconds') values = time_since(array=times, time=cutoff_time) assert(list(map(int, values)) == [0, -1000, -120000]) time_since = TimeSince(unit='Milliseconds') values = time_since(array=times, time=cutoff_time) assert(list(map(int, values)) == [0, -1000, -120000]) time_since = TimeSince(unit='Years') values = time_since(array=times, time=cutoff_time) assert(list(map(int, values)) == [0, 0, 0]) times_y = pd.Series([datetime(2019, 3, 1, 0, 0, 0, 1), datetime(2020, 3, 1, 0, 0, 1, 0), datetime(2017, 3, 1, 0, 0, 0, 0)]) time_since = TimeSince(unit='Years') values = time_since(array=times_y, time=cutoff_time) assert(list(map(int, values)) == [0, -1, 1]) error_text = 'Invalid unit given, make sure it is plural' with pytest.raises(ValueError, match=error_text): time_since = TimeSince(unit='na') time_since(array=times, time=cutoff_time) def test_age(): age = Age() dates = pd.Series(datetime(2010, 2, 26)) ages = age(dates, time=datetime(2020, 2, 26)) correct_ages = [10.005] # .005 added due to leap years np.testing.assert_array_almost_equal(ages, correct_ages, decimal=3) def test_age_two_years_quarterly(): age = Age() dates = pd.Series(pd.date_range('2010-01-01', '2011-12-31', freq='Q')) ages = age(dates, time=datetime(2020, 2, 26)) correct_ages = [9.915, 9.666, 9.414, 9.162, 8.915, 8.666, 8.414, 8.162] np.testing.assert_array_almost_equal(ages, correct_ages, decimal=3) def test_age_leap_year(): age = Age() dates = pd.Series([datetime(2016, 1, 1)]) ages = age(dates, time=datetime(2016, 3, 1)) correct_ages = [(31 + 29) / 365.0] np.testing.assert_array_almost_equal(ages, correct_ages, decimal=3) # born leap year date dates = pd.Series([datetime(2016, 2, 29)]) ages = age(dates, time=datetime(2020, 2, 29)) correct_ages = [4.0027] # .0027 added due to leap year np.testing.assert_array_almost_equal(ages, correct_ages, decimal=3) def test_age_nan(): age = Age() dates = pd.Series([datetime(2010, 1, 1), np.nan, datetime(2012, 1, 1)]) ages = age(dates, time=datetime(2020, 2, 26)) correct_ages = [10.159, np.nan, 8.159] np.testing.assert_array_almost_equal(ages, correct_ages, decimal=3) def test_week_no_deprecation_message(): dates = [datetime(2019, 1, 3), datetime(2019, 6, 17, 11, 10, 50), datetime(2019, 11, 30, 19, 45, 15) ] with pytest.warns(None) as record: week = Week() week(dates).tolist() assert not record def test_url_to_domain_urls(): url_to_domain = URLToDomain() urls = pd.Series(['https://play.google.com/store/apps/details?id=com.skgames.trafficracer%22', 'http://mplay.google.co.in/sadfask/asdkfals?dk=10', 'http://lplay.google.co.in/sadfask/asdkfals?dk=10', 'http://play.google.co.in/sadfask/asdkfals?dk=10', 'http://tplay.google.co.in/sadfask/asdkfals?dk=10', 'http://www.google.co.in/sadfask/asdkfals?dk=10', 'www.google.co.in/sadfask/asdkfals?dk=10', 'http://user:[email protected]/?a=b#asdd', 'https://www.compzets.com?asd=10', 'www.compzets.com?asd=10', 'facebook.com', 'https://www.compzets.net?asd=10', 'http://www.featuretools.org']) correct_urls = ['play.google.com', 'mplay.google.co.in', 'lplay.google.co.in', 'play.google.co.in', 'tplay.google.co.in', 'google.co.in', 'google.co.in', 'google.com', 'compzets.com', 'compzets.com', 'facebook.com', 'compzets.net', 'featuretools.org'] np.testing.assert_array_equal(url_to_domain(urls), correct_urls) def test_url_to_domain_long_url(): url_to_domain = URLToDomain() urls = pd.Series(["http://chart.apis.google.com/chart?chs=500x500&chma=0,0,100, \ 100&cht=p&chco=FF0000%2CFFFF00%7CFF8000%2C00FF00%7C00FF00%2C0 \ 000FF&chd=t%3A122%2C42%2C17%2C10%2C8%2C7%2C7%2C7%2C7%2C6%2C6% \ 2C6%2C6%2C5%2C5&chl=122%7C42%7C17%7C10%7C8%7C7%7C7%7C7%7C7%7C \ 6%7C6%7C6%7C6%7C5%7C5&chdl=android%7Cjava%7Cstack-trace%7Cbro \ adcastreceiver%7Candroid-ndk%7Cuser-agent%7Candroid-webview%7 \ Cwebview%7Cbackground%7Cmultithreading%7Candroid-source%7Csms \ %7Cadb%7Csollections%7Cactivity|Chart"]) correct_urls = ['chart.apis.google.com'] results = url_to_domain(urls) np.testing.assert_array_equal(results, correct_urls) def test_url_to_domain_nan(): url_to_domain = URLToDomain() urls = pd.Series(['www.featuretools.com', np.nan], dtype='object') correct_urls = pd.Series(['featuretools.com', np.nan], dtype='object') results = url_to_domain(urls) pd.testing.assert_series_equal(results, correct_urls) def test_url_to_protocol_urls(): url_to_protocol = URLToProtocol() urls = pd.Series(['https://play.google.com/store/apps/details?id=com.skgames.trafficracer%22', 'http://mplay.google.co.in/sadfask/asdkfals?dk=10', 'http://lplay.google.co.in/sadfask/asdkfals?dk=10', 'www.google.co.in/sadfask/asdkfals?dk=10', 'http://user:[email protected]/?a=b#asdd', 'https://www.compzets.com?asd=10', 'www.compzets.com?asd=10', 'facebook.com', 'https://www.compzets.net?asd=10', 'http://www.featuretools.org', 'https://featuretools.com']) correct_urls = pd.Series(['https', 'http', 'http', np.nan, 'http', 'https', np.nan, np.nan, 'https', 'http', 'https']) results = url_to_protocol(urls) pd.testing.assert_series_equal(results, correct_urls) def test_url_to_protocol_long_url(): url_to_protocol = URLToProtocol() urls = pd.Series(["http://chart.apis.google.com/chart?chs=500x500&chma=0,0,100, \ 100&cht=p&chco=FF0000%2CFFFF00%7CFF8000%2C00FF00%7C00FF00%2C0 \ 000FF&chd=t%3A122%2C42%2C17%2C10%2C8%2C7%2C7%2C7%2C7%2C6%2C6% \ 2C6%2C6%2C5%2C5&chl=122%7C42%7C17%7C10%7C8%7C7%7C7%7C7%7C7%7C \ 6%7C6%7C6%7C6%7C5%7C5&chdl=android%7Cjava%7Cstack-trace%7Cbro \ adcastreceiver%7Candroid-ndk%7Cuser-agent%7Candroid-webview%7 \ Cwebview%7Cbackground%7Cmultithreading%7Candroid-source%7Csms \ %7Cadb%7Csollections%7Cactivity|Chart"]) correct_urls = ['http'] results = url_to_protocol(urls) np.testing.assert_array_equal(results, correct_urls) def test_url_to_protocol_nan(): url_to_protocol = URLToProtocol() urls = pd.Series(['www.featuretools.com', np.nan, ''], dtype='object') correct_urls = pd.Series([np.nan, np.nan, np.nan], dtype='object') results = url_to_protocol(urls) pd.testing.assert_series_equal(results, correct_urls) def test_url_to_tld_urls(): url_to_tld = URLToTLD() urls = pd.Series(['https://play.google.com/store/apps/details?id=com.skgames.trafficracer%22', 'http://mplay.google.co.in/sadfask/asdkfals?dk=10', 'http://lplay.google.co.in/sadfask/asdkfals?dk=10', 'http://play.google.co.in/sadfask/asdkfals?dk=10', 'http://tplay.google.co.in/sadfask/asdkfals?dk=10', 'http://www.google.co.in/sadfask/asdkfals?dk=10', 'www.google.co.in/sadfask/asdkfals?dk=10', 'http://user:[email protected]/?a=b#asdd', 'https://www.compzets.dev?asd=10', 'www.compzets.com?asd=10', 'https://www.compzets.net?asd=10', 'http://www.featuretools.org', 'featuretools.org']) correct_urls = ['com', 'in', 'in', 'in', 'in', 'in', 'in', 'com', 'dev', 'com', 'net', 'org', 'org'] np.testing.assert_array_equal(url_to_tld(urls), correct_urls) def test_url_to_tld_long_url(): url_to_tld = URLToTLD() urls = pd.Series(["http://chart.apis.google.com/chart?chs=500x500&chma=0,0,100, \ 100&cht=p&chco=FF0000%2CFFFF00%7CFF8000%2C00FF00%7C00FF00%2C0 \ 000FF&chd=t%3A122%2C42%2C17%2C10%2C8%2C7%2C7%2C7%2C7%2C6%2C6% \ 2C6%2C6%2C5%2C5&chl=122%7C42%7C17%7C10%7C8%7C7%7C7%7C7%7C7%7C \ 6%7C6%7C6%7C6%7C5%7C5&chdl=android%7Cjava%7Cstack-trace%7Cbro \ adcastreceiver%7Candroid-ndk%7Cuser-agent%7Candroid-webview%7 \ Cwebview%7Cbackground%7Cmultithreading%7Candroid-source%7Csms \ %7Cadb%7Csollections%7Cactivity|Chart"]) correct_urls = ['com'] np.testing.assert_array_equal(url_to_tld(urls), correct_urls) def test_url_to_tld_nan(): url_to_tld = URLToTLD() urls = pd.Series(['www.featuretools.com', np.nan, 'featuretools', ''], dtype='object') correct_urls = pd.Series(['com', np.nan, np.nan, np.nan], dtype='object') results = url_to_tld(urls) pd.testing.assert_series_equal(results, correct_urls, check_names=False) def test_is_free_email_domain_valid_addresses(): is_free_email_domain = IsFreeEmailDomain() array = pd.Series(['<EMAIL>', '<EMAIL>', '<EMAIL>', 'free<EMAIL>']) answers = pd.Series(is_free_email_domain(array)) correct_answers = pd.Series([True, False, True, True])
pd.testing.assert_series_equal(answers, correct_answers)
pandas.testing.assert_series_equal
# -*- coding: utf-8 -*- """ Created on Jan 5 09:20:37 2022 Compiles NDFD data into SQLite DB @author: buriona,tclarkin """ import sys from pathlib import Path import pandas as pd import sqlalchemy as sql import sqlite3 import zipfile from zipfile import ZipFile # Load directories and defaults this_dir = Path(__file__).absolute().resolve().parent #this_dir = Path('C:/Programs/shread_dash/database/SHREAD') ZIP_IT = False ZIP_FRMT = zipfile.ZIP_LZMA DEFAULT_DATE_FIELD = 'Date_Valid' DEFAULT_CSV_DIR = Path(this_dir, 'data') DEFAULT_DB_DIR = this_dir COL_TYPES = { 'Date_Valid':str,'Date_Init':str,'Type':str,'Source':str,'OBJECTID':int, 'Join_Count':int,'TARGET_FID':int,'pointid':int,"grid_code":int, 'elev_ft': int, 'slope_d': int,'aspct': int, 'nlcd': int, 'LOCAL_ID': str,"POLY_SOURC":str,"TOTAL_ID":str,"TOTAL_NAME":str, 'LOCAL_NAME':str,'min':float,'max':float,'mean':float,'median':float } # Define functions def get_dfs(data_dir=DEFAULT_CSV_DIR, verbose=False): """ Get and merge dataframes imported using shread.py """ mint_df_list = [] maxt_df_list = [] rhm_df_list = [] pop12_df_list = [] qpf_df_list = [] snow_df_list = [] sky_df_list = [] print('Preparing .csv files for database creation...') for data_file in data_dir.glob('ndfd*.csv'): if verbose: print(f'Adding {data_file.name} to dataframe...') df = pd.read_csv( data_file, usecols=COL_TYPES.keys(), parse_dates=[DEFAULT_DATE_FIELD], dtype=COL_TYPES ) if not df.empty: df = df.drop(axis=1,columns=["Source","Join_Count","TARGET_FID","pointid","grid_code","POLY_SOURC","TOTAL_ID","TOTAL_NAME","min","max","median"]) df = df.rename(columns={"Date_Valid":"Date"}) mint_df_list.append( df[df['Type'] == 'mint'].drop(columns='Type').copy() ) maxt_df_list.append( df[df['Type'] == 'maxt'].drop(columns='Type').copy() ) rhm_df_list.append( df[df['Type'] == 'rhm'].drop(columns='Type').copy() ) pop12_df_list.append( df[df['Type'] == 'pop12'].drop(columns='Type').copy() ) qpf_df_list.append( df[df['Type'] == 'qpf'].drop(columns='Type').copy() ) snow_df_list.append( df[df['Type'] == 'snow'].drop(columns='Type').copy() ) sky_df_list.append( df[df['Type'] == 'sky'].drop(columns='Type').copy() ) df_mint = pd.concat(mint_df_list) df_mint.name = 'mint' df_maxt = pd.concat(maxt_df_list) df_maxt.name = 'maxt' df_rhm = pd.concat(rhm_df_list) df_rhm.name = 'rhm' df_pop12 = pd.concat(pop12_df_list) df_pop12.name = 'pop12' df_qpf = pd.concat(qpf_df_list) df_qpf.name = 'qpf' df_snow = pd.concat(snow_df_list) df_snow.name = 'snow' df_sky = pd.concat(sky_df_list) df_sky.name = 'sky' print(' Success!!!\n') return {'mint':df_mint,'maxt':df_maxt,'rhm':df_rhm,'pop12':df_pop12,'qpf':df_qpf,'snow':df_snow,'sky':df_sky} def get_unique_dates(tbl_name, db_path, date_field=DEFAULT_DATE_FIELD): """ Get unique dates from shread data, to ensure no duplicates """ if not db_path.is_file(): return pd.DataFrame(columns=[DEFAULT_DATE_FIELD]) db_con_str = f'sqlite:///{db_path.as_posix()}' eng = sql.create_engine(db_con_str) with eng.connect() as con: try: unique_dates = pd.read_sql( f'select distinct {date_field} from {tbl_name}', con ).dropna() except Exception: return
pd.DataFrame(columns=[DEFAULT_DATE_FIELD])
pandas.DataFrame
from __future__ import division import torch import numpy as np import os import math import argparse import logging from collections import OrderedDict import pandas as pd import json ''' Histogram of simalarities: a) positive b) Top-k percent ''' def histogram(sim, top_k_percents, writer, i_epoch, name): K = np.array([int(sim.size(0) * top_k_percent) for top_k_percent in top_k_percents]) max_K = K.max() y, yi = torch.topk(sim, int(max_K), largest=True, sorted=True) try: for i, top_k_percent in enumerate(top_k_percents): writer.add_histogram( '{}/top_{}'.format(name, int(top_k_percent*100)), y[:int(K[i])], i_epoch, ) except: print('histogram wrong') class data_prefetcher(): def __init__(self, loader): self.loader = iter(loader) self.stream = torch.cuda.Stream() # With Amp, it isn't necessary to manually convert data to half. # if args.fp16: # self.mean = self.mean.half() # self.std = self.std.half() self.preload() def preload(self): try: self.next_data = next(self.loader) except StopIteration: self.next_data = None return with torch.cuda.stream(self.stream): for i in range(2): self.next_data[i] = self.next_data[i].cuda(non_blocking=True) # With Amp, it isn't necessary to manually convert data to half. # if args.fp16: # self.next_input = self.next_input.half() # else: def next(self): torch.cuda.current_stream().wait_stream(self.stream) data = self.next_data self.preload() return data def batch_addscalar(writer, allloss, lossname, i): for loss, lossname in zip(allloss, lossname): writer.add_scalar(lossname, loss, i) def batch_logging(allloss, lossname, i): for loss, lossname in zip(allloss, lossname): logging.info('[Epoch: {}] {}: {:.4f}'.format(i, lossname, loss)) def colorful(text): return '\033[1;33m {} \033[0m'.format(text) def exclude_bn_weight_bias_from_weight_decay(model, weight_decay): decay = [] no_decay = [] for name, param in model.named_parameters(): if not param.requires_grad: continue # if len(param.shape) == 1 or name in skip_list: if 'bn' in name: no_decay.append(param) else: decay.append(param) return [ {'params': no_decay, 'weight_decay': 0.}, {'params': decay, 'weight_decay': weight_decay} ] class GroupAvgMeter(object): def __init__(self, n, name=''): self.n = n self.group_names = [name + '_' + str(i) for i in range(n)] self.avg_meters = {} for i in range(len(self.group_names)): self.avg_meters.update({self.group_names[i]: AvgMeter()}) def add(self, values): for value, group_name in zip(values, self.group_names): self.avg_meters[group_name].add(value) def get(self, group_name): return self.avg_meters[group_name].get() def get_all(self): return [self.avg_meters[group_name].get() for group_name in self.group_names] def s(self): return ','.join(['{:.4f}'.format(value) for value in self.get_all()]) class AvgMeter(object): def __init__(self): self.clear() def add(self, value): self.value += value self.n += 1 def get(self): if self.n == 0: return 0 return self.value/self.n def clear(self): self.n = 0 self.value = 0. class AccuracyMeter(object): def __init__(self): self.clear() def add(self, correct, total): self.correct += correct self.total += total def get(self): return self.correct/self.total def clear(self): self.correct = 0. self.total = 0. def getLogger(path): logger = logging.getLogger() logger.setLevel(logging.DEBUG) formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s: - %(message)s', datefmt='%Y-%m-%d %H:%M:%S') fh = logging.FileHandler(os.path.join(path, 'logs', 'log.txt')) fh.setLevel(logging.INFO) fh.setFormatter(formatter) ch = logging.StreamHandler() ch.setLevel(logging.INFO) ch.setFormatter(formatter) logger.addHandler(ch) logger.addHandler(fh) return logger def beautify(dic): if type(dic) == argparse.Namespace: dic = vars(dic) return json.dumps(dic, indent=4, sort_keys=True) def get_expidentifier(keys, args): args = vars(args) all_pairs = [] for key in keys: all_pairs.append(key) all_pairs.append(args[key]) print(all_pairs) ret = ('[{}={}]'*len(keys)).format(*all_pairs) return ret def save_result(args): res_path = args.res_path args = sorted(vars(args).items(), key=lambda obj: obj[0]) a = OrderedDict() for key, value in args: a[key] = [value,] df =
pd.DataFrame(a)
pandas.DataFrame
#!/usr/bin/env python # coding: utf-8 # In[5]: import time as tm import os, cx_Oracle from datetime import * import numpy as np import pandas as pd pt = os.getcwd() + "\\book1.csv" df = pd.read_csv(pt) df = df.astype (str) df = df.rename (columns=str.upper) df1 = df[['SERIAL','SUMMARY','CUSTOMATTR15','CUSTOMATTR11','LASTOCCURRENCE']] df1 = df1.assign(DHM ='0') df1['DHM'] = df.apply(lambda x:
pd.to_datetime(x['LASTOCCURRENCE'], dayfirst=True)
pandas.to_datetime
from io import StringIO from copy import deepcopy import numpy as np import pandas as pd import re from glypnirO_GUI.get_uniprot import UniprotParser from sequal.sequence import Sequence from sequal.resources import glycan_block_dict sequence_column_name = "Peptide\n< ProteinMetrics Confidential >" glycans_column_name = "Glycans\nNHFAGNa" starting_position_column_name = "Starting\nposition" modifications_column_name = "Modification Type(s)" observed_mz = "Calc.\nmass (M+H)" protein_column_name = "Protein Name" rt = "Scan Time" selected_aa = {"N", "S", "T"} regex_glycan_number_pattern = "\d+" glycan_number_regex = re.compile(regex_glycan_number_pattern) regex_pattern = "\.[\[\]\w\.\+\-]*\." sequence_regex = re.compile(regex_pattern) uniprot_regex = re.compile("(?P<accession>[OPQ][0-9][A-Z0-9]{3}[0-9]|[A-NR-Z][0-9]([A-Z][A-Z0-9]{2}[0-9]){1,2})(?P<isoform>-\d)?") glycan_regex = re.compile("(\w+)\((\d+)\)") def filter_U_only(df): unique_glycan = df["Glycans"].unique() if len(unique_glycan) > 1 or True not in np.isin(unique_glycan, "U"): # print(unique_glycan) return True return False def filter_with_U(df): unique_glycan = df["Glycans"].unique() if len(unique_glycan) > 1 \ and \ True in np.isin(unique_glycan, "U"): return True return False def get_mod_value(amino_acid): if amino_acid.mods: if amino_acid.mods[0].value.startswith("+"): return float(amino_acid.mods[0].value[1:]) else: return -float(amino_acid.mods[0].value[1:]) else: return 0 def load_fasta(fasta_file_path, selected=None, selected_prefix=""): with open(fasta_file_path, "rt") as fasta_file: result = {} current_seq = "" for line in fasta_file: line = line.strip() if line.startswith(">"): if selected: if selected_prefix + line[1:] in selected: result[line[1:]] = "" current_seq = line[1:] else: result[line[1:]] = "" current_seq = line[1:] else: result[current_seq] += line return result class Result: def __init__(self, df): self.df = df self.empty = df.empty def calculate_proportion(self, occupancy=True): df = self.df.copy() #print(df) if not occupancy: df = df[df["Glycans"] != "U"] if "Peptides" in df.columns: gr = [# "Isoform", "Peptides", "Position"] else: gr = [# "Isoform", "Position"] for _, g in df.groupby(gr): total = g["Value"].sum() for i, r in g.iterrows(): df.at[i, "Value"] = r["Value"] / total return df def to_summary(self, df=None, name="", trust_byonic=False, occupancy=True): if df is None: df = self.df if not occupancy: df = df[df["Glycans"] != "U"] if trust_byonic: temp = df.set_index([# "Isoform", "Position", "Glycans"]) else: temp = df.set_index([# "Isoform", "Peptides", "Glycans", "Position"]) temp.rename(columns={"Value": name}, inplace=True) return temp class GlypnirOComponent: def __init__(self, filename, area_filename, replicate_id, condition_id, protein_name, minimum_score=0, trust_byonic=False, legacy=False): if type(filename) == pd.DataFrame: data = filename.copy() else: data = pd.read_excel(filename, sheet_name="Spectra") if type(area_filename) == pd.DataFrame: file_with_area = area_filename else: if area_filename.endswith("xlsx"): file_with_area = pd.read_excel(area_filename) else: file_with_area = pd.read_csv(area_filename, sep="\t") data["Scan number"] = pd.to_numeric(data["Scan #"].str.extract("scan=(\d+)", expand=False)) data = pd.merge(data, file_with_area, left_on="Scan number", right_on="First Scan") self.protein_name = protein_name self.data = data.sort_values(by=['Area'], ascending=False) self.replicate_id = replicate_id self.condition_id = condition_id self.data = data[data["Area"].notnull()] self.data = self.data[(self.data["Score"] >= minimum_score) & (self.data[protein_column_name].str.contains(protein_name)) # (data["Protein Name"] == ">"+protein_name) & ] self.data = self.data[~self.data[protein_column_name].str.contains(">Reverse")] if len(self.data.index) > 0: self.empty = False else: self.empty = True self.row_to_glycans = {} self.glycan_to_row = {} self.trust_byonic = trust_byonic self.legacy = legacy self.sequon_glycosites = set() self.glycosylated_seq = set() def calculate_glycan(self, glycan): current_mass = 0 current_string = "" for i in glycan: current_string += i if i == ")": s = glycan_regex.search(current_string) if s: name = s.group(1) amount = s.group(2) current_mass += glycan_block_dict[name]*int(amount) current_string = "" return current_mass def process(self): # entries_number = len(self.data.index) # if analysis == "N-glycan": # expand_window = 2 # self.data["total_number_of_asn"] = pd.Series([0]*entries_number, index=self.data.index, dtype=int) # self.data["total_number_of_n-linked_sequon"] = pd.Series([0]*entries_number, index=self.data.index, dtype=int) # self.data["total_number_of_hexnac"] = pd.Series([0]*entries_number, index=self.data.index, dtype=int) # self.data["total_number_of_deamidation"] = pd.Series([0]*entries_number, index=self.data.index, dtype=int) # self.data["total_number_of_modded_asn"] = pd.Series([0]*entries_number, index=self.data.index, dtype=int) # self.data["total_number_of_unmodded_asn"] = pd.Series([0] * entries_number, index=self.data.index, dtype=int) # elif analysis == "O-glycan": # self.data["total_number_of_hex"] = pd.Series([0]*entries_number, index=self.data.index, dtype=int) # self.data["total_number_of_modded_ser_thr"] = pd.Series([0]*entries_number, index=self.data.index, dtype=int) # self.data["total_number_of_unmodded_ser_or_thr"] = pd.Series([0]*entries_number, index=self.data.index, dtype=int) # self.data["o_glycosylation_status"] = pd.Series([False]*entries_number, index=self.data.index, dtype=bool) for i, r in self.data.iterrows(): glycan_dict = {} search = sequence_regex.search(r[sequence_column_name]) seq = Sequence(search.group(0)) stripped_seq = seq.to_stripped_string() # modifications = {} # if pd.notnull(r[modifications_column_name]): # # for mod in r[modifications_column_name].split(","): # number = 1 # if "*" in mod: # m = mod.split("*") # minimod = Sequence(m[0].strip()) # number = int(m[1].strip()) # # else: # minimod = Sequence(mod.strip()) # for mo in minimod[0].mods: # if mo.value not in modifications: # modifications[mo.value] = {} # modifications[mo.value][minimod[0].value] = {"mod": deepcopy(mo), # "number": number} # #if minimod[0].mods[0].value not in modifications: # # modifications[minimod[0].mods[0].value] = {} # #modifications[minimod[0].mods[0].value][minimod[0].value] = {"mod": deepcopy(minimod[0].mods[0]), # # "number": number} # # if minimod[0].value == "N": # if analysis == "N-glycan": # for mo in minimod[0].mods: # if mo.value == 1: # #if minimod[0].mods[0].value == 1: # self.data.at[i, "total_number_of_deamidation"] += number # self.data.at[i, "total_number_of_modded_asn"] += number # elif minimod[0].value in "ST": # if analysis == "O-glycan": # for mo in minimod[0].mods: # self.data.at[i, "total_number_of_modded_ser_thr"] += number glycans = [] if pd.notnull(r[glycans_column_name]): glycans = r[glycans_column_name].split(",") if search: self.data.at[i, "stripped_seq"] = stripped_seq.rstrip(".").lstrip(".") origin_seq = r[starting_position_column_name] - 1 glycan_reordered = [] self.data.at[i, "origin_start"] = origin_seq self.data.at[i, "Ending Position"] = r[starting_position_column_name] + len(self.data.at[i, "stripped_seq"]) self.data.at[i, "position_to_glycan"] = "" if self.trust_byonic: n_site_status = {} p_n = r[protein_column_name].lstrip(">") # print(self.protein_name, p_n) # motifs = [match for match in seq.find_with_regex(motif, ignore=seq.gaps())] # if self.analysis == "N-glycan": # if len(fasta_library[p_n]) >= origin_seq + expand_window: # if expand_window: # expanded_window = Sequence(fasta_library[p_n][origin_seq: origin_seq + len(self.data.at[i, "stripped_seq"]) + expand_window]) # expanded_window_motifs = [match for match in expanded_window.find_with_regex(motif, ignore=expanded_window.gaps())] # origin_map = [i.start + origin_seq for i in expanded_window_motifs] # if len(expanded_window_motifs) > len(motifs): # self.data.at[i, "expanded_motif"] = str(expanded_window[expanded_window_motifs[-1]]) # self.data.at[i, "expanded_aa"] = str(expanded_window[-expand_window:]) # # else: # origin_map = [i.start + origin_seq for i in motifs] # else: # origin_map = [i.start + origin_seq for i in motifs] # # if analysis == "N-glycan": # self.data.at[i, "total_number_of_asn"] = seq.count("N", 0, len(seq)) # if expand_window: # self.data.at[i, "total_number_of_n-linked_sequon"] = len(expanded_window_motifs) # else: # self.data.at[i, "total_number_of_n-linked_sequon"] = len(motifs) # self.data.at[i, "total_number_of_unmodded_asn"] = self.data.at[i, "total_number_of_asn"] - self.data.at[i, "total_number_of_modded_asn"] # elif analysis == "O-glycan": # self.data.at[i, "total_number_of_ser_thr"] = seq.count("S", 0, len(seq)) + seq.count("T", 0, len(seq)) # self.data.at[i, "total_number_of_unmodded_ser_or_thr"] = self.data.at[i, "total_number_of_modded_ser_thr"] - self.data.at[i, "total_number_of_modded_ser_thr"] # current_glycan = 0 max_glycans = len(glycans) glycosylation_count = 1 if max_glycans: self.row_to_glycans[i] = np.sort(glycans) for g in glycans: data_gly = self.calculate_glycan(g) glycan_dict[str(round(data_gly, 3))] = g self.glycan_to_row[g] = i glycosylated_site = [] for aa in range(1, len(seq) - 1): if seq[aa].mods: mod_value = float(seq[aa].mods[0].value) round_mod_value = round(mod_value) # str_mod_value = seq[aa].mods[0].value[0] + str(round_mod_value) #if str_mod_value in modifications: # if seq[aa].value in "ST" and analysis == "O-glycan": # if round_mod_value == 80: # continue # if seq[aa].value in modifications[str_mod_value]: # if seq[aa].value == "N" and round_mod_value == 1: # seq[aa].extra = "Deamidated" # continue # if modifications[str_mod_value][seq[aa].value]['number'] > 0: # modifications[str_mod_value][seq[aa].value]['number'] -= 1 # seq[aa].mods[0].mass = mod_value round_3 = round(mod_value, 3) if str(round_3) in glycan_dict: seq[aa].extra = "Glycosylated" pos = int(r[starting_position_column_name]) + aa - 2 self.sequon_glycosites.add(pos + 1) position = "{}_position".format(str(glycosylation_count)) self.data.at[i, position] = seq[aa].value + str(pos + 1) glycosylated_site.append(self.data.at[i, position] + "_" + str(round_mod_value)) glycosylation_count += 1 glycan_reordered.append(glycan_dict[str(round_3)]) if glycan_reordered: self.data.at[i, "position_to_glycan"] = ",".join(glycan_reordered) self.data.at[i, "glycoprofile"] = ";".join(glycosylated_site) # if seq[aa].value == "N": # if analysis == "N-glycan": # if self.trust_byonic: # if not in origin_map: # # # position = "{}_position".format(str(glycosylation_count)) # # self.data.at[i, position] = seq[aa].value + str( # # r[starting_position_column_name]+aa) # # self.data.at[i, position + "_match"] = "H" # # glycosylation_count += 1 # self.data.at[i, "total_number_of_hexnac"] += 1 # elif seq[aa].value in "ST": # if analysis == "O-glycan": # self.data.at[i, "total_number_of_hex"] += 1 # if mod_value in modifications: # if seq[aa].value in "ST" and analysis == "O-glycan": # if round_mod_value == 80: # continue # # if seq[aa].value in modifications[mod_value]: # if seq[aa].value == "N" and round_mod_value == 1: # seq[aa].extra = "Deamidated" # continue # if modifications[mod_value][seq[aa].value]['number'] > 0: # modifications[mod_value][seq[aa].value]['number'] -= 1 # seq[aa].mods[0].mass = float(seq[aa].mods[0].value) # # if max_glycans and current_glycan != max_glycans: # # seq[aa].mods[0].value = glycans[current_glycan] # seq[aa].extra = "Glycosylated" # # if seq[aa].value == "N": # if analysis == "N-glycan": # if "hexnac" in glycans[current_glycan].lower(): # self.data.at[i, "total_number_of_hexnac"] += 1 # # elif seq[aa].value in "ST": # if analysis == "O-glycan": # self.data.at[i, "total_number_of_hex"] += 1 # # current_glycan += 1 #if current_glycan == max_glycans: #break # for n in origin_map: # position = "{}_position".format(str(glycosylation_count)) # self.data.at[i, position] = seq[n-origin_seq+1].value + str( # n + 1) # # if seq[n-origin_seq+1].extra == "Glycosylated": # self.data.at[i, position + "_match"] = "H" # elif seq[n-origin_seq+1].extra == "Deamidated": # self.data.at[i, position + "_match"] = "D" # else: # self.data.at[i, position + "_match"] = "U" # # if analysis == "N-glycan": # if self.legacy: # if self.data.at[i, "total_number_of_n-linked_sequon"] != self.data.at[i, "total_number_of_hexnac"]: # if seq[n-origin_seq+1].extra == "Deamidated": # if self.data.at[i, "total_number_of_hexnac"] > 0: # self.data.at[i, position + "_match"] = "D/H" # if self.data.at[i, "total_number_of_unmodded_asn"] > 0: # self.data.at[i, position + "_match"] = "D/H/U" # else: # self.data.at[i, position + "_match"] = "D" # else: # if self.data.at[i, "total_number_of_hexnac"] > 0: # if self.data.at[i, "total_number_of_deamidation"] == 0: # self.data.at[i, position + "_match"] = "H" # else: # self.data.at[i, position + "_match"] ="D/H" # if self.data.at[i, "total_number_of_unmodded_asn"] > 0: # self.data.at[i, position + "_match"] = "D/H/U" # if not seq[n-origin_seq+1].extra: # if self.data.at[i, "total_number_of_hexnac"] > 0 and self.data.at[i, "total_number_of_deamidation"]> 0: # self.data.at[i, position + "_match"] = "D/H" # if self.data.at[i, "total_number_of_unmodded_asn"] > 0: # self.data.at[i, position + "_match"] = "D/H/U" # elif self.data.at[i, "total_number_of_hexnac"] > 0: # self.data.at[i, position + "_match"] = "H" # if self.data.at[i, "total_number_of_unmodded_asn"] > 0: # self.data.at[i, position + "_match"] = "D/H/U" # else: # self.data.at[i, position + "_match"] = "U" # glycosylation_count += 1 else: if pd.notnull(r[glycans_column_name]): glycans = r[glycans_column_name].split(",") glycans.sort() self.data.at[i, glycans_column_name] = ",".join(glycans) self.data.at[i, "glycosylation_status"] = True self.glycosylated_seq.add(self.data.at[i, "stripped_seq"]) def analyze(self, max_sites=0, combine_d_u=True, splitting_sites=False): result = [] temp = self.data.sort_values(["Area", "Score"], ascending=False) temp[glycans_column_name] = temp[glycans_column_name].fillna("None") out = [] if self.trust_byonic: seq_glycosites = list(self.sequon_glycosites) seq_glycosites.sort() # print(seq_glycosites) # if self.analysis == "N-glycan": # if max_sites == 0: # temp = temp[(0 < temp["total_number_of_n-linked_sequon"])] # else: # temp = temp[(0 < temp["total_number_of_n-linked_sequon"]) & (temp["total_number_of_n-linked_sequon"]<= max_sites) ] for i, g in temp.groupby(["stripped_seq", "z", "glycoprofile", observed_mz]): seq_within = [] unique_row = g.loc[g["Area"].idxmax()] # # glycan = 0 # first_site = "" if seq_glycosites: for n in seq_glycosites: if unique_row[starting_position_column_name] <= n < unique_row["Ending Position"]: # print(unique_row["stripped_seq"], n, unique_row[starting_position_column_name]) seq_within.append( unique_row["stripped_seq"][n-unique_row[starting_position_column_name]]+str(n)) # print(unique_row) # if self.legacy: # for c in range(len(unique_row.index)): # if unique_row.index[c].endswith("_position"): # # if pd.notnull(unique_row[unique_row.index[c]]): # if not first_site: # first_site = unique_row[unique_row.index[c]] # if unique_row[unique_row.index[c]] not in result: # result[unique_row[unique_row.index[c]]] = {} # # if "U" in unique_row[unique_row.index[c+1]]: # if "U" not in result[unique_row[unique_row.index[c]]]: # result[unique_row[unique_row.index[c]]]["U"] = 0 # result[unique_row[unique_row.index[c]]]["U"] += unique_row["Area"] # elif "D" in unique_row[unique_row.index[c+1]]: # if combine_d_u: # if "U" not in result[unique_row[unique_row.index[c]]]: # result[unique_row[unique_row.index[c]]]["U"] = 0 # result[unique_row[unique_row.index[c]]]["U"] += unique_row["Area"] # else: # if "D" not in result[unique_row[unique_row.index[c]]]: # result[unique_row[unique_row.index[c]]]["D"] = 0 # result[unique_row[unique_row.index[c]]]["D"] += unique_row["Area"] # else: # if splitting_sites or unique_row["total_number_of_hexnac"] == 1: # # if self.row_to_glycans[unique_row.name][glycan] not in result[unique_row[unique_row.index[c]]]: # result[unique_row[unique_row.index[c]]][self.row_to_glycans[unique_row.name][glycan]] = 0 # result[unique_row[unique_row.index[c]]][ # self.row_to_glycans[unique_row.name][glycan]] += unique_row["Area"] # glycan += 1 # # else: # if unique_row["total_number_of_hexnac"] > 1 and not splitting_sites: # temporary_glycan = ";".join(self.row_to_glycans[unique_row.name][glycan]) # # if temporary_glycan not in result[unique_row[unique_row.index[c]]]: # result[unique_row[unique_row.index[c]]][temporary_glycan] = unique_row["Area"] # break # else: glycosylation_count = 0 glycans = unique_row["position_to_glycan"].split(",") for c in range(len(unique_row.index)): if unique_row.index[c].endswith("_position"): if pd.notnull(unique_row[unique_row.index[c]]): pos = unique_row[unique_row.index[c]] result.append({"Position": pos, "Glycans": glycans[glycosylation_count], "Value": unique_row["Area"]}) ind = seq_within.index(pos) seq_within.pop(ind) glycosylation_count += 1 if seq_within: for s in seq_within: result.append({"Position": s, "Glycans": "U", "Value": unique_row["Area"]}) # if N_combo: # # N_combo.sort() # sequons = ";".join(N_combo) # # # working_isoform = unique_row["isoform"] # # if working_isoform not in result: # # # if working_isoform != 1.0 and 1.0 in result: # # # if sequons in result[working_isoform][1.0]: # # # if unique_row[glycans_column_name] in result[working_isoform][1.0][sequons] or "U" in result[working_isoform][1.0][sequons]: # # # working_isoform = 1.0 # # # else: # # result[working_isoform] = {} # if sequons not in result[working_isoform]: # result[working_isoform][sequons] = {} # #if pd.notnull(unique_row[glycans_column_name]): # if unique_row[glycans_column_name] != "None": # if unique_row[glycans_column_name] not in result[working_isoform][sequons]: # result[working_isoform][sequons][unique_row[glycans_column_name]] = 0 # result[working_isoform][sequons][unique_row[glycans_column_name]] += unique_row["Area"] # else: # if "U" not in result[working_isoform][sequons]: # result[working_isoform][sequons]["U"] = 0 # result[working_isoform][sequons]["U"] += unique_row["Area"] # #print(result) if result: result = pd.DataFrame(result) group = result.groupby(["Position", "Glycans"]) out = group.agg(np.sum).reset_index() else: out = pd.DataFrame([], columns=["Position", "Glycans", "Values"]) # for k in result: # for k2 in result[k]: # for k3 in result[k][k2]: # out.append({"Isoform": k, "Position": k2, "Glycans": k3, "Value": result[k][k2][k3]}) else: # result_total = {} # if max_sites != 0: # temp = temp[temp['total_number_of_hex'] <= max_sites] for i, g in temp.groupby(["stripped_seq", "z", glycans_column_name, starting_position_column_name, observed_mz]): unique_row = g.loc[g["Area"].idxmax()] if unique_row[glycans_column_name] != "None": result.append({"Peptides": i[0], "Glycans": i[2], "Value": unique_row["Area"], "Position": i[3]}) else: result.append({"Peptides": i[0], "Glycans": "U", "Value": unique_row["Area"], "Position": i[3]}) result = pd.DataFrame(result) group = result.groupby(["Peptides", "Position", "Glycans"]) out = group.agg(np.sum).reset_index() # working_isoform = unique_row["isoform"] # if working_isoform not in result: # # if working_isoform != 1.0 and 1.0 in result: # # if unique_row["stripped_seq"] in result[working_isoform][1.0]: # # #if i[3] in result[working_isoform][1.0][unique_row["stripped_seq"]]: # # # if unique_row[glycans_column_name] in result[working_isoform][1.0][unique_row["stripped_seq"]][i[3]] or "U" in \ # # # result[working_isoform][1.0][unique_row["stripped_seq"]][i[3]]: # # working_isoform = 1.0 # # else: # result[working_isoform] = {} # # if unique_row["stripped_seq"] not in result[working_isoform]: # result[working_isoform][unique_row["stripped_seq"]] = {} # # result_total[unique_row["isoform"]][unique_row["stripped_seq"]] = 0 # if i[3] not in result[working_isoform][unique_row["stripped_seq"]]: # result[working_isoform][unique_row["stripped_seq"]][i[3]] = {} # if i[2] == "None": # if "U" not in result[working_isoform][unique_row["stripped_seq"]][i[3]]: # result[working_isoform][unique_row["stripped_seq"]][i[3]]["U"] = 0 # result[working_isoform][unique_row["stripped_seq"]][i[3]]["U"] += unique_row["Area"] # # else: # # if splitting_sites: # # for gly in self.row_to_glycans[unique_row.name]: # # if gly not in result[working_isoform][unique_row["stripped_seq"]][i[3]]: # # result[working_isoform][unique_row["stripped_seq"]][i[3]][gly] = 0 # # result[working_isoform][unique_row["stripped_seq"]][i[3]][gly] += unique_row["Area"] # # else: # if unique_row[glycans_column_name] not in result[working_isoform][unique_row["stripped_seq"]][i[3]]: # result[working_isoform][unique_row["stripped_seq"]][i[3]][unique_row[glycans_column_name]] = 0 # result[working_isoform][unique_row["stripped_seq"]][i[3]][unique_row[glycans_column_name]] += unique_row["Area"] # # for k in result: # for k2 in result[k]: # for k3 in result[k][k2]: # for k4 in result[k][k2][k3]: # out.append({"Isoform": k, "Peptides": k2, "Glycans": k4, "Value": result[k][k2][k3][k4], "Position": k3}) return Result(out) class GlypnirO: def __init__(self, trust_byonic=False, get_uniprot=False): self.trust_byonic = trust_byonic self.components = None self.uniprot_parsed_data = pd.DataFrame([]) self.get_uniprot = get_uniprot def add_component(self, filename, area_filename, replicate_id, sample_id): component = GlypnirOComponent(filename, area_filename, replicate_id, sample_id) def add_batch_component(self, component_list, minimum_score, protein=None, combine_uniprot_isoform=True, legacy=False): self.load_dataframe(component_list) protein_list = [] if protein is not None: self.components["Protein"] = pd.Series([protein]*len(self.components.index), index=self.components.index) for i, r in self.components.iterrows(): comp = GlypnirOComponent(r["filename"], r["area_filename"], r["replicate_id"], condition_id=r["condition_id"], protein_name=protein, minimum_score=minimum_score, trust_byonic=self.trust_byonic, legacy=legacy) self.components.at[i, "component"] = comp print("{} - {}, {} peptides has been successfully loaded".format(r["condition_id"], r["replicate_id"], str(len(comp.data.index)))) else: components = [] for i, r in self.components.iterrows(): data = pd.read_excel(r["filename"], sheet_name="Spectra") protein_id_column = protein_column_name if combine_uniprot_isoform: protein_id_column = "master_id" for i2, r2 in data.iterrows(): search = uniprot_regex.search(r2[protein_column_name]) if not r2[protein_column_name].startswith(">Reverse") and not r2[protein_column_name].endswith("(Common contaminant protein)"): if search: data.at[i2, "master_id"] = search.groupdict(default="")["accession"] if not self.get_uniprot: protein_list.append([search.groupdict(default="")["accession"], r2[protein_column_name]]) if search.groupdict(default="")["isoform"] != "": data.at[i2, "isoform"] = int(search.groupdict(default="")["isoform"][1:]) else: data.at[i2, "isoform"] = 1 else: data.at[i2, "master_id"] = r2[protein_column_name] data.at[i2, "isoform"] = 1 else: data.at[i2, "master_id"] = r2[protein_column_name] data.at[i2, "isoform"] = 1 if r["area_filename"].endswith("xlsx"): file_with_area = pd.read_excel(r["area_filename"]) else: file_with_area = pd.read_csv(r["area_filename"], sep="\t") for index, g in data.groupby([protein_id_column]): u = index if not u.startswith(">Reverse") and not u.endswith("(Common contaminant protein)"): comp = GlypnirOComponent(g, file_with_area, r["replicate_id"], condition_id=r["condition_id"], protein_name=u, minimum_score=minimum_score, trust_byonic=self.trust_byonic, legacy=legacy) if not comp.empty: components.append({"filename": r["filename"], "area_filename": r["area_filename"], "condition_id": r["condition_id"], "replicate_id": r["replicate_id"], "Protein": u, "component": comp}) yield i, r print( "{} - {} peptides has been successfully loaded".format(r["condition_id"], r["replicate_id"])) self.components = pd.DataFrame(components, columns=list(self.components.columns) + ["component", "Protein"]) if not self.get_uniprot: protein_df = pd.DataFrame(protein_list, columns=["Entry", "Protein names"]) self.uniprot_parsed_data = protein_df #print(self.uniprot_parsed_data) def load_dataframe(self, component_list): if type(component_list) == list: self.components =
pd.DataFrame(component_list)
pandas.DataFrame
from collections import Counter import altair as alt import pandas as pd import streamlit as st def stat_explorer(num_players): global data, board_spaces st.title('Mpoly Junior Game statistics explorer') st.write(""" We play 5,000,000 games and see what we can find. Use the radio buttons at the sidebar to change the number of players in the game. """) with st.expander('Notes'): st.write(""" * The games are played under advanced rules -- if a player is bankrupt, the player can sell property to the creditor. Games end when all players are truly bankrupt or the games last longer than 300 rounds (a draw). * Some algorithms are in place to mimic decisions made in an actual game. For example: * If a player has a choice to move to a space where there is liability for paying rent, and one that does not, player chooses the free space. * If a player has to sell property to a bank or player, it chooses the least expensive property first. * If a player gets a choice to pick a property to buy, it picks the most expensive one that would make a pair. """) @st.cache def load_data(no_of_players: int): data_to_be_loaded = pd.read_csv(f'games_{no_of_players}p_5m.csv.gz', compression='gzip') data_to_be_loaded.index.name = 'Game' return data_to_be_loaded with st.spinner('Loading data...'): data = load_data(num_players) st.header('Win Percentage') st.write(""" What are the odds of 1 player winning? This shows how significant the 1st player's advantage is, and how many games end in a draw (more than 300 rounds). (Incidentally, the youngest player is designated the first player in the junior game.) """) @st.cache def compile_win_percentages(players: int, data, games=5000000): winners = data['winner'].value_counts().to_dict() if num_players == 2: result = pd.DataFrame({'player': ['Player 1', 'Player 2', 'Draw'], 'Win Count': [winners[0], winners[1], winners[-1]]}) elif num_players == 3: result = pd.DataFrame({'player': ['Player 1', 'Player 2', 'Player 3', 'Draw'], 'Win Count': [winners[0], winners[1], winners[2], winners[-1]]}) elif num_players == 4: result = pd.DataFrame({'player': ['Player 1', 'Player 2', 'Player 3', 'Player 4', 'Draw'], 'Win Count': [winners[0], winners[1], winners[2], winners[3], winners[-1]]}) result['win_percent'] = result['Win Count'].map(lambda x: f"{round(x / games * 100, 2)}%") return result def make_win_chart(source): chart = alt.Chart(source).properties(height=350, width=700, title='Win Count(%) by player') win_chart = chart.mark_bar().encode( y='player', x='Win Count', color=alt.Color('player', scale=alt.Scale(scheme='dark2')) ) text = win_chart.mark_text( align='left', baseline='middle', dx=3 # Nudges text to right so it doesn't appear on top of the bar ).encode( text='win_percent' ) return win_chart + text st.altair_chart(make_win_chart(compile_win_percentages(num_players, data))) st.header('Number of rounds to complete game') st.write(""" Shows how long a game would typically take. """) @st.cache def compile_rounds(rounds_series): rounds_container = [value for _, value in rounds_series.items()] rounds_counter = Counter(rounds_container) return pd.DataFrame({'Rounds': list(rounds_counter.keys()), 'count': list(rounds_counter.values())}) def make_rounds_chart(source): base = alt.Chart(source).encode( x=alt.X('Rounds', bin=alt.Bin(step=5)), ) rounds_bar = base.mark_bar().encode( y='count', color=alt.condition(alt.datum.Rounds > 300, alt.value('orange'), alt.value('slateblue')) ).properties(width=700, height=500) return rounds_bar st.altair_chart(make_rounds_chart(compile_rounds(data['rounds']))) st.header('Most visited spaces') st.write(""" This shows you how often a place is visited during the 5 million games. Wouldn't you consider trying for the hottest space? """) board_spaces = ['GO', 'CHANCE', 'JAIL', 'FREE PARKING', 'TACO TRUCK', 'PIZZA HOUSE', 'BAKERY', 'ICE CREAM PARLOUR', 'MUSEUM', 'LIBRARY', 'GO-KARTS', 'SWIMMING POOL', 'FERRIS WHEEL', 'ROLLER COASTER', 'TOY SHOP', 'PET SHOP', 'AQUARIUM', 'THE ZOO', 'PARK LANE', 'BOARDWALK'] @st.cache def compile_spaces(): visit_count = [] for space in board_spaces: if space == 'CHANCE': visit_count.append(data[space].sum() / 4) else: visit_count.append(data[space].sum()) return
pd.DataFrame({'Space': board_spaces, 'Visit Count': visit_count})
pandas.DataFrame
""" This script preprocesses data and prepares data to be actually used in training """ import re import os import pickle import unicodedata import pandas as pd from sklearn.preprocessing import MinMaxScaler from sklearn.model_selection import train_test_split import logging logging.basicConfig(filename="memo_1.txt", level=logging.INFO) def unicodeToAscii(s): return ''.join( c for c in unicodedata.normalize('NFD', s) if unicodedata.category(c) != 'Mn' ) def normalizeString(s): """ Lowercase, trim, and remove non-letter characters """ s = unicodeToAscii(s.lower().strip()) s = re.sub(r"([.!?])", r" \1", s) s = re.sub(r"[^a-zA-Z.!?]+", r" ", s) return s def transcribe_sessions(): file2transcriptions = {} useful_regex = re.compile(r'^(\w+)', re.IGNORECASE) transcript_path = '/home/Data/IEMOCAP_session_only/Session{}/dialog/transcriptions/' for sess in range(1, 6): transcript_path_i = transcript_path.format(sess) for f in os.listdir(transcript_path_i): with open('{}{}'.format(transcript_path_i, f), 'r') as f: all_lines = f.readlines() for l in all_lines: logging.info(l) audio_code = useful_regex.match(l).group() transcription = l.split(':')[-1].strip() # assuming that all the keys would be unique and hence no `try` file2transcriptions[audio_code] = transcription with open('../data/t2e/audiocode2text.pkl', 'wb') as file: pickle.dump(file2transcriptions, file) return file2transcriptions def prepare_text_data(audiocode2text): # Prepare text data df =
pd.read_csv('../data/pre-processed/audio_features.csv')
pandas.read_csv
from itertools import product import numpy as np from numpy import ma import pandas as pd import pytest from scipy import sparse as sp from scipy.sparse import csr_matrix, issparse from anndata import AnnData from anndata.tests.helpers import assert_equal, gen_adata # some test objects that we use below adata_dense = AnnData(np.array([[1, 2], [3, 4]])) adata_dense.layers["test"] = adata_dense.X adata_sparse = AnnData( csr_matrix([[0, 2, 3], [0, 5, 6]]), dict(obs_names=["s1", "s2"], anno1=["c1", "c2"]), dict(var_names=["a", "b", "c"]), ) def test_creation(): AnnData(np.array([[1, 2], [3, 4]])) AnnData(np.array([[1, 2], [3, 4]]), {}, {}) AnnData(ma.array([[1, 2], [3, 4]]), uns=dict(mask=[0, 1, 1, 0])) AnnData(sp.eye(2)) X = np.array([[1, 2, 3], [4, 5, 6]]) adata = AnnData( X=X, obs=dict(Obs=["A", "B"]), var=dict(Feat=["a", "b", "c"]), obsm=dict(X_pca=np.array([[1, 2], [3, 4]])), raw=dict(X=X, var=dict(var_names=["a", "b", "c"])), ) assert adata.raw.X.tolist() == X.tolist() assert adata.raw.var_names.tolist() == ["a", "b", "c"] with pytest.raises(ValueError): AnnData(np.array([[1, 2], [3, 4]]), dict(TooLong=[1, 2, 3, 4])) # init with empty data matrix shape = (3, 5) adata = AnnData(None, uns=dict(test=np.array((3, 3))), shape=shape) assert adata.X is None assert adata.shape == shape assert "test" in adata.uns def test_create_with_dfs(): X = np.ones((6, 3)) obs = pd.DataFrame(dict(cat_anno=pd.Categorical(["a", "a", "a", "a", "b", "a"]))) obs_copy = obs.copy() adata = AnnData(X=X, obs=obs) assert obs.index.equals(obs_copy.index) assert obs.index.astype(str).equals(adata.obs.index) def test_create_from_df(): df = pd.DataFrame(np.ones((3, 2)), index=["a", "b", "c"], columns=["A", "B"]) ad = AnnData(df) assert df.values.tolist() == ad.X.tolist() assert df.columns.tolist() == ad.var_names.tolist() assert df.index.tolist() == ad.obs_names.tolist() def test_create_from_sparse_df(): s = sp.random(20, 30, density=0.2) obs_names = [f"obs{i}" for i in range(20)] var_names = [f"var{i}" for i in range(30)] df = pd.DataFrame.sparse.from_spmatrix(s, index=obs_names, columns=var_names) a = AnnData(df) b = AnnData(s, obs=pd.DataFrame(index=obs_names), var=pd.DataFrame(index=var_names)) assert_equal(a, b) assert issparse(a.X) def test_create_from_df_with_obs_and_var(): df = pd.DataFrame(np.ones((3, 2)), index=["a", "b", "c"], columns=["A", "B"]) obs = pd.DataFrame(np.ones((3, 1)), index=df.index, columns=["C"]) var = pd.DataFrame(np.ones((2, 1)), index=df.columns, columns=["D"]) ad = AnnData(df, obs=obs, var=var) assert df.values.tolist() == ad.X.tolist() assert df.columns.tolist() == ad.var_names.tolist() assert df.index.tolist() == ad.obs_names.tolist() assert obs.equals(ad.obs) assert var.equals(ad.var) with pytest.raises(ValueError, match=r"Index of obs must match index of X."): AnnData(df, obs=obs.reset_index()) with pytest.raises(ValueError, match=r"Index of var must match columns of X."): AnnData(df, var=var.reset_index()) def test_from_df_and_dict(): df = pd.DataFrame(dict(a=[0.1, 0.2, 0.3], b=[1.1, 1.2, 1.3])) adata = AnnData(df, dict(species=pd.Categorical(["a", "b", "a"]))) assert adata.obs["species"].values.tolist() == ["a", "b", "a"] def test_df_warnings(): df = pd.DataFrame(dict(A=[1, 2, 3], B=[1.0, 2.0, 3.0]), index=["a", "b", "c"]) with pytest.warns(UserWarning, match=r"X.*dtype float64"): adata = AnnData(df) with pytest.warns(UserWarning, match=r"X.*dtype float64"): adata.X = df def test_attr_deletion(): full = gen_adata((30, 30)) # Empty has just X, obs_names, var_names empty = AnnData(None, obs=full.obs[[]], var=full.var[[]]) for attr in ["X", "obs", "var", "obsm", "varm", "obsp", "varp", "layers", "uns"]: delattr(full, attr) assert_equal(getattr(full, attr), getattr(empty, attr)) assert_equal(full, empty, exact=True) def test_names(): adata = AnnData( np.array([[1, 2, 3], [4, 5, 6]]), dict(obs_names=["A", "B"]), dict(var_names=["a", "b", "c"]), ) assert adata.obs_names.tolist() == "A B".split() assert adata.var_names.tolist() == "a b c".split() adata = AnnData(np.array([[1, 2], [3, 4], [5, 6]]), var=dict(var_names=["a", "b"])) assert adata.var_names.tolist() == ["a", "b"] @pytest.mark.parametrize( "names,after", [ pytest.param(["a", "b"], None, id="list"), pytest.param( pd.Series(["AAD", "CCA"], name="barcodes"), "barcodes", id="Series-str" ), pytest.param(pd.Series(["x", "y"], name=0), None, id="Series-int"), ], ) @pytest.mark.parametrize("attr", ["obs_names", "var_names"]) def test_setting_index_names(names, after, attr): adata = adata_dense.copy() assert getattr(adata, attr).name is None setattr(adata, attr, names) assert getattr(adata, attr).name == after if hasattr(names, "name"): assert names.name is not None # Testing for views new = adata[:, :] assert new.is_view setattr(new, attr, names) assert_equal(new, adata, exact=True) assert not new.is_view @pytest.mark.parametrize("attr", ["obs_names", "var_names"]) def test_setting_index_names_error(attr): orig = adata_sparse[:2, :2] adata = adata_sparse[:2, :2] assert getattr(adata, attr).name is None with pytest.raises(ValueError, match=fr"AnnData expects \.{attr[:3]}\.index\.name"): setattr(adata, attr, pd.Index(["x", "y"], name=0)) assert adata.is_view assert getattr(adata, attr).tolist() != ["x", "y"] assert getattr(adata, attr).tolist() == getattr(orig, attr).tolist() assert_equal(orig, adata, exact=True) @pytest.mark.parametrize("dim", ["obs", "var"]) def test_setting_dim_index(dim): index_attr = f"{dim}_names" mapping_attr = f"{dim}m" orig = gen_adata((5, 5)) orig.raw = orig curr = orig.copy() view = orig[:, :] new_idx = pd.Index(list("abcde"), name="letters") setattr(curr, index_attr, new_idx) pd.testing.assert_index_equal(getattr(curr, index_attr), new_idx) pd.testing.assert_index_equal(getattr(curr, mapping_attr)["df"].index, new_idx) pd.testing.assert_index_equal(getattr(curr, mapping_attr).dim_names, new_idx)
pd.testing.assert_index_equal(curr.obs_names, curr.raw.obs_names)
pandas.testing.assert_index_equal
#! /usr/bin/env python3 #SBATCH -J get_csv #SBATCH -t 4:0:0 #SBATCH --mem=5G ### Get one csv with the normalized expression data # This Python script to make a csv of the output data from cuffdiff. It extracts the gene_id and expressionvalues for each analysis and writes it to 1 csv file # This scripts needs os.system and pandas # 00: import system commands and pandas (for DF management) import os import pandas as pd # # set path were data is path = '/home/uu_bio_fg/rbrouns/data/ant_fungus/TC6/data/ophio/cuffdiff_out/' # 01: Create a list with all the files in the directory where the gene_ex data is ls_gene_ex_files = (os.listdir(path)) # sort the list ls_gene_ex_files.sort() # some how the sample for file 20 does not contain data so that one is removed from te list ls_gene_ex_files.remove('gene_exp_02Avs20A.csv') ### 02: Create DF frame with rownames and without exp_values # # get first filename of list (thus file of sample 1) sample1 = (ls_gene_ex_files[0]) # create df with the data from sample 1 file0 = pd.read_csv(f'{path}{sample1}', sep='\t') # extract the columns gene_id, gene, locus into new DF TC6_gene_ex = file0[['gene_id', 'gene', 'locus']] ### 03: Append expression values as new column matchin to rownames # for sample in ls_gene_ex_files: # create df with the data from sample file = pd.read_csv(f'{path}{sample}', sep='\t') # extract the column of expression value_2 and value_2 = file[['gene_id','value_2']] # rename header of expression value to sample name s_header = sample.split('.')[0] ss_header = 'sample_' + s_header.split('vs')[1] value_2.columns = ['gene_id',ss_header] # append TC6 DF with expression values DF TC6_gene_ex =
pd.concat([TC6_gene_ex, value_2.iloc[:,1]], axis=1)
pandas.concat
# -*- coding: utf-8 -*- """ Created on Thu Mar 18 14:52:26 2021 @author: IneR """ #set inputs #Folder (Adapt!!) Folder = 'I:\\Las\\InputRF\\ReferenceData\\FixedDistance\\' #%% #import modules import os import glob import pandas as pd import numpy from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import classification_report, confusion_matrix, accuracy_score from sklearn.model_selection import cross_val_score from sklearn.model_selection import StratifiedKFold from sklearn.feature_selection import SelectFromModel from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestClassifier import sklearn.model_selection as ms Test = "Velm" #%% ########################## Import variables ################################### ############################################################################### ############################################################################### #import True positive TruePos_H = pd.read_csv(Folder + 'TP_Huldenberg_Features_fixedDist_MoreFeatures_r20.csv', index_col=0) TruePos_T = pd.read_csv(Folder + 'TP_Tervuren_Features_fixedDist_MoreFeatures_r20.csv', index_col=0) TruePos_V = pd.read_csv(Folder + 'TP_Velm_Features_fixedDist_MoreFeatures_r20.csv', index_col=0) #import True negative TrueNeg_H = pd.read_csv(Folder + 'TN_Huldenberg_Features_fixedDist_MoreFeatures_r20.csv', index_col=0) TrueNeg_T = pd.read_csv(Folder + 'TN_Tervuren_Features_fixedDist_MoreFeatures_r20.csv', index_col=0) TrueNeg_V = pd.read_csv(Folder + 'TN_Velm_Features_fixedDist_MoreFeatures_r20.csv', index_col=0) # dataRF_H = pd.concat([TruePos_H, TrueNeg_H]) dataRF_V = pd.concat([TruePos_V, TrueNeg_V]) dataRF_T = pd.concat([TruePos_T, TrueNeg_T]) #Get feature names --> no feature columns: 0, 1, 2, 3, 5, 7, 8, 161 --> drop them cols = [0, 1, 2, 3, 5, 7, 8, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161] features_df = dataRF_H.drop(dataRF_H.columns[cols],axis=1) features = features_df.columns[:125] #column names feat #dataRF: 1,2,3 = x,y,z 4,6,9:160 = features response = 161 cols2 = [0, 5, 7, 8, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161] #all columns but xyz and features if Test == "Huldenberg": Train1 = "Tervuren" Train2 = "Velm" dataRF_train = pd.concat([TruePos_T, TrueNeg_T, TruePos_V, TrueNeg_V]) dataRF_train1 = dataRF_T dataRF_train2 = dataRF_V dataRF_test = dataRF_H X_xyz_values_train = dataRF_train.drop(dataRF_train.columns[cols2], axis=1) #only keep xyz and features X_xyz_values_train1 = dataRF_T.drop(dataRF_T.columns[cols2], axis=1) #only keep xyz and features X_xyz_values_train2 = dataRF_V.drop(dataRF_V.columns[cols2], axis=1) #only keep xyz and features X_xyz_values_test = dataRF_H.drop(dataRF_H.columns[cols2], axis=1) #only keep xyz and features X_test = X_xyz_values_test.iloc[ : , 3:157] X_train1 = X_xyz_values_train1.iloc[ : , 3:157] X_train2 = X_xyz_values_train2.iloc[ : , 3:157] y_test = dataRF_H.iloc[:,161].values y_train1 = dataRF_T.iloc[:,161].values y_train2 = dataRF_V.iloc[:,161].values if Test == "Tervuren": Train1 = "Huldenberg" Train2 = "Velm" dataRF_train = pd.concat([TruePos_H, TrueNeg_H, TruePos_V, TrueNeg_V]) dataRF_train1 = dataRF_H dataRF_train2 = dataRF_V dataRF_test = dataRF_T X_xyz_values_train = dataRF_train.drop(dataRF_train.columns[cols2], axis=1) #only keep xyz and features X_xyz_values_train1 = dataRF_H.drop(dataRF_H.columns[cols2], axis=1) #only keep xyz and features X_xyz_values_train2 = dataRF_V.drop(dataRF_V.columns[cols2], axis=1) #only keep xyz and features X_xyz_values_test = dataRF_T.drop(dataRF_T.columns[cols2], axis=1) #only keep xyz and features X_test = X_xyz_values_test.iloc[ : , 3:157] X_train1 = X_xyz_values_train1.iloc[ : , 3:157] X_train2 = X_xyz_values_train2.iloc[ : , 3:157] y_test = dataRF_T.iloc[:,161].values y_train1 = dataRF_H.iloc[:,161].values y_train2 = dataRF_V.iloc[:,161].values if Test =="Velm": Train1 = "Huldenberg" Train2 = "Tervuren" dataRF_train =
pd.concat([TruePos_T, TrueNeg_T, TruePos_H, TrueNeg_H])
pandas.concat
