Datasets:

Modalities:
Text
Formats:
parquet
Libraries:
Datasets
Dask
prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
#!/usr/bin/python3 import sys import copy from pathlib import Path from datetime import datetime,timedelta import re import matplotlib.pyplot as plt import math import numpy as np import random import pandas as pd import subprocess from pickle import dump,load from predictor.utility import msg2log from clustgelDL.auxcfg import D_LOGS,log2All from canbus.BF import BF DB_NAME="canbas" """ DB in repository. DB fields are following: """ DT="Date Time" DUMP="Dump" MATCH_KEY="Match_key" METHOD="Method" PKL="PKL" REPOSITORY="Repository" MISC="Misc" DB_COLS=[DT, DUMP, MATCH_KEY, METHOD, PKL, REPOSITORY, MISC] # number of randomly generated 'no signal' bits in bit stream INSERTED_NO_SIGNAL=5 # phy layer state SIG_ = 0 SIG_0 = 1 SIG_1 = 2 #transtions T__ = 0 # no signal to no signal SIG_ -> SIG_ T_0 = 1 # SIG_ -> SIG_0 T0_ = 2 # SIG_0 -> SIG_ T_1 = 3 # SIG_ -> SIG_1 T1_ = 4 # SIG_1 _> SIG_ T00 = 5 # SIG_0 -> SIG_0 T01 = 6 # SIG_0 -> SIG_1 T10 = 7 # SIG_1 -> SIG_0 T11 = 8 # SIG_1 -> SIG_1 TAN = 9 tr_names={T__:"no signal waveform", T_0 :"transition to zero", T0_ : "transition from zero", T_1 : "transition to one", T1_ : "transition from one", T00 : "transition zero-zero", T01 : "transition zero-one", T10 : "transition one-zero", T11 : "transition one-one", TAN : "possible anomaly" } tr_labels={T__:"**", T_0:"*0",T0_:"0*",T_1:"*1",T1_:"1*",T00:"00",T01:"01",T10:"10",T11:"11",TAN:"XX"} """ Linear interpolator for 'slope' part of waveform.""" def interpSlopeWF(fsample:float=16e+06,bitrate:float=125000.0,slope:float=0.1,left_y:float=0.0, right_y:float=1.0, f:object=None)->np.array: """ :param fsample: :param bitrate: :param slope: :param left_y: :param right_y: :param f: :return: """ n0 = int(slope * (fsample / bitrate)) x = [0, n0] y = [left_y, right_y] xnew = np.arange(0, n0, 1) yinterp = np.interp(xnew, x, y) pure = np.array([yinterp[i] for i in range(n0)] + [right_y for i in range(n0, int(fsample / bitrate))]) return pure def transitionsPng(fsample:float=16e+06,bitrate:float=125000.0,snr:float=30.0,slope:float=0.2,f:object=None): transition_list=[T__WF,T_0WF,T_1WF,T0_WF,T00WF,T01WF,T1_WF,T10WF,T11WF] # fsample = 16e+06 # bitrate = 125000.0 # slope = 0.3 SNR = 20 f = None x = np.arange(0,int(fsample / bitrate)) suffics = '.png' name="simulated_waveforms" waveform_png = Path(D_LOGS['plot'] / Path(name)).with_suffix(suffics) title="Transition Waveform( SNR={} DB, slope ={}, Fsample={} MHz, Bitrate ={} K/sec)".format( SNR, slope, fsample/10e+6, bitrate/1e+3) fig,ax_array =plt.subplots(nrows=3,ncols=3,figsize = (18,5),sharex=True, sharey=True) fig.subplots_adjust(wspace=0.5, hspace=0.5) fig.suptitle(title,fontsize=16) i=0 for ax in np.ravel(ax_array): tobj=transition_list[i](fsample=fsample, bitrate=bitrate, slope=slope, SNR=SNR, f=f) tobj.genWF() auxTransitionsPng(ax, tobj, x) i=i+1 plt.savefig(waveform_png) plt.close("all") return def auxTransitionsPng(ax,tobj, x): # ln,=ax.plot(x, tobj.pure, x, tobj.signal) ln, = ax.plot(x, tobj.pure) ln, = ax.plot(x, tobj.signal) # ax[i, j].set_xlim(0, len(x) * 1 / fsample) ax.set_xlabel('time') ax.set_ylabel('Signal') ax.set_title(tobj.title) ax.grid(True) return ln class canbusWF(): """ canbus """ def __init__(self,fsample:float=16e+06,bitrate:float=125000.0,slope:float=0.1,SNR:int=3, f:object=None): self.fsample=fsample self.bitrate=bitrate self.slope=slope self.vcan_lD=1.5 self.vcan_lR=2.5 self.vcan_hR=2.5 self.vcan_hD=3.5 self.SNR=SNR # 10*math.log(Vsignal/Vnoise) self.signal=None self.pure = None self.title="" self.f =f #hist self.h_min=self.vcan_lD-0.7 self.h_max=self.vcan_hD+0.7 self.h_step=0.5 self.bins=[float(w/10) for w in range( int(self.h_min*10), int((self.h_max+self.h_step)*10), int(self.h_step *10))] self.hist = None self.density = None pass """ Additive white Gaussian noise (awgn)""" def awgn(self,signal:np.array=None): sigpower = sum([math.pow(abs(signal[i]),2) for i in range (len(signal))]) sigpower=sigpower/len(signal) noisepower = sigpower/(math.pow(10,self.SNR/10)) noise=math.sqrt(noisepower)*(np.random.uniform(-1,1,size=len(signal))) return noise def histogram(self): self.hist,_ = np.histogram(self.signal, self.bins, density=False) self.density, _ = np.histogram(self.signal, self.bins, density=True) return """ Random signal waveform shift along t-axisto simulate the random latency in bit stream. Max. shift is 10% from bit waveform period. shift_n -the number of signal samples by which the shift occurs is randomly generated. shift_direction - the direction of the shift forward or back is randomized too. """ def rndshift(self): if self.signal is None: return n,=self.signal.shape n_dist=int(n*0.1) shift_n=np.random.randint(n_dist,size=1) shift_direction = np.random.randint(3, size=1) signal_list=self.signal.tolist() if shift_direction ==0: # left shift, append for i in range(shift_n): signal_list.pop(0) signal_list.append(signal_list[-1]) elif shift_direction==1: #right shift, insert at 0 for i in range(shift_n): signal_list.pop(-1) signal_list.insert(0,signal_list[0]) elif shift_direction == 2: for i in range(shift_n): signal_list.pop(-1) signal_list.insert(0, self.vcan_lR ) del self.signal self.signal=np.array(signal_list) return class T__WF(canbusWF): def __init__(self,fsample:float=16e+06,bitrate:float=125000.0,slope:float=0.1,SNR:int=3, f:object=None): super().__init__(fsample=fsample,bitrate=bitrate,slope=0.0,SNR=SNR, f=f) self.title="Transition _->_" def genWF(self): self.pure=np.array([self.vcan_hR for i in range(int(self.fsample/self.bitrate))]) self.signal=np.add(self.pure,self.awgn(self.pure)) class T_0WF(canbusWF): def __init__(self, fsample: float = 16e+06, bitrate: float = 125000.0, slope: float = 0.1, SNR: int = 3, f: object = None): super().__init__(fsample=fsample, bitrate=bitrate, slope=slope, SNR=SNR, f=f) self.title = "Transition _->'0'" def genWF(self): self.pure = interpSlopeWF(fsample=self.fsample, bitrate=self.bitrate, slope=self.slope, left_y=self.vcan_lD, right_y=self.vcan_hD, f=self.f) self.signal = np.add(self.pure, self.awgn(self.pure)) class T_1WF(canbusWF): def __init__(self, fsample: float = 16e+06, bitrate: float = 125000.0, slope: float = 0.1, SNR: int = 3, f: object = None): super().__init__(fsample=fsample, bitrate=bitrate, slope=slope, SNR=SNR, f=f) self.title = "Transition _->'1'" def genWF(self): self.pure = interpSlopeWF(fsample=self.fsample, bitrate=self.bitrate, slope=self.slope, left_y=self.vcan_lR, right_y=self.vcan_lD, f=self.f) self.signal = np.add(self.pure, self.awgn(self.pure)) class T0_WF(canbusWF): def __init__(self, fsample: float = 16e+06, bitrate: float = 125000.0, slope: float = 0.1, SNR: int = 3, f: object = None): super().__init__(fsample=fsample, bitrate=bitrate, slope=slope, SNR=SNR, f=f) self.title = "Transition '0'->_" def genWF(self): self.pure = interpSlopeWF(fsample=self.fsample, bitrate=self.bitrate, slope=self.slope, left_y=self.vcan_hD, right_y=self.vcan_lD, f=self.f) self.signal = np.add(self.pure, self.awgn(self.pure)) class T1_WF(canbusWF): def __init__(self, fsample: float = 16e+06, bitrate: float = 125000.0, slope: float = 0.1, SNR: int = 3, f: object = None): super().__init__(fsample=fsample, bitrate=bitrate, slope=slope, SNR=SNR, f=f) self.title = "Transition '1'->_" def genWF(self): self.pure= interpSlopeWF(fsample=self.fsample, bitrate=self.bitrate, slope=self.slope, left_y=self.vcan_lD, right_y=self.vcan_lR, f=self.f) self.signal=np.add(self.pure,self.awgn(self.pure)) class T00WF(canbusWF): def __init__(self, fsample: float = 16e+06, bitrate: float = 125000.0, slope: float = 0.1, SNR: int = 3, f: object = None): super().__init__(fsample=fsample, bitrate=bitrate, slope=slope, SNR=SNR, f=f) self.title = "Transition '0'->'0'" def genWF(self): self.pure=np.array([self.vcan_hD for i in range(int(self.fsample/self.bitrate))]) self.signal=np.add(self.pure,self.awgn(self.pure)) class T11WF(canbusWF): def __init__(self, fsample: float = 16e+06, bitrate: float = 125000.0, slope: float = 0.1, SNR: int = 3, f: object = None): super().__init__(fsample=fsample, bitrate=bitrate, slope=slope, SNR=SNR, f=f) self.title = "Transition '1'->'1'" def genWF(self): self.pure=np.array([self.vcan_lD for i in range(int(self.fsample/self.bitrate))]) self.signal=np.add(self.pure,self.awgn(self.pure)) class T10WF(canbusWF): def __init__(self, fsample: float = 16e+06, bitrate: float = 125000.0, slope: float = 0.1, SNR: int = 3, f: object = None): super().__init__(fsample=fsample, bitrate=bitrate, slope=slope, SNR=SNR, f=f) self.title = "Transition '1'->'0'" def genWF(self): self.pure= interpSlopeWF(fsample=self.fsample, bitrate=self.bitrate, slope=self.slope, left_y=self.vcan_lD, right_y=self.vcan_hD, f=self.f) self.signal=np.add(self.pure,self.awgn(self.pure)) class T01WF(canbusWF): def __init__(self, fsample: float = 16e+06, bitrate: float = 125000.0, slope: float = 0.1, SNR: int = 3, f: object = None): super().__init__(fsample=fsample, bitrate=bitrate, slope=slope, SNR=SNR, f=f) self.title = "Transition '0'->'1'" def genWF(self): self.pure= interpSlopeWF(fsample=self.fsample, bitrate=self.bitrate, slope=self.slope, left_y=self.vcan_hD, right_y=self.vcan_lD, f=self.f) self.signal=np.add(self.pure,self.awgn(self.pure)) """ Waveform per transition dictionary """ TR_DICT={T__: T__WF, T_0: T_0WF, T_1: T_1WF, T0_: T0_WF, T00: T00WF, T01: T01WF, T1_: T1_WF, T10: T10WF, T11: T11WF} """ Return list of following dict {'DateTime':<Date Time>, 'IF':<interface>>, 'ID':<canbus packet ID>, 'Data':<canbus packet data>, 'Packet':<ID | data> in hexa, 'bitstr_list':<list of bits> 'bit_str':<string of bits> } """ def readChunkFromCanBusDump(offset_line:int =0, chunk_size:int=128,canbusdump:str=None, f:object=None)->list: parsed_list=[] if canbusdump is None or canbusdump=="" or not Path(canbusdump).exists(): return parsed_list line_count=0 last_line=offset_line + chunk_size with open(canbusdump,'r') as fcanbus: while line_count<offset_line: line = fcanbus.readline() if not line: return parsed_list line_count+=1 while line_count<last_line: line = fcanbus.readline() if not line: return parsed_list line_count+=1 parsed_list.append(parseCanBusLine(line)) return parsed_list """This function parses string to 'DateTime', 'interface', 'packet ID' and 'packet Data'. The concatenation of two elements 'ID' and 'Data' forms an additional return element 'packet'. The packet string converts to list bit strings. Every two symbols are converted to the bit string. All return items are merged into a dictionary. """ def parseCanBusLine(line:str=None, f:object=None)->dict: if line is None: return {} aitems=line.split(' ') itemDateTime=re.search(r'\((.*?)\)',line).group(1) itemData=re.search('(?<=#)\w+',line).group(0) aitemID=aitems[2].split('#') itemID=aitemID[0] itemIF=aitems[1] if len(itemID)%2 != 0: itemID='0'+itemID if len(itemData)%2 !=0: itemData='0'+itemData itemPacket=itemID +itemData bitstr_list =packet2bits(packet=itemPacket,f=f) bit_str=''.join(bitstr_list) """ random generation 0-INSERTED_NO_SIGNAL 'no signal' bits marked as *""" nrnd=random.randrange(0,INSERTED_NO_SIGNAL+1) insnosigb=''.join(["*" for i in range(nrnd+1)]) if len(insnosigb)>0: bit_str=bit_str+insnosigb return {'DateTime':itemDateTime,'IF':itemIF, 'ID':itemID,'Data':itemData,'Packet':itemPacket, 'bitstr_list':bitstr_list,'bit_str':bit_str} """ This function forms a list of bits string from a packet data Every two symbols (two nibbles or byte) is hex number which is converted to bit array. The function returns the list of bit strings. For example, packet is '6B6B00FF' '6B'=107 =>'1101011' '6B'=107 =>'1101011' '00'=0 =>'00000000' 'FF'=255 => '11111111' The result list contains ['1101011','1101011','00000000' ,'11111111'] """ def packet2bits(packet:str=None,f:object=None)->list: start=0 step=2 bits_list=[] for i in range(start,len(packet),step): bss="{0:b}".format(int( packet[start:start+step], 16)).zfill(8) bits_list.append(bss) start=start +step return bits_list """ Transform bit to the state, the type of waveform being be generated, according by current bit and previous state st=R(bit, prev_st). The set of states is {T__,T_0,T_1,T0_.T1_,T00,T01,T10,T11}, the current bit belongs to { '0' , '1', '*'-no signal}. """ def transitionRules(prev_state:int, current_bit:str)->(int, int): """ :param prev_state: :param current_bit: :return: """ if prev_state==SIG_: if current_bit=='0': transition=T_0 elif current_bit=='1': transition=T_1 elif current_bit=='*': transition=T__ else: transition=T__ elif prev_state==SIG_0: if current_bit == '0': transition = T00 elif current_bit == '1': transition = T01 elif current_bit == '*': transition = T0_ else: transition = T0_ elif prev_state==SIG_1: if current_bit == '0': transition = T10 elif current_bit == '1': transition = T11 elif current_bit == '*': transition = T1_ else: transition = T1_ if current_bit=='0': new_state=SIG_0 elif current_bit=='1': new_state=SIG_1 elif current_bit == '*': new_state=SIG_ else: new_state=SIG_ return transition, new_state """ Transform bit to transition according by rules transition=R(bit,prev_state), where states are { SIG_-no signal, SIG_0- zero signal, SIG_1- one signal} and transition belongs to {T__, T_0, T_1, T0_ , T00, T01, T1_, T10, T11 }. Return list of transition and new prev_state for next packet.""" def genTransition(prev_st:int=SIG_, bit_str:str=None, f:object=None)->(list,int): """ transition array generation""" transition=[] st=prev_st for i in range(len(bit_str)): tr,st=transitionRules(st, bit_str[i]) transition.append(tr) prev_st=SIG_ return transition,prev_st def logPackets(ld:list,offset_line:int=0,chunk_size:int=16): msg = "\nChunk start: {} Chunk size: {}\n".format(offset_line,chunk_size) msg2log(None,msg,D_LOGS['block']) msg = "{:<30s} {:<9s} {:^8s} {:^8s} {:<16s} ".format('Date Time','Interface','ID', 'Data','Packet') for dct in ld: msg="{:<30s} {:<9s} {:<8s} {:<8s} {:<16s} ".format(dct['DateTime'], dct['IF'], dct['ID'], dct['Data'], dct['Packet']) msg2log(None,msg,D_LOGS['block']) return """ For chunk generate list of trasitions.""" def trstreamGen(canbusdump:str="", offset_line:int=0, chunk_size:int=16, prev_state:int=SIG_, f:object=None)->list: # offset_line = offset_line # chunk_size = chunk_size # canbusdump = canbusdump transition_stream = [] ld = readChunkFromCanBusDump(offset_line=offset_line, chunk_size=chunk_size, canbusdump=canbusdump, f=f) if not ld: return transition_stream logPackets(ld=ld,offset_line=offset_line,chunk_size=chunk_size) for dct in ld: transition, prev_state = genTransition(prev_st=prev_state, bit_str=dct['bit_str'], f=f) transition_stream.append(transition) return transition_stream """ Generation of the waveforma according to the bit stream. A statistical estimate of the histogram is calculated for each waveform. At the training stage within one packet (frame), histograms are averaged over the type of bit transitions. The resulting histogram concatenated with type of the bit is added to Blooom Filter. (T.B.D. - add to DB too). At the test stage no averaging. The histogram concatenated with the type of the bit is checked with BF. If no matc there is an anomaly symptom. """ def wfstreamGen(mode:str='train',transition_stream:list=[],fsample:float=16e+6,bitrate:float=125000.0, slope:float=0.1, snr:float=20, trwf_d:dict=TR_DICT,bf:BF=None, title:str="", repository:str="", f:object=None)->dict: """ :param mode: :param transition_stream: :param fsample: :param bitrate: :param slope: :param snr: :param trwf_d: :param bf: :param title: :param f: :return: """ packet_in_stream = -1 anomaly_d={} loggedSignal = np.array([]) loggedHist = [] numberLoggedBit = 16 subtitle="Fsample={} MHz Bitrate={} Kbit/sec SNR={} Db".format(round(fsample/10e+6,3), round(bitrate/10e3,2), round(snr,0)) """ random number for logged packet in the stream """ loggedPacket=random.randrange(0,len(transition_stream)) sum_match_train = 0 sum_no_match_train = 0 sum_match_test = 0 sum_no_match_test = 0 for packet in transition_stream: packet_in_stream+=1 # here accumulated histogram per transition in following structue {transit:list} tr_hist ={T__: [], T_0: [],T0_: [],T_1: [], T1_: [],T00: [],T01: [],T10: [], T11: []} n_match_train=0 no_match_train=0 n_match_test = 0 no_match_test = 0 startLoggedBit=-1 endLoggedBit = -1 """ logged bits in the packet """ if packet_in_stream == loggedPacket: startLoggedBit=random.randrange(0,len(packet)) endLoggedBit =startLoggedBit + numberLoggedBit bit_in_packet=-1 for transit in packet: bit_in_packet+=1 cb=trwf_d[transit](fsample=fsample,bitrate=bitrate, slope=slope, SNR=snr, f=f) cb.genWF() cb.histogram() """ select signals for charting """ if bit_in_packet>=startLoggedBit and bit_in_packet<endLoggedBit: loggedSignal=np.concatenate((loggedSignal,cb.signal)) loggedHist.append(cb.hist) if mode=='train': tr_hist[transit].append(cb.hist) continue """ hist to word """ if bf is None: continue word=hex(transit).lstrip("0x")+"_" word = word + ''.join([hex(vv).lstrip("0x").rstrip("L") for vv in cb.hist.tolist()]) if not bf.check_item(word): msg="no match in DB for {} transition in {} packet".format(transit, packet_in_stream) msg2log("Warning!",msg,D_LOGS['predict']) msg2log("Warning!", msg, f) anomaly_d[packet_in_stream]={transit:tr_names[transit]} no_match_test += 1 else: msg2log(None, "Match for {} transition in {} packet".format(transit, packet_in_stream), D_LOGS['predict']) n_match_test += 1 if mode=='test': msg2log(None, "\nTest\nmatch: {} no match: {}".format(n_match_test,no_match_test), D_LOGS['predict']) if mode=='train': """ histogram averaging """ for key,val in tr_hist.items(): if not val: continue allhists=np.array(val) avehist=np.average(allhists,axis=0) if bf is None: continue word = hex(key).lstrip("0x") + "_" word = word + ''.join([hex(int(vv)).lstrip("0x").rstrip("L") for vv in avehist.tolist()]) if bf.check_item(word): msg2log(None,"Match for {} transition in {} packet".format(key,packet_in_stream),D_LOGS['train']) n_match_train+=1 else: bf.add_item(word) no_match_train+=1 msg2log(None,"\nTrain\nmatch: {} no match:{}".format(n_match_train,no_match_train),D_LOGS['train']) sum_match_train +=n_match_train sum_no_match_train +=no_match_train sum_match_test +=n_match_test sum_no_match_test +=no_match_test if mode=="train": msg2log(None, "\nTrain summary for SNR={} DB\nmatch: {} no match:{}".format(snr, sum_match_train, sum_no_match_train), D_LOGS['train']) bf.save(repository) if mode=="test": msg2log(None, "\nTest summary for SNR = {} DB\nmatch: {} no match:{}".format(snr,sum_match_test, sum_no_match_test), D_LOGS['predict']) log2All() if len(loggedSignal)>0: plotSignal(mode=mode, signal=loggedSignal, packetNumber=0, fsample=fsample, startBit=startLoggedBit, title=title, subtitle=subtitle) return anomaly_d def plotSignal(mode:str="train", signal:np.array=None, fsample:float=1.0, packetNumber:int=0, startBit:int=0, title:str="",subtitle:str=""): pass suffics = '.png' signal_png = Path(D_LOGS['plot'] / Path(title)).with_suffix(suffics) delta=1.0/fsample t=np.arange(0.0, (len(signal)-1)*delta, delta) n=min(len(t),len(signal)) fig, ax = plt.subplots(figsize=(18, 5)) ax.plot(t[:n],signal[:n], color='r') ax.set_xlabel('time') ax.set_ylabel('Signal wavefors') ax.set_title(title) ax.grid(True) plt.savefig(signal_png) plt.close("all") return """ Get number of lines in dump file. This function is executed ib the subprocess""" def file_len(fname)->int: n=-1 if Path(fname).exists(): if sys.platform.startswith('linux'): try: p = subprocess.Popen(['wc', '-l', fname], stdout=subprocess.PIPE, stderr=subprocess.PIPE) result, err = p.communicate() if p.returncode != 0: # we will not raise any exception , raise IOError(err) n= -2 n= int(result.strip().split()[0]) except: pass finally: pass elif sys.platform.startswith('win'): fr=open(fname,'r') n=0 while 1: line=fr.readline() if line is None: break n+=1 fr.close() else: n=-3 return n def dict2csv(d:dict=None, folder:str="", title:str="", dset_name:str=None, match_key:str='ID', f:object=None): if d is None: msg2log(None,"No dictionary {} {} for saving".format(title,match_key),f) return if dset_name is None or len(dset_name)<1 or ".csv" not in dset_name: msg2log(None,"Dtaset name is not set correctly {}".format(dset_name),f) return df=pd.DataFrame(d) df.to_csv(dset_name) msg2log(None,"{} dictionary for {} saved in {}".format(title,match_key,dset_name),f) return def dict2pkl(d:dict=None, folder:str="", title:str="", match_key:str='ID', f:object=None)->(str,str): if d is None: msg2log(None,"No dictionary {} {} for saving".format(title,match_key),f) return file_pkl=Path(Path(folder)/Path("{}_{}".format(title,match_key))).with_suffix(".pkl") f_pkl=open(str(file_pkl),"wb") dump(d,f_pkl) msg2log(None,"{} dictionary for {} saved in {}".format(title,match_key,str(file_pkl)),f) pkl_stem=file_pkl.stem return pkl_stem, str(file_pkl) def pkl2dict( folder: str = "", title: str = "", match_key: str = 'ID', pkl_stem:str="", f: object = None): file_pkl = Path(Path(folder) / Path("{}".format(pkl_stem))).with_suffix(".pkl") if not file_pkl.exists(): msg="Serialized dictionary {} for {} -match key was not found in {} repository".format(pkl_stem, match_key,folder) msg2log(None,msg,f) return None f_pkl = open(str(file_pkl), "rb") d=load(f_pkl) msg2log(None, "{} dictionary for {} loaded from {}".format(title, match_key, str(file_pkl)), f) return d """" statistical estimation for observed data""" def mleexp(target_dict:dict=None, mleexp_dict:dict=None, n_min:int=5, title:str="Train path", f:object=None): msg="{}\n,Rare packets, no maximum likelihood estimation for exponential distribution of time gaps between " +\ " packets appearing.".format(title) msg2log(None, msg, D_LOGS['cluster']) for key,vlist in target_dict.items(): if len(vlist)<n_min: msg=f"""Packet with matched mey: {key} is rare event: {len(vlist)} appearings""" msg2log(None,msg,D_LOGS['cluster']) continue l_duration=[vlist[i]-vlist[i-1] for i in range(1,len(vlist))] n=len(l_duration) sum_items=float(sum(l_duration))/1e06 # in seconds mle_lambda=float(n)/sum_items mle_var_lambda=(mle_lambda*mle_lambda)/float(n) mleexp_dict[key]={"n":n,"mle":mle_lambda,"var":mle_var_lambda,"sample":l_duration} return def KL_decision(train_mleexp:dict=None, test_mleexp:dict=None, title:str="Anomaly packet",f:object=None)->list: trainSet=set(train_mleexp) testSet=set(test_mleexp) anomaly_list=[] chi2_1_05=3.84 for key in trainSet.intersection(testSet): anomaly_counter=0 train_val=train_mleexp[key] test_val=test_mleexp[key] lst_val=train_val['sample']+test_val['sample'] xmean=np.array(lst_val).mean() xtrain=np.array(train_val['sample']).mean() xtest = np.array(test_val['sample']).mean() ntrain=train_val['n'] ntest = test_val['n'] KL2I12=ntrain*(xtrain-xmean)*(xtrain-xmean)/xmean + ntest*(xtest-xmean)*(xtest-xmean)/xmean KLJ12 =0.5*KL2I12 + 0.5 *( ntrain * (xtrain - xmean) * (xtrain - xmean) / xtrain + ntest * (xtest - xmean) * ( xtest - xmean) / xtest) if KL2I12>chi2_1_05 or KLJ12 > chi2_1_05: anomaly_counter+=1 anomaly_list.append({'matched_key':key,"2I(1:2)":KL2I12,"J(1,2)":KLJ12, "chi2(1,0.05)":chi2_1_05, "train":train_val,"test":test_val,}) return anomaly_list def manageDB(repository:str=None, db:str=None,op:str='select',d_query:dict={}, f:object=None)->dict: file_db=Path(Path(repository)/Path(db)).with_suffix(".csv") if not file_db.exists(): createDB(file_db=file_db, f=f) if op=='select': d_res = selectDB(file_db=file_db, d_query=d_query,f=f) elif op=='insert': d_res = insertDB(file_db= file_db, d_query = d_query, f = f) pass elif op=='update': pass elif op=='log': pass else: pass return d_res def createDB(file_db:str=None, f:object=None): df=pd.DataFrame(columns=DB_COLS) df.to_csv(file_db,index=False) msg2log(None,"DB created {}".format(file_db),) return def selectDB(file_db:str=None, d_query:dict=None,f:object=None)->dict: if file_db is None or not Path(file_db).exists() or d_query is None or len(d_query)==0: return None d_res={} l_res=[] #list of dict df=pd.read_csv(file_db) for index,row in df.iterrows(): keys=list(row.keys()) if dictIndict(row,d_query,f=f): l_res.append(row) if len(l_res)>0: msg=f""" Query: {d_query} Selected: {l_res} """ msg2log(None,msg,f) d_res=dict(l_res[-1] ) # select last item in list. The item gas Series -type and so it should be casted to dict. return d_res def insertDB(file_db:str=None, d_query:dict=None,f:object=None)->dict: if file_db is None or not Path(file_db).exists() or d_query is None or len(d_query)==0: return None keys=list(d_query.keys()) d_insert={item:"" for item in DB_COLS} for item in keys: d_insert[item]=d_query[item] d_insert[DT]=
pd.Timestamp.now()
pandas.Timestamp.now
#!/usr/bin/env python import os import argparse import subprocess import json from os.path import isfile, join, basename import time import pandas as pd from datetime import datetime import tempfile import sys sys.path.append( os.path.abspath(os.path.join(os.path.dirname(__file__), os.path.pardir, 'instance_generator'))) import route_gen def main(): ''' The algorithm for benchmark works as follow: For a certain number of iteration: generate instance with default generator value for each encoding inside subfolders of encoding (one folder for each encoding): start timer solve with clyngo stop timer test solution: if legal add time in a csv (S) else: add int max as time print an error message ''' parser = argparse.ArgumentParser(description='Benchmark ! :D') parser.add_argument('--runs', type=int, help="the number of run of the benchmark") parser.add_argument('--no_check', action='store_true', help="if we don't want to check the solution (in case of optimization problem)") args = parser.parse_args() number_of_run = args.runs print("Start of the benchmarks") encodings = [x for x in os.listdir("../encoding/")] print("Encodings to test:") for encoding in encodings: print("\t-{}".format(encoding)) results = [] costs_run = [] for i in range(number_of_run): print("Iteration {}".format(i + 1)) result_iteration = dict() cost_iteration = dict() instance, minimal_cost = route_gen.instance_generator() # we get the upper bound of the solution generated by the generator cost_iteration["Benchmark_Cost"] = minimal_cost correct_solution = True instance_temp = tempfile.NamedTemporaryFile(mode="w+", suffix='.lp', dir=".", delete=False) instance_temp.write(repr(instance)) instance_temp.flush() for encoding in encodings: print("Encoding {}:".format(encoding)) files_encoding = ["../encoding/" + encoding + "/" + f for f in os.listdir("../encoding/" + encoding) if isfile(join("../encoding/" + encoding, f))] start = time.time() try: if 'parallel' == encoding: clingo = subprocess.Popen(["clingo"] + files_encoding + [basename(instance_temp.name)] + ["--outf=2"] + ['-t 8compete'], stdout=subprocess.PIPE, stderr=subprocess.PIPE) else: clingo = subprocess.Popen(["clingo"] + files_encoding + [basename(instance_temp.name)] + ["--outf=2"], stdout=subprocess.PIPE, stderr=subprocess.PIPE) (stdoutdata, stderrdata) = clingo.communicate(timeout=3600) clingo.wait() end = time.time() duration = end - start json_answers = json.loads(stdoutdata) cost = float('inf') answer = [] # we need to check all solution and get the best one for call_current in json_answers["Call"]: if "Witnesses" in call_current: answer_current = call_current["Witnesses"][-1] if "Costs" in answer_current: current_cost = sum(answer_current["Costs"]) if current_cost < cost: answer = answer_current["Value"] cost = current_cost else: cost = 0 answer = answer_current["Value"] # we append "" just to get the last . when we join latter answer = answer + [""] answer_str = ".".join(answer) answer_temp = tempfile.NamedTemporaryFile(mode="w+", suffix='.lp', dir=".", delete=False) answer_temp.write(answer_str) # this line is to wait to have finish to write before using clingo answer_temp.flush() clingo_check = subprocess.Popen( ["clingo"] + ["../test_solution/test_solution.lp"] + [basename(answer_temp.name)] + [ basename(instance_temp.name)] + ["--outf=2"] + ["-q"], stdout=subprocess.PIPE, stderr=subprocess.PIPE) (stdoutdata_check, stderrdata_check) = clingo_check.communicate() clingo_check.wait() json_check = json.loads(stdoutdata_check) answer_temp.close() os.remove(answer_temp.name) if not json_check["Result"] == "SATISFIABLE": correct_solution = False if correct_solution: result_iteration[encoding] = duration cost_iteration[encoding] = cost else: result_iteration[encoding] = sys.maxsize cost_iteration[encoding] = float("inf") print("\tSatisfiable {}".format(correct_solution)) print("\tDuration {} seconds".format(result_iteration[encoding])) print("\tBest solution {}".format(cost)) print("\tBenchmark cost {}".format(minimal_cost)) except Exception as excep: result_iteration = str(excep) cost_iteration = float('inf') results.append(result_iteration) costs_run.append(cost_iteration) instance_temp.close() os.remove(basename(instance_temp.name)) df =