import numpy as np import pytest from pandas.compat import lrange import pandas as pd from pandas import Series, Timestamp from pandas.util.testing import assert_series_equal @pytest.mark.parametrize("val,expected", [ (2**63 - 1, 3), (2**63, 4), ]) def test_loc_uint64(val, expected): # see gh-19399 s = Series({2**63 - 1: 3, 2**63: 4}) assert s.loc[val] == expected def test_loc_getitem(test_data): inds = test_data.series.index[[3, 4, 7]] assert_series_equal( test_data.series.loc[inds], test_data.series.reindex(inds)) assert_series_equal(test_data.series.iloc[5::2], test_data.series[5::2]) # slice with indices d1, d2 = test_data.ts.index[[5, 15]] result = test_data.ts.loc[d1:d2] expected = test_data.ts.truncate(d1, d2) assert_series_equal(result, expected) # boolean mask = test_data.series > test_data.series.median() assert_series_equal(test_data.series.loc[mask], test_data.series[mask]) # ask for index value assert test_data.ts.loc[d1] == test_data.ts[d1] assert test_data.ts.loc[d2] == test_data.ts[d2] def test_loc_getitem_not_monotonic(test_data): d1, d2 = test_data.ts.index[[5, 15]] ts2 = test_data.ts[::2][[1, 2, 0]] msg = r"Timestamp\('2000-01-10 00:00:00'\)" with pytest.raises(KeyError, match=msg): ts2.loc[d1:d2] with pytest.raises(KeyError, match=msg): ts2.loc[d1:d2] = 0 def test_loc_getitem_setitem_integer_slice_keyerrors(): s = Series(np.random.randn(10), index=lrange(0, 20, 2)) # this is OK cp = s.copy() cp.iloc[4:10] = 0 assert (cp.iloc[4:10] == 0).all() # so is this cp = s.copy() cp.iloc[3:11] = 0 assert (cp.iloc[3:11] == 0).values.all() result = s.iloc[2:6] result2 = s.loc[3:11] expected = s.reindex([4, 6, 8, 10]) assert_series_equal(result, expected) assert_series_equal(result2, expected) # non-monotonic, raise KeyError s2 = s.iloc[lrange(5) + lrange(5, 10)[::-1]] with pytest.raises(KeyError, match=r"^3L?$"): s2.loc[3:11] with pytest.raises(KeyError, match=r"^3L?$"): s2.loc[3:11] = 0 def test_loc_getitem_iterator(test_data): idx = iter(test_data.series.index[:10]) result = test_data.series.loc[idx] assert_series_equal(result, test_data.series[:10]) def test_loc_setitem_boolean(test_data): mask = test_data.series > test_data.series.median() result = test_data.series.copy() result.loc[mask] = 0 expected = test_data.series expected[mask] = 0 assert_series_equal(result, expected) def test_loc_setitem_corner(test_data): inds = list(test_data.series.index[[5, 8, 12]]) test_data.series.loc[inds] = 5 msg = r"\['foo'\] not in index" with pytest.raises(KeyError, match=msg): test_data.series.loc[inds + ['foo']] = 5 def test_basic_setitem_with_labels(test_data): indices = test_data.ts.index[[5, 10, 15]] cp = test_data.ts.copy() exp = test_data.ts.copy() cp[indices] = 0 exp.loc[indices] = 0 assert_series_equal(cp, exp) cp = test_data.ts.copy() exp = test_data.ts.copy() cp[indices[0]:indices[2]] = 0 exp.loc[indices[0]:indices[2]] = 0 assert_series_equal(cp, exp) # integer indexes, be careful s = Series(np.random.randn(10), index=lrange(0, 20, 2)) inds = [0, 4, 6] arr_inds = np.array([0, 4, 6]) cp = s.copy() exp = s.copy() s[inds] = 0 s.loc[inds] = 0 assert_series_equal(cp, exp) cp = s.copy() exp = s.copy() s[arr_inds] = 0 s.loc[arr_inds] = 0 assert_series_equal(cp, exp) inds_notfound = [0, 4, 5, 6] arr_inds_notfound = np.array([0, 4, 5, 6]) msg = r"\[5\] not contained in the index" with pytest.raises(ValueError, match=msg): s[inds_notfound] = 0 with pytest.raises(Exception, match=msg): s[arr_inds_notfound] = 0 # GH12089 # with tz for values s = Series(
pd.date_range("2011-01-01", periods=3, tz="US/Eastern")
pandas.date_range
#!/usr/bin/env python # coding: utf-8 # ### Explore processed pan-cancer data # In[1]: import os import sys import numpy as np; np.random.seed(42) import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.preprocessing import StandardScaler import mpmp.config as cfg import mpmp.utilities.data_utilities as du # In[2]: DATA_TYPE = 'mut_sigs' # load gene/classification info and sample/cancer type info print('Loading gene label data...', file=sys.stderr) genes_df = du.load_vogelstein() sample_info_df = du.load_sample_info(DATA_TYPE, verbose=True) # load mutation info # this returns a tuple of dataframes, unpack it below pancancer_data = du.load_pancancer_data(verbose=True) (sample_freeze_df, mutation_df, copy_loss_df, copy_gain_df, mut_burden_df) = pancancer_data # In[3]: # load relevant data data_df = du.load_raw_data(DATA_TYPE, verbose=True) # standardize columns of expression dataframe if DATA_TYPE in cfg.standardize_data_types: print('Standardizing columns of {} data...'.format(DATA_TYPE), file=sys.stderr) data_df[data_df.columns] = StandardScaler().fit_transform(data_df[data_df.columns]) print(data_df.shape) data_df.iloc[:5, :5] # First, let's look at the low-dimensional representation of the chosen data type. # # We'll choose a few cancer types that are similar to one another (LUSC/LUAD, LGG/GBM) and a few that should be dissimilar (BRCA, THCA). # In[25]: assert sample_info_df.index.equals(data_df.index) # data_cancer_types = sorted(sample_info_df.cancer_type.unique()) data_cancer_types = ['LUAD', 'LUSC', 'THCA', 'LGG', 'GBM', 'BRCA'] data_types_df = (data_df .merge(sample_info_df, left_index=True, right_index=True) .query('cancer_type in @data_cancer_types') .drop(columns=['sample_type', 'id_for_stratification']) .reset_index() ) print(data_types_df.cancer_type.unique()) data_types_df.iloc[:5, -5:] # In[26]: from sklearn.decomposition import PCA from umap import UMAP sns.set({'figure.figsize': (20, 8)}) fig, axarr = plt.subplots(1, 2) pca = PCA(n_components=2) X_proj_pca = pca.fit_transform(data_types_df.drop(columns=['sample_id', 'cancer_type'])) reducer = UMAP(n_components=2, random_state=42) X_proj_umap = reducer.fit_transform(data_types_df.drop(columns=['sample_id', 'cancer_type'])) for i, cancer_type in enumerate(data_cancer_types): ixs = data_types_df.index[data_types_df.cancer_type == cancer_type].tolist() axarr[0].scatter(X_proj_pca[ixs, 0], X_proj_pca[ixs, 1], label=cancer_type, s=5) axarr[1].scatter(X_proj_umap[ixs, 0], X_proj_umap[ixs, 1], label=cancer_type, s=5) axarr[0].set_xlabel('PC1') axarr[0].set_ylabel('PC2') axarr[0].set_title('PCA projection of {} data, colored by cancer type'.format(DATA_TYPE)) axarr[0].legend() axarr[1].set_xlabel('UMAP dimension 1') axarr[1].set_ylabel('UMAP dimension 2') axarr[1].set_title('UMAP projection of {} data, colored by cancer type'.format(DATA_TYPE)) axarr[1].legend() # Now we want to dig a bit deeper into LGG and GBM, using expression and methylation data. It's fairly well-known that IDH1 mutation status defines distinct subtypes in both classes of brain tumors. We'll compare methylation and gene expression in IDH1-mutated vs. non-mutated samples, expecting to see a separation in our low dimensional representation. # # IDH1 plays a direct role in DNA methylation, so we anticipate that this separation between mutated and non-mutated samples will be slightly clearer in the methylation data. # In[5]: # load relevant data rnaseq_df = du.load_raw_data('expression', verbose=True) print('Standardizing columns of expression data...', file=sys.stderr) rnaseq_df[rnaseq_df.columns] = StandardScaler().fit_transform(rnaseq_df[rnaseq_df.columns]) methylation_df = du.load_raw_data('me_27k', verbose=True) print(methylation_df.shape) methylation_df.iloc[:5, :5] # In[6]: from mpmp.utilities.tcga_utilities import process_y_matrix def generate_labels(gene, classification): # process the y matrix for the given gene or pathway y_mutation_df = mutation_df.loc[:, gene] # include copy number gains for oncogenes # and copy number loss for tumor suppressor genes (TSG) include_copy = True if classification == "Oncogene": y_copy_number_df = copy_gain_df.loc[:, gene] elif classification == "TSG": y_copy_number_df = copy_loss_df.loc[:, gene] else: y_copy_number_df =
pd.DataFrame()
pandas.DataFrame
def get_default_fitkwargs(dataset=None): return {'d': 10, 'n_iters': 1000, 'max_n': 3000, 'batch_size': 100, 'lr': 1e-2, 'stop_iters':50, 'norm': True, 'ybar_bias': True} #=====================================For things implemented in DJKP import pandas as pd import numpy as np import os import ipdb from sklearn.model_selection import train_test_split from sklearn.datasets import load_boston, load_diabetes, fetch_california_housing import torch from models.baselines.djkp.dj_models.static import * from models.baselines.djkp.dj_models.PBP import * import _settings #from main repo TRAIN = 'train' VALID = 'val' TEST = 'test' VALID_1 = 'val1' VALID_2 = 'val2' SEED_OFFSETS = {TRAIN: 101, VALID: 202, VALID_1: 203, VALID_2: 204, TEST: 303} def my_split(idx, split_ratio=[0.8, 0.2], seed=10): assert len(split_ratio) == 2, "for this task" np.random.seed(seed) n = len(idx) perm = np.random.permutation(n) split_ratio = np.concatenate([[0.], np.cumsum(split_ratio) / sum(split_ratio)]) splits = np.round(split_ratio * n).astype(np.int) idxs = [idx[perm[splits[i]:splits[i + 1]]] for i in range(len(split_ratio) - 1)] return idxs[0], idxs[1] def load_dataset(dataset='UCI_Yacht', seed=7, data_path=_settings.DATA_PATH): if dataset == _settings.HOUSING_NAME: X, y = load_boston(return_X_y=True) elif dataset == _settings.ENERGY_NAME: fpath = os.path.join(data_path, dataset, 'ENB2012_data.xlsx') raw_df = pd.read_excel(fpath, engine='openpyxl') # raw_df = raw_df.iloc[:, :10] # raw_df.columns = ["X%d" % d for d in range(self.raw_df.shape[1] - 2)] + ['Y0', 'Y1'] raw_df = raw_df.iloc[:, :9] raw_df.columns = ["X%d" % d for d in range(raw_df.shape[1] - 1)] + ['Y'] X = raw_df.iloc[:, :-1].values y = raw_df.iloc[:, -1].values elif dataset == _settings.YACHT_NAME: fpath = os.path.join(data_path, 'UCI_Yacht', 'yacht_hydrodynamics.data') df = pd.read_fwf(fpath, header=None) X = df.iloc[:, :-1].values y = df.iloc[:, -1].values elif dataset == _settings.KIN8NM_NAME: fpath = os.path.join(data_path, 'Kin8nm', 'dataset_2175_kin8nm.csv') df = pd.read_csv(fpath) X = df.iloc[:, :-1].values y = df.iloc[:, -1].values elif dataset == _settings.BIKE_NAME: fpath = os.path.join(data_path, 'UCI_BikeSharing', 'Bike-Sharing-Dataset.zip') from zipfile import ZipFile archive = ZipFile(fpath) #raw_df = pd.read_csv(archive.open('day.csv')).set_index('dteday', verify_integrity=True).drop('instant',axis=1) raw_df = pd.read_csv(archive.open('hour.csv')).set_index('instant', verify_integrity=True) drop_cols = ['yr', 'mnth', 'dteday'] enum_cols = ['season', 'hr', 'weekday', 'weathersit'] raw_df = raw_df.drop(drop_cols, axis=1) for enum_col in enum_cols: ser = raw_df[enum_col] tdf = pd.get_dummies(ser).rename(columns=lambda x: "%s%d"%(enum_col, x)) raw_df =
pd.concat([raw_df, tdf], axis=1)
pandas.concat
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Jul 1 12:48:08 2020 @author: smith """ import spacy from gensim.test.utils import common_texts, get_tmpfile from gensim.models import Word2Vec from gensim.models.phrases import Phrases, Phraser import os import multiprocessing import csv import re import pandas as pd from time import time from datetime import datetime from collections import defaultdict import numpy as np from sklearn.decomposition import PCA from sklearn.manifold import TSNE import matplotlib.pyplot as plt import seaborn as sns sns.set_style("darkgrid") import logging import gensim logging.basicConfig(format="%(levelname)s - %(asctime)s: %(message)s", datefmt= '%H:%M:%S', level=logging.INFO) w2v_dir = '/home/smith/Smith_Scripts/NLP_GeneExpression/w2v_model/model071520/' w2v_model = Word2Vec.load(os.path.join(w2v_dir, 'w2v_model071520_MarkerGenes_UpOC_DownOC_CombinedSentences.model')) modelName = '_w2v071520_' resultDirectory = '/home/smith/Smith_Scripts/NLP_GeneExpression/spaCy_model062920/Results/' clusters = ['Cluster' + str(x) for x in range(20)] category = 'CellTypes' comparison = 'MarkerGenes' termIndex = pd.read_excel(os.path.join(resultDirectory, 'MarkerGenes_Results/Combined_Clusters_' + category + '_' + comparison + '_Frequency.xlsx'), index_col=0) termIndex = termIndex.sort_values(by='Combined Occurances', ascending=False) enrichIndex = pd.read_excel('/home/smith/Smith_Scripts/NLP_GeneExpression/spaCy_model062920/Results/Combined_Clusters_Enriched_CellTypes_MarkerGenes.xlsx', index_col=0) enrIndex = enrichIndex.iloc[:,::4] def calcTopSimilarities(cluster, category, min_freq=5, topn=2000, save=False): resultDirectory = '/home/smith/Smith_Scripts/NLP_GeneExpression/spaCy_model062920/Results/AllComparisons_Results/' clusterDirectory = os.path.join(resultDirectory, cluster + '_MarkerGenes_Results/') clusterNum=cluster.replace('Cluster', '') genesDf = pd.read_excel('/d1/studies/cellranger/ACWS_DP/scanpy_DiffExp_V2/results_maxGenes3000_maxMito.05_MinDisp0.2/DP_OC_Saline_Merged_t-test_pval_table_500genes_clusters.xlsx') genesList = genesDf[str(clusterNum) + '_n'].tolist() genes = genesList genes = [] for gene in genesList: genes.append(gene.lower()) # words = pd.read_excel(os.path.join(resultDirectory, str(cluster) + '_' + comparison + '_Results/' + category + '_' + cluster + '_Frequency.xlsx'), index_col=0) # words = pd.read_excel('/home/smith/Smith_Scripts/NLP_GeneExpression/spaCy_model062920/Results/Cluster0_EnrichedFunctions_onlyTest.xlsx', index_col=0) # wordsRedacted = words.loc[words['Occurances'] > min_freq]['word'].tolist() words = enrIndex wordsRedacted = words[cluster + ' term'].tolist()[:-1] if category == 'CellTypes': wordsRedacted = termIndex['word'].tolist()[:150] newWords = [] for item in wordsRedacted: try: item = item.replace(' ', '_') newWords.append(item) except AttributeError: pass cat = pd.DataFrame() catX =
pd.DataFrame()
pandas.DataFrame
from sklearn.metrics import roc_auc_score, roc_curve, auc import pandas as pd from typing import Dict, List from progress.bar import Bar import os import pickle from prismx.utils import read_gmt, load_correlation, load_feature from prismx.loaddata import get_genes def calculate_set_auc(prediction: pd.DataFrame, library: Dict, min_lib_size: int=1) -> pd.DataFrame: aucs = [] setnames = [] gidx = prediction.index for se in library: if len(library[se]) >= min_lib_size: lenc = [x.encode('utf-8') for x in library[se]] gold = [i in lenc for i in gidx] fpr, tpr, _ = roc_curve(list(gold), list(prediction.loc[:,se])) roc_auc = auc(fpr, tpr) aucs.append(roc_auc) setnames.append(se) aucs = pd.DataFrame(aucs, index=setnames) return(aucs) def calculate_gene_auc(prediction: pd.DataFrame, rev_library: Dict, min_lib_size: int=1) -> List[float]: aucs = [] gidx = prediction.index for se in rev_library: gold = [i in rev_library[se] for i in prediction.columns] if len(rev_library[se]) >= min_lib_size and se.encode("UTF-8") in gidx: fpr, tpr, _ = roc_curve(list(gold), list(prediction.loc[se.encode("UTF-8"),:])) roc_auc = auc(fpr, tpr) aucs.append(roc_auc) return(aucs) def benchmark_gmt(gmt_file: str, workdir: str, prediction_file: str, intersect: bool=False, verbose=False): genes = [x.decode("UTF-8") for x in get_genes(workdir)] library, rev_library, unique_genes = read_gmt(gmt_file, genes, verbose=verbose) if intersect: ugenes = list(set(sum(library.values(), []))) genes = list(set(ugenes) & set(genes)) prediction_files = os.listdir(workdir+"/features") lk = list(range(0, len(prediction_files)-1)) lk.append("global") geneAUC = pd.DataFrame() setAUC = pd.DataFrame() if verbose: bar = Bar('AUC calculation', max=len(lk)) for i in lk: prediction = load_feature(workdir, i).loc[genes,:] prediction.index = [x.decode("UTF-8") for x in prediction.index] prediction = prediction.loc[genes,:] geneAUC[i] = calculate_gene_auc(prediction, rev_library) setAUC[i] = calculate_set_auc(prediction, library)[0] if verbose: bar.next() if verbose: bar.finish() prediction = pd.read_feather(prediction_file).set_index("index").loc[genes,:] geneAUC["prismx"] = calculate_gene_auc(prediction, rev_library) geneAUC.index = unique_genes setAUC["prismx"] = calculate_set_auc(prediction, library)[0] return([geneAUC, setAUC]) def benchmarkGMTfast(gmt_file: str, correlationFolder: str, predictionFolder: str, prismxPrediction: str, minLibSize: int=1, intersect: bool=False, verbose=False): genes = get_genes(correlationFolder) library, rev_library, unique_genes = read_gmt(gmt_file, genes, verbose=verbose) if intersect: ugenes = list(set(sum(library.values(), []))) genes = list(set(ugenes) & set(genes)) unique_genes = [x.encode('utf-8') for x in unique_genes] prediction_files = os.listdir(predictionFolder) geneAUC = pd.DataFrame() setAUC = pd.DataFrame() prediction = loadPrediction(predictionFolder, "global").loc[unique_genes,:] geneAUC["global"] = calculateGeneAUC(prediction, rev_library) setAUC["global"] = calculateSetAUC(prediction, library)[0] prediction = pd.read_feather(prismxPrediction).set_index("index").loc[unique_genes,:] geneAUC["prismx"] = calculateGeneAUC(prediction, rev_library) geneAUC.index = unique_genes setAUC["prismx"] = calculateSetAUC(prediction, library)[0] return([geneAUC, setAUC]) def benchmark_gmt_fast(gmt_file: str, workdir: str, prediction_file: str, intersect: bool=False, verbose=False): genes = [x.decode("UTF-8") for x in get_genes(workdir)] library, rev_library, unique_genes = read_gmt(gmt_file, genes, verbose=verbose) if intersect: ugenes = list(set(sum(library.values(), []))) genes = list(set(ugenes) & set(genes)) prediction_files = os.listdir(workdir+"/features") lk = list(range(0, len(prediction_files)-1)) lk.append("global") geneAUC = pd.DataFrame() setAUC =
pd.DataFrame()
pandas.DataFrame
""" Author: <NAME>, <NAME> """ import math import pandas as pd from bloomberg import BBG from pandas.tseries.offsets import BDay class BondFutureTracker(object): futures_ticker_dict = {'US': 'TY', 'DE': 'RX', 'FR': 'OAT', 'IT': 'IK', 'JP': 'JB', 'AU': 'XM', 'GB': 'G ', 'CA': 'CN'} fx_dict = {'DE': 'EURUSD Curncy', 'GB': 'GBPUSD Curncy', 'CA': 'CADUSD Curncy', 'JP': 'JPYUSD Curncy', 'AU': 'AUDUSD Curncy', 'FR': 'EURUSD Curncy', 'IT': 'EURUSD Curncy', 'US': 'USD Curncy'} def __init__(self, country, start_date, end_date): assert country in list(self.futures_ticker_dict.keys()), 'Country not yet supported' self.bbg = BBG() self.country = country self.start_date = self._assert_date_type(start_date) self.end_date = self._assert_date_type(end_date) self.generic_tickers = [self.futures_ticker_dict[country] + str(x) + ' Comdty' for x in range(1, 4)] self.df_generics = self._get_generic_future_series() self.df_uc = self._get_underlying_contracts() self.contract_list = self._get_contracts_list() self.df_fn = self._get_first_notice_dates() self.df_prices = self._get_all_prices() self.df_tracker = self._build_tracker() self.tr_index = self.df_tracker[['er_index']] self.fh_ticker = 'fibf ' + self.country.lower() + ' 10y' self.df_roll_info = self.df_tracker[['contract_rolling_out', 'roll_out_date', 'holdings']].dropna(how='any') self.df_metadata = self._get_metadata() self.df_tracker = self._get_tracker_melted() def _get_tracker_melted(self): df = self.df_tracker[['er_index']].rename({'er_index': self.fh_ticker}, axis=1) df['time_stamp'] = df.index.to_series() df = df.melt(id_vars='time_stamp', var_name='fh_ticker', value_name='value') df = df.dropna() return df def _get_generic_future_series(self): df = self.bbg.fetch_series(securities=self.generic_tickers, fields='PX_LAST', startdate=self.start_date, enddate=self.end_date) return df def _get_underlying_contracts(self): df = self.bbg.fetch_series(securities=self.generic_tickers, fields='FUT_CUR_GEN_TICKER', startdate=self.start_date, enddate=self.end_date) df = df.reindex(self.df_generics.index).fillna(method='ffill') return df def _get_contracts_list(self): contract_list = self.bbg.fetch_futures_list(generic_ticker=self.futures_ticker_dict[self.country] + '1 Comdty') return contract_list def _get_first_notice_dates(self): df = self.bbg.fetch_contract_parameter(securities=self.contract_list, field='FUT_NOTICE_FIRST').sort_values('FUT_NOTICE_FIRST') return df def _get_all_prices(self): tickers = self.contract_list + [self.fx_dict[self.country]] df = self.bbg.fetch_series(securities=tickers, fields='PX_LAST', startdate=self.start_date, enddate=self.end_date) df = df.reindex(self.df_generics.index).fillna(method='ffill') return df def _build_tracker(self): df_tracker = pd.DataFrame(index=self.df_generics.index, columns=['contract_rolling_out', 'er_index', 'roll_out_date', 'holdings']) # set the values for the initial date dt_ini = self.df_uc.dropna(how='all').index[0] df_tracker.loc[dt_ini, 'er_index'] = 100 contract_rolling_out = self.df_uc.loc[dt_ini, self.futures_ticker_dict[self.country] + '2 Comdty'] + ' Comdty' df_tracker.loc[dt_ini, 'contract_rolling_out'] = contract_rolling_out holdings = df_tracker.loc[dt_ini, 'er_index'] / (self.df_generics.loc[dt_ini, self.futures_ticker_dict[self.country] + '2 Comdty'] * self.df_prices[self.fx_dict[self.country]].loc[dt_ini]) df_tracker.loc[dt_ini, 'holdings'] = holdings roll_out_date = self.df_fn.loc[df_tracker.loc[dt_ini, 'contract_rolling_out'], 'FUT_NOTICE_FIRST'] -
BDay(1)
pandas.tseries.offsets.BDay
import time import numpy as np import pandas as pd from sklearn import pipeline from sklearn.calibration import CalibratedClassifierCV from sklearn.kernel_approximation import (RBFSampler) from sklearn.metrics import log_loss from sklearn.model_selection import train_test_split from sklearn.svm import LinearSVC seed = 7 np.random.seed(seed) start_time = time.time() print('Start running..................') datadir= './data/' predictions = "./predictions/" logs = './logs/' df_train =
pd.read_csv(datadir + "numerai_training_data.csv")
pandas.read_csv
from infomemes.utils import media_color_schema from sklearn.cluster import DBSCAN import matplotlib.pyplot as plt import numpy as np import pandas as pd import json def read_sim_results(sim, step_filtered=0): """ Basic analysis of a simulation. sim: simulation object or string with path to json file. step_filtered: int Produces a boolan array 'filtered' with True for all media that were active at any step > step_filtered. """ if isinstance(sim, str): with open(sim, 'r') as f: sim = json.loads(f.read()) # metadata duration = sim['metadata']['duration'] media_reproduction_rate = sim['metadata']['media_reproduction_rate'] media_deactivation_rate = sim['metadata']['media_deactivation_rate'] covariance_punishment = sim['metadata']['covariance_punishment'] individuals_xy = np.array(sim['metadata']['individuals_xy']) individual_renewal_rate = sim['metadata']['individual_renewal_rate'] individual_mui = sim['metadata']['individual_mui'] individual_mcr = sim['metadata']['individual_mcr'] max_reward = sim['metadata']['max_reward'] # data activated = np.array(list(sim['data']['activated'].values())) deactivated = np.array(list(sim['data']['deactivated'].values())) active = np.array([t == duration for t in deactivated]) survival_times = np.array(deactivated) - np.array(activated) position_x = np.array(list(sim['data']['position_x'].values())) position_y = np.array(list(sim['data']['position_y'].values())) cov_x = np.array(list(sim['data']['cov_x'].values())) cov_y = np.array(list(sim['data']['cov_y'].values())) cov_diagonal = cov_x + cov_y cov_xy = np.array(list(sim['data']['cov_xy'].values())) mpr = np.array(list(sim['data']['meme_production_rate'].values())) filtered = np.array([deact > step_filtered for deact in deactivated]) else: survival_times = [] position_x = [] position_y = [] cov_diagonal = [] cov_xy = [] mpr = [] for m in sim.all_media: if m.active: survival_times.append(sim.current_step - m.activated) else: survival_times.append(m.deactivated - m.activated) position_x.append(m.x) position_y.append(m.y) cov_diagonal.append(m.cov[0, 0] + m.cov[1, 1]) cov_xy.append(m.cov[0, 1]) mpr.append(m.meme_production_rate) results = { 'duration': duration, 'media_reproduction_rate': media_reproduction_rate, 'media_deactivation_rate': media_deactivation_rate, 'max_reward': max_reward, 'covariance_punishment': covariance_punishment, 'individuals_xy': individuals_xy, 'individual_renewal_rate': individual_renewal_rate, 'individual_mui': individual_mui, 'individual_mcr': individual_mcr, 'activated': activated[filtered], 'deactivated': deactivated[filtered], 'active': active[filtered], 'survival_times': survival_times[filtered].astype('int'), 'position_x': position_x[filtered], 'position_y': position_y[filtered], 'cov_x': cov_x[filtered], 'cov_y': cov_y[filtered], 'cov_diagonal': cov_diagonal[filtered], 'cov_xy': cov_xy[filtered], 'meme_production_rate': mpr[filtered], 'step_filtered': filtered } return results def all_sims_summary(sims_list, step_filtered=0): """ Parameters ---------- sims_list: list List of json files with simulation results step_filtered: int Produces a boolan array 'filtered' with True for all media that were active at any step > step_filtered Returns ------- df_sims: Pandas DataFrame with results by simulation df_media: Pandas DataFrame with results by media df_clusters: Pandas DataFrame with results by cluster """ # Organize Simulations DataFrame df_sims = pd.DataFrame({ 'covariance_punishment': pd.Series([], dtype='float'), 'media_reproduction_rate': pd.Series([], dtype='float'), 'media_deactivation_rate': pd.Series([], dtype='float'), 'individual_mui': pd.Series([], dtype='float'), 'individual_renewal_rate':
pd.Series([], dtype='float')
pandas.Series
"""Step 1: Solving the problem in a deterministic manner.""" import cvxpy as cp import fledge import numpy as np import os import pandas as pd import plotly.express as px import plotly.graph_objects as go import shutil def main(): # Settings. scenario_name = 'course_project_step_1' results_path = os.path.join(os.path.dirname(os.path.dirname(os.path.normpath(__file__))), 'results', 'step_1') run_primal = True run_dual = True run_kkt = True # Clear / instantiate results directory. try: if os.path.isdir(results_path): shutil.rmtree(results_path) os.mkdir(results_path) except PermissionError: pass # STEP 1.0: SETUP MODELS. # Read scenario definition into FLEDGE. # - Data directory from this repository is first added as additional data path. fledge.config.config['paths']['additional_data'].append( os.path.join(os.path.dirname(os.path.dirname(os.path.normpath(__file__))), 'data') ) fledge.data_interface.recreate_database() # Obtain data & models. # Flexible loads. der_model_set = fledge.der_models.DERModelSet(scenario_name) # Thermal grid. thermal_grid_model = fledge.thermal_grid_models.ThermalGridModel(scenario_name) thermal_grid_model.cooling_plant_efficiency = 10.0 # Change model parameter to incentivize use of thermal grid. thermal_power_flow_solution_reference = fledge.thermal_grid_models.ThermalPowerFlowSolution(thermal_grid_model) linear_thermal_grid_model = ( fledge.thermal_grid_models.LinearThermalGridModel(thermal_grid_model, thermal_power_flow_solution_reference) ) # Define arbitrary operation limits. node_head_vector_minimum = 1.5 * thermal_power_flow_solution_reference.node_head_vector branch_flow_vector_maximum = 10.0 * thermal_power_flow_solution_reference.branch_flow_vector # Electric grid. electric_grid_model = fledge.electric_grid_models.ElectricGridModelDefault(scenario_name) power_flow_solution_reference = fledge.electric_grid_models.PowerFlowSolutionFixedPoint(electric_grid_model) linear_electric_grid_model = ( fledge.electric_grid_models.LinearElectricGridModelGlobal(electric_grid_model, power_flow_solution_reference) ) # Define arbitrary operation limits. node_voltage_magnitude_vector_minimum = 0.5 * np.abs(electric_grid_model.node_voltage_vector_reference) node_voltage_magnitude_vector_maximum = 1.5 * np.abs(electric_grid_model.node_voltage_vector_reference) branch_power_magnitude_vector_maximum = 10.0 * electric_grid_model.branch_power_vector_magnitude_reference # Energy price. price_data = fledge.data_interface.PriceData(scenario_name) # Obtain time step index shorthands. scenario_data = fledge.data_interface.ScenarioData(scenario_name) timesteps = scenario_data.timesteps timestep_interval_hours = (timesteps[1] - timesteps[0]) / pd.Timedelta('1h') # Invert sign of losses. # - Power values of loads are negative by convention. Hence, sign of losses should be negative for power balance. # Thermal grid. linear_thermal_grid_model.sensitivity_pump_power_by_der_power *= -1.0 linear_thermal_grid_model.thermal_power_flow_solution.pump_power *= -1.0 # Electric grid. linear_electric_grid_model.sensitivity_loss_active_by_der_power_active *= -1.0 linear_electric_grid_model.sensitivity_loss_active_by_der_power_reactive *= -1.0 linear_electric_grid_model.sensitivity_loss_reactive_by_der_power_active *= -1.0 linear_electric_grid_model.sensitivity_loss_reactive_by_der_power_reactive *= -1.0 linear_electric_grid_model.power_flow_solution.loss *= -1.0 # Apply base power / voltage scaling. # - Scale values to avoid numerical issues. base_power = 1e6 # in MW. base_voltage = 1e3 # in kV. # Flexible loads. for der_model in der_model_set.flexible_der_models.values(): der_model.mapping_active_power_by_output *= 1 / base_power der_model.mapping_reactive_power_by_output *= 1 / base_power der_model.mapping_thermal_power_by_output *= 1 / base_power # Thermal grid. linear_thermal_grid_model.sensitivity_node_head_by_der_power *= base_power linear_thermal_grid_model.sensitivity_branch_flow_by_der_power *= base_power linear_thermal_grid_model.sensitivity_pump_power_by_der_power *= 1 # Electric grid. linear_electric_grid_model.sensitivity_voltage_magnitude_by_der_power_active *= base_power / base_voltage linear_electric_grid_model.sensitivity_voltage_magnitude_by_der_power_reactive *= base_power / base_voltage linear_electric_grid_model.sensitivity_branch_power_1_magnitude_by_der_power_active *= 1 linear_electric_grid_model.sensitivity_branch_power_1_magnitude_by_der_power_reactive *= 1 linear_electric_grid_model.sensitivity_branch_power_2_magnitude_by_der_power_active *= 1 linear_electric_grid_model.sensitivity_branch_power_2_magnitude_by_der_power_reactive *= 1 linear_electric_grid_model.sensitivity_loss_active_by_der_power_active *= 1 linear_electric_grid_model.sensitivity_loss_active_by_der_power_reactive *= 1 linear_electric_grid_model.sensitivity_loss_reactive_by_der_power_active *= 1 linear_electric_grid_model.sensitivity_loss_reactive_by_der_power_reactive *= 1 linear_electric_grid_model.power_flow_solution.der_power_vector *= 1 / base_power linear_electric_grid_model.power_flow_solution.branch_power_vector_1 *= 1 / base_power linear_electric_grid_model.power_flow_solution.branch_power_vector_2 *= 1 / base_power linear_electric_grid_model.power_flow_solution.loss *= 1 / base_power linear_electric_grid_model.power_flow_solution.node_voltage_vector *= 1 / base_voltage # Limits. node_voltage_magnitude_vector_minimum /= base_voltage node_voltage_magnitude_vector_maximum /= base_voltage branch_power_magnitude_vector_maximum /= base_power # Energy price. # - Conversion of price values from S$/kWh to S$/p.u. for convenience. Currency S$ is SGD. # - Power values of loads are negative by convention. Hence, sign of price values is inverted here. price_data.price_timeseries *= -1.0 * base_power / 1e3 * timestep_interval_hours # STEP 1.1: SOLVE PRIMAL PROBLEM. if run_primal or run_kkt: # Primal constraints are also needed for KKT problem. # Instantiate problem. # - Utility object for optimization problem definition with CVXPY. primal_problem = fledge.utils.OptimizationProblem() # Define variables. # Flexible loads: State space vectors. # - CVXPY only allows for 2-dimensional variables. Using dicts below to represent 3rd dimension. primal_problem.state_vector = dict.fromkeys(der_model_set.flexible_der_names) primal_problem.control_vector = dict.fromkeys(der_model_set.flexible_der_names) primal_problem.output_vector = dict.fromkeys(der_model_set.flexible_der_names) for der_name in der_model_set.flexible_der_names: primal_problem.state_vector[der_name] = ( cp.Variable(( len(der_model_set.flexible_der_models[der_name].timesteps), len(der_model_set.flexible_der_models[der_name].states) )) ) primal_problem.control_vector[der_name] = ( cp.Variable(( len(der_model_set.flexible_der_models[der_name].timesteps), len(der_model_set.flexible_der_models[der_name].controls) )) ) primal_problem.output_vector[der_name] = ( cp.Variable(( len(der_model_set.flexible_der_models[der_name].timesteps), len(der_model_set.flexible_der_models[der_name].outputs) )) ) # Flexible loads: Power vectors. primal_problem.der_thermal_power_vector = ( cp.Variable((len(timesteps), len(thermal_grid_model.ders))) ) primal_problem.der_active_power_vector = ( cp.Variable((len(timesteps), len(electric_grid_model.ders))) ) primal_problem.der_reactive_power_vector = ( cp.Variable((len(timesteps), len(electric_grid_model.ders))) ) # Source variables. primal_problem.source_thermal_power = cp.Variable((len(timesteps), 1)) primal_problem.source_active_power = cp.Variable((len(timesteps), 1)) primal_problem.source_reactive_power = cp.Variable((len(timesteps), 1)) # Define constraints. # Flexible loads. for der_model in der_model_set.flexible_der_models.values(): # Initial state. primal_problem.constraints.append( primal_problem.state_vector[der_model.der_name][0, :] == der_model.state_vector_initial.values ) # State equation. primal_problem.constraints.append( primal_problem.state_vector[der_model.der_name][1:, :] == cp.transpose( der_model.state_matrix.values @ cp.transpose(primal_problem.state_vector[der_model.der_name][:-1, :]) + der_model.control_matrix.values @ cp.transpose(primal_problem.control_vector[der_model.der_name][:-1, :]) + der_model.disturbance_matrix.values @ np.transpose(der_model.disturbance_timeseries.iloc[:-1, :].values) ) ) # Output equation. primal_problem.constraints.append( primal_problem.output_vector[der_model.der_name] == cp.transpose( der_model.state_output_matrix.values @ cp.transpose(primal_problem.state_vector[der_model.der_name]) + der_model.control_output_matrix.values @ cp.transpose(primal_problem.control_vector[der_model.der_name]) + der_model.disturbance_output_matrix.values @ np.transpose(der_model.disturbance_timeseries.values) ) ) # Output limits. primal_problem.constraints.append( primal_problem.output_vector[der_model.der_name] >= der_model.output_minimum_timeseries.values ) primal_problem.constraints.append( primal_problem.output_vector[der_model.der_name] <= der_model.output_maximum_timeseries.replace(np.inf, 1e3).values ) # Power mapping. der_index = int(fledge.utils.get_index(electric_grid_model.ders, der_name=der_model.der_name)) primal_problem.constraints.append( primal_problem.der_active_power_vector[:, [der_index]] == cp.transpose( der_model.mapping_active_power_by_output.values @ cp.transpose(primal_problem.output_vector[der_model.der_name]) ) ) primal_problem.constraints.append( primal_problem.der_reactive_power_vector[:, [der_index]] == cp.transpose( der_model.mapping_reactive_power_by_output.values @ cp.transpose(primal_problem.output_vector[der_model.der_name]) ) ) primal_problem.constraints.append( primal_problem.der_thermal_power_vector[:, [der_index]] == cp.transpose( der_model.mapping_thermal_power_by_output.values @ cp.transpose(primal_problem.output_vector[der_model.der_name]) ) ) # Thermal grid. # Node head limit. primal_problem.constraints.append( np.array([node_head_vector_minimum.ravel()]) <= cp.transpose( linear_thermal_grid_model.sensitivity_node_head_by_der_power @ cp.transpose(primal_problem.der_thermal_power_vector) ) ) # Branch flow limit. primal_problem.constraints.append( cp.transpose( linear_thermal_grid_model.sensitivity_branch_flow_by_der_power @ cp.transpose(primal_problem.der_thermal_power_vector) ) <= np.array([branch_flow_vector_maximum.ravel()]) ) # Power balance. primal_problem.constraints.append( thermal_grid_model.cooling_plant_efficiency ** -1 * ( primal_problem.source_thermal_power + cp.sum(-1.0 * ( primal_problem.der_thermal_power_vector ), axis=1, keepdims=True) # Sum along DERs, i.e. sum for each timestep. ) == cp.transpose( linear_thermal_grid_model.sensitivity_pump_power_by_der_power @ cp.transpose(primal_problem.der_thermal_power_vector) ) ) # Electric grid. # Voltage limits. primal_problem.constraints.append( np.array([node_voltage_magnitude_vector_minimum.ravel()]) <= np.array([np.abs(linear_electric_grid_model.power_flow_solution.node_voltage_vector.ravel())]) + cp.transpose( linear_electric_grid_model.sensitivity_voltage_magnitude_by_der_power_active @ cp.transpose( primal_problem.der_active_power_vector - np.array([np.real(linear_electric_grid_model.power_flow_solution.der_power_vector.ravel())]) ) + linear_electric_grid_model.sensitivity_voltage_magnitude_by_der_power_reactive @ cp.transpose( primal_problem.der_reactive_power_vector - np.array([np.imag(linear_electric_grid_model.power_flow_solution.der_power_vector.ravel())]) ) ) ) primal_problem.constraints.append( np.array([np.abs(linear_electric_grid_model.power_flow_solution.node_voltage_vector.ravel())]) + cp.transpose( linear_electric_grid_model.sensitivity_voltage_magnitude_by_der_power_active @ cp.transpose( primal_problem.der_active_power_vector - np.array([np.real(linear_electric_grid_model.power_flow_solution.der_power_vector.ravel())]) ) + linear_electric_grid_model.sensitivity_voltage_magnitude_by_der_power_reactive @ cp.transpose( primal_problem.der_reactive_power_vector - np.array([np.imag(linear_electric_grid_model.power_flow_solution.der_power_vector.ravel())]) ) ) <= np.array([node_voltage_magnitude_vector_maximum.ravel()]) ) # Branch flow limits. primal_problem.constraints.append( np.array([np.abs(linear_electric_grid_model.power_flow_solution.branch_power_vector_1.ravel())]) + cp.transpose( linear_electric_grid_model.sensitivity_branch_power_1_magnitude_by_der_power_active @ cp.transpose( primal_problem.der_active_power_vector - np.array([np.real(linear_electric_grid_model.power_flow_solution.der_power_vector.ravel())]) ) + linear_electric_grid_model.sensitivity_branch_power_1_magnitude_by_der_power_reactive @ cp.transpose( primal_problem.der_reactive_power_vector - np.array([np.imag(linear_electric_grid_model.power_flow_solution.der_power_vector.ravel())]) ) ) <= np.array([branch_power_magnitude_vector_maximum.ravel()]) ) primal_problem.constraints.append( np.array([np.abs(linear_electric_grid_model.power_flow_solution.branch_power_vector_2.ravel())]) + cp.transpose( linear_electric_grid_model.sensitivity_branch_power_2_magnitude_by_der_power_active @ cp.transpose( primal_problem.der_active_power_vector - np.array([np.real(linear_electric_grid_model.power_flow_solution.der_power_vector.ravel())]) ) + linear_electric_grid_model.sensitivity_branch_power_2_magnitude_by_der_power_reactive @ cp.transpose( primal_problem.der_reactive_power_vector - np.array([np.imag(linear_electric_grid_model.power_flow_solution.der_power_vector.ravel())]) ) ) <= np.array([branch_power_magnitude_vector_maximum.ravel()]) ) # Power balance. primal_problem.constraints.append( primal_problem.source_active_power + cp.sum(-1.0 * ( primal_problem.der_active_power_vector ), axis=1, keepdims=True) # Sum along DERs, i.e. sum for each timestep. == np.real(linear_electric_grid_model.power_flow_solution.loss) + cp.transpose( linear_electric_grid_model.sensitivity_loss_active_by_der_power_active @ cp.transpose( primal_problem.der_active_power_vector - np.array([np.real(linear_electric_grid_model.power_flow_solution.der_power_vector.ravel())]) ) + linear_electric_grid_model.sensitivity_loss_active_by_der_power_reactive @ cp.transpose( primal_problem.der_reactive_power_vector - np.array([np.imag(linear_electric_grid_model.power_flow_solution.der_power_vector.ravel())]) ) ) ) primal_problem.constraints.append( primal_problem.source_reactive_power + cp.sum(-1.0 * ( primal_problem.der_reactive_power_vector ), axis=1, keepdims=True) # Sum along DERs, i.e. sum for each timestep. == np.imag(linear_electric_grid_model.power_flow_solution.loss) + cp.transpose( linear_electric_grid_model.sensitivity_loss_reactive_by_der_power_active @ cp.transpose( primal_problem.der_active_power_vector - np.array([np.real(linear_electric_grid_model.power_flow_solution.der_power_vector.ravel())]) ) + linear_electric_grid_model.sensitivity_loss_reactive_by_der_power_reactive @ cp.transpose( primal_problem.der_reactive_power_vector - np.array([np.imag(linear_electric_grid_model.power_flow_solution.der_power_vector.ravel())]) ) ) ) # Define objective. primal_problem.objective += ( price_data.price_timeseries.loc[:, ('active_power', 'source', 'source')].values.T @ primal_problem.source_thermal_power * thermal_grid_model.cooling_plant_efficiency ** -1 ) primal_problem.objective += ( price_data.price_timeseries.loc[:, ('active_power', 'source', 'source')].values.T @ primal_problem.source_active_power ) if run_primal: # Solve problem. fledge.utils.log_time('primal solution') primal_problem.solve() fledge.utils.log_time('primal solution') # Obtain results. # Flexible loads. primal_state_vector = pd.DataFrame(0.0, index=der_model_set.timesteps, columns=der_model_set.states) primal_control_vector = pd.DataFrame(0.0, index=der_model_set.timesteps, columns=der_model_set.controls) primal_output_vector = pd.DataFrame(0.0, index=der_model_set.timesteps, columns=der_model_set.outputs) for der_name in der_model_set.flexible_der_names: primal_state_vector.loc[:, (der_name, slice(None))] = ( primal_problem.state_vector[der_name].value ) primal_control_vector.loc[:, (der_name, slice(None))] = ( primal_problem.control_vector[der_name].value ) primal_output_vector.loc[:, (der_name, slice(None))] = ( primal_problem.output_vector[der_name].value ) # Thermal grid. primal_der_thermal_power_vector = ( pd.DataFrame( primal_problem.der_thermal_power_vector.value, columns=linear_thermal_grid_model.thermal_grid_model.ders, index=timesteps ) ) primal_source_thermal_power = ( pd.DataFrame( primal_problem.source_thermal_power.value, columns=['total'], index=timesteps ) ) # Electric grid. primal_der_active_power_vector = ( pd.DataFrame( primal_problem.der_active_power_vector.value, columns=linear_electric_grid_model.electric_grid_model.ders, index=timesteps ) ) primal_der_reactive_power_vector = ( pd.DataFrame( primal_problem.der_reactive_power_vector.value, columns=linear_electric_grid_model.electric_grid_model.ders, index=timesteps ) ) primal_source_active_power = ( pd.DataFrame( primal_problem.source_active_power.value, columns=['total'], index=timesteps ) ) primal_source_reactive_power = ( pd.DataFrame( primal_problem.source_reactive_power.value, columns=['total'], index=timesteps ) ) # Additional results. primal_node_head_vector = ( pd.DataFrame( cp.transpose( linear_thermal_grid_model.sensitivity_node_head_by_der_power @ cp.transpose(primal_problem.der_thermal_power_vector) ).value, index=timesteps, columns=thermal_grid_model.nodes ) ) primal_branch_flow_vector = ( pd.DataFrame( cp.transpose( linear_thermal_grid_model.sensitivity_branch_flow_by_der_power @ cp.transpose(primal_problem.der_thermal_power_vector) ).value, index=timesteps, columns=thermal_grid_model.branches ) ) primal_node_voltage_vector = ( pd.DataFrame( np.array([np.abs(linear_electric_grid_model.power_flow_solution.node_voltage_vector.ravel())]) + cp.transpose( linear_electric_grid_model.sensitivity_voltage_magnitude_by_der_power_active @ cp.transpose( primal_problem.der_active_power_vector - np.array([np.real(linear_electric_grid_model.power_flow_solution.der_power_vector.ravel())]) ) + linear_electric_grid_model.sensitivity_voltage_magnitude_by_der_power_reactive @ cp.transpose( primal_problem.der_reactive_power_vector - np.array([np.imag(linear_electric_grid_model.power_flow_solution.der_power_vector.ravel())]) ) ).value, index=timesteps, columns=electric_grid_model.nodes ) ) primal_branch_power_vector_1 = ( pd.DataFrame( np.array([np.abs(linear_electric_grid_model.power_flow_solution.branch_power_vector_1.ravel())]) + cp.transpose( linear_electric_grid_model.sensitivity_branch_power_1_magnitude_by_der_power_active @ cp.transpose( primal_problem.der_active_power_vector - np.array([np.real(linear_electric_grid_model.power_flow_solution.der_power_vector.ravel())]) ) + linear_electric_grid_model.sensitivity_branch_power_1_magnitude_by_der_power_reactive @ cp.transpose( primal_problem.der_reactive_power_vector - np.array([np.imag(linear_electric_grid_model.power_flow_solution.der_power_vector.ravel())]) ) ).value, index=timesteps, columns=electric_grid_model.branches ) ) primal_branch_power_vector_2 = ( pd.DataFrame( np.array([np.abs(linear_electric_grid_model.power_flow_solution.branch_power_vector_2.ravel())]) + cp.transpose( linear_electric_grid_model.sensitivity_branch_power_2_magnitude_by_der_power_active @ cp.transpose( primal_problem.der_active_power_vector - np.array([np.real(linear_electric_grid_model.power_flow_solution.der_power_vector.ravel())]) ) + linear_electric_grid_model.sensitivity_branch_power_2_magnitude_by_der_power_reactive @ cp.transpose( primal_problem.der_reactive_power_vector - np.array([np.imag(linear_electric_grid_model.power_flow_solution.der_power_vector.ravel())]) ) ).value, index=timesteps, columns=electric_grid_model.branches ) ) primal_node_head_vector_per_unit = ( primal_node_head_vector / thermal_grid_model.node_head_vector_reference ) primal_branch_flow_vector_per_unit = ( primal_branch_flow_vector / thermal_grid_model.branch_flow_vector_reference ) primal_node_voltage_vector_per_unit = ( primal_node_voltage_vector * base_voltage / np.abs(electric_grid_model.node_voltage_vector_reference) ) primal_branch_power_vector_1_per_unit = ( primal_branch_power_vector_1 * base_power / electric_grid_model.branch_power_vector_magnitude_reference ) primal_branch_power_vector_2_per_unit = ( primal_branch_power_vector_2 * base_power / electric_grid_model.branch_power_vector_magnitude_reference ) # Store results. primal_state_vector.to_csv(os.path.join(results_path, 'primal_state_vector.csv')) primal_control_vector.to_csv(os.path.join(results_path, 'primal_control_vector.csv')) primal_output_vector.to_csv(os.path.join(results_path, 'primal_output_vector.csv')) primal_der_thermal_power_vector.to_csv(os.path.join(results_path, 'primal_der_thermal_power_vector.csv')) primal_source_thermal_power.to_csv(os.path.join(results_path, 'primal_source_thermal_power.csv')) primal_der_active_power_vector.to_csv(os.path.join(results_path, 'primal_der_active_power_vector.csv')) primal_der_reactive_power_vector.to_csv(os.path.join(results_path, 'primal_der_reactive_power_vector.csv')) primal_source_active_power.to_csv(os.path.join(results_path, 'primal_source_active_power.csv')) primal_source_reactive_power.to_csv(os.path.join(results_path, 'primal_source_reactive_power.csv')) primal_node_head_vector.to_csv(os.path.join(results_path, 'primal_node_head_vector.csv')) primal_branch_flow_vector.to_csv(os.path.join(results_path, 'primal_branch_flow_vector.csv')) primal_node_voltage_vector.to_csv(os.path.join(results_path, 'primal_node_voltage_vector.csv')) primal_branch_power_vector_1.to_csv(os.path.join(results_path, 'primal_branch_power_vector_1.csv')) primal_branch_power_vector_2.to_csv(os.path.join(results_path, 'primal_branch_power_vector_2.csv')) primal_node_head_vector_per_unit.to_csv(os.path.join(results_path, 'primal_node_head_vector_per_unit.csv')) primal_branch_flow_vector_per_unit.to_csv(os.path.join(results_path, 'primal_branch_flow_vector_per_unit.csv')) primal_node_voltage_vector_per_unit.to_csv(os.path.join(results_path, 'primal_node_voltage_vector_per_unit.csv')) primal_branch_power_vector_1_per_unit.to_csv(os.path.join(results_path, 'primal_branch_power_vector_1_per_unit.csv')) primal_branch_power_vector_2_per_unit.to_csv(os.path.join(results_path, 'primal_branch_power_vector_2_per_unit.csv')) # Obtain variable count / dimensions. primal_variable_count = ( sum(np.multiply(*primal_problem.state_vector[der_name].shape) for der_name in der_model_set.flexible_der_names) + sum(np.multiply(*primal_problem.control_vector[der_name].shape) for der_name in der_model_set.flexible_der_names) + sum(np.multiply(*primal_problem.output_vector[der_name].shape) for der_name in der_model_set.flexible_der_names) + np.multiply(*primal_problem.der_thermal_power_vector.shape) + np.multiply(*primal_problem.der_active_power_vector.shape) + np.multiply(*primal_problem.der_reactive_power_vector.shape) + np.multiply(*primal_problem.source_thermal_power.shape) + np.multiply(*primal_problem.source_active_power.shape) + np.multiply(*primal_problem.source_reactive_power.shape) ) print(f"primal_variable_count = {primal_variable_count}") # Print objective. primal_objective = pd.Series(primal_problem.objective.value, index=['primal_objective']) primal_objective.to_csv(os.path.join(results_path, 'primal_objective.csv')) print(f"primal_objective = {primal_objective.values}") # STEP 1.2: SOLVE DUAL PROBLEM. if run_dual or run_kkt: # Primal constraints are also needed for KKT problem. # Instantiate problem. # - Utility object for optimization problem definition with CVXPY. dual_problem = fledge.utils.OptimizationProblem() # Define variables. # Flexible loads: State space equations. # - CVXPY only allows for 2-dimensional variables. Using dicts below to represent 3rd dimension. dual_problem.lambda_initial_state_equation = dict.fromkeys(der_model_set.flexible_der_names) dual_problem.lambda_state_equation = dict.fromkeys(der_model_set.flexible_der_names) dual_problem.lambda_output_equation = dict.fromkeys(der_model_set.flexible_der_names) dual_problem.mu_output_minimum = dict.fromkeys(der_model_set.flexible_der_names) dual_problem.mu_output_maximum = dict.fromkeys(der_model_set.flexible_der_names) for der_name in der_model_set.flexible_der_names: dual_problem.lambda_initial_state_equation[der_name] = ( cp.Variable(( 1, len(der_model_set.flexible_der_models[der_name].states) )) ) dual_problem.lambda_state_equation[der_name] = ( cp.Variable(( len(der_model_set.flexible_der_models[der_name].timesteps[:-1]), len(der_model_set.flexible_der_models[der_name].states) )) ) dual_problem.lambda_output_equation[der_name] = ( cp.Variable(( len(der_model_set.flexible_der_models[der_name].timesteps), len(der_model_set.flexible_der_models[der_name].outputs) )) ) dual_problem.mu_output_minimum[der_name] = ( cp.Variable(( len(der_model_set.flexible_der_models[der_name].timesteps), len(der_model_set.flexible_der_models[der_name].outputs) ), nonneg=True) ) dual_problem.mu_output_maximum[der_name] = ( cp.Variable(( len(der_model_set.flexible_der_models[der_name].timesteps), len(der_model_set.flexible_der_models[der_name].outputs) ), nonneg=True) ) # Flexible loads: Power equations. dual_problem.lambda_thermal_power_equation = ( cp.Variable((len(timesteps), len(thermal_grid_model.ders))) ) dual_problem.lambda_active_power_equation = ( cp.Variable((len(timesteps), len(electric_grid_model.ders))) ) dual_problem.lambda_reactive_power_equation = ( cp.Variable((len(timesteps), len(electric_grid_model.ders))) ) # Thermal grid. dual_problem.mu_node_head_minium = ( cp.Variable((len(timesteps), len(thermal_grid_model.nodes)), nonneg=True) ) dual_problem.mu_branch_flow_maximum = ( cp.Variable((len(timesteps), len(thermal_grid_model.branches)), nonneg=True) ) dual_problem.lambda_pump_power_equation = ( cp.Variable((len(timesteps), 1)) ) # Electric grid. dual_problem.mu_node_voltage_magnitude_minimum = ( cp.Variable((len(timesteps), len(electric_grid_model.nodes)), nonneg=True) ) dual_problem.mu_node_voltage_magnitude_maximum = ( cp.Variable((len(timesteps), len(electric_grid_model.nodes)), nonneg=True) ) dual_problem.mu_branch_power_magnitude_maximum_1 = ( cp.Variable((len(timesteps), len(electric_grid_model.branches)), nonneg=True) ) dual_problem.mu_branch_power_magnitude_maximum_2 = ( cp.Variable((len(timesteps), len(electric_grid_model.branches)), nonneg=True) ) dual_problem.lambda_loss_active_equation = cp.Variable((len(timesteps), 1)) dual_problem.lambda_loss_reactive_equation = cp.Variable((len(timesteps), 1)) # Define constraints. for der_model in der_model_set.flexible_der_models.values(): # Differential with respect to state vector. dual_problem.constraints.append( 0.0 == ( dual_problem.lambda_initial_state_equation[der_model.der_name] - ( dual_problem.lambda_state_equation[der_model.der_name][:1, :] @ der_model.state_matrix.values ) - ( dual_problem.lambda_output_equation[der_model.der_name][:1, :] @ der_model.state_output_matrix.values ) ) ) dual_problem.constraints.append( 0.0 == ( dual_problem.lambda_state_equation[der_model.der_name][0:-1, :] - ( dual_problem.lambda_state_equation[der_model.der_name][1:, :] @ der_model.state_matrix.values ) - ( dual_problem.lambda_output_equation[der_model.der_name][1:-1, :] @ der_model.state_output_matrix.values ) ) ) dual_problem.constraints.append( 0.0 == ( dual_problem.lambda_state_equation[der_model.der_name][-1:, :] - ( dual_problem.lambda_output_equation[der_model.der_name][-1:, :] @ der_model.state_output_matrix.values ) ) ) # Differential with respect to control vector. dual_problem.constraints.append( 0.0 == ( - ( dual_problem.lambda_state_equation[der_model.der_name] @ der_model.control_matrix.values ) - ( dual_problem.lambda_output_equation[der_model.der_name][:-1, :] @ der_model.control_output_matrix.values ) ) ) dual_problem.constraints.append( 0.0 == ( - ( dual_problem.lambda_output_equation[der_model.der_name][-1:, :] @ der_model.control_output_matrix.values ) ) ) # Differential with respect to output vector. der_index = int(fledge.utils.get_index(electric_grid_model.ders, der_name=der_model.der_name)) dual_problem.constraints.append( 0.0 == ( dual_problem.lambda_output_equation[der_model.der_name] - dual_problem.mu_output_minimum[der_model.der_name] + dual_problem.mu_output_maximum[der_model.der_name] - ( dual_problem.lambda_thermal_power_equation[:, [der_index]] @ der_model.mapping_thermal_power_by_output.values ) - ( dual_problem.lambda_active_power_equation[:, [der_index]] @ der_model.mapping_active_power_by_output.values ) - ( dual_problem.lambda_reactive_power_equation[:, [der_index]] @ der_model.mapping_reactive_power_by_output.values ) ) ) # Differential with respect to thermal power vector. dual_problem.constraints.append( 0.0 == ( dual_problem.lambda_thermal_power_equation - ( dual_problem.mu_node_head_minium @ linear_thermal_grid_model.sensitivity_node_head_by_der_power ) + ( dual_problem.mu_branch_flow_maximum @ linear_thermal_grid_model.sensitivity_branch_flow_by_der_power ) - ( dual_problem.lambda_pump_power_equation @ ( thermal_grid_model.cooling_plant_efficiency ** -1 * np.ones(linear_thermal_grid_model.sensitivity_pump_power_by_der_power.shape) + linear_thermal_grid_model.sensitivity_pump_power_by_der_power ) ) ) ) # Differential with respect to active power vector. dual_problem.constraints.append( 0.0 == ( dual_problem.lambda_active_power_equation - ( dual_problem.mu_node_voltage_magnitude_minimum @ linear_electric_grid_model.sensitivity_voltage_magnitude_by_der_power_active ) + ( dual_problem.mu_node_voltage_magnitude_maximum @ linear_electric_grid_model.sensitivity_voltage_magnitude_by_der_power_active ) + ( dual_problem.mu_branch_power_magnitude_maximum_1 @ linear_electric_grid_model.sensitivity_branch_power_1_magnitude_by_der_power_active ) + ( dual_problem.mu_branch_power_magnitude_maximum_2 @ linear_electric_grid_model.sensitivity_branch_power_2_magnitude_by_der_power_active ) - ( dual_problem.lambda_loss_active_equation @ ( np.ones(linear_electric_grid_model.sensitivity_loss_active_by_der_power_active.shape) + linear_electric_grid_model.sensitivity_loss_active_by_der_power_active ) ) - ( dual_problem.lambda_loss_reactive_equation @ linear_electric_grid_model.sensitivity_loss_reactive_by_der_power_active ) ) ) # Differential with respect to reactive power vector. dual_problem.constraints.append( 0.0 == ( dual_problem.lambda_reactive_power_equation - ( dual_problem.mu_node_voltage_magnitude_minimum @ linear_electric_grid_model.sensitivity_voltage_magnitude_by_der_power_reactive ) + ( dual_problem.mu_node_voltage_magnitude_maximum @ linear_electric_grid_model.sensitivity_voltage_magnitude_by_der_power_reactive ) + ( dual_problem.mu_branch_power_magnitude_maximum_1 @ linear_electric_grid_model.sensitivity_branch_power_1_magnitude_by_der_power_reactive ) + ( dual_problem.mu_branch_power_magnitude_maximum_2 @ linear_electric_grid_model.sensitivity_branch_power_2_magnitude_by_der_power_reactive ) - ( dual_problem.lambda_loss_active_equation @ linear_electric_grid_model.sensitivity_loss_active_by_der_power_reactive ) - ( dual_problem.lambda_loss_reactive_equation @ ( np.ones(linear_electric_grid_model.sensitivity_loss_reactive_by_der_power_reactive.shape) + linear_electric_grid_model.sensitivity_loss_reactive_by_der_power_reactive ) ) ) ) # Differential with respect to thermal source power. dual_problem.constraints.append( 0.0 == ( np.transpose([price_data.price_timeseries.loc[:, ('active_power', 'source', 'source')].values]) + dual_problem.lambda_pump_power_equation ) ) # Differential with respect to active source power. dual_problem.constraints.append( 0.0 == ( np.transpose([price_data.price_timeseries.loc[:, ('active_power', 'source', 'source')].values]) + dual_problem.lambda_loss_active_equation ) ) # Differential with respect to active source power. dual_problem.constraints.append( 0.0 == ( dual_problem.lambda_loss_reactive_equation ) ) if run_dual: # Define objective. # Flexible loads. for der_model in der_model_set.flexible_der_models.values(): dual_problem.objective += ( -1.0 * cp.sum(cp.multiply( dual_problem.lambda_initial_state_equation[der_model.der_name], np.array([der_model.state_vector_initial.values]) )) ) dual_problem.objective += ( -1.0 * cp.sum(cp.multiply( dual_problem.lambda_state_equation[der_model.der_name], cp.transpose( der_model.disturbance_matrix.values @ np.transpose(der_model.disturbance_timeseries.values[:-1, :]) ) )) ) dual_problem.objective += ( -1.0 * cp.sum(cp.multiply( dual_problem.lambda_output_equation[der_model.der_name], cp.transpose( der_model.disturbance_output_matrix.values @ np.transpose(der_model.disturbance_timeseries.values) ) )) ) dual_problem.objective += ( cp.sum(cp.multiply( dual_problem.mu_output_minimum[der_model.der_name], der_model.output_minimum_timeseries.values )) ) dual_problem.objective += ( -1.0 * cp.sum(cp.multiply( dual_problem.mu_output_maximum[der_model.der_name], der_model.output_maximum_timeseries.replace(np.inf, 1e3).values )) ) # Thermal grid. dual_problem.objective += ( cp.sum(cp.multiply( dual_problem.mu_node_head_minium, ( np.array([node_head_vector_minimum]) # - node_head_vector_reference # + ( # linear_thermal_grid_model.sensitivity_node_head_by_der_power # @ der_thermal_power_vector_reference # ) ) )) ) dual_problem.objective += ( cp.sum(cp.multiply( dual_problem.mu_branch_flow_maximum, ( # - branch_flow_vector_reference # + ( # linear_thermal_grid_model.sensitivity_branch_flow_by_der_power # @ der_thermal_power_vector_reference # ) - 1.0 * np.array([branch_flow_vector_maximum]) ) )) ) dual_problem.objective += ( cp.sum(cp.multiply( dual_problem.lambda_pump_power_equation, ( 0.0 # - pump_power_reference # + ( # linear_thermal_grid_model.sensitivity_pump_power_by_der_power # @ der_thermal_power_vector_reference # ) ) )) ) # Electric grid. dual_problem.objective += ( cp.sum(cp.multiply( dual_problem.mu_node_voltage_magnitude_minimum, ( np.array([node_voltage_magnitude_vector_minimum]) - np.array([np.abs(linear_electric_grid_model.power_flow_solution.node_voltage_vector)]) + np.transpose( linear_electric_grid_model.sensitivity_voltage_magnitude_by_der_power_active @ np.transpose([np.real(linear_electric_grid_model.power_flow_solution.der_power_vector)]) ) + np.transpose( linear_electric_grid_model.sensitivity_voltage_magnitude_by_der_power_reactive @ np.transpose([np.imag(linear_electric_grid_model.power_flow_solution.der_power_vector)]) ) ) )) ) dual_problem.objective += ( cp.sum(cp.multiply( dual_problem.mu_node_voltage_magnitude_maximum, ( np.array([np.abs(linear_electric_grid_model.power_flow_solution.node_voltage_vector)]) - np.transpose( linear_electric_grid_model.sensitivity_voltage_magnitude_by_der_power_active @ np.transpose([np.real(linear_electric_grid_model.power_flow_solution.der_power_vector)]) ) - np.transpose( linear_electric_grid_model.sensitivity_voltage_magnitude_by_der_power_reactive @ np.transpose([np.imag(linear_electric_grid_model.power_flow_solution.der_power_vector)]) ) - np.array([node_voltage_magnitude_vector_maximum]) ) )) ) dual_problem.objective += ( cp.sum(cp.multiply( dual_problem.mu_branch_power_magnitude_maximum_1, ( np.array([np.abs(linear_electric_grid_model.power_flow_solution.branch_power_vector_1)]) - np.transpose( linear_electric_grid_model.sensitivity_branch_power_1_magnitude_by_der_power_active @ np.transpose([np.real(linear_electric_grid_model.power_flow_solution.der_power_vector)]) ) - np.transpose( linear_electric_grid_model.sensitivity_branch_power_1_magnitude_by_der_power_reactive @ np.transpose([np.imag(linear_electric_grid_model.power_flow_solution.der_power_vector)]) ) - np.array([branch_power_magnitude_vector_maximum]) ) )) ) dual_problem.objective += ( cp.sum(cp.multiply( dual_problem.mu_branch_power_magnitude_maximum_2, ( np.array([np.abs(linear_electric_grid_model.power_flow_solution.branch_power_vector_2)]) - np.transpose( linear_electric_grid_model.sensitivity_branch_power_2_magnitude_by_der_power_active @ np.transpose([np.real(linear_electric_grid_model.power_flow_solution.der_power_vector)]) ) - np.transpose( linear_electric_grid_model.sensitivity_branch_power_2_magnitude_by_der_power_reactive @ np.transpose([np.imag(linear_electric_grid_model.power_flow_solution.der_power_vector)]) ) - np.array([branch_power_magnitude_vector_maximum]) ) )) ) dual_problem.objective += ( cp.sum(cp.multiply( dual_problem.lambda_loss_active_equation, ( -1.0 * np.array([np.real(linear_electric_grid_model.power_flow_solution.loss)]) + np.transpose( linear_electric_grid_model.sensitivity_loss_active_by_der_power_active @ np.transpose([np.real(linear_electric_grid_model.power_flow_solution.der_power_vector)]) ) + np.transpose( linear_electric_grid_model.sensitivity_loss_active_by_der_power_reactive @ np.transpose([np.imag(linear_electric_grid_model.power_flow_solution.der_power_vector)]) ) ) )) ) dual_problem.objective += ( cp.sum(cp.multiply( dual_problem.lambda_loss_reactive_equation, ( -1.0 * np.array([np.imag(linear_electric_grid_model.power_flow_solution.loss)]) + np.transpose( linear_electric_grid_model.sensitivity_loss_reactive_by_der_power_active @ np.transpose([np.real(linear_electric_grid_model.power_flow_solution.der_power_vector)]) ) + np.transpose( linear_electric_grid_model.sensitivity_loss_reactive_by_der_power_reactive @ np.transpose([np.imag(linear_electric_grid_model.power_flow_solution.der_power_vector)]) ) ) )) ) # Invert sign of objective for maximisation. dual_problem.objective *= -1.0 # Solve problem. fledge.utils.log_time('dual solution') dual_problem.solve() fledge.utils.log_time('dual solution') # Obtain results. # Flexible loads. dual_lambda_initial_state_equation =
pd.DataFrame(0.0, index=der_model_set.timesteps[:1], columns=der_model_set.states)
pandas.DataFrame
import torch import pathlib import pandas as pd import pytorch_lightning as pl from datetime import datetime from collections import OrderedDict class CSVLogger(pl.Callback): """Custom metric logger and model checkpoint.""" def __init__(self, output_path=None): super(CSVLogger, self).__init__() self._epoch = None if output_path is None: self.logger_path = None else: self.logger_path = pathlib.Path(output_path) self.logger_path.mkdir(parents=True, exist_ok=True) def metrics(self, interval): if interval == 'epoch': return self.epoch_metrics elif interval in ['step', 'batch']: return self.batch_metrics @property def batch_metrics(self): metrics_path = self.logger_path / 'metrics_batch.csv' return pd.read_csv(metrics_path) @property def epoch_metrics(self): metrics_path = self.logger_path / 'metrics_epoch.csv' return pd.read_csv(metrics_path) def _extract_metrics(self, trainer, interval): metrics = trainer.callback_metrics metric_keys = list(metrics.keys()) data_dict = OrderedDict() if interval == 'epoch': metric_keys.remove('epoch') data_dict['epoch'] = metrics['epoch'] data_dict['time'] = str(datetime.now()) elif interval in ['step', 'batch']: remove_list = ['train', 'val', 'epoch'] for m in metrics.keys(): if any(sub in m for sub in remove_list): metric_keys.remove(m) data_dict[interval] = trainer.global_step for k in metric_keys: if isinstance(metrics[k], dict): for j in metrics[k].keys(): data_dict[j] = metrics[k][j] else: data_dict[k] = metrics[k] # cleanup for k in data_dict.keys(): try: data_dict[k] = float(data_dict[k].cpu()) except Exception: pass return data_dict def _log_csv(self, trainer, metrics_path, interval): data_dict = self._extract_metrics(trainer, interval) new_metrics = pd.DataFrame.from_records([data_dict], index=interval) if metrics_path.exists(): config = dict(header=False, mode='a') old_metrics = self.metrics(interval).set_index(interval) if not new_metrics.columns.equals(old_metrics.columns): new_metrics = pd.concat([old_metrics, new_metrics]) config = dict(header=True, mode='w') else: config = dict(header=True, mode='w') new_metrics.to_csv(metrics_path, **config) def on_init_start(self, trainer): """Called when the trainer initialization begins, model has not yet been set.""" pass def on_init_end(self, trainer): """Called when the trainer initialization ends, model has not yet been set.""" if self.logger_path is None: checkpoint_path = trainer.checkpoint_callback.dirpath # checkpoint_path = trainer.logger.log_dir self.logger_path = checkpoint_path.parent / 'logging' self.logger_path.mkdir(parents=True, exist_ok=True) def on_batch_end(self, trainer, pl_module): """Called when the training batch ends.""" if trainer.global_step > 1: metrics_path = self.logger_path / 'metrics_batch.csv' self._log_csv(trainer, metrics_path, interval='batch') def on_epoch_end(self, trainer, pl_module): """Called when the epoch ends.""" metrics_path = self.logger_path / 'metrics_epoch.csv' self._log_csv(trainer, metrics_path, interval='epoch') def on_sanity_check_start(self, trainer, pl_module): """Called when the validation sanity check starts.""" pass def on_sanity_check_end(self, trainer, pl_module): """Called when the validation sanity check ends.""" pass def on_epoch_start(self, trainer, pl_module): """Called when the epoch begins.""" pass def on_batch_start(self, trainer, pl_module): """Called when the training batch begins.""" pass def on_validation_batch_start(self, trainer, pl_module): """Called when the validation batch begins.""" pass def on_validation_batch_end(self, trainer, pl_module): """Called when the validation batch ends.""" pass def on_test_batch_start(self, trainer, pl_module): """Called when the test batch begins.""" pass def on_test_batch_end(self, trainer, pl_module): """Called when the test batch ends.""" pass def on_train_start(self, trainer, pl_module): """Called when the train begins.""" pass def on_train_end(self, trainer, pl_module): """Called when the train ends.""" pass def on_validation_start(self, trainer, pl_module): """Called when the validation loop begins.""" pass def on_validation_end(self, trainer, pl_module): """Called when the validation loop ends.""" pass def on_test_start(self, trainer, pl_module): """Called when the test begins.""" pass def on_test_end(self, trainer, pl_module): """Called when the test ends.""" pass class PandasLogger(pl.Callback): """PandasLogger metric logger and model checkpoint.""" def __init__(self, save_path=None): super(PandasLogger, self).__init__() self.batch_metrics = pd.DataFrame() self.epoch_metrics = pd.DataFrame() self._epoch = 0 def _extract_metrics(self, trainer, interval): metrics = trainer.callback_metrics metric_keys = list(metrics.keys()) data_dict = OrderedDict() # setup required metrics depending on interval if interval == 'epoch': if interval in metric_keys: metric_keys.remove('epoch') data_dict['epoch'] = metrics['epoch'] else: data_dict['epoch'] = self._epoch data_dict['time'] = str(datetime.now()) self._epoch += 1 elif interval in ['step', 'batch']: remove_list = ['train', 'val', 'epoch'] for m in metrics.keys(): if any(sub in m for sub in remove_list): metric_keys.remove(m) data_dict[interval] = trainer.global_step # populate ordered dictionary for k in metric_keys: if isinstance(metrics[k], dict): continue else: data_dict[k] = float(metrics[k]) # dataframe with a single row (one interval) metrics =
pd.DataFrame.from_records([data_dict], index=interval)
pandas.DataFrame.from_records
""" Holt-Winters from statsmodels """ import warnings warnings.filterwarnings('ignore') import numpy as np import pandas as pd from statsmodels.tsa.holtwinters import ExponentialSmoothing from hyperopt import hp, fmin, tpe, Trials # local module from foresee.models import models_util from foresee.models import param_optimizer from foresee.scripts import fitter def holt_winters_fit_forecast(ts, fcst_len, params=None, args=None): """[summary] Parameters ---------- ts : [type] [description] fcst_len : [type] [description] freq : [type] [description] params : [type] [description] Returns ------- [type] [description] """ freq = args['FREQ'] try: if params is None: hw_model = ExponentialSmoothing( endog = ts, seasonal_periods = freq ).fit(optimized=True) else: hw_model = ExponentialSmoothing( endog = ts, trend = params['trend'], seasonal = params['seasonal'], seasonal_periods = freq ).fit(optimized=True) hw_fittedvalues = hw_model.fittedvalues hw_forecast = hw_model.predict( start = len(ts), end = len(ts) + fcst_len - 1 ) err = None except Exception as e: hw_fittedvalues = None hw_forecast = None err = str(e) return hw_fittedvalues, hw_forecast, err def holt_winters_tune(ts_train, ts_test, params=None, args=None): model = 'holt_winters' try: options = ['add', 'mul'] space = { 'trend': hp.choice('trend', options), 'seasonal': hp.choice('seasonal', options) } f = fitter.model_loss(model) f_obj = lambda params: f.fit_loss(ts_train, ts_test, params, args) trials = Trials() best_raw = fmin(f_obj, space, algo=tpe.suggest, trials=trials, max_evals=10, show_progressbar=False, verbose=False) best = {'trend': options[best_raw['trend']], 'seasonal': options[best_raw['seasonal']]} err = None except Exception as e: err = str(e) best = None return best, err def holt_winters_main(data_dict, param_config, model_params): """[summary] Parameters ---------- data_dict : [type] [description] freq : [type] [description] fcst_len : [type] [description] model_params : [type] [description] run_type : [type] [description] tune : [type] [description] epsilon : [type] [description] Returns ------- [type] [description] """ model = 'holt_winters' fcst_len = param_config['FORECAST_LEN'] output_format = param_config['OUTPUT_FORMAT'] tune = param_config['TUNE'] epsilon = param_config['EPSILON'] freq = param_config['FREQ'] complete_fact = data_dict['complete_fact'] # dataframe to hold fitted values fitted_fact = pd.DataFrame() fitted_fact['y'] = complete_fact['y'] fitted_fact['data_split'] = complete_fact['data_split'] # dataframe to hold forecast values forecast_fact =
pd.DataFrame()
pandas.DataFrame
import pandas as pd import numpy as np import networkx as nx import scipy.sparse as sparse from base import BaseFeature class PageRank(BaseFeature): def import_columns(self): return ["engaged_user_id", "engaging_user_id", "engagee_follows_engager"] def make_features(self, df_train_input, df_test_input): self._make_graph(df_train_input, df_test_input) pagerank = nx.pagerank_scipy(self.G) df_train_features = pd.DataFrame() df_test_features =
pd.DataFrame()
pandas.DataFrame
from unittest import TestCase import pandas as pd import numpy as np import pandas_validator as pv from pandas_validator.core.exceptions import ValidationError class BaseSeriesValidatorTest(TestCase): def setUp(self): self.validator = pv.BaseSeriesValidator(series_type=np.int64) def test_is_valid_when_given_int64_series(self): series = pd.Series([0, 1]) self.assertTrue(self.validator.is_valid(series)) def test_is_invalid_when_given_float_series(self): series = pd.Series([0., 1.]) self.assertFalse(self.validator.is_valid(series)) def test_should_return_true_when_given_int64_series(self): series = pd.Series([0, 1]) self.assertIsNone(self.validator.validate(series)) def test_should_return_false_when_given_float_series(self): series = pd.Series([0., 1.]) self.assertRaises(ValidationError, self.validator.validate, series) class IntegerSeriesValidatorTest(TestCase): def setUp(self): self.validator = pv.IntegerSeriesValidator(min_value=0, max_value=2) def test_is_valid(self): series = pd.Series([0, 1, 2]) self.assertTrue(self.validator.is_valid(series)) def test_is_invalid_by_too_low_value(self): series = pd.Series([-1, 0, 1, 2]) self.assertFalse(self.validator.is_valid(series)) def test_is_invalid_by_too_high_value(self): series = pd.Series([0, 1, 2, 3]) self.assertFalse(self.validator.is_valid(series)) class FloatSeriesValidatorTest(TestCase): def setUp(self): self.validator = pv.FloatSeriesValidator(min_value=0, max_value=2) def test_is_valid(self): series = pd.Series([0., 1., 2.]) self.assertTrue(self.validator.is_valid(series)) def test_is_invalid_when_given_integer_series(self): series = pd.Series([0, 1, 2]) self.assertFalse(self.validator.is_valid(series)) def test_is_invalid_by_too_low_value(self): series = pd.Series([-0.1, 0., 1.]) self.assertFalse(self.validator.is_valid(series)) def test_is_invalid_by_too_high_value(self): series = pd.Series([0., 1., 2.1]) self.assertFalse(self.validator.is_valid(series)) class CharSeriesValidatorTest(TestCase): def setUp(self): self.validator = pv.CharSeriesValidator(min_length=0, max_length=4) def test_is_valid(self): series = pd.Series(['', 'ab', 'abcd']) self.assertTrue(self.validator.is_valid(series)) def test_is_invalid_when_given_integer_series(self): series =
pd.Series([0, 1, 2])
pandas.Series
#<NAME> Data Mining Project B00721425 ''' from surprise import SVD from surprise import Dataset from surprise.model_selection import GridSearchCV from surprise import Reader import pandas as pd #https://pandas.pydata.org/docs/reference/index.html all the methods I used I searched from here from surprise import NMF from surprise import SVDpp #pulling the data from text file and making it a dataframe data = pd.read_csv ('train.txt', header = None, sep=' ') data.columns = ['User_ID', 'Movie_ID', 'Ratings'] reader = Reader(rating_scale=(1,5)) dataset = Dataset.load_from_df(data[['User_ID', 'Movie_ID', 'Ratings']], reader) #https://surprise.readthedocs.io/en/stable/matrix_factorization.html I found the documentation for parameters for above methods here. #from https://surprise.readthedocs.io/en/stable/getting_started.html I found how to do GridSearchCV #from the codes below I tested SVD,NMF and SVDpp functions to see which one is giving #the best resut for rmse value you can command and un command parts to see #I took this code to be able to find the best parameters to run by SVD #To be able to get best rmse possible this will help us predict ratings more accurate #I changed the parameters a lot this is not the only set up I tried. #I run the test for atleast 5 times to be able to make sure I choose the right parameters ''' ''' name = 'SVD: ' #n_epochs: The number of iteration of the SGD procedure. #lr_all: The learning rate for all parameters. #reg_all: The regularization term for all parameters. param_grid_SVD = {'n_epochs': [20], 'lr_all': [0.005], 'reg_all': [0.02,0.1,0.05,0.2]} #the code below splits the data to 5 randomly equal datasets and uses 1 of them as testset #and others as training set to test and see which n_epochs,lr_all,reg_all values are the best #choice for low rmse. gs = GridSearchCV(SVD, param_grid_SVD, measures=['rmse'], cv=5) ''' ''' name = 'NMF: ' param_grid_NMF = {'n_epochs': [20]} gs = GridSearchCV(NMF, param_grid, measures=['rmse'], cv=5) ''' ''' name = 'SVDpp: ' #n_epochs: The number of iteration of the SGD procedure. #lr_all: The learning rate for all parameters. #reg_all: The regularization term for all parameters. param_grid_SVDpp = {'n_epochs': [20], 'lr_all': [0.005,0.007], 'reg_all': [0.1,0.05]} gs = GridSearchCV(SVD, param_grid_SVDpp, measures=['rmse'], cv=5) ''' ''' gs.fit(dataset) # best RMSE score print(name + str(gs.best_score['rmse'])) # combination of parameters that gave the best RMSE score print(gs.best_params['rmse']) ''' ''' #I wanted to play with the test and train size between svdpp and svd to find which one is givin better rmse import pandas as pd from surprise import SVD from surprise import SVDpp from surprise import accuracy from surprise.model_selection import train_test_split from surprise import Reader from surprise import Dataset data = pd.read_csv ('train.txt', header = None, sep=' ') data.columns = ['User_ID', 'Movie_ID', 'Ratings'] reader = Reader(rating_scale=(1,5)) dataset = Dataset.load_from_df(data[['User_ID', 'Movie_ID', 'Ratings']], reader) trainset, testset = train_test_split(dataset, test_size = .25) #https://surprise.readthedocs.io/en/stable/getting_started.html here is the doc I found for this part I figured out Train-test split method section model = SVDpp(n_epochs= 20, lr_all= 0.007, reg_all= 0.1) model.fit(trainset) model_SVD = SVD(n_epochs = 20, lr_all = 0.005, reg_all = 0.1) model_SVD.fit(trainset) predictions = model.test(testset) print('SVDpp') accuracy.rmse(predictions) predictions = model_SVD.test(testset) print('SVD') accuracy.rmse(predictions) ''' #I found all the functions that I used from surprise library is here => https://surprise.readthedocs.io/en/v1.0.1/index.html from surprise import SVDpp #After doing lots of testing on SVD, SVDpp and NMF #I conclude that SVDpp is giving the best RMSE value with test and train splits #Thats why I wanted to choose SVDpp for this project to predict values. #you can check SVDpp algorithm from https://surprise.readthedocs.io/en/stable/matrix_factorization.html from surprise import Dataset #to create dataset import pandas as pd #pandas for dataframe #https://pandas.pydata.org/docs/reference/index.html all the methods I used I searched from here from surprise import accuracy # to calculate rmse value from surprise import Reader #Reader object for Surprise to be able to parse the file or the dataframe. data = pd.read_csv ('train.txt', header = None, sep=' ')#reading train.txt file and converting it to dataframe data.columns = ['User_ID', 'Movie_ID', 'Ratings'] #sicne the train.txt does not have column names we put the column names to dataframe reader = Reader(rating_scale=(1,5))# A reader is still needed but only the rating_scale param is requiered. dataset = Dataset.load_from_df(data[['User_ID', 'Movie_ID', 'Ratings']], reader)#Creating dataset https://surprise.readthedocs.io/en/stable/dataset.html #I made this matrix to make a condition in output phase.If the user rated the movie we dont want to make prediction again we only need to pull the #rating that user did for that spesific movie thats why this matrix helped me pull data I need from train.txt user_item_matrix = data.pivot_table(index= 'User_ID', columns= 'Movie_ID', values = "Ratings") print('Data Frame Created') #finding the biggest user_ID to be able to reach the last index of user_id list user_id_list = data.User_ID.unique() user_id_list.sort() #finding the bigget movie_id to be able to reach the last index of movie_id movie_id_list = data.Movie_ID.unique() movie_id_list.sort() model = SVDpp(n_epochs = 20, lr_all = 0.007, reg_all = 0.1)#selecting model with spesificed parameters print('Fitting the model to dataset') model.fit(dataset.build_full_trainset())#fitting dataset to model print('Creating the submit_sample.txt') file = open("submit_sample.txt","w")#creating submit_sample.txt as output for user_id in range(user_id_list[-1]):#user_id_list[-1] is equal to 943 and user id loops from 0 to 942 in this case for movie_id in range(1,movie_id_list[-1]+1):#for loop goes from (1 to 1682) in this case #I did try Except here cause in user_item_matrix there are some missing columns which will create error when we write #(user_item_matrix.iloc[user_id][movie_id]) since there is no data about the missing columns #Since my model can predict everycolumn eventhough it is missing I wrote except: part to just take out the predictions of #those missing columns to output file. This way I did not need to create the actual columns for the missing data. #Instead I output the prediction from model.predict to output file. try: #https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.iloc.html for iloc[][] usage. if
pd.isnull(user_item_matrix.iloc[user_id][movie_id])
pandas.isnull
import time import datetime as dt import pandas as pd import numpy as np import logging import coloredlogs import pytz from typing import List, Dict, Tuple, Any from polygon import RESTClient from trader.common.helpers import dateify class PolygonFinancials(): def __init__(self, financials: pd.DataFrame, dividends: pd.DataFrame, splits: pd.DataFrame): self.financials = financials self.splits = splits self.dividends = dividends class PolygonListener(): def __init__(self, key: str = '<KEY>', limit: int = 50000, request_sleep: int = 0): self.client: RESTClient = RESTClient(key) self.request_sleep = request_sleep self.limit = limit def date(self, date_time: dt.datetime) -> str: return dt.datetime.strftime(date_time, '%Y-%m-%d') def date_from_ts(self, unixtimestamp: int, zone: str = 'America/New_York') -> dt.datetime: return dt.datetime.fromtimestamp(unixtimestamp / 1000.0, tz=pytz.timezone(zone)) def date_from_nanots(self, unixtimestamp: int, zone: str = 'America/New_York') -> dt.datetime: return dt.datetime.fromtimestamp(unixtimestamp / 1000000000.0, tz=pytz.timezone(zone)) def round_to_second(self, unixtimestamp: int, zone: str = 'America/New_York') -> np.int64: d = self.date_from_nanots(unixtimestamp, zone) date_time = dt.datetime(d.year, d.month, d.day, d.hour, d.minute, d.second) return np.int64(date_time.timestamp()) def get_all_equity_symbols(self): yesterday = dt.datetime.now() - dt.timedelta(days=1) result = self.client.stocks_equities_grouped_daily('US', 'STOCKS', self.date(yesterday)) symbols = [r['T'] for r in result.results] # type: ignore return symbols def get_grouped_daily(self, market: str, date_time: dt.datetime) -> pd.DataFrame: resp = self.client.stocks_equities_grouped_daily('US', market, date=self.date(date_time)) columns = { 'T': 'symbol', 'v': 'volume', 'o': 'open', 'c': 'close', 'h': 'high', 'l': 'low', 't': 'date', 'vw': 'vwap', 'n': 'items' } df = pd.DataFrame(resp.results) # type: ignore df = df.rename(columns=columns) # type: ignore return df def get_aggregates(self, symbol: str, multiplier: int, timespan: str, start_date: dt.datetime, end_date: dt.datetime) -> pd.DataFrame: timespans = ['day', 'minute', 'hour', 'week', 'month', 'quarter', 'year'] if timespan not in timespans: raise ValueError('incorrect timespan, must be {}'.format(timespans)) start_date = dateify(start_date, timezone='America/New_York') end_date = dateify(end_date + dt.timedelta(days=1), timezone='America/New_York') logging.info('get_aggregates {} mul: {} timespan: {} {} {}'.format(symbol, multiplier, timespan, start_date, end_date)) result = self.client.stocks_equities_aggregates(symbol, multiplier, timespan, self.date(start_date), self.date(end_date), **{'limit': self.limit}) time.sleep(self.request_sleep) columns = { 'T': 'symbol', 'v': 'volume', 'o': 'open', 'c': 'close', 'h': 'high', 'l': 'low', 't': 'date', 'n': 'items', 'vw': 'vwap' } df = pd.DataFrame(result.results) # type: ignore df = df.rename(columns=columns) # type: ignore df['symbol'] = symbol df['date'] = df['date'].apply(self.date_from_ts) # convert to proper timezone df.index = df['date'] df.drop(columns=['date'], inplace=True) df['volume'] = df['volume'].astype(int) df = df.reindex(['symbol', 'open', 'close', 'high', 'low', 'volume', 'vwap', 'items'], axis=1) # we have more work to do if len(df) == 50000: last_date = df.index[-1].to_pydatetime() combined = df.append(self.get_aggregates(symbol, multiplier, timespan, last_date, end_date)) result = combined[~combined.index.duplicated()] return result[(result.index >= start_date) & (result.index <= end_date)] return df[(df.index >= start_date) & (df.index <= end_date)] def get_aggregates_as_ib(self, symbol: str, multiplier: int, timespan: str, start_date: dt.datetime, end_date: dt.datetime) -> pd.DataFrame: result = self.get_aggregates(symbol, multiplier, timespan, start_date, end_date) # interactive brokers history mapping mapping = { 'open_trades': 'open', 'high_trades': 'high', 'low_trades': 'low', 'close_trades': 'close', 'volume_trades': 'volume', 'average_trades': 'vwap', 'open_bid': 'open', 'high_bid': 'high', 'low_bid': 'low', 'close_bid': 'close', 'open_ask': 'open', 'high_ask': 'high', 'low_ask': 'low', 'close_ask': 'close', 'barCount_trades': 'items', } for key, value in mapping.items(): result[key] = result[value] result.rename_axis(None, inplace=True) result.drop(columns=['symbol', 'open', 'close', 'high', 'low', 'volume', 'vwap', 'items'], inplace=True) result = result.reindex( ['high_ask', 'high_trades', 'close_trades', 'low_bid', 'average_trades', 'open_trades', 'low_trades', 'barCount_trades', 'open_bid', 'volume_trades', 'low_ask', 'high_bid', 'close_ask', 'close_bid', 'open_ask'], axis=1) # type: ignore return result def get_financials(self, symbol: str) -> PolygonFinancials: financials = self.client.reference_stock_financials(symbol, **{'limit': self.limit}).results dividends = self.client.reference_stock_dividends(symbol, **{'limit': self.limit}).results splits = self.client.reference_stock_splits(symbol, **{'limit': self.limit}).results result = PolygonFinancials(pd.DataFrame(financials), pd.DataFrame(dividends),
pd.DataFrame(splits)
pandas.DataFrame
# -*- coding: utf-8 -*- # @author: Elie #%% ========================================================== # Import libraries set library params # ============================================================ # Libraries import pandas as pd import numpy as np from numpy import std, mean, sqrt from scipy.stats import linregress import os #plotting import seaborn as sns import matplotlib as mpl from matplotlib import pyplot as plt import matplotlib.lines as mlines from matplotlib.ticker import MaxNLocator pd.options.mode.chained_assignment = None #%% ========================================================== # scarhrd vs probability plot # ============================================================ def make_graph(df, goi, other_val, fs): scatsize = 10 prob_column = f"{goi}_prob_of_true" #color schemes #define all the colors color_list = list(sns.color_palette().as_hex()) blue = color_list[0] #DRwt orange = color_list[1] #atm green = color_list[2] #cdk12 red = color_list[3] #brca2 purple = color_list[4] #mmr brc = df.query('(label == "BRCA2d")') cdk = df.query('(label == "CDK12d")') atm = df.query('(label == "ATMd")') mmr = df.query('(label == "MMRd")') DRwt = df.query('(label == "DRwt")') all_brcap = df.query('(label != "BRCA2d")') def cohen_d(x,y): nx = len(x) ny = len(y) dof = nx + ny - 2 return (mean(x) - mean(y)) / sqrt(((nx-1)*std(x, ddof=1) ** 2 + (ny-1)*std(y, ddof=1) ** 2) / dof) fig, ax = plt.subplots(figsize=(3.25,2.5), ncols=2, nrows=2, gridspec_kw={'height_ratios':[1,5],'width_ratios':[5,1]}) #first do scatter plot ax[1,0].scatter(x=DRwt[prob_column], y=DRwt[other_val], color=blue, s=scatsize, alpha=0.6, zorder=10, linewidth=0, label="DRwt") ax[1,0].scatter(x=atm[prob_column], y=atm[other_val], color=orange, s=scatsize, alpha=0.7, zorder=20, linewidth=0, label="ATMd") ax[1,0].scatter(x=cdk[prob_column], y=cdk[other_val], color=green, s=scatsize, alpha=0.7, zorder=20, linewidth=0, label="CDK12d") ax[1,0].scatter(mmr[prob_column], mmr[other_val], color=purple, s=scatsize, alpha=0.8, zorder=30, linewidth=0, label="MMRd") ax[1,0].scatter(x=brc[prob_column], y=brc[other_val], color=red, s=scatsize, alpha=0.9, zorder=40, linewidth=0, label="BRCA2d") ax[1,0].tick_params(axis='x', which='both', length=3, pad=2, labelsize=fs) ax[1,0].tick_params(axis='y', which='both', length=3, pad=2, labelsize=fs) ax[1,0].grid(which='both', axis='both', color='0.6', linewidth=0.7, linestyle='dotted', zorder=-100) ax[1,0].set_ylabel(other_val, fontsize=fs, labelpad=4, verticalalignment='center') # ax[1,0].yaxis.set_label_coords(-0.12, 0.5) ax[1,0].set_xlabel(f"Probability of {goi}", fontsize=fs, labelpad=5, verticalalignment='center') slope_, intercept_, r_value, p_value, std_err_ = linregress(df[prob_column].values, df[other_val].values) ax[1,0].text(0.5, 0, f"R={r_value.round(2)}", fontsize=fs, color="k", va="bottom", ha="center", ma='center', alpha=0.9, transform=ax[1,0].transAxes) # do ax[0,0] top plot ax[0,0].get_shared_x_axes().join(ax[0,0], ax[1,0]) ax[0,0].xaxis.set_ticklabels([]) ax[0,0].get_xaxis().set_visible(False) ax[0,0].yaxis.set_ticklabels([]) ax[0,0].get_yaxis().set_visible(False) sns.kdeplot(all_brcap[prob_column], color="grey", shade=True, ax=ax[0,0]) sns.kdeplot(brc[prob_column], color=red, shade=True, ax=ax[0,0]) # test conditions c0 = all_brcap[prob_column] c1 = brc[prob_column] cd = cohen_d(c1,c0) ax[0,0].text(0.5, 0.15, f"Cohen's D: {round(cd, 2)}", fontsize=fs, color="k", va="bottom", ha="center", ma='center', alpha=0.9, transform=ax[0,0].transAxes) ax[1,1].get_shared_y_axes().join(ax[1,1], ax[1,0]) ax[1,1].xaxis.set_ticklabels([]) ax[1,1].get_xaxis().set_visible(False) ax[1,1].yaxis.set_ticklabels([]) ax[1,1].get_yaxis().set_visible(False) sns.kdeplot(y=all_brcap[otherval], color="grey", shade=True, ax=ax[1,1]) sns.kdeplot(y=brc[otherval], color=red, shade=True, ax=ax[1,1]) c0 = all_brcap[otherval] c1 = brc[otherval] cd = cohen_d(c1,c0) ax[1,1].text(0.01, 0.01, f"Cohen's D:\n{round(cd, 2)}", fontsize=fs, color="k", va="bottom", ha="left", ma='center', alpha=0.9, transform=ax[1,1].transAxes) ax[1,0].yaxis.set_label_coords(-0.12, 0.5) ax[1,0].set_xlim(-0.001,1.01) ax[1,0].set_ylim(-0.001,df[other_val].max()+1) ax[1,0].yaxis.set_major_locator(MaxNLocator(integer=True)) ax[0,1].xaxis.set_ticklabels([]) ax[0,1].get_xaxis().set_visible(False) ax[0,1].yaxis.set_ticklabels([]) ax[0,1].get_yaxis().set_visible(False) sns.despine(ax=ax[0,0], top=True, right=True, left=True, bottom=True) sns.despine(ax=ax[1,1], top=True, right=True, left=True, bottom=True) sns.despine(ax=ax[0,1], top=True, right=True, left=True, bottom=True) sns.despine(ax=ax[1,0], top=True, right=True, left=False, bottom=False) fig.subplots_adjust(hspace=0.01, wspace=0.01, left=0.11, right=0.98, top=0.99, bottom=0.11) return fig,ax def plot_legend_scatter(figdir, fs=6, ss=6): color_list = list(sns.color_palette().as_hex()) blue = color_list[0] #DRwt orange = color_list[1] #atm green = color_list[2] #cdk12 red = color_list[3] #brca2 purple = color_list[4] #mmr fig, ax = plt.subplots(figsize=(3.1,0.15)) handles = [] handles.append(mlines.Line2D([], [], color=blue, markeredgecolor=blue, marker='o', lw=0, markersize=ss, label='DRwt')) handles.append(mlines.Line2D([], [], color=orange, markeredgecolor=orange, marker='o', lw=0, markersize=ss, label='ATMd')) handles.append(mlines.Line2D([], [], color=green, markeredgecolor=green, marker='o', lw=0, markersize=ss, label='CDK12d')) handles.append(mlines.Line2D([], [], color=red, markeredgecolor=red, marker='o', lw=0, markersize=ss, label='BRCA2d')) handles.append(mlines.Line2D([], [], color=purple, markeredgecolor=purple, marker='o', lw=0, markersize=ss, label='MMRd')) ax.axis('off') plt.grid(b=False, which='both') plt.legend(handles=handles,loc='center', edgecolor='0.5', fancybox=True, frameon=False, facecolor='white', ncol=5, fontsize=fs, labelspacing=0.1, handletextpad=-0.2, columnspacing=0.5) fig.subplots_adjust(left=0.01, right=0.99, top=0.99, bottom=0.01, hspace=0, wspace=0) plt.savefig(os.path.join(figdir, "scarhrd_vs_darcsign_scatter_legend.pdf")) plt.savefig(os.path.join(figdir, "scarhrd_vs_darcsign_scatter_legend.png"), dpi=500, transparent=False, facecolor="w") def plot_legend_kde(figdir, fs=6, ss=7): color_list = list(sns.color_palette().as_hex()) red = color_list[3] #brca2 # purple = color_list[4] #mmr fig, ax = plt.subplots(figsize=(1.5,0.15)) handles = [] handles.append(mlines.Line2D([], [], color=red, markeredgecolor=red, marker='s', lw=0, markersize=ss, label='BRCA2d')) handles.append(mlines.Line2D([], [], color="grey", markeredgecolor="grey", marker='s', lw=0, markersize=ss, label='BRCA2p')) ax.axis('off') plt.grid(b=False, which='both') plt.legend(handles=handles,loc='center', edgecolor='0.5', fancybox=True, frameon=False, facecolor='white', ncol=2, fontsize=fs, labelspacing=0.1, handletextpad=-0.2, columnspacing=0.5) fig.subplots_adjust(left=0.01, right=0.99, top=0.99, bottom=0.01, hspace=0, wspace=0) plt.savefig(os.path.join(figdir, "scarhrd_vs_darcsign_kde_legend.pdf")) plt.savefig(os.path.join(figdir, "scarhrd_vs_darcsign_kde_legend.png"), dpi=500, transparent=False, facecolor="w") #%% ========================================================== # get paths, load data and make df with each file merged # ============================================================ #files from paths relative to this script rootdir = os.path.dirname(os.path.dirname(os.path.dirname(__file__))) figdir = os.path.join(rootdir, "figures", "sup_fig10") datadir = os.path.join(rootdir, "data") # cohort_data = os.path.join(datadir, "cohort.tsv") shrd_path = os.path.join(datadir, "scarhrd.tsv") prob_path = os.path.join(datadir, "darcsign_probability.tsv") shrd = pd.read_csv(shrd_path, sep='\t', low_memory=False) prob =
pd.read_csv(prob_path, sep='\t', low_memory=False)
pandas.read_csv
import train import os import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn import preprocessing import time from datetime import datetime import warnings warnings.filterwarnings('ignore') # ML libraries import lightgbm as lgb import xgboost as xgb from xgboost import plot_importance, plot_tree from sklearn.model_selection import RandomizedSearchCV, GridSearchCV from sklearn import linear_model from sklearn.metrics import mean_squared_error le = preprocessing.LabelEncoder() def main(): # test = os.environ.get("TEST_DATA") # train_data = os.environ.get("TRAINING_DATA") TRAINING_DATA_DIR = os.environ.get("TRAINING_DATA") TEST_DATA = os.environ.get("TEST_DATA") train_data = pd.read_csv(TRAINING_DATA_DIR) test = pd.read_csv(TEST_DATA) add_columns = train.addingColumns(train_data,test) data,country_dict,all_data = train.addingWolrd(add_columns) # le = preprocessing.LabelEncoder() # Select train (real) data from March 1 to March 22nd dates_list = ['2020-03-01', '2020-03-02', '2020-03-03', '2020-03-04', '2020-03-05', '2020-03-06', '2020-03-07', '2020-03-08', '2020-03-09', '2020-03-10', '2020-03-11','2020-03-12','2020-03-13','2020-03-14','2020-03-15','2020-03-16','2020-03-17','2020-03-18', '2020-03-19','2020-03-20','2020-03-21','2020-03-22','2020-03-23', '2020-03-24'] # Filter Spain, run the Linear Regression workflow # country_name = "Spain" country_name = "Spain" # country_name = os.environ.get("COUNTRY") day_start = 39 data_country = data[data['Country/Region']==country_dict[country_name]] data_country = data_country.loc[data_country['Day_num']>=day_start] X_train, Y_train_1, Y_train_2, X_test = train.split_data(data_country) model, pred = train.lin_reg(X_train, Y_train_1, X_test) # Create a df with both real cases and predictions (predictions starting on March 12th) X_train_check = X_train.copy() X_train_check['Target'] = Y_train_1 X_test_check = X_test.copy() X_test_check['Target'] = pred X_final_check =
pd.concat([X_train_check, X_test_check])
pandas.concat
from matplotlib.pyplot import title import streamlit as st import pandas as pd import altair as alt import pydeck as pdk import os import glob from wordcloud import WordCloud import streamlit_analytics path = os.path.dirname(__file__) streamlit_analytics.start_tracking() @st.cache def load_gnd_top_daten(typ): gnd_top_df = pd.DataFrame() for file in glob.glob(f'{path}/../stats/title_gnd_{typ}_*.csv'): gnd_top_df = gnd_top_df.append(pd.read_csv(file, index_col=None)) return gnd_top_df def sachbegriff_cloud(): #wordcloud der top 100 sachbegriffe eines auszuwählenden tages der letzten 10 werktage st.header('TOP 100 Sachbegriffe pro Tag') st.write('Wählen Sie ein Datum aus den letzten 10 Werktagen vor der letzten Aktualisierung der Daten des Dashboards und sehen Sie eine Wordcloud der 100 meistverwendeten GND-Sachbegriffe dieses Tages. Die Größe des Begriffes entspricht der Häufigkeit des Sachbegriffs.') files = glob.glob(f'{path}/../stats/*Ts-count.csv') daten = [x[-23:-13] for x in files] daten.sort() daten_filter = st.select_slider('Wählen Sie ein Datum', options=daten, value=daten[-1]) df = pd.read_csv(f'{path}/../stats/{daten_filter}-Ts-count.csv') dict = df.to_dict(orient='records') worte = {} for record in dict: worte.update({record['sachbegriff']:record['count']}) wc = WordCloud(background_color="white", max_words=100, width=2000, height=800, colormap='tab20') wc.generate_from_frequencies(worte) return st.image(wc.to_array()) def wirkungsorte(): #ranking und karte der meistverwendeten wirkungsorte aller personen in der gnd df = pd.read_csv(f'{path}/wirkungsorte-top50.csv') df.drop(columns=['id'], inplace=True) df.rename(columns={'name': 'Name', 'count': 'Anzahl'}, inplace=True) st.header('TOP Wirkungsorte von GND-Personen') st.markdown('Von allen Personensätzen (Tp) weisen 782.682 Angaben zum Wirkungsort der jeweiligen Person auf.') #Balkendiagramm orte_filt = st.slider('Zeige Top …', min_value=3, max_value=len(df), value=10, step=1) graph_count = alt.Chart(df.nlargest(orte_filt, 'Anzahl', keep='all')).mark_bar().encode( alt.X('Name:N', sort='y'), alt.Y('Anzahl'), alt.Color('Name:N', legend=alt.Legend(columns=2)), tooltip=[alt.Tooltip('Name:N', title='Ort'), alt.Tooltip('Anzahl:Q', title='Anzahl')] ) st.altair_chart(graph_count, use_container_width=True) #Karte INITIAL_VIEW_STATE = pdk.ViewState( latitude=50.67877877706058, longitude=8.129981238464392, zoom=4.5, max_zoom=16, bearing=0 ) scatterplotlayer = pdk.Layer( "ScatterplotLayer", df, pickable=True, opacity=0.5, stroked=True, filled=True, radius_min_pixels=1, radius_max_pixels=100, line_width_min_pixels=1, get_position='[lon, lat]', get_radius="Anzahl", get_fill_color=[255, 140, 0], get_line_color=[0, 0, 0] ) st.pydeck_chart(pdk.Deck( scatterplotlayer, initial_view_state=INITIAL_VIEW_STATE, map_style=pdk.map_styles.LIGHT, tooltip={"html": "<b>{Name}</b><br \>Wirkungsort von {Anzahl} Personen"})) def wirkungsorte_musik(): #nach jahrzehnten zwischen 1400 und 2010 gefilterte auswertung der GND-Musikwerke, Musik-Personen und Wikrungsorte und daraus abgeleitete Zentren der Musikkultur, dargestellt auf einer Karte musiker_orte = pd.read_csv(f'{path}/musiker_orte.csv', sep='\t', index_col='idn') st.header('Wirkungszentren der Musik 1400–2010') st.write('Eine Auswertung der veröffentlichten Titel von Musikern und deren Wirkungszeiten erlaubt Rückschlüsse auf die musikalischen Zentren, wie sie im Bestand der DNB repräsentiert sind.') limiter = st.slider('Jahresfilter', min_value=1400, max_value=int(musiker_orte['jahrzehnt'].max()), value=(1900), step=10) musik_filt= musiker_orte.loc[(musiker_orte['jahrzehnt'] == limiter)] musik_filt['norm']=(musik_filt['count']-musik_filt['count'].min())/(musik_filt['count'].max()-musik_filt['count'].min()) #Karte INITIAL_VIEW_STATE = pdk.ViewState( latitude=50.67877877706058, longitude=8.129981238464392, zoom=4.5, max_zoom=16, bearing=0 ) musiker_scatter = pdk.Layer( "ScatterplotLayer", musik_filt, opacity=0.8, get_position='[lon, lat]', pickable=True, stroked=True, filled=True, radius_min_pixels=1, radius_max_pixels=100, radiusscale=100, line_width_min_pixels=1, get_radius="norm*50000", get_fill_color=[50, 168, 92], get_line_color=[39, 71, 51] ) st.pydeck_chart(pdk.Deck( musiker_scatter, initial_view_state=INITIAL_VIEW_STATE, map_style=pdk.map_styles.LIGHT, tooltip={"html": "<b>{name}</b>"})) st.subheader(f'TOP 10 Wirkungszentren der {limiter}er') col1, col2 = st.beta_columns(2) i = 1 for index, row in musik_filt.nlargest(10, 'norm').iterrows(): if i <= 5: with col1: st.write(f'{i}. {row["name"]}') elif i > 5: with col2: st.write(f'{i}. {row["name"]}') i += 1 def gesamt_entity_count(): #Gesamtzahl der GND-Entitäten with open(f"{path}/../stats/gnd_entity_count.csv", "r") as f: entities = f'{int(f.read()):,}' return st.write(f"GND-Entitäten gesamt: {entities.replace(',','.')}") def relationen(): #Top 10 der GND-Relationierungscodes rels = pd.read_csv(f'{path}/../stats/gnd_codes_all.csv', index_col=False) st.subheader('Relationen') st.write('GND-Datensätze können mit anderen Datensätzen verlinkt (»relationiert«) werden. Die Art der Verlinkung wird über einen Relationierungscode beschrieben. Hier sind die am häufigsten verwendeten Relationierungscodes zu sehen. Die Auflösung der wichtigsten Codes gibt es [hier](https://wiki.dnb.de/download/attachments/51283696/Codeliste_ABCnachCode_Webseite_2012-07.pdf).') rels_filt = st.slider('Zeige Top ...', 5, len(rels), 10, 1) relation_count = alt.Chart(rels.nlargest(rels_filt, 'count', keep='all')).mark_bar().encode( alt.X('code', title='Relationierungs-Code', sort='-y'), alt.Y('count', title='Anzahl'), alt.Color('code', sort='-y', title='Relationierungscode'), tooltip=[alt.Tooltip('count', title='Anzahl'), alt.Tooltip('code', title='Code')] ) st.altair_chart(relation_count, use_container_width=True) with open(f"{path}/../stats/gnd_relation_count.csv", "r") as f: relations = f'{int(f.read()):,}' st.write(f"Relationen zwischen Entitäten gesamt: {relations.replace(',','.')}") def systematik(): #Ranking der meistverwendeten GND-Systematik-Notationen classification =
pd.read_csv(f'{path}/../stats/gnd_classification_all.csv', index_col=False)
pandas.read_csv
import gc import numpy as np import pandas as pd import xgboost as xgb from pandas.core.categorical import Categorical from scipy.sparse import csr_matrix, hstack categorical_features = ['having_IP_Address','URL_Length','Shortining_Service','having_At_Symbol','double_slash_redirecting','Prefix_Suffix','having_Sub_Domain','SSLfinal_State','Domain_registeration_length','Favicon','port','HTTPS_token','Request_URL','URL_of_Anchor','Links_in_tags','SFH','Submitting_to_email','Abnormal_URL','Redirect','on_mouseover','RightClick','popUpWidnow','Iframe','age_of_domain','DNSRecord','web_traffic','Page_Rank','Google_Index','Links_pointing_to_page','Statistical_report'] numerical_features = [] column_names = ['having_IP_Address','URL_Length','Shortining_Service','having_At_Symbol','double_slash_redirecting','Prefix_Suffix','having_Sub_Domain','SSLfinal_State','Domain_registeration_length','Favicon','port','HTTPS_token','Request_URL','URL_of_Anchor','Links_in_tags','SFH','Submitting_to_email','Abnormal_URL','Redirect','on_mouseover','RightClick','popUpWidnow','Iframe','age_of_domain','DNSRecord','web_traffic','Page_Rank','Google_Index','Links_pointing_to_page','Statistical_report','Result'] def sparse_dummies(df, column): '''Returns sparse OHE matrix for the column of the dataframe''' categories = Categorical(df[column]) column_names = np.array(["{}_{}".format(column, str(i)) for i in range(len(categories.categories))]) N = len(categories) row_numbers = np.arange(N, dtype=np.int) ones = np.ones((N,)) return csr_matrix((ones, (row_numbers, categories.codes))), column_names data = np.loadtxt('../../../data/phishing_website/train.txt', dtype=int, delimiter=',', converters={30: lambda x: int(int(x) == 1)}) df_train =
pd.DataFrame(data, columns=column_names)
pandas.DataFrame
# -*- coding: utf-8 -*- """Structures data in ML-friendly ways.""" import re import copy import datetime as dt import random import numpy as np import pandas as pd from sklearn.preprocessing import StandardScaler from avaml import Error, setenvironment as se, _NONE, CSV_VERSION, REGIONS, merge, REGION_ELEV from avaml.aggregatedata.download import _get_varsom_obs, _get_weather_obs, _get_regobs_obs, REG_ENG, PROBLEMS from avaml.aggregatedata.time_parameters import to_time_parameters from varsomdata import getforecastapi as gf from varsomdata import getmisc as gm __author__ = 'arwi' LABEL_PROBLEM_PRIMARY = { "ext_attr": [ "avalanche_problem_type_id", "avalanche_problem_type_name", "avalanche_type_id", "avalanche_type_name", "avalanche_ext_id", "avalanche_ext_name" ], "values": { _NONE: [0, "", 0, "", 0, ""], "new-loose": [3, "Nysnø (løssnøskred)", 20, "Løssnøskred", 10, "Tørre løssnøskred"], "wet-loose": [5, "Våt snø (løssnøskred)", 20, "Løssnøskred", 15, "Våte løssnøskred"], "new-slab": [7, "Nysnø (flakskred)", 10, "Flakskred", 20, "Tørre flakskred"], "drift-slab": [10, "Fokksnø (flakskred)", 10, "Flakskred", 20, "Tørre flakskred"], "pwl-slab": [30, "Vedvarende svakt lag (flakskred)", 10, "Flakskred", 20, "Tørre flakskred"], "wet-slab": [45, "Våt snø (flakskred)", 10, "Flakskred", 25, "Våte flakskred"], "glide": [50, "Glideskred", 10, "Flakskred", 25, "Våte flakskred"] } } LABEL_PROBLEM = { "cause": { "ext_attr": ["aval_cause_id", "aval_cause_name"], "values": { "0": [0, ""], "new-snow": [10, "Nedføyket svakt lag med nysnø"], "hoar": [11, "Nedsnødd eller nedføyket overflaterim"], "facet": [13, "Nedsnødd eller nedføyket kantkornet snø"], "crust": [14, "Dårlig binding mellom glatt skare og overliggende snø"], "snowdrift": [15, "Dårlig binding mellom lag i fokksnøen"], "ground-facet": [16, "Kantkornet snø ved bakken"], "crust-above-facet": [18, "Kantkornet snø over skarelag"], "crust-below-facet": [19, "Kantkornet snø under skarelag"], "ground-water": [20, "Vann ved bakken/smelting fra bakken"], "water-layers": [22, "Opphopning av vann i/over lag i snødekket"], "loose": [24, "Ubunden snø"] } }, "dsize": { "ext_attr": ["destructive_size_ext_id", "destructive_size_ext_name"], "values": { '0': [0, "Ikke gitt"], '1': [1, "1 - Små"], '2': [2, "2 - Middels"], '3': [3, "3 - Store"], '4': [4, "4 - Svært store"], '5': [5, "5 - Ekstremt store"] } }, "prob": { "ext_attr": ["aval_probability_id", "aval_probability_name"], "values": { '0': [0, "Ikke gitt"], '2': [2, "Lite sannsynlig"], '3': [3, "Mulig"], '5': [5, "Sannsynlig"], } }, "trig": { "ext_attr": ["aval_trigger_simple_id", "aval_trigger_simple_name"], "values": { '0': [0, "Ikke gitt"], '10': [10, "Stor tilleggsbelastning"], '21': [21, "Liten tilleggsbelastning"], '22': [22, "Naturlig utløst"] } }, "dist": { "ext_attr": ["aval_distribution_id", "aval_distribution_name"], "values": { '0': [0, "Ikke gitt"], '1': [1, "Få bratte heng"], '2': [2, "Noen bratte heng"], '3': [3, "Mange bratte heng"], '4': [4, "De fleste bratte heng"] } }, "lev_fill": { "ext_attr": ["exposed_height_fill"], "values": { '0': [0], '1': [1], '2': [2], '3': [3], '4': [4], } } } LABEL_PROBLEM_MULTI = { "aspect": { "ext_attr": "valid_expositions", } } LABEL_PROBLEM_REAL = { "lev_max": { "ext_attr": "exposed_height_1", }, "lev_min": { "ext_attr": "exposed_height_2", } } LABEL_GLOBAL = { "danger_level": { "ext_attr": ["danger_level", "danger_level_name"], "values": { '1': [1, "1 liten"], '2': [2, "2 Moderat"], '3': [3, "3 Betydelig"], '4': [4, "4 Stor"], '5': [5, "5 Meget stor"] } }, "emergency_warning": { "ext_attr": ["emergency_warning"], "values": { "Ikke gitt": ["Ikke gitt"], "Naturlig utløste skred": ["Naturlig utløste skred"], } } } COMPETENCE = [0, 110, 115, 120, 130, 150] class ForecastDataset: def __init__(self, regobs_types, seasons=('2017-18', '2018-19', '2019-20'), max_file_age=23): """ Object contains aggregated data used to generate labeled datasets. :param regobs_types: Tuple/list of string names for RegObs observation types to fetch. :param seasons: Tuple/list of string representations of avalanche seasons to fetch. """ self.seasons = sorted(list(set(seasons))) self.date = None self.regobs_types = regobs_types self.weather = {} self.regobs = {} self.varsom = {} self.labels = {} self.use_label = True for season in seasons: varsom, labels = _get_varsom_obs(year=season, max_file_age=max_file_age) self.varsom = merge(self.varsom, varsom) self.labels = merge(self.labels, labels) regobs = _get_regobs_obs(season, regobs_types, max_file_age=max_file_age) self.regobs = merge(self.regobs, regobs) weather = _get_weather_obs(season, max_file_age=max_file_age) self.weather = merge(self.weather, weather) @staticmethod def date(regobs_types, date: dt.date, days, use_label=True): """ Create a dataset containing just a given day's data. :param regobs_types: Tuple/list of string names for RegObs observation types to fetch. :param date: Date to fetch and create dataset for. :param days: How many days to fetch before date. This will be max for .label()'s days parameter. """ self = ForecastDataset(regobs_types, []) self.date = date self.use_label = use_label self.regobs = _get_regobs_obs(None, regobs_types, date=date, days=days) self.varsom, labels = _get_varsom_obs(None, date=date, days=days-1 if days > 0 else 1) self.weather = _get_weather_obs(None, date=date, days=days-2 if days > 2 else 1) self.labels = {} for label_keys, label in labels.items(): if label_keys not in self.labels: self.labels[label_keys] = {} for (label_date, label_region), label_data in label.items(): if label_date == date.isoformat(): subkey = (label_date, label_region) self.labels[label_keys][subkey] = label_data return self def label(self, days, with_varsom=True): """Creates a LabeledData containing relevant label and features formatted either in a flat structure or as a time series. :param days: How far back in time values should data be included. If 0, only weather data for the forecast day is evaluated. If 1, day 0 is used for weather, 1 for Varsom. If 2, day 0 is used for weather, 1 for Varsom, 2 for RegObs. If 3, days 0-1 is used for weather, 1-2 for Varsom, 2-3 for RegObs. If 5, days 0-3 is used for weather, 1-4 for Varsom, 2-5 for RegObs. The reason for this is to make sure that each kind of data contain the same number of data points, if we want to use some time series frameworks that are picky about such things. :param with_varsom: Whether to include previous avalanche bulletins into the indata. :return: LabeledData """ table = {} row_weight = {} df = None df_weight = None df_label = pd.DataFrame(self.labels, dtype="U") days_w = {0: 1, 1: 1, 2: 1}.get(days, days - 1) days_v = {0: 1, 1: 2, 2: 2}.get(days, days) days_r = days + 1 varsom_index = pd.DataFrame(self.varsom).index weather_index = pd.DataFrame(self.weather).index if len(df_label.index) == 0 and self.use_label: raise NoBulletinWithinRangeError() if self.date and not self.use_label: season = gm.get_season_from_date(self.date) regions = gm.get_forecast_regions(year=season, get_b_regions=True) date_region = [(self.date.isoformat(), region) for region in regions] else: date_region = df_label.index for monotonic_idx, entry_idx in enumerate(date_region): date, region_id = dt.date.fromisoformat(entry_idx[0]), entry_idx[1] def prev_key(day_dist): return (date - dt.timedelta(days=day_dist)).isoformat(), region_id # Just check that we can use this entry. try: if with_varsom: for n in range(1, days_v): if prev_key(n) not in varsom_index: raise KeyError() for n in range(0, days_w): if prev_key(n) not in weather_index: raise KeyError() add_row = True # We don't check for RegObs as it is more of the good to have type of data except KeyError: add_row = False if add_row: row = {} for region in REGIONS: row[(f"region_id_{region}", "0")] = float(region == region_id) if with_varsom: for column in self.varsom.keys(): for n in range(1, days_v): # We try/except an extra time since single dates may run without a forecast. row[(column, str(n))] = self.varsom[column][prev_key(n)] for column in self.weather.keys(): for n in range(0, days_w): try: row[(column, str(n))] = self.weather[column][prev_key(n)] except KeyError: row[(column, str(n))] = 0 for column in self.regobs.keys(): for n in range(2, days_r): try: row[(column, str(n))] = self.regobs[column][prev_key(n)] except KeyError: row[(column, str(n))] = 0 try: weight_sum = self.regobs['accuracy'][prev_key(0)] if weight_sum < 0: row_weight[entry_idx] = 1 / 2 elif weight_sum == 0: row_weight[entry_idx] = 1 elif weight_sum > 0: row_weight[entry_idx] = 2 except KeyError: row_weight[entry_idx] = 1 # Some restructuring to make DataFrame parse the dict correctly for key in row.keys(): if key not in table: table[key] = {} table[key][entry_idx] = row[key] # Build DataFrame iteratively to preserve system memory (floats in dicts are apparently expensive). if (monotonic_idx > 0 and monotonic_idx % 1000 == 0) or monotonic_idx == len(date_region) - 1: df_new = pd.DataFrame(table, dtype=np.float32).fillna(0) df_weight_new = pd.Series(row_weight) df = df_new if df is None else pd.concat([df, df_new]) df_weight = df_weight_new if df is None else pd.concat([df_weight, df_weight_new]) table = {} row_weight = {} if df is None or len(df.index) == 0: raise NoDataFoundError() if self.use_label: df_label = df_label.loc[df.index] df_label.sort_index(axis=0, inplace=True) df_label.sort_index(axis=1, inplace=True) df.sort_index(axis=0, inplace=True) df_weight.sort_index(axis=0, inplace=True) else: df_label = None return LabeledData(df, df_label, df_weight, days, self.regobs_types, with_varsom, self.seasons) class LabeledData: is_normalized = False with_regions = True elevation_class = (False, False) scaler = StandardScaler() def __init__(self, data, label, row_weight, days, regobs_types, with_varsom, seasons=False): """Holds labels and features. :param data: A DataFrame containing the features of the dataset. :param label: DataFrame of labels. :param row_weight: Series containing row weights :param days: How far back in time values should data be included. If 0, only weather data for the forecast day is evaluated. If 1, day 0 is used for weather, 1 for Varsom. If 2, day 0 is used for weather, 1 for Varsom, 2 for RegObs. If 3, days 0-1 is used for weather, 1-2 for Varsom, 2-3 for RegObs. If 5, days 0-3 is used for weather, 1-4 for Varsom, 2-5 for RegObs. The reason for this is to make sure that each kind of data contain the same number of data points, if we want to use some time series frameworks that are picky about such things. :param regobs_types: A tuple/list of strings of types of observations to fetch from RegObs., e.g., `("Faretegn")`. :param with_varsom: Whether to include previous avalanche bulletins into the indata. """ self.data = data self.row_weight = row_weight if label is not None: self.label = label self.label = self.label.replace(_NONE, 0) self.label = self.label.replace(np.nan, 0) try: self.label['CLASS', _NONE] = self.label['CLASS', _NONE].replace(0, _NONE).values except KeyError: pass try: self.label['MULTI'] = self.label['MULTI'].replace(0, "0").values except KeyError: pass try: self.label['REAL'] = self.label['REAL'].astype(np.float) except KeyError: pass self.pred = label.copy() for col in self.pred.columns: self.pred[col].values[:] = 0 try: self.pred['CLASS', _NONE] = _NONE except KeyError: pass try: self.pred['MULTI'] = "0" except KeyError: pass else: self.label = None self.pred = None self.days = days self.with_varsom = with_varsom self.regobs_types = regobs_types if self.data is not None: self.scaler.fit(self.data.values) self.single = not seasons self.seasons = sorted(list(set(seasons if seasons else []))) def normalize(self, by=None): """Normalize the data feature-wise using MinMax. :return: Normalized copy of LabeledData """ by = by if by is not None else self if not self.is_normalized: ld = self.copy() data = by.scaler.transform(self.data.values) ld.data =
pd.DataFrame(data=data, index=self.data.index, columns=self.data.columns)
pandas.DataFrame