pd.DataFrame(results)
pandas.DataFrame
import os from typing import List, Tuple, Union import numpy as np import pandas as pd DATASET_DIR: str = "data/" # https://www.kaggle.com/rakannimer/air-passengers def read_air_passengers() -> Tuple[pd.DataFrame, np.ndarray]: indexes = [6, 33, 36, 51, 60, 100, 135] values = [205, 600, 150, 315, 150, 190, 620] return _add_outliers_set_datetime(
pd.read_csv(f"{DATASET_DIR}air_passengers.csv")
pandas.read_csv
#!/usr/bin/env python # -*- encoding: utf-8 -*- ''' @File : ioutil.py @Desc : Input and output data function. ''' # here put the import lib import os import sys import pandas as pd import numpy as np from . import TensorData import csv from .basicutil import set_trace class File(): def __init__(self, filename, mode, idxtypes): self.filename = filename self.mode = mode self.idxtypes = idxtypes self.dtypes = None self.sep = None def get_sep_of_file(self): ''' return the separator of the line. :param infn: input file ''' sep = None fp = open(self.filename, self.mode) for line in fp: line = line.decode( 'utf-8') if isinstance(line, bytes) else line if (line.startswith("%") or line.startswith("#")): continue line = line.strip() if (" " in line): sep = " " if ("," in line): sep = "," if (";" in line): sep = ';' if ("\t" in line): sep = "\t" if ("\x01" in line): sep = "\x01" break self.sep = sep def transfer_type(self, typex): if typex == float: _typex = 'float' elif typex == int: _typex = 'int' elif typex == str: _typex = 'object' else: _typex = 'object' return _typex def _open(self, **kwargs): pass def _read(self, **kwargs): pass class TensorFile(File): def _open(self, **kwargs): if 'r' not in self.mode: self.mode += 'r' f = open(self.filename, self.mode) pos = 0 cur_line = f.readline() while cur_line.startswith("#"): pos = f.tell() cur_line = f.readline() f.seek(pos) _f = open(self.filename, self.mode) _f.seek(pos) fin = pd.read_csv(f, sep=self.sep, **kwargs) column_names = fin.columns self.dtypes = {} if not self.idxtypes is None: for idx, typex in self.idxtypes: self.dtypes[column_names[idx]] = self.transfer_type(typex) fin = pd.read_csv(_f, dtype=self.dtypes, sep=self.sep, **kwargs) else: fin = pd.read_csv(_f, sep=self.sep, **kwargs) return fin def _read(self, **kwargs): tensorlist = [] self.get_sep_of_file() _file = self._open(**kwargs) if not self.idxtypes is None: idx = [i[0] for i in self.idxtypes] tensorlist = _file[idx] else: tensorlist = _file return tensorlist class CSVFile(File): def _open(self, **kwargs): f = pd.read_csv(self.filename, **kwargs) column_names = list(f.columns) self.dtypes = {} if not self.idxtypes is None: for idx, typex in self.idxtypes: self.dtypes[column_names[idx]] = self.transfer_type(typex) f = pd.read_csv(self.filename, dtype=self.dtypes, **kwargs) else: f = pd.read_csv(self.filename, **kwargs) return f def _read(self, **kwargs): tensorlist =
pd.DataFrame()
pandas.DataFrame
import logging import os import pickle import tarfile from typing import Tuple import numpy as np import pandas as pd import scipy.io as sp_io import shutil from scipy.sparse import csr_matrix, issparse from scMVP.dataset.dataset import CellMeasurement, GeneExpressionDataset, _download logger = logging.getLogger(__name__) class ATACDataset(GeneExpressionDataset): """Loads a file from `10x`_ website. :param dataset_name: Name of the dataset file. Has to be one of: "CellLineMixture", "AdBrainCortex", "P0_BrainCortex". :param save_path: Location to use when saving/loading the data. :param type: Either `filtered` data or `raw` data. :param dense: Whether to load as dense or sparse. If False, data is cast to sparse using ``scipy.sparse.csr_matrix``. :param measurement_names_column: column in which to find measurement names in the corresponding `.tsv` file. :param remove_extracted_data: Whether to remove extracted archives after populating the dataset. :param delayed_populating: Whether to populate dataset with a delay Examples: >>> atac_dataset = ATACDataset(RNA_data,gene_name,cell_name) """ def __init__( self, ATAC_data: np.matrix = None, ATAC_name: pd.DataFrame = None, cell_name: pd.DataFrame = None, delayed_populating: bool = False, is_filter = True, datatype="atac_seq", ): if ATAC_data.all() == None: raise Exception("Invalid Input, the gene expression matrix is empty!") self.ATAC_data = ATAC_data self.ATAC_name = ATAC_name self.cell_name = cell_name self.is_filter = is_filter self.datatype = datatype self.cell_name_formulation = None self.atac_name_formulation = None if not isinstance(self.ATAC_name, pd.DataFrame): self.ATAC_name =
pd.DataFrame(self.ATAC_name)
pandas.DataFrame
from flask import Flask, render_template, jsonify, request from flask_pymongo import PyMongo from flask_cors import CORS, cross_origin import json import copy import warnings import re import pandas as pd pd.set_option('use_inf_as_na', True) import numpy as np from joblib import Memory from xgboost import XGBClassifier from sklearn import model_selection from bayes_opt import BayesianOptimization from sklearn.model_selection import cross_validate from sklearn.model_selection import cross_val_predict from sklearn.preprocessing import OneHotEncoder from sklearn.metrics import classification_report from sklearn.feature_selection import mutual_info_classif from sklearn.feature_selection import SelectKBest from sklearn.feature_selection import f_classif from sklearn.feature_selection import RFECV from sklearn.linear_model import LogisticRegression from eli5.sklearn import PermutationImportance from joblib import Parallel, delayed import multiprocessing from statsmodels.stats.outliers_influence import variance_inflation_factor from statsmodels.tools.tools import add_constant # this block of code is for the connection between the server, the database, and the client (plus routing) # access MongoDB app = Flask(__name__) app.config["MONGO_URI"] = "mongodb://localhost:27017/mydb" mongo = PyMongo(app) cors = CORS(app, resources={r"/data/*": {"origins": "*"}}) @cross_origin(origin='localhost',headers=['Content-Type','Authorization']) @app.route('/data/Reset', methods=["GET", "POST"]) def reset(): global DataRawLength global DataResultsRaw global previousState previousState = []\ global StanceTest StanceTest = False global filterActionFinal filterActionFinal = '' global keySpecInternal keySpecInternal = 1 global RANDOM_SEED RANDOM_SEED = 42 global keyData keyData = 0 global keepOriginalFeatures keepOriginalFeatures = [] global XData XData = [] global yData yData = [] global XDataNoRemoval XDataNoRemoval = [] global XDataNoRemovalOrig XDataNoRemovalOrig = [] global XDataStored XDataStored = [] global yDataStored yDataStored = [] global finalResultsData finalResultsData = [] global detailsParams detailsParams = [] global algorithmList algorithmList = [] global ClassifierIDsList ClassifierIDsList = '' global RetrieveModelsList RetrieveModelsList = [] global allParametersPerfCrossMutr allParametersPerfCrossMutr = [] global all_classifiers all_classifiers = [] global crossValidation crossValidation = 8 #crossValidation = 5 #crossValidation = 3 global resultsMetrics resultsMetrics = [] global parametersSelData parametersSelData = [] global target_names target_names = [] global keyFirstTime keyFirstTime = True global target_namesLoc target_namesLoc = [] global featureCompareData featureCompareData = [] global columnsKeep columnsKeep = [] global columnsNewGen columnsNewGen = [] global columnsNames columnsNames = [] global fileName fileName = [] global listofTransformations listofTransformations = ["r","b","zs","mms","l2","l1p","l10","e2","em1","p2","p3","p4"] return 'The reset was done!' # retrieve data from client and select the correct data set @cross_origin(origin='localhost',headers=['Content-Type','Authorization']) @app.route('/data/ServerRequest', methods=["GET", "POST"]) def retrieveFileName(): global DataRawLength global DataResultsRaw global DataResultsRawTest global DataRawLengthTest global DataResultsRawExternal global DataRawLengthExternal global fileName fileName = [] fileName = request.get_data().decode('utf8').replace("'", '"') global keySpecInternal keySpecInternal = 1 global filterActionFinal filterActionFinal = '' global dataSpacePointsIDs dataSpacePointsIDs = [] global RANDOM_SEED RANDOM_SEED = 42 global keyData keyData = 0 global keepOriginalFeatures keepOriginalFeatures = [] global XData XData = [] global XDataNoRemoval XDataNoRemoval = [] global XDataNoRemovalOrig XDataNoRemovalOrig = [] global previousState previousState = [] global yData yData = [] global XDataStored XDataStored = [] global yDataStored yDataStored = [] global finalResultsData finalResultsData = [] global ClassifierIDsList ClassifierIDsList = '' global algorithmList algorithmList = [] global detailsParams detailsParams = [] # Initializing models global RetrieveModelsList RetrieveModelsList = [] global resultsList resultsList = [] global allParametersPerfCrossMutr allParametersPerfCrossMutr = [] global HistoryPreservation HistoryPreservation = [] global all_classifiers all_classifiers = [] global crossValidation crossValidation = 8 #crossValidation = 5 #crossValidation = 3 global parametersSelData parametersSelData = [] global StanceTest StanceTest = False global target_names target_names = [] global keyFirstTime keyFirstTime = True global target_namesLoc target_namesLoc = [] global featureCompareData featureCompareData = [] global columnsKeep columnsKeep = [] global columnsNewGen columnsNewGen = [] global columnsNames columnsNames = [] global listofTransformations listofTransformations = ["r","b","zs","mms","l2","l1p","l10","e2","em1","p2","p3","p4"] DataRawLength = -1 DataRawLengthTest = -1 data = json.loads(fileName) if data['fileName'] == 'HeartC': CollectionDB = mongo.db.HeartC.find() target_names.append('Healthy') target_names.append('Diseased') elif data['fileName'] == 'biodegC': StanceTest = True CollectionDB = mongo.db.biodegC.find() CollectionDBTest = mongo.db.biodegCTest.find() CollectionDBExternal = mongo.db.biodegCExt.find() target_names.append('Non-biodegr.') target_names.append('Biodegr.') elif data['fileName'] == 'BreastC': CollectionDB = mongo.db.breastC.find() elif data['fileName'] == 'DiabetesC': CollectionDB = mongo.db.diabetesC.find() target_names.append('Negative') target_names.append('Positive') elif data['fileName'] == 'MaterialC': CollectionDB = mongo.db.MaterialC.find() target_names.append('Cylinder') target_names.append('Disk') target_names.append('Flatellipsold') target_names.append('Longellipsold') target_names.append('Sphere') elif data['fileName'] == 'ContraceptiveC': CollectionDB = mongo.db.ContraceptiveC.find() target_names.append('No-use') target_names.append('Long-term') target_names.append('Short-term') elif data['fileName'] == 'VehicleC': CollectionDB = mongo.db.VehicleC.find() target_names.append('Van') target_names.append('Car') target_names.append('Bus') elif data['fileName'] == 'WineC': CollectionDB = mongo.db.WineC.find() target_names.append('Fine') target_names.append('Superior') target_names.append('Inferior') else: CollectionDB = mongo.db.IrisC.find() DataResultsRaw = [] for index, item in enumerate(CollectionDB): item['_id'] = str(item['_id']) item['InstanceID'] = index DataResultsRaw.append(item) DataRawLength = len(DataResultsRaw) DataResultsRawTest = [] DataResultsRawExternal = [] if (StanceTest): for index, item in enumerate(CollectionDBTest): item['_id'] = str(item['_id']) item['InstanceID'] = index DataResultsRawTest.append(item) DataRawLengthTest = len(DataResultsRawTest) for index, item in enumerate(CollectionDBExternal): item['_id'] = str(item['_id']) item['InstanceID'] = index DataResultsRawExternal.append(item) DataRawLengthExternal = len(DataResultsRawExternal) dataSetSelection() return 'Everything is okay' # Retrieve data set from client @cross_origin(origin='localhost',headers=['Content-Type','Authorization']) @app.route('/data/SendtoSeverDataSet', methods=["GET", "POST"]) def sendToServerData(): uploadedData = request.get_data().decode('utf8').replace("'", '"') uploadedDataParsed = json.loads(uploadedData) DataResultsRaw = uploadedDataParsed['uploadedData'] DataResults = copy.deepcopy(DataResultsRaw) for dictionary in DataResultsRaw: for key in dictionary.keys(): if (key.find('*') != -1): target = key continue continue DataResultsRaw.sort(key=lambda x: x[target], reverse=True) DataResults.sort(key=lambda x: x[target], reverse=True) for dictionary in DataResults: del dictionary[target] global AllTargets global target_names global target_namesLoc AllTargets = [o[target] for o in DataResultsRaw] AllTargetsFloatValues = [] global fileName data = json.loads(fileName) previous = None Class = 0 for i, value in enumerate(AllTargets): if (i == 0): previous = value if (data['fileName'] == 'IrisC' or data['fileName'] == 'BreastC'): target_names.append(value) else: pass if (value == previous): AllTargetsFloatValues.append(Class) else: Class = Class + 1 if (data['fileName'] == 'IrisC' or data['fileName'] == 'BreastC'): target_names.append(value) else: pass AllTargetsFloatValues.append(Class) previous = value ArrayDataResults = pd.DataFrame.from_dict(DataResults) global XData, yData, RANDOM_SEED XData, yData = ArrayDataResults, AllTargetsFloatValues global XDataStored, yDataStored XDataStored = XData.copy() yDataStored = yData.copy() global XDataStoredOriginal XDataStoredOriginal = XData.copy() global finalResultsData finalResultsData = XData.copy() global XDataNoRemoval XDataNoRemoval = XData.copy() global XDataNoRemovalOrig XDataNoRemovalOrig = XData.copy() return 'Processed uploaded data set' def dataSetSelection(): global XDataTest, yDataTest XDataTest = pd.DataFrame() global XDataExternal, yDataExternal XDataExternal = pd.DataFrame() global StanceTest global AllTargets global target_names target_namesLoc = [] if (StanceTest): DataResultsTest = copy.deepcopy(DataResultsRawTest) for dictionary in DataResultsRawTest: for key in dictionary.keys(): if (key.find('*') != -1): target = key continue continue DataResultsRawTest.sort(key=lambda x: x[target], reverse=True) DataResultsTest.sort(key=lambda x: x[target], reverse=True) for dictionary in DataResultsTest: del dictionary['_id'] del dictionary['InstanceID'] del dictionary[target] AllTargetsTest = [o[target] for o in DataResultsRawTest] AllTargetsFloatValuesTest = [] previous = None Class = 0 for i, value in enumerate(AllTargetsTest): if (i == 0): previous = value target_namesLoc.append(value) if (value == previous): AllTargetsFloatValuesTest.append(Class) else: Class = Class + 1 target_namesLoc.append(value) AllTargetsFloatValuesTest.append(Class) previous = value ArrayDataResultsTest = pd.DataFrame.from_dict(DataResultsTest) XDataTest, yDataTest = ArrayDataResultsTest, AllTargetsFloatValuesTest DataResultsExternal = copy.deepcopy(DataResultsRawExternal) for dictionary in DataResultsRawExternal: for key in dictionary.keys(): if (key.find('*') != -1): target = key continue continue DataResultsRawExternal.sort(key=lambda x: x[target], reverse=True) DataResultsExternal.sort(key=lambda x: x[target], reverse=True) for dictionary in DataResultsExternal: del dictionary['_id'] del dictionary['InstanceID'] del dictionary[target] AllTargetsExternal = [o[target] for o in DataResultsRawExternal] AllTargetsFloatValuesExternal = [] previous = None Class = 0 for i, value in enumerate(AllTargetsExternal): if (i == 0): previous = value target_namesLoc.append(value) if (value == previous): AllTargetsFloatValuesExternal.append(Class) else: Class = Class + 1 target_namesLoc.append(value) AllTargetsFloatValuesExternal.append(Class) previous = value ArrayDataResultsExternal = pd.DataFrame.from_dict(DataResultsExternal) XDataExternal, yDataExternal = ArrayDataResultsExternal, AllTargetsFloatValuesExternal DataResults = copy.deepcopy(DataResultsRaw) for dictionary in DataResultsRaw: for key in dictionary.keys(): if (key.find('*') != -1): target = key continue continue DataResultsRaw.sort(key=lambda x: x[target], reverse=True) DataResults.sort(key=lambda x: x[target], reverse=True) for dictionary in DataResults: del dictionary['_id'] del dictionary['InstanceID'] del dictionary[target] AllTargets = [o[target] for o in DataResultsRaw] AllTargetsFloatValues = [] global fileName data = json.loads(fileName) previous = None Class = 0 for i, value in enumerate(AllTargets): if (i == 0): previous = value if (data['fileName'] == 'IrisC' or data['fileName'] == 'BreastC'): target_names.append(value) else: pass if (value == previous): AllTargetsFloatValues.append(Class) else: Class = Class + 1 if (data['fileName'] == 'IrisC' or data['fileName'] == 'BreastC'): target_names.append(value) else: pass AllTargetsFloatValues.append(Class) previous = value dfRaw = pd.DataFrame.from_dict(DataResultsRaw) # OneTimeTemp = copy.deepcopy(dfRaw) # OneTimeTemp.drop(columns=['_id', 'InstanceID']) # column_names = ['volAc', 'chlorides', 'density', 'fixAc' , 'totalSuDi' , 'citAc', 'resSu' , 'pH' , 'sulphates', 'freeSulDi' ,'alcohol', 'quality*'] # OneTimeTemp = OneTimeTemp.reindex(columns=column_names) # OneTimeTemp.to_csv('dataExport.csv', index=False) ArrayDataResults = pd.DataFrame.from_dict(DataResults) global XData, yData, RANDOM_SEED XData, yData = ArrayDataResults, AllTargetsFloatValues global keepOriginalFeatures global OrignList if (data['fileName'] == 'biodegC'): keepOriginalFeatures = XData.copy() storeNewColumns = [] for col in keepOriginalFeatures.columns: newCol = col.replace("-", "_") storeNewColumns.append(newCol.replace("_","")) keepOriginalFeatures.columns = [str(col) + ' F'+str(idx+1)+'' for idx, col in enumerate(storeNewColumns)] columnsNewGen = keepOriginalFeatures.columns.values.tolist() OrignList = keepOriginalFeatures.columns.values.tolist() else: keepOriginalFeatures = XData.copy() keepOriginalFeatures.columns = [str(col) + ' F'+str(idx+1)+'' for idx, col in enumerate(keepOriginalFeatures.columns)] columnsNewGen = keepOriginalFeatures.columns.values.tolist() OrignList = keepOriginalFeatures.columns.values.tolist() XData.columns = ['F'+str(idx+1) for idx, col in enumerate(XData.columns)] XDataTest.columns = ['F'+str(idx+1) for idx, col in enumerate(XDataTest.columns)] XDataExternal.columns = ['F'+str(idx+1) for idx, col in enumerate(XDataExternal.columns)] global XDataStored, yDataStored XDataStored = XData.copy() yDataStored = yData.copy() global XDataStoredOriginal XDataStoredOriginal = XData.copy() global finalResultsData finalResultsData = XData.copy() global XDataNoRemoval XDataNoRemoval = XData.copy() global XDataNoRemovalOrig XDataNoRemovalOrig = XData.copy() warnings.simplefilter('ignore') executeModel([], 0, '') return 'Everything is okay' def create_global_function(): global estimator location = './cachedir' memory = Memory(location, verbose=0) # calculating for all algorithms and models the performance and other results @memory.cache def estimator(n_estimators, eta, max_depth, subsample, colsample_bytree): # initialize model print('loopModels') n_estimators = int(n_estimators) max_depth = int(max_depth) model = XGBClassifier(n_estimators=n_estimators, eta=eta, max_depth=max_depth, subsample=subsample, colsample_bytree=colsample_bytree, n_jobs=-1, random_state=RANDOM_SEED, silent=True, verbosity = 0, use_label_encoder=False) # set in cross-validation result = cross_validate(model, XData, yData, cv=crossValidation, scoring='accuracy') # result is mean of test_score return np.mean(result['test_score']) # check this issue later because we are not getting the same results def executeModel(exeCall, flagEx, nodeTransfName): global XDataTest, yDataTest global XDataExternal, yDataExternal global keyFirstTime global estimator global yPredictProb global scores global featureImportanceData global XData global XDataStored global previousState global columnsNewGen global columnsNames global listofTransformations global XDataStoredOriginal global finalResultsData global OrignList global tracker global XDataNoRemoval global XDataNoRemovalOrig columnsNames = [] scores = [] if (len(exeCall) == 0): if (flagEx == 3): XDataStored = XData.copy() XDataNoRemovalOrig = XDataNoRemoval.copy() OrignList = columnsNewGen elif (flagEx == 2): XData = XDataStored.copy() XDataStoredOriginal = XDataStored.copy() XDataNoRemoval = XDataNoRemovalOrig.copy() columnsNewGen = OrignList else: XData = XDataStored.copy() XDataNoRemoval = XDataNoRemovalOrig.copy() XDataStoredOriginal = XDataStored.copy() else: if (flagEx == 4): XDataStored = XData.copy() XDataNoRemovalOrig = XDataNoRemoval.copy() #XDataStoredOriginal = XDataStored.copy() elif (flagEx == 2): XData = XDataStored.copy() XDataStoredOriginal = XDataStored.copy() XDataNoRemoval = XDataNoRemovalOrig.copy() columnsNewGen = OrignList else: XData = XDataStored.copy() #XDataNoRemoval = XDataNoRemovalOrig.copy() XDataStoredOriginal = XDataStored.copy() # Bayesian Optimization CHANGE INIT_POINTS! if (keyFirstTime): create_global_function() params = {"n_estimators": (5, 200), "eta": (0.05, 0.3), "max_depth": (6,12), "subsample": (0.8,1), "colsample_bytree": (0.8,1)} bayesopt = BayesianOptimization(estimator, params, random_state=RANDOM_SEED) bayesopt.maximize(init_points=20, n_iter=5, acq='ucb') # 20 and 5 bestParams = bayesopt.max['params'] estimator = XGBClassifier(n_estimators=int(bestParams.get('n_estimators')), eta=bestParams.get('eta'), max_depth=int(bestParams.get('max_depth')), subsample=bestParams.get('subsample'), colsample_bytree=bestParams.get('colsample_bytree'), probability=True, random_state=RANDOM_SEED, silent=True, verbosity = 0, use_label_encoder=False) columnsNewGen = OrignList if (len(exeCall) != 0): if (flagEx == 1): currentColumnsDeleted = [] for uniqueValue in exeCall: currentColumnsDeleted.append(tracker[uniqueValue]) for column in XData.columns: if (column in currentColumnsDeleted): XData = XData.drop(column, axis=1) XDataStoredOriginal = XDataStoredOriginal.drop(column, axis=1) elif (flagEx == 2): columnsKeepNew = [] columns = XDataGen.columns.values.tolist() for indx, col in enumerate(columns): if indx in exeCall: columnsKeepNew.append(col) columnsNewGen.append(col) XDataTemp = XDataGen[columnsKeepNew] XData[columnsKeepNew] = XDataTemp.values XDataStoredOriginal[columnsKeepNew] = XDataTemp.values XDataNoRemoval[columnsKeepNew] = XDataTemp.values elif (flagEx == 4): splittedCol = nodeTransfName.split('_') for col in XDataNoRemoval.columns: splitCol = col.split('_') if ((splittedCol[0] in splitCol[0])): newSplitted = re.sub("[^0-9]", "", splittedCol[0]) newCol = re.sub("[^0-9]", "", splitCol[0]) if (newSplitted == newCol): storeRenamedColumn = col XData.rename(columns={ storeRenamedColumn: nodeTransfName }, inplace = True) XDataNoRemoval.rename(columns={ storeRenamedColumn: nodeTransfName }, inplace = True) currentColumn = columnsNewGen[exeCall[0]] subString = currentColumn[currentColumn.find("(")+1:currentColumn.find(")")] replacement = currentColumn.replace(subString, nodeTransfName) for ind, column in enumerate(columnsNewGen): splitCol = column.split('_') if ((splittedCol[0] in splitCol[0])): newSplitted = re.sub("[^0-9]", "", splittedCol[0]) newCol = re.sub("[^0-9]", "", splitCol[0]) if (newSplitted == newCol): columnsNewGen[ind] = columnsNewGen[ind].replace(storeRenamedColumn, nodeTransfName) if (len(splittedCol) == 1): XData[nodeTransfName] = XDataStoredOriginal[nodeTransfName] XDataNoRemoval[nodeTransfName] = XDataStoredOriginal[nodeTransfName] else: if (splittedCol[1] == 'r'): XData[nodeTransfName] = XData[nodeTransfName].round() elif (splittedCol[1] == 'b'): number_of_bins = np.histogram_bin_edges(XData[nodeTransfName], bins='auto') emptyLabels = [] for index, number in enumerate(number_of_bins): if (index == 0): pass else: emptyLabels.append(index) XData[nodeTransfName] = pd.cut(XData[nodeTransfName], bins=number_of_bins, labels=emptyLabels, include_lowest=True, right=True) XData[nodeTransfName] = pd.to_numeric(XData[nodeTransfName], downcast='signed') elif (splittedCol[1] == 'zs'): XData[nodeTransfName] = (XData[nodeTransfName]-XData[nodeTransfName].mean())/XData[nodeTransfName].std() elif (splittedCol[1] == 'mms'): XData[nodeTransfName] = (XData[nodeTransfName]-XData[nodeTransfName].min())/(XData[nodeTransfName].max()-XData[nodeTransfName].min()) elif (splittedCol[1] == 'l2'): dfTemp = [] dfTemp = np.log2(XData[nodeTransfName]) dfTemp = dfTemp.replace([np.inf, -np.inf], np.nan) dfTemp = dfTemp.fillna(0) XData[nodeTransfName] = dfTemp elif (splittedCol[1] == 'l1p'): dfTemp = [] dfTemp = np.log1p(XData[nodeTransfName]) dfTemp = dfTemp.replace([np.inf, -np.inf], np.nan) dfTemp = dfTemp.fillna(0) XData[nodeTransfName] = dfTemp elif (splittedCol[1] == 'l10'): dfTemp = [] dfTemp = np.log10(XData[nodeTransfName]) dfTemp = dfTemp.replace([np.inf, -np.inf], np.nan) dfTemp = dfTemp.fillna(0) XData[nodeTransfName] = dfTemp elif (splittedCol[1] == 'e2'): dfTemp = [] dfTemp = np.exp2(XData[nodeTransfName]) dfTemp = dfTemp.replace([np.inf, -np.inf], np.nan) dfTemp = dfTemp.fillna(0) XData[nodeTransfName] = dfTemp elif (splittedCol[1] == 'em1'): dfTemp = [] dfTemp = np.expm1(XData[nodeTransfName]) dfTemp = dfTemp.replace([np.inf, -np.inf], np.nan) dfTemp = dfTemp.fillna(0) XData[nodeTransfName] = dfTemp elif (splittedCol[1] == 'p2'): XData[nodeTransfName] = np.power(XData[nodeTransfName], 2) elif (splittedCol[1] == 'p3'): XData[nodeTransfName] = np.power(XData[nodeTransfName], 3) else: XData[nodeTransfName] = np.power(XData[nodeTransfName], 4) XDataNoRemoval[nodeTransfName] = XData[nodeTransfName] XDataStored = XData.copy() XDataNoRemovalOrig = XDataNoRemoval.copy() columnsNamesLoc = XData.columns.values.tolist() for col in columnsNamesLoc: splittedCol = col.split('_') if (len(splittedCol) == 1): for tran in listofTransformations: columnsNames.append(splittedCol[0]+'_'+tran) else: for tran in listofTransformations: if (splittedCol[1] == tran): columnsNames.append(splittedCol[0]) else: columnsNames.append(splittedCol[0]+'_'+tran) featureImportanceData = estimatorFeatureSelection(XDataNoRemoval, estimator) tracker = [] for value in columnsNewGen: value = value.split(' ') if (len(value) > 1): tracker.append(value[1]) else: tracker.append(value[0]) estimator.fit(XData, yData) yPredict = estimator.predict(XData) yPredictProb = cross_val_predict(estimator, XData, yData, cv=crossValidation, method='predict_proba') num_cores = multiprocessing.cpu_count() inputsSc = ['accuracy','precision_weighted','recall_weighted'] flat_results = Parallel(n_jobs=num_cores)(delayed(solve)(estimator,XData,yData,crossValidation,item,index) for index, item in enumerate(inputsSc)) scoresAct = [item for sublist in flat_results for item in sublist] #print(scoresAct) # if (StanceTest): # y_pred = estimator.predict(XDataTest) # print('Test data set') # print(classification_report(yDataTest, y_pred)) # y_pred = estimator.predict(XDataExternal) # print('External data set') # print(classification_report(yDataExternal, y_pred)) howMany = 0 if (keyFirstTime): previousState = scoresAct keyFirstTime = False howMany = 3 if (((scoresAct[0]-scoresAct[1]) + (scoresAct[2]-scoresAct[3]) + (scoresAct[4]-scoresAct[5])) >= ((previousState[0]-previousState[1]) + (previousState[2]-previousState[3]) + (previousState[4]-previousState[5]))): finalResultsData = XData.copy() if (keyFirstTime == False): if (((scoresAct[0]-scoresAct[1]) + (scoresAct[2]-scoresAct[3]) + (scoresAct[4]-scoresAct[5])) >= ((previousState[0]-previousState[1]) + (previousState[2]-previousState[3]) + (previousState[4]-previousState[5]))): previousState[0] = scoresAct[0] previousState[1] = scoresAct[1] howMany = 3 #elif ((scoresAct[2]-scoresAct[3]) > (previousState[2]-previousState[3])): previousState[2] = scoresAct[2] previousState[3] = scoresAct[3] #howMany = howMany + 1 #elif ((scoresAct[4]-scoresAct[5]) > (previousState[4]-previousState[5])): previousState[4] = scoresAct[4] previousState[5] = scoresAct[5] #howMany = howMany + 1 #else: #pass scores = scoresAct + previousState if (howMany == 3): scores.append(1) else: scores.append(0) return 'Everything Okay' @app.route('/data/RequestBestFeatures', methods=["GET", "POST"]) def BestFeat(): global finalResultsData finalResultsDataJSON = finalResultsData.to_json() response = { 'finalResultsData': finalResultsDataJSON } return jsonify(response) def featFun (clfLocalPar,DataLocalPar,yDataLocalPar): PerFeatureAccuracyLocalPar = [] scores = model_selection.cross_val_score(clfLocalPar, DataLocalPar, yDataLocalPar, cv=None, n_jobs=-1) PerFeatureAccuracyLocalPar.append(scores.mean()) return PerFeatureAccuracyLocalPar location = './cachedir' memory = Memory(location, verbose=0) # calculating for all algorithms and models the performance and other results @memory.cache def estimatorFeatureSelection(Data, clf): resultsFS = [] permList = [] PerFeatureAccuracy = [] PerFeatureAccuracyAll = [] ImpurityFS = [] RankingFS = [] estim = clf.fit(Data, yData) importances = clf.feature_importances_ # std = np.std([tree.feature_importances_ for tree in estim.feature_importances_], # axis=0) maxList = max(importances) minList = min(importances) for f in range(Data.shape[1]): ImpurityFS.append((importances[f] - minList) / (maxList - minList)) estim = LogisticRegression(n_jobs = -1, random_state=RANDOM_SEED) selector = RFECV(estimator=estim, n_jobs = -1, step=1, cv=crossValidation) selector = selector.fit(Data, yData) RFEImp = selector.ranking_ for f in range(Data.shape[1]): if (RFEImp[f] == 1): RankingFS.append(0.95) elif (RFEImp[f] == 2): RankingFS.append(0.85) elif (RFEImp[f] == 3): RankingFS.append(0.75) elif (RFEImp[f] == 4): RankingFS.append(0.65) elif (RFEImp[f] == 5): RankingFS.append(0.55) elif (RFEImp[f] == 6): RankingFS.append(0.45) elif (RFEImp[f] == 7): RankingFS.append(0.35) elif (RFEImp[f] == 8): RankingFS.append(0.25) elif (RFEImp[f] == 9): RankingFS.append(0.15) else: RankingFS.append(0.05) perm = PermutationImportance(clf, cv=None, refit = True, n_iter = 25).fit(Data, yData) permList.append(perm.feature_importances_) n_feats = Data.shape[1] num_cores = multiprocessing.cpu_count() print("Parallelization Initilization") flat_results = Parallel(n_jobs=num_cores)(delayed(featFun)(clf,Data.values[:, i].reshape(-1, 1),yData) for i in range(n_feats)) PerFeatureAccuracy = [item for sublist in flat_results for item in sublist] # for i in range(n_feats): # scoresHere = model_selection.cross_val_score(clf, Data.values[:, i].reshape(-1, 1), yData, cv=None, n_jobs=-1) # PerFeatureAccuracy.append(scoresHere.mean()) PerFeatureAccuracyAll.append(PerFeatureAccuracy) clf.fit(Data, yData) yPredict = clf.predict(Data) yPredict = np.nan_to_num(yPredict) RankingFSDF = pd.DataFrame(RankingFS) RankingFSDF = RankingFSDF.to_json() ImpurityFSDF = pd.DataFrame(ImpurityFS) ImpurityFSDF = ImpurityFSDF.to_json() perm_imp_eli5PD = pd.DataFrame(permList) if (perm_imp_eli5PD.empty): for col in Data.columns: perm_imp_eli5PD.append({0:0}) perm_imp_eli5PD = perm_imp_eli5PD.to_json() PerFeatureAccuracyPandas = pd.DataFrame(PerFeatureAccuracyAll) PerFeatureAccuracyPandas = PerFeatureAccuracyPandas.to_json() bestfeatures = SelectKBest(score_func=f_classif, k='all') fit = bestfeatures.fit(Data,yData) dfscores = pd.DataFrame(fit.scores_) dfcolumns = pd.DataFrame(Data.columns) featureScores = pd.concat([dfcolumns,dfscores],axis=1) featureScores.columns = ['Specs','Score'] #naming the dataframe columns featureScores = featureScores.to_json() resultsFS.append(featureScores) resultsFS.append(ImpurityFSDF) resultsFS.append(perm_imp_eli5PD) resultsFS.append(PerFeatureAccuracyPandas) resultsFS.append(RankingFSDF) return resultsFS @app.route('/data/sendFeatImp', methods=["GET", "POST"]) def sendFeatureImportance(): global featureImportanceData response = { 'Importance': featureImportanceData } return jsonify(response) @app.route('/data/sendFeatImpComp', methods=["GET", "POST"]) def sendFeatureImportanceComp(): global featureCompareData global columnsKeep response = { 'ImportanceCompare': featureCompareData, 'FeatureNames': columnsKeep } return jsonify(response) def solve(sclf,XData,yData,crossValidation,scoringIn,loop): scoresLoc = [] temp = model_selection.cross_val_score(sclf, XData, yData, cv=crossValidation, scoring=scoringIn, n_jobs=-1) scoresLoc.append(temp.mean()) scoresLoc.append(temp.std()) return scoresLoc @app.route('/data/sendResults', methods=["GET", "POST"]) def sendFinalResults(): global scores response = { 'ValidResults': scores } return jsonify(response) def Transformation(quadrant1, quadrant2, quadrant3, quadrant4, quadrant5): # XDataNumericColumn = XData.select_dtypes(include='number') XDataNumeric = XDataStoredOriginal.select_dtypes(include='number') columns = list(XDataNumeric) global packCorrTransformed packCorrTransformed = [] for count, i in enumerate(columns): dicTransf = {} splittedCol = columnsNames[(count)*len(listofTransformations)+0].split('_') if(len(splittedCol) == 1): d={} flagInf = False XDataNumericCopy = XDataNumeric.copy() for number in range(1,6): quadrantVariable = str('quadrant%s' % number) illusion = locals()[quadrantVariable] d["DataRows{0}".format(number)] = XDataNumericCopy.iloc[illusion, :] dicTransf["transf1"] = NewComputationTransf(d['DataRows1'], d['DataRows2'], d['DataRows3'], d['DataRows4'], d['DataRows5'], quadrant1, quadrant2, quadrant3, quadrant4, quadrant5, i, count, flagInf) else: d={} flagInf = False XDataNumericCopy = XDataNumeric.copy() XDataNumericCopy[i] = XDataNumericCopy[i].round() for number in range(1,6): quadrantVariable = str('quadrant%s' % number) illusion = locals()[quadrantVariable] d["DataRows{0}".format(number)] = XDataNumericCopy.iloc[illusion, :] dicTransf["transf1"] = NewComputationTransf(d['DataRows1'], d['DataRows2'], d['DataRows3'], d['DataRows4'], d['DataRows5'], quadrant1, quadrant2, quadrant3, quadrant4, quadrant5, i, count, flagInf) splittedCol = columnsNames[(count)*len(listofTransformations)+1].split('_') if(len(splittedCol) == 1): d={} flagInf = False XDataNumericCopy = XDataNumeric.copy() for number in range(1,6): quadrantVariable = str('quadrant%s' % number) illusion = locals()[quadrantVariable] d["DataRows{0}".format(number)] = XDataNumericCopy.iloc[illusion, :] dicTransf["transf2"] = NewComputationTransf(d['DataRows1'], d['DataRows2'], d['DataRows3'], d['DataRows4'], d['DataRows5'], quadrant1, quadrant2, quadrant3, quadrant4, quadrant5, i, count, flagInf) else: d={} flagInf = False XDataNumericCopy = XDataNumeric.copy() number_of_bins = np.histogram_bin_edges(XDataNumericCopy[i], bins='auto') emptyLabels = [] for index, number in enumerate(number_of_bins): if (index == 0): pass else: emptyLabels.append(index) XDataNumericCopy[i] = pd.cut(XDataNumericCopy[i], bins=number_of_bins, labels=emptyLabels, include_lowest=True, right=True) XDataNumericCopy[i] = pd.to_numeric(XDataNumericCopy[i], downcast='signed') for number in range(1,6): quadrantVariable = str('quadrant%s' % number) illusion = locals()[quadrantVariable] d["DataRows{0}".format(number)] = XDataNumericCopy.iloc[illusion, :] dicTransf["transf2"] = NewComputationTransf(d['DataRows1'], d['DataRows2'], d['DataRows3'], d['DataRows4'], d['DataRows5'], quadrant1, quadrant2, quadrant3, quadrant4, quadrant5, i, count, flagInf) splittedCol = columnsNames[(count)*len(listofTransformations)+2].split('_') if(len(splittedCol) == 1): d={} flagInf = False XDataNumericCopy = XDataNumeric.copy() for number in range(1,6): quadrantVariable = str('quadrant%s' % number) illusion = locals()[quadrantVariable] d["DataRows{0}".format(number)] = XDataNumericCopy.iloc[illusion, :] dicTransf["transf3"] = NewComputationTransf(d['DataRows1'], d['DataRows2'], d['DataRows3'], d['DataRows4'], d['DataRows5'], quadrant1, quadrant2, quadrant3, quadrant4, quadrant5, i, count, flagInf) else: d={} flagInf = False XDataNumericCopy = XDataNumeric.copy() XDataNumericCopy[i] = (XDataNumericCopy[i]-XDataNumericCopy[i].mean())/XDataNumericCopy[i].std() for number in range(1,6): quadrantVariable = str('quadrant%s' % number) illusion = locals()[quadrantVariable] d["DataRows{0}".format(number)] = XDataNumericCopy.iloc[illusion, :] dicTransf["transf3"] = NewComputationTransf(d['DataRows1'], d['DataRows2'], d['DataRows3'], d['DataRows4'], d['DataRows5'], quadrant1, quadrant2, quadrant3, quadrant4, quadrant5, i, count, flagInf) splittedCol = columnsNames[(count)*len(listofTransformations)+3].split('_') if(len(splittedCol) == 1): d={} flagInf = False XDataNumericCopy = XDataNumeric.copy() for number in range(1,6): quadrantVariable = str('quadrant%s' % number) illusion = locals()[quadrantVariable] d["DataRows{0}".format(number)] = XDataNumericCopy.iloc[illusion, :] dicTransf["transf4"] = NewComputationTransf(d['DataRows1'], d['DataRows2'], d['DataRows3'], d['DataRows4'], d['DataRows5'], quadrant1, quadrant2, quadrant3, quadrant4, quadrant5, i, count, flagInf) else: d={} flagInf = False XDataNumericCopy = XDataNumeric.copy() XDataNumericCopy[i] = (XDataNumericCopy[i]-XDataNumericCopy[i].min())/(XDataNumericCopy[i].max()-XDataNumericCopy[i].min()) for number in range(1,6): quadrantVariable = str('quadrant%s' % number) illusion = locals()[quadrantVariable] d["DataRows{0}".format(number)] = XDataNumericCopy.iloc[illusion, :] dicTransf["transf4"] = NewComputationTransf(d['DataRows1'], d['DataRows2'], d['DataRows3'], d['DataRows4'], d['DataRows5'], quadrant1, quadrant2, quadrant3, quadrant4, quadrant5, i, count, flagInf) splittedCol = columnsNames[(count)*len(listofTransformations)+4].split('_') if(len(splittedCol) == 1): d={} flagInf = False XDataNumericCopy = XDataNumeric.copy() for number in range(1,6): quadrantVariable = str('quadrant%s' % number) illusion = locals()[quadrantVariable] d["DataRows{0}".format(number)] = XDataNumericCopy.iloc[illusion, :] dicTransf["transf5"] = NewComputationTransf(d['DataRows1'], d['DataRows2'], d['DataRows3'], d['DataRows4'], d['DataRows5'], quadrant1, quadrant2, quadrant3, quadrant4, quadrant5, i, count, flagInf) else: d={} flagInf = False XDataNumericCopy = XDataNumeric.copy() dfTemp = [] dfTemp = np.log2(XDataNumericCopy[i]) dfTemp = dfTemp.replace([np.inf, -np.inf], np.nan) dfTemp = dfTemp.fillna(0) XDataNumericCopy[i] = dfTemp for number in range(1,6): quadrantVariable = str('quadrant%s' % number) illusion = locals()[quadrantVariable] d["DataRows{0}".format(number)] = XDataNumericCopy.iloc[illusion, :] dicTransf["transf5"] = NewComputationTransf(d['DataRows1'], d['DataRows2'], d['DataRows3'], d['DataRows4'], d['DataRows5'], quadrant1, quadrant2, quadrant3, quadrant4, quadrant5, i, count, flagInf) splittedCol = columnsNames[(count)*len(listofTransformations)+5].split('_') if(len(splittedCol) == 1): d={} flagInf = False XDataNumericCopy = XDataNumeric.copy() for number in range(1,6): quadrantVariable = str('quadrant%s' % number) illusion = locals()[quadrantVariable] d["DataRows{0}".format(number)] = XDataNumericCopy.iloc[illusion, :] dicTransf["transf6"] = NewComputationTransf(d['DataRows1'], d['DataRows2'], d['DataRows3'], d['DataRows4'], d['DataRows5'], quadrant1, quadrant2, quadrant3, quadrant4, quadrant5, i, count, flagInf) else: d={} flagInf = False XDataNumericCopy = XDataNumeric.copy() dfTemp = [] dfTemp = np.log1p(XDataNumericCopy[i]) dfTemp = dfTemp.replace([np.inf, -np.inf], np.nan) dfTemp = dfTemp.fillna(0) XDataNumericCopy[i] = dfTemp for number in range(1,6): quadrantVariable = str('quadrant%s' % number) illusion = locals()[quadrantVariable] d["DataRows{0}".format(number)] = XDataNumericCopy.iloc[illusion, :] dicTransf["transf6"] = NewComputationTransf(d['DataRows1'], d['DataRows2'], d['DataRows3'], d['DataRows4'], d['DataRows5'], quadrant1, quadrant2, quadrant3, quadrant4, quadrant5, i, count, flagInf) splittedCol = columnsNames[(count)*len(listofTransformations)+6].split('_') if(len(splittedCol) == 1): d={} flagInf = False XDataNumericCopy = XDataNumeric.copy() for number in range(1,6): quadrantVariable = str('quadrant%s' % number) illusion = locals()[quadrantVariable] d["DataRows{0}".format(number)] = XDataNumericCopy.iloc[illusion, :] dicTransf["transf7"] = NewComputationTransf(d['DataRows1'], d['DataRows2'], d['DataRows3'], d['DataRows4'], d['DataRows5'], quadrant1, quadrant2, quadrant3, quadrant4, quadrant5, i, count, flagInf) else: d={} flagInf = False XDataNumericCopy = XDataNumeric.copy() dfTemp = [] dfTemp = np.log10(XDataNumericCopy[i]) dfTemp = dfTemp.replace([np.inf, -np.inf], np.nan) dfTemp = dfTemp.fillna(0) XDataNumericCopy[i] = dfTemp for number in range(1,6): quadrantVariable = str('quadrant%s' % number) illusion = locals()[quadrantVariable] d["DataRows{0}".format(number)] = XDataNumericCopy.iloc[illusion, :] dicTransf["transf7"] = NewComputationTransf(d['DataRows1'], d['DataRows2'], d['DataRows3'], d['DataRows4'], d['DataRows5'], quadrant1, quadrant2, quadrant3, quadrant4, quadrant5, i, count, flagInf) splittedCol = columnsNames[(count)*len(listofTransformations)+7].split('_') if(len(splittedCol) == 1): d={} flagInf = False XDataNumericCopy = XDataNumeric.copy() for number in range(1,6): quadrantVariable = str('quadrant%s' % number) illusion = locals()[quadrantVariable] d["DataRows{0}".format(number)] = XDataNumericCopy.iloc[illusion, :] dicTransf["transf8"] = NewComputationTransf(d['DataRows1'], d['DataRows2'], d['DataRows3'], d['DataRows4'], d['DataRows5'], quadrant1, quadrant2, quadrant3, quadrant4, quadrant5, i, count, flagInf) else: d={} flagInf = False XDataNumericCopy = XDataNumeric.copy() dfTemp = [] dfTemp = np.exp2(XDataNumericCopy[i]) dfTemp = dfTemp.replace([np.inf, -np.inf], np.nan) dfTemp = dfTemp.fillna(0) XDataNumericCopy[i] = dfTemp if (np.isinf(dfTemp.var())): flagInf = True for number in range(1,6): quadrantVariable = str('quadrant%s' % number) illusion = locals()[quadrantVariable] d["DataRows{0}".format(number)] = XDataNumericCopy.iloc[illusion, :] dicTransf["transf8"] = NewComputationTransf(d['DataRows1'], d['DataRows2'], d['DataRows3'], d['DataRows4'], d['DataRows5'], quadrant1, quadrant2, quadrant3, quadrant4, quadrant5, i, count, flagInf) splittedCol = columnsNames[(count)*len(listofTransformations)+8].split('_') if(len(splittedCol) == 1): d={} flagInf = False XDataNumericCopy = XDataNumeric.copy() for number in range(1,6): quadrantVariable = str('quadrant%s' % number) illusion = locals()[quadrantVariable] d["DataRows{0}".format(number)] = XDataNumericCopy.iloc[illusion, :] dicTransf["transf9"] = NewComputationTransf(d['DataRows1'], d['DataRows2'], d['DataRows3'], d['DataRows4'], d['DataRows5'], quadrant1, quadrant2, quadrant3, quadrant4, quadrant5, i, count, flagInf) else: d={} flagInf = False XDataNumericCopy = XDataNumeric.copy() dfTemp = [] dfTemp = np.expm1(XDataNumericCopy[i]) dfTemp = dfTemp.replace([np.inf, -np.inf], np.nan) dfTemp = dfTemp.fillna(0) XDataNumericCopy[i] = dfTemp if (np.isinf(dfTemp.var())): flagInf = True for number in range(1,6): quadrantVariable = str('quadrant%s' % number) illusion = locals()[quadrantVariable] d["DataRows{0}".format(number)] = XDataNumericCopy.iloc[illusion, :] dicTransf["transf9"] = NewComputationTransf(d['DataRows1'], d['DataRows2'], d['DataRows3'], d['DataRows4'], d['DataRows5'], quadrant1, quadrant2, quadrant3, quadrant4, quadrant5, i, count, flagInf) splittedCol = columnsNames[(count)*len(listofTransformations)+9].split('_') if(len(splittedCol) == 1): d={} flagInf = False XDataNumericCopy = XDataNumeric.copy() for number in range(1,6): quadrantVariable = str('quadrant%s' % number) illusion = locals()[quadrantVariable] d["DataRows{0}".format(number)] = XDataNumericCopy.iloc[illusion, :] dicTransf["transf10"] = NewComputationTransf(d['DataRows1'], d['DataRows2'], d['DataRows3'], d['DataRows4'], d['DataRows5'], quadrant1, quadrant2, quadrant3, quadrant4, quadrant5, i, count, flagInf) else: d={} flagInf = False XDataNumericCopy = XDataNumeric.copy() XDataNumericCopy[i] = np.power(XDataNumericCopy[i], 2) for number in range(1,6): quadrantVariable = str('quadrant%s' % number) illusion = locals()[quadrantVariable] d["DataRows{0}".format(number)] = XDataNumericCopy.iloc[illusion, :] dicTransf["transf10"] = NewComputationTransf(d['DataRows1'], d['DataRows2'], d['DataRows3'], d['DataRows4'], d['DataRows5'], quadrant1, quadrant2, quadrant3, quadrant4, quadrant5, i, count, flagInf) splittedCol = columnsNames[(count)*len(listofTransformations)+10].split('_') if(len(splittedCol) == 1): d={} flagInf = False XDataNumericCopy = XDataNumeric.copy() for number in range(1,6): quadrantVariable = str('quadrant%s' % number) illusion = locals()[quadrantVariable] d["DataRows{0}".format(number)] = XDataNumericCopy.iloc[illusion, :] dicTransf["transf11"] = NewComputationTransf(d['DataRows1'], d['DataRows2'], d['DataRows3'], d['DataRows4'], d['DataRows5'], quadrant1, quadrant2, quadrant3, quadrant4, quadrant5, i, count, flagInf) else: d={} flagInf = False XDataNumericCopy = XDataNumeric.copy() XDataNumericCopy[i] = np.power(XDataNumericCopy[i], 3) for number in range(1,6): quadrantVariable = str('quadrant%s' % number) illusion = locals()[quadrantVariable] d["DataRows{0}".format(number)] = XDataNumericCopy.iloc[illusion, :] dicTransf["transf11"] = NewComputationTransf(d['DataRows1'], d['DataRows2'], d['DataRows3'], d['DataRows4'], d['DataRows5'], quadrant1, quadrant2, quadrant3, quadrant4, quadrant5, i, count, flagInf) splittedCol = columnsNames[(count)*len(listofTransformations)+11].split('_') if(len(splittedCol) == 1): d={} flagInf = False XDataNumericCopy = XDataNumeric.copy() for number in range(1,6): quadrantVariable = str('quadrant%s' % number) illusion = locals()[quadrantVariable] d["DataRows{0}".format(number)] = XDataNumericCopy.iloc[illusion, :] dicTransf["transf12"] = NewComputationTransf(d['DataRows1'], d['DataRows2'], d['DataRows3'], d['DataRows4'], d['DataRows5'], quadrant1, quadrant2, quadrant3, quadrant4, quadrant5, i, count, flagInf) else: d={} flagInf = False XDataNumericCopy = XDataNumeric.copy() XDataNumericCopy[i] = np.power(XDataNumericCopy[i], 4) for number in range(1,6): quadrantVariable = str('quadrant%s' % number) illusion = locals()[quadrantVariable] d["DataRows{0}".format(number)] = XDataNumericCopy.iloc[illusion, :] dicTransf["transf12"] = NewComputationTransf(d['DataRows1'], d['DataRows2'], d['DataRows3'], d['DataRows4'], d['DataRows5'], quadrant1, quadrant2, quadrant3, quadrant4, quadrant5, i, count, flagInf) packCorrTransformed.append(dicTransf) return 'Everything Okay' def NewComputationTransf(DataRows1, DataRows2, DataRows3, DataRows4, DataRows5, quadrant1, quadrant2, quadrant3, quadrant4, quadrant5, feature, count, flagInf): corrMatrix1 = DataRows1.corr() corrMatrix1 = corrMatrix1.abs() corrMatrix2 = DataRows2.corr() corrMatrix2 = corrMatrix2.abs() corrMatrix3 = DataRows3.corr() corrMatrix3 = corrMatrix3.abs() corrMatrix4 = DataRows4.corr() corrMatrix4 = corrMatrix4.abs() corrMatrix5 = DataRows5.corr() corrMatrix5 = corrMatrix5.abs() corrMatrix1 = corrMatrix1.loc[[feature]] corrMatrix2 = corrMatrix2.loc[[feature]] corrMatrix3 = corrMatrix3.loc[[feature]] corrMatrix4 = corrMatrix4.loc[[feature]] corrMatrix5 = corrMatrix5.loc[[feature]] DataRows1 = DataRows1.reset_index(drop=True) DataRows2 = DataRows2.reset_index(drop=True) DataRows3 = DataRows3.reset_index(drop=True) DataRows4 = DataRows4.reset_index(drop=True) DataRows5 = DataRows5.reset_index(drop=True) targetRows1 = [yData[i] for i in quadrant1] targetRows2 = [yData[i] for i in quadrant2] targetRows3 = [yData[i] for i in quadrant3] targetRows4 = [yData[i] for i in quadrant4] targetRows5 = [yData[i] for i in quadrant5] targetRows1Arr = np.array(targetRows1) targetRows2Arr = np.array(targetRows2) targetRows3Arr = np.array(targetRows3) targetRows4Arr = np.array(targetRows4) targetRows5Arr = np.array(targetRows5) uniqueTarget1 = unique(targetRows1) uniqueTarget2 = unique(targetRows2) uniqueTarget3 = unique(targetRows3) uniqueTarget4 = unique(targetRows4) uniqueTarget5 = unique(targetRows5) if (len(targetRows1Arr) > 0): onehotEncoder1 = OneHotEncoder(sparse=False) targetRows1Arr = targetRows1Arr.reshape(len(targetRows1Arr), 1) onehotEncoder1 = onehotEncoder1.fit_transform(targetRows1Arr) hotEncoderDF1 = pd.DataFrame(onehotEncoder1) concatDF1 = pd.concat([DataRows1, hotEncoderDF1], axis=1) corrMatrixComb1 = concatDF1.corr() corrMatrixComb1 = corrMatrixComb1.abs() corrMatrixComb1 = corrMatrixComb1.iloc[:,-len(uniqueTarget1):] DataRows1 = DataRows1.replace([np.inf, -np.inf], np.nan) DataRows1 = DataRows1.fillna(0) X1 = add_constant(DataRows1) X1 = X1.replace([np.inf, -np.inf], np.nan) X1 = X1.fillna(0) VIF1 = pd.Series([variance_inflation_factor(X1.values, i) for i in range(X1.shape[1])], index=X1.columns) if (flagInf == False): VIF1 = VIF1.replace([np.inf, -np.inf], np.nan) VIF1 = VIF1.fillna(0) VIF1 = VIF1.loc[[feature]] else: VIF1 = pd.Series() if ((len(targetRows1Arr) > 2) and (flagInf == False)): MI1 = mutual_info_classif(DataRows1, targetRows1Arr, n_neighbors=3, random_state=RANDOM_SEED) MI1List = MI1.tolist() MI1List = MI1List[count] else: MI1List = [] else: corrMatrixComb1 = pd.DataFrame() VIF1 = pd.Series() MI1List = [] if (len(targetRows2Arr) > 0): onehotEncoder2 = OneHotEncoder(sparse=False) targetRows2Arr = targetRows2Arr.reshape(len(targetRows2Arr), 1) onehotEncoder2 = onehotEncoder2.fit_transform(targetRows2Arr) hotEncoderDF2 = pd.DataFrame(onehotEncoder2) concatDF2 = pd.concat([DataRows2, hotEncoderDF2], axis=1) corrMatrixComb2 = concatDF2.corr() corrMatrixComb2 = corrMatrixComb2.abs() corrMatrixComb2 = corrMatrixComb2.iloc[:,-len(uniqueTarget2):] DataRows2 = DataRows2.replace([np.inf, -np.inf], np.nan) DataRows2 = DataRows2.fillna(0) X2 = add_constant(DataRows2) X2 = X2.replace([np.inf, -np.inf], np.nan) X2 = X2.fillna(0) VIF2 = pd.Series([variance_inflation_factor(X2.values, i) for i in range(X2.shape[1])], index=X2.columns) if (flagInf == False): VIF2 = VIF2.replace([np.inf, -np.inf], np.nan) VIF2 = VIF2.fillna(0) VIF2 = VIF2.loc[[feature]] else: VIF2 = pd.Series() if ((len(targetRows2Arr) > 2) and (flagInf == False)): MI2 = mutual_info_classif(DataRows2, targetRows2Arr, n_neighbors=3, random_state=RANDOM_SEED) MI2List = MI2.tolist() MI2List = MI2List[count] else: MI2List = [] else: corrMatrixComb2 = pd.DataFrame() VIF2 = pd.Series() MI2List = [] if (len(targetRows3Arr) > 0): onehotEncoder3 = OneHotEncoder(sparse=False) targetRows3Arr = targetRows3Arr.reshape(len(targetRows3Arr), 1) onehotEncoder3 = onehotEncoder3.fit_transform(targetRows3Arr) hotEncoderDF3 = pd.DataFrame(onehotEncoder3) concatDF3 = pd.concat([DataRows3, hotEncoderDF3], axis=1) corrMatrixComb3 = concatDF3.corr() corrMatrixComb3 = corrMatrixComb3.abs() corrMatrixComb3 = corrMatrixComb3.iloc[:,-len(uniqueTarget3):] DataRows3 = DataRows3.replace([np.inf, -np.inf], np.nan) DataRows3 = DataRows3.fillna(0) X3 = add_constant(DataRows3) X3 = X3.replace([np.inf, -np.inf], np.nan) X3 = X3.fillna(0) if (flagInf == False): VIF3 = pd.Series([variance_inflation_factor(X3.values, i) for i in range(X3.shape[1])], index=X3.columns) VIF3 = VIF3.replace([np.inf, -np.inf], np.nan) VIF3 = VIF3.fillna(0) VIF3 = VIF3.loc[[feature]] else: VIF3 = pd.Series() if ((len(targetRows3Arr) > 2) and (flagInf == False)): MI3 = mutual_info_classif(DataRows3, targetRows3Arr, n_neighbors=3, random_state=RANDOM_SEED) MI3List = MI3.tolist() MI3List = MI3List[count] else: MI3List = [] else: corrMatrixComb3 = pd.DataFrame() VIF3 = pd.Series() MI3List = [] if (len(targetRows4Arr) > 0): onehotEncoder4 = OneHotEncoder(sparse=False) targetRows4Arr = targetRows4Arr.reshape(len(targetRows4Arr), 1) onehotEncoder4 = onehotEncoder4.fit_transform(targetRows4Arr) hotEncoderDF4 = pd.DataFrame(onehotEncoder4) concatDF4 = pd.concat([DataRows4, hotEncoderDF4], axis=1) corrMatrixComb4 = concatDF4.corr() corrMatrixComb4 = corrMatrixComb4.abs() corrMatrixComb4 = corrMatrixComb4.iloc[:,-len(uniqueTarget4):] DataRows4 = DataRows4.replace([np.inf, -np.inf], np.nan) DataRows4 = DataRows4.fillna(0) X4 = add_constant(DataRows4) X4 = X4.replace([np.inf, -np.inf], np.nan) X4 = X4.fillna(0) if (flagInf == False): VIF4 = pd.Series([variance_inflation_factor(X4.values, i) for i in range(X4.shape[1])], index=X4.columns) VIF4 = VIF4.replace([np.inf, -np.inf], np.nan) VIF4 = VIF4.fillna(0) VIF4 = VIF4.loc[[feature]] else: VIF4 = pd.Series() if ((len(targetRows4Arr) > 2) and (flagInf == False)): MI4 = mutual_info_classif(DataRows4, targetRows4Arr, n_neighbors=3, random_state=RANDOM_SEED) MI4List = MI4.tolist() MI4List = MI4List[count] else: MI4List = [] else: corrMatrixComb4 = pd.DataFrame() VIF4 = pd.Series() MI4List = [] if (len(targetRows5Arr) > 0): onehotEncoder5 = OneHotEncoder(sparse=False) targetRows5Arr = targetRows5Arr.reshape(len(targetRows5Arr), 1) onehotEncoder5 = onehotEncoder5.fit_transform(targetRows5Arr) hotEncoderDF5 = pd.DataFrame(onehotEncoder5) concatDF5 = pd.concat([DataRows5, hotEncoderDF5], axis=1) corrMatrixComb5 = concatDF5.corr() corrMatrixComb5 = corrMatrixComb5.abs() corrMatrixComb5 = corrMatrixComb5.iloc[:,-len(uniqueTarget5):] DataRows5 = DataRows5.replace([np.inf, -np.inf], np.nan) DataRows5 = DataRows5.fillna(0) X5 = add_constant(DataRows5) X5 = X5.replace([np.inf, -np.inf], np.nan) X5 = X5.fillna(0) if (flagInf == False): VIF5 = pd.Series([variance_inflation_factor(X5.values, i) for i in range(X5.shape[1])], index=X5.columns) VIF5 = VIF5.replace([np.inf, -np.inf], np.nan) VIF5 = VIF5.fillna(0) VIF5 = VIF5.loc[[feature]] else: VIF5 = pd.Series() if ((len(targetRows5Arr) > 2) and (flagInf == False)): MI5 = mutual_info_classif(DataRows5, targetRows5Arr, n_neighbors=3, random_state=RANDOM_SEED) MI5List = MI5.tolist() MI5List = MI5List[count] else: MI5List = [] else: corrMatrixComb5 = pd.DataFrame() VIF5 = pd.Series() MI5List = [] if(corrMatrixComb1.empty): corrMatrixComb1 = pd.DataFrame() else: corrMatrixComb1 = corrMatrixComb1.loc[[feature]] if(corrMatrixComb2.empty): corrMatrixComb2 = pd.DataFrame() else: corrMatrixComb2 = corrMatrixComb2.loc[[feature]] if(corrMatrixComb3.empty): corrMatrixComb3 = pd.DataFrame() else: corrMatrixComb3 = corrMatrixComb3.loc[[feature]] if(corrMatrixComb4.empty): corrMatrixComb4 = pd.DataFrame() else: corrMatrixComb4 = corrMatrixComb4.loc[[feature]] if(corrMatrixComb5.empty): corrMatrixComb5 = pd.DataFrame() else: corrMatrixComb5 = corrMatrixComb5.loc[[feature]] targetRows1ArrDF = pd.DataFrame(targetRows1Arr) targetRows2ArrDF = pd.DataFrame(targetRows2Arr) targetRows3ArrDF = pd.DataFrame(targetRows3Arr) targetRows4ArrDF = pd.DataFrame(targetRows4Arr) targetRows5ArrDF = pd.DataFrame(targetRows5Arr) concatAllDF1 = pd.concat([DataRows1, targetRows1ArrDF], axis=1) concatAllDF2 = pd.concat([DataRows2, targetRows2ArrDF], axis=1) concatAllDF3 = pd.concat([DataRows3, targetRows3ArrDF], axis=1) concatAllDF4 = pd.concat([DataRows4, targetRows4ArrDF], axis=1) concatAllDF5 = pd.concat([DataRows5, targetRows5ArrDF], axis=1) corrMatrixCombTotal1 = concatAllDF1.corr() corrMatrixCombTotal1 = corrMatrixCombTotal1.abs() corrMatrixCombTotal2 = concatAllDF2.corr() corrMatrixCombTotal2 = corrMatrixCombTotal2.abs() corrMatrixCombTotal3 = concatAllDF3.corr() corrMatrixCombTotal3 = corrMatrixCombTotal3.abs() corrMatrixCombTotal4 = concatAllDF4.corr() corrMatrixCombTotal4 = corrMatrixCombTotal4.abs() corrMatrixCombTotal5 = concatAllDF5.corr() corrMatrixCombTotal5 = corrMatrixCombTotal5.abs() corrMatrixCombTotal1 = corrMatrixCombTotal1.loc[[feature]] corrMatrixCombTotal1 = corrMatrixCombTotal1.iloc[:,-1] corrMatrixCombTotal2 = corrMatrixCombTotal2.loc[[feature]] corrMatrixCombTotal2 = corrMatrixCombTotal2.iloc[:,-1] corrMatrixCombTotal3 = corrMatrixCombTotal3.loc[[feature]] corrMatrixCombTotal3 = corrMatrixCombTotal3.iloc[:,-1] corrMatrixCombTotal4 = corrMatrixCombTotal4.loc[[feature]] corrMatrixCombTotal4 = corrMatrixCombTotal4.iloc[:,-1] corrMatrixCombTotal5 = corrMatrixCombTotal5.loc[[feature]] corrMatrixCombTotal5 = corrMatrixCombTotal5.iloc[:,-1] corrMatrixCombTotal1 = pd.concat([corrMatrixCombTotal1.tail(1)]) corrMatrixCombTotal2 = pd.concat([corrMatrixCombTotal2.tail(1)]) corrMatrixCombTotal3 = pd.concat([corrMatrixCombTotal3.tail(1)]) corrMatrixCombTotal4 = pd.concat([corrMatrixCombTotal4.tail(1)]) corrMatrixCombTotal5 = pd.concat([corrMatrixCombTotal5.tail(1)]) packCorrLoc = [] packCorrLoc.append(corrMatrix1.to_json()) packCorrLoc.append(corrMatrix2.to_json()) packCorrLoc.append(corrMatrix3.to_json()) packCorrLoc.append(corrMatrix4.to_json()) packCorrLoc.append(corrMatrix5.to_json()) packCorrLoc.append(corrMatrixComb1.to_json()) packCorrLoc.append(corrMatrixComb2.to_json()) packCorrLoc.append(corrMatrixComb3.to_json()) packCorrLoc.append(corrMatrixComb4.to_json()) packCorrLoc.append(corrMatrixComb5.to_json()) packCorrLoc.append(corrMatrixCombTotal1.to_json()) packCorrLoc.append(corrMatrixCombTotal2.to_json()) packCorrLoc.append(corrMatrixCombTotal3.to_json()) packCorrLoc.append(corrMatrixCombTotal4.to_json()) packCorrLoc.append(corrMatrixCombTotal5.to_json()) packCorrLoc.append(VIF1.to_json()) packCorrLoc.append(VIF2.to_json()) packCorrLoc.append(VIF3.to_json()) packCorrLoc.append(VIF4.to_json()) packCorrLoc.append(VIF5.to_json()) packCorrLoc.append(json.dumps(MI1List)) packCorrLoc.append(json.dumps(MI2List)) packCorrLoc.append(json.dumps(MI3List)) packCorrLoc.append(json.dumps(MI4List)) packCorrLoc.append(json.dumps(MI5List)) return packCorrLoc @cross_origin(origin='localhost',headers=['Content-Type','Authorization']) @app.route('/data/thresholdDataSpace', methods=["GET", "POST"]) def