import os """ First change the following directory link to where all input files do exist """ os.chdir("D:\\Book writing\\Codes\\Chapter 5") import numpy as np import pandas as pd # KNN Curse of Dimensionality import random,math def random_point_gen(dimension): return [random.random() for _ in range(dimension)] def distance(v,w): vec_sub = [v_i-w_i for v_i,w_i in zip(v,w)] sum_of_sqrs = sum(v_i*v_i for v_i in vec_sub) return math.sqrt(sum_of_sqrs) def random_distances_comparison(dimension,number_pairs): return [distance(random_point_gen(dimension),random_point_gen(dimension)) for _ in range(number_pairs)] def mean(x): return sum(x) / len(x) dimensions = range(1, 201, 5) avg_distances = [] min_distances = [] dummyarray = np.empty((20,4)) dist_vals = pd.DataFrame(dummyarray) dist_vals.columns = ["Dimension","Min_Distance","Avg_Distance","Min/Avg_Distance"] random.seed(34) i = 0 for dims in dimensions: distances = random_distances_comparison(dims, 1000) avg_distances.append(mean(distances)) min_distances.append(min(distances)) dist_vals.loc[i,"Dimension"] = dims dist_vals.loc[i,"Min_Distance"] = min(distances) dist_vals.loc[i,"Avg_Distance"] = mean(distances) dist_vals.loc[i,"Min/Avg_Distance"] = min(distances)/mean(distances) print(dims, min(distances), mean(distances), min(distances)*1.0 / mean(distances)) i = i+1 # Ploting Average distances for Various Dimensions import matplotlib.pyplot as plt plt.figure() #plt.title('Avg. Distance Change with Number of Dimensions for 1K Obs') plt.xlabel('Dimensions') plt.ylabel('Avg. Distance') plt.plot(dist_vals["Dimension"],dist_vals["Avg_Distance"]) plt.legend(loc='best') plt.show() # 1-Dimension Plot import numpy as np import pandas as pd import matplotlib.pyplot as plt one_d_data = np.random.rand(60,1) one_d_data_df = pd.DataFrame(one_d_data) one_d_data_df.columns = ["1D_Data"] one_d_data_df["height"] = 1 plt.figure() plt.scatter(one_d_data_df['1D_Data'],one_d_data_df["height"]) plt.yticks([]) plt.xlabel("1-D points") plt.show() # 2- Dimensions Plot two_d_data = np.random.rand(60,2) two_d_data_df = pd.DataFrame(two_d_data) two_d_data_df.columns = ["x_axis","y_axis"] plt.figure() plt.scatter(two_d_data_df['x_axis'],two_d_data_df["y_axis"]) plt.xlabel("x_axis");plt.ylabel("y_axis") plt.show() # 3- Dimensions Plot three_d_data = np.random.rand(60,3) three_d_data_df = pd.DataFrame(three_d_data) three_d_data_df.columns = ["x_axis","y_axis","z_axis"] from mpl_toolkits.mplot3d import Axes3D fig = plt.figure() ax = fig.add_subplot(111, projection='3d') ax.scatter(three_d_data_df['x_axis'],three_d_data_df["y_axis"],three_d_data_df["z_axis"]) ax.set_xlabel('x_axis') ax.set_ylabel('y_axis') ax.set_zlabel('z_axis') plt.show() # KNN CLassifier - Breast Cancer import numpy as np import pandas as pd from sklearn.metrics import accuracy_score,classification_report breast_cancer = pd.read_csv("Breast_Cancer_Wisconsin.csv") print (breast_cancer.head()) breast_cancer['Bare_Nuclei'] = breast_cancer['Bare_Nuclei'].replace('?', np.NAN) breast_cancer['Bare_Nuclei'] = breast_cancer['Bare_Nuclei'].fillna(breast_cancer['Bare_Nuclei'].value_counts().index[0]) breast_cancer['Cancer_Ind'] = 0 breast_cancer.loc[breast_cancer['Class']==4,'Cancer_Ind'] = 1 x_vars = breast_cancer.drop(['ID_Number','Class','Cancer_Ind'],axis=1) y_var = breast_cancer['Cancer_Ind'] from sklearn.preprocessing import StandardScaler x_vars_stdscle = StandardScaler().fit_transform(x_vars.values) from sklearn.model_selection import train_test_split x_vars_stdscle_df = pd.DataFrame(x_vars_stdscle, index=x_vars.index, columns=x_vars.columns) x_train,x_test,y_train,y_test = train_test_split(x_vars_stdscle_df,y_var,train_size = 0.7,random_state=42) from sklearn.neighbors import KNeighborsClassifier knn_fit = KNeighborsClassifier(n_neighbors=3,p=2,metric='minkowski') knn_fit.fit(x_train,y_train) print ("\nK-Nearest Neighbors - Train Confusion Matrix\n\n",pd.crosstab(y_train,knn_fit.predict(x_train),rownames = ["Actuall"],colnames = ["Predicted"]) ) print ("\nK-Nearest Neighbors - Train accuracy:",round(accuracy_score(y_train,knn_fit.predict(x_train)),3)) print ("\nK-Nearest Neighbors - Train Classification Report\n",classification_report(y_train,knn_fit.predict(x_train))) print ("\n\nK-Nearest Neighbors - Test Confusion Matrix\n\n",pd.crosstab(y_test,knn_fit.predict(x_test),rownames = ["Actuall"],colnames = ["Predicted"])) print ("\nK-Nearest Neighbors - Test accuracy:",round(accuracy_score(y_test,knn_fit.predict(x_test)),3)) print ("\nK-Nearest Neighbors - Test Classification Report\n",classification_report(y_test,knn_fit.predict(x_test))) # Tuning of K- value for Train & Test data dummyarray = np.empty((5,3)) k_valchart =
pd.DataFrame(dummyarray)
pandas.DataFrame
#Lib for Streamlit # Copyright(c) 2021 - AilluminateX LLC # This is main Sofware... Screening and Tirage # Customized to general Major Activities # Make all the School Activities- st.write(DataFrame) ==> (outputs) Commented... # The reason, since still we need the major calculations. # Also the Computing is not that expensive.. So, no need to optimize at this point import streamlit as st import pandas as pd #Change website title (set_page_config) #============== from PIL import Image image_favicon=Image.open('Logo_AiX.jpg') st.set_page_config(page_title='AilluminateX - Covid Platform', page_icon = 'Logo_AiX.jpg') #, layout = 'wide', initial_sidebar_state = 'auto'), # layout = 'wide',) # favicon being an object of the same kind as the one you should provide st.image() with #(ie. a PIL array for example) or a string (url or local file path) #============== #Hide footer and customize the text #========================= hide_streamlit_style = """ <style> #MainMenu {visibility: hidden;} footer {visibility: hidden;} footer:after { content:'Copyright(c) 2021 - AilluminateX LLC and Ailysium - Covid19 Bio-Forecasting Platform | https://www.aillumiante.com'; visibility: visible; display: block; position: relative; #background-color: gray; padding: 5px; top: 2px; } </style> """ st.markdown(hide_streamlit_style, unsafe_allow_html=True) #============================== from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import confusion_matrix from sklearn.metrics import classification_report from yellowbrick.classifier import ClassificationReport from sklearn.metrics import accuracy_score #import numpy as np from sklearn.metrics import accuracy_score import matplotlib.pyplot as plt import plotly.express as px import numpy as np import plotly import plotly.graph_objects as go from plotly.subplots import make_subplots import altair as alt import plotly.figure_factory as ff import matplotlib from matplotlib import cm import seaborn as sns; sns.set() from PIL import Image import statsmodels.api as sm import statsmodels.formula.api as smf #from sklearn import model_selection, preprocessing, metrics, svm,linear_model from sklearn.model_selection import train_test_split, GridSearchCV, cross_val_score, cross_validate, StratifiedKFold from sklearn.feature_selection import SelectKBest, chi2 #from sklearn.decomposition import PCA from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import auc, roc_auc_score, roc_curve, explained_variance_score, precision_recall_curve,average_precision_score,accuracy_score, classification_report #from sklearn.preprocessing import StandardScaler from sklearn.neural_network import MLPRegressor from sklearn.datasets import make_regression from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.neighbors import KNeighborsClassifier from sklearn.metrics import accuracy_score from sklearn.ensemble import RandomForestClassifier from sklearn.tree import DecisionTreeClassifier from scipy.stats import boxcox from matplotlib import pyplot import pickle #from sklearn.externals import joblib import joblib # Load Image & Logo #==================== st.image("Logo_AiX.jpg") # Change to MSpace Logo #st.write("https://www.ailluminate.com") #st.image("LogoAiX1.jpg") # Change to MSpace Logo st.markdown("<h1 style='text-align: left; color: turquoise;'>Ailysium: BioForecast Platform</h1>", unsafe_allow_html=True) #st.markdown("<h1 style='text-align: left; color: turquoise;'>Train AI BioForecast Model (Realtime)</h1>", unsafe_allow_html=True) #st.markdown("<h1 style='text-align: left; color: turquoise;'>Opening-Economy & Society</h1>", unsafe_allow_html=True) #df_forecast= pd.read_csv("2021-03-27-all-forecasted-cases-model-data.csv", engine='python', dtype={'fips': str}) df_forecast=pd.read_csv("recent-all-forecasted-cases-model-data.csv", engine='python', dtype={'fips': str}) #Load Data - The last/most recent Forecast and latest Data #===================== # The last two, most recent forecast #df_forecast= pd.read_csv("2021-03-15-all-forecasted-cases-model-data.csv", engine='python', dtype={'fips': str}) #Forcast_date="2021-03-15" #Forecasted_dates=["3/20/2021", "3/27/2021", "4/03/2021", "4/10/2021" ] #df_forecast= pd.read_csv("2021-03-22-all-forecasted-cases-model-data.csv", engine='python', dtype={'fips': str}) #Forcast_date="2021-03-22" #Forecasted_dates=["3/27/2021", "4/03/2021", "4/10/2021", "4/17/2021" ] #========================================== df_forecast_previous= pd.read_csv("previous-all-forecasted-cases-model-data.csv", engine='python', dtype={'fips': str}) Forcast_date="2021-03-22" Forecasted_dates=["3/27/2021", "4/03/2021", "4/10/2021", "4/17/2021" ] df_forecast_recent=pd.read_csv("recent-all-forecasted-cases-model-data.csv", engine='python', dtype={'fips': str}) Forcast_date="2021-03-29" Forecasted_dates=["4/03/2021", "4/10/2021", "4/17/2021", "4/24/2021" ] #================ #initialize the data #======================= #Models #==================== #st.success("What Forecast Model Data to Load?") forecast_model_Options= ['Reference Model', 'Ensemble', 'UGA-CEID', 'Columbia', 'ISU', 'UVA', 'LNQ', 'Facebook', 'JHU-APL', 'UpstateSU', 'JHU-IDD', 'LANL', 'Ensemble'] #st.success("What Date Forecast Data to Load?") data_dates_options=['2021-01-04', '2021-01-11', '2021-01-18', '2021-01-25', '2021-02-01', '2021-02-08', '2021-02-15', '2021-02-22', '2021-03-01', '2021-03-08', '2021-03-15', '2021-03-22', '2021-03-29'] data_dates_options=['2021-03-29', '2021-03-22', '2021-03-15', '2021-03-08', '2021-03-01', '2021-02-22', '2021-02-15', '2021-02-08', '2021-02-01', '2021-01-25', '2021-01-18', '2021-01-11', '2021-01-04'] data_dates_options=['2021-04-14'] load_ai_model_options=['Reference Model', 'AI Model 1', 'AI Model 2 (L)', 'AI Model 3 (Fast)', 'AI Model 4 (Fast) (L)', 'AI Model 5', 'AI Model 6', 'AI Model 7 (VERY Slow- Do Not Use, if You have too!)', 'AI Model 8', 'AI Model 9 (Slow)', 'AI Model 10', 'AI Model 11 (L)', 'AI Model 12', 'AI Model 13', 'AI Model 14 (L)', 'AI Model 15', 'AI Model 16 (L)', 'AI Model (aggregator)'] train_ai_model_options=load_ai_model_options #=========================== #Selectt Option Section #============================ select_options=["AiX-ai-Forecast-Platform", "Load Forecast Data", #Simply Check the Forecast Data "Load AI Model", "Train AI Model", "AiX-Platform"] select_options=["AiX-ai-Forecast-Platform"] your_option=select_options st.sidebar.success("Please Select your Option" ) option_selectbox = st.sidebar.selectbox( "Select your Option:", your_option) select_Name=option_selectbox #if option_selectbox=='Load Forecast Data' or option_selectbox!='Load Forecast Data': #if select_Name=='Load Forecast Data' or select_Name!='Load Forecast Data': if select_Name=='AiX-ai-Forecast-Platform' or select_Name!='AiX-ai-Forecast-Platform': #Models #==================== #st.success("What Forecast Model Data to Load?") your_option=forecast_model_Options st.sidebar.info("Please Select Forecast Model" ) option_selectbox = st.sidebar.selectbox( "Select Forecast Model:", your_option) if option_selectbox =='Reference Model': option_selectbox='Reference Model' option_selectbox='Ensemble' forecast_model_Name=option_selectbox #if option_selectbox=='Load Forecast Data' or option_selectbox!='Load Forecast Data': if select_Name=='Load Forecast Data' or select_Name!='Load Forecast Data': #st.success("What Date Forecast Data to Load?") your_option=data_dates_options st.sidebar.warning("Please Select Forecast Date" ) option_selectbox = st.sidebar.selectbox( "Select Forecast Date:", your_option) #if option_selectbox=='2021-03-22': # option_selectbox= '2021-03-15' data_dates_Name=option_selectbox if option_selectbox==data_dates_Name: your_option=["One(1) Week Ahead", "Two(2) Weeks Ahead", "Three(3) Weeks Ahead", "Four(4) Weeks Ahead"] st.sidebar.warning("Please Select Forecast Week" ) option_selectbox = st.sidebar.selectbox( "Select Forecast Weeks Ahead:", your_option) data_week_Name=option_selectbox if data_week_Name !="One(1) Week Ahead": st.write("Two(2), Three(3), and Four(4) Weeks Ahead are being calculated offline currently and are not presented as realtime") #if option_selectbox=='Load AI Model': if select_Name=='Load AI Model': your_option=load_ai_model_options st.sidebar.error("Please Select AI Model to load" ) option_selectbox = st.sidebar.selectbox( "Select AI-Model to Load:", your_option) ai_load_Name=option_selectbox #if option_selectbox=='Train AI Model': if select_Name=='Train AI Model': your_option=train_ai_model_options st.sidebar.success("Please Select AI Model to Train" ) option_selectbox = st.sidebar.selectbox( "Select AI-Model to Train:", your_option) ai_train_Name=option_selectbox #load_data_csv=data_dates_Name+"-all-forecasted-cases-model-data.csv" #st.write("Data to load: ", load_data_csv) #Load Models and Sidebar Selection #===================================================================================# Load AI Models #if option_selectbox=='AiX Platform': if select_Name=='AiX Platform': model2load=pd.read_csv('model2load.csv', engine='python', dtype=str) # dtype={"Index": int}) model_index=model2load model_names_option=model_index.AI_Models.values st.sidebar.success("Please Select your AI Model!" ) model_selectbox = st.sidebar.selectbox( "Select AI Model", model_names_option) Model_Name=model_selectbox Index_model=model2load.Index[model2load.AI_Models==Model_Name].values[0] Index_model=int(Index_model) pkl_model_load=model2load.Pkl_Model[model2load.AI_Models==Model_Name].values[0] #Load Data and Model Pkl_Filename = pkl_model_load #"Pickle_RForest.pkl" #st.write(Pkl_Filename) # Load the Model back from file #****with open(Pkl_Filename, 'rb') as file: # This line to load the file #*** Pickle_LoadModel = pickle.load(file) # This line to load the file # Pickle_RForest = pickle.load(file) #RForest=Pickle_RForest load_data_csv=data_dates_Name+"-all-forecasted-cases-model-data.csv" #st.write('Load CDC Model Data- Data to load:', ' ', load_data_csv) load_data_csv="recent-all-forecasted-cases-model-data.csv" #st.write('Load CDC Model Data- Data to load:', ' ', load_data_csv) #Forecast Data is being loaded and alll sort of sidebars also created. #=================================================== #import pandas as pd # Load Reference Model Forecast Ensemble - Only For Visualization Purpose #============================================================================= #df_forecast= pd.read_csv("2021-03-15-all-forecasted-cases-model-data.csv", engine='python', dtype={'fips': str}) #df_forecast= pd.read_csv(load_data_csv, engine='python', dtype={'fips': str}) df_forecast_ref=pd.DataFrame() df_forecast_ref=pd.read_csv("previous-all-forecasted-cases-model-data.csv", engine='python', dtype={'fips': str}) Forcast_date="2021-03-22" Forecasted_dates=["3/27/2021", "4/03/2021", "4/10/2021", "4/17/2021" ] df_forecast=pd.DataFrame() df_forecast= df_forecast_ref.copy() df=pd.DataFrame() df=df_forecast.copy() # Drop all the States. We are only interested in Counties df_drop=df[df.location_name!=df.State] #df_drop1 = df.query("location_name != State") #df_drop.fips= df_drop.fips.astype(str) df_forecast=df_drop.copy() #df_drop.fips= df_drop.fips.astype(str) #df_forecast_Ensemble=df_forecast[df_forecast.model=="Ensemble"] #forecast_model_Name="Ensemble" df_forecast_Ensemble=pd.DataFrame() df_forecast_Ensemble=df_forecast[df_forecast.model=="Ensemble"] df_forecast_Ensemble=df_forecast_Ensemble[df_forecast_Ensemble.target=="1 wk ahead inc case"] df_forecast_Ensemble_ref=pd.DataFrame() df_forecast_Ensemble_ref=df_forecast_Ensemble.copy() # Load Previous Forecast #========================= #df_forecast= pd.read_csv("2021-03-15-all-forecasted-cases-model-data.csv", engine='python', dtype={'fips': str}) #df_forecast= pd.read_csv(load_data_csv, engine='python', dtype={'fips': str}) df_forecast_previous=pd.DataFrame() df_forecast_previous=pd.read_csv("previous-all-forecasted-cases-model-data.csv", engine='python', dtype={'fips': str}) Forcast_date="2021-03-22" Forecasted_dates=["3/27/2021", "4/03/2021", "4/10/2021", "4/17/2021" ] df_forecast=pd.DataFrame() df_forecast= df_forecast_previous.copy() df=pd.DataFrame() df=df_forecast.copy() # Drop all the States. We are only interested in Counties df_drop=df[df.location_name!=df.State] #df_drop1 = df.query("location_name != State") #df_drop.fips= df_drop.fips.astype(str) df_forecast=df_drop.copy() #df_drop.fips= df_drop.fips.astype(str) #df_forecast_Ensemble=df_forecast[df_forecast.model=="Ensemble"] df_forecast_Ensemble=pd.DataFrame() df_forecast_Ensemble=df_forecast[df_forecast.model==forecast_model_Name] df_forecast_Ensemble=df_forecast_Ensemble[df_forecast_Ensemble.target=="1 wk ahead inc case"] df_forecast_Ensemble_previous=pd.DataFrame() df_forecast_Ensemble_previous=df_forecast_Ensemble.copy() #Load Most Recent Forecast #==================== #df_forecast= pd.read_csv(load_data_csv, engine='python', dtype={'fips': str}) df_forecast_recent=pd.DataFrame() df_forecast_recent=pd.read_csv("recent-all-forecasted-cases-model-data.csv", engine='python', dtype={'fips': str}) Forcast_date="2021-03-29" Forecasted_dates=["4/03/2021", "4/10/2021", "4/17/2021", "4/24/2021" ] df_forecast=pd.DataFrame() df_forecast= df_forecast_recent.copy() df=pd.DataFrame() df=df_forecast.copy() # Drop all the States. We are only interested in Counties df_drop=df[df.location_name!=df.State] #df_drop1 = df.query("location_name != State") #df_drop.fips= df_drop.fips.astype(str) #df_drop.fips= df_drop.fips.astype(str) #df_forecast_Ensemble=df_forecast[df_forecast.model=="Ensemble"] df_forecast_Ensemble=pd.DataFrame() df_forecast_Ensemble=df_forecast[df_forecast.model==forecast_model_Name] df_forecast_Ensemble=df_forecast_Ensemble[df_forecast_Ensemble.target=="1 wk ahead inc case"] df_forecast_Ensemble_recent=pd.DataFrame() df_forecast_Ensemble_recent=df_forecast_Ensemble.copy() #Load Actual Cases #========================== df_actual_cases=pd.DataFrame() df_actual_cases=pd.read_csv("covid_confirmed_usafacts_forecast.csv", engine='python', dtype={'fips': str}) #======================Visulaization of data ======================= # ======================Compare the Forecast with actula data ================" df_ref_temp=pd.DataFrame(np.array(df_forecast_Ensemble_ref.iloc[:,[6,7]].values), columns=["fips", "Forecast_Reference"]) # 6,7: fips and point df_model_temp=pd.DataFrame(np.array(df_forecast_Ensemble_previous.iloc[:,[6,7]].values), columns=["fips", "Forecast_Model"]) # 6,7: fips and point df_actual_temp=pd.DataFrame(np.array(df_actual_cases.iloc[:,[0,-2]].values), columns=["fips", "Actual_Target"]) # 0, -2: fips and most recent actual-target df_actual_temp=pd.DataFrame(np.array(df_actual_cases.iloc[:,[0,-7,-6,-5,-4,-3, -2]].values), columns=["fips", "TimeN5", "TimeN4", "TimeN3", "TimeN2", "TimeN1", "Actual_Target"]) # 0, -2: fips and most recent actual-target #st.write("Last 6 Total Weekly Cases, ", df_actual_temp.head(20)) data_merge= pd.DataFrame() #df_ref_temp.copy() data_merge= pd.merge(df_ref_temp, df_model_temp, on="fips") data_merge_left=data_merge.copy() data_merge= pd.merge(data_merge_left, df_actual_temp, on="fips") #st.write("df_actual_temp:, ", data_merge.head()) #st.error("Stop for checking how many is loaded") data_merge.iloc[:,1:] = data_merge.iloc[:,1:].astype(float) #st.write("Data Merged: ", data_merge.head()) #data_merge = data_merge.iloc[:,[1,2,3]].astype(float) df_forecast_target=data_merge.copy() #df_forecast_target_Scaled = df_forecast_target_Scaled.astype(float) len_data=len(df_forecast_target) df_population= pd.read_csv("covid_county_population_usafacts.csv", engine='python', dtype={'fips': str, 'fips_1': str}) df_forecast_target_Scaled = df_forecast_target.copy() i=0 while i <len_data: fips=df_forecast_target['fips'].iloc[0] population=df_population.population[df_population.fips==fips].values[0] df_forecast_target_Scaled.iloc[i,1:]=df_forecast_target.iloc[i,1:]/population*1000 i=i+1 df_forecast_target_Scaled.iloc[:,1:] = df_forecast_target_Scaled.iloc[:,1:].astype(float) #st.write("df_forecast_target_Scaled", df_forecast_target_Scaled.head()) data_viz=df_forecast_target_Scaled.copy() #Delete All The Data Frames that we do not need! #=======================Delete all the DataFrame we do not need ================== df_forecast_target_Scaled=pd.DataFrame() data_merge=pd.DataFrame() df_forecast_target=pd.DataFrame() df_forecast_Ensemble_previous=pd.DataFrame() df_forecast_Ensemble_recent=pd.DataFrame() df_forecast_Ensemble_ref=pd.DataFrame() df_forecast=pd.DataFrame() df_ref_temp=pd.DataFrame() df_model_temp=pd.DataFrame() df_actual_temp=
pd.DataFrame()
pandas.DataFrame
import numpy as np import pandas as pd from scipy.stats import poisson from cooltools.api.dotfinder import ( histogram_scored_pixels, determine_thresholds, annotate_pixels_with_qvalues, extract_scored_pixels, ) # helper functions for BH-FDR copied from www.statsmodels.org def _fdrcorrection(pvals, alpha=0.05): """ pvalue correction for false discovery rate. This covers Benjamini/Hochberg for independent or positively correlated tests. Parameters ---------- pvals : np.ndarray Sorted set of p-values of the individual tests. alpha : float, optional Family-wise error rate. Defaults to ``0.05``. Returns ------- rejected : ndarray, bool True if a hypothesis is rejected, False if not pvalue-corrected : ndarray pvalues adjusted for multiple hypothesis testing to limit FDR """ ntests = len(pvals) # empirical Cumulative Distribution Function for pvals: ecdffactor = np.arange(1, ntests + 1) / float(ntests) reject = pvals <= ecdffactor * alpha if reject.any(): rejectmax = max(np.nonzero(reject)[0]) reject[:rejectmax] = True pvals_corrected_raw = pvals / ecdffactor pvals_corrected = np.minimum.accumulate(pvals_corrected_raw[::-1])[::-1] del pvals_corrected_raw pvals_corrected[pvals_corrected > 1] = 1 return reject, pvals_corrected def multipletests(pvals, alpha=0.1, is_sorted=False): """ Test results and p-value correction for multiple tests Using FDR Benjamini-Hochberg method (non-negative) Parameters ---------- pvals : array_like, 1-d uncorrected p-values. Must be 1-dimensional. alpha : float FWER, family-wise error rate, e.g. 0.1 is_sorted : bool If False (default), the p_values will be sorted, but the corrected pvalues are in the original order. If True, then it assumed that the pvalues are already sorted in ascending order. Returns ------- reject : ndarray, boolean true for hypothesis that can be rejected for given alpha pvals_corrected : ndarray p-values corrected for multiple tests Notes ----- the p-value correction is independent of the alpha specified as argument. In these cases the corrected p-values can also be compared with a different alpha All procedures that are included, control FWER or FDR in the independent case, and most are robust in the positively correlated case. """ pvals = np.asarray(pvals) if not is_sorted: sortind = np.argsort(pvals) pvals = np.take(pvals, sortind) reject, pvals_corrected = _fdrcorrection(pvals, alpha=alpha) if is_sorted: return reject, pvals_corrected else: pvals_corrected_ = np.empty_like(pvals_corrected) pvals_corrected_[sortind] = pvals_corrected del pvals_corrected reject_ = np.empty_like(reject) reject_[sortind] = reject return reject_, pvals_corrected_ # mock input data to perform some p-value calculation and correction on num_pixels = 2500 max_value = 99 # fake kernels just for the sake of their names 'd' and 'v': fake_kernels = { "d": np.random.randint(2, size=9).reshape(3, 3), "v": np.random.randint(2, size=9).reshape(3, 3), } # table with the "scored" pixel (as if they are returned by dotfinder-scoring function) pixel_dict = {} # enrich fake counts to all for more significant calls pixel_dict["count"] = np.random.randint(max_value, size=num_pixels) + 9 for k in fake_kernels: pixel_dict[f"la_exp.{k}.value"] = max_value * np.random.random(num_pixels) scored_df = pd.DataFrame(pixel_dict) # design lambda-bins as in dot-calling: num_lchunks = 6 ledges = np.r_[[-np.inf], np.linspace(0, max_value, num_lchunks), [np.inf]] # set FDR parameter FDR = 0.1 # helper functions working on a chunk of counts or pvals # associated with a given lambda-bin: def get_pvals_chunk(counts_series_lchunk): """ Parameters: ----------- counts_series_lchunk : pd.Series(int) Series of raw pixel counts where the name of the Series is pd.Interval of the lambda-bin where the pixel belong. I.e. counts_series_lchunk.name.right - is the upper limit of the chunk and is used as "expected" in Poisson distribution to estimate p-value. Returns: -------- pvals: ndarray[float] array of p-values for each pixel Notes: ------ poisson.sf = 1.0 - poisson.cdf """ return poisson.sf(counts_series_lchunk.values, counts_series_lchunk.name.right) def get_qvals_chunk(pvals_series_lchunk): """ Parameters: ----------- pvals_series_lchunk : pd.Series(float) Series of p-values calculated for each pixel, where the name of the Series is pd.Interval of the lambda-bin where the pixel belong. Returns: -------- qvals: ndarray[float] array of q-values, i.e. p-values corrected with the multiple hypothesis testing procedure BH-FDR, for each pixel Notes: ------ level of False Discore Rate (FDR) is fixed for testing """ _, qvals = multipletests(pvals_series_lchunk.values, alpha=FDR, is_sorted=False) return qvals def get_reject_chunk(pvals_series_lchunk): """ Parameters: ----------- pvals_series_lchunk : pd.Series(float) Series of p-values calculated for each pixel, where the name of the Series is pd.Interval of the lambda-bin where the pixel belong. Returns: -------- rej: ndarray[bool] array of rejection statuses, i.e. for every p-values return if corresponding null hypothesis can be rejected or not, using multiple hypothesis testing procedure BH-FDR. Notes: ------ - pixels with rejected status (not null) are considered as significantly enriched - level of False Discore Rate (FDR) is fixed for testing """ rej, _ = multipletests(pvals_series_lchunk.values, alpha=FDR, is_sorted=False) return rej # for the fake scored-pixel table calculate p-vals, q-vals, l-chunk where they belong # and rejection status using introduced statsmodels-based helper functions: for k in fake_kernels: lbin =
pd.cut(scored_df[f"la_exp.{k}.value"], ledges)
pandas.cut
############################################################################################## # PURPOSE # Read STARLIGHT output files # # CREATED BY: # <NAME> (in R) # # ADAPTED BY: # <NAME> (Conversion from R to Python and adaptation) # # CALLING SEQUENCE # python read_starlight_output.py --> In terminal # # INPUT PARAMETERS # output_dir --> Output directory name # output_file --> Output filename # starlight_output_dir --> Directory of input files # spectra_z_file --> List of objects # BaseAges --> Base file # DR = 12 --> Spectra file name: DR12 or DR7 format # age_format --> Units of ages in the base file (yr or Gyr) # met_format = 'Zsun' --> Units of metallicitues in the base file (logZ_Zsun or Z) # Z_sun = 0.019 --> Solar metallicity # # OUTPUT # STARLIGHT_MAIN_RESULTS.csv # Starlight_SFH_Mcor.csv # Starlight_SFH_Mcor_cumul.csv # Starlight_SFH_Mini.csv # Starlight_SFH_Mini_cumul.csv # Starlight_CEH_Lum.csv # Starlight_CEH_Mcor.csv # Starlight_CEH_Mini.csv # # REQUIRED SCRIPTS # cosmodist.py # # COMMENTS # ############################################################################################## ############################################################################################## # INPUTS ############################################################################################## import numpy as np import pandas as pd from os import path import time def read_starlight_sfh(starlight_file): met_L_age = pd.DataFrame([np.zeros(n_age)]).T met_M_age = pd.DataFrame([np.zeros(n_age)]).T alpha_L_age = pd.DataFrame([np.zeros(n_age)]).T alpha_M_age = pd.DataFrame([np.zeros(n_age)]).T frac_age = pd.DataFrame([np.zeros(n_age)]).T mini_frac_age = pd.DataFrame([np.zeros(n_age)]).T mcor_frac_age = pd.DataFrame([np.zeros(n_age)]).T for aa in range(n_age): xx = abs(age/1e9 - ages[aa]/1e9) < 0.001 frac_age[0][aa] = sum(frac[xx]) mini_frac_age[0][aa] = sum(mini_frac[xx]) mcor_frac_age[0][aa] = sum(mcor_frac[xx]) if frac_age[0][aa] > 0: met_L_age[0][aa] = (np.log10(sum(frac[xx] * met[xx]/0.019) / sum(frac[xx]))) alpha_L_age[0][aa] = (np.log10(sum(frac[xx] * 10**alpha[xx]) / sum(frac[xx]))) met_M_age[0][aa] = (np.log10(sum(mcor_frac[xx] * met[xx]/0.019) / sum(mcor_frac[xx]))) alpha_M_age[0][aa] = (np.log10(sum(mcor_frac[xx] * 10**alpha[xx]) / sum(mcor_frac[xx]))) mcor_frac_age = mcor_frac_age/sum(mcor_frac_age[0]) mini_frac_age = mini_frac_age/sum(mini_frac_age[0]) ### Cumulative ### mini_cumul_age = pd.DataFrame([np.zeros(n_age)]).T mcor_cumul_age = pd.DataFrame([np.zeros(n_age)]).T for aa in range(n_age): mini_cumul_age[0][aa] = sum(mini_frac_age[0][ages >= ages[aa]]) mcor_cumul_age[0][aa] = sum(mcor_frac_age[0][ages >= ages[aa]]) ### Write the output files ### mini_frac_age = mini_frac_age.T mini_cumul_age = mini_cumul_age.T mcor_frac_age = mcor_frac_age.T mcor_cumul_age = mcor_cumul_age.T mini_frac_age.to_csv(output_dir+output_file_Mini, mode='a', sep=' ', index=False, header=False) mini_cumul_age.to_csv(output_dir+output_file_Mini_cumul, mode='a', sep=' ', index=False, header=False) mcor_frac_age.to_csv(output_dir+output_file_Mcor, mode='a', sep=' ', index=False, header=False) mcor_cumul_age.to_csv(output_dir+output_file_Mcor_cumul, mode='a', sep=' ', index=False, header=False) list = dir() del list ### FILES & FOLDERS ### starlight_output_dir = '../files_output_starlight/' # Directory of input files spectra_z_file = '../aux_files/galaxy_list.csv' # Sufix of input file name BaseAges = pd.read_csv('../starlight/csv_Base_MILES15_v10.0', sep=',', header=None) # Base file # Spectra file name: DR12 or DR7 format output_dir = '../results_starlight/' ### OUTPUT FILES ### output_file = 'STARLIGHT_MAIN_RESULTS.csv' # Output file output_file_Mini_SFH = 'Starlight_SFH_Mini.out' #Output File output_file_Mini_cumul_SFH = 'Starlight_SFH_Mini_cumul.out' #Output File output_file_Mcor_SFH = 'Starlight_SFH_Mcor.out' #Output File output_file_Mcor_cumul_SFH = 'Starlight_SFH_Mcor_cumul.out' #Output File output_file_Mini_CEH = 'Starlight_CEH_Mini.out' # Output file output_file_Mcor_CEH = 'Starlight_CEH_Mcor.out' # Output file output_file_Lum_CEH = 'Starlight_CEH_Lum.out' # Output file ### UNITS OF MEASUREMENT ### age_format = 'yr' # yr or Gyr met_format = 'Z' # logZ_Zsun or Z Z_sun = 0.019 DR = 12 flag_sdss = 0 # Apenas inicializando uma variável exec(open("../aux_files/cosmodist.py").read()) ### BASE ### t = pd.DataFrame(BaseAges) t.columns = ['V1','V2','V3','V4','V5','V6','V7'] ages = np.array(t.V2[np.array(t.V3) == t.V3[1]]) n_age = len(ages) Nbase = len(t) ###################### ### DATA SELECTION ### ###################### data = pd.read_csv(spectra_z_file, sep=',') # Lista de spectros e redshifts selection = (data['onoff'] == 1) & (data['extension'] < 100) #Seleciona apenas as lcgs do sdss e as do gemini com abertura = 3 arcsec data = data[selection] data.index = range(len(data)) ###################### ### CREATING MAIN OUTPUT FILE ### Nobj = len(data) vvv = np.full(Nobj, 'NaN', float) #Cria um vetor onde todos os valores de i=0 até i=Nobj são nan. Vetor a ser preenchido temp = pd.DataFrame(['lcgID', 'extension', 'ra', 'dec', 'ageL_mean', 'metL_mean', 'aFeL_mean', 'ageM_mean', 'metM_mean', 'aFeM_mean', 'ageL_gmean', 'metL_gmean', 'aFeL_gmean', 'ageM_gmean', 'metM_gmean', 'aFeM_gmean', 'chisqrt', 'Mini_log_Mo', 'Mcor_log_Mo', 'magFrac_r', 'v0', 'vd', 'av', 'z', 'DM_Mpc', 'DA_Mpc', 'DL_Mpc', 'VC_Gpc3', 'TL_Gyr', 'DM_mag', 'SN1', 'SN2', 'SN3', 'SN4']).T temp.to_csv(output_dir+output_file, header=False, index=False, sep=',', mode='w') ### CREATING SFH & CEH OUTPUT FILES ### temp2 = pd.DataFrame([], columns=[-1,-1,-1, ages[0]/1e9, ages[1]/1e9, ages[2]/1e9, ages[3]/1e9, ages[4]/1e9, ages[5]/1e9, ages[6]/1e9, ages[7]/1e9, ages[8]/1e9, ages[9]/1e9, ages[10]/1e9, ages[11]/1e9, ages[12]/1e9, ages[13]/1e9, ages[14]/1e9]) temp2.to_csv(output_dir+output_file_Mini_SFH, mode='w', sep=' ', index=False) temp2.to_csv(output_dir+output_file_Mini_cumul_SFH, mode='w', sep=' ', index=False) temp2.to_csv(output_dir+output_file_Mcor_SFH, mode='w', sep=' ', index=False) temp2.to_csv(output_dir+output_file_Mcor_cumul_SFH, mode='w', sep=' ', index=False) temp2.to_csv(output_dir+output_file_Mini_CEH, mode='w', sep=' ', index=False) temp2.to_csv(output_dir+output_file_Mcor_CEH, mode='w', sep=' ', index=False) temp2.to_csv(output_dir+output_file_Lum_CEH, mode='w', sep=' ', index=False) progress = np.around(Nobj * np.linspace(0, 1, 101)).astype(int) ### FILE PICKER ### for i in range(0,Nobj): if (data.extension[i] > 10) & (data.extension[i] < 20): #Os nomes do output do starlight são todos <10, mas não quero perder a ordem, mudar output do starlight no futuro #for r in range(0,2): # if flag_cut == 0: # filename = (starlight_output_dir + '/output_starlight_sdss_LCG' + str(data.lcgID[i]) + '_' + str(data.extension[i]) + '.csv') data.extension[i] = data.extension[i] - 10 flag_sdss = 1 if data.flag_sdss[i] == 0: filename = (starlight_output_dir + '/output_starlight_gemini_LCG' + str(data.lcgID[i]) + '_' + str(data.extension[i]) + '.csv') if data.flag_sdss[i] == 1: filename = (starlight_output_dir + '/output_starlight_sdss_LCG' + str(data.lcgID[i]) + '_' + str(data.extension[i]) + '.csv') starlight_file = filename check = path.exists(starlight_file) print(starlight_file) if check == True: ################################################ # MAIN CODE ################################################ t =
pd.read_csv(starlight_file, skiprows = 63, nrows=75, delim_whitespace=True, engine='python', header = None)
pandas.read_csv
import logging import pickle import uuid from datetime import datetime from warnings import warn from typing import List import numpy as np import pandas as pd from aequilibrae.starts_logging import logger from .__version__ import binary_version as VERSION class Graph(object): """ Graph class """ def __init__(self): self.logger = logging.getLogger("aequilibrae") self.__integer_type = np.int64 self.__float_type = np.float64 self.required_default_fields = ["link_id", "a_node", "b_node", "direction", "id"] self.__required_default_types = [ self.__integer_type, self.__integer_type, self.__integer_type, np.int8, self.__integer_type, ] self.other_fields = "" self.mode = "" self.date = str(datetime.now()) self.description = "No description added so far" self.num_links = -1 self.num_nodes = -1 self.num_zones = -1 self.compact_num_links = -1 self.compact_num_nodes = -1 self.network = pd.DataFrame([]) # This method will hold ALL information on the network self.graph = pd.DataFrame([]) # This method will hold an array with ALL fields in the graph. self.compact_graph = pd.DataFrame([]) # This method will hold an array with ALL fields in the graph. # These are the fields actually used in computing paths self.all_nodes = np.array(0) # Holds an array with all nodes in the original network self.nodes_to_indices = np.array(0) # Holds the reverse of the all_nodes self.fs = np.array([]) # This method will hold the forward star for the graph self.cost = np.array([]) # This array holds the values being used in the shortest path routine self.skims = None self.compact_all_nodes = np.array(0) # Holds an array with all nodes in the original network self.compact_nodes_to_indices = np.array(0) # Holds the reverse of the all_nodes self.compact_fs = np.array([]) # This method will hold the forward star for the graph self.compact_cost = np.array([]) # This array holds the values being used in the shortest path routine self.compact_skims = None self.capacity = np.array([]) # Array holds the capacity for links self.free_flow_time = np.array([]) # Array holds the free flow travel time by link # sake of the Cython code self.skim_fields = [] # List of skim fields to be used in computation self.cost_field = False # Name of the cost field self.block_centroid_flows = True self.penalty_through_centroids = np.inf self.centroids = None # NumPy array of centroid IDs self.g_link_crosswalk = np.array([]) # 4 a link ID in the BIG graph, a corresponding link in the compressed 1 self.__version__ = VERSION # Randomly generate a unique Graph ID randomly self.__id__ = uuid.uuid4().hex def default_types(self, tp: str): """ Returns the default integer and float types used for computation Args: tp (:obj:`str`): data type. 'int' or 'float' """ if tp == "int": return self.__integer_type elif tp == "float": return self.__float_type else: raise ValueError("It must be either a int or a float") def prepare_graph(self, centroids: np.ndarray) -> None: """ Prepares the graph for a computation for a certain set of centroids Under the hood, if sets all centroids to have IDs from 1 through **n**, which should correspond to the index of the matrix being assigned. This is what enables having any node IDs as centroids, and it relies on the inference that all links connected to these nodes are centroid connectors. Args: centroids (:obj:`np.ndarray`): Array with centroid IDs. Mandatory type Int64, unique and positive """ self.__network_error_checking__() # Creates the centroids if centroids is None or not isinstance(centroids, np.ndarray): raise ValueError("Centroids need to be a NumPy array of integers 64 bits") if not np.issubdtype(centroids.dtype, np.integer): raise ValueError("Centroids need to be a NumPy array of integers 64 bits") if centroids.shape[0] == 0: raise ValueError("You need at least one centroid") if centroids.min() <= 0: raise ValueError("Centroid IDs need to be positive") if centroids.shape[0] != np.unique(centroids).shape[0]: raise ValueError("Centroid IDs are not unique") self.centroids = np.array(centroids, np.uint32) properties = self.__build_directed_graph(self.network, centroids) self.all_nodes, self.num_nodes, self.nodes_to_indices, self.fs, self.graph = properties # We generate IDs that we KNOW will be constant across modes self.graph.sort_values(by=["link_id", "direction"], inplace=True) self.graph.loc[:, "__supernet_id__"] = np.arange(self.graph.shape[0]).astype(self.__integer_type) self.graph.sort_values(by=["a_node", "b_node"], inplace=True) self.num_links = self.graph.shape[0] self.__build_derived_properties() self.__build_compressed_graph() self.compact_num_links = self.compact_graph.shape[0] def __build_compressed_graph(self): # Build link index link_idx = np.empty(self.network.link_id.max() + 1).astype(np.int) link_idx[self.network.link_id] = np.arange(self.network.shape[0]) nodes = np.hstack([self.network.a_node.values, self.network.b_node.values]) links = np.hstack([self.network.link_id.values, self.network.link_id.values]) counts = np.bincount(nodes) idx = np.argsort(nodes) all_nodes = nodes[idx] all_links = links[idx] links_index = np.empty(all_nodes.max() + 2, np.int64) links_index.fill(-1) nlist = np.arange(all_nodes.max() + 2) y, x, _ = np.intersect1d(all_nodes, nlist, assume_unique=False, return_indices=True) links_index[y] = x[:] links_index[-1] = all_links.shape[0] for i in range(all_nodes.max() + 1, 0, -1): links_index[i - 1] = links_index[i] if links_index[i - 1] == -1 else links_index[i - 1] # We keep all centroids for sure counts[self.centroids] = 999 truth = (counts == 2).astype(np.int) link_edge = truth[self.network.a_node.values] + truth[self.network.b_node.values] link_edge = self.network.link_id.values[link_edge == 1] simplified_links = np.repeat(-1, self.network.link_id.max() + 1) simplified_directions = np.zeros(self.network.link_id.max() + 1, np.int) compressed_dir = np.zeros(self.network.link_id.max() + 1, np.int) compressed_a_node = np.zeros(self.network.link_id.max() + 1, np.int) compressed_b_node = np.zeros(self.network.link_id.max() + 1, np.int) slink = 0 major_nodes = {} tot = 0 tot_graph_add = 0 for pre_link in link_edge: if simplified_links[pre_link] >= 0: continue ab_dir = 1 ba_dir = 1 lidx = link_idx[pre_link] a_node = self.network.a_node.values[lidx] b_node = self.network.b_node.values[lidx] drc = self.network.direction.values[lidx] n = a_node if counts[a_node] == 2 else b_node first_node = b_node if counts[a_node] == 2 else a_node ab_dir = 0 if (first_node == a_node and drc < 0) or (first_node == b_node and drc > 0) else ab_dir ba_dir = 0 if (first_node == a_node and drc > 0) or (first_node == b_node and drc < 0) else ba_dir while counts[n] == 2: # assert (simplified_links[pre_link] >= 0), "How the heck did this happen?" simplified_links[pre_link] = slink simplified_directions[pre_link] = -1 if a_node == n else 1 # Gets the link from the list that is not the link we are coming from lnk = [all_links[k] for k in range(links_index[n], links_index[n + 1]) if pre_link != all_links[k]][0] pre_link = lnk lidx = link_idx[pre_link] a_node = self.network.a_node.values[lidx] b_node = self.network.b_node.values[lidx] drc = self.network.direction.values[lidx] ab_dir = 0 if (n == a_node and drc < 0) or (n == b_node and drc > 0) else ab_dir ba_dir = 0 if (n == a_node and drc > 0) or (n == b_node and drc < 0) else ba_dir n = ( self.network.a_node.values[lidx] if n == self.network.b_node.values[lidx] else self.network.b_node.values[lidx] ) if max(ab_dir, ba_dir) < 1: tot += 1 tot_graph_add += ab_dir + ba_dir simplified_links[pre_link] = slink simplified_directions[pre_link] = -1 if a_node == n else 1 last_node = b_node if counts[a_node] == 2 else a_node major_nodes[slink] = [first_node, last_node] # Available directions are NOT indexed like the other arrays compressed_a_node[slink] = first_node compressed_b_node[slink] = last_node if ab_dir > 0: if ba_dir > 0: compressed_dir[slink] = 0 else: compressed_dir[slink] = 1 elif ba_dir > 0: compressed_dir[slink] = -1 else: compressed_dir[slink] = -999 slink += 1 links_to_remove = np.argwhere(simplified_links >= 0) df = pd.DataFrame(self.network, copy=True) df = df[~df.link_id.isin(links_to_remove[:, 0])] df = df[df.a_node != df.b_node] comp_lnk = pd.DataFrame( { "a_node": compressed_a_node[:slink], "b_node": compressed_b_node[:slink], "direction": compressed_dir[:slink], "link_id": np.arange(slink), } ) max_link_id = self.network.link_id.max() * 10 comp_lnk.loc[:, "link_id"] += max_link_id df = pd.concat([df, comp_lnk]) df = df[["id", "link_id", "a_node", "b_node", "direction"]] properties = self.__build_directed_graph(df, self.centroids) self.compact_all_nodes = properties[0] self.compact_num_nodes = properties[1] self.compact_nodes_to_indices = properties[2] self.compact_fs = properties[3] self.compact_graph = properties[4] crosswalk = pd.DataFrame( { "link_id": np.arange(simplified_directions.shape[0]), "link_direction": simplified_directions, "compressed_link": simplified_links, "compressed_direction": np.ones(simplified_directions.shape[0]).astype(np.int), } ) crosswalk = crosswalk[crosswalk.compressed_link >= 0] crosswalk.loc[:, "compressed_link"] += max_link_id cw2 =
pd.DataFrame(crosswalk, copy=True)
pandas.DataFrame
# This code is part of the epytope distribution and governed by its # license. Please see the LICENSE file that should have been included # as part of this package. """ .. module:: Core.AResult :synopsis: Contains relevant classes describing results of predictions. .. moduleauthor:: schubert """ __author__ = 'schubert' import abc import numpy from numpy.lib.arraysetops import isin import pandas from epytope.Core.Allele import Allele from epytope.Core.Peptide import Peptide from copy import deepcopy from sys import exit import logging class AResult(pandas.DataFrame, metaclass=abc.ABCMeta): """ A :class:`~epytope.Core.Result.AResult` object is a :class:`pandas.DataFrame` with with multi-indexing. This class is used as interface and can be extended with custom short-cuts for the sometimes often tedious calls in pandas """ @abc.abstractmethod def filter_result(self, expressions): """ Filter result based on a list of expressions :param list((str, comparator, float)) expressions: A list of triples consisting of (method_name, comparator, threshold) :return: A new filtered AResult object :rtype: :class:`~epytope.Core.Result.AResult` """ raise NotImplementedError() @abc.abstractmethod def merge_results(self, others): """ Merges results of the same type and returns a merged result :param others: A (list of) :class:`~epytope.Core.Result.AResult` object(s) of the same class :type others: list(:class:`~epytope.Core.Result.AResult`)/:class:`~epytope.Core.Result.AResult` :return: A new merged :class:`~epytope.Core.Result.AResult` object :rtype: :class:`~epytope.Core.Result.AResult` """ raise NotImplementedError() class EpitopePredictionResult(AResult): """ A :class:`~epytope.Core.Result.EpitopePredictionResult` object is a DataFrame with multi-indexing, where column Ids are the prediction model (i.e HLA :class:`~epytope.Core.Allele.Allele` for epitope prediction), row ID the target of the prediction (i.e. :class:`~epytope.Core.Peptide.Peptide`) and the second row ID the predictor (e.g. BIMAS) EpitopePredictionResult +----------------+-------------------------------+-------------------------------+ | Allele | Allele Obj 1 | Allele Obj 2 | +- - - - - - - - +- - - - - - - -+- - - - - - - -+- - - - - - - -+- - - - - - - -+ | Method | Method 1 | Method 2 | Method 1 | Method 2 | +- - - - - - - - +- - - -+- - - -+- - - -+- - - -+- - - -+- - - -+- - - -+- - - -+ | ScoreType | Score | Rank | Score | Rank | Score | Rank | Score | Rank | +- - - - - - - - +- - - -+- - - -+- - - -+- - - -+- - - -+- - - -+- - - -+- - - -+ | Peptides | | | | | | | | | +================+=======+=======+=======+=======+=======+=======+=======+=======+ | Peptide Obj 1 | 0.03 | 57.4 | 0.05 | 51.1 | 0.08 | 49.4 | 0.73 | 3.12 | +----------------+-------+-------+-------+-------+-------+-------+-------+-------+ | Peptide Obj 2 | 0.32 | 13.2 | 0.31 | 14.1 | 0.25 | 22.1 | 0.11 | 69.1 | +----------------+-------+-------+-------+-------+-------+-------+-------+-------+ """ def filter_result(self, expressions, scoretype='Score'): """ Filters a result data frame based on a specified expression consisting of a list of triple with (method_name, comparator, threshold) and a str of the methods scoretype to be filtered. The expression is applied to each row. If any of the columns fulfill the criteria the row remains. :param list((str, comparator, float)) expressions: A list of triples consisting of (method_name, comparator, threshold) :param str scoretype: Indicates which scoretype of the specified method should be filtered :return: Filtered result object :rtype: :class:`~epytope.Core.Result.EpitopePredictionResult` """ if isinstance(expressions, tuple): expressions = [expressions] df = deepcopy(self) methods = list(set(df.columns.get_level_values(1))) scoretypes = list(set(df.columns.get_level_values(2))) if scoretype not in scoretypes: raise ValueError("Specified ScoreType {} does not match ScoreTypes of data frame {}.".format(scoretype, scoretypes)) for expr in expressions: method, comp, thr = expr if method not in methods: raise ValueError("Specified method {} does not match methods of data frame {}.".format(method, methods)) else: filt = comp(df.xs(method, axis = 1, level = 1).xs(scoretype, axis = 1, level = 1), thr).values # Only keep rows which contain values fulfilling the comparators logic in the specified method keep_row = [bool.any() for bool in filt] df = df.loc[keep_row] return EpitopePredictionResult(df) def merge_results(self, others): """ Merges results of type :class:`~epytope.Core.Result.EpitopePredictionResult` and returns the merged result :param others: Another (list of) :class:`~epytope.Core.Result.EpitopePredictionResult`(s) :type others: list(:class:`~epytope.Core.Result.EpitopePredictionResult`)/:class:`~epytope.Core.Result.EpitopePredictionResult` :return: A new merged :class:`~epytope.Core.Result.EpitopePredictionResult` object :rtype: :class:`~epytope.Core.Result.EpitopePredictionResult` """ df = self.copy(deep=False) if type(others) == type(self): others = [others] # Concatenates self and to be merged dataframe(s) for other in others: df = pandas.concat([df, other], axis=1) # Merge result of multiple predictors in others per allele df_merged = pandas.concat([group[1] for group in df.groupby(level=[0,1], axis=1)], axis=1) return EpitopePredictionResult(df_merged) def from_dict(d, peps, method): """ Create :class:`~epytope.Core.Result.EpitopePredictionResult` object from dictionary holding scores for alleles, peptides and a specified method :param d: dict with following structure: {allele: {scoretype: {peptide: score}}} :param peps: list of :class:`~epytope.Core.Peptide.Peptide` :param method: str specifying the prediction method :return: A new :class:`~epytope.Core.Result.EpitopePredictionResult` object :rtype: :class:`~epytope.Core.Result.EpitopePredictionResult` """ scoreType = numpy.asarray([list(m.keys()) for m in [metrics for a, metrics in d.items()]]).flatten() alleles = numpy.asarray([numpy.repeat(a, len(set(scoreType))) for a in d]).flatten() meth = numpy.repeat(method, len(scoreType)) multi_cols = pandas.MultiIndex.from_arrays([alleles, meth, scoreType], names=["Allele", "Method", "ScoreType"]) df = pandas.DataFrame(float(0),index=
pandas.Index(peps)
pandas.Index
# Diffusion Maps Framework implementation as part of MSc Data Science Project of student # <NAME> at University of Southampton, MSc Data Science course # Script 3: Principal Component Analysis import os, math import string import openpyxl import numpy as np import pandas as pd import matplotlib import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec from sklearn import preprocessing from sklearn.decomposition import PCA import datetime matplotlib.style.use('ggplot') matplotlib.rcParams['legend.scatterpoints'] = 1 datasource = './data/normalised/sqrtData.xlsx' dtsource = './data/datetimes.xlsx' def main(): # Read data, get names of the 6 sheets, for different types of bacteria xlData = pd.ExcelFile(datasource) sheetNames = xlData.sheet_names dtExcel = pd.ExcelFile(dtsource) # writer = pd.ExcelWriter('./data/pcaData.xlsx') no = 321 fig = plt.figure() for bactName in sheetNames: # no += licycle.next() worksheet = xlData.parse(bactName) # Read time-date from file dtDf = dtExcel.parse(bactName) dt = pd.DataFrame(dtDf).as_matrix() # Keep only the actual timeseries data, last 30 columns, and transpose X =
pd.DataFrame(worksheet.ix[:,:29])
pandas.DataFrame
## GitHub: dark-teal-coder import pandas as pd import numpy as np import requests from bs4 import BeautifulSoup from fpdf import FPDF import datetime import string import os ## Get datetime information current_datetime = datetime.datetime.now() current_year = current_datetime.year ## Get the running script path script_path = os.path.dirname(os.path.abspath(__file__)) ## Get the current working directiory cwd = os.path.abspath(os.getcwd()) # print(script_path, cwd) def read_noc(noc_filepath): """This function reads a data file containing a table of National Occupational Classification (NOC) codes related to computer science and information technology jobs and returns the data in DataFrame format.""" try: ## Use Pandas to read in csv file ## Python parsing engine for RegEx delimiters df_noc = pd.read_csv(noc_filepath, sep=', ', header=0, engine='python') except FileNotFoundError: print(f"The following file cannot be found:", noc_filepath, sep='\n') except: print("An unknown error occurs while reading in the following file causing the program to exit prematurely:", noc_filepath, sep='\n') else: ## Unify the headers df_noc.columns = df_noc.columns.str.lower() ## Trim leading and ending spaces in the headers ## Ref.: https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.rename.html ## (inplace=True) means not to return a new DataFrame df_noc.rename(columns=lambda x: x.strip(), inplace=True) # print(df_noc) return df_noc def get_page(url_code, c): """This function scrapes wage data of 10 tech occupations classified by NOC from Job Bank and returns the data list.""" url_base = "https://www.jobbank.gc.ca/wagereport/occupation/" ## Add URL code to the end of the base URL to go to different wage report pages on Job Bank url = url_base + str(url_code[c]) html_response = requests.get(url) ## The .content attribute holds raw bytes, which can be decoded better than the .text attribute. html_doc = BeautifulSoup(html_response.content, 'html.parser') # print(html_doc) data_list = [] # wage_table = html_doc.find(id="wage-occ-report") # print(wage_table) nation_wages = html_doc.find("tr", class_="areaGroup national") data_list.append(nation_wages.text.strip().split()) province_wages = html_doc.find_all("tr", class_="areaGroup province prov") for prov_wage in province_wages: data_list.append(prov_wage.text.strip().rsplit(maxsplit=3)) # print([row for row in data_list]) return data_list def write_excel(filepath_in, df_noc, url_code): writer = pd.ExcelWriter(filepath_in, engine='xlsxwriter') headers_nation = ['NOC', 'Occupation', 'URL Code', 'Low', 'Mid', 'High'] headers_province = ['Province', 'Low', 'Mid', 'High'] ## Each iteration will scrape a webpage and change the data for 1 NOC into a DataFrame df_tech_wages_ca = pd.DataFrame() df_tech_wages_prov = pd.DataFrame() for i in range(len(url_code)): noc = f"NOC{df_noc.loc[i, 'noc']}" data_list = get_page(url_code, i) # print(df_noc.loc[i]) df_wage_table = pd.DataFrame(data_list, columns =['area', 'low', 'mid', 'high']) # df_wage_table = pd.to_numeric(df_wage_table, errors='coerce') # df_wage_table = df_wage_table.astype({'low': 'float64', 'mid': 'float64', 'high': 'float64'}, errors='ignore') print(df_wage_table) ## Get the national wage data from the 1st row of each DataFrame df_can_wage = df_wage_table.iloc[[0]] df_career = df_noc.iloc[[i]].reset_index(drop=True) df_can_wage_career = pd.concat([df_career, df_can_wage], axis=1) df_tech_wages_ca = df_tech_wages_ca.append(df_can_wage_career, ignore_index=True) ## Drop the 1st row containing national wage data df_wage_table = df_wage_table.drop(0) df_wage_table.to_excel(writer, sheet_name=noc, header=headers_province, index=False) df_wage_table['high'] =
pd.to_numeric(df_wage_table['high'], errors='coerce')
pandas.to_numeric
''' pyjade A program to export, curate, and transform data from the MySQL database used by the Jane Addams Digital Edition. ''' import os import re import sys import json import string import datetime import mysql.connector from diskcache import Cache import pandas as pd import numpy as np from bs4 import BeautifulSoup from tqdm import tqdm from safeprint import print ''' Options ''' try: # Options file setup credit <NAME> with open(os.path.join('options.json')) as env_file: ENV = json.loads(env_file.read()) except: print('"Options.json" not found; please add "options.json" to the current directory.') ''' SQL Connection ''' DB = mysql.connector.connect( host=ENV['SQL']['HOST'], user=ENV['SQL']['USER'], passwd=ENV['SQL']['PASSWORD'], database=ENV['SQL']['DATABASE'] ) CUR = DB.cursor(buffered=True) ''' Setup ''' BEGIN = datetime.datetime.now() TS = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S") ITEM_ELEMENTS = ENV['ELEMENT_DICTIONARY']['DCTERMS_IN_USE'] ITEM_ELEMENTS.update(ENV['ELEMENT_DICTIONARY']['DESC_JADE_ELEMENTS']) TYPES = ENV['ELEMENT_DICTIONARY']['TYPES'] OUT_DIR = 'outputs/' if not os.path.exists(OUT_DIR): os.makedirs(OUT_DIR) DATASET_OPTIONS = ENV['DATASET_OPTIONS'] CRUMBS = DATASET_OPTIONS['EXPORT_SEPARATE_SQL_CRUMBS'] PROP_SET_LIST = DATASET_OPTIONS['PROPERTIES_TO_INCLUDE_FOR_EACH_TYPE'] INCLUDE_PROPS = DATASET_OPTIONS['PROPERTIES_TO_INCLUDE_FOR_EACH_TYPE'] class Dataset(): def __init__(self): ''' Start building the dataset objects by pulling IDs and types from omek_items ''' statement = ''' SELECT omek_items.id as item_id, omek_item_types.`name` as 'jade_type', collection_id as 'jade_collection' FROM omek_items JOIN omek_item_types on omek_items.item_type_id = omek_item_types.id WHERE public = 1 ORDER BY item_id; ''' self.omek_items = pd.read_sql(statement,DB) self.omek_items = self.omek_items.set_index('item_id',drop=False) self.objects = self.omek_items.copy() self.objects['item_id'] = self.objects['item_id'].apply( lambda x: self.convert_to_jade_id(x)) self.objects.rename(columns={'item_id': 'jade_id'},inplace=True) self.objects = self.objects.set_index('jade_id',drop=False) self.objects = self.objects[self.objects['jade_type'].isin( ['Text','Event','Person','Organization','Publication'] )] # Noise is an alternate dataset to record property values that dont fit the regular usage self.noise = self.objects.copy() self.noise.drop('jade_type',axis=1) self.noise.drop('jade_collection',axis=1) def ingest(self,limit=None): ''' Get the item element texts ''' statement = f''' SELECT et.id AS id, et.record_id AS record_id, et.element_id AS element_id, et.`text` AS el_text, items.item_type_id AS item_type FROM omek_element_texts as et JOIN omek_items AS items ON et.record_id = items.id WHERE record_type = "Item" ORDER BY id; ''' if limit != None: statement = statement.split(';')[0] + f' LIMIT {str(limit)};' self.element_texts = pd.read_sql(statement,DB) # Load environment variables ELEMENT_IDS = list(ITEM_ELEMENTS.keys()) # Set data structure: data = {} noise = {} # Iterate through the element_texts iter = tqdm(self.element_texts.iterrows()) iter.set_description("Ingesting item attributes") for tup in iter: row = tup[1] element_id = str(row.loc['element_id']) if row.loc['record_id'] in self.omek_items.index.values: jade_type = self.omek_items.loc[row.loc['record_id'],'jade_type'] jade_id = self.convert_to_jade_id(row.loc['record_id']) # Filter element texts through environment variables if element_id in ELEMENT_IDS: if jade_type in TYPES.values(): element_label = ITEM_ELEMENTS[element_id] # Filters property values through the sets designated in the options if element_label in INCLUDE_PROPS[jade_type]: compile_json(data,jade_id,element_label,row.loc['el_text']) else: compile_json(noise,jade_id,element_label,row.loc['el_text']) # if CRUMBS: # print('Excluded',element_label,'in type',jade_type) # Add accumulated data to DataFrame new_df = pd.DataFrame.from_dict(data,orient='index') new_noise_df = pd.DataFrame.from_dict(noise,orient='index') self.objects = pd.concat([self.objects,new_df],axis=1) self.noise = pd.concat([self.noise,new_noise_df],axis=1) # Add URLs base_url = "https://digital.janeaddams.ramapo.edu/items/show/" self.objects.insert(loc=1,column='jade_url',value=[ base_url+id.split('_')[-1] for id in self.objects.index.values ]) self.add_collections(limit) self.add_tags(limit) # Remove records with no title fields found self.objects = self.objects.dropna(subset=['dcterms_title']) def convert_to_jade_id(self,item_id): ''' Prepend the type string to the SQL primary key so that locations and items are unique in the same set of relations ''' if type(item_id) != type(str): if item_id in self.omek_items.index.values: the_type = self.omek_items.at[item_id,"jade_type"] if the_type in list(TYPES.values()): return the_type.lower()+"_"+str(item_id) else: return "unspecified_"+str(item_id) else: return "unpublished_"+str(item_id) else: return item_id def add_tags(self,limit): ''' Pull tags from the database ''' statement = f''' SELECT * FROM omek_records_tags JOIN omek_tags on omek_records_tags.tag_id = omek_tags.id; ''' self.tag_df =
pd.read_sql(statement,DB)
pandas.read_sql
# Arithmetic tests for DataFrame/Series/Index/Array classes that should # behave identically. # Specifically for datetime64 and datetime64tz dtypes from datetime import ( datetime, time, timedelta, ) from itertools import ( product, starmap, ) import operator import warnings import numpy as np import pytest import pytz from pandas._libs.tslibs.conversion import localize_pydatetime from pandas._libs.tslibs.offsets import shift_months from pandas.errors import PerformanceWarning import pandas as pd from pandas import ( DateOffset, DatetimeIndex, NaT, Period, Series, Timedelta, TimedeltaIndex, Timestamp, date_range, ) import pandas._testing as tm from pandas.core.arrays import ( DatetimeArray, TimedeltaArray, ) from pandas.core.ops import roperator from pandas.tests.arithmetic.common import ( assert_cannot_add, assert_invalid_addsub_type, assert_invalid_comparison, get_upcast_box, ) # ------------------------------------------------------------------ # Comparisons class TestDatetime64ArrayLikeComparisons: # Comparison tests for datetime64 vectors fully parametrized over # DataFrame/Series/DatetimeIndex/DatetimeArray. Ideally all comparison # tests will eventually end up here. def test_compare_zerodim(self, tz_naive_fixture, box_with_array): # Test comparison with zero-dimensional array is unboxed tz = tz_naive_fixture box = box_with_array dti = date_range("20130101", periods=3, tz=tz) other = np.array(dti.to_numpy()[0]) dtarr = tm.box_expected(dti, box) xbox = get_upcast_box(dtarr, other, True) result = dtarr <= other expected = np.array([True, False, False]) expected = tm.box_expected(expected, xbox) tm.assert_equal(result, expected) @pytest.mark.parametrize( "other", [ "foo", -1, 99, 4.0, object(), timedelta(days=2), # GH#19800, GH#19301 datetime.date comparison raises to # match DatetimeIndex/Timestamp. This also matches the behavior # of stdlib datetime.datetime datetime(2001, 1, 1).date(), # GH#19301 None and NaN are *not* cast to NaT for comparisons None, np.nan, ], ) def test_dt64arr_cmp_scalar_invalid(self, other, tz_naive_fixture, box_with_array): # GH#22074, GH#15966 tz = tz_naive_fixture rng = date_range("1/1/2000", periods=10, tz=tz) dtarr = tm.box_expected(rng, box_with_array) assert_invalid_comparison(dtarr, other, box_with_array) @pytest.mark.parametrize( "other", [ # GH#4968 invalid date/int comparisons list(range(10)), np.arange(10), np.arange(10).astype(np.float32), np.arange(10).astype(object), pd.timedelta_range("1ns", periods=10).array, np.array(pd.timedelta_range("1ns", periods=10)), list(pd.timedelta_range("1ns", periods=10)), pd.timedelta_range("1 Day", periods=10).astype(object), pd.period_range("1971-01-01", freq="D", periods=10).array, pd.period_range("1971-01-01", freq="D", periods=10).astype(object), ], ) def test_dt64arr_cmp_arraylike_invalid( self, other, tz_naive_fixture, box_with_array ): tz = tz_naive_fixture dta = date_range("1970-01-01", freq="ns", periods=10, tz=tz)._data obj = tm.box_expected(dta, box_with_array) assert_invalid_comparison(obj, other, box_with_array) def test_dt64arr_cmp_mixed_invalid(self, tz_naive_fixture): tz = tz_naive_fixture dta = date_range("1970-01-01", freq="h", periods=5, tz=tz)._data other = np.array([0, 1, 2, dta[3], Timedelta(days=1)]) result = dta == other expected = np.array([False, False, False, True, False]) tm.assert_numpy_array_equal(result, expected) result = dta != other tm.assert_numpy_array_equal(result, ~expected) msg = "Invalid comparison between|Cannot compare type|not supported between" with pytest.raises(TypeError, match=msg): dta < other with pytest.raises(TypeError, match=msg): dta > other with pytest.raises(TypeError, match=msg): dta <= other with pytest.raises(TypeError, match=msg): dta >= other def test_dt64arr_nat_comparison(self, tz_naive_fixture, box_with_array): # GH#22242, GH#22163 DataFrame considered NaT == ts incorrectly tz = tz_naive_fixture box = box_with_array ts = Timestamp("2021-01-01", tz=tz) ser = Series([ts, NaT]) obj = tm.box_expected(ser, box) xbox = get_upcast_box(obj, ts, True) expected = Series([True, False], dtype=np.bool_) expected = tm.box_expected(expected, xbox) result = obj == ts tm.assert_equal(result, expected) class TestDatetime64SeriesComparison: # TODO: moved from tests.series.test_operators; needs cleanup @pytest.mark.parametrize( "pair", [ ( [Timestamp("2011-01-01"), NaT, Timestamp("2011-01-03")], [NaT, NaT, Timestamp("2011-01-03")], ), ( [Timedelta("1 days"), NaT, Timedelta("3 days")], [NaT, NaT, Timedelta("3 days")], ), ( [Period("2011-01", freq="M"), NaT, Period("2011-03", freq="M")], [NaT, NaT, Period("2011-03", freq="M")], ), ], ) @pytest.mark.parametrize("reverse", [True, False]) @pytest.mark.parametrize("dtype", [None, object]) @pytest.mark.parametrize( "op, expected", [ (operator.eq, Series([False, False, True])), (operator.ne, Series([True, True, False])), (operator.lt, Series([False, False, False])), (operator.gt, Series([False, False, False])), (operator.ge, Series([False, False, True])), (operator.le, Series([False, False, True])), ], ) def test_nat_comparisons( self, dtype, index_or_series, reverse, pair, op, expected, ): box = index_or_series l, r = pair if reverse: # add lhs / rhs switched data l, r = r, l left = Series(l, dtype=dtype) right = box(r, dtype=dtype) result = op(left, right) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "data", [ [Timestamp("2011-01-01"), NaT, Timestamp("2011-01-03")], [Timedelta("1 days"), NaT, Timedelta("3 days")], [Period("2011-01", freq="M"), NaT, Period("2011-03", freq="M")], ], ) @pytest.mark.parametrize("dtype", [None, object]) def test_nat_comparisons_scalar(self, dtype, data, box_with_array): box = box_with_array left = Series(data, dtype=dtype) left = tm.box_expected(left, box) xbox = get_upcast_box(left, NaT, True) expected = [False, False, False] expected = tm.box_expected(expected, xbox) if box is pd.array and dtype is object: expected = pd.array(expected, dtype="bool") tm.assert_equal(left == NaT, expected) tm.assert_equal(NaT == left, expected) expected = [True, True, True] expected = tm.box_expected(expected, xbox) if box is pd.array and dtype is object: expected = pd.array(expected, dtype="bool") tm.assert_equal(left != NaT, expected) tm.assert_equal(NaT != left, expected) expected = [False, False, False] expected = tm.box_expected(expected, xbox) if box is pd.array and dtype is object: expected = pd.array(expected, dtype="bool") tm.assert_equal(left < NaT, expected) tm.assert_equal(NaT > left, expected) tm.assert_equal(left <= NaT, expected) tm.assert_equal(NaT >= left, expected) tm.assert_equal(left > NaT, expected) tm.assert_equal(NaT < left, expected) tm.assert_equal(left >= NaT, expected) tm.assert_equal(NaT <= left, expected) @pytest.mark.parametrize("val", [datetime(2000, 1, 4), datetime(2000, 1, 5)]) def test_series_comparison_scalars(self, val): series = Series(date_range("1/1/2000", periods=10)) result = series > val expected = Series([x > val for x in series]) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "left,right", [("lt", "gt"), ("le", "ge"), ("eq", "eq"), ("ne", "ne")] ) def test_timestamp_compare_series(self, left, right): # see gh-4982 # Make sure we can compare Timestamps on the right AND left hand side. ser = Series(date_range("20010101", periods=10), name="dates") s_nat = ser.copy(deep=True) ser[0] = Timestamp("nat") ser[3] = Timestamp("nat") left_f = getattr(operator, left) right_f = getattr(operator, right) # No NaT expected = left_f(ser, Timestamp("20010109")) result = right_f(Timestamp("20010109"), ser) tm.assert_series_equal(result, expected) # NaT expected = left_f(ser, Timestamp("nat")) result = right_f(Timestamp("nat"), ser) tm.assert_series_equal(result, expected) # Compare to Timestamp with series containing NaT expected = left_f(s_nat, Timestamp("20010109")) result = right_f(Timestamp("20010109"), s_nat) tm.assert_series_equal(result, expected) # Compare to NaT with series containing NaT expected = left_f(s_nat, NaT) result = right_f(NaT, s_nat) tm.assert_series_equal(result, expected) def test_dt64arr_timestamp_equality(self, box_with_array): # GH#11034 ser = Series([Timestamp("2000-01-29 01:59:00"), Timestamp("2000-01-30"), NaT]) ser = tm.box_expected(ser, box_with_array) xbox = get_upcast_box(ser, ser, True) result = ser != ser expected = tm.box_expected([False, False, True], xbox) tm.assert_equal(result, expected) warn = FutureWarning if box_with_array is pd.DataFrame else None with tm.assert_produces_warning(warn): # alignment for frame vs series comparisons deprecated result = ser != ser[0] expected = tm.box_expected([False, True, True], xbox) tm.assert_equal(result, expected) with tm.assert_produces_warning(warn): # alignment for frame vs series comparisons deprecated result = ser != ser[2] expected = tm.box_expected([True, True, True], xbox) tm.assert_equal(result, expected) result = ser == ser expected = tm.box_expected([True, True, False], xbox) tm.assert_equal(result, expected) with tm.assert_produces_warning(warn): # alignment for frame vs series comparisons deprecated result = ser == ser[0] expected = tm.box_expected([True, False, False], xbox) tm.assert_equal(result, expected) with tm.assert_produces_warning(warn): # alignment for frame vs series comparisons deprecated result = ser == ser[2] expected = tm.box_expected([False, False, False], xbox)
tm.assert_equal(result, expected)
pandas._testing.assert_equal
# common.py (flowsa) # !/usr/bin/env python3 # coding=utf-8 """Common variables and functions used across flowsa""" import shutil import os import yaml import pandas as pd import numpy as np from dotenv import load_dotenv from esupy.processed_data_mgmt import create_paths_if_missing import flowsa.flowsa_yaml as flowsa_yaml import flowsa.exceptions from flowsa.schema import flow_by_activity_fields, flow_by_sector_fields, \ flow_by_sector_collapsed_fields, flow_by_activity_mapped_fields, \ flow_by_activity_wsec_fields, flow_by_activity_mapped_wsec_fields, \ activity_fields from flowsa.settings import datapath, MODULEPATH, logoutputpath, \ sourceconfigpath, log, flowbysectormethodpath # Sets default Sector Source Name SECTOR_SOURCE_NAME = 'NAICS_2012_Code' flow_types = ['ELEMENTARY_FLOW', 'TECHNOSPHERE_FLOW', 'WASTE_FLOW'] sector_level_key = {"NAICS_2": 2, "NAICS_3": 3, "NAICS_4": 4, "NAICS_5": 5, "NAICS_6": 6} # withdrawn keyword changed to "none" over "W" # because unable to run calculation functions with text string WITHDRAWN_KEYWORD = np.nan def load_api_key(api_source): """ Loads an API Key from "API_Keys.env" file using the 'api_name' defined in the FBA source config file. The '.env' file contains the users personal API keys. The user must register with this API and get the key and manually add to "API_Keys.env" See wiki for how to get an api: https://github.com/USEPA/flowsa/wiki/Using-FLOWSA#api-keys :param api_source: str, name of source, like 'BEA' or 'Census' :return: the users API key as a string """ load_dotenv(f'{MODULEPATH}API_Keys.env', verbose=True) key = os.getenv(api_source) if key is None: raise flowsa.exceptions.APIError(api_source=api_source) return key def load_crosswalk(crosswalk_name): """ Load NAICS crosswalk between the years 2007, 2012, 2017 :return: df, NAICS crosswalk over the years """ cw_dict = {'sector_timeseries': 'NAICS_Crosswalk_TimeSeries', 'sector_length': 'NAICS_2012_Crosswalk', 'sector_name': 'NAICS_2012_Names', 'household': 'Household_SectorCodes', 'government': 'Government_SectorCodes', 'BEA': 'NAICS_to_BEA_Crosswalk' } fn = cw_dict.get(crosswalk_name) cw = pd.read_csv(f'{datapath}{fn}.csv', dtype="str") return cw def load_sector_length_cw_melt(): cw_load = load_crosswalk('sector_length') cw_melt = cw_load.melt(var_name="SectorLength", value_name='Sector' ).drop_duplicates().reset_index(drop=True) cw_melt = cw_melt.dropna().reset_index(drop=True) cw_melt['SectorLength'] = cw_melt['SectorLength'].str.replace( 'NAICS_', "") cw_melt['SectorLength'] = pd.to_numeric(cw_melt['SectorLength']) cw_melt = cw_melt[['Sector', 'SectorLength']] return cw_melt def return_bea_codes_used_as_naics(): """ :return: list of BEA codes used as NAICS """ cw_list = [] for cw in ['household', 'government']: df = load_crosswalk(cw) cw_list.append(df) # concat data into single dataframe cw = pd.concat(cw_list, sort=False) code_list = cw['Code'].drop_duplicates().values.tolist() return code_list def load_yaml_dict(filename, flowbytype=None, filepath=None): """ Load the information in a yaml file, from source_catalog, or FBA, or FBS files :return: dictionary containing all information in yaml """ if filename == 'source_catalog': folder = datapath else: # first check if a filepath for the yaml is specified, as is the # case with FBS method files located outside FLOWSA if filepath is not None: log.info(f'Loading {filename} from {filepath}') folder = filepath else: if flowbytype == 'FBA': folder = sourceconfigpath elif flowbytype == 'FBS': folder = flowbysectormethodpath else: raise KeyError('Must specify either \'FBA\' or \'FBS\'') yaml_path = folder + filename + '.yaml' try: with open(yaml_path, 'r') as f: config = flowsa_yaml.load(f, filepath) except FileNotFoundError: raise flowsa.exceptions.FlowsaMethodNotFoundError( method_type=flowbytype, method=filename) return config def load_values_from_literature_citations_config(): """ Load the config file that contains information on where the values from the literature come from :return: dictionary of the values from the literature information """ sfile = (f'{datapath}bibliographyinfo/' f'values_from_literature_source_citations.yaml') with open(sfile, 'r') as f: config = yaml.safe_load(f) return config def load_fbs_methods_additional_fbas_config(): """ Load the config file that contains information on where the values from the literature come from :return: dictionary of the values from the literature information """ sfile = f'{datapath}bibliographyinfo/fbs_methods_additional_fbas.yaml' with open(sfile, 'r') as f: config = yaml.safe_load(f) return config def load_functions_loading_fbas_config(): """ Load the config file that contains information on where the values from the literature come from :return: dictionary of the values from the literature information """ sfile = datapath + 'bibliographyinfo/functions_loading_fbas.yaml' with open(sfile, 'r') as f: config = yaml.safe_load(f) return config def create_fill_na_dict(flow_by_fields): """ Dictionary for how to fill nan in different column types :param flow_by_fields: list of columns :return: dictionary for how to fill missing values by dtype """ fill_na_dict = {} for k, v in flow_by_fields.items(): if v[0]['dtype'] == 'str': fill_na_dict[k] = "" elif v[0]['dtype'] == 'int': fill_na_dict[k] = 0 elif v[0]['dtype'] == 'float': fill_na_dict[k] = 0 return fill_na_dict def get_flow_by_groupby_cols(flow_by_fields): """ Return groupby columns for a type of dataframe :param flow_by_fields: dictionary :return: list, column names """ groupby_cols = [] for k, v in flow_by_fields.items(): if v[0]['dtype'] == 'str': groupby_cols.append(k) elif v[0]['dtype'] == 'int': groupby_cols.append(k) if flow_by_fields == flow_by_activity_fields: # Do not use description for grouping groupby_cols.remove('Description') return groupby_cols fba_activity_fields = [activity_fields['ProducedBy'][0]['flowbyactivity'], activity_fields['ConsumedBy'][0]['flowbyactivity']] fbs_activity_fields = [activity_fields['ProducedBy'][1]['flowbysector'], activity_fields['ConsumedBy'][1]['flowbysector']] fba_fill_na_dict = create_fill_na_dict(flow_by_activity_fields) fbs_fill_na_dict = create_fill_na_dict(flow_by_sector_fields) fbs_collapsed_fill_na_dict = create_fill_na_dict( flow_by_sector_collapsed_fields) fba_default_grouping_fields = get_flow_by_groupby_cols( flow_by_activity_fields) fba_mapped_default_grouping_fields = get_flow_by_groupby_cols( flow_by_activity_mapped_fields) fba_mapped_wsec_default_grouping_fields = get_flow_by_groupby_cols( flow_by_activity_mapped_wsec_fields) fbs_default_grouping_fields = get_flow_by_groupby_cols( flow_by_sector_fields) fbs_grouping_fields_w_activities = ( fbs_default_grouping_fields + (['ActivityProducedBy', 'ActivityConsumedBy'])) fbs_collapsed_default_grouping_fields = get_flow_by_groupby_cols( flow_by_sector_collapsed_fields) fba_wsec_default_grouping_fields = get_flow_by_groupby_cols( flow_by_activity_wsec_fields) def clean_str_and_capitalize(s): """ Trim whitespace, modify string so first letter capitalized. :param s: str :return: str, formatted """ if s.__class__ == str: s = s.strip() s = s.lower() s = s.capitalize() return s def capitalize_first_letter(string): """ Capitalize first letter of words :param string: str :return: str, modified """ return_string = "" split_array = string.split(" ") for s in split_array: return_string = return_string + " " + s.capitalize() return return_string.strip() def get_flowsa_base_name(filedirectory, filename, extension): """ If filename does not match filename within flowsa due to added extensions onto the filename, cycle through name, dropping strings after each underscore until the name is found :param filedirectory: string, path to directory :param filename: string, name of original file searching for :param extension: string, type of file, such as "yaml" or "py" :return: string, corrected file path name """ # If a file does not exist, modify file name, dropping portion after last # underscore. Repeat this process until the file name exists or no # underscores are left. while '_' in filename: if os.path.exists(f"{filedirectory}{filename}.{extension}"): break filename, _ = filename.rsplit('_', 1) return filename def rename_log_file(filename, fb_meta): """ Rename the log file saved to local directory using df meta for df :param filename: str, name of dataset :param fb_meta: metadata for parquet :return: modified log file name """ # original log file name - all log statements log_file = f'{logoutputpath}{"flowsa.log"}' # generate new log name new_log_name = (f'{logoutputpath}{filename}_v' f'{fb_meta.tool_version}' f'{"_" + fb_meta.git_hash if fb_meta.git_hash else ""}' f'.log') # create log directory if missing create_paths_if_missing(logoutputpath) # rename the standard log file name (os.rename throws error if file # already exists) shutil.copy(log_file, new_log_name) # original log file name - validation log_file = f'{logoutputpath}{"validation_flowsa.log"}' # generate new log name new_log_name = (f'{logoutputpath}{filename}_v' f'{fb_meta.tool_version}' f'{"_" + fb_meta.git_hash if fb_meta.git_hash else ""}' f'_validation.log') # create log directory if missing create_paths_if_missing(logoutputpath) # rename the standard log file name (os.rename throws error if file # already exists) shutil.copy(log_file, new_log_name) def return_true_source_catalog_name(sourcename): """ Drop any extensions on source name until find the name in source catalog """ while (load_yaml_dict('source_catalog').get(sourcename) is None) & ( '_' in sourcename): sourcename = sourcename.rsplit("_", 1)[0] return sourcename def check_activities_sector_like(df_load, sourcename=None): """ Check if the activities in a df are sector-like, if cannot find the sourcename in the source catalog, drop extensions on the source name :param df_load: df, df to determine if activities are sector-like :param source: str, optionial, can identify sourcename to use """ # identify sourcename if sourcename is not None: s = sourcename else: if 'SourceName' in df_load.columns: s = pd.unique(df_load['SourceName'])[0] elif 'MetaSources' in df_load.columns: s =
pd.unique(df_load['MetaSources'])
pandas.unique
""" Test output formatting for Series/DataFrame, including to_string & reprs """ from datetime import datetime from io import StringIO import itertools from operator import methodcaller import os from pathlib import Path import re from shutil import get_terminal_size import sys import textwrap import dateutil import numpy as np import pytest import pytz from pandas.compat import ( IS64, is_platform_windows, ) import pandas.util._test_decorators as td import pandas as pd from pandas import ( DataFrame, Index, MultiIndex, NaT, Series, Timestamp, date_range, get_option, option_context, read_csv, reset_option, set_option, ) import pandas._testing as tm import pandas.io.formats.format as fmt import pandas.io.formats.printing as printing use_32bit_repr = is_platform_windows() or not IS64 @pytest.fixture(params=["string", "pathlike", "buffer"]) def filepath_or_buffer_id(request): """ A fixture yielding test ids for filepath_or_buffer testing. """ return request.param @pytest.fixture def filepath_or_buffer(filepath_or_buffer_id, tmp_path): """ A fixture yielding a string representing a filepath, a path-like object and a StringIO buffer. Also checks that buffer is not closed. """ if filepath_or_buffer_id == "buffer": buf = StringIO() yield buf assert not buf.closed else: assert isinstance(tmp_path, Path) if filepath_or_buffer_id == "pathlike": yield tmp_path / "foo" else: yield str(tmp_path / "foo") @pytest.fixture def assert_filepath_or_buffer_equals( filepath_or_buffer, filepath_or_buffer_id, encoding ): """ Assertion helper for checking filepath_or_buffer. """ def _assert_filepath_or_buffer_equals(expected): if filepath_or_buffer_id == "string": with open(filepath_or_buffer, encoding=encoding) as f: result = f.read() elif filepath_or_buffer_id == "pathlike": result = filepath_or_buffer.read_text(encoding=encoding) elif filepath_or_buffer_id == "buffer": result = filepath_or_buffer.getvalue() assert result == expected return _assert_filepath_or_buffer_equals def curpath(): pth, _ = os.path.split(os.path.abspath(__file__)) return pth def has_info_repr(df): r = repr(df) c1 = r.split("\n")[0].startswith("<class") c2 = r.split("\n")[0].startswith(r"&lt;class") # _repr_html_ return c1 or c2 def has_non_verbose_info_repr(df): has_info = has_info_repr(df) r = repr(df) # 1. <class> # 2. Index # 3. Columns # 4. dtype # 5. memory usage # 6. trailing newline nv = len(r.split("\n")) == 6 return has_info and nv def has_horizontally_truncated_repr(df): try: # Check header row fst_line = np.array(repr(df).splitlines()[0].split()) cand_col = np.where(fst_line == "...")[0][0] except IndexError: return False # Make sure each row has this ... in the same place r = repr(df) for ix, l in enumerate(r.splitlines()): if not r.split()[cand_col] == "...": return False return True def has_vertically_truncated_repr(df): r = repr(df) only_dot_row = False for row in r.splitlines(): if re.match(r"^[\.\ ]+$", row): only_dot_row = True return only_dot_row def has_truncated_repr(df): return has_horizontally_truncated_repr(df) or has_vertically_truncated_repr(df) def has_doubly_truncated_repr(df): return has_horizontally_truncated_repr(df) and has_vertically_truncated_repr(df) def has_expanded_repr(df): r = repr(df) for line in r.split("\n"): if line.endswith("\\"): return True return False @pytest.mark.filterwarnings("ignore::FutureWarning:.*format") class TestDataFrameFormatting: def test_eng_float_formatter(self, float_frame): df = float_frame df.loc[5] = 0 fmt.set_eng_float_format() repr(df) fmt.set_eng_float_format(use_eng_prefix=True) repr(df) fmt.set_eng_float_format(accuracy=0) repr(df) tm.reset_display_options() def test_show_null_counts(self): df = DataFrame(1, columns=range(10), index=range(10)) df.iloc[1, 1] = np.nan def check(show_counts, result): buf = StringIO() df.info(buf=buf, show_counts=show_counts) assert ("non-null" in buf.getvalue()) is result with option_context( "display.max_info_rows", 20, "display.max_info_columns", 20 ): check(None, True) check(True, True) check(False, False) with option_context("display.max_info_rows", 5, "display.max_info_columns", 5): check(None, False) check(True, False) check(False, False) # GH37999 with tm.assert_produces_warning( FutureWarning, match="null_counts is deprecated.+" ): buf = StringIO() df.info(buf=buf, null_counts=True) assert "non-null" in buf.getvalue() # GH37999 with pytest.raises(ValueError, match=r"null_counts used with show_counts.+"): df.info(null_counts=True, show_counts=True) def test_repr_truncation(self): max_len = 20 with option_context("display.max_colwidth", max_len): df = DataFrame( { "A": np.random.randn(10), "B": [ tm.rands(np.random.randint(max_len - 1, max_len + 1)) for i in range(10) ], } ) r = repr(df) r = r[r.find("\n") + 1 :] adj = fmt.get_adjustment() for line, value in zip(r.split("\n"), df["B"]): if adj.len(value) + 1 > max_len: assert "..." in line else: assert "..." not in line with option_context("display.max_colwidth", 999999): assert "..." not in repr(df) with option_context("display.max_colwidth", max_len + 2): assert "..." not in repr(df) def test_repr_deprecation_negative_int(self): # TODO(2.0): remove in future version after deprecation cycle # Non-regression test for: # https://github.com/pandas-dev/pandas/issues/31532 width = get_option("display.max_colwidth") with tm.assert_produces_warning(FutureWarning): set_option("display.max_colwidth", -1) set_option("display.max_colwidth", width) def test_repr_chop_threshold(self): df = DataFrame([[0.1, 0.5], [0.5, -0.1]]) reset_option("display.chop_threshold") # default None assert repr(df) == " 0 1\n0 0.1 0.5\n1 0.5 -0.1" with option_context("display.chop_threshold", 0.2): assert repr(df) == " 0 1\n0 0.0 0.5\n1 0.5 0.0" with option_context("display.chop_threshold", 0.6): assert repr(df) == " 0 1\n0 0.0 0.0\n1 0.0 0.0" with option_context("display.chop_threshold", None): assert repr(df) == " 0 1\n0 0.1 0.5\n1 0.5 -0.1" def test_repr_chop_threshold_column_below(self): # GH 6839: validation case df = DataFrame([[10, 20, 30, 40], [8e-10, -1e-11, 2e-9, -2e-11]]).T with option_context("display.chop_threshold", 0): assert repr(df) == ( " 0 1\n" "0 10.0 8.000000e-10\n" "1 20.0 -1.000000e-11\n" "2 30.0 2.000000e-09\n" "3 40.0 -2.000000e-11" ) with option_context("display.chop_threshold", 1e-8): assert repr(df) == ( " 0 1\n" "0 10.0 0.000000e+00\n" "1 20.0 0.000000e+00\n" "2 30.0 0.000000e+00\n" "3 40.0 0.000000e+00" ) with option_context("display.chop_threshold", 5e-11): assert repr(df) == ( " 0 1\n" "0 10.0 8.000000e-10\n" "1 20.0 0.000000e+00\n" "2 30.0 2.000000e-09\n" "3 40.0 0.000000e+00" ) def test_repr_obeys_max_seq_limit(self): with option_context("display.max_seq_items", 2000): assert len(printing.pprint_thing(list(range(1000)))) > 1000 with option_context("display.max_seq_items", 5): assert len(printing.pprint_thing(list(range(1000)))) < 100 with option_context("display.max_seq_items", 1): assert len(printing.pprint_thing(list(range(1000)))) < 9 def test_repr_set(self): assert printing.pprint_thing({1}) == "{1}" def test_repr_is_valid_construction_code(self): # for the case of Index, where the repr is traditional rather than # stylized idx = Index(["a", "b"]) res = eval("pd." + repr(idx)) tm.assert_series_equal(Series(res), Series(idx)) def test_repr_should_return_str(self): # https://docs.python.org/3/reference/datamodel.html#object.__repr__ # "...The return value must be a string object." # (str on py2.x, str (unicode) on py3) data = [8, 5, 3, 5] index1 = ["\u03c3", "\u03c4", "\u03c5", "\u03c6"] cols = ["\u03c8"] df = DataFrame(data, columns=cols, index=index1) assert type(df.__repr__()) == str # both py2 / 3 def test_repr_no_backslash(self): with option_context("mode.sim_interactive", True): df = DataFrame(np.random.randn(10, 4)) assert "\\" not in repr(df) def test_expand_frame_repr(self): df_small = DataFrame("hello", index=[0], columns=[0]) df_wide = DataFrame("hello", index=[0], columns=range(10)) df_tall = DataFrame("hello", index=range(30), columns=range(5)) with option_context("mode.sim_interactive", True): with option_context( "display.max_columns", 10, "display.width", 20, "display.max_rows", 20, "display.show_dimensions", True, ): with option_context("display.expand_frame_repr", True): assert not has_truncated_repr(df_small) assert not has_expanded_repr(df_small) assert not has_truncated_repr(df_wide) assert has_expanded_repr(df_wide) assert has_vertically_truncated_repr(df_tall) assert has_expanded_repr(df_tall) with option_context("display.expand_frame_repr", False): assert not has_truncated_repr(df_small) assert not has_expanded_repr(df_small) assert not has_horizontally_truncated_repr(df_wide) assert not has_expanded_repr(df_wide) assert has_vertically_truncated_repr(df_tall) assert not has_expanded_repr(df_tall) def test_repr_non_interactive(self): # in non interactive mode, there can be no dependency on the # result of terminal auto size detection df = DataFrame("hello", index=range(1000), columns=range(5)) with option_context( "mode.sim_interactive", False, "display.width", 0, "display.max_rows", 5000 ): assert not has_truncated_repr(df) assert not has_expanded_repr(df) def test_repr_truncates_terminal_size(self, monkeypatch): # see gh-21180 terminal_size = (118, 96) monkeypatch.setattr( "pandas.io.formats.format.get_terminal_size", lambda: terminal_size ) index = range(5) columns = MultiIndex.from_tuples( [ ("This is a long title with > 37 chars.", "cat"), ("This is a loooooonger title with > 43 chars.", "dog"), ] ) df = DataFrame(1, index=index, columns=columns) result = repr(df) h1, h2 = result.split("\n")[:2] assert "long" in h1 assert "loooooonger" in h1 assert "cat" in h2 assert "dog" in h2 # regular columns df2 = DataFrame({"A" * 41: [1, 2], "B" * 41: [1, 2]}) result = repr(df2) assert df2.columns[0] in result.split("\n")[0] def test_repr_truncates_terminal_size_full(self, monkeypatch): # GH 22984 ensure entire window is filled terminal_size = (80, 24) df = DataFrame(np.random.rand(1, 7)) monkeypatch.setattr( "pandas.io.formats.format.get_terminal_size", lambda: terminal_size ) assert "..." not in str(df) def test_repr_truncation_column_size(self): # dataframe with last column very wide -> check it is not used to # determine size of truncation (...) column df = DataFrame( { "a": [108480, 30830], "b": [12345, 12345], "c": [12345, 12345], "d": [12345, 12345], "e": ["a" * 50] * 2, } ) assert "..." in str(df) assert " ... " not in str(df) def test_repr_max_columns_max_rows(self): term_width, term_height = get_terminal_size() if term_width < 10 or term_height < 10: pytest.skip(f"terminal size too small, {term_width} x {term_height}") def mkframe(n): index = [f"{i:05d}" for i in range(n)] return DataFrame(0, index, index) df6 = mkframe(6) df10 = mkframe(10) with option_context("mode.sim_interactive", True): with option_context("display.width", term_width * 2): with option_context("display.max_rows", 5, "display.max_columns", 5): assert not has_expanded_repr(mkframe(4)) assert not has_expanded_repr(mkframe(5)) assert not has_expanded_repr(df6) assert has_doubly_truncated_repr(df6) with option_context("display.max_rows", 20, "display.max_columns", 10): # Out off max_columns boundary, but no extending # since not exceeding width assert not has_expanded_repr(df6) assert not has_truncated_repr(df6) with option_context("display.max_rows", 9, "display.max_columns", 10): # out vertical bounds can not result in expanded repr assert not has_expanded_repr(df10) assert has_vertically_truncated_repr(df10) # width=None in terminal, auto detection with option_context( "display.max_columns", 100, "display.max_rows", term_width * 20, "display.width", None, ): df = mkframe((term_width // 7) - 2) assert not has_expanded_repr(df) df = mkframe((term_width // 7) + 2) printing.pprint_thing(df._repr_fits_horizontal_()) assert has_expanded_repr(df) def test_repr_min_rows(self): df = DataFrame({"a": range(20)}) # default setting no truncation even if above min_rows assert ".." not in repr(df) assert ".." not in df._repr_html_() df = DataFrame({"a": range(61)}) # default of max_rows 60 triggers truncation if above assert ".." in repr(df) assert ".." in df._repr_html_() with option_context("display.max_rows", 10, "display.min_rows", 4): # truncated after first two rows assert ".." in repr(df) assert "2 " not in repr(df) assert "..." in df._repr_html_() assert "<td>2</td>" not in df._repr_html_() with option_context("display.max_rows", 12, "display.min_rows", None): # when set to None, follow value of max_rows assert "5 5" in repr(df) assert "<td>5</td>" in df._repr_html_() with option_context("display.max_rows", 10, "display.min_rows", 12): # when set value higher as max_rows, use the minimum assert "5 5" not in repr(df) assert "<td>5</td>" not in df._repr_html_() with option_context("display.max_rows", None, "display.min_rows", 12): # max_rows of None -> never truncate assert ".." not in repr(df) assert ".." not in df._repr_html_() def test_str_max_colwidth(self): # GH 7856 df = DataFrame( [ { "a": "foo", "b": "bar", "c": "uncomfortably long line with lots of stuff", "d": 1, }, {"a": "foo", "b": "bar", "c": "stuff", "d": 1}, ] ) df.set_index(["a", "b", "c"]) assert str(df) == ( " a b c d\n" "0 foo bar uncomfortably long line with lots of stuff 1\n" "1 foo bar stuff 1" ) with option_context("max_colwidth", 20): assert str(df) == ( " a b c d\n" "0 foo bar uncomfortably lo... 1\n" "1 foo bar stuff 1" ) def test_auto_detect(self): term_width, term_height = get_terminal_size() fac = 1.05 # Arbitrary large factor to exceed term width cols = range(int(term_width * fac)) index = range(10) df = DataFrame(index=index, columns=cols) with option_context("mode.sim_interactive", True): with option_context("display.max_rows", None): with option_context("display.max_columns", None): # Wrap around with None assert has_expanded_repr(df) with option_context("display.max_rows", 0): with option_context("display.max_columns", 0): # Truncate with auto detection. assert has_horizontally_truncated_repr(df) index = range(int(term_height * fac)) df = DataFrame(index=index, columns=cols) with option_context("display.max_rows", 0): with option_context("display.max_columns", None): # Wrap around with None assert has_expanded_repr(df) # Truncate vertically assert has_vertically_truncated_repr(df) with option_context("display.max_rows", None): with option_context("display.max_columns", 0): assert has_horizontally_truncated_repr(df) def test_to_string_repr_unicode(self): buf = StringIO() unicode_values = ["\u03c3"] * 10 unicode_values = np.array(unicode_values, dtype=object) df = DataFrame({"unicode": unicode_values}) df.to_string(col_space=10, buf=buf) # it works! repr(df) idx = Index(["abc", "\u03c3a", "aegdvg"]) ser = Series(np.random.randn(len(idx)), idx) rs = repr(ser).split("\n") line_len = len(rs[0]) for line in rs[1:]: try: line = line.decode(get_option("display.encoding")) except AttributeError: pass if not line.startswith("dtype:"): assert len(line) == line_len # it works even if sys.stdin in None _stdin = sys.stdin try: sys.stdin = None repr(df) finally: sys.stdin = _stdin def test_east_asian_unicode_false(self): # not aligned properly because of east asian width # mid col df = DataFrame( {"a": ["あ", "いいい", "う", "ええええええ"], "b": [1, 222, 33333, 4]}, index=["a", "bb", "c", "ddd"], ) expected = ( " a b\na あ 1\n" "bb いいい 222\nc う 33333\n" "ddd ええええええ 4" ) assert repr(df) == expected # last col df = DataFrame( {"a": [1, 222, 33333, 4], "b": ["あ", "いいい", "う", "ええええええ"]}, index=["a", "bb", "c", "ddd"], ) expected = ( " a b\na 1 あ\n" "bb 222 いいい\nc 33333 う\n" "ddd 4 ええええええ" ) assert repr(df) == expected # all col df = DataFrame( {"a": ["あああああ", "い", "う", "えええ"], "b": ["あ", "いいい", "う", "ええええええ"]}, index=["a", "bb", "c", "ddd"], ) expected = ( " a b\na あああああ あ\n" "bb い いいい\nc う う\n" "ddd えええ ええええええ" ) assert repr(df) == expected # column name df = DataFrame( {"b": ["あ", "いいい", "う", "ええええええ"], "あああああ": [1, 222, 33333, 4]}, index=["a", "bb", "c", "ddd"], ) expected = ( " b あああああ\na あ 1\n" "bb いいい 222\nc う 33333\n" "ddd ええええええ 4" ) assert repr(df) == expected # index df = DataFrame( {"a": ["あああああ", "い", "う", "えええ"], "b": ["あ", "いいい", "う", "ええええええ"]}, index=["あああ", "いいいいいい", "うう", "え"], ) expected = ( " a b\nあああ あああああ あ\n" "いいいいいい い いいい\nうう う う\n" "え えええ ええええええ" ) assert repr(df) == expected # index name df = DataFrame( {"a": ["あああああ", "い", "う", "えええ"], "b": ["あ", "いいい", "う", "ええええええ"]}, index=Index(["あ", "い", "うう", "え"], name="おおおお"), ) expected = ( " a b\n" "おおおお \n" "あ あああああ あ\n" "い い いいい\n" "うう う う\n" "え えええ ええええええ" ) assert repr(df) == expected # all df = DataFrame( {"あああ": ["あああ", "い", "う", "えええええ"], "いいいいい": ["あ", "いいい", "う", "ええ"]}, index=Index(["あ", "いいい", "うう", "え"], name="お"), ) expected = ( " あああ いいいいい\n" "お \n" "あ あああ あ\n" "いいい い いいい\n" "うう う う\n" "え えええええ ええ" ) assert repr(df) == expected # MultiIndex idx = MultiIndex.from_tuples( [("あ", "いい"), ("う", "え"), ("おおお", "かかかか"), ("き", "くく")] ) df = DataFrame( {"a": ["あああああ", "い", "う", "えええ"], "b": ["あ", "いいい", "う", "ええええええ"]}, index=idx, ) expected = ( " a b\n" "あ いい あああああ あ\n" "う え い いいい\n" "おおお かかかか う う\n" "き くく えええ ええええええ" ) assert repr(df) == expected # truncate with option_context("display.max_rows", 3, "display.max_columns", 3): df = DataFrame( { "a": ["あああああ", "い", "う", "えええ"], "b": ["あ", "いいい", "う", "ええええええ"], "c": ["お", "か", "ききき", "くくくくくく"], "ああああ": ["さ", "し", "す", "せ"], }, columns=["a", "b", "c", "ああああ"], ) expected = ( " a ... ああああ\n0 あああああ ... さ\n" ".. ... ... ...\n3 えええ ... せ\n" "\n[4 rows x 4 columns]" ) assert repr(df) == expected df.index = ["あああ", "いいいい", "う", "aaa"] expected = ( " a ... ああああ\nあああ あああああ ... さ\n" ".. ... ... ...\naaa えええ ... せ\n" "\n[4 rows x 4 columns]" ) assert repr(df) == expected def test_east_asian_unicode_true(self): # Enable Unicode option ----------------------------------------- with option_context("display.unicode.east_asian_width", True): # mid col df = DataFrame( {"a": ["あ", "いいい", "う", "ええええええ"], "b": [1, 222, 33333, 4]}, index=["a", "bb", "c", "ddd"], ) expected = ( " a b\na あ 1\n" "bb いいい 222\nc う 33333\n" "ddd ええええええ 4" ) assert repr(df) == expected # last col df = DataFrame( {"a": [1, 222, 33333, 4], "b": ["あ", "いいい", "う", "ええええええ"]}, index=["a", "bb", "c", "ddd"], ) expected = ( " a b\na 1 あ\n" "bb 222 いいい\nc 33333 う\n" "ddd 4 ええええええ" ) assert repr(df) == expected # all col df = DataFrame( {"a": ["あああああ", "い", "う", "えええ"], "b": ["あ", "いいい", "う", "ええええええ"]}, index=["a", "bb", "c", "ddd"], ) expected = ( " a b\n" "a あああああ あ\n" "bb い いいい\n" "c う う\n" "ddd えええ ええええええ" ) assert repr(df) == expected # column name df = DataFrame( {"b": ["あ", "いいい", "う", "ええええええ"], "あああああ": [1, 222, 33333, 4]}, index=["a", "bb", "c", "ddd"], ) expected = ( " b あああああ\n" "a あ 1\n" "bb いいい 222\n" "c う 33333\n" "ddd ええええええ 4" ) assert repr(df) == expected # index df = DataFrame( {"a": ["あああああ", "い", "う", "えええ"], "b": ["あ", "いいい", "う", "ええええええ"]}, index=["あああ", "いいいいいい", "うう", "え"], ) expected = ( " a b\n" "あああ あああああ あ\n" "いいいいいい い いいい\n" "うう う う\n" "え えええ ええええええ" ) assert repr(df) == expected # index name df = DataFrame( {"a": ["あああああ", "い", "う", "えええ"], "b": ["あ", "いいい", "う", "ええええええ"]}, index=Index(["あ", "い", "うう", "え"], name="おおおお"), ) expected = ( " a b\n" "おおおお \n" "あ あああああ あ\n" "い い いいい\n" "うう う う\n" "え えええ ええええええ" ) assert repr(df) == expected # all df = DataFrame( {"あああ": ["あああ", "い", "う", "えええええ"], "いいいいい": ["あ", "いいい", "う", "ええ"]}, index=Index(["あ", "いいい", "うう", "え"], name="お"), ) expected = ( " あああ いいいいい\n" "お \n" "あ あああ あ\n" "いいい い いいい\n" "うう う う\n" "え えええええ ええ" ) assert repr(df) == expected # MultiIndex idx = MultiIndex.from_tuples( [("あ", "いい"), ("う", "え"), ("おおお", "かかかか"), ("き", "くく")] ) df = DataFrame( {"a": ["あああああ", "い", "う", "えええ"], "b": ["あ", "いいい", "う", "ええええええ"]}, index=idx, ) expected = ( " a b\n" "あ いい あああああ あ\n" "う え い いいい\n" "おおお かかかか う う\n" "き くく えええ ええええええ" ) assert repr(df) == expected # truncate with option_context("display.max_rows", 3, "display.max_columns", 3): df = DataFrame( { "a": ["あああああ", "い", "う", "えええ"], "b": ["あ", "いいい", "う", "ええええええ"], "c": ["お", "か", "ききき", "くくくくくく"], "ああああ": ["さ", "し", "す", "せ"], }, columns=["a", "b", "c", "ああああ"], ) expected = ( " a ... ああああ\n" "0 あああああ ... さ\n" ".. ... ... ...\n" "3 えええ ... せ\n" "\n[4 rows x 4 columns]" ) assert repr(df) == expected df.index = ["あああ", "いいいい", "う", "aaa"] expected = ( " a ... ああああ\n" "あああ あああああ ... さ\n" "... ... ... ...\n" "aaa えええ ... せ\n" "\n[4 rows x 4 columns]" ) assert repr(df) == expected # ambiguous unicode df = DataFrame( {"b": ["あ", "いいい", "¡¡", "ええええええ"], "あああああ": [1, 222, 33333, 4]}, index=["a", "bb", "c", "¡¡¡"], ) expected = ( " b あああああ\n" "a あ 1\n" "bb いいい 222\n" "c ¡¡ 33333\n" "¡¡¡ ええええええ 4" ) assert repr(df) == expected def test_to_string_buffer_all_unicode(self): buf = StringIO() empty = DataFrame({"c/\u03c3": Series(dtype=object)}) nonempty = DataFrame({"c/\u03c3": Series([1, 2, 3])}) print(empty, file=buf) print(nonempty, file=buf) # this should work buf.getvalue() def test_to_string_with_col_space(self): df = DataFrame(np.random.random(size=(1, 3))) c10 = len(df.to_string(col_space=10).split("\n")[1]) c20 = len(df.to_string(col_space=20).split("\n")[1]) c30 = len(df.to_string(col_space=30).split("\n")[1]) assert c10 < c20 < c30 # GH 8230 # col_space wasn't being applied with header=False with_header = df.to_string(col_space=20) with_header_row1 = with_header.splitlines()[1] no_header = df.to_string(col_space=20, header=False) assert len(with_header_row1) == len(no_header) def test_to_string_with_column_specific_col_space_raises(self): df = DataFrame(np.random.random(size=(3, 3)), columns=["a", "b", "c"]) msg = ( "Col_space length\\(\\d+\\) should match " "DataFrame number of columns\\(\\d+\\)" ) with pytest.raises(ValueError, match=msg): df.to_string(col_space=[30, 40]) with pytest.raises(ValueError, match=msg): df.to_string(col_space=[30, 40, 50, 60]) msg = "unknown column" with pytest.raises(ValueError, match=msg): df.to_string(col_space={"a": "foo", "b": 23, "d": 34}) def test_to_string_with_column_specific_col_space(self): df = DataFrame(np.random.random(size=(3, 3)), columns=["a", "b", "c"]) result = df.to_string(col_space={"a": 10, "b": 11, "c": 12}) # 3 separating space + each col_space for (id, a, b, c) assert len(result.split("\n")[1]) == (3 + 1 + 10 + 11 + 12) result = df.to_string(col_space=[10, 11, 12]) assert len(result.split("\n")[1]) == (3 + 1 + 10 + 11 + 12) def test_to_string_truncate_indices(self): for index in [ tm.makeStringIndex, tm.makeUnicodeIndex, tm.makeIntIndex, tm.makeDateIndex, tm.makePeriodIndex, ]: for column in [tm.makeStringIndex]: for h in [10, 20]: for w in [10, 20]: with option_context("display.expand_frame_repr", False): df = DataFrame(index=index(h), columns=column(w)) with option_context("display.max_rows", 15): if h == 20: assert has_vertically_truncated_repr(df) else: assert not has_vertically_truncated_repr(df) with option_context("display.max_columns", 15): if w == 20: assert has_horizontally_truncated_repr(df) else: assert not (has_horizontally_truncated_repr(df)) with option_context( "display.max_rows", 15, "display.max_columns", 15 ): if h == 20 and w == 20: assert has_doubly_truncated_repr(df) else: assert not has_doubly_truncated_repr(df) def test_to_string_truncate_multilevel(self): arrays = [ ["bar", "bar", "baz", "baz", "foo", "foo", "qux", "qux"], ["one", "two", "one", "two", "one", "two", "one", "two"], ] df = DataFrame(index=arrays, columns=arrays) with option_context("display.max_rows", 7, "display.max_columns", 7): assert has_doubly_truncated_repr(df) def test_truncate_with_different_dtypes(self): # 11594, 12045 # when truncated the dtypes of the splits can differ # 11594 import datetime s = Series( [datetime.datetime(2012, 1, 1)] * 10 + [datetime.datetime(1012, 1, 2)] + [datetime.datetime(2012, 1, 3)] * 10 ) with option_context("display.max_rows", 8): result = str(s) assert "object" in result # 12045 df = DataFrame({"text": ["some words"] + [None] * 9}) with option_context("display.max_rows", 8, "display.max_columns", 3): result = str(df) assert "None" in result assert "NaN" not in result def test_truncate_with_different_dtypes_multiindex(self): # GH#13000 df = DataFrame({"Vals": range(100)}) frame = pd.concat([df], keys=["Sweep"], names=["Sweep", "Index"]) result = repr(frame) result2 = repr(frame.iloc[:5]) assert result.startswith(result2) def test_datetimelike_frame(self): # GH 12211 df = DataFrame({"date": [Timestamp("20130101").tz_localize("UTC")] + [NaT] * 5}) with option_context("display.max_rows", 5): result = str(df) assert "2013-01-01 00:00:00+00:00" in result assert "NaT" in result assert "..." in result assert "[6 rows x 1 columns]" in result dts = [Timestamp("2011-01-01", tz="US/Eastern")] * 5 + [NaT] * 5 df = DataFrame({"dt": dts, "x": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]}) with option_context("display.max_rows", 5): expected = ( " dt x\n" "0 2011-01-01 00:00:00-05:00 1\n" "1 2011-01-01 00:00:00-05:00 2\n" ".. ... ..\n" "8 NaT 9\n" "9 NaT 10\n\n" "[10 rows x 2 columns]" ) assert repr(df) == expected dts = [NaT] * 5 + [Timestamp("2011-01-01", tz="US/Eastern")] * 5 df = DataFrame({"dt": dts, "x": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]}) with option_context("display.max_rows", 5): expected = ( " dt x\n" "0 NaT 1\n" "1 NaT 2\n" ".. ... ..\n" "8 2011-01-01 00:00:00-05:00 9\n" "9 2011-01-01 00:00:00-05:00 10\n\n" "[10 rows x 2 columns]" ) assert repr(df) == expected dts = [Timestamp("2011-01-01", tz="Asia/Tokyo")] * 5 + [ Timestamp("2011-01-01", tz="US/Eastern") ] * 5 df = DataFrame({"dt": dts, "x": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]}) with option_context("display.max_rows", 5): expected = ( " dt x\n" "0 2011-01-01 00:00:00+09:00 1\n" "1 2011-01-01 00:00:00+09:00 2\n" ".. ... ..\n" "8 2011-01-01 00:00:00-05:00 9\n" "9 2011-01-01 00:00:00-05:00 10\n\n" "[10 rows x 2 columns]" ) assert repr(df) == expected @pytest.mark.parametrize( "start_date", [ "2017-01-01 23:59:59.999999999", "2017-01-01 23:59:59.99999999", "2017-01-01 23:59:59.9999999", "2017-01-01 23:59:59.999999", "2017-01-01 23:59:59.99999", "2017-01-01 23:59:59.9999", ], ) def test_datetimeindex_highprecision(self, start_date): # GH19030 # Check that high-precision time values for the end of day are # included in repr for DatetimeIndex df = DataFrame({"A": date_range(start=start_date, freq="D", periods=5)}) result = str(df) assert start_date in result dti = date_range(start=start_date, freq="D", periods=5) df = DataFrame({"A": range(5)}, index=dti) result = str(df.index) assert start_date in result def test_nonunicode_nonascii_alignment(self): df = DataFrame([["aa\xc3\xa4\xc3\xa4", 1], ["bbbb", 2]]) rep_str = df.to_string() lines = rep_str.split("\n") assert len(lines[1]) == len(lines[2]) def test_unicode_problem_decoding_as_ascii(self): dm = DataFrame({"c/\u03c3": Series({"test": np.nan})}) str(dm.to_string()) def test_string_repr_encoding(self, datapath): filepath = datapath("io", "parser", "data", "unicode_series.csv") df = read_csv(filepath, header=None, encoding="latin1") repr(df) repr(df[1]) def test_repr_corner(self): # representing infs poses no problems df = DataFrame({"foo": [-np.inf, np.inf]}) repr(df) def test_frame_info_encoding(self): index = ["'Til There Was You (1997)", "ldum klaka (Cold Fever) (1994)"] fmt.set_option("display.max_rows", 1) df = DataFrame(columns=["a", "b", "c"], index=index) repr(df) repr(df.T) fmt.set_option("display.max_rows", 200) def test_wide_repr(self): with option_context( "mode.sim_interactive", True, "display.show_dimensions", True, "display.max_columns", 20, ): max_cols = get_option("display.max_columns") df = DataFrame(tm.rands_array(25, size=(10, max_cols - 1))) set_option("display.expand_frame_repr", False) rep_str = repr(df) assert f"10 rows x {max_cols - 1} columns" in rep_str set_option("display.expand_frame_repr", True) wide_repr = repr(df) assert rep_str != wide_repr with option_context("display.width", 120): wider_repr = repr(df) assert len(wider_repr) < len(wide_repr) reset_option("display.expand_frame_repr") def test_wide_repr_wide_columns(self): with option_context("mode.sim_interactive", True, "display.max_columns", 20): df = DataFrame( np.random.randn(5, 3), columns=["a" * 90, "b" * 90, "c" * 90] ) rep_str = repr(df) assert len(rep_str.splitlines()) == 20 def test_wide_repr_named(self): with option_context("mode.sim_interactive", True, "display.max_columns", 20): max_cols = get_option("display.max_columns") df = DataFrame(tm.rands_array(25, size=(10, max_cols - 1))) df.index.name = "DataFrame Index" set_option("display.expand_frame_repr", False) rep_str = repr(df) set_option("display.expand_frame_repr", True) wide_repr = repr(df) assert rep_str != wide_repr with option_context("display.width", 150): wider_repr = repr(df) assert len(wider_repr) < len(wide_repr) for line in wide_repr.splitlines()[1::13]: assert "DataFrame Index" in line reset_option("display.expand_frame_repr") def test_wide_repr_multiindex(self): with option_context("mode.sim_interactive", True, "display.max_columns", 20): midx = MultiIndex.from_arrays(tm.rands_array(5, size=(2, 10))) max_cols = get_option("display.max_columns") df = DataFrame(tm.rands_array(25, size=(10, max_cols - 1)), index=midx) df.index.names = ["Level 0", "Level 1"] set_option("display.expand_frame_repr", False) rep_str = repr(df) set_option("display.expand_frame_repr", True) wide_repr = repr(df) assert rep_str != wide_repr with option_context("display.width", 150): wider_repr = repr(df) assert len(wider_repr) < len(wide_repr) for line in wide_repr.splitlines()[1::13]: assert "Level 0 Level 1" in line reset_option("display.expand_frame_repr") def test_wide_repr_multiindex_cols(self): with option_context("mode.sim_interactive", True, "display.max_columns", 20): max_cols = get_option("display.max_columns") midx = MultiIndex.from_arrays(tm.rands_array(5, size=(2, 10))) mcols = MultiIndex.from_arrays(tm.rands_array(3, size=(2, max_cols - 1))) df = DataFrame( tm.rands_array(25, (10, max_cols - 1)), index=midx, columns=mcols ) df.index.names = ["Level 0", "Level 1"] set_option("display.expand_frame_repr", False) rep_str = repr(df) set_option("display.expand_frame_repr", True) wide_repr = repr(df) assert rep_str != wide_repr with option_context("display.width", 150, "display.max_columns", 20): wider_repr = repr(df) assert len(wider_repr) < len(wide_repr) reset_option("display.expand_frame_repr") def test_wide_repr_unicode(self): with option_context("mode.sim_interactive", True, "display.max_columns", 20): max_cols = 20 df = DataFrame(tm.rands_array(25, size=(10, max_cols - 1))) set_option("display.expand_frame_repr", False) rep_str = repr(df) set_option("display.expand_frame_repr", True) wide_repr = repr(df) assert rep_str != wide_repr with option_context("display.width", 150): wider_repr = repr(df) assert len(wider_repr) < len(wide_repr) reset_option("display.expand_frame_repr") def test_wide_repr_wide_long_columns(self): with option_context("mode.sim_interactive", True): df = DataFrame({"a": ["a" * 30, "b" * 30], "b": ["c" * 70, "d" * 80]}) result = repr(df) assert "ccccc" in result assert "ddddd" in result def test_long_series(self): n = 1000 s = Series( np.random.randint(-50, 50, n), index=[f"s{x:04d}" for x in range(n)], dtype="int64", ) import re str_rep = str(s) nmatches = len(re.findall("dtype", str_rep)) assert nmatches == 1 def test_index_with_nan(self): # GH 2850 df = DataFrame( { "id1": {0: "1a3", 1: "9h4"}, "id2": {0: np.nan, 1: "d67"}, "id3": {0: "78d", 1: "79d"}, "value": {0: 123, 1: 64}, } ) # multi-index y = df.set_index(["id1", "id2", "id3"]) result = y.to_string() expected = ( " value\nid1 id2 id3 \n" "1a3 NaN 78d 123\n9h4 d67 79d 64" ) assert result == expected # index y = df.set_index("id2") result = y.to_string() expected = ( " id1 id3 value\nid2 \n" "NaN 1a3 78d 123\nd67 9h4 79d 64" ) assert result == expected # with append (this failed in 0.12) y = df.set_index(["id1", "id2"]).set_index("id3", append=True) result = y.to_string() expected = ( " value\nid1 id2 id3 \n" "1a3 NaN 78d 123\n9h4 d67 79d 64" ) assert result == expected # all-nan in mi df2 = df.copy() df2.loc[:, "id2"] = np.nan y = df2.set_index("id2") result = y.to_string() expected = ( " id1 id3 value\nid2 \n" "NaN 1a3 78d 123\nNaN 9h4 79d 64" ) assert result == expected # partial nan in mi df2 = df.copy() df2.loc[:, "id2"] = np.nan y = df2.set_index(["id2", "id3"]) result = y.to_string() expected = ( " id1 value\nid2 id3 \n" "NaN 78d 1a3 123\n 79d 9h4 64" ) assert result == expected df = DataFrame( { "id1": {0: np.nan, 1: "9h4"}, "id2": {0: np.nan, 1: "d67"}, "id3": {0: np.nan, 1: "79d"}, "value": {0: 123, 1: 64}, } ) y = df.set_index(["id1", "id2", "id3"]) result = y.to_string() expected = ( " value\nid1 id2 id3 \n" "NaN NaN NaN 123\n9h4 d67 79d 64" ) assert result == expected def test_to_string(self): # big mixed biggie = DataFrame( {"A": np.random.randn(200), "B": tm.makeStringIndex(200)}, index=np.arange(200), ) biggie.loc[:20, "A"] = np.nan biggie.loc[:20, "B"] = np.nan s = biggie.to_string() buf = StringIO() retval = biggie.to_string(buf=buf) assert retval is None assert buf.getvalue() == s assert isinstance(s, str) # print in right order result = biggie.to_string( columns=["B", "A"], col_space=17, float_format="%.5f".