Seperation(): thresholds = request.get_data().decode('utf8').replace("'", '"') thresholds = json.loads(thresholds) thresholdsPos = thresholds['PositiveValue'] thresholdsNeg = thresholds['NegativeValue'] getCorrectPrediction = [] for index, value in enumerate(yPredictProb): getCorrectPrediction.append(value[yData[index]]*100) quadrant1 = [] quadrant2 = [] quadrant3 = [] quadrant4 = [] quadrant5 = [] probabilityPredictions = [] for index, value in enumerate(getCorrectPrediction): if (value > 50 and value > thresholdsPos): quadrant1.append(index) elif (value > 50 and value <= thresholdsPos): quadrant2.append(index) elif (value <= 50 and value > thresholdsNeg): quadrant3.append(index) else: quadrant4.append(index) quadrant5.append(index) probabilityPredictions.append(value) # Main Features DataRows1 = XData.iloc[quadrant1, :] DataRows2 = XData.iloc[quadrant2, :] DataRows3 = XData.iloc[quadrant3, :] DataRows4 = XData.iloc[quadrant4, :] DataRows5 = XData.iloc[quadrant5, :] Transformation(quadrant1, quadrant2, quadrant3, quadrant4, quadrant5) corrMatrix1 = DataRows1.corr() corrMatrix1 = corrMatrix1.abs() corrMatrix2 = DataRows2.corr() corrMatrix2 = corrMatrix2.abs() corrMatrix3 = DataRows3.corr() corrMatrix3 = corrMatrix3.abs() corrMatrix4 = DataRows4.corr() corrMatrix4 = corrMatrix4.abs() corrMatrix5 = DataRows5.corr() corrMatrix5 = corrMatrix5.abs() DataRows1 = DataRows1.reset_index(drop=True) DataRows2 = DataRows2.reset_index(drop=True) DataRows3 = DataRows3.reset_index(drop=True) DataRows4 = DataRows4.reset_index(drop=True) DataRows5 = DataRows5.reset_index(drop=True) targetRows1 = [yData[i] for i in quadrant1] targetRows2 = [yData[i] for i in quadrant2] targetRows3 = [yData[i] for i in quadrant3] targetRows4 = [yData[i] for i in quadrant4] targetRows5 = [yData[i] for i in quadrant5] targetRows1Arr = np.array(targetRows1) targetRows2Arr = np.array(targetRows2) targetRows3Arr = np.array(targetRows3) targetRows4Arr = np.array(targetRows4) targetRows5Arr = np.array(targetRows5) uniqueTarget1 = unique(targetRows1) uniqueTarget2 = unique(targetRows2) uniqueTarget3 = unique(targetRows3) uniqueTarget4 = unique(targetRows4) uniqueTarget5 = unique(targetRows5) if (len(targetRows1Arr) > 0): onehotEncoder1 = OneHotEncoder(sparse=False) targetRows1Arr = targetRows1Arr.reshape(len(targetRows1Arr), 1) onehotEncoder1 = onehotEncoder1.fit_transform(targetRows1Arr) hotEncoderDF1 = pd.DataFrame(onehotEncoder1) concatDF1 = pd.concat([DataRows1, hotEncoderDF1], axis=1) corrMatrixComb1 = concatDF1.corr() corrMatrixComb1 = corrMatrixComb1.abs() corrMatrixComb1 = corrMatrixComb1.iloc[:,-len(uniqueTarget1):] DataRows1 = DataRows1.replace([np.inf, -np.inf], np.nan) DataRows1 = DataRows1.fillna(0) X1 = add_constant(DataRows1) X1 = X1.replace([np.inf, -np.inf], np.nan) X1 = X1.fillna(0) VIF1 = pd.Series([variance_inflation_factor(X1.values, i) for i in range(X1.shape[1])], index=X1.columns) VIF1 = VIF1.replace([np.inf, -np.inf], np.nan) VIF1 = VIF1.fillna(0) if (len(targetRows1Arr) > 2): MI1 = mutual_info_classif(DataRows1, targetRows1Arr, n_neighbors=3, random_state=RANDOM_SEED) MI1List = MI1.tolist() else: MI1List = [] else: corrMatrixComb1 = pd.DataFrame() VIF1 = pd.Series() MI1List = [] if (len(targetRows2Arr) > 0): onehotEncoder2 = OneHotEncoder(sparse=False) targetRows2Arr = targetRows2Arr.reshape(len(targetRows2Arr), 1) onehotEncoder2 = onehotEncoder2.fit_transform(targetRows2Arr) hotEncoderDF2 = pd.DataFrame(onehotEncoder2) concatDF2 =
pd.concat([DataRows2, hotEncoderDF2], axis=1)
pandas.concat
import pandas as pd import numpy as np import json PROCESS_FILE_NAME_LIST = ["taxi_sort_01", "taxi_sort_001", "taxi_sort_002", "taxi_sort_003", "taxi_sort_004", "taxi_sort_005", "taxi_sort_006", "taxi_sort_007", "taxi_sort_008", "taxi_sort_009", "taxi_sort_0006", "taxi_sort_0007", "taxi_sort_0008", "taxi_sort_0009"] PROCESS_FILE_SUFFIX_LIST = [".csv" for _ in range(len(PROCESS_FILE_NAME_LIST))] for process_file_name, process_file_suffix in zip(PROCESS_FILE_NAME_LIST, PROCESS_FILE_SUFFIX_LIST): df = pd.read_csv(process_file_name + process_file_suffix, index_col=False) df_precinct_center =
pd.read_csv("precinct_center.csv", index_col=False)
pandas.read_csv
import pandas as pd import numpy as np import matplotlib.pyplot as plt plt.style.use('ggplot') target = 'scale' # IP plot_mode = 'all_in_one' obj = 'occ' # Port flow_dir = 'all' port_dir = 'sys' user_plot_pr = ['TCP'] user_plot_pr = ['UDP'] port_hist = pd.DataFrame({'A' : []}) user_port_hist = pd.DataFrame({'A' : []}) def acf(x, length=10): return np.array([1]+[np.corrcoef(x[:-i], x[i:])[0,1] \ for i in range(1, length)]) def scale_check(data_idx, plot=False): files = ['stanc', 'arcnn_f90', 'wpgan', 'ctgan', 'bsl1', 'bsl2', 'real'] names = ['stan_b', 'stan_a', 'wpgan', 'ctgan', 'bsl1', 'bsl2', 'real'] if files[data_idx] == 'real': df = pd.read_csv("./postprocessed_data/%s/day2_90user.csv" % files[data_idx]) elif files[data_idx] == 'stanc' or files[data_idx] == 'stan': df = pd.read_csv("./postprocessed_data/%s/%s_piece%d.csv" % (files[data_idx], files[data_idx], 0)) else: df = pd.read_csv("./postprocessed_data/%s/%s_piece%d.csv" % (files[data_idx], files[data_idx], 0), index_col=None) li = [df] for piece_idx in range(1, 5): df = pd.read_csv("./postprocessed_data/%s/%s_piece%d.csv" % (files[data_idx], files[data_idx], piece_idx), index_col=None, header=0) li.append(df) df = pd.concat(li, axis=0, ignore_index=True) scale_list = [] for col in ['byt', 'pkt']: scale_list.append(col) scale_list.append(str(np.min(df[col]))) scale_list.append(str(np.log(np.max(df[col])))) scale_list.append(';') print(files[data_idx], ':', (' '.join(scale_list))) def pr_distribution(data_idx, plot=False): files = ['stan','stanc', 'arcnn_f90', 'wpgan', 'ctgan', 'bsl1', 'bsl2', 'real'] names = ['stan_fwd','stan_b', 'stan_a', 'wpgan', 'ctgan', 'bsl1', 'bsl2', 'real'] if files[data_idx] == 'real': df = pd.read_csv("./postprocessed_data/%s/day2_90user.csv" % files[data_idx]) elif files[data_idx] == 'stanc' or files[data_idx] == 'stan': df = pd.read_csv("./postprocessed_data/%s/%s_piece%d.csv" % (files[data_idx], files[data_idx], 0)) else: df = pd.read_csv("./postprocessed_data/%s/%s_piece%d.csv" % (files[data_idx], files[data_idx], 0), index_col=None) li = [df] for piece_idx in range(1, 5): df =
pd.read_csv("./postprocessed_data/%s/%s_piece%d.csv" % (files[data_idx], files[data_idx], piece_idx), index_col=None, header=0)
pandas.read_csv
# %% [markdown] # This python script takes audio files from "filedata" from sonicboom, runs each audio file through # Fast Fourier Transform, plots the FFT image, splits the FFT'd images into train, test & validation # and paste them in their respective folders # Import Dependencies import numpy as np import pandas as pd import scipy from scipy import io from scipy.io.wavfile import read as wavread from scipy.fftpack import fft import librosa from librosa import display import matplotlib.pyplot as plt from glob import glob import sklearn from sklearn.model_selection import train_test_split import os from PIL import Image import pathlib import sonicboom from joblib import Parallel, delayed # %% [markdown] # ## Read and add filepaths to original UrbanSound metadata filedata = sonicboom.init_data('./data/UrbanSound8K/') #Read filedata as written in sonicboom #Initialize empty dataframes to later enable saving the images into their respective folders train =
pd.DataFrame()
pandas.DataFrame
''' The analysis module Handles the analyses of the info and data space for experiment evaluation and design. ''' from slm_lab.agent import AGENT_DATA_NAMES from slm_lab.env import ENV_DATA_NAMES from slm_lab.lib import logger, util, viz import numpy as np import os import pandas as pd import pydash as ps import shutil DATA_AGG_FNS = { 't': 'sum', 'reward': 'sum', 'loss': 'mean', 'explore_var': 'mean', } FITNESS_COLS = ['strength', 'speed', 'stability', 'consistency'] # TODO improve to make it work with any reward mean FITNESS_STD = util.read('slm_lab/spec/_fitness_std.json') NOISE_WINDOW = 0.05 MA_WINDOW = 100 logger = logger.get_logger(__name__) ''' Fitness analysis ''' def calc_strength(aeb_df, rand_epi_reward, std_epi_reward): ''' For each episode, use the total rewards to calculate the strength as strength_epi = (reward_epi - reward_rand) / (reward_std - reward_rand) **Properties:** - random agent has strength 0, standard agent has strength 1. - if an agent achieve x2 rewards, the strength is ~x2, and so on. - strength of learning agent always tends toward positive regardless of the sign of rewards (some environments use negative rewards) - scale of strength is always standard at 1 and its multiplies, regardless of the scale of actual rewards. Strength stays invariant even as reward gets rescaled. This allows for standard comparison between agents on the same problem using an intuitive measurement of strength. With proper scaling by a difficulty factor, we can compare across problems of different difficulties. ''' # use lower clip 0 for noise in reward to dip slighty below rand return (aeb_df['reward'] - rand_epi_reward).clip(0.) / (std_epi_reward - rand_epi_reward) def calc_stable_idx(aeb_df, min_strength_ma): '''Calculate the index (epi) when strength first becomes stable (using moving mean and working backward)''' above_std_strength_sr = (aeb_df['strength_ma'] >= min_strength_ma) if above_std_strength_sr.any(): # if it achieved stable (ma) min_strength_ma at some point, the index when std_strength_ra_idx = above_std_strength_sr.idxmax() stable_idx = std_strength_ra_idx - (MA_WINDOW - 1) else: stable_idx = np.nan return stable_idx def calc_std_strength_timestep(aeb_df): ''' Calculate the timestep needed to achieve stable (within NOISE_WINDOW) std_strength. For agent failing to achieve std_strength 1, it is meaningless to measure speed or give false interpolation, so set as inf (never). ''' std_strength = 1. stable_idx = calc_stable_idx(aeb_df, min_strength_ma=std_strength - NOISE_WINDOW) if np.isnan(stable_idx): std_strength_timestep = np.inf else: std_strength_timestep = aeb_df.loc[stable_idx, 'total_t'] / std_strength return std_strength_timestep def calc_speed(aeb_df, std_timestep): ''' For each session, measure the moving average for strength with interval = 100 episodes. Next, measure the total timesteps up to the first episode that first surpasses standard strength, allowing for noise of 0.05. Finally, calculate speed as speed = timestep_std / timestep_solved **Properties:** - random agent has speed 0, standard agent has speed 1. - if an agent takes x2 timesteps to exceed standard strength, we can say it is 2x slower. - the speed of learning agent always tends toward positive regardless of the shape of the rewards curve - the scale of speed is always standard at 1 and its multiplies, regardless of the absolute timesteps. For agent failing to achieve standard strength 1, it is meaningless to measure speed or give false interpolation, so the speed is 0. This allows an intuitive measurement of learning speed and the standard comparison between agents on the same problem. ''' agent_timestep = calc_std_strength_timestep(aeb_df) speed = std_timestep / agent_timestep return speed def is_noisy_mono_inc(sr): '''Check if sr is monotonically increasing, (given NOISE_WINDOW = 5%) within noise = 5% * std_strength = 0.05 * 1''' zero_noise = -NOISE_WINDOW mono_inc_sr = np.diff(sr) >= zero_noise # restore sr to same length mono_inc_sr = np.insert(mono_inc_sr, 0, np.nan) return mono_inc_sr def calc_stability(aeb_df): ''' Find a baseline = - 0. + noise for very weak solution - max(strength_ma_epi) - noise for partial solution weak solution - 1. - noise for solution achieving standard strength and beyond So we get: - weak_baseline = 0. + noise - strong_baseline = min(max(strength_ma_epi), 1.) - noise - baseline = max(weak_baseline, strong_baseline) Let epi_baseline be the episode where baseline is first attained. Consider the episodes starting from epi_baseline, let #epi_+ be the number of episodes, and #epi_>= the number of episodes where strength_ma_epi is monotonically increasing. Calculate stability as stability = #epi_>= / #epi_+ **Properties:** - stable agent has value 1, unstable agent < 1, and non-solution = 0. - allows for drops strength MA of 5% to account for noise, which is invariant to the scale of rewards - if strength is monotonically increasing (with 5% noise), then it is stable - sharp gain in strength is considered stable - monotonically increasing implies strength can keep growing and as long as it does not fall much, it is considered stable ''' weak_baseline = 0. + NOISE_WINDOW strong_baseline = min(aeb_df['strength_ma'].max(), 1.) - NOISE_WINDOW baseline = max(weak_baseline, strong_baseline) stable_idx = calc_stable_idx(aeb_df, min_strength_ma=baseline) if np.isnan(stable_idx): stability = 0. else: stable_df = aeb_df.loc[stable_idx:, 'strength_mono_inc'] stability = stable_df.sum() / len(stable_df) return stability def calc_consistency(aeb_fitness_df): ''' Calculate the consistency of trial by the fitness_vectors of its sessions: consistency = ratio of non-outlier vectors **Properties:** - outliers are calculated using MAD modified z-score - if all the fitness vectors are zero or all strength are zero, consistency = 0 - works for all sorts of session fitness vectors, with the standard scale When an agent fails to achieve standard strength, it is meaningless to measure consistency or give false interpolation, so consistency is 0. ''' fitness_vecs = aeb_fitness_df.values if ~np.any(fitness_vecs) or ~np.any(aeb_fitness_df['strength']): # no consistency if vectors all 0 consistency = 0. elif len(fitness_vecs) == 2: # if only has 2 vectors, check norm_diff diff_norm = np.linalg.norm(np.diff(fitness_vecs, axis=0)) / np.linalg.norm(np.ones(len(fitness_vecs[0]))) consistency = diff_norm <= NOISE_WINDOW else: is_outlier_arr = util.is_outlier(fitness_vecs) consistency = (~is_outlier_arr).sum() / len(is_outlier_arr) return consistency def calc_epi_reward_ma(aeb_df): '''Calculates the episode reward moving average with the MA_WINDOW''' rewards = aeb_df['reward'] aeb_df['reward_ma'] = rewards.rolling(window=MA_WINDOW, min_periods=0, center=False).mean() return aeb_df def calc_fitness(fitness_vec): ''' Takes a vector of qualifying standardized dimensions of fitness and compute the normalized length as fitness L2 norm because it diminishes lower values but amplifies higher values for comparison. ''' if isinstance(fitness_vec, pd.Series): fitness_vec = fitness_vec.values elif isinstance(fitness_vec, pd.DataFrame): fitness_vec = fitness_vec.iloc[0].values std_fitness_vector = np.ones(len(fitness_vec)) fitness = np.linalg.norm(fitness_vec) / np.linalg.norm(std_fitness_vector) return fitness def calc_aeb_fitness_sr(aeb_df, env_name): '''Top level method to calculate fitness vector for AEB level data (strength, speed, stability)''' no_fitness_sr = pd.Series({ 'strength': 0., 'speed': 0., 'stability': 0.