__mod__ ) lines = result.split("\n") header = lines[0].strip().split() joined = "\n".join([re.sub(r"\s+", " ", x).strip() for x in lines[1:]]) recons = read_csv(StringIO(joined), names=header, header=None, sep=" ") tm.assert_series_equal(recons["B"], biggie["B"]) assert recons["A"].count() == biggie["A"].count() assert (np.abs(recons["A"].dropna() - biggie["A"].dropna()) < 0.1).all() # expected = ['B', 'A'] # assert header == expected result = biggie.to_string(columns=["A"], col_space=17) header = result.split("\n")[0].strip().split() expected = ["A"] assert header == expected biggie.to_string(columns=["B", "A"], formatters={"A": lambda x: f"{x:.1f}"}) biggie.to_string(columns=["B", "A"], float_format=str) biggie.to_string(columns=["B", "A"], col_space=12, float_format=str) frame = DataFrame(index=np.arange(200)) frame.to_string() def test_to_string_no_header(self): df = DataFrame({"x": [1, 2, 3], "y": [4, 5, 6]}) df_s = df.to_string(header=False) expected = "0 1 4\n1 2 5\n2 3 6" assert df_s == expected def test_to_string_specified_header(self): df = DataFrame({"x": [1, 2, 3], "y": [4, 5, 6]}) df_s = df.to_string(header=["X", "Y"]) expected = " X Y\n0 1 4\n1 2 5\n2 3 6" assert df_s == expected msg = "Writing 2 cols but got 1 aliases" with pytest.raises(ValueError, match=msg): df.to_string(header=["X"]) def test_to_string_no_index(self): # GH 16839, GH 13032 df = DataFrame({"x": [11, 22], "y": [33, -44], "z": ["AAA", " "]}) df_s = df.to_string(index=False) # Leading space is expected for positive numbers. expected = " x y z\n11 33 AAA\n22 -44 " assert df_s == expected df_s = df[["y", "x", "z"]].to_string(index=False) expected = " y x z\n 33 11 AAA\n-44 22 " assert df_s == expected def test_to_string_line_width_no_index(self): # GH 13998, GH 22505 df = DataFrame({"x": [1, 2, 3], "y": [4, 5, 6]}) df_s = df.to_string(line_width=1, index=False) expected = " x \\\n 1 \n 2 \n 3 \n\n y \n 4 \n 5 \n 6 " assert df_s == expected df = DataFrame({"x": [11, 22, 33], "y": [4, 5, 6]}) df_s = df.to_string(line_width=1, index=False) expected = " x \\\n11 \n22 \n33 \n\n y \n 4 \n 5 \n 6 " assert df_s == expected df = DataFrame({"x": [11, 22, -33], "y": [4, 5, -6]}) df_s = df.to_string(line_width=1, index=False) expected = " x \\\n 11 \n 22 \n-33 \n\n y \n 4 \n 5 \n-6 " assert df_s == expected def test_to_string_float_formatting(self): tm.reset_display_options() fmt.set_option( "display.precision", 5, "display.column_space", 12, "display.notebook_repr_html", False, ) df = DataFrame( {"x": [0, 0.25, 3456.000, 12e45, 1.64e6, 1.7e8, 1.253456, np.pi, -1e6]} ) df_s = df.to_string() if _three_digit_exp(): expected = ( " x\n0 0.00000e+000\n1 2.50000e-001\n" "2 3.45600e+003\n3 1.20000e+046\n4 1.64000e+006\n" "5 1.70000e+008\n6 1.25346e+000\n7 3.14159e+000\n" "8 -1.00000e+006" ) else: expected = ( " x\n0 0.00000e+00\n1 2.50000e-01\n" "2 3.45600e+03\n3 1.20000e+46\n4 1.64000e+06\n" "5 1.70000e+08\n6 1.25346e+00\n7 3.14159e+00\n" "8 -1.00000e+06" ) assert df_s == expected df = DataFrame({"x": [3234, 0.253]}) df_s = df.to_string() expected = " x\n0 3234.000\n1 0.253" assert df_s == expected tm.reset_display_options() assert get_option("display.precision") == 6 df = DataFrame({"x": [1e9, 0.2512]}) df_s = df.to_string() if _three_digit_exp(): expected = " x\n0 1.000000e+009\n1 2.512000e-001" else: expected = " x\n0 1.000000e+09\n1 2.512000e-01" assert df_s == expected def test_to_string_float_format_no_fixed_width(self): # GH 21625 df = DataFrame({"x": [0.19999]}) expected = " x\n0 0.200" assert df.to_string(float_format="%.3f") == expected # GH 22270 df = DataFrame({"x": [100.0]}) expected = " x\n0 100" assert df.to_string(float_format="%.0f") == expected def test_to_string_small_float_values(self): df = DataFrame({"a": [1.5, 1e-17, -5.5e-7]}) result = df.to_string() # sadness per above if _three_digit_exp(): expected = ( " a\n" "0 1.500000e+000\n" "1 1.000000e-017\n" "2 -5.500000e-007" ) else: expected = ( " a\n" "0 1.500000e+00\n" "1 1.000000e-17\n" "2 -5.500000e-07" ) assert result == expected # but not all exactly zero df = df * 0 result = df.to_string() expected = " 0\n0 0\n1 0\n2 -0" def test_to_string_float_index(self): index = Index([1.5, 2, 3, 4, 5]) df = DataFrame(np.arange(5), index=index) result = df.to_string() expected = " 0\n1.5 0\n2.0 1\n3.0 2\n4.0 3\n5.0 4" assert result == expected def test_to_string_complex_float_formatting(self): # GH #25514, 25745 with option_context("display.precision", 5): df = DataFrame( { "x": [ (0.4467846931321966 + 0.0715185102060818j), (0.2739442392974528 + 0.23515228785438969j), (0.26974928742135185 + 0.3250604054898979j), (-1j), ] } ) result = df.to_string() expected = ( " x\n0 0.44678+0.07152j\n" "1 0.27394+0.23515j\n" "2 0.26975+0.32506j\n" "3 -0.00000-1.00000j" ) assert result == expected def test_to_string_ascii_error(self): data = [ ( "0 ", " .gitignore ", " 5 ", " \xe2\x80\xa2\xe2\x80\xa2\xe2\x80\xa2\xe2\x80\xa2\xe2\x80\xa2", ) ] df = DataFrame(data) # it works! repr(df) def test_to_string_int_formatting(self): df = DataFrame({"x": [-15, 20, 25, -35]}) assert issubclass(df["x"].dtype.type, np.integer) output = df.to_string() expected = " x\n0 -15\n1 20\n2 25\n3 -35" assert output == expected def test_to_string_index_formatter(self): df = DataFrame([range(5), range(5, 10), range(10, 15)]) rs = df.to_string(formatters={"__index__": lambda x: "abc"[x]}) xp = """\ 0 1 2 3 4 a 0 1 2 3 4 b 5 6 7 8 9 c 10 11 12 13 14\ """ assert rs == xp def test_to_string_left_justify_cols(self): tm.reset_display_options() df = DataFrame({"x": [3234, 0.253]}) df_s = df.to_string(justify="left") expected = " x \n0 3234.000\n1 0.253" assert df_s == expected def test_to_string_format_na(self): tm.reset_display_options() df = DataFrame( { "A": [np.nan, -1, -2.1234, 3, 4], "B": [np.nan, "foo", "foooo", "fooooo", "bar"], } ) result = df.to_string() expected = ( " A B\n" "0 NaN NaN\n" "1 -1.0000 foo\n" "2 -2.1234 foooo\n" "3 3.0000 fooooo\n" "4 4.0000 bar" ) assert result == expected df = DataFrame( { "A": [np.nan, -1.0, -2.0, 3.0, 4.0], "B": [np.nan, "foo", "foooo", "fooooo", "bar"], } ) result = df.to_string() expected = ( " A B\n" "0 NaN NaN\n" "1 -1.0 foo\n" "2 -2.0 foooo\n" "3 3.0 fooooo\n" "4 4.0 bar" ) assert result == expected def test_to_string_format_inf(self): # Issue #24861 tm.reset_display_options() df = DataFrame( { "A": [-np.inf, np.inf, -1, -2.1234, 3, 4], "B": [-np.inf, np.inf, "foo", "foooo", "fooooo", "bar"], } ) result = df.to_string() expected = ( " A B\n" "0 -inf -inf\n" "1 inf inf\n" "2 -1.0000 foo\n" "3 -2.1234 foooo\n" "4 3.0000 fooooo\n" "5 4.0000 bar" ) assert result == expected df = DataFrame( { "A": [-np.inf, np.inf, -1.0, -2.0, 3.0, 4.0], "B": [-np.inf, np.inf, "foo", "foooo", "fooooo", "bar"], } ) result = df.to_string() expected = ( " A B\n" "0 -inf -inf\n" "1 inf inf\n" "2 -1.0 foo\n" "3 -2.0 foooo\n" "4 3.0 fooooo\n" "5 4.0 bar" ) assert result == expected def test_to_string_decimal(self): # Issue #23614 df = DataFrame({"A": [6.0, 3.1, 2.2]}) expected = " A\n0 6,0\n1 3,1\n2 2,2" assert df.to_string(decimal=",") == expected def test_to_string_line_width(self): df = DataFrame(123, index=range(10, 15), columns=range(30)) s = df.to_string(line_width=80) assert max(len(line) for line in s.split("\n")) == 80 def test_show_dimensions(self): df = DataFrame(123, index=range(10, 15), columns=range(30)) with option_context( "display.max_rows", 10, "display.max_columns", 40, "display.width", 500, "display.expand_frame_repr", "info", "display.show_dimensions", True, ): assert "5 rows" in str(df) assert "5 rows" in df._repr_html_() with option_context( "display.max_rows", 10, "display.max_columns", 40, "display.width", 500, "display.expand_frame_repr", "info", "display.show_dimensions", False, ): assert "5 rows" not in str(df) assert "5 rows" not in df._repr_html_() with option_context( "display.max_rows", 2, "display.max_columns", 2, "display.width", 500, "display.expand_frame_repr", "info", "display.show_dimensions", "truncate", ): assert "5 rows" in str(df) assert "5 rows" in df._repr_html_() with option_context( "display.max_rows", 10, "display.max_columns", 40, "display.width", 500, "display.expand_frame_repr", "info", "display.show_dimensions", "truncate", ): assert "5 rows" not in str(df) assert "5 rows" not in df._repr_html_() def test_repr_html(self, float_frame): df = float_frame df._repr_html_() fmt.set_option("display.max_rows", 1, "display.max_columns", 1) df._repr_html_() fmt.set_option("display.notebook_repr_html", False) df._repr_html_() tm.reset_display_options() df = DataFrame([[1, 2], [3, 4]]) fmt.set_option("display.show_dimensions", True) assert "2 rows" in df._repr_html_() fmt.set_option("display.show_dimensions", False) assert "2 rows" not in df._repr_html_() tm.reset_display_options() def test_repr_html_mathjax(self): df = DataFrame([[1, 2], [3, 4]]) assert "tex2jax_ignore" not in df._repr_html_() with option_context("display.html.use_mathjax", False): assert "tex2jax_ignore" in df._repr_html_() def test_repr_html_wide(self): max_cols = 20 df = DataFrame(tm.rands_array(25, size=(10, max_cols - 1))) with option_context("display.max_rows", 60, "display.max_columns", 20): assert "..." not in df._repr_html_() wide_df = DataFrame(tm.rands_array(25, size=(10, max_cols + 1))) with option_context("display.max_rows", 60, "display.max_columns", 20): assert "..." in wide_df._repr_html_() def test_repr_html_wide_multiindex_cols(self): max_cols = 20 mcols = MultiIndex.from_product( [np.arange(max_cols // 2), ["foo", "bar"]], names=["first", "second"] ) df = DataFrame(tm.rands_array(25, size=(10, len(mcols))), columns=mcols) reg_repr = df._repr_html_() assert "..." not in reg_repr mcols = MultiIndex.from_product( (np.arange(1 + (max_cols // 2)), ["foo", "bar"]), names=["first", "second"] ) df = DataFrame(tm.rands_array(25, size=(10, len(mcols))), columns=mcols) with option_context("display.max_rows", 60, "display.max_columns", 20): assert "..." in df._repr_html_() def test_repr_html_long(self): with option_context("display.max_rows", 60): max_rows = get_option("display.max_rows") h = max_rows - 1 df = DataFrame({"A": np.arange(1, 1 + h), "B": np.arange(41, 41 + h)}) reg_repr = df._repr_html_() assert ".." not in reg_repr assert str(41 + max_rows // 2) in reg_repr h = max_rows + 1 df = DataFrame({"A": np.arange(1, 1 + h), "B": np.arange(41, 41 + h)}) long_repr = df._repr_html_() assert ".." in long_repr assert str(41 + max_rows // 2) not in long_repr assert f"{h} rows " in long_repr assert "2 columns" in long_repr def test_repr_html_float(self): with option_context("display.max_rows", 60): max_rows = get_option("display.max_rows") h = max_rows - 1 df = DataFrame( { "idx": np.linspace(-10, 10, h), "A": np.arange(1, 1 + h), "B": np.arange(41, 41 + h), } ).set_index("idx") reg_repr = df._repr_html_() assert ".." not in reg_repr assert f"<td>{40 + h}</td>" in reg_repr h = max_rows + 1 df = DataFrame( { "idx": np.linspace(-10, 10, h), "A": np.arange(1, 1 + h), "B": np.arange(41, 41 + h), } ).set_index("idx") long_repr = df._repr_html_() assert ".." in long_repr assert "<td>31</td>" not in long_repr assert f"{h} rows " in long_repr assert "2 columns" in long_repr def test_repr_html_long_multiindex(self): max_rows = 60 max_L1 = max_rows // 2 tuples = list(itertools.product(np.arange(max_L1), ["foo", "bar"])) idx = MultiIndex.from_tuples(tuples, names=["first", "second"]) df = DataFrame(np.random.randn(max_L1 * 2, 2), index=idx, columns=["A", "B"]) with option_context("display.max_rows", 60, "display.max_columns", 20): reg_repr = df._repr_html_() assert "..." not in reg_repr tuples = list(itertools.product(np.arange(max_L1 + 1), ["foo", "bar"])) idx = MultiIndex.from_tuples(tuples, names=["first", "second"]) df = DataFrame( np.random.randn((max_L1 + 1) * 2, 2), index=idx, columns=["A", "B"] ) long_repr = df._repr_html_() assert "..." in long_repr def test_repr_html_long_and_wide(self): max_cols = 20 max_rows = 60 h, w = max_rows - 1, max_cols - 1 df = DataFrame({k: np.arange(1, 1 + h) for k in np.arange(w)}) with option_context("display.max_rows", 60, "display.max_columns", 20): assert "..." not in df._repr_html_() h, w = max_rows + 1, max_cols + 1 df = DataFrame({k: np.arange(1, 1 + h) for k in np.arange(w)}) with option_context("display.max_rows", 60, "display.max_columns", 20): assert "..." in df._repr_html_() def test_info_repr(self): # GH#21746 For tests inside a terminal (i.e. not CI) we need to detect # the terminal size to ensure that we try to print something "too big" term_width, term_height = get_terminal_size() max_rows = 60 max_cols = 20 + (max(term_width, 80) - 80) // 4 # Long h, w = max_rows + 1, max_cols - 1 df = DataFrame({k: np.arange(1, 1 + h) for k in np.arange(w)}) assert has_vertically_truncated_repr(df) with option_context("display.large_repr", "info"): assert has_info_repr(df) # Wide h, w = max_rows - 1, max_cols + 1 df = DataFrame({k: np.arange(1, 1 + h) for k in np.arange(w)}) assert has_horizontally_truncated_repr(df) with option_context( "display.large_repr", "info", "display.max_columns", max_cols ): assert has_info_repr(df) def test_info_repr_max_cols(self): # GH #6939 df = DataFrame(np.random.randn(10, 5)) with option_context( "display.large_repr", "info", "display.max_columns", 1, "display.max_info_columns", 4, ): assert has_non_verbose_info_repr(df) with option_context( "display.large_repr", "info", "display.max_columns", 1, "display.max_info_columns", 5, ): assert not has_non_verbose_info_repr(df) # test verbose overrides # fmt.set_option('display.max_info_columns', 4) # exceeded def test_info_repr_html(self): max_rows = 60 max_cols = 20 # Long h, w = max_rows + 1, max_cols - 1 df = DataFrame({k: np.arange(1, 1 + h) for k in np.arange(w)}) assert r"&lt;class" not in df._repr_html_() with option_context("display.large_repr", "info"): assert r"&lt;class" in df._repr_html_() # Wide h, w = max_rows - 1, max_cols + 1 df = DataFrame({k: np.arange(1, 1 + h) for k in np.arange(w)}) assert "<class" not in df._repr_html_() with option_context( "display.large_repr", "info", "display.max_columns", max_cols ): assert "&lt;class" in df._repr_html_() def test_fake_qtconsole_repr_html(self, float_frame): df = float_frame def get_ipython(): return {"config": {"KernelApp": {"parent_appname": "ipython-qtconsole"}}} repstr = df._repr_html_() assert repstr is not None fmt.set_option("display.max_rows", 5, "display.max_columns", 2) repstr = df._repr_html_() assert "class" in repstr # info fallback tm.reset_display_options() def test_pprint_pathological_object(self): """ If the test fails, it at least won't hang. """ class A: def __getitem__(self, key): return 3 # obviously simplified df = DataFrame([A()]) repr(df) # just don't die def test_float_trim_zeros(self): vals = [ 2.08430917305e10, 3.52205017305e10, 2.30674817305e10, 2.03954217305e10, 5.59897817305e10, ] skip = True for line in repr(DataFrame({"A": vals})).split("\n")[:-2]: if line.startswith("dtype:"): continue if _three_digit_exp(): assert ("+010" in line) or skip else: assert ("+10" in line) or skip skip = False @pytest.mark.parametrize( "data, expected", [ (["3.50"], "0 3.50\ndtype: object"), ([1.20, "1.00"], "0 1.2\n1 1.00\ndtype: object"), ([np.nan], "0 NaN\ndtype: float64"), ([None], "0 None\ndtype: object"), (["3.50", np.nan], "0 3.50\n1 NaN\ndtype: object"), ([3.50, np.nan], "0 3.5\n1 NaN\ndtype: float64"), ([3.50, np.nan, "3.50"], "0 3.5\n1 NaN\n2 3.50\ndtype: object"), ([3.50, None, "3.50"], "0 3.5\n1 None\n2 3.50\ndtype: object"), ], ) def test_repr_str_float_truncation(self, data, expected): # GH#38708 series = Series(data) result = repr(series) assert result == expected @pytest.mark.parametrize( "float_format,expected", [ ("{:,.0f}".format, "0 1,000\n1 test\ndtype: object"), ("{:.4f}".format, "0 1000.0000\n1 test\ndtype: object"), ], ) def test_repr_float_format_in_object_col(self, float_format, expected): # GH#40024 df = Series([1000.0, "test"]) with option_context("display.float_format", float_format): result = repr(df) assert result == expected def test_dict_entries(self): df = DataFrame({"A": [{"a": 1, "b": 2}]}) val = df.to_string() assert "'a': 1" in val assert "'b': 2" in val def test_categorical_columns(self): # GH35439 data = [[4, 2], [3, 2], [4, 3]] cols = ["aaaaaaaaa", "b"] df = DataFrame(data, columns=cols) df_cat_cols = DataFrame(data, columns=pd.CategoricalIndex(cols)) assert df.to_string() == df_cat_cols.to_string() def test_period(self): # GH 12615 df = DataFrame( { "A": pd.period_range("2013-01", periods=4, freq="M"), "B": [ pd.Period("2011-01", freq="M"), pd.Period("2011-02-01", freq="D"), pd.Period("2011-03-01 09:00", freq="H"), pd.Period("2011-04", freq="M"), ], "C": list("abcd"), } ) exp = ( " A B C\n" "0 2013-01 2011-01 a\n" "1 2013-02 2011-02-01 b\n" "2 2013-03 2011-03-01 09:00 c\n" "3 2013-04 2011-04 d" ) assert str(df) == exp @pytest.mark.parametrize( "length, max_rows, min_rows, expected", [ (10, 10, 10, 10), (10, 10, None, 10), (10, 8, None, 8), (20, 30, 10, 30), # max_rows > len(frame), hence max_rows (50, 30, 10, 10), # max_rows < len(frame), hence min_rows (100, 60, 10, 10), # same (60, 60, 10, 60), # edge case (61, 60, 10, 10), # edge case ], ) def test_max_rows_fitted(self, length, min_rows, max_rows, expected): """Check that display logic is correct. GH #37359 See description here: https://pandas.pydata.org/docs/dev/user_guide/options.html#frequently-used-options """ formatter = fmt.DataFrameFormatter( DataFrame(np.random.rand(length, 3)), max_rows=max_rows, min_rows=min_rows, ) result = formatter.max_rows_fitted assert result == expected def gen_series_formatting(): s1 = Series(["a"] * 100) s2 = Series(["ab"] * 100) s3 = Series(["a", "ab", "abc", "abcd", "abcde", "abcdef"]) s4 = s3[::-1] test_sers = {"onel": s1, "twol": s2, "asc": s3, "desc": s4} return test_sers class TestSeriesFormatting: def setup_method(self, method): self.ts = tm.makeTimeSeries() def test_repr_unicode(self): s = Series(["\u03c3"] * 10) repr(s) a = Series(["\u05d0"] * 1000) a.name = "title1" repr(a) def test_to_string(self): buf = StringIO() s = self.ts.to_string() retval = self.ts.to_string(buf=buf) assert retval is None assert buf.getvalue().strip() == s # pass float_format format = "%.4f".__mod__ result = self.ts.to_string(float_format=format) result = [x.split()[1] for x in result.split("\n")[:-1]] expected = [format(x) for x in self.ts] assert result == expected # empty string result = self.ts[:0].to_string() assert result == "Series([], Freq: B)" result = self.ts[:0].to_string(length=0) assert result == "Series([], Freq: B)" # name and length cp = self.ts.copy() cp.name = "foo" result = cp.to_string(length=True, name=True, dtype=True) last_line = result.split("\n")[-1].strip() assert last_line == (f"Freq: B, Name: foo, Length: {len(cp)}, dtype: float64") def test_freq_name_separation(self): s = Series( np.random.randn(10), index=date_range("1/1/2000", periods=10), name=0 ) result = repr(s) assert "Freq: D, Name: 0" in result def test_to_string_mixed(self): s = Series(["foo", np.nan, -1.23, 4.56]) result = s.to_string() expected = "0 foo\n" + "1 NaN\n" + "2 -1.23\n" + "3 4.56" assert result == expected # but don't count NAs as floats s = Series(["foo", np.nan, "bar", "baz"]) result = s.to_string() expected = "0 foo\n" + "1 NaN\n" + "2 bar\n" + "3 baz" assert result == expected s = Series(["foo", 5, "bar", "baz"]) result = s.to_string() expected = "0 foo\n" + "1 5\n" + "2 bar\n" + "3 baz" assert result == expected def test_to_string_float_na_spacing(self): s = Series([0.0, 1.5678, 2.0, -3.0, 4.0]) s[::2] = np.nan result = s.to_string() expected = ( "0 NaN\n" + "1 1.5678\n" + "2 NaN\n" + "3 -3.0000\n" + "4 NaN" ) assert result == expected def test_to_string_without_index(self): # GH 11729 Test index=False option s = Series([1, 2, 3, 4]) result = s.to_string(index=False) expected = "1\n" + "2\n" + "3\n" + "4" assert result == expected def test_unicode_name_in_footer(self): s = Series([1, 2], name="\u05e2\u05d1\u05e8\u05d9\u05ea") sf = fmt.SeriesFormatter(s, name="\u05e2\u05d1\u05e8\u05d9\u05ea") sf._get_footer() # should not raise exception def test_east_asian_unicode_series(self): # not aligned properly because of east asian width # unicode index s = Series(["a", "bb", "CCC", "D"], index=["あ", "いい", "ううう", "ええええ"]) expected = "あ a\nいい bb\nううう CCC\nええええ D\ndtype: object" assert repr(s) == expected # unicode values s = Series(["あ", "いい", "ううう", "ええええ"], index=["a", "bb", "c", "ddd"]) expected = "a あ\nbb いい\nc ううう\nddd ええええ\ndtype: object" assert repr(s) == expected # both s = Series(["あ", "いい", "ううう", "ええええ"], index=["ああ", "いいいい", "う", "えええ"]) expected = ( "ああ あ\nいいいい いい\nう ううう\nえええ ええええ\ndtype: object" ) assert repr(s) == expected # unicode footer s = Series( ["あ", "いい", "ううう", "ええええ"], index=["ああ", "いいいい", "う", "えええ"], name="おおおおおおお" ) expected = ( "ああ あ\nいいいい いい\nう ううう\n" "えええ ええええ\nName: おおおおおおお, dtype: object" ) assert repr(s) == expected # MultiIndex idx = MultiIndex.from_tuples( [("あ", "いい"), ("う", "え"), ("おおお", "かかかか"), ("き", "くく")] ) s = Series([1, 22, 3333, 44444], index=idx) expected = ( "あ いい 1\n" "う え 22\n" "おおお かかかか 3333\n" "き くく 44444\ndtype: int64" ) assert repr(s) == expected # object dtype, shorter than unicode repr s = Series([1, 22, 3333, 44444], index=[1, "AB", np.nan, "あああ"]) expected = ( "1 1\nAB 22\nNaN 3333\nあああ 44444\ndtype: int64" ) assert repr(s) == expected # object dtype, longer than unicode repr s = Series( [1, 22, 3333, 44444], index=[1, "AB", Timestamp("2011-01-01"), "あああ"] ) expected = ( "1 1\n" "AB 22\n" "2011-01-01 00:00:00 3333\n" "あああ 44444\ndtype: int64" ) assert repr(s) == expected # truncate with option_context("display.max_rows", 3): s = Series(["あ", "いい", "ううう", "ええええ"], name="おおおおおおお") expected = ( "0 あ\n ... \n" "3 ええええ\n" "Name: おおおおおおお, Length: 4, dtype: object" ) assert repr(s) == expected s.index = ["ああ", "いいいい", "う", "えええ"] expected = ( "ああ あ\n ... \n" "えええ ええええ\n" "Name: おおおおおおお, Length: 4, dtype: object" ) assert repr(s) == expected # Enable Unicode option ----------------------------------------- with option_context("display.unicode.east_asian_width", True): # unicode index s = Series(["a", "bb", "CCC", "D"], index=["あ", "いい", "ううう", "ええええ"]) expected = ( "あ a\nいい bb\nううう CCC\n" "ええええ D\ndtype: object" ) assert repr(s) == expected # unicode values s = Series(["あ", "いい", "ううう", "ええええ"], index=["a", "bb", "c", "ddd"]) expected = ( "a あ\nbb いい\nc ううう\n" "ddd ええええ\ndtype: object" ) assert repr(s) == expected # both s = Series(["あ", "いい", "ううう", "ええええ"], index=["ああ", "いいいい", "う", "えええ"]) expected = ( "ああ あ\n" "いいいい いい\n" "う ううう\n" "えええ ええええ\ndtype: object" ) assert repr(s) == expected # unicode footer s = Series( ["あ", "いい", "ううう", "ええええ"], index=["ああ", "いいいい", "う", "えええ"], name="おおおおおおお", ) expected = ( "ああ あ\n" "いいいい いい\n" "う ううう\n" "えええ ええええ\n" "Name: おおおおおおお, dtype: object" ) assert repr(s) == expected # MultiIndex idx = MultiIndex.from_tuples( [("あ", "いい"), ("う", "え"), ("おおお", "かかかか"), ("き", "くく")] ) s = Series([1, 22, 3333, 44444], index=idx) expected = ( "あ いい 1\n" "う え 22\n" "おおお かかかか 3333\n" "き くく 44444\n" "dtype: int64" ) assert repr(s) == expected # object dtype, shorter than unicode repr s = Series([1, 22, 3333, 44444], index=[1, "AB", np.nan, "あああ"]) expected = ( "1 1\nAB 22\nNaN 3333\n" "あああ 44444\ndtype: int64" ) assert repr(s) == expected # object dtype, longer than unicode repr s = Series( [1, 22, 3333, 44444], index=[1, "AB", Timestamp("2011-01-01"), "あああ"], ) expected = ( "1 1\n" "AB 22\n" "2011-01-01 00:00:00 3333\n" "あああ 44444\ndtype: int64" ) assert repr(s) == expected # truncate with option_context("display.max_rows", 3): s = Series(["あ", "いい", "ううう", "ええええ"], name="おおおおおおお") expected = ( "0 あ\n ... \n" "3 ええええ\n" "Name: おおおおおおお, Length: 4, dtype: object" ) assert repr(s) == expected s.index = ["ああ", "いいいい", "う", "えええ"] expected = ( "ああ あ\n" " ... \n" "えええ ええええ\n" "Name: おおおおおおお, Length: 4, dtype: object" ) assert repr(s) == expected # ambiguous unicode s = Series( ["¡¡", "い¡¡", "ううう", "ええええ"], index=["ああ", "¡¡¡¡いい", "¡¡", "えええ"] ) expected = ( "ああ ¡¡\n" "¡¡¡¡いい い¡¡\n" "¡¡ ううう\n" "えええ ええええ\ndtype: object" ) assert repr(s) == expected def test_float_trim_zeros(self): vals = [ 2.08430917305e10, 3.52205017305e10, 2.30674817305e10, 2.03954217305e10, 5.59897817305e10, ] for line in repr(Series(vals)).split("\n"): if line.startswith("dtype:"): continue if _three_digit_exp(): assert "+010" in line else: assert "+10" in line def test_datetimeindex(self): index = date_range("20130102", periods=6) s = Series(1, index=index) result = s.to_string() assert "2013-01-02" in result # nat in index s2 = Series(2, index=[Timestamp("20130111"), NaT]) s = s2.append(s) result = s.to_string() assert "NaT" in result # nat in summary result = str(s2.index) assert "NaT" in result @pytest.mark.parametrize( "start_date", [ "2017-01-01 23:59:59.999999999", "2017-01-01 23:59:59.99999999", "2017-01-01 23:59:59.9999999", "2017-01-01 23:59:59.999999", "2017-01-01 23:59:59.99999", "2017-01-01 23:59:59.9999", ], ) def test_datetimeindex_highprecision(self, start_date): # GH19030 # Check that high-precision time values for the end of day are # included in repr for DatetimeIndex s1 = Series(date_range(start=start_date, freq="D", periods=5)) result = str(s1) assert start_date in result dti = date_range(start=start_date, freq="D", periods=5) s2 = Series(3, index=dti) result = str(s2.index) assert start_date in result def test_timedelta64(self): from datetime import ( datetime, timedelta, ) Series(np.array([1100, 20], dtype="timedelta64[ns]")).to_string() s = Series(date_range("2012-1-1", periods=3, freq="D")) # GH2146 # adding NaTs y = s - s.shift(1) result = y.to_string() assert "1 days" in result assert "00:00:00" not in result assert "NaT" in result # with frac seconds o = Series([datetime(2012, 1, 1, microsecond=150)] * 3) y = s - o result = y.to_string() assert "-1 days +23:59:59.999850" in result # rounding? o = Series([datetime(2012, 1, 1, 1)] * 3) y = s - o result = y.to_string() assert "-1 days +23:00:00" in result assert "1 days 23:00:00" in result o = Series([datetime(2012, 1, 1, 1, 1)] * 3) y = s - o result = y.to_string() assert "-1 days +22:59:00" in result assert "1 days 22:59:00" in result o = Series([datetime(2012, 1, 1, 1, 1, microsecond=150)] * 3) y = s - o result = y.to_string() assert "-1 days +22:58:59.999850" in result assert "0 days 22:58:59.999850" in result # neg time td = timedelta(minutes=5, seconds=3) s2 = Series(date_range("2012-1-1", periods=3, freq="D")) + td y = s - s2 result = y.to_string() assert "-1 days +23:54:57" in result td = timedelta(microseconds=550) s2 = Series(date_range("2012-1-1", periods=3, freq="D")) + td y = s - td result = y.to_string() assert "2012-01-01 23:59:59.999450" in result # no boxing of the actual elements td = Series(pd.timedelta_range("1 days", periods=3)) result = td.to_string() assert result == "0 1 days\n1 2 days\n2 3 days" def test_mixed_datetime64(self): df = DataFrame({"A": [1, 2], "B": ["2012-01-01", "2012-01-02"]}) df["B"] = pd.to_datetime(df.B) result = repr(df.loc[0]) assert "2012-01-01" in result def test_period(self): # GH 12615 index = pd.period_range("2013-01", periods=6, freq="M") s = Series(np.arange(6, dtype="int64"), index=index) exp = ( "2013-01 0\n" "2013-02 1\n" "2013-03 2\n" "2013-04 3\n" "2013-05 4\n" "2013-06 5\n" "Freq: M, dtype: int64" ) assert str(s) == exp s = Series(index) exp = ( "0 2013-01\n" "1 2013-02\n" "2 2013-03\n" "3 2013-04\n" "4 2013-05\n" "5 2013-06\n" "dtype: period[M]" ) assert str(s) == exp # periods with mixed freq s = Series( [ pd.Period("2011-01", freq="M"), pd.Period("2011-02-01", freq="D"), pd.Period("2011-03-01 09:00", freq="H"), ] ) exp = ( "0 2011-01\n1 2011-02-01\n" "2 2011-03-01 09:00\ndtype: object" ) assert str(s) == exp def test_max_multi_index_display(self): # GH 7101 # doc example (indexing.rst) # multi-index arrays = [ ["bar", "bar", "baz", "baz", "foo", "foo", "qux", "qux"], ["one", "two", "one", "two", "one", "two", "one", "two"], ] tuples = list(zip(*arrays)) index = MultiIndex.from_tuples(tuples, names=["first", "second"]) s = Series(np.random.randn(8), index=index) with option_context("display.max_rows", 10): assert len(str(s).split("\n")) == 10 with option_context("display.max_rows", 3): assert len(str(s).split("\n")) == 5 with option_context("display.max_rows", 2): assert len(str(s).split("\n")) == 5 with option_context("display.max_rows", 1): assert len(str(s).split("\n")) == 4 with option_context("display.max_rows", 0): assert len(str(s).split("\n")) == 10 # index s = Series(np.random.randn(8), None) with option_context("display.max_rows", 10): assert len(str(s).split("\n")) == 9 with option_context("display.max_rows", 3): assert len(str(s).split("\n")) == 4 with option_context("display.max_rows", 2): assert len(str(s).split("\n")) == 4 with option_context("display.max_rows", 1): assert len(str(s).split("\n")) == 3 with option_context("display.max_rows", 0): assert len(str(s).split("\n")) == 9 # Make sure #8532 is fixed def test_consistent_format(self): s = Series([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.9999, 1, 1] * 10) with option_context("display.max_rows", 10, "display.show_dimensions", False): res = repr(s) exp = ( "0 1.0000\n1 1.0000\n2 1.0000\n3 " "1.0000\n4 1.0000\n ... \n125 " "1.0000\n126 1.0000\n127 0.9999\n128 " "1.0000\n129 1.0000\ndtype: float64" ) assert res == exp def chck_ncols(self, s): with option_context("display.max_rows", 10): res = repr(s) lines = res.split("\n") lines = [ line for line in repr(s).split("\n") if not re.match(r"[^\.]*\.+", line) ][:-1] ncolsizes = len({len(line.strip()) for line in lines}) assert ncolsizes == 1 def test_format_explicit(self): test_sers = gen_series_formatting() with option_context("display.max_rows", 4, "display.show_dimensions", False): res = repr(test_sers["onel"]) exp = "0 a\n1 a\n ..\n98 a\n99 a\ndtype: object" assert exp == res res = repr(test_sers["twol"]) exp = "0 ab\n1 ab\n ..\n98 ab\n99 ab\ndtype: object" assert exp == res res = repr(test_sers["asc"]) exp = ( "0 a\n1 ab\n ... \n4 abcde\n5 " "abcdef\ndtype: object" ) assert exp == res res = repr(test_sers["desc"]) exp = ( "5 abcdef\n4 abcde\n ... \n1 ab\n0 " "a\ndtype: object" ) assert exp == res def test_ncols(self): test_sers = gen_series_formatting() for s in test_sers.values(): self.chck_ncols(s) def test_max_rows_eq_one(self): s = Series(range(10), dtype="int64") with option_context("display.max_rows", 1): strrepr = repr(s).split("\n") exp1 = ["0", "0"] res1 = strrepr[0].split() assert exp1 == res1 exp2 = [".."] res2 = strrepr[1].split() assert exp2 == res2 def test_truncate_ndots(self): def getndots(s): return len(re.match(r"[^\.]*(\.*)", s).groups()[0]) s = Series([0, 2, 3, 6]) with option_context("display.max_rows", 2): strrepr = repr(s).replace("\n", "") assert getndots(strrepr) == 2 s = Series([0, 100, 200, 400]) with option_context("display.max_rows", 2): strrepr = repr(s).replace("\n", "") assert getndots(strrepr) == 3 def test_show_dimensions(self): # gh-7117 s = Series(range(5)) assert "Length" not in repr(s) with option_context("display.max_rows", 4): assert "Length" in repr(s) with option_context("display.show_dimensions", True): assert "Length" in repr(s) with option_context("display.max_rows", 4, "display.show_dimensions", False): assert "Length" not in repr(s) def test_repr_min_rows(self): s = Series(range(20)) # default setting no truncation even if above min_rows assert ".." not in repr(s) s = Series(range(61)) # default of max_rows 60 triggers truncation if above assert ".." in repr(s) with option_context("display.max_rows", 10, "display.min_rows", 4): # truncated after first two rows assert ".." in repr(s) assert "2 " not in repr(s) with option_context("display.max_rows", 12, "display.min_rows", None): # when set to None, follow value of max_rows assert "5 5" in repr(s) with option_context("display.max_rows", 10, "display.min_rows", 12): # when set value higher as max_rows, use the minimum assert "5 5" not in repr(s) with option_context("display.max_rows", None, "display.min_rows", 12): # max_rows of None -> never truncate assert ".." not in repr(s) def test_to_string_name(self): s = Series(range(100), dtype="int64") s.name = "myser" res = s.to_string(max_rows=2, name=True) exp = "0 0\n ..\n99 99\nName: myser" assert res == exp res = s.to_string(max_rows=2, name=False) exp = "0 0\n ..\n99 99" assert res == exp def test_to_string_dtype(self): s = Series(range(100), dtype="int64") res = s.to_string(max_rows=2, dtype=True) exp = "0 0\n ..\n99 99\ndtype: int64" assert res == exp res = s.to_string(max_rows=2, dtype=False) exp = "0 0\n ..\n99 99" assert res == exp def test_to_string_length(self): s = Series(range(100), dtype="int64") res = s.to_string(max_rows=2, length=True) exp = "0 0\n ..\n99 99\nLength: 100" assert res == exp def test_to_string_na_rep(self): s = Series(index=range(100), dtype=np.float64) res = s.to_string(na_rep="foo", max_rows=2) exp = "0 foo\n ..\n99 foo" assert res == exp def test_to_string_float_format(self): s = Series(range(10), dtype="float64") res = s.to_string(float_format=lambda x: f"{x:2.1f}", max_rows=2) exp = "0 0.0\n ..\n9 9.0" assert res == exp def test_to_string_header(self): s = Series(range(10), dtype="int64") s.index.name = "foo" res = s.to_string(header=True, max_rows=2) exp = "foo\n0 0\n ..\n9 9" assert res == exp res = s.to_string(header=False, max_rows=2) exp = "0 0\n ..\n9 9" assert res == exp def test_to_string_multindex_header(self): # GH 16718 df = DataFrame({"a": [0], "b": [1], "c": [2], "d": [3]}).set_index(["a", "b"]) res = df.to_string(header=["r1", "r2"]) exp = " r1 r2\na b \n0 1 2 3" assert res == exp def test_to_string_empty_col(self): # GH 13653 s = Series(["", "Hello", "World", "", "", "Mooooo", "", ""]) res = s.to_string(index=False) exp = " \n Hello\n World\n \n \nMooooo\n \n " assert re.match(exp, res) class TestGenericArrayFormatter: def test_1d_array(self): # GenericArrayFormatter is used on types for which there isn't a dedicated # formatter. np.bool_ is one of those types. obj = fmt.GenericArrayFormatter(np.array([True, False])) res = obj.get_result() assert len(res) == 2 # Results should be right-justified. assert res[0] == " True" assert res[1] == " False" def test_2d_array(self): obj = fmt.GenericArrayFormatter(np.array([[True, False], [False, True]])) res = obj.get_result() assert len(res) == 2 assert res[0] == " [True, False]" assert res[1] == " [False, True]" def test_3d_array(self): obj = fmt.GenericArrayFormatter( np.array([[[True, True], [False, False]], [[False, True], [True, False]]]) ) res = obj.get_result() assert len(res) == 2 assert res[0] == " [[True, True], [False, False]]" assert res[1] == " [[False, True], [True, False]]" def test_2d_extension_type(self): # GH 33770 # Define a stub extension type with just enough code to run Series.__repr__() class DtypeStub(pd.api.extensions.ExtensionDtype): @property def type(self): return np.ndarray @property def name(self): return "DtypeStub" class ExtTypeStub(pd.api.extensions.ExtensionArray): def __len__(self): return 2 def __getitem__(self, ix): return [ix == 1, ix == 0] @property def dtype(self): return DtypeStub() series = Series(ExtTypeStub()) res = repr(series) # This line crashed before #33770 was fixed. expected = "0 [False True]\n" + "1 [ True False]\n" + "dtype: DtypeStub" assert res == expected def _three_digit_exp(): return f"{1.7e8:.4g}" == "1.7e+008" class TestFloatArrayFormatter: def test_misc(self): obj = fmt.FloatArrayFormatter(np.array([], dtype=np.float64)) result = obj.get_result() assert len(result) == 0 def test_format(self): obj = fmt.FloatArrayFormatter(np.array([12, 0], dtype=np.float64)) result = obj.get_result() assert result[0] == " 12.0" assert result[1] == " 0.0" def test_output_display_precision_trailing_zeroes(self): # Issue #20359: trimming zeros while there is no decimal point # Happens when display precision is set to zero with option_context("display.precision", 0): s = Series([840.0, 4200.0]) expected_output = "0 840\n1 4200\ndtype: float64" assert str(s) == expected_output def test_output_significant_digits(self): # Issue #9764 # In case default display precision changes: with option_context("display.precision", 6): # DataFrame example from issue #9764 d = DataFrame( { "col1": [ 9.999e-8, 1e-7, 1.0001e-7, 2e-7, 4.999e-7, 5e-7, 5.0001e-7, 6e-7, 9.999e-7, 1e-6, 1.0001e-6, 2e-6, 4.999e-6, 5e-6, 5.0001e-6, 6e-6, ] } ) expected_output = { (0, 6): " col1\n" "0 9.999000e-08\n" "1 1.000000e-07\n" "2 1.000100e-07\n" "3 2.000000e-07\n" "4 4.999000e-07\n" "5 5.000000e-07", (1, 6): " col1\n" "1 1.000000e-07\n" "2 1.000100e-07\n" "3 2.000000e-07\n" "4 4.999000e-07\n" "5 5.000000e-07", (1, 8): " col1\n" "1 1.000000e-07\n" "2 1.000100e-07\n" "3 2.000000e-07\n" "4 4.999000e-07\n" "5 5.000000e-07\n" "6 5.000100e-07\n" "7 6.000000e-07", (8, 16): " col1\n" "8 9.999000e-07\n" "9 1.000000e-06\n" "10 1.000100e-06\n" "11 2.000000e-06\n" "12 4.999000e-06\n" "13 5.000000e-06\n" "14 5.000100e-06\n" "15 6.000000e-06", (9, 16): " col1\n" "9 0.000001\n" "10 0.000001\n" "11 0.000002\n" "12 0.000005\n" "13 0.000005\n" "14 0.000005\n" "15 0.000006", } for (start, stop), v in expected_output.items(): assert str(d[start:stop]) == v def test_too_long(self): # GH 10451 with option_context("display.precision", 4): # need both a number > 1e6 and something that normally formats to # having length > display.precision + 6 df = DataFrame({"x": [12345.6789]}) assert str(df) == " x\n0 12345.6789" df = DataFrame({"x": [2e6]}) assert str(df) == " x\n0 2000000.0" df = DataFrame({"x": [12345.6789, 2e6]}) assert str(df) == " x\n0 1.2346e+04\n1 2.0000e+06" class TestRepr_timedelta64: def test_none(self): delta_1d = pd.to_timedelta(1, unit="D") delta_0d = pd.to_timedelta(0, unit="D") delta_1s = pd.to_timedelta(1, unit="s") delta_500ms = pd.to_timedelta(500, unit="ms") drepr = lambda x: x._repr_base() assert drepr(delta_1d) == "1 days" assert drepr(-delta_1d) == "-1 days" assert drepr(delta_0d) == "0 days" assert drepr(delta_1s) == "0 days 00:00:01" assert drepr(delta_500ms) == "0 days 00:00:00.500000" assert drepr(delta_1d + delta_1s) == "1 days 00:00:01" assert drepr(-delta_1d + delta_1s) == "-1 days +00:00:01" assert drepr(delta_1d + delta_500ms) == "1 days 00:00:00.500000" assert drepr(-delta_1d + delta_500ms) == "-1 days +00:00:00.500000" def test_sub_day(self): delta_1d = pd.to_timedelta(1, unit="D") delta_0d = pd.to_timedelta(0, unit="D") delta_1s = pd.to_timedelta(1, unit="s") delta_500ms = pd.to_timedelta(500, unit="ms") drepr = lambda x: x._repr_base(format="sub_day") assert drepr(delta_1d) == "1 days" assert drepr(-delta_1d) == "-1 days" assert drepr(delta_0d) == "00:00:00" assert drepr(delta_1s) == "00:00:01" assert drepr(delta_500ms) == "00:00:00.500000" assert drepr(delta_1d + delta_1s) == "1 days 00:00:01" assert drepr(-delta_1d + delta_1s) == "-1 days +00:00:01" assert drepr(delta_1d + delta_500ms) == "1 days 00:00:00.500000" assert drepr(-delta_1d + delta_500ms) == "-1 days +00:00:00.500000" def test_long(self): delta_1d = pd.to_timedelta(1, unit="D") delta_0d = pd.to_timedelta(0, unit="D") delta_1s = pd.to_timedelta(1, unit="s") delta_500ms = pd.to_timedelta(500, unit="ms") drepr = lambda x: x._repr_base(format="long") assert drepr(delta_1d) == "1 days 00:00:00" assert drepr(-delta_1d) == "-1 days +00:00:00" assert drepr(delta_0d) == "0 days 00:00:00" assert drepr(delta_1s) == "0 days 00:00:01" assert drepr(delta_500ms) == "0 days 00:00:00.500000" assert drepr(delta_1d + delta_1s) == "1 days 00:00:01" assert drepr(-delta_1d + delta_1s) == "-1 days +00:00:01" assert drepr(delta_1d + delta_500ms) == "1 days 00:00:00.500000" assert drepr(-delta_1d + delta_500ms) == "-1 days +00:00:00.500000" def test_all(self): delta_1d = pd.to_timedelta(1, unit="D") delta_0d = pd.to_timedelta(0, unit="D") delta_1ns = pd.to_timedelta(1, unit="ns") drepr = lambda x: x._repr_base(format="all") assert drepr(delta_1d) == "1 days 00:00:00.000000000" assert drepr(-delta_1d) == "-1 days +00:00:00.000000000" assert drepr(delta_0d) == "0 days 00:00:00.000000000" assert drepr(delta_1ns) == "0 days 00:00:00.000000001" assert drepr(-delta_1d + delta_1ns) == "-1 days +00:00:00.000000001" class TestTimedelta64Formatter: def test_days(self): x = pd.to_timedelta(list(range(5)) + [NaT], unit="D") result = fmt.Timedelta64Formatter(x, box=True).get_result() assert result[0].strip() == "'0 days'" assert result[1].strip() == "'1 days'" result = fmt.Timedelta64Formatter(x[1:2], box=True).get_result() assert result[0].strip() == "'1 days'" result = fmt.Timedelta64Formatter(x, box=False).get_result() assert result[0].strip() == "0 days" assert result[1].strip() == "1 days" result = fmt.Timedelta64Formatter(x[1:2], box=False).get_result() assert result[0].strip() == "1 days" def test_days_neg(self): x = pd.to_timedelta(list(range(5)) + [NaT], unit="D") result = fmt.Timedelta64Formatter(-x, box=True).get_result() assert result[0].strip() == "'0 days'" assert result[1].strip() == "'-1 days'" def test_subdays(self): y = pd.to_timedelta(list(range(5)) + [NaT], unit="s") result = fmt.Timedelta64Formatter(y, box=True).get_result() assert result[0].strip() == "'0 days 00:00:00'" assert result[1].strip() == "'0 days 00:00:01'" def test_subdays_neg(self): y = pd.to_timedelta(list(range(5)) + [NaT], unit="s") result = fmt.Timedelta64Formatter(-y, box=True).get_result() assert result[0].strip() == "'0 days 00:00:00'" assert result[1].strip() == "'-1 days +23:59:59'" def test_zero(self): x = pd.to_timedelta(list(range(1)) + [NaT], unit="D") result = fmt.Timedelta64Formatter(x, box=True).get_result() assert result[0].strip() == "'0 days'" x = pd.to_timedelta(list(range(1)), unit="D") result = fmt.Timedelta64Formatter(x, box=True).get_result() assert result[0].strip() == "'0 days'" class TestDatetime64Formatter: def test_mixed(self): x = Series([datetime(2013, 1, 1), datetime(2013, 1, 1, 12), NaT]) result =
fmt.Datetime64Formatter(x)
pandas.io.formats.format.Datetime64Formatter
""" Pull my Garmin sleep data via json requests. This script was adapted from: https://github.com/kristjanr/my-quantified-sleep The aforementioned code required the user to manually define headers and cookies. It also stored all of the data within Night objects. My modifications include using selenium to drive a Chrome browser. This avoids the hassle of getting headers and cookies manually (the cookies would have to be updated everytime the Garmin session expired). It also segments data requests because Garmin will respond with an error if more than 32 days are requested at once. Lastly, data is stored as a pandas dataframe and then written to a user-defined directory as a pickle file. Data is this processed and merged with older data from my Microsft smartwatch. The merged data is also saved as pandas dataframes in pickle files. Lastly, sunrise and sunset data is downloaded for all days in the sleep dataset. This data is also archived as a pandas dataframe and saved as a pickle file. The data update process hs been broken into steps so that progress can be passed to the Dash app. """ # import base packages import datetime, json, os, re, sys from itertools import chain from os.path import isfile # import installed packages import pytz, requests, chardet, brotli import numpy as np import pandas as pd from pandas.tseries.holiday import USFederalHolidayCalendar as calendar from seleniumwire import webdriver from selenium.webdriver.common.keys import Keys from selenium.webdriver.support import expected_conditions as ec from selenium.webdriver.support.ui import WebDriverWait # input variables if os.name == "nt": # running on my local Windows machine ENV = "local" else: # running on heroku server ENV = "heroku" if ENV == "local": proj_path = "C:/Users/adiad/Anaconda3/envs/SleepApp/sleep_app/" # read/write data dir else: proj_path = "" GOOGLE_CHROME_PATH = '/app/.apt/usr/bin/google-chrome' CHROMEDRIVER_PATH = '/app/.chromedriver/bin/chromedriver' garmin_results_pkl_fn = "data/garmin_sleep_df.pkl" # name of pickle file to archive (combining new results with any previous Garmin) for easy updating and subsequent processing garmin_results_json_fn = "data/new_garmin_sleep.json" # name of json file with only new raw results garmin_results_csv_fn = "data/garmin_sleep_df.csv" # name of csv file to archive (combining new results with any previous) all_descr_results_fn = "data/all_sleep_descr_df.pkl" # name of pickle file combining all Garmin & Microsift sleep session description data all_event_results_fn = "data/all_sleep_event_df.pkl" # name of pickle file combining all Garmin & Microsoft event data sun_pkl_fn = "data/sun_df.pkl" # name of pickel file to archive sunrise/sunset data local_tz = "US/Eastern" # pytz local timezone for sunrise/sunset time conversion sun_lat = 39.76838 # latitude where sunrise/sunset times are derived from sun_lon = -86.15804 # longitude where sunrise/sunset times are derived from run_browser_headless = False # will hide Firefox during execution if True browser_action_timeout = 60 # max time (seconds) for browser wait operations start_date = '2017-03-01' # first date to pull sleep data end_date = str(datetime.date.today() - datetime.timedelta(days=1)) # last date to pull sleep data user_name = "email address" # Garmin username password = "password" # Garmin password signin_url = "https://connect.garmin.com/signin/" # Garmin sign-in webpage sleep_url_base = "https://connect.garmin.com/modern/sleep/" # Garmin sleep base URL (sans date) sleep_url_json_req = "https://connect.garmin.com/modern/proxy/wellness-service/wellness/dailySleepsByDate" def download(start_date, end_date, headers, session_id): params = ( ('startDate', start_date), ('endDate', end_date), ('_', session_id), ) response = requests.get(sleep_url_json_req, headers=headers, params=params) if response.status_code != 200: print("RESPONSE ERROR RECEIVED:") print('Status code: %d' % response.status_code) response_dict = json.loads(response.content.decode('UTF-8')) print('Content: %s' % response_dict["message"]) raise Exception return response def download_to_json(start_date, end_date, headers, session_id): response = download(start_date, end_date, headers, session_id) # most responses are in ascii (no encoding) # sporadically a response will have brotli encoding #print("The response is encoded with:", chardet.detect(response.content)) if chardet.detect(response.content)["encoding"] == 'ascii': return json.loads(response.content) else: return brotli.decompress(response.content) def converter(data, return_df=True): # define functions which pass through None value because # datetime functions don't accept value None def sleep_timestamp(val): if val is None: return None else: return datetime.datetime.fromtimestamp(val / 1000, pytz.utc) def sleep_timedelta(val): if val is None: return None else: return datetime.timedelta(seconds=val) # initialize variables if return_df: nights = pd.DataFrame(columns=["Prev_Day", "Bed_Time", "Wake_Time", "Awake_Dur", "Light_Dur", "Deep_Dur", "Total_Dur", "Nap_Dur", "Window_Conf"]) i = 0 else: nights = [] for d in data: bed_time = sleep_timestamp(d['sleepStartTimestampGMT']) wake_time = sleep_timestamp(d['sleepEndTimestampGMT']) previous_day = datetime.date(*[int(datepart) for datepart in d['calendarDate'].split('-')]) - datetime.timedelta(days=1) deep_duration = sleep_timedelta(d['deepSleepSeconds']) light_duration = sleep_timedelta(d['lightSleepSeconds']) total_duration = sleep_timedelta(d['sleepTimeSeconds']) awake_duration = sleep_timedelta(d['awakeSleepSeconds']) nap_duration = sleep_timedelta(d['napTimeSeconds']) window_confirmed = d['sleepWindowConfirmed'] if return_df: nights.loc[i] = [previous_day, bed_time, wake_time, awake_duration, light_duration, deep_duration, total_duration, nap_duration, window_confirmed] i += 1 else: night = Night(bed_time, wake_time, previous_day, deep_duration, light_duration, total_duration, awake_duration) nights.append(night, sort=True) return nights # this function returns a list of all dates in [date1, date2] def daterange(date1, date2): date_ls = [date1] for n in range(int((date2 - date1).days)): date_ls.append(date_ls[-1] + datetime.timedelta(days=1)) return date_ls # steps to updating sleep data: # Step 0: determine which dates are missing in the archived Garmin dataset, # given the input start & end dates # Step 1: Login to connect.garmin.com, get user setting credentials # Step 2: Using credentials, download missing data from Garmin in json # Step 3: process new Garmin data, merge it with archived data # Step 4: download sunrise/sunset data for new dates and merge with archived data def step0(): # make a list of all dates from first sleep date to last (fills any missing dates) req_dates_ls = daterange( datetime.datetime.strptime(start_date, "%Y-%m-%d").date(), datetime.datetime.strptime(end_date, "%Y-%m-%d").date() ) # Look for previous results if isfile(proj_path + garmin_results_pkl_fn): nights_df = pd.read_pickle(proj_path + garmin_results_pkl_fn) else: nights_df = pd.DataFrame() # if previous results were found, reduce requested dates to those not yet obtained if len(nights_df) > 0: # get list of requested dates not yet obtained archive_dates_ls = list(nights_df["Prev_Day"]) new_req_dates_ls = np.setdiff1d(req_dates_ls, archive_dates_ls) else: new_req_dates_ls = req_dates_ls #print("Archive max: ", max(archive_dates_ls)) #print("Request max: ", max(req_dates_ls)) if len(new_req_dates_ls) == 0: msg = "Archived data is up to date, no new data is available" else: msg = "Current data was checked and " + str(len(new_req_dates_ls)) + " night(s) are needed" return [msg, nights_df, new_req_dates_ls] def step1(): opts = webdriver.ChromeOptions() opts.add_argument('--disable-gpu') opts.add_argument('--no-sandbox') opts.add_argument('--disable-dev-shm-usage') if ENV == "local": if run_browser_headless: opts.addArgument("headless") assert opts.headless # Operating in headless mode else: opts.binary_location = GOOGLE_CHROME_PATH # open firefox and goto Garmin's sign-in page print("Opening Chrome browser") driver = webdriver.Chrome(chrome_options=opts) driver.get(signin_url) # wait until sign-in fields are visible wait = WebDriverWait(driver, browser_action_timeout) wait.until(ec.frame_to_be_available_and_switch_to_it(("id","gauth-widget-frame-gauth-widget"))) wait.until(ec.presence_of_element_located(("id","username"))) # write login info to fields, then submit print("Signing in to connect.garmin.com") element = driver.find_element_by_id("username") driver.implicitly_wait(5) element.send_keys(user_name) element = driver.find_element_by_id("password") element.send_keys(password) element.send_keys(Keys.RETURN) wait.until(ec.url_changes(signin_url)) # wait until landing page is requested driver.switch_to.default_content() # get out of iframe # get dummy webpage to obtain all request headers print("Loading dummy page to obtain headers") driver.get(sleep_url_base + start_date) request = driver.wait_for_request(sleep_url_base + start_date, timeout=browser_action_timeout) if (request.response.status_code != 200) | (~ hasattr(request, "headers")): print("RESPONSE ERROR RECEIVED:") if (request.response.status_code != 200): print("Status code: %d" % request.response.status_code) #response_dict = json.loads(request.content.decode('UTF-8')) print("Reason: ", request.response.reason) if (~ hasattr(request, "headers")): print("Request did not have 'headers' attribute") print("Request attributes: ", dir(request)) print("Request headers: ", request.headers) #raise Exception # close the Firefox browser driver.close() msg = "Logged in to connect.garmin.com" return [msg, request] def step2(request, new_req_dates_ls): # transfer request headers headers = { "cookie": request.headers["Cookie"], "referer": sleep_url_base + start_date, "accept-encoding": request.headers["Accept-Encoding"], "accept-language": "en-US", # request.headers["Accept-Language"], "user-agent": request.headers["User-Agent"], #"nk": "NT", "accept": request.headers["Accept"], "authority": request.headers["Host"], #"x-app-ver": "4.25.3.0", "upgrade-insecure-requests": request.headers["Upgrade-Insecure-Requests"] } # get the session id from the headers re_session_id = re.compile("(?<=\$ses_id:)(\d+)") session_id = re_session_id.search(str(request.headers)).group(0) # Garmin will throw error if request time span exceeds 32 days # therefore, request 32 days at a time max_period_delta = datetime.timedelta(days=31) data = [] # list of jsons, one per time period get_dates_ls = new_req_dates_ls while len(get_dates_ls) > 0: period_start = min(get_dates_ls) if (max(get_dates_ls) - period_start) > (max_period_delta - datetime.timedelta(days=1)): period_end = period_start + max_period_delta else: period_end = max(get_dates_ls) # note, this may request some dates which were already obtained # since a contiguous period is being requested rather than 32 new dates # duplicated dates will be dropped later print("Getting data for period: [%s, %s]" % (period_start, period_end)) data.append(download_to_json(period_start, period_end, headers, session_id)) # trim dates list get_dates_ls = [d for d, s in zip(get_dates_ls, np.array(get_dates_ls) > period_end) if s] # combine list of jsons into one large json data = list(chain.from_iterable(data)) # save raw Garmin json to project folder with open(proj_path + garmin_results_json_fn, 'w') as fp: json.dump(data, fp) msg = "Data has been downloaded from Garmin" return [msg, data] def step3(nights_df, data, new_req_dates_ls): # clean the new garmin data new_nights_df = converter(data) new_nights_df["Prev_Day"] = pd.to_datetime(new_nights_df["Prev_Day"]) if pd.to_datetime(new_nights_df["Bed_Time"]).dt.tz is None: new_nights_df["Bed_Time"] = pd.to_datetime(new_nights_df["Bed_Time"]). \ dt.tz_localize(local_tz) else: new_nights_df["Bed_Time"] = pd.to_datetime(new_nights_df["Bed_Time"]). \ dt.tz_convert(local_tz) if pd.to_datetime(new_nights_df["Wake_Time"]).dt.tz is None: new_nights_df["Wake_Time"] = pd.to_datetime(new_nights_df["Wake_Time"]). \ dt.tz_localize(local_tz) else: new_nights_df["Wake_Time"] = pd.to_datetime(new_nights_df["Wake_Time"]). \ dt.tz_convert(local_tz) new_nights_df["Light_Dur"] = pd.to_timedelta(new_nights_df["Light_Dur"], "days") new_nights_df["Deep_Dur"] = pd.to_timedelta(new_nights_df["Deep_Dur"], "days") new_nights_df["Total_Dur"] = pd.to_timedelta(new_nights_df["Total_Dur"], "days") new_nights_df["Nap_Dur"] = pd.to_timedelta(new_nights_df["Nap_Dur"], "days") # fill df with missing dates so that subsequent updates won't keep # requesting data which Garmin doesn't have new_missing_dates_ls = np.setdiff1d(new_req_dates_ls, new_nights_df["Prev_Day"].dt.date) new_missing_row = [pd.NaT, pd.NaT, pd.NaT, pd.NaT, pd.NaT, pd.NaT, pd.NaT, np.NAN] for d in new_missing_dates_ls: new_nights_df.loc[len(new_nights_df)] = [d] + new_missing_row # drop any nights which were already in the archived pickle file, # then merge it with archived data if len(nights_df) > 0: new_nights_df = new_nights_df[~new_nights_df["Prev_Day"].isin(nights_df["Prev_Day"])] nights_df = nights_df.append(new_nights_df, sort=True).sort_values("Prev_Day", axis=0) else: nights_df = new_nights_df.sort_values("Prev_Day", axis=0) # trim most recent nights which have NaT durations because they were likely caused # by the smartwatch not yet having synced with Garmin for those dates unknown_nights_ls = [] i = 1 while pd.isnull(nights_df.Total_Dur.iloc[-i]) & (len(nights_df) >= i): unknown_nights_ls.append(nights_df.Prev_Day.iloc[-i]) i += 1 nights_df = nights_df[~nights_df["Prev_Day"].isin(unknown_nights_ls)] # save merged results #nights_df.to_csv(proj_path + garmin_results_csv_fn) nights_df.to_pickle(proj_path + garmin_results_pkl_fn) # clean garmin data for dashboard garmin_df = nights_df.drop(["Nap_Dur", "Window_Conf"], axis=1) # calculate time of day in decimal hours of each event (asleep & wake) garmin_df["Bed_ToD"] = garmin_df["Bed_Time"].dt.hour + garmin_df["Bed_Time"].dt.minute/60 garmin_df["Bed_ToD"] -= 24*(garmin_df["Bed_ToD"] > 12) # make PM bed times negative garmin_df["Wake_ToD"] = garmin_df["Wake_Time"].dt.hour + garmin_df["Wake_Time"].dt.minute/60 # read & wrangle old microsoft sleep data ms2015_df = pd.read_csv(proj_path + "data/Activity_Summary_20150101_20151231.csv") ms2016_df = pd.read_csv(proj_path + "data/Activity_Summary_20160101_20161231.csv") ms2017_df = pd.read_csv(proj_path + "data/Activity_Summary_20170101_20171231.csv") ms_df = ms2015_df.append(ms2016_df).append(ms2017_df, sort=True). \ query("Event_Type == 'Sleep'") ms2_df = pd.DataFrame() # create microsoft dataframe which mimics the garmin dataframe ms2_df["Prev_Day"] = pd.to_datetime(ms_df["Date"]) ms2_df["Bed_Time"] = pd.to_datetime(ms_df["Start_Time"]). \ dt.tz_localize("US/Eastern", ambiguous="NaT") for i_row in range(len(ms2_df)-1): # fell asleep after midnght, adjust Prev_Day back 1 day if ms2_df.iloc[i_row, 1].hour < 12: ms2_df.iloc[i_row, 0] -= datetime.timedelta(days=1) ms2_df["Wake_Time"] = pd.to_datetime(ms_df["Wake_Up_Time"]). \ dt.tz_localize("US/Eastern", ambiguous="NaT") ms2_df["Light_Dur"] = pd.to_timedelta(ms_df["Seconds_Asleep_Light"], "seconds") ms2_df["Deep_Dur"] = pd.to_timedelta(ms_df["Seconds_Asleep_Restful"], "seconds") ms2_df["Total_Dur"] = pd.to_timedelta(ms_df["Seconds_Awake"], "seconds") \ + ms2_df["Light_Dur"] + ms2_df["Deep_Dur"] ms2_df["Bed_ToD"] = ms2_df["Bed_Time"].dt.hour \ + ms2_df["Bed_Time"].dt.minute/60 ms2_df["Bed_ToD"] -= 24*(ms2_df["Bed_ToD"] > 12) # make PM bed times negative ms2_df["Wake_ToD"] = ms2_df["Wake_Time"].dt.hour \ + ms2_df["Wake_Time"].dt.minute/60 brief_sleep_bool = ms2_df["Total_Dur"] < pd.Timedelta(4, unit="h") daytime_asleep_bool = (ms2_df["Bed_ToD"] > -3) | (ms2_df["Bed_ToD"] < 7) unknown_dur_bool =
pd.isnull(ms2_df["Total_Dur"])
pandas.isnull
"""PyStan utility functions These functions validate and organize data passed to and from the classes and functions defined in the file `stan_fit.hpp` and wrapped by the Cython file `stan_fit.pxd`. """ #----------------------------------------------------------------------------- # Copyright (c) 2013-2015, PyStan developers # # This file is licensed under Version 3.0 of the GNU General Public # License. See LICENSE for a text of the license. #----------------------------------------------------------------------------- # REF: rstan/rstan/R/misc.R from __future__ import unicode_literals, division from pystan._compat import PY2, string_types from collections import OrderedDict if PY2: from collections import Callable, Iterable, Sequence else: from collections.abc import Callable, Iterable, Sequence import inspect import io import itertools import logging import math from numbers import Number import os import random import re import sys import shutil import tempfile import time import numpy as np try: from scipy.stats.mstats import mquantiles except ImportError: from pystan.external.scipy.mstats import mquantiles import pystan.chains import pystan._misc from pystan.constants import (MAX_UINT, sampling_algo_t, optim_algo_t, variational_algo_t, sampling_metric_t, stan_args_method_t) logger = logging.getLogger('pystan') def stansummary(fit, pars=None, probs=(0.025, 0.25, 0.5, 0.75, 0.975), digits_summary=2): """ Summary statistic table. Parameters ---------- fit : StanFit4Model object pars : str or sequence of str, optional Parameter names. By default use all parameters probs : sequence of float, optional Quantiles. By default, (0.025, 0.25, 0.5, 0.75, 0.975) digits_summary : int, optional Number of significant digits. By default, 2 Returns ------- summary : string Table includes mean, se_mean, sd, probs_0, ..., probs_n, n_eff and Rhat. Examples -------- >>> model_code = 'parameters {real y;} model {y ~ normal(0,1);}' >>> m = StanModel(model_code=model_code, model_name="example_model") >>> fit = m.sampling() >>> print(stansummary(fit)) Inference for Stan model: example_model. 4 chains, each with iter=2000; warmup=1000; thin=1; post-warmup draws per chain=1000, total post-warmup draws=4000. mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat y 0.01 0.03 1.0 -2.01 -0.68 0.02 0.72 1.97 1330 1.0 lp__ -0.5 0.02 0.68 -2.44 -0.66 -0.24 -0.05-5.5e-4 1555 1.0 Samples were drawn using NUTS at Thu Aug 17 00:52:25 2017. For each parameter, n_eff is a crude measure of effective sample size, and Rhat is the potential scale reduction factor on split chains (at convergence, Rhat=1). """ if fit.mode == 1: return "Stan model '{}' is of mode 'test_grad';\n"\ "sampling is not conducted.".format(fit.model_name) elif fit.mode == 2: return "Stan model '{}' does not contain samples.".format(fit.model_name) n_kept = [s - w for s, w in zip(fit.sim['n_save'], fit.sim['warmup2'])] header = "Inference for Stan model: {}.\n".format(fit.model_name) header += "{} chains, each with iter={}; warmup={}; thin={}; \n" header = header.format(fit.sim['chains'], fit.sim['iter'], fit.sim['warmup'], fit.sim['thin'], sum(n_kept)) header += "post-warmup draws per chain={}, total post-warmup draws={}.\n\n" header = header.format(n_kept[0], sum(n_kept)) footer = "\n\nSamples were drawn using {} at {}.\n"\ "For each parameter, n_eff is a crude measure of effective sample size,\n"\ "and Rhat is the potential scale reduction factor on split chains (at \n"\ "convergence, Rhat=1)." sampler = fit.sim['samples'][0]['args']['sampler_t'] date = fit.date.strftime('%c') # %c is locale's representation footer = footer.format(sampler, date) s = _summary(fit, pars, probs) body = _array_to_table(s['summary'], s['summary_rownames'], s['summary_colnames'], digits_summary) return header + body + footer def _print_stanfit(fit, pars=None, probs=(0.025, 0.25, 0.5, 0.75, 0.975), digits_summary=2): # warning added in PyStan 2.17.0 logger.warning('Function `_print_stanfit` is deprecated and will be removed in a future version. '\ 'Use `stansummary` instead.', DeprecationWarning) return stansummary(fit, pars=pars, probs=probs, digits_summary=digits_summary) def _array_to_table(arr, rownames, colnames, n_digits): """Print an array with row and column names Example: mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat beta[1,1] 0.0 0.0 1.0 -2.0 -0.7 0.0 0.7 2.0 4000 1 beta[1,2] 0.0 0.0 1.0 -2.1 -0.7 0.0 0.7 2.0 4000 1 beta[2,1] 0.0 0.0 1.0 -2.0 -0.7 0.0 0.7 2.0 4000 1 beta[2,2] 0.0 0.0 1.0 -1.9 -0.6 0.0 0.7 2.0 4000 1 lp__ -4.2 0.1 2.1 -9.4 -5.4 -3.8 -2.7 -1.2 317 1 """ assert arr.shape == (len(rownames), len(colnames)) rownames_maxwidth = max(len(n) for n in rownames) max_col_width = 7 min_col_width = 5 max_col_header_num_width = [max(max_col_width, max(len(n) + 1, min_col_width)) for n in colnames] rows = [] for row in arr: row_nums = [] for j, (num, width) in enumerate(zip(row, max_col_header_num_width)): if colnames[j] == "n_eff": num = int(round(num, 0)) if not np.isnan(num) else num num = _format_number(num, n_digits, max_col_width - 1) row_nums.append(num) if len(num) + 1 > max_col_header_num_width[j]: max_col_header_num_width[j] = len(num) + 1 rows.append(row_nums) widths = [rownames_maxwidth] + max_col_header_num_width header = '{:>{width}}'.format('', width=widths[0]) for name, width in zip(colnames, widths[1:]): header += '{name:>{width}}'.format(name=name, width=width) lines = [header] for rowname, row in zip(rownames, rows): line = '{name:{width}}'.format(name=rowname, width=widths[0]) for j, (num, width) in enumerate(zip(row, widths[1:])): line += '{num:>{width}}'.format(num=num, width=width) lines.append(line) return '\n'.join(lines) def _number_width(n): """Calculate the width in characters required to print a number For example, -1024 takes 5 characters. -0.034 takes 6 characters. """ return len(str(n)) def _format_number_si(num, n_signif_figures): """Format a number using scientific notation to given significant figures""" if math.isnan(num) or math.isinf(num): return str(num) leading, exp = '{:E}'.format(num).split('E') leading = round(float(leading), n_signif_figures - 1) exp = exp[:1] + exp[2:] if exp[1] == '0' else exp formatted = '{}e{}'.format(leading, exp.lstrip('+')) return formatted def _format_number(num, n_signif_figures, max_width): """Format a number as a string while obeying space constraints. `n_signif_figures` is the minimum number of significant figures expressed `max_width` is the maximum width in characters allowed """ if max_width < 6: raise NotImplementedError("Guaranteed formatting in fewer than 6 characters not supported.") if math.isnan(num) or math.isinf(num): return str(num) # add 0.5 to prevent log(0) errors; only affects n_digits calculation for num > 0 n_digits = lambda num: math.floor(math.log10(abs(num) + 0.5)) + 1 if abs(num) > 10**-n_signif_figures and n_digits(num) <= max_width - n_signif_figures: return str(round(num, n_signif_figures))[:max_width].rstrip('.') elif _number_width(num) <= max_width: if n_digits(num) >= n_signif_figures: # the int() is necessary for consistency between Python 2 and 3 return str(int(round(num))) else: return str(num) else: return _format_number_si(num, n_signif_figures) def _summary(fit, pars=None, probs=None, **kwargs): """Summarize samples (compute mean, SD, quantiles) in all chains. REF: stanfit-class.R summary method Parameters ---------- fit : StanFit4Model object pars : str or sequence of str, optional Parameter names. By default use all parameters probs : sequence of float, optional Quantiles. By default, (0.025, 0.25, 0.5, 0.75, 0.975) Returns ------- summaries : OrderedDict of array Array indexed by 'summary' has dimensions (num_params, num_statistics). Parameters are unraveled in *row-major order*. Statistics include: mean, se_mean, sd, probs_0, ..., probs_n, n_eff, and Rhat. Array indexed by 'c_summary' breaks down the statistics by chain and has dimensions (num_params, num_statistics_c_summary, num_chains). Statistics for `c_summary` are the same as for `summary` with the exception that se_mean, n_eff, and Rhat are absent. Row names and column names are also included in the OrderedDict. """ if fit.mode == 1: msg = "Stan model {} is of mode 'test_grad'; sampling is not conducted." msg = msg.format(fit.model_name) raise ValueError(msg) elif fit.mode == 2: msg = "Stan model {} contains no samples.".format(fit.model_name) raise ValueError(msg) if fit.sim['n_save'] == fit.sim['warmup2']: msg = "Stan model {} contains no samples.".format(fit.model_name) raise ValueError(msg) # rstan checks for cached summaries here if pars is None: pars = fit.sim['pars_oi'] elif isinstance(pars, string_types): pars = [pars] pars = _remove_empty_pars(pars, fit.sim['pars_oi'], fit.sim['dims_oi']) if probs is None: probs = (0.025, 0.25, 0.5, 0.75, 0.975) ss = _summary_sim(fit.sim, pars, probs) # TODO: include sem, ess and rhat: ss['ess'], ss['rhat'] s1 = np.column_stack([ss['msd'][:, 0], ss['sem'], ss['msd'][:, 1], ss['quan'], ss['ess'], ss['rhat']]) s1_rownames = ss['c_msd_names']['parameters'] s1_colnames = ((ss['c_msd_names']['stats'][0],) + ('se_mean',) + (ss['c_msd_names']['stats'][1],) + ss['c_quan_names']['stats'] + ('n_eff', 'Rhat')) s2 = _combine_msd_quan(ss['c_msd'], ss['c_quan']) s2_rownames = ss['c_msd_names']['parameters'] s2_colnames = ss['c_msd_names']['stats'] + ss['c_quan_names']['stats'] return OrderedDict(summary=s1, c_summary=s2, summary_rownames=s1_rownames, summary_colnames=s1_colnames, c_summary_rownames=s2_rownames, c_summary_colnames=s2_colnames) def _combine_msd_quan(msd, quan): """Combine msd and quantiles in chain summary Parameters ---------- msd : array of shape (num_params, 2, num_chains) mean and sd for chains cquan : array of shape (num_params, num_quan, num_chains) quantiles for chains Returns ------- msdquan : array of shape (num_params, 2 + num_quan, num_chains) """ dim1 = msd.shape n_par, _, n_chains = dim1 ll = [] for i in range(n_chains): a1 = msd[:, :, i] a2 = quan[:, :, i] ll.append(np.column_stack([a1, a2])) msdquan = np.dstack(ll) return msdquan def _summary_sim(sim, pars, probs): """Summarize chains together and separately REF: rstan/rstan/R/misc.R Parameters are unraveled in *column-major order*. Parameters ---------- sim : dict dict from from a stanfit fit object, i.e., fit['sim'] pars : Iterable of str parameter names probs : Iterable of probs desired quantiles Returns ------- summaries : OrderedDict of array This dictionary contains the following arrays indexed by the keys given below: - 'msd' : array of shape (num_params, 2) with mean and sd - 'sem' : array of length num_params with standard error for the mean - 'c_msd' : array of shape (num_params, 2, num_chains) - 'quan' : array of shape (num_params, num_quan) - 'c_quan' : array of shape (num_params, num_quan, num_chains) - 'ess' : array of shape (num_params, 1) - 'rhat' : array of shape (num_params, 1) Note ---- `_summary_sim` has the parameters in *column-major* order whereas `_summary` gives them in *row-major* order. (This follows RStan.) """ # NOTE: this follows RStan rather closely. Some of the calculations here probs_len = len(probs) n_chains = len(sim['samples']) # tidx is a dict with keys that are parameters and values that are their # indices using column-major ordering tidx = _pars_total_indexes(sim['pars_oi'], sim['dims_oi'], sim['fnames_oi'], pars) tidx_colm = [tidx[par] for par in pars] tidx_colm = list(itertools.chain(*tidx_colm)) # like R's unlist() tidx_rowm = [tidx[par+'_rowmajor'] for par in pars] tidx_rowm = list(itertools.chain(*tidx_rowm)) tidx_len = len(tidx_colm) lmsdq = [_get_par_summary(sim, i, probs) for i in tidx_colm] msd = np.row_stack([x['msd'] for x in lmsdq]) quan = np.row_stack([x['quan'] for x in lmsdq]) probs_str = tuple(["{:g}%".format(100*p) for p in probs]) msd = msd.reshape(tidx_len, 2, order='F') quan = quan.reshape(tidx_len, probs_len, order='F') c_msd = np.row_stack([x['c_msd'] for x in lmsdq]) c_quan = np.row_stack([x['c_quan'] for x in lmsdq]) c_msd = c_msd.reshape(tidx_len, 2, n_chains, order='F') c_quan = c_quan.reshape(tidx_len, probs_len, n_chains, order='F') sim_attr_args = sim.get('args', None) if sim_attr_args is None: cids = list(range(n_chains)) else: cids = [x['chain_id'] for x in sim_attr_args] c_msd_names = dict(parameters=np.asarray(sim['fnames_oi'])[tidx_colm], stats=("mean", "sd"), chains=tuple("chain:{}".format(cid) for cid in cids)) c_quan_names = dict(parameters=np.asarray(sim['fnames_oi'])[tidx_colm], stats=probs_str, chains=tuple("chain:{}".format(cid) for cid in cids)) ess_and_rhat = np.array([pystan.chains.ess_and_splitrhat(sim, n) for n in tidx_colm]) ess, rhat = [arr.ravel() for arr in np.hsplit(ess_and_rhat, 2)] return dict(msd=msd, c_msd=c_msd, c_msd_names=c_msd_names, quan=quan, c_quan=c_quan, c_quan_names=c_quan_names, sem=msd[:, 1] / np.sqrt(ess), ess=ess, rhat=rhat, row_major_idx=tidx_rowm, col_major_idx=tidx_colm) def _get_par_summary(sim, n, probs): """Summarize chains merged and individually Parameters ---------- sim : dict from stanfit object n : int parameter index probs : iterable of int quantiles Returns ------- summary : dict Dictionary containing summaries """ # _get_samples gets chains for nth parameter ss = _get_samples(n, sim, inc_warmup=False) msdfun = lambda chain: (np.mean(chain), np.std(chain, ddof=1)) qfun = lambda chain: mquantiles(chain, probs) c_msd = np.array([msdfun(s) for s in ss]).flatten() c_quan = np.array([qfun(s) for s in ss]).flatten() ass = np.asarray(ss).flatten() msd = np.asarray(msdfun(ass)) quan = qfun(np.asarray(ass)) return dict(msd=msd, quan=quan, c_msd=c_msd, c_quan=c_quan) def _split_data(data): data_r = {} data_i = {} # data_r and data_i are going to be converted into C++ objects of # type: map<string, pair<vector<double>, vector<size_t>>> and # map<string, pair<vector<int>, vector<size_t>>> so prepare # them accordingly. for k, v in data.items(): if np.issubdtype(np.asarray(v).dtype, np.integer): data_i.update({k.encode('utf-8'): np.asarray(v, dtype=int)}) elif np.issubdtype(np.asarray(v).dtype, np.floating): data_r.update({k.encode('utf-8'): np.asarray(v, dtype=float)}) else: msg = "Variable {} is neither int nor float nor list/array thereof" raise ValueError(msg.format(k)) return data_r, data_i def _config_argss(chains, iter, warmup, thin, init, seed, sample_file, diagnostic_file, algorithm, control, **kwargs): # After rstan/rstan/R/misc.R (config_argss) iter = int(iter) if iter < 1: raise ValueError("`iter` should be a positive integer.") thin = int(thin) if thin < 1 or thin > iter: raise ValueError("`thin should be a positive integer " "less than `iter`.") warmup = max(0, int(warmup)) if warmup > iter: raise ValueError("`warmup` should be an integer less than `iter`.") chains = int(chains) if chains < 1: raise ValueError("`chains` should be a positive integer.") iters = [iter] * chains thins = [thin] * chains warmups = [warmup] * chains # use chain_id argument if specified if kwargs.get('chain_id') is None: chain_id = list(range(chains)) else: chain_id = [int(id) for id in kwargs['chain_id']] if len(set(chain_id)) != len(chain_id): raise ValueError("`chain_id` has duplicated elements.") chain_id_len = len(chain_id) if chain_id_len >= chains: chain_id = chain_id else: chain_id = chain_id + [max(chain_id) + 1 + i for i in range(chains - chain_id_len)] del kwargs['chain_id'] inits_specified = False # slight difference here from rstan; Python's lists are not typed. if isinstance(init, Number): init = str(init) if isinstance(init, string_types): if init in ['0', 'random']: inits = [init] * chains else: inits = ["random"] * chains inits_specified = True if not inits_specified and isinstance(init, Callable): ## test if function takes argument named "chain_id" if "chain_id" in inspect.getargspec(init).args: inits = [init(chain_id=id) for id in chain_id] else: inits = [init()] * chains if not isinstance(inits[0], dict): raise ValueError("The function specifying initial values must " "return a dictionary.") inits_specified = True if not inits_specified and isinstance(init, Sequence): if len(init) != chains: raise ValueError("Length of list of initial values does not " "match number of chains.") if not all([isinstance(d, dict) for d in init]): raise ValueError("Initial value list is not a sequence of " "dictionaries.") inits = init inits_specified = True if not inits_specified: raise ValueError("Invalid specification of initial values.") ## only one seed is needed by virtue of the RNG seed = _check_seed(seed) kwargs['method'] = "test_grad" if kwargs.get('test_grad') else 'sampling' all_control = { "adapt_engaged", "adapt_gamma", "adapt_delta", "adapt_kappa", "adapt_t0", "adapt_init_buffer", "adapt_term_buffer", "adapt_window", "stepsize", "stepsize_jitter", "metric", "int_time", "max_treedepth", "epsilon", "error", "inv_metric" } all_metrics = {"unit_e", "diag_e", "dense_e"} if control is not None: if not isinstance(control, dict): raise ValueError("`control` must be a dictionary") if not all(key in all_control for key in control): unknown = set(control) - all_control raise ValueError("`control` contains unknown parameters: {}".format(unknown)) if control.get('metric') and control['metric'] not in all_metrics: raise ValueError("`metric` must be one of {}".format(all_metrics)) kwargs['control'] = control argss = [dict() for _ in range(chains)] for i in range(chains): argss[i] = dict(chain_id=chain_id[i], iter=iters[i], thin=thins[i], seed=seed, warmup=warmups[i], init=inits[i], algorithm=algorithm) if sample_file is not None: sample_file = _writable_sample_file(sample_file) if chains == 1: argss[0]['sample_file'] = sample_file elif chains > 1: for i in range(chains): argss[i]['sample_file'] = _append_id(sample_file, i) if diagnostic_file is not None: raise NotImplementedError("diagnostic_file not implemented yet.") if control is not None and "inv_metric" in control: inv_metric = control.pop("inv_metric") metric_dir = tempfile.mkdtemp() if isinstance(inv_metric, dict): for i in range(chains): if i not in inv_metric: msg = "Invalid value for init_inv_metric found (keys={}). " \ "Use either a dictionary with chain_index as keys (0,1,2,...)" \ "or ndarray." msg = msg.format(list(metric_file.keys())) raise ValueError(msg) mass_values = inv_metric[i] metric_filename = "inv_metric_chain_{}.Rdata".format(str(i)) metric_path = os.path.join(metric_dir, metric_filename) if isinstance(mass_values, str): if not os.path.exists(mass_values): raise ValueError("inverse metric file was not found: {}".format(mass_values)) shutil.copy(mass_values, metric_path) else: stan_rdump(dict(inv_metric=mass_values), metric_path) argss[i]['metric_file'] = metric_path elif isinstance(inv_metric, str): if not os.path.exists(inv_metric): raise ValueError("inverse metric file was not found: {}".format(inv_metric)) for i in range(chains): metric_filename = "inv_metric_chain_{}.Rdata".format(str(i)) metric_path = os.path.join(metric_dir, metric_filename) shutil.copy(inv_metric, metric_path) argss[i]['metric_file'] = metric_path elif isinstance(inv_metric, Iterable): metric_filename = "inv_metric_chain_0.Rdata" metric_path = os.path.join(metric_dir, metric_filename) stan_rdump(dict(inv_metric=inv_metric), metric_path) argss[0]['metric_file'] = metric_path for i in range(1, chains): metric_filename = "inv_metric_chain_{}.Rdata".format(str(i)) metric_path = os.path.join(metric_dir, metric_filename) shutil.copy(argss[i-1]['metric_file'], metric_path) argss[i]['metric_file'] = metric_path else: argss[i]['metric_file'] = "" stepsize_list = None if "control" in kwargs and "stepsize" in kwargs["control"]: if isinstance(kwargs["control"]["stepsize"], Sequence): stepsize_list = kwargs["control"]["stepsize"] if len(kwargs["control"]["stepsize"]) == 1: kwargs["control"]["stepsize"] = kwargs["control"]["stepsize"][0] elif len(kwargs["control"]["stepsize"]) != chains: raise ValueError("stepsize length needs to equal chain count.") else: stepsize_list = kwargs["control"]["stepsize"] for i in range(chains): argss[i].update(kwargs) if stepsize_list is not None: argss[i]["control"]["stepsize"] = stepsize_list[i] argss[i] = _get_valid_stan_args(argss[i]) return argss def _get_valid_stan_args(base_args=None): """Fill in default values for arguments not provided in `base_args`. RStan does this in C++ in stan_args.hpp in the stan_args constructor. It seems easier to deal with here in Python. """ args = base_args.copy() if base_args is not None else {} # Default arguments, c.f. rstan/rstan/inst/include/rstan/stan_args.hpp # values in args are going to be converted into C++ objects so # prepare them accordingly---e.g., unicode -> bytes -> std::string args['chain_id'] = args.get('chain_id', 1) args['append_samples'] = args.get('append_samples', False) if args.get('method') is None or args['method'] == "sampling": args['method'] = stan_args_method_t.SAMPLING elif args['method'] == "optim": args['method'] = stan_args_method_t.OPTIM elif args['method'] == 'test_grad': args['method'] = stan_args_method_t.TEST_GRADIENT elif args['method'] == 'variational': args['method'] = stan_args_method_t.VARIATIONAL else: args['method'] = stan_args_method_t.SAMPLING args['sample_file_flag'] = True if args.get('sample_file') else False args['sample_file'] = args.get('sample_file', '').encode('ascii') args['diagnostic_file_flag'] = True if args.get('diagnostic_file') else False args['diagnostic_file'] = args.get('diagnostic_file', '').encode('ascii') # NB: argument named "seed" not "random_seed" args['random_seed'] = args.get('seed', int(time.time())) args['metric_file_flag'] = True if args.get('metric_file') else False args['metric_file'] = args.get('metric_file', '').encode('ascii') if args['method'] == stan_args_method_t.VARIATIONAL: # variational does not use a `control` map like sampling args['ctrl'] = args.get('ctrl', dict(variational=dict())) args['ctrl']['variational']['iter'] = args.get('iter', 10000) args['ctrl']['variational']['grad_samples'] = args.get('grad_samples', 1) args['ctrl']['variational']['elbo_samples'] = args.get('elbo_samples', 100) args['ctrl']['variational']['eval_elbo'] = args.get('eval_elbo', 100) args['ctrl']['variational']['output_samples'] = args.get('output_samples', 1000) args['ctrl']['variational']['adapt_iter'] = args.get('adapt_iter', 50) args['ctrl']['variational']['eta'] = args.get('eta', 1.0) args['ctrl']['variational']['adapt_engaged'] = args.get('adapt_engaged', True) args['ctrl']['variational']['tol_rel_obj'] = args.get('tol_rel_obj', 0.01) if args.get('algorithm', '').lower() == 'fullrank': args['ctrl']['variational']['algorithm'] = variational_algo_t.FULLRANK else: args['ctrl']['variational']['algorithm'] = variational_algo_t.MEANFIELD elif args['method'] == stan_args_method_t.SAMPLING: args['ctrl'] = args.get('ctrl', dict(sampling=dict())) args['ctrl']['sampling']['iter'] = iter = args.get('iter', 2000) args['ctrl']['sampling']['warmup'] = warmup = args.get('warmup', iter // 2) calculated_thin = iter - warmup // 1000 if calculated_thin < 1: calculated_thin = 1 args['ctrl']['sampling']['thin'] = thin = args.get('thin', calculated_thin) args['ctrl']['sampling']['save_warmup'] = True # always True now args['ctrl']['sampling']['iter_save_wo_warmup'] = iter_save_wo_warmup = 1 + (iter - warmup - 1) // thin args['ctrl']['sampling']['iter_save'] = iter_save_wo_warmup + 1 + (warmup - 1) // thin refresh = iter // 10 if iter >= 20 else 1 args['ctrl']['sampling']['refresh'] = args.get('refresh', refresh) ctrl_lst = args.get('control', dict()) ctrl_sampling = args['ctrl']['sampling'] # NB: if these defaults change, remember to update docstrings ctrl_sampling['adapt_engaged'] = ctrl_lst.get("adapt_engaged", True) ctrl_sampling['adapt_gamma'] = ctrl_lst.get("adapt_gamma", 0.05) ctrl_sampling['adapt_delta'] = ctrl_lst.get("adapt_delta", 0.8) ctrl_sampling['adapt_kappa'] = ctrl_lst.get("adapt_kappa", 0.75) ctrl_sampling['adapt_t0'] = ctrl_lst.get("adapt_t0", 10.0) ctrl_sampling['adapt_init_buffer'] = ctrl_lst.get("adapt_init_buffer", 75) ctrl_sampling['adapt_term_buffer'] = ctrl_lst.get("adapt_term_buffer", 50) ctrl_sampling['adapt_window'] = ctrl_lst.get("adapt_window", 25) ctrl_sampling['stepsize'] = ctrl_lst.get("stepsize", 1.0) ctrl_sampling['stepsize_jitter'] = ctrl_lst.get("stepsize_jitter", 0.0) algorithm = args.get('algorithm', 'NUTS') if algorithm == 'HMC': args['ctrl']['sampling']['algorithm'] = sampling_algo_t.HMC elif algorithm == 'Metropolis': args['ctrl']['sampling']['algorithm'] = sampling_algo_t.Metropolis elif algorithm == 'NUTS': args['ctrl']['sampling']['algorithm'] = sampling_algo_t.NUTS elif algorithm == 'Fixed_param': args['ctrl']['sampling']['algorithm'] = sampling_algo_t.Fixed_param # TODO: Setting adapt_engaged to False solves the segfault reported # in issue #200; find out why this hack is needed. RStan deals with # the setting elsewhere. ctrl_sampling['adapt_engaged'] = False else: msg = "Invalid value for parameter algorithm (found {}; " \ "require HMC, Metropolis, NUTS, or Fixed_param).".format(algorithm) raise ValueError(msg) metric = ctrl_lst.get('metric', 'diag_e') if metric == "unit_e": ctrl_sampling['metric'] = sampling_metric_t.UNIT_E elif metric == "diag_e": ctrl_sampling['metric'] = sampling_metric_t.DIAG_E elif metric == "dense_e": ctrl_sampling['metric'] = sampling_metric_t.DENSE_E if ctrl_sampling['algorithm'] == sampling_algo_t.NUTS: ctrl_sampling['max_treedepth'] = ctrl_lst.get("max_treedepth", 10) elif ctrl_sampling['algorithm'] == sampling_algo_t.HMC: ctrl_sampling['int_time'] = ctrl_lst.get('int_time', 6.283185307179586476925286766559005768e+00) elif ctrl_sampling['algorithm'] == sampling_algo_t.Metropolis: pass elif ctrl_sampling['algorithm'] == sampling_algo_t.Fixed_param: pass elif args['method'] == stan_args_method_t.OPTIM: args['ctrl'] = args.get('ctrl', dict(optim=dict())) args['ctrl']['optim']['iter'] = iter = args.get('iter', 2000) algorithm = args.get('algorithm', 'LBFGS') if algorithm == "BFGS": args['ctrl']['optim']['algorithm'] = optim_algo_t.BFGS elif algorithm == "Newton": args['ctrl']['optim']['algorithm'] = optim_algo_t.Newton elif algorithm == "LBFGS": args['ctrl']['optim']['algorithm'] = optim_algo_t.LBFGS else: msg = "Invalid value for parameter algorithm (found {}; " \ "require (L)BFGS or Newton).".format(algorithm) raise ValueError(msg) refresh = args['ctrl']['optim']['iter'] // 100 args['ctrl']['optim']['refresh'] = args.get('refresh', refresh) if args['ctrl']['optim']['refresh'] < 1: args['ctrl']['optim']['refresh'] = 1 args['ctrl']['optim']['init_alpha'] = args.get("init_alpha", 0.001) args['ctrl']['optim']['tol_obj'] = args.get("tol_obj", 1e-12) args['ctrl']['optim']['tol_grad'] = args.get("tol_grad", 1e-8) args['ctrl']['optim']['tol_param'] = args.get("tol_param", 1e-8) args['ctrl']['optim']['tol_rel_obj'] = args.get("tol_rel_obj", 1e4) args['ctrl']['optim']['tol_rel_grad'] = args.get("tol_rel_grad", 1e7) args['ctrl']['optim']['save_iterations'] = args.get("save_iterations", True) args['ctrl']['optim']['history_size'] = args.get("history_size", 5) elif args['method'] == stan_args_method_t.TEST_GRADIENT: args['ctrl'] = args.get('ctrl', dict(test_grad=dict())) args['ctrl']['test_grad']['epsilon'] = args.get("epsilon", 1e-6) args['ctrl']['test_grad']['error'] = args.get("error", 1e-6) init = args.get('init', "random") if isinstance(init, string_types): args['init'] = init.encode('ascii') elif isinstance(init, dict): args['init'] = "user".encode('ascii') # while the name is 'init_list', it is a dict; the name comes from rstan, # where list elements can have names args['init_list'] = init else: args['init'] = "random".encode('ascii') args['init_radius'] = args.get('init_r', 2.0) if (args['init_radius'] <= 0): args['init'] = b"0" # 0 initialization requires init_radius = 0 if (args['init'] == b"0" or args['init'] == 0): args['init_radius'] = 0.0 args['enable_random_init'] = args.get('enable_random_init', True) # RStan calls validate_args() here return args def _check_seed(seed): """If possible, convert `seed` into a valid form for Stan (an integer between 0 and MAX_UINT, inclusive). If not possible, use a random seed instead and raise a warning if `seed` was not provided as `None`. """ if isinstance(seed, (Number, string_types)): try: seed = int(seed) except ValueError: logger.warning("`seed` must be castable to an integer") seed = None else: if seed < 0: logger.warning("`seed` may not be negative") seed = None elif seed > MAX_UINT: raise ValueError('`seed` is too large; max is {}'.format(MAX_UINT)) elif isinstance(seed, np.random.RandomState): seed = seed.randint(0, MAX_UINT) elif seed is not None: logger.warning('`seed` has unexpected type') seed = None if seed is None: seed = random.randint(0, MAX_UINT) return seed def _organize_inits(inits, pars, dims): """Obtain a list of initial values for each chain. The parameter 'lp__' will be removed from the chains. Parameters ---------- inits : list list of initial values for each chain. pars : list of str dims : list of list of int from (via cython conversion) vector[vector[uint]] dims Returns ------- inits : list of dict """ try: idx_of_lp = pars.index('lp__') del pars[idx_of_lp] del dims[idx_of_lp] except ValueError: pass starts = _calc_starts(dims) return [_par_vector2dict(init, pars, dims, starts) for init in inits] def _calc_starts(dims): """Calculate starting indexes Parameters ---------- dims : list of list of int from (via cython conversion) vector[vector[uint]] dims Examples -------- >>> _calc_starts([[8, 2], [5], [6, 2]]) [0, 16, 21] """ # NB: Python uses 0-indexing; R uses 1-indexing. l = len(dims) s = [np.prod(d) for d in dims] starts = np.cumsum([0] + s)[0:l].tolist() # coerce things into ints before returning return [int(i) for i in starts] def _par_vector2dict(v, pars, dims, starts=None): """Turn a vector of samples into an OrderedDict according to param dims. Parameters ---------- y : list of int or float pars : list of str parameter names dims : list of list of int list of dimensions of parameters Returns ------- d : dict Examples -------- >>> v = list(range(31)) >>> dims = [[5], [5, 5], []] >>> pars = ['mu', 'Phi', 'eta'] >>> _par_vector2dict(v, pars, dims) # doctest: +ELLIPSIS OrderedDict([('mu', array([0, 1, 2, 3, 4])), ('Phi', array([[ 5, ... """ if starts is None: starts = _calc_starts(dims) d = OrderedDict() for i in range(len(pars)): l = int(np.prod(dims[i])) start = starts[i] end = start + l y = np.asarray(v[start:end]) if len(dims[i]) > 1: y = y.reshape(dims[i], order='F') # 'F' = Fortran, column-major d[pars[i]] = y.squeeze() if y.shape == (1,) else y return d def _check_pars(allpars, pars): if len(pars) == 0: raise ValueError("No parameter specified (`pars` is empty).") for par in pars: if par not in allpars: raise ValueError("No parameter {}".format(par)) def _pars_total_indexes(names, dims, fnames, pars): """Obtain all the indexes for parameters `pars` in the sequence of names. `names` references variables that are in column-major order Parameters ---------- names : sequence of str All the parameter names. dim : sequence of list of int Dimensions, in same order as `names`. fnames : sequence of str All the scalar parameter names pars : sequence of str The parameters of interest. It is assumed all elements in `pars` are in `names`. Returns ------- indexes : OrderedDict of list of int Dictionary uses parameter names as keys. Indexes are column-major order. For each parameter there is also a key `par`+'_rowmajor' that stores the row-major indexing. Note ---- Inside each parameter (vector or array), the sequence uses column-major ordering. For example, if we have parameters alpha and beta, having dimensions [2, 2] and [2, 3] respectively, the whole parameter sequence is alpha[0,0], alpha[1,0], alpha[0, 1], alpha[1, 1], beta[0, 0], beta[1, 0], beta[0, 1], beta[1, 1], beta[0, 2], beta[1, 2]. In short, like R matrix(..., bycol=TRUE). Example ------- >>> pars_oi = ['mu', 'tau', 'eta', 'theta', 'lp__'] >>> dims_oi = [[], [], [8], [8], []] >>> fnames_oi = ['mu', 'tau', 'eta[1]', 'eta[2]', 'eta[3]', 'eta[4]', ... 'eta[5]', 'eta[6]', 'eta[7]', 'eta[8]', 'theta[1]', 'theta[2]', ... 'theta[3]', 'theta[4]', 'theta[5]', 'theta[6]', 'theta[7]', ... 'theta[8]', 'lp__'] >>> pars = ['mu', 'tau', 'eta', 'theta', 'lp__'] >>> _pars_total_indexes(pars_oi, dims_oi, fnames_oi, pars) ... # doctest: +ELLIPSIS OrderedDict([('mu', (0,)), ('tau', (1,)), ('eta', (2, 3, ... """ starts = _calc_starts(dims) def par_total_indexes(par): # if `par` is a scalar, it will match one of `fnames` if par in fnames: p = fnames.index(par) idx = tuple([p]) return OrderedDict([(par, idx), (par+'_rowmajor', idx)]) else: p = names.index(par) idx = starts[p] + np.arange(np.prod(dims[p])) idx_rowmajor = starts[p] + _idx_col2rowm(dims[p]) return OrderedDict([(par, tuple(idx)), (par+'_rowmajor', tuple(idx_rowmajor))]) indexes = OrderedDict() for par in pars: indexes.update(par_total_indexes(par)) return indexes def _idx_col2rowm(d): """Generate indexes to change from col-major to row-major ordering""" if 0 == len(d): return 1 if 1 == len(d): return np.arange(d[0]) # order='F' indicates column-major ordering idx = np.array(np.arange(np.prod(d))).reshape(d, order='F').T return idx.flatten(order='F') def _get_kept_samples(n, sim): """Get samples to be kept from the chain(s) for `n`th parameter. Samples from different chains are merged. Parameters ---------- n : int sim : dict A dictionary tied to a StanFit4Model instance. Returns ------- samples : array Samples being kept, permuted and in column-major order. """ return pystan._misc.get_kept_samples(n, sim) def _get_samples(n, sim, inc_warmup=True): # NOTE: this is in stanfit-class.R in RStan (rather than misc.R) """Get chains for `n`th parameter. Parameters ---------- n : int sim : dict A dictionary tied to a StanFit4Model instance. Returns ------- chains : list of array Each chain is an element in the list. """ return pystan._misc.get_samples(n, sim, inc_warmup) def _redirect_stderr(): """Redirect stderr for subprocesses to /dev/null Silences copious compilation messages. Returns ------- orig_stderr : file descriptor Copy of original stderr file descriptor """ sys.stderr.flush() stderr_fileno = sys.stderr.fileno() orig_stderr = os.dup(stderr_fileno) devnull = os.open(os.devnull, os.O_WRONLY) os.dup2(devnull, stderr_fileno) os.close(devnull) return orig_stderr def _has_fileno(stream): """Returns whether the stream object seems to have a working fileno() Tells whether _redirect_stderr is likely to work. Parameters ---------- stream : IO stream object Returns ------- has_fileno : bool True if stream.fileno() exists and doesn't raise OSError or UnsupportedOperation """ try: stream.fileno() except (AttributeError, OSError, IOError, io.UnsupportedOperation): return False return True def _append_id(file, id, suffix='.csv'): fname = os.path.basename(file) fpath = os.path.dirname(file) fname2 = re.sub(r'\.csv\s*$', '_{}.csv'.format(id), fname) if fname2 == fname: fname2 = '{}_{}.csv'.format(fname, id) return os.path.join(fpath, fname2) def _writable_sample_file(file, warn=True, wfun=None): """Check to see if file is writable, if not use temporary file""" if wfun is None: wfun = lambda x, y: '"{}" is not writable; use "{}" instead'.format(x, y) dir = os.path.dirname(file) dir = os.getcwd() if dir == '' else dir if os.access(dir, os.W_OK): return file else: dir2 = tempfile.mkdtemp() if warn: logger.warning(wfun(dir, dir2)) return os.path.join(dir2, os.path.basename(file)) def is_legal_stan_vname(name): stan_kw1 = ('for', 'in', 'while', 'repeat', 'until', 'if', 'then', 'else', 'true', 'false') stan_kw2 = ('int', 'real', 'vector', 'simplex', 'ordered', 'positive_ordered', 'row_vector', 'matrix', 'corr_matrix', 'cov_matrix', 'lower', 'upper') stan_kw3 = ('model', 'data', 'parameters', 'quantities', 'transformed', 'generated') cpp_kw = ("alignas", "alignof", "and", "and_eq", "asm", "auto", "bitand", "bitor", "bool", "break", "case", "catch", "char", "char16_t", "char32_t", "class", "compl", "const", "constexpr", "const_cast", "continue", "decltype", "default", "delete", "do", "double", "dynamic_cast", "else", "enum", "explicit", "export", "extern", "false", "float", "for", "friend", "goto", "if", "inline", "int", "long", "mutable", "namespace", "new", "noexcept", "not", "not_eq", "nullptr", "operator", "or", "or_eq", "private", "protected", "public", "register", "reinterpret_cast", "return", "short", "signed", "sizeof", "static", "static_assert", "static_cast", "struct", "switch", "template", "this", "thread_local", "throw", "true", "try", "typedef", "typeid", "typename", "union", "unsigned", "using", "virtual", "void", "volatile", "wchar_t", "while", "xor", "xor_eq") illegal = stan_kw1 + stan_kw2 + stan_kw3 + cpp_kw if re.findall(r'(\.|^[0-9]|__$)', name): return False return not name in illegal def _dict_to_rdump(data): parts = [] for name, value in data.items(): if isinstance(value, (Sequence, Number, np.number, np.ndarray, int, bool, float)) \ and not isinstance(value, string_types): value = np.asarray(value) else: raise ValueError("Variable {} is not a number and cannot be dumped.".format(name)) if value.dtype == np.bool: value = value.astype(int) if value.ndim == 0: s = '{} <- {}\n'.format(name, str(value)) elif value.ndim == 1: s = '{} <-\nc({})\n'.format(name, ', '.join(str(v) for v in value)) elif value.ndim > 1: tmpl = '{} <-\nstructure(c({}), .Dim = c({}))\n' # transpose value as R uses column-major # 'F' = Fortran, column-major s = tmpl.format(name, ', '.join(str(v) for v in value.flatten(order='F')), ', '.join(str(v) for v in value.shape)) parts.append(s) return ''.join(parts) def stan_rdump(data, filename): """ Dump a dictionary with model data into a file using the R dump format that Stan supports. Parameters ---------- data : dict filename : str """ for name in data: if not is_legal_stan_vname(name): raise ValueError("Variable name {} is not allowed in Stan".format(name)) with open(filename, 'w') as f: f.write(_dict_to_rdump(data)) def _rdump_value_to_numpy(s): """ Convert a R dump formatted value to Numpy equivalent For example, "c(1, 2)" becomes ``array([1, 2])`` Only supports a few R data structures. Will not work with European decimal format. """ if "structure" in s: vector_str, shape_str = re.findall(r'c\([^\)]+\)', s) shape = [int(d) for d in shape_str[2:-1].split(',')] if '.' in vector_str: arr = np.array([float(v) for v in vector_str[2:-1].split(',')]) else: arr = np.array([int(v) for v in vector_str[2:-1].split(',')]) # 'F' = Fortran, column-major arr = arr.reshape(shape, order='F') elif "c(" in s: if '.' in s: arr = np.array([float(v) for v in s[2:-1].split(',')], order='F') else: arr = np.array([int(v) for v in s[2:-1].split(',')], order='F') else: arr = np.array(float(s) if '.' in s else int(s)) return arr def _remove_empty_pars(pars, pars_oi, dims_oi): """ Remove parameters that are actually empty. For example, the parameter y would be removed with the following model code: transformed data { int n; n <- 0; } parameters { real y[n]; } Parameters ---------- pars: iterable of str pars_oi: list of str dims_oi: list of list of int Returns ------- pars_trimmed: list of str """ pars = list(pars) for par, dim in zip(pars_oi, dims_oi): if par in pars and np.prod(dim) == 0: del pars[pars.index(par)] return pars def read_rdump(filename): """ Read data formatted using the R dump format Parameters ---------- filename: str Returns ------- data : OrderedDict """ contents = open(filename).read().strip() names = [name.strip() for name in re.findall(r'^(\w+) <-', contents, re.MULTILINE)] values = [value.strip() for value in re.split('\w+ +<-', contents) if value] if len(values) != len(names): raise ValueError("Unable to read file. Unable to pair variable name with value.") d = OrderedDict() for name, value in zip(names, values): d[name.strip()] = _rdump_value_to_numpy(value.strip()) return d def to_dataframe(fit, pars=None, permuted=False, dtypes=None, inc_warmup=False, diagnostics=True, header=True): """Extract samples as a pandas dataframe for different parameters. Parameters ---------- pars : {str, sequence of str} parameter (or quantile) name(s). permuted : bool If True, returned samples are permuted. If inc_warmup is True, warmup samples have negative order. dtypes : dict datatype of parameter(s). If nothing is passed, float will be used for all parameters. inc_warmup : bool If True, warmup samples are kept; otherwise they are discarded. diagnostics : bool If True, include hmc diagnostics in dataframe. header : bool If True, include header columns. Returns ------- df : pandas dataframe Returned dataframe contains: [header_df]|[draws_df]|[diagnostics_df], where all groups are optional. To exclude draws_df use `pars=[]`. """ try: import pandas as pd except ImportError: raise ImportError("Pandas module not found. You can install pandas with: pip install pandas") fit._verify_has_samples() pars_original = pars if pars is None: pars = fit.sim['pars_oi'] elif isinstance(pars, string_types): pars = [pars] if pars: pars = pystan.misc._remove_empty_pars(pars, fit.sim['pars_oi'], fit.sim['dims_oi']) allpars = fit.sim['pars_oi'] + fit.sim['fnames_oi'] _check_pars(allpars, pars) if dtypes is None: dtypes = {} n_kept = [s if inc_warmup else s-w for s, w in zip(fit.sim['n_save'], fit.sim['warmup2'])] chains = len(fit.sim['samples']) diagnostic_type = {'divergent__':int, 'energy__':float, 'treedepth__':int, 'accept_stat__':float, 'stepsize__':float, 'n_leapfrog__':int} header_dict = OrderedDict() if header: idx = np.concatenate([np.full(n_kept[chain], chain, dtype=int) for chain in range(chains)]) warmup = [np.zeros(n_kept[chain], dtype=np.int64) for chain in range(chains)] if inc_warmup: draw = [] for chain, w in zip(range(chains), fit.sim['warmup2']): warmup[chain][:w] = 1 draw.append(np.arange(n_kept[chain], dtype=np.int64) - w) draw = np.concatenate(draw) else: draw = np.concatenate([np.arange(n_kept[chain], dtype=np.int64) for chain in range(chains)]) warmup = np.concatenate(warmup) header_dict = OrderedDict(zip(['chain', 'draw', 'warmup'], [idx, draw, warmup])) if permuted: if inc_warmup: chain_permutation = [] chain_permutation_order = [] permutation = [] permutation_order = [] for chain, p, w in zip(range(chains), fit.sim['permutation'], fit.sim['warmup2']): chain_permutation.append(list(range(-w, 0)) + p) chain_permutation_order.append(list(range(-w, 0)) + list(np.argsort(p))) permutation.append(sum(n_kept[:chain])+chain_permutation[-1]+w) permutation_order.append(sum(n_kept[:chain])+chain_permutation_order[-1]+w) chain_permutation = np.concatenate(chain_permutation) chain_permutation_order = np.concatenate(chain_permutation_order) permutation = np.concatenate(permutation) permutation_order = np.concatenate(permutation_order) else: chain_permutation = np.concatenate(fit.sim['permutation']) chain_permutation_order = np.concatenate([np.argsort(item) for item in fit.sim['permutation']]) permutation = np.concatenate([sum(n_kept[:chain])+p for chain, p in enumerate(fit.sim['permutation'])]) permutation_order = np.argsort(permutation) header_dict["permutation"] = permutation header_dict["chain_permutation"] = chain_permutation header_dict["permutation_order"] = permutation_order header_dict["chain_permutation_order"] = chain_permutation_order if header: header_df = pd.DataFrame.from_dict(header_dict) else: if permuted: header_df = pd.DataFrame.from_dict({"permutation_order" : header_dict["permutation_order"]}) else: header_df = pd.DataFrame() fnames_set = set(fit.sim['fnames_oi']) pars_set = set(pars) if pars_original is None or fnames_set == pars_set: dfs = [pd.DataFrame.from_dict(pyholder.chains).iloc[-n:] for pyholder, n in zip(fit.sim['samples'], n_kept)] df = pd.concat(dfs, axis=0, sort=False, ignore_index=True) if dtypes: if not fnames_set.issuperset(pars_set): par_keys = OrderedDict([(par, []) for par in fit.sim['pars_oi']]) for key in fit.sim['fnames_oi']: par = key.split("[") par = par[0] par_keys[par].append(key) for par, dtype in dtypes.items(): if isinstance(dtype, (float, np.float64)): continue for key in par_keys.get(par, [par]): df.loc[:, key] = df.loc[:, key].astype(dtype) elif pars: par_keys = dict() if not fnames_set.issuperset(pars_set): par_keys = OrderedDict([(par, []) for par in fit.sim['pars_oi']]) for key in fit.sim['fnames_oi']: par = key.split("[") par = par[0] par_keys[par].append(key) columns = [] for par in pars: columns.extend(par_keys.get(par, [par])) columns = list(np.unique(columns)) df = pd.DataFrame(index=np.arange(sum(n_kept)), columns=columns, dtype=float) for key in columns: key_values = [] for chain, (pyholder, n) in enumerate(zip(fit.sim['samples'], n_kept)): key_values.append(pyholder.chains[key][-n:]) df.loc[:, key] = np.concatenate(key_values) for par, dtype in dtypes.items(): if isinstance(dtype, (float, np.float64)): continue for key in par_keys.get(par, [par]): df.loc[:, key] = df.loc[:, key].astype(dtype) else: df = pd.DataFrame() if diagnostics: diagnostics_dfs = [] for idx, (pyholder, permutation, n) in enumerate(zip(fit.sim['samples'], fit.sim['permutation'], n_kept), 1): diagnostics_df = pd.DataFrame(pyholder['sampler_params'], index=pyholder['sampler_param_names']).T diagnostics_df = diagnostics_df.iloc[-n:, :] for key, dtype in diagnostic_type.items(): if key in diagnostics_df: diagnostics_df.loc[:, key] = diagnostics_df.loc[:, key].astype(dtype) diagnostics_dfs.append(diagnostics_df) if diagnostics_dfs: diagnostics_df = pd.concat(diagnostics_dfs, axis=0, sort=False, ignore_index=True) else: diagnostics_df = pd.DataFrame() else: diagnostics_df =
pd.DataFrame()
pandas.DataFrame
import logging from functools import lru_cache from itertools import chain # from linetimer import CodeTimer import pandas as pd from statistics import mean, StatisticsError from elecsim.role.market.latest_market_data import LatestMarketData from elecsim.market.electricity.bid import Bid import elecsim.scenario.scenario_data from random import sample logger = logging.getLogger(__name__) """power_exchange.py: Functionality to run power exchange""" __author__ = "<NAME>" __copyright__ = "Copyright 2018, <NAME>" __license__ = "MIT" __email__ = "<EMAIL>" class PowerExchange: def __init__(self, model, demand_distribution=None): """ Power exchange agent which contains functionality to tender and respond to bids. :param model: Model in which the agents are contained in. """ self.model = model self.demand_distribution = demand_distribution self.hold_duration_curve_prices = [] self.price_duration_curve = pd.DataFrame(columns=["year", "segment_hour", "segment_demand", "accepted_price"]) self.stored_bids = {} self.stored_ordered_bids = {} def tender_bids(self, segment_hours, segment_demand, predict=False): """ Function which iterates through the generator companies, requests their bids, orders them in order of price, and accepts bids. :param agents: All agents from simulation model. :param segment_hours: Value for number of hours particular electricity generation is required. :param segment_demand: Size of electricity consumption required. :param predict: Boolean that states whether the bids being tendered are for predicting price duration curve or whether it is for real bids. :return: None """ self.hold_duration_curve_prices = [] agent = self.model.schedule.agents generator_companies = [x for x in agent if hasattr(x, 'plants')] # Selection of generation company agents for gen_co in generator_companies: for plant in gen_co.plants: plant.capacity_fulfilled = dict.fromkeys(segment_hours, 0) highest_bid = 0 for segment_hour, segment_demand in zip(segment_hours, segment_demand): if self.model.gencos_rl: eid_bidding = self.model.bidding_client.start_episode() co2_price = LatestMarketData(self.model)._get_variable_data("co2")[self.model.years_from_start] gas_price = LatestMarketData(self.model)._get_variable_data("gas")[self.model.years_from_start] coal_price = LatestMarketData(self.model)._get_variable_data("coal")[self.model.years_from_start] observation = [segment_hour, segment_demand, self.model.year_number, co2_price, gas_price, coal_price, highest_bid] # logger.info("observation: {}".format(observation)) actions = self.model.bidding_client.get_action(eid_bidding, observation) # logger.info("action: {}".format(actions)) bids = [] action_index = 0 for generation_company in generator_companies: if generation_company.name in self.model.gencos_rl: number_of_plants = len(generation_company.plants) actual_bid = generation_company.calculate_bids(segment_hour, predict, actions[action_index:(action_index+number_of_plants)]) action_index += number_of_plants else: actual_bid = generation_company.calculate_bids(segment_hour, predict) bids.append(actual_bid) sorted_bids = self._sort_bids(bids) if predict is False: logger.debug("bids len: {}".format(len(sorted_bids))) # logger.info("total capacity of bids: {}".format(sum(bid.capacity_bid for bid in sorted_bids))) accepted_bids = self._respond_to_bids(sorted_bids, segment_hour, segment_demand) highest_bid = self._accept_bids(accepted_bids) if self.model.gencos_rl: try: average_accepted_price = mean([int(rl_bid.bid_accepted)*rl_bid.price_per_mwh for rl_bid in accepted_bids if rl_bid.rl_bid is True]) except StatisticsError: average_accepted_price = 0 # logger.info("total_accepted_bids: {}".format(total_accepted_bids)) self.model.bidding_client.log_returns(eid_bidding, average_accepted_price) self.model.bidding_client.end_episode(eid_bidding, observation) if self.demand_distribution: self._create_load_duration_price_curve(segment_hour, segment_demand + sample(self.demand_distribution, 1)[0], highest_bid) else: self._create_load_duration_price_curve(segment_hour, segment_demand, highest_bid) self.price_duration_curve =
pd.DataFrame(self.hold_duration_curve_prices)
pandas.DataFrame
import psycopg2 import psycopg2 import sqlalchemy as salc import numpy as np import warnings import datetime import pandas as pd import json from math import pi from flask import request, send_file, Response # import visualization libraries from bokeh.io import export_png from bokeh.embed import json_item from bokeh.plotting import figure from bokeh.models import Label, LabelSet, ColumnDataSource, Legend from bokeh.palettes import Colorblind from bokeh.layouts import gridplot from bokeh.transform import cumsum warnings.filterwarnings('ignore') def create_routes(server): def quarters(month, year): if 1 <= month <= 3: return '01' + '/' + year elif 4 <= month <= 6: return '04' + '/' + year elif 5 <= month <= 9: return '07' + '/' + year elif 10 <= month <= 12: return '10' + '/' + year def new_contributor_data_collection(repo_id, required_contributions): rank_list = [] for num in range(1, required_contributions + 1): rank_list.append(num) rank_tuple = tuple(rank_list) contributor_query = salc.sql.text(f""" SELECT * FROM ( SELECT ID AS cntrb_id, A.created_at AS created_at, date_part('month', A.created_at::DATE) AS month, date_part('year', A.created_at::DATE) AS year, A.repo_id, repo_name, full_name, login, ACTION, rank() OVER ( PARTITION BY id ORDER BY A.created_at ASC ) FROM ( ( SELECT canonical_id AS ID, created_at AS created_at, repo_id, 'issue_opened' AS ACTION, contributors.cntrb_full_name AS full_name, contributors.cntrb_login AS login FROM augur_data.issues LEFT OUTER JOIN augur_data.contributors ON contributors.cntrb_id = issues.reporter_id LEFT OUTER JOIN ( SELECT DISTINCT ON ( cntrb_canonical ) cntrb_full_name, cntrb_canonical AS canonical_email, data_collection_date, cntrb_id AS canonical_id FROM augur_data.contributors WHERE cntrb_canonical = cntrb_email ORDER BY cntrb_canonical ) canonical_full_names ON canonical_full_names.canonical_email =contributors.cntrb_canonical WHERE repo_id = {repo_id} AND pull_request IS NULL GROUP BY canonical_id, repo_id, issues.created_at, contributors.cntrb_full_name, contributors.cntrb_login ) UNION ALL ( SELECT canonical_id AS ID, TO_TIMESTAMP( cmt_author_date, 'YYYY-MM-DD' ) AS created_at, repo_id, 'commit' AS ACTION, contributors.cntrb_full_name AS full_name, contributors.cntrb_login AS login FROM augur_data.commits LEFT OUTER JOIN augur_data.contributors ON cntrb_email = cmt_author_email LEFT OUTER JOIN ( SELECT DISTINCT ON ( cntrb_canonical ) cntrb_full_name, cntrb_canonical AS canonical_email, data_collection_date, cntrb_id AS canonical_id FROM augur_data.contributors WHERE cntrb_canonical = cntrb_email ORDER BY cntrb_canonical ) canonical_full_names ON canonical_full_names.canonical_email =contributors.cntrb_canonical WHERE repo_id = {repo_id} GROUP BY repo_id, canonical_email, canonical_id, commits.cmt_author_date, contributors.cntrb_full_name, contributors.cntrb_login ) UNION ALL ( SELECT message.cntrb_id AS ID, created_at AS created_at, commits.repo_id, 'commit_comment' AS ACTION, contributors.cntrb_full_name AS full_name, contributors.cntrb_login AS login FROM augur_data.commit_comment_ref, augur_data.commits, augur_data.message LEFT OUTER JOIN augur_data.contributors ON contributors.cntrb_id = message.cntrb_id LEFT OUTER JOIN ( SELECT DISTINCT ON ( cntrb_canonical ) cntrb_full_name, cntrb_canonical AS canonical_email, data_collection_date, cntrb_id AS canonical_id FROM augur_data.contributors WHERE cntrb_canonical = cntrb_email ORDER BY cntrb_canonical ) canonical_full_names ON canonical_full_names.canonical_email =contributors.cntrb_canonical WHERE commits.cmt_id = commit_comment_ref.cmt_id AND commits.repo_id = {repo_id} AND commit_comment_ref.msg_id = message.msg_id GROUP BY ID, commits.repo_id, commit_comment_ref.created_at, contributors.cntrb_full_name, contributors.cntrb_login ) UNION ALL ( SELECT issue_events.cntrb_id AS ID, issue_events.created_at AS created_at, issues.repo_id, 'issue_closed' AS ACTION, contributors.cntrb_full_name AS full_name, contributors.cntrb_login AS login FROM augur_data.issues, augur_data.issue_events LEFT OUTER JOIN augur_data.contributors ON contributors.cntrb_id = issue_events.cntrb_id LEFT OUTER JOIN ( SELECT DISTINCT ON ( cntrb_canonical ) cntrb_full_name, cntrb_canonical AS canonical_email, data_collection_date, cntrb_id AS canonical_id FROM augur_data.contributors WHERE cntrb_canonical = cntrb_email ORDER BY cntrb_canonical ) canonical_full_names ON canonical_full_names.canonical_email =contributors.cntrb_canonical WHERE issues.repo_id = {repo_id} AND issues.issue_id = issue_events.issue_id AND issues.pull_request IS NULL AND issue_events.cntrb_id IS NOT NULL AND ACTION = 'closed' GROUP BY issue_events.cntrb_id, issues.repo_id, issue_events.created_at, contributors.cntrb_full_name, contributors.cntrb_login ) UNION ALL ( SELECT pr_augur_contributor_id AS ID, pr_created_at AS created_at, pull_requests.repo_id, 'open_pull_request' AS ACTION, contributors.cntrb_full_name AS full_name, contributors.cntrb_login AS login FROM augur_data.pull_requests LEFT OUTER JOIN augur_data.contributors ON pull_requests.pr_augur_contributor_id = contributors.cntrb_id LEFT OUTER JOIN ( SELECT DISTINCT ON ( cntrb_canonical ) cntrb_full_name, cntrb_canonical AS canonical_email, data_collection_date, cntrb_id AS canonical_id FROM augur_data.contributors WHERE cntrb_canonical = cntrb_email ORDER BY cntrb_canonical ) canonical_full_names ON canonical_full_names.canonical_email =contributors.cntrb_canonical WHERE pull_requests.repo_id = {repo_id} GROUP BY pull_requests.pr_augur_contributor_id, pull_requests.repo_id, pull_requests.pr_created_at, contributors.cntrb_full_name, contributors.cntrb_login ) UNION ALL ( SELECT message.cntrb_id AS ID, msg_timestamp AS created_at, pull_requests.repo_id as repo_id, 'pull_request_comment' AS ACTION, contributors.cntrb_full_name AS full_name, contributors.cntrb_login AS login FROM augur_data.pull_requests, augur_data.pull_request_message_ref, augur_data.message LEFT OUTER JOIN augur_data.contributors ON contributors.cntrb_id = message.cntrb_id LEFT OUTER JOIN ( SELECT DISTINCT ON ( cntrb_canonical ) cntrb_full_name, cntrb_canonical AS canonical_email, data_collection_date, cntrb_id AS canonical_id FROM augur_data.contributors WHERE cntrb_canonical = cntrb_email ORDER BY cntrb_canonical ) canonical_full_names ON canonical_full_names.canonical_email =contributors.cntrb_canonical WHERE pull_requests.repo_id = {repo_id} AND pull_request_message_ref.pull_request_id = pull_requests.pull_request_id AND pull_request_message_ref.msg_id = message.msg_id GROUP BY message.cntrb_id, pull_requests.repo_id, message.msg_timestamp, contributors.cntrb_full_name, contributors.cntrb_login ) UNION ALL ( SELECT issues.reporter_id AS ID, msg_timestamp AS created_at, issues.repo_id as repo_id, 'issue_comment' AS ACTION, contributors.cntrb_full_name AS full_name, contributors.cntrb_login AS login FROM issues, issue_message_ref, message LEFT OUTER JOIN augur_data.contributors ON contributors.cntrb_id = message.cntrb_id LEFT OUTER JOIN ( SELECT DISTINCT ON ( cntrb_canonical ) cntrb_full_name, cntrb_canonical AS canonical_email, data_collection_date, cntrb_id AS canonical_id FROM augur_data.contributors WHERE cntrb_canonical = cntrb_email ORDER BY cntrb_canonical ) canonical_full_names ON canonical_full_names.canonical_email =contributors.cntrb_canonical WHERE issues.repo_id = {repo_id} AND issue_message_ref.msg_id = message.msg_id AND issues.issue_id = issue_message_ref.issue_id AND issues.pull_request_id = NULL GROUP BY issues.reporter_id, issues.repo_id, message.msg_timestamp, contributors.cntrb_full_name, contributors.cntrb_login ) ) A, repo WHERE ID IS NOT NULL AND A.repo_id = repo.repo_id GROUP BY A.ID, A.repo_id, A.ACTION, A.created_at, repo.repo_name, A.full_name, A.login ORDER BY cntrb_id ) b WHERE RANK IN {rank_tuple} """) df = pd.read_sql(contributor_query, server.augur_app.database) df = df.loc[~df['full_name'].str.contains('bot', na=False)] df = df.loc[~df['login'].str.contains('bot', na=False)] df = df.loc[~df['cntrb_id'].isin(df[df.duplicated(['cntrb_id', 'created_at', 'repo_id', 'rank'])]['cntrb_id'])] # add yearmonths to contributor df[['month', 'year']] = df[['month', 'year']].astype(int).astype(str) df['yearmonth'] = df['month'] + '/' + df['year'] df['yearmonth'] = pd.to_datetime(df['yearmonth']) # add column with every value being one, so when the contributor df is concatenated # with the months df, the filler months won't be counted in the sums df['new_contributors'] = 1 # add quarters to contributor dataframe df['month'] = df['month'].astype(int) df['quarter'] = df.apply(lambda x: quarters(x['month'], x['year']), axis=1, result_type='reduce') df['quarter'] = pd.to_datetime(df['quarter']) return df def months_data_collection(start_date, end_date): # months_query makes a df of years and months, this is used to fill # the months with no data in the visualizations months_query = salc.sql.text(f""" SELECT * FROM ( SELECT date_part( 'year', created_month :: DATE ) AS year, date_part( 'month', created_month :: DATE ) AS MONTH FROM (SELECT * FROM ( SELECT created_month :: DATE FROM generate_series (TIMESTAMP '{start_date}', TIMESTAMP '{end_date}', INTERVAL '1 month' ) created_month ) d ) x ) y """) months_df = pd.read_sql(months_query, server.augur_app.database) # add yearmonths to months_df months_df[['year', 'month']] = months_df[['year', 'month']].astype(float).astype(int).astype(str) months_df['yearmonth'] = months_df['month'] + '/' + months_df['year'] months_df['yearmonth'] = pd.to_datetime(months_df['yearmonth']) # filter months_df with start_date and end_date, the contributor df is filtered in the visualizations months_df = months_df.set_index(months_df['yearmonth']) months_df = months_df.loc[start_date: end_date].reset_index(drop=True) # add quarters to months dataframe months_df['month'] = months_df['month'].astype(int) months_df['quarter'] = months_df.apply(lambda x: quarters(x['month'], x['year']), axis=1) months_df['quarter'] = pd.to_datetime(months_df['quarter']) return months_df def get_repo_id_start_date_and_end_date(): now = datetime.datetime.now() repo_id = int(request.args.get('repo_id')) start_date = str(request.args.get('start_date', "{}-01-01".format(now.year - 1))) end_date = str(request.args.get('end_date', "{}-{}-{}".format(now.year, now.month, now.day))) return repo_id, start_date, end_date def filter_out_repeats_without_required_contributions_in_required_time(repeat_list, repeats_df, required_time, first_list): differences = [] for i in range(0, len(repeat_list)): time_difference = repeat_list[i] - first_list[i] total = time_difference.days * 86400 + time_difference.seconds differences.append(total) repeats_df['differences'] = differences # remove contributions who made enough contributions, but not in a short enough time repeats_df = repeats_df.loc[repeats_df['differences'] <= required_time * 86400] return repeats_df def compute_fly_by_and_returning_contributors_dfs(input_df, required_contributions, required_time, start_date): # create a copy of contributor dataframe driver_df = input_df.copy() # remove first time contributors before begin date, along with their second contribution mask = (driver_df['yearmonth'] < start_date) driver_df = driver_df[~driver_df['cntrb_id'].isin(driver_df.loc[mask]['cntrb_id'])] # determine if contributor is a drive by by finding all the cntrb_id's that do not have a second contribution repeats_df = driver_df.copy() repeats_df = repeats_df.loc[repeats_df['rank'].isin([1, required_contributions])] # removes all the contributors that only have a first contirbution repeats_df = repeats_df[ repeats_df['cntrb_id'].isin(repeats_df.loc[driver_df['rank'] == required_contributions]['cntrb_id'])] repeat_list = repeats_df.loc[driver_df['rank'] == required_contributions]['created_at'].tolist() first_list = repeats_df.loc[driver_df['rank'] == 1]['created_at'].tolist() repeats_df = repeats_df.loc[driver_df['rank'] == 1] repeats_df['type'] = 'repeat' repeats_df = filter_out_repeats_without_required_contributions_in_required_time( repeat_list, repeats_df, required_time, first_list) repeats_df = repeats_df.loc[repeats_df['differences'] <= required_time * 86400] repeat_cntrb_ids = repeats_df['cntrb_id'].to_list() drive_by_df = driver_df.loc[~driver_df['cntrb_id'].isin(repeat_cntrb_ids)] drive_by_df = drive_by_df.loc[driver_df['rank'] == 1] drive_by_df['type'] = 'drive_by' return drive_by_df, repeats_df def add_caption_to_visualizations(caption, required_contributions, required_time, plot_width): caption_plot = figure(width=plot_width, height=200, margin=(0, 0, 0, 0)) caption_plot.add_layout(Label( x=0, y=160, x_units='screen', y_units='screen', text='{}'.format(caption.format(required_contributions, required_time)), text_font='times', text_font_size='15pt', render_mode='css' )) caption_plot.outline_line_color = None return caption_plot def format_new_cntrb_bar_charts(plot, rank, group_by_format_string): plot.xgrid.grid_line_color = None plot.y_range.start = 0 plot.axis.minor_tick_line_color = None plot.outline_line_color = None plot.title.align = "center" plot.title.text_font_size = "18px" plot.yaxis.axis_label = 'Second Time Contributors' if rank == 2 else 'New Contributors' plot.xaxis.axis_label = group_by_format_string plot.xaxis.axis_label_text_font_size = "18px" plot.yaxis.axis_label_text_font_size = "16px" plot.xaxis.major_label_text_font_size = "16px" plot.xaxis.major_label_orientation = 45.0 plot.yaxis.major_label_text_font_size = "16px" return plot def add_charts_and_captions_to_correct_positions(chart_plot, caption_plot, rank, contributor_type, row_1, row_2, row_3, row_4): if rank == 1 and (contributor_type == 'All' or contributor_type == 'repeat'): row_1.append(chart_plot) row_2.append(caption_plot) elif rank == 2 or contributor_type == 'drive_by': row_3.append(chart_plot) row_4.append(caption_plot) def get_new_cntrb_bar_chart_query_params(): group_by = str(request.args.get('group_by', "quarter")) required_contributions = int(request.args.get('required_contributions', 4)) required_time = int(request.args.get('required_time', 365)) return group_by, required_contributions, required_time def remove_rows_before_start_date(df, start_date): mask = (df['yearmonth'] < start_date) result_df = df[~df['cntrb_id'].isin(df.loc[mask]['cntrb_id'])] return result_df def remove_rows_with_null_values(df, not_null_columns=[]): """Remove null data from pandas df Parameters -- df description: the dataframe that will be modified type: Pandas Dataframe -- list_of_columns description: columns that are searched for NULL values type: list default: [] (means all columns will be checked for NULL values) IMPORTANT: if an empty list is passed or nothing is passed it will check all columns for NULL values Return Value -- Modified Pandas Dataframe """ if len(not_null_columns) == 0: not_null_columns = df.columns.to_list() total_rows_removed = 0 for col in not_null_columns: rows_removed = len(df.loc[df[col].isnull() == True]) if rows_removed > 0: print(f"{rows_removed} rows have been removed because of null values in column {col}") total_rows_removed += rows_removed df = df.loc[df[col].isnull() == False] if total_rows_removed > 0: print(f"\nTotal rows removed because of null data: {total_rows_removed}"); else: print("No null data found") return df def get_needed_columns(df, list_of_columns): """Get only a specific list of columns from a Pandas Dataframe Parameters -- df description: the dataframe that will be modified type: Pandas Dataframe -- list_of_columns description: columns that will be kept in dataframe type: list Return Value -- Modified Pandas Dataframe """ return df[list_of_columns] def filter_data(df, needed_columns, not_null_columns=[]): """Filters out the unneeded rows in the df, and removed NULL data from df Parameters -- df description: the dataframe that will be modified type: Pandas Dataframe -- needed_columns description: the columns to keep in the dataframe -- not_null_columns description: columns that will be searched for NULL data, if NULL values are found those rows will be removed default: [] (means all columns in needed_columns list will be checked for NULL values) IMPORTANT: if an empty list is passed or nothing is passed it will check all columns in needed_columns list for NULL values Return Value -- Modified Pandas Dataframe """ if all(x in needed_columns for x in not_null_columns): df = get_needed_columns(df, needed_columns) df = remove_rows_with_null_values(df, not_null_columns) return df else: print("Developer error, not null columns should be a subset of needed columns") return df @server.app.route('/{}/contributor_reports/new_contributors_bar/'.format(server.api_version), methods=["GET"]) def new_contributors_bar(): repo_id, start_date, end_date = get_repo_id_start_date_and_end_date() group_by, required_contributions, required_time = get_new_cntrb_bar_chart_query_params() input_df = new_contributor_data_collection(repo_id=repo_id, required_contributions=required_contributions) months_df = months_data_collection(start_date=start_date, end_date=end_date) # TODO remove full_name from data for all charts since it is not needed in vis generation not_null_columns = ['cntrb_id', 'created_at', 'month', 'year', 'repo_id', 'repo_name', 'login', 'action', 'rank', 'yearmonth', 'new_contributors', 'quarter'] input_df = remove_rows_with_null_values(input_df, not_null_columns) if len(input_df) == 0: return Response(response="There is no data for this repo, in the database you are accessing", mimetype='application/json', status=200) repo_dict = {repo_id: input_df.loc[input_df['repo_id'] == repo_id].iloc[0]['repo_name']} contributor_types = ['All', 'repeat', 'drive_by'] ranks = [1, 2] row_1, row_2, row_3, row_4 = [], [], [], [] all_df = remove_rows_before_start_date(input_df, start_date) drive_by_df, repeats_df = compute_fly_by_and_returning_contributors_dfs(input_df, required_contributions, required_time, start_date) for rank in ranks: for contributor_type in contributor_types: # do not display these visualizations since drive-by's do not have second contributions, and the # second contribution of a repeat contributor is the same thing as the all the second time contributors if (rank == 2 and contributor_type == 'drive_by') or (rank == 2 and contributor_type == 'repeat'): continue if contributor_type == 'repeat': driver_df = repeats_df caption = """This graph shows repeat contributors in the specified time period. Repeat contributors are contributors who have made {} or more contributions in {} days and their first contribution is in the specified time period. New contributors are individuals who make their first contribution in the specified time period.""" elif contributor_type == 'drive_by': driver_df = drive_by_df caption = """This graph shows fly by contributors in the specified time period. Fly by contributors are contributors who make less than the required {} contributions in {} days. New contributors are individuals who make their first contribution in the specified time period. Of course, then, “All fly-by’s are by definition first time contributors”. However, not all first time contributors are fly-by’s.""" elif contributor_type == 'All': if rank == 1: driver_df = all_df # makes df with all first time contributors driver_df = driver_df.loc[driver_df['rank'] == 1] caption = """This graph shows all the first time contributors, whether they contribute once, or contribute multiple times. New contributors are individuals who make their first contribution in the specified time period.""" if rank == 2: driver_df = all_df # creates df with all second time contributors driver_df = driver_df.loc[driver_df['rank'] == 2] caption = """This graph shows the second contribution of all first time contributors in the specified time period.""" # y_axis_label = 'Second Time Contributors' # filter by end_date, this is not done with the begin date filtering because a repeat contributor # will look like drive-by if the second contribution is removed by end_date filtering mask = (driver_df['yearmonth'] < end_date) driver_df = driver_df.loc[mask] # adds all months to driver_df so the lists of dates will include all months and years driver_df = pd.concat([driver_df, months_df]) data = pd.DataFrame() if group_by == 'year': data['dates'] = driver_df[group_by].unique() # new contributor counts for y-axis data['new_contributor_counts'] = driver_df.groupby([group_by]).sum().reset_index()[ 'new_contributors'] # used to format x-axis and title group_by_format_string = "Year" elif group_by == 'quarter' or group_by == 'month': # set variables to group the data by quarter or month if group_by == 'quarter': date_column = 'quarter' group_by_format_string = "Quarter" elif group_by == 'month': date_column = 'yearmonth' group_by_format_string = "Month" # modifies the driver_df[date_column] to be a string with year and month, # then finds all the unique values data['dates'] = np.unique(np.datetime_as_string(driver_df[date_column], unit='M')) # new contributor counts for y-axis data['new_contributor_counts'] = driver_df.groupby([date_column]).sum().reset_index()[ 'new_contributors'] # if the data set is large enough it will dynamically assign the width, if the data set is # too small it will by default set to 870 pixel so the title fits if len(data['new_contributor_counts']) >= 15: plot_width = 46 * len(data['new_contributor_counts']) else: plot_width = 870 # create a dict convert an integer number into a word # used to turn the rank into a word, so it is nicely displayed in the title numbers = ['Zero', 'First', 'Second'] num_conversion_dict = {} for i in range(1, len(numbers)): num_conversion_dict[i] = numbers[i] number = '{}'.format(num_conversion_dict[rank]) # define pot for bar chart p = figure(x_range=data['dates'], plot_height=400, plot_width=plot_width, title="{}: {} {} Time Contributors Per {}".format(repo_dict[repo_id], contributor_type.capitalize(), number, group_by_format_string), y_range=(0, max(data['new_contributor_counts']) * 1.15), margin=(0, 0, 10, 0)) p.vbar(x=data['dates'], top=data['new_contributor_counts'], width=0.8) source = ColumnDataSource( data=dict(dates=data['dates'], new_contributor_counts=data['new_contributor_counts'])) # add contributor_count labels to chart p.add_layout(LabelSet(x='dates', y='new_contributor_counts', text='new_contributor_counts', y_offset=4, text_font_size="13pt", text_color="black", source=source, text_align='center')) plot = format_new_cntrb_bar_charts(p, rank, group_by_format_string) caption_plot = add_caption_to_visualizations(caption, required_contributions, required_time, plot_width) add_charts_and_captions_to_correct_positions(plot, caption_plot, rank, contributor_type, row_1, row_2, row_3, row_4) # puts plots together into a grid grid = gridplot([row_1, row_2, row_3, row_4]) filename = export_png(grid) return send_file(filename) @server.app.route('/{}/contributor_reports/new_contributors_stacked_bar/'.format(server.api_version), methods=["GET"]) def new_contributors_stacked_bar(): repo_id, start_date, end_date = get_repo_id_start_date_and_end_date() group_by, required_contributions, required_time = get_new_cntrb_bar_chart_query_params() input_df = new_contributor_data_collection(repo_id=repo_id, required_contributions=required_contributions) months_df = months_data_collection(start_date=start_date, end_date=end_date) needed_columns = ['cntrb_id', 'created_at', 'month', 'year', 'repo_id', 'repo_name', 'login', 'action', 'rank', 'yearmonth', 'new_contributors', 'quarter'] input_df = filter_data(input_df, needed_columns) if len(input_df) == 0: return Response(response="There is no data for this repo, in the database you are accessing", mimetype='application/json', status=200) repo_dict = {repo_id: input_df.loc[input_df['repo_id'] == repo_id].iloc[0]['repo_name']} contributor_types = ['All', 'repeat', 'drive_by'] ranks = [1, 2] row_1, row_2, row_3, row_4 = [], [], [], [] all_df = remove_rows_before_start_date(input_df, start_date) drive_by_df, repeats_df = compute_fly_by_and_returning_contributors_dfs(input_df, required_contributions, required_time, start_date) for rank in ranks: for contributor_type in contributor_types: # do not display these visualizations since drive-by's do not have second contributions, # and the second contribution of a repeat contributor is the same thing as the all the # second time contributors if (rank == 2 and contributor_type == 'drive_by') or (rank == 2 and contributor_type == 'repeat'): continue if contributor_type == 'repeat': driver_df = repeats_df caption = """This graph shows repeat contributors in the specified time period. Repeat contributors are contributors who have made {} or more contributions in {} days and their first contribution is in the specified time period. New contributors are individuals who make their first contribution in the specified time period.""" elif contributor_type == 'drive_by': driver_df = drive_by_df caption = """This graph shows fly by contributors in the specified time period. Fly by contributors are contributors who make less than the required {} contributions in {} days. New contributors are individuals who make their first contribution in the specified time period. Of course, then, “All fly-by’s are by definition first time contributors”. However, not all first time contributors are fly-by’s.""" elif contributor_type == 'All': if rank == 1: driver_df = all_df # makes df with all first time contributors driver_df = driver_df.loc[driver_df['rank'] == 1] caption = """This graph shows all the first time contributors, whether they contribute once, or contribute multiple times. New contributors are individuals who make their first contribution in the specified time period.""" if rank == 2: driver_df = all_df # creates df with all second time contributor driver_df = driver_df.loc[driver_df['rank'] == 2] caption = """This graph shows the second contribution of all first time contributors in the specified time period.""" # y_axis_label = 'Second Time Contributors' # filter by end_date, this is not done with the begin date filtering because a repeat contributor will # look like drive-by if the second contribution is removed by end_date filtering mask = (driver_df['yearmonth'] < end_date) driver_df = driver_df.loc[mask] # adds all months to driver_df so the lists of dates will include all months and years driver_df = pd.concat([driver_df, months_df]) actions = ['open_pull_request', 'pull_request_comment', 'commit', 'issue_closed', 'issue_opened', 'issue_comment'] data = pd.DataFrame() if group_by == 'year': # x-axis dates data['dates'] = driver_df[group_by].unique() for contribution_type in actions: data[contribution_type] = \ pd.concat([driver_df.loc[driver_df['action'] == contribution_type], months_df]).groupby( group_by).sum().reset_index()['new_contributors'] # new contributor counts for all actions data['new_contributor_counts'] = driver_df.groupby([group_by]).sum().reset_index()[ 'new_contributors'] # used to format x-axis and graph title group_by_format_string = "Year" elif group_by == 'quarter' or group_by == 'month': # set variables to group the data by quarter or month if group_by == 'quarter': date_column = 'quarter' group_by_format_string = "Quarter" elif group_by == 'month': date_column = 'yearmonth' group_by_format_string = "Month" # modifies the driver_df[date_column] to be a string with year and month, # then finds all the unique values data['dates'] = np.unique(np.datetime_as_string(driver_df[date_column], unit='M')) # new_contributor counts for each type of action for contribution_type in actions: data[contribution_type] = \ pd.concat([driver_df.loc[driver_df['action'] == contribution_type], months_df]).groupby( date_column).sum().reset_index()['new_contributors'] print(data.to_string()) # new contributor counts for all actions data['new_contributor_counts'] = driver_df.groupby([date_column]).sum().reset_index()[ 'new_contributors'] # if the data set is large enough it will dynamically assign the width, if the data set is too small it # will by default set to 870 pixel so the title fits if len(data['new_contributor_counts']) >= 15: plot_width = 46 * len(data['new_contributor_counts']) + 200 else: plot_width = 870 # create list of values for data source dict actions_df_references = [] for action in actions: actions_df_references.append(data[action]) # created dict with the actions as the keys, and the values as the values from the df data_source = {actions[i]: actions_df_references[i] for i in range(len(actions))} data_source.update({'dates': data['dates'], 'New Contributor Counts': data['new_contributor_counts']}) colors = Colorblind[len(actions)] source = ColumnDataSource(data=data_source) # create a dict convert an integer number into a word # used to turn the rank into a word, so it is nicely displayed in the title numbers = ['Zero', 'First', 'Second'] num_conversion_dict = {} for i in range(1, len(numbers)): num_conversion_dict[i] = numbers[i] number = '{}'.format(num_conversion_dict[rank]) # y_max = 20 # creates plot to hold chart p = figure(x_range=data['dates'], plot_height=400, plot_width=plot_width, title='{}: {} {} Time Contributors Per {}'.format(repo_dict[repo_id], contributor_type.capitalize(), number, group_by_format_string), toolbar_location=None, y_range=(0, max(data['new_contributor_counts']) * 1.15)) # max(data['new_contributor_counts'])* 1.15), margin = (0, 0, 0, 0)) vbar = p.vbar_stack(actions, x='dates', width=0.8, color=colors, source=source) # add total count labels p.add_layout(LabelSet(x='dates', y='New Contributor Counts', text='New Contributor Counts', y_offset=4, text_font_size="14pt", text_color="black", source=source, text_align='center')) # add legend legend = Legend(items=[(date, [action]) for (date, action) in zip(actions, vbar)], location=(0, 120), label_text_font_size="16px") p.add_layout(legend, 'right') plot = format_new_cntrb_bar_charts(p, rank, group_by_format_string) caption_plot = add_caption_to_visualizations(caption, required_contributions, required_time, plot_width) add_charts_and_captions_to_correct_positions(plot, caption_plot, rank, contributor_type, row_1, row_2, row_3, row_4) # puts plots together into a grid grid = gridplot([row_1, row_2, row_3, row_4]) filename = export_png(grid) return send_file(filename) @server.app.route('/{}/contributor_reports/returning_contributors_pie_chart/'.format(server.api_version), methods=["GET"]) def returning_contributor_pie_chart(): repo_id, start_date, end_date = get_repo_id_start_date_and_end_date() required_contributions = int(request.args.get('required_contributions', 4)) required_time = int(request.args.get('required_time', 365)) input_df = new_contributor_data_collection(repo_id=repo_id, required_contributions=required_contributions) needed_columns = ['cntrb_id', 'created_at', 'month', 'year', 'repo_id', 'repo_name', 'login', 'action', 'rank', 'yearmonth', 'new_contributors', 'quarter'] input_df = filter_data(input_df, needed_columns) if len(input_df) == 0: return Response(response="There is no data for this repo, in the database you are accessing", mimetype='application/json', status=200) repo_dict = {repo_id: input_df.loc[input_df['repo_id'] == repo_id].iloc[0]['repo_name']} drive_by_df, repeats_df = compute_fly_by_and_returning_contributors_dfs(input_df, required_contributions, required_time, start_date) print(repeats_df.to_string()) driver_df = pd.concat([drive_by_df, repeats_df]) # filter df by end date mask = (driver_df['yearmonth'] < end_date) driver_df = driver_df.loc[mask] # first and second time contributor counts drive_by_contributors = driver_df.loc[driver_df['type'] == 'drive_by'].count()['new_contributors'] repeat_contributors = driver_df.loc[driver_df['type'] == 'repeat'].count()['new_contributors'] # create a dict with the # of drive-by and repeat contributors x = {'Drive_By': drive_by_contributors, 'Repeat': repeat_contributors} # turn dict 'x' into a dataframe with columns 'contributor_type', and 'counts' data = pd.Series(x).reset_index(name='counts').rename(columns={'index': 'contributor_type'}) data['angle'] = data['counts'] / data['counts'].sum() * 2 * pi data['color'] = ('#0072B2', '#E69F00') data['percentage'] = ((data['angle'] / (2 * pi)) * 100).round(2) # format title title = "{}: Number of Returning " \ "Contributors out of {} from {} to {}" \ .format(repo_dict[repo_id], drive_by_contributors + repeat_contributors, start_date, end_date) title_text_font_size = 18 plot_width = 850 # sets plot_width to width of title if title is wider than 850 pixels if len(title) * title_text_font_size / 2 > plot_width: plot_width = int(len(title) * title_text_font_size / 2) # creates plot for chart p = figure(plot_height=450, plot_width=plot_width, title=title, toolbar_location=None, x_range=(-0.5, 1.3), tools='hover', tooltips="@contributor_type", margin=(0, 0, 0, 0)) p.wedge(x=0.87, y=1, radius=0.4, start_angle=cumsum('angle', include_zero=True), end_angle=cumsum('angle'), line_color=None, fill_color='color', legend_field='contributor_type', source=data) start_point = 0.88 for i in range(0, len(data['percentage'])): # percentages p.add_layout(Label(x=-0.17, y=start_point + 0.13 * (len(data['percentage']) - 1 - i), text='{}%'.format(data.iloc[i]['percentage']), render_mode='css', text_font_size='15px', text_font_style='bold')) # contributors p.add_layout(Label(x=0.12, y=start_point + 0.13 * (len(data['percentage']) - 1 - i), text='{}'.format(data.iloc[i]['counts']), render_mode='css', text_font_size='15px', text_font_style='bold')) # percentages header p.add_layout( Label(x=-0.22, y=start_point + 0.13 * (len(data['percentage'])), text='Percentages', render_mode='css', text_font_size='15px', text_font_style='bold')) # legend header p.add_layout( Label(x=-0.43, y=start_point + 0.13 * (len(data['percentage'])), text='Category', render_mode='css', text_font_size='15px', text_font_style='bold')) # contributors header p.add_layout( Label(x=0, y=start_point + 0.13 * (len(data['percentage'])), text='# Contributors', render_mode='css', text_font_size='15px', text_font_style='bold')) p.axis.axis_label = None p.axis.visible = False p.grid.grid_line_color = None p.title.align = "center" p.title.text_font_size = "{}px".format(title_text_font_size) p.legend.location = "center_left" p.legend.border_line_color = None p.legend.label_text_font_style = 'bold' p.legend.label_text_font_size = "15px" plot = p caption = """This pie chart shows the percentage of new contributors who were fly-by or repeat contributors. Fly by contributors are contributors who make less than the required {0} contributions in {1} days. New contributors are individuals who make their first contribution in the specified time period. Repeat contributors are contributors who have made {0} or more contributions in {1} days and their first contribution is in the specified time period.""" caption_plot = add_caption_to_visualizations(caption, required_contributions, required_time, plot_width) # put graph and caption plot together into one grid grid = gridplot([[plot], [caption_plot]]) filename = export_png(grid) return send_file(filename) @server.app.route('/{}/contributor_reports/returning_contributors_stacked_bar/'.format(server.api_version), methods=["GET"]) def returning_contributor_stacked_bar(): repo_id, start_date, end_date = get_repo_id_start_date_and_end_date() group_by = str(request.args.get('group_by', "quarter")) required_contributions = int(request.args.get('required_contributions', 4)) required_time = int(request.args.get('required_time', 365)) input_df = new_contributor_data_collection(repo_id=repo_id, required_contributions=required_contributions) months_df = months_data_collection(start_date=start_date, end_date=end_date) needed_columns = ['cntrb_id', 'created_at', 'month', 'year', 'repo_id', 'repo_name', 'login', 'action', 'rank', 'yearmonth', 'new_contributors', 'quarter'] input_df = filter_data(input_df, needed_columns) if len(input_df) == 0: return Response(response="There is no data for this repo, in the database you are accessing", mimetype='application/json', status=200) repo_dict = {repo_id: input_df.loc[input_df['repo_id'] == repo_id].iloc[0]['repo_name']} drive_by_df, repeats_df = compute_fly_by_and_returning_contributors_dfs(input_df, required_contributions, required_time, start_date) driver_df = pd.concat([drive_by_df, repeats_df, months_df]) # filter by end_date mask = (driver_df['yearmonth'] < end_date) driver_df = driver_df.loc[mask] # create df to hold data needed for chart data =
pd.DataFrame()
pandas.DataFrame
from cbs import cbs import pandas as pd import pytest #Get the CBS RB dataframe @pytest.fixture(scope="module") def RB(): return cbs.Cbs().parser('RB') def test_cbs_rb_columns(RB): assert RB.columns.tolist() == ['Name', 'pass_att', 'pass_cmp', 'pass_yds', 'pass_td', 'intercept', 'rate', 'rush_att', 'rush_yds', 'rush_avg', 'rush_td', 'rec_tgt', 'recept', 'rec_yds', 'rec_avg', 'rec_td', '2pt', 'fum_lost'] #Test top and bottom names def test_cbs_rb_projection1(RB): assert type(RB.iloc[0].Name) == str def test_cbs_rb_projection2(RB): assert type(RB.iloc[1].Name) == str def test_cbs_rb_projection3(RB): assert type(RB.iloc[120].Name) == str def test_cbs_rb_projection4(RB): assert type(RB.iloc[121].Name) == str #Test top and bottom Stats def test_cbs_rb_projection5(RB): assert
pd.to_numeric(RB.iloc[0].rush_td, errors='ignore')
pandas.to_numeric
#!/usr/bin/env python """ I use this script to determine the ratio of measurements of fluxes compared to the number of temperature measurements for FLUXNET and LaThuille sites. This is done for latent heat, sensible heat and NEE. I focus on extreme temperatures (lower and upper 2.2% of the temperature distribution of each site ) """ __author__ = "<NAME>" __version__ = "1.0 (25.10.2018)" __email__ = "<EMAIL>" import numpy as np import matplotlib.pyplot as plt from scipy.stats import norm import pandas as pd import glob import xarray as xr import os def main(files_met, files_flux, ofname1, ofname2, ofname3, ofname4, plot_dir): # empty lists to add data in for the table/figures results_LH = [] results_SH = [] results_NEE = [] lons = [] lats = [] # creating dataframes for barplots of global temperature distribution df_temp =
pd.DataFrame()
pandas.DataFrame
import pandas as pd import urllib.request import numpy as np import shapefile from datetime import datetime from zipfile import ZipFile import pandasql as ps import requests import json import pkg_resources def softmax(x): if np.max(x) > 1: e_x = np.exp(x/np.max(x)) else: e_x = np.exp(x - np.max(x)) return e_x / e_x.sum() ## getProvinceBoundaryBox function is to get the cordinate details from Mapbox API for ITALY ## Parameter Needed - Province Name def getProvinceBoundaryBox(provinceName): Place_Details = requests.get( 'http://api.mapbox.com/geocoding/v5/mapbox.places/' + provinceName + '%20province%20Italy.json?access_token=<KEY>').json()[ 'features'] for eachPlace in Place_Details: try: if eachPlace['context'][0]['text'] == 'Italy' or eachPlace['context'][1]['text'] == 'Italy': getBbox = eachPlace['bbox'] except: continue return getBbox # The below function used to get the USA Patient Data Automatically from HARVARD DATABASE COVID Patient Database and will create a timeseries patient file along with population of the Area at county along with a USA County file ## Parameter Needed - Target Directory to save the File def fetch_us_patientdata(tgtdir): url='https://dataverse.harvard.edu/api/access/datafile/:persistentId?persistentId=doi:10.7910/DVN/HIDLTK/7NWUDK' urllib.request.urlretrieve(url,tgtdir+'/us_county_confirmed_cases.tab') latest_data = pd.read_csv(tgtdir+'/us_county_confirmed_cases.tab',sep='\t') allcols = list(latest_data.columns) datecols = allcols[allcols.index('HHD10')+1:] latest_data = latest_data[['COUNTY', 'NAME']+datecols] datecolsmod=[datetime.strptime(i,'%m/%d/%Y').strftime('%Y%m%d') for i in datecols] latest_data.columns = ['cfips', 'county']+datecolsmod latest_data = latest_data.melt(id_vars=['cfips', 'county'], var_name='data_date', value_name='no_pat') latest_data['county']=latest_data['county'].apply(lambda x : x.split(' County')[0]) url='https://dataverse.harvard.edu/api/access/datafile/:persistentId?persistentId=doi:10.7910/DVN/HIDLTK/OFVFPY' urllib.request.urlretrieve(url,tgtdir+'/COUNTY_MAP.zip') zip = ZipFile(tgtdir+'/COUNTY_MAP.zip') zip.extractall(tgtdir) sf = shapefile.Reader(tgtdir+"/CO_CARTO") shape_df =
pd.DataFrame()
pandas.DataFrame
import concurrent.futures import pandas as pd from equities import static as STATIC from solaris.api import Client as SolarisClient from pytrends.request import TrendReq as GoogleTrendClient import yfinance as YahooFinanceClient __version__ = STATIC.__version__ __author__ = STATIC.__author__ class Client(object): """ equities composed clients """ def __init__(self,verbose=False): try: # sets verbosity level and prints begin init text self.verbose = verbose; STATIC.initialize(self.verbose) # connects clients self._sol = SolarisClient(verbose=self.verbose) self._pytrends = GoogleTrendClient(hl='en-US', tz=360) # sets stock identification variables self.tickers = list(set(self._sol.cik_to_ticker.values())) self.names = list(set(self._sol.cik_to_name.values())) self.ciks = list(set(self._sol.cik_to_name.keys())) # prints end init text messages = self._sol._fetch_equities_messages() STATIC.initialized(self.verbose,messages,len(self.ciks)) except Exception as e: STATIC.failed(e) def __len__(self): return len(self.ciks) def __str__(self): return str(self._sol.name_to_cik) def _query_y_finance(self,cik_or_ticker): """ returns a yfinance Ticker object by quering YahooFinance for a given cik or ticker """ try: cik = self._convert_to_cik(cik_or_ticker) ticker = self._sol.cik_to_ticker[cik] except: ticker = cik_or_ticker return YahooFinanceClient.Ticker(ticker) def _convert_to_cik(self,cik_or_ticker): """ returns a cik from a query/ticker into the corresponding cik number with cleaning. """ symbol = cik_or_ticker.lower().replace(' ','') try: if symbol in self.tickers: return self._sol.ticker_to_cik[symbol] elif str(int(cik_or_ticker)) in self.ciks: return str(int(cik_or_ticker)) else: print('Error Could not Convert: %s'%cik_or_ticker) return cik_or_ticker except: return cik_or_ticker def _set_verbose(self,verbose): """sets universes' stdout level of verbosity""" self.verbose = verbose self._sol.verbose = verbose def _invert_dict(self,to_invert): """inverts an arbitrary python dictionary""" return {v:k for k,v in to_invert.items()} def cik_to_name(self): """returns a dict mapping ciks to company names""" return dict(zip( self._sol.cik_to_name.keys(),self._sol.cik_to_name.values() )) def cik_to_ticker(self): """returns a dict mapping ciks to tickers""" return dict(zip( self._sol.cik_to_ticker.keys(),self._sol.cik_to_ticker.values() )) def ticker_to_cik(self): """returns a dict mapping tickers to ciks""" return self._invert_dict(self.cik_to_name) def name_to_cik(self): """returns a dict mapping names to ciks""" return self._invert_dict(self.cik_to_name) def prices(self,cik_or_ticker,period='max'): """returns a price dataframe for the given cik or tickers and period. period must be a string contained in the following list: ['1d','5d','1mo','3mo','6mo','1y','2y','5y','10y','ytd','max']. """ try: return self._query_y_finance(cik_or_ticker).history(period=period) except Exception as e: return pd.DataFrame() def actions(self,cik_or_ticker): """returns a corporate actions dataframe for the given cik or tickers""" try: return self._query_y_finance(cik_or_ticker).actions except Exception as e: return pd.DataFrame() def dividends(self,cik_or_ticker): """returns a dividends dataframe for the given cik or tickers""" try: return self._query_y_finance(cik_or_ticker).dividends except Exception as e: return pd.DataFrame() def splits(self,cik_or_ticker): """returns a splits dataframe for the given cik or tickers""" try: return self._query_y_finance(cik_or_ticker).splits except Exception as e: return pd.DataFrame() def major_holders(self,cik_or_ticker): """returns a dataframe of major holders for the given cik or ticker""" try: return self._query_y_finance(cik_or_ticker).major_holders except Exception as e: return pd.DataFrame() def institutional_holders(self,cik_or_ticker): """returns a dataframe of instiutional holders for the given cik or ticker""" try: return self._query_y_finance(cik_or_ticker).institutional_holders except Exception as e: return pd.DataFrame() def events(self,cik_or_ticker): """returns a dataframe of earnings events for the given cik or ticker""" try: return self._query_y_finance(cik_or_ticker).calendar except Exception as e: return pd.DataFrame() def recommendations(self,cik_or_ticker): """returns a dataframe buy/sell side recommendations for the given cik or ticker""" try: return self._query_y_finance(cik_or_ticker).recommendations except Exception as e: return pd.DataFrame() def esg(self,cik_or_ticker): """returns a dataframe esg metrics for the given cik or ticker""" try: return self._query_y_finance(cik_or_ticker).sustainability except Exception as e: return pd.DataFrame() def financial_statement(self,cik_or_ticker,kind): """returns a financial statement dataframe for the given cik or ticker and kind of statement. kind must be a string contained in the following list: ['income','balance','cash','equity']. """ try: cik = self._convert_to_cik(cik_or_ticker) return self._sol.financial_statement(cik,kind,df=True) except Exception as e: #print(e) return
pd.DataFrame()
pandas.DataFrame
from sklearn.tree import DecisionTreeClassifier from sklearn.linear_model import LogisticRegression from sklearn.neighbors import KNeighborsClassifier from sklearn.naive_bayes import GaussianNB from sklearn.svm import SVC,LinearSVC from sklearn.ensemble import RandomForestClassifier,GradientBoostingClassifier from sklearn.preprocessing import Imputer,Normalizer,scale from sklearn.cross_validation import train_test_split,StratifiedKFold import matplotlib as mpl import matplotlib.pyplot as plt import matplotlib.pylab as pylab import seaborn as sns import numpy as np import pandas as pd train=pd.read_csv('train.csv'); test=pd.read_csv('test.csv') full=train.append(test,ignore_index=True) titanic=full[:891] del train,test print('Datasets:','full',full.shape,'titanic:',titanic.shape) print(titanic.head()) print(titanic.describe()) sex=pd.Series(np.where(full['Sex']=='male',1,0),name='Sex') embarked=pd.get_dummies(full.Embarked,prefix='Embarked') print(embarked.head()) pclass=pd.get_dummies(full.Pclass,prefix='Pclass') print(pclass.head()) #fill in the missing values imputed=pd.DataFrame() imputed['Age']=full.Age.fillna(full.Age.mean()) imputed['Fare']=full.Fare.fillna(full.Fare.mean()) print(imputed.head()) title=pd.DataFrame() title['Title']=full['Name'].map(lambda name:name.split(',')[1].split('.')[0].strip()) title=
pd.get_dummies(title.Title)
pandas.get_dummies
import pandas as pd import numpy as np import pytest from .arcsine import main def test_numeric(): assert main(data=0.0)["result"] == pytest.approx(0.0, rel=1e-5) def test_series(): pd.testing.assert_series_equal( main( data=pd.Series( { "2019-08-01T15:20:12": 0.0, "2019-08-01T15:44:12": 1.0, "2019-08-03T16:20:15": 0.0, "2019-08-05T12:00:34": -1.0, "2019-08-05T12:00:55": 0.0, } ) )["result"], pd.Series( { "2019-08-01T15:20:12": 0.0, "2019-08-01T15:44:12": np.pi / 2, "2019-08-03T16:20:15": 0.0, "2019-08-05T12:00:34": -np.pi / 2, "2019-08-05T12:00:55": 0.0, } ), ) def test_none(): pd.testing.assert_series_equal( main( data=pd.Series( { "2019-08-01T15:20:12": 0.0, "2019-08-01T15:44:12": None, "2019-08-03T16:20:15": np.nan, } ) )["result"], pd.Series( { "2019-08-01T15:20:12": 0.0, "2019-08-01T15:44:12": np.nan, "2019-08-03T16:20:15": np.nan, } ), ) def test_df(): pd.testing.assert_frame_equal( main( data=pd.DataFrame( {"a": [0.0, 1.0, 0.0, -1.0], "b": [0.0, 0.5, 0.0, -0.5]}, index=[ "2019-08-01T15:20:12", "2019-08-01T15:44:12", "2019-08-03T16:20:15", "2019-08-05T12:00:34", ], ) )["result"], pd.DataFrame( { "a": [0.0, np.pi / 2, 0.0, -np.pi / 2], "b": [0.0, np.pi / 6, 0.0, -np.pi / 6], }, index=[ "2019-08-01T15:20:12", "2019-08-01T15:44:12", "2019-08-03T16:20:15", "2019-08-05T12:00:34", ], ), ) def test_empty_series(): assert main(data=pd.Series(dtype=float))["result"].empty def test_empty_df(): assert main(data=
pd.DataFrame(dtype=float)
pandas.DataFrame
import anndata as ad import logging import numpy as np import os import time import pandas as pd import yaml from pathlib import Path from collections import namedtuple from const import PATH, OUT_PATH #logging.basicConfig(level=logging.INFO) try: import git except: pass def get_tasks(phase): assert phase in ['phase1v2','phase2'] tasks = [ "GEX2ADT", "ADT2GEX", "GEX2ATAC", "ATAC2GEX" ] task2name = { "ADT2GEX":f"openproblems_bmmc_cite_{phase}_mod2", "GEX2ADT":f"openproblems_bmmc_cite_{phase}_rna", "ATAC2GEX":f"openproblems_bmmc_multiome_{phase}_mod2", "GEX2ATAC":f"openproblems_bmmc_multiome_{phase}_rna" } return tasks, task2name def get_y_dim(data_path): if '_cite_' in data_path: if 'mod2' in data_path: return 13953,"ADT2GEX" elif 'rna' in data_path: return 134,"GEX2ADT" else: assert 0 elif '_multiome_' in data_path: if 'mod2' in data_path: return 13431,"ATAC2GEX" elif 'rna' in data_path: return 10000,"GEX2ATAC" else: assert 0 def get_par(path,phase): par = { "input_solution" : f"{path}/datasets_{phase}/predict_modality", "input_prediction" : f"{path}/predictions/predict_modality", } return par def get_train_test_paths(name,phase,path = "./output"): par = get_par(path,phase) train_mod1 = f"{par['input_solution']}/{name}/{name}.censor_dataset.output_train_mod1.h5ad" train_mod2 = train_mod1.replace('mod1','mod2') test_mod1 = train_mod1.replace('train','test') test_mod2 = test_mod1.replace('mod1','mod2') assert os.path.exists(train_mod1) and os.path.exists(train_mod2) if phase == 'phase1v2': assert os.path.exists(test_mod1) and os.path.exists(test_mod2) return train_mod1,train_mod2,test_mod1,test_mod2 def get_data_paths(task,phase,data_type='train_test',path='./output'): assert data_type in ['train_test','gt_pred'] tasks, task2name = get_tasks(phase) name = task2name[task] if data_type == 'train_test': return get_train_test_paths(name,phase,path) else: return get_gt_pred_paths(name,path) def get_gt_pred_paths(name,path = "./output"): par = get_par(path,'phase1v2') gt = f"{par['input_solution']}/{name}/{name}.censor_dataset.output_test_mod2.h5ad" pred = f"{par['input_prediction']}/{name}/{name}.method.output.h5ad" print(gt) print(pred) assert os.path.exists(gt) and os.path.exists(pred) return gt, pred def eval_one_file(name): gt, pred = get_gt_pred_paths(name) logging.info("Reading solution file") ad_sol = ad.read_h5ad(gt) logging.info("Reading prediction file") ad_pred = ad.read_h5ad(pred) logging.info("Check prediction format") if ad_sol.uns["dataset_id"] != ad_pred.uns["dataset_id"]: raise ValueError("Prediction and solution have differing dataset_ids") if ad_sol.shape != ad_pred.shape: raise ValueError("Dataset and prediction anndata objects should have the same shape / dimensions.") logging.info("Computing MSE metrics") tmp = ad_sol.X - ad_pred.X rmse = np.sqrt(tmp.power(2).mean()) mae = np.abs(tmp).mean() return rmse def eval_all(): start = time.time() tasks, task2name = get_tasks(phase='phase1v2') s = 0 res = {} for task in tasks: name = task2name[task] score = eval_one_file(name) s += score res[task] = score res['overall'] = s/len(tasks) print_res(res) duration = time.time() - start logging.critical(f" Total time: {duration:.1f} seconds") def print_res(res): for i,j in res.items(): logging.critical(f" {i} {j:.4f}") def check_column_mean_var_all(path='./output',phase='phase2'): tasks, task2name = get_tasks(phase=phase) if phase == 'phase2': names = ['train_mod1', 'train_mod2'] else: names = ['train_mod1', 'train_mod2', 'test_mod1', 'test_mod2'] logging.info("[min, max, mean]") res = [] ms = [] ns = [] for task in tasks: data_names = get_data_paths(task,phase=phase,path=path) logging.info(f"task:{task}") for d,n in zip(data_names, names): logging.info(n) data = ad.read_h5ad(d) msg,dd = check_column_mean_var(data) logging.info('\n'+msg) res.append(dd) ms.append(task) ns.append(n) dg = pd.DataFrame({'task':ms,'type':ns}) res = np.array(res) c1 = ['mu','var'] c2 = ['min','max','mean'] df = pd.DataFrame(res,columns = [f'{i}_{j}' for i in c1 for j in c2]+['rows','cols']) df =
pd.concat([dg,df],axis=1)
pandas.concat
#!/usr/bin/env python # -*- coding: utf-8 -*- import duckdb import pandas as pd import numpy # Join from pandas not matching identical strings #1767 class TestIssue1767(object): def test_unicode_join_pandas(self, duckdb_cursor): A = pd.DataFrame({"key": ["a", "п"]}) B = pd.DataFrame({"key": ["a", "п"]}) con = duckdb.connect(":memory:") arrow = con.register("A", A).register("B", B) q = arrow.query("""SELECT key FROM "A" FULL JOIN "B" USING ("key") ORDER BY key""") result = q.df() d = {'key': ["a", "п"]} df =
pd.DataFrame(data=d)
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Mon Dec 4 16:15:31 2017 This creates the CollegePrograms Dashboard. It calls the Career Bridge class and Matches it to a SOC based on the listed occupation, industry, keywords and lookups. This requires selenium. @author: carrie """ from selenium import webdriver import pandas as pd import requests, sqlalchemy, datetime import numpy as np from pyvirtualdisplay import Display import os key = 'fill in' from web_scrapers.CareerBridgeClass import CareerBridge from DatabaseConnection import DBConnection from Email import SendEmail class MatchConstructionSOCtoCollegePrograms: '''This will call the Career Bridge web scraper and match the items to SOC Codes''' #Todays Date now = datetime.datetime.now() formatTime = now.strftime("%Y-%m-%d %H:%M") formatDate = now.strftime("%Y-%m-%d") formatHourMin = now.strftime("%H:%M") def callBrowser(self): ubuntu = False browser = "" if ubuntu: display = Display(visible=0, size=(800, 800)) display.start() path_to_chromedriver = "/usr/bin/chromedriver" chrome_options = webdriver.ChromeOptions() chrome_options.add_argument('--no-sandbox') browser = webdriver.Chrome(path_to_chromedriver, chrome_options=chrome_options) urlTechCollege = 'http://www.careerbridge.wa.gov/Search_Program.aspx?cmd=txt&adv=true&txt=' browser.get(urlTechCollege) browser.implicitly_wait(10) else: #If windows use the following path_to_chromedriver = r"\chromedriver.exe" browser = webdriver.Chrome(executable_path = path_to_chromedriver ) urlTechCollege = 'http://www.careerbridge.wa.gov/Search_Program.aspx?cmd=txt&adv=true&txt=' browser.get(urlTechCollege) return browser def callCareerBridge(self): #Open Intial Website with Selenium and Chrome, you will need to upate this and get appropriate Linux versions for Ec2 browserCB = self.callBrowser() #Call the HTML Scraper for College Programs technicalCollegeResult = CareerBridge() techCollegePrograms = pd.DataFrame() occupationsPerProgam = pd.DataFrame() #Try to do call the scraper for Career Bridge try: technicalCollegeResult.type = "technicalCollege" techResults = technicalCollegeResult.href_per_school(browserCB) cleaned_pages, occupation_pages = technicalCollegeResult.download_tech_college_programs(techResults, browserCB) #Concatenate dataframes into final exports for csv dir_path = os.path.dirname(os.path.realpath(__file__)) careerBridge_CollegePrograms = os.path.join(os.path.sep, dir_path, 'backups_hardcoded','CareerBridge_CollegePrograms.csv') careerBridge_CollegePrograms_Occupations = os.path.join(os.path.sep, dir_path, 'backups_hardcoded','CareerBridge_CollegePrograms_Occupations.csv') technicalCollegeResult.merge_export_to_csv(techResults, cleaned_pages, careerBridge_CollegePrograms) technicalCollegeResult.export_career_data_to_csv(occupation_pages, careerBridge_CollegePrograms_Occupations) #Hardcoded export techCollegePrograms = pd.read_csv(careerBridge_CollegePrograms, encoding = "ISO-8859-1") occupationsPerProgam = pd.read_csv(careerBridge_CollegePrograms_Occupations, encoding = "ISO-8859-1") #Log success df = pd.DataFrame([['CareerBridge', 'College Programs Dashboard', '1 of 1', 'Career Bridge Web Scraper College data', self.formatDate, self.formatHourMin, 'Successful Download']]) df.to_csv('Succesful_Download_Log.csv', mode='a', header=False, index=False) #If the scraper can not be called log the issue except: log = open("Error_Data.txt","a") log.write("Error calling CareerBridge webscrapper. Location:CollegePrograms.py Date: " + self.formatTime + "\n") df = pd.DataFrame([['CareerBridge', 'College Programs Dashboard', '1 of 1', 'Career Bridge Web Scraper College data', 'Will use last dowload', 0, 'FAILED Download']]) df.to_csv('Succesful_Download_Log.csv', mode='a', header=False, index=False) browserCB.close() final = self.identify_construction_programs(techCollegePrograms, occupationsPerProgam) return final #Check to see if any of the addresses are already geocoded def checkAddressLookup(self,results): #Remove stuff in parenthesis at the end from the address results['address'] = results['address'].str.replace(r"\(.*\)","").str.strip() #Pull in previously geocoded addresses dir_path = os.path.dirname(os.path.realpath(__file__)) geoCodedAddressesLookup = os.path.join(os.path.sep, dir_path, 'LookupTables','GeoCodedAddressesLookup.csv') previousGeocoded = pd.read_csv(geoCodedAddressesLookup, encoding = "ISO-8859-1").dropna(subset=['address']) prevAddressesLat = previousGeocoded.set_index('address')['latitude'].to_dict() prevAddressesLong = previousGeocoded.set_index('address')['longitude'].to_dict() prevAddressesCity = previousGeocoded.set_index('address')['city'].to_dict() results['latitude'] = results['address'].map(prevAddressesLat) results['longitude'] = results['address'].map(prevAddressesLong) results['city'] = results['address'].map(prevAddressesCity) #Find those We Still need to Geocode notGeocoded = results.loc[ (results['longitude'].isnull()) & ( results['address'].notnull() ) , ] allreadyGeocoded = results.loc[ (results['longitude'].notnull()) | ( results['address'].isnull() ) , ] #Geocode those that have an address but are not yet in the lookuptable newGeocoded = self.geocodeDataFrame(notGeocoded) #Now update the results with all the addresses you found newGeocodedLat = newGeocoded.set_index('address')['latitude'].to_dict() newGeocodedLong = newGeocoded.set_index('address')['longitude'].to_dict() newGeocodedCity = newGeocoded.set_index('address')['city'].to_dict() notGeocoded['latitude'] = notGeocoded['address'].map(newGeocodedLat) notGeocoded['longitude'] = notGeocoded['address'].map(newGeocodedLong) notGeocoded['city'] = notGeocoded['address'].map(newGeocodedCity) allResultsGeocoded = pd.concat([notGeocoded, allreadyGeocoded]) #Update the Geocode LookupTable, Make sure to only pass Unique Addresses allGeocoded = pd.concat([newGeocoded, previousGeocoded]) saveNewGeocodeLookup = allGeocoded.loc[ :, ['address', 'latitude', 'longitude', 'city']] saveNewGeocodeLookup.to_csv(geoCodedAddressesLookup) #If the geocoding is way off override allResultsGeocoded.loc[allResultsGeocoded['latitude'] <= 45.0, 'latitude'] = 0 allResultsGeocoded.loc[allResultsGeocoded['longitude'] >= -116.0, 'longitude'] = 0 allResultsGeocoded.loc[(allResultsGeocoded['longitude'] >= -116.0) & (allResultsGeocoded['address'] == 'S. 16th Ave. & Nob Hill Blvd, Yakima, WA 98902'), 'city'] = 'Yakima' return allResultsGeocoded #Find those that are not geocoded, drop duplicates, call the address geocoder, then update the csv geocode lookup for the next time def geocodeDataFrame(self, notGeocoded): #Drop Dupe Addresses notGeocoded = notGeocoded.drop_duplicates(['address'], keep='first') if notGeocoded.empty: print("Nothing new to geocode") else: #Geocode and put results in a list notGeocoded['place'] = notGeocoded['address'].apply(self.geocodeAddress) newAddresses = pd.DataFrame(notGeocoded.place.values.tolist(), index=notGeocoded.index) #Parse the returned place info list into the appropriate columns notGeocoded[['latitude','longitude', 'city', 'place_id', 'addressfound']] = newAddresses return notGeocoded def geocodeAddress(self, address): google_url = "https://maps.googleapis.com/maps/api/geocode/json?address={0}&key={1}".format(address, key) response_geocode = requests.get(google_url).json() lat,lng,place_id, city = 0,0,"None", "" #if results were returned take the first one if len(response_geocode['results']) > 0: r = response_geocode['results'][0] findcity = r[u'address_components'] for f in findcity: if 'locality' in f[u'types']: city = f[u'long_name'] lat = r[u'geometry'][u'location'][u'lat'] lng = r[u'geometry'][u'location'][u'lng'] place_id = r[u'place_id'] #print([lat, lng, city, place_id, address]) return [lat, lng, city, place_id, address] #Identify Construction in College Programs def identify_construction_programs(self, df_cleaned, occ_df): df = df_cleaned.dropna(how='all') df['match_construction_description'] = 'No' df['match_construction_name'] = 'No' #print(df.head(5)) #First Tag #If construction in description or name add field identifying a match to construction occupations #df['description'] = df['description'].fillna("No") df.loc[df['program'].str.contains('Construction', na=False), 'match_construction_name'] = "Yes" df.loc[df['description'].str.contains('construction', na=False), 'match_construction_description'] = "Yes" #Second Tag #Pull in SOC Lookup Table to Match the SOC to Occupation List per Program dir_path = os.path.dirname(os.path.realpath(__file__)) sOCCodeLookup = os.path.join(os.path.sep, dir_path, 'LookupTables','SOCCodeLookup.csv') socLookUp = pd.read_csv(sOCCodeLookup, encoding="utf-8", index_col=0) #soc = socLookUp.set_index('SOCName')['SOCID'].to_dict() soc = socLookUp.ix[:,0].to_dict() #construction = socLookUp.set_index('SOCName')['Construction'].to_dict() construction = socLookUp.ix[:,1].to_dict() occ_df['soc_codes_by_occupation'] = occ_df['occupation'].map(soc) occ_df['match_construction_occ'] = occ_df['occupation'].map(construction) occ_df['match_construction_occ'] = occ_df['match_construction_occ'].fillna("No") #Remove any programs from the match through the description based on Program Key Words that We Do Not want dir_path = os.path.dirname(os.path.realpath(__file__)) remove_NonConstruction_KeyWords = os.path.join(os.path.sep, dir_path, 'LookupTables','Remove_NonConstruction_KeyWords.csv') removeLookup = pd.read_csv(remove_NonConstruction_KeyWords) df['remove_keyword'] = df['program_name'].apply(lambda x: [key for key in removeLookup['remove'] if key in str(x) ]) df['remove_keyword'] = df['remove_keyword'].str[0] df['remove_keyword'] = df['remove_keyword'].fillna("None") df['match_construction_final'] = "None" df.loc[ df['remove_keyword'] != "None" , 'match_construction_final'] = "No" #Pull in Keyword Search in order to Associate Programs to SOCS and Get the First Best Match to the Program Name cAIConstructionKeywordLookup = os.path.join(os.path.sep, dir_path, 'LookupTables','CAIConstructionKeywordLookup.csv') keywordsDetailed = pd.read_csv(cAIConstructionKeywordLookup) df['program_keyword_join'] = df['program'].str.lower() #df['match_keyword'] = df['program_keyword_join'].apply(lambda x: difflib.get_close_matches(x, keywordsDetailed['keyword1'], 1)) df['match_keyword'] = df['program_keyword_join'].apply(lambda x: [key for key in keywordsDetailed['keyword_if_matched'] if key in str(x) ]) df['match_keyword'] = df['match_keyword'].str[0] #If there is a keyword match but no mention of construction in the name or description remove keyword df['match_keyword'] = df['match_keyword'].fillna("None") df.loc[ (df['match_keyword'] != "None") & ((df['match_construction_description'] == "No") & (df['match_construction_name'] == "No")), 'match_keyword'] = "None" #Add Soc Codes based on Key Words soc_keyword = keywordsDetailed.set_index('keyword_if_matched')['soc_codes'].to_dict() df['soc_codes_by_keyword'] = df['match_keyword'].map(soc_keyword) df['soc_codes_by_keyword'] = df['soc_codes_by_keyword'].fillna("None") #occ_df.to_csv("FINAL_CollegePrograms_Occupations.csv") #Filter One, Filter the ocupation dataframe by only those occupations that are construction occ_construction = occ_df.loc[(occ_df.match_construction_occ == "Yes")] occ_construction = occ_construction[['program_id', 'soc_codes_by_occupation','match_construction_occ']] #Set the index to the program id, format column order, and remove duplicates from occupations, Keep the First that Matches The SOCS We Want occ_construction_i = occ_construction.set_index('program_id') df = df.set_index('program_id') occupation_con = occ_construction_i[~occ_construction_i.index.duplicated(keep='first')] #print(occupation_con) #Pull in Occupation SOCS for The SOCS We Don't Want that Do Not Match Contruction, to Use to as a Filter Later occ_df = occ_df.loc[(occ_df.match_construction_occ == "No")] occ_df['soc_codes_by_occupation_not_construction'] = occ_df['soc_codes_by_occupation'] occ_df = occ_df[['program_id', 'soc_codes_by_occupation_not_construction']] occ_df = occ_df.set_index('program_id') occupation_not_matched = occ_df[~occ_df.index.duplicated(keep='first')] occupation_full =
pd.concat([ occupation_con,occupation_not_matched], axis=1)
pandas.concat
from backlight.trades import trades as module import pytest import pandas as pd @pytest.fixture def symbol(): return "usdjpy" @pytest.fixture def trades(symbol): data = [1.0, -2.0, 1.0, 2.0, -4.0, 2.0, 1.0, 0.0, 1.0, 0.0] index = pd.date_range(start="2018-06-06", freq="1min", periods=len(data)) trades = [] for i in range(0, len(data), 2): trade = pd.Series(index=index[i : i + 2], data=data[i : i + 2], name="amount") trades.append(trade) trades = module.make_trades(symbol, trades) return trades def test_trades_ids(trades): expected = [0, 1, 2, 3, 4] assert trades.ids == expected def test_trades_amount(trades): data = [1.0, -2.0, 1.0, 2.0, -4.0, 2.0, 1.0, 0.0, 1.0, 0.0] index = pd.date_range(start="2018-06-06", freq="1min", periods=len(data)) expected = pd.Series(data=data, index=index, name="amount") pd.testing.assert_series_equal(trades.amount, expected) def test_trades_get_any(trades): data = [1.0, -2.0, -4.0, 2.0] index = [ pd.Timestamp("2018-06-06 00:00:00"), pd.Timestamp("2018-06-06 00:01:00"), pd.Timestamp("2018-06-06 00:04:00"), pd.Timestamp("2018-06-06 00:05:00"), ] expected = pd.Series(data=data, index=index, name="amount") result = trades.get_any(trades.index.minute.isin([0, 4, 5])) pd.testing.assert_series_equal(result.amount, expected) def test_trades_get_all(trades): data = [-4.0, 2.0] index = [pd.Timestamp("2018-06-06 00:04:00"), pd.Timestamp("2018-06-06 00:05:00")] expected = pd.Series(data=data, index=index, name="amount") result = trades.get_all(trades.index.minute.isin([0, 4, 5])) pd.testing.assert_series_equal(result.amount, expected) def test_trades_get_trade(trades): data = [1.0, -2.0] index = pd.date_range(start="2018-06-06", freq="1min", periods=len(data)) expected = pd.Series(data=data, index=index, name="amount") pd.testing.assert_series_equal(trades.get_trade(0), expected) def test_make_trade(): periods = 2 dates = pd.date_range(start="2018-12-01", periods=periods) amounts = range(periods) t00 = module.Transaction(timestamp=dates[0], amount=amounts[0]) t11 = module.Transaction(timestamp=dates[1], amount=amounts[1]) t01 = module.Transaction(timestamp=dates[0], amount=amounts[1]) trade = module.make_trade([t00, t11]) expected = pd.Series(index=dates, data=amounts[:2], name="amount") pd.testing.assert_series_equal(trade, expected) trade = module.make_trade([t00, t01]) expected = pd.Series( index=[dates[0]], data=[amounts[0] + amounts[1]], name="amount" ) pd.testing.assert_series_equal(trade, expected) trade = module.make_trade([t11, t01, t00]) expected = pd.Series( index=dates, data=[amounts[0] + amounts[1], amounts[1]], name="amount" )
pd.testing.assert_series_equal(trade, expected)
pandas.testing.assert_series_equal
# License: Apache-2.0 import databricks.koalas as ks import numpy as np import pandas as pd import pytest from pandas.testing import assert_frame_equal from gators.feature_selection.correlation_filter import CorrelationFilter ks.set_option("compute.default_index_type", "distributed-sequence") @pytest.fixture def data(): max_corr = 0.8 X = pd.DataFrame( { "A": [7.25, 71.2833, 7.925, 53.1, 8.05, 8.4583], "B": [1, 1, 0, 1, 0, 0], "D": [22.0, 38.0, 26.0, 35.0, 35.0, 31.2], "F": [3, 1, 2, 1, 2, 3], } ) X_expected = X[["B", "D", "F"]].copy() obj = CorrelationFilter(max_corr=max_corr).fit(X) return obj, X, X_expected @pytest.fixture def data_ks(): max_corr = 0.8 X = ks.DataFrame( { "A": [7.25, 71.2833, 7.925, 53.1, 8.05, 8.4583], "B": [1, 1, 0, 1, 0, 0], "D": [22.0, 38.0, 26.0, 35.0, 35.0, 31.2], "F": [3, 1, 2, 1, 2, 3], } ) X_expected = X[["B", "D", "F"]].to_pandas().copy() obj = CorrelationFilter(max_corr=max_corr).fit(X) return obj, X, X_expected def test_pd(data): obj, X, X_expected = data X_new = obj.transform(X)
assert_frame_equal(X_new, X_expected)
pandas.testing.assert_frame_equal