}) if len(aeb_df) < MA_WINDOW: logger.warn(f'Run more than {MA_WINDOW} episodes to compute proper fitness') return no_fitness_sr std = FITNESS_STD.get(env_name) if std is None: std = FITNESS_STD.get('template') logger.warn(f'The fitness standard for env {env_name} is not built yet. Contact author. Using a template standard for now.') aeb_df['total_t'] = aeb_df['t'].cumsum() aeb_df['strength'] = calc_strength(aeb_df, std['rand_epi_reward'], std['std_epi_reward']) aeb_df['strength_ma'] = aeb_df['strength'].rolling(MA_WINDOW).mean() aeb_df['strength_mono_inc'] = is_noisy_mono_inc(aeb_df['strength']).astype(int) strength = aeb_df['strength_ma'].max() speed = calc_speed(aeb_df, std['std_timestep']) stability = calc_stability(aeb_df) aeb_fitness_sr = pd.Series({ 'strength': strength, 'speed': speed, 'stability': stability}) return aeb_fitness_sr ''' Analysis interface methods ''' def save_spec(spec, info_space, unit='experiment'): '''Save spec to proper path. Called at Experiment or Trial init.''' prepath = util.get_prepath(spec, info_space, unit) util.write(spec, f'{prepath}_spec.json') def calc_mean_fitness(fitness_df): '''Method to calculated mean over all bodies for a fitness_df''' return fitness_df.mean(axis=1, level=3) def get_session_data(session): ''' Gather data from session: MDP, Agent, Env data, hashed by aeb; then aggregate. @returns {dict, dict} session_mdp_data, session_data ''' session_data = {} for aeb, body in util.ndenumerate_nonan(session.aeb_space.body_space.data): session_data[aeb] = body.df.copy() return session_data def calc_session_fitness_df(session, session_data): '''Calculate the session fitness df''' session_fitness_data = {} for aeb in session_data: aeb_df = session_data[aeb] aeb_df = calc_epi_reward_ma(aeb_df) util.downcast_float32(aeb_df) body = session.aeb_space.body_space.data[aeb] aeb_fitness_sr = calc_aeb_fitness_sr(aeb_df, body.env.name) aeb_fitness_df = pd.DataFrame([aeb_fitness_sr], index=[session.index]) aeb_fitness_df = aeb_fitness_df.reindex(FITNESS_COLS[:3], axis=1) session_fitness_data[aeb] = aeb_fitness_df # form multi_index df, then take mean across all bodies session_fitness_df =
pd.concat(session_fitness_data, axis=1)
pandas.concat
#!/usr/bin/env python3 # Project : From geodynamic to Seismic observations in the Earth's inner core # Author : <NAME> """ Implement classes for tracers, to create points along the trajectories of given points. """ import numpy as np import pandas as pd import math import matplotlib.pyplot as plt from . import data from . import geodyn_analytical_flows from . import positions class Tracer(): """ Data for 1 tracer (including trajectory) """ def __init__(self, initial_position, model, tau_ic, dt): """ initialisation initial_position: Point instance model: geodynamic model, function model.trajectory_single_point is required """ self.initial_position = initial_position self.model = model # geodynamic model try: self.model.trajectory_single_point except NameError: print( "model.trajectory_single_point is required, please check the input model: {}".format(model)) point = [initial_position.x, initial_position.y, initial_position.z] self.crystallization_time = self.model.crystallisation_time(point, tau_ic) num_t = max(2, math.floor((tau_ic - self.crystallization_time) / dt)) # print(tau_ic, self.crystallization_time, num_t) self.num_t = num_t if num_t ==0: print("oups") # need to find cristallisation time of the particle # then calculate the number of steps, based on the required dt # then calculate the trajectory else: self.traj_x, self.traj_y, self.traj_z = self.model.trajectory_single_point( self.initial_position, tau_ic, self.crystallization_time, num_t) self.time = np.linspace(tau_ic, self.crystallization_time, num_t) self.position = np.zeros((num_t, 3)) self.velocity = np.zeros((num_t, 3)) self.velocity_gradient = np.zeros((num_t, 9)) def spherical(self): for index, (time, x, y, z) in enumerate( zip(self.time, self.traj_x, self.traj_y, self.traj_z)): point = positions.CartesianPoint(x, y, z) r, theta, phi = point.r, point.theta, point.phi grad = self.model.gradient_spherical(r, theta, phi, time) self.position[index, :] = [r, theta, phi] self.velocity[index, :] = [self.model.u_r(r, theta, time), self.model.u_theta(r, theta, time), self.model.u_phi(r, theta, time)] self.velocity_gradient[index, :] = grad.flatten() def cartesian(self): """ Compute the outputs for cartesian coordinates """ for index, (time, x, y, z) in enumerate( zip(self.time, self.traj_x, self.traj_y, self.traj_z)): point = positions.CartesianPoint(x, y, z) r, theta, phi = point.r, point.theta, point.phi x, y, z = point.x, point.y, point.z vel = self.model.velocity(time, [x, y, z]) # self.model.velocity_cartesian(r, theta, phi, time) grad = self.model.gradient_cartesian(r, theta, phi, time) self.position[index, :] = [x, y, z] self.velocity[index, :] = vel[:] self.velocity_gradient[index, :] = grad.flatten() def output_spher(self, i): list_i = i * np.ones_like(self.time) data_i = pd.DataFrame(data=list_i, columns=["i"]) data_time = pd.DataFrame(data=self.time, columns=["time"]) dt = np.append(np.abs(np.diff(self.time)), [0]) data_dt = pd.DataFrame(data=dt, columns=["dt"]) data_pos = pd.DataFrame(data=self.position, columns=["r", "theta", "phi"]) data_velo = pd.DataFrame(data=self.velocity, columns=["v_r", "v_theta", "v_phi"]) data_strain = pd.DataFrame(data=self.velocity_gradient, columns=["dvr/dr", "dvr/dtheta", "dvr/dphi", "dvr/dtheta", "dvtheta/dtheta", "dvtheta/dphi","dvphi/dr", "dvphi/dtheta", "dvphi/dphi"]) data = pd.concat([data_i, data_time, data_dt, data_pos, data_velo, data_strain], axis=1) return data #data.to_csv("tracer.csv", sep=" ", index=False) def output_cart(self, i): list_i = i * np.ones_like(self.time) data_i = pd.DataFrame(data=list_i, columns=["i"]) data_time = pd.DataFrame(data=self.time, columns=["time"]) dt = np.append([0], np.diff(self.time)) data_dt = pd.DataFrame(data=dt, columns=["dt"]) data_pos = pd.DataFrame(data=self.position, columns=["x", "y", "z"]) data_velo = pd.DataFrame(data=self.velocity, columns=["v_x", "v_y", "v_z"]) data_strain =
pd.DataFrame(data=self.velocity_gradient, columns=["dvx/dx", "dvx/dy", "dvx/dz", "dvy/dx", "dvy/dy", "dvy/dz", "dvz/dx", "dvz/dy", "dvz/dz"])
pandas.DataFrame
#!/usr/bin/env python import sys, time, code import numpy as np import pickle as pickle from pandas import DataFrame, read_pickle, get_dummies, cut import statsmodels.formula.api as sm from sklearn.externals import joblib from sklearn.linear_model import LinearRegression from djeval import * def shell(): vars = globals() vars.update(locals()) shell = code.InteractiveConsole(vars) shell.interact() def fix_colname(cn): return cn.translate(None, ' ()[],') msg("Hi, reading yy_df.") yy_df = read_pickle(sys.argv[1]) # clean up column names colnames = list(yy_df.columns.values) colnames = [fix_colname(cn) for cn in colnames] yy_df.columns = colnames # change the gamenum and side from being part of the index to being normal columns yy_df.reset_index(inplace=True) msg("Getting subset ready.") # TODO save the dummies along with yy_df categorical_features = ['opening_feature'] dummies =
get_dummies(yy_df[categorical_features])
pandas.get_dummies
import os import numpy as np import pandas as pd from numpy import abs from numpy import log from numpy import sign from scipy.stats import rankdata import scipy as sp import statsmodels.api as sm from data_source import local_source from tqdm import tqdm as pb # region Auxiliary functions def ts_sum(df, window=10): """ Wrapper function to estimate rolling sum. :param df: a pandas DataFrame. :param window: the rolling window. :return: a pandas DataFrame with the time-series sum over the past 'window' days. """ return df.rolling(window).sum() def ts_prod(df, window=10): """ Wrapper function to estimate rolling product. :param df: a pandas DataFrame. :param window: the rolling window. :return: a pandas DataFrame with the time-series product over the past 'window' days. """ return df.rolling(window).prod() def sma(df, window=10): #simple moving average """ Wrapper function to estimate SMA. :param df: a pandas DataFrame. :param window: the rolling window. :return: a pandas DataFrame with the time-series SMA over the past 'window' days. """ return df.rolling(window).mean() def ema(df, n, m): #exponential moving average """ Wrapper function to estimate EMA. :param df: a pandas DataFrame. :return: ema_{t}=(m/n)*a_{t}+((n-m)/n)*ema_{t-1} """ result = df.copy() for i in range(1,len(df)): result.iloc[i]= (m*df.iloc[i-1] + (n-m)*result[i-1]) / n return result def wma(df, n): """ Wrapper function to estimate WMA. :param df: a pandas DataFrame. :return: wma_{t}=0.9*a_{t}+1.8*a_{t-1}+...+0.9*n*a_{t-n+1} """ weights = pd.Series(0.9*np.flipud(np.arange(1,n+1))) result = pd.Series(np.nan, index=df.index) for i in range(n-1,len(df)): result.iloc[i]= sum(df[i-n+1:i+1].reset_index(drop=True)*weights.reset_index(drop=True)) return result def stddev(df, window=10): """ Wrapper function to estimate rolling standard deviation. :param df: a pandas DataFrame. :param window: the rolling window. :return: a pandas DataFrame with the time-series min over the past 'window' days. """ return df.rolling(window).std() def correlation(x, y, window=10): """ Wrapper function to estimate rolling corelations. :param df: a pandas DataFrame. :param window: the rolling window. :return: a pandas DataFrame with the time-series min over the past 'window' days. """ return x.rolling(window).corr(y) def covariance(x, y, window=10): """ Wrapper function to estimate rolling covariance. :param df: a pandas DataFrame. :param window: the rolling window. :return: a pandas DataFrame with the time-series min over the past 'window' days. """ return x.rolling(window).cov(y) def rolling_rank(na): """ Auxiliary function to be used in pd.rolling_apply :param na: numpy array. :return: The rank of the last value in the array. """ return rankdata(na)[-1] def ts_rank(df, window=10): """ Wrapper function to estimate rolling rank. :param df: a pandas DataFrame. :param window: the rolling window. :return: a pandas DataFrame with the time-series rank over the past window days. """ return df.rolling(window).apply(rolling_rank) def rolling_prod(na): """ Auxiliary function to be used in pd.rolling_apply :param na: numpy array. :return: The product of the values in the array. """ return np.prod(na) def product(df, window=10): """ Wrapper function to estimate rolling product. :param df: a pandas DataFrame. :param window: the rolling window. :return: a pandas DataFrame with the time-series product over the past 'window' days. """ return df.rolling(window).apply(rolling_prod) def ts_min(df, window=10): """ Wrapper function to estimate rolling min. :param df: a pandas DataFrame. :param window: the rolling window. :return: a pandas DataFrame with the time-series min over the past 'window' days. """ return df.rolling(window).min() def ts_max(df, window=10): """ Wrapper function to estimate rolling min. :param df: a pandas DataFrame. :param window: the rolling window. :return: a pandas DataFrame with the time-series max over the past 'window' days. """ return df.rolling(window).max() def delta(df, period=1): """ Wrapper function to estimate difference. :param df: a pandas DataFrame. :param period: the difference grade. :return: a pandas DataFrame with today’s value minus the value 'period' days ago. """ return df.diff(period) def delay(df, period=1): """ Wrapper function to estimate lag. :param df: a pandas DataFrame. :param period: the lag grade. :return: a pandas DataFrame with lagged time series """ return df.shift(period) def rank(df): """ Cross sectional rank :param df: a pandas DataFrame. :return: a pandas DataFrame with rank along columns. """ #return df.rank(axis=1, pct=True) return df.rank(pct=True) def scale(df, k=1): """ Scaling time serie. :param df: a pandas DataFrame. :param k: scaling factor. :return: a pandas DataFrame rescaled df such that sum(abs(df)) = k """ return df.mul(k).div(np.abs(df).sum()) def ts_argmax(df, window=10): """ Wrapper function to estimate which day ts_max(df, window) occurred on :param df: a pandas DataFrame. :param window: the rolling window. :return: well.. that :) """ return df.rolling(window).apply(np.argmax) + 1 def ts_argmin(df, window=10): """ Wrapper function to estimate which day ts_min(df, window) occurred on :param df: a pandas DataFrame. :param window: the rolling window. :return: well.. that :) """ return df.rolling(window).apply(np.argmin) + 1 def decay_linear(df, period=10): """ Linear weighted moving average implementation. :param df: a pandas DataFrame. :param period: the LWMA period :return: a pandas DataFrame with the LWMA. """ try: df = df.to_frame() #Series is not supported for the calculations below. except: pass # Clean data if df.isnull().values.any(): df.fillna(method='ffill', inplace=True) df.fillna(method='bfill', inplace=True) df.fillna(value=0, inplace=True) na_lwma = np.zeros_like(df) na_lwma[:period, :] = df.iloc[:period, :] na_series = df.values divisor = period * (period + 1) / 2 y = (np.arange(period) + 1) * 1.0 / divisor # Estimate the actual lwma with the actual close. # The backtest engine should assure to be snooping bias free. for row in range(period - 1, df.shape[0]): x = na_series[row - period + 1: row + 1, :] na_lwma[row, :] = (np.dot(x.T, y)) return pd.DataFrame(na_lwma, index=df.index, columns=['CLOSE']) def highday(df, n): #计算df前n期时间序列中最大值距离当前时点的间隔 result = pd.Series(np.nan, index=df.index) for i in range(n,len(df)): result.iloc[i]= i - df[i-n:i].idxmax() return result def lowday(df, n): #计算df前n期时间序列中最小值距离当前时点的间隔 result = pd.Series(np.nan, index=df.index) for i in range(n,len(df)): result.iloc[i]= i - df[i-n:i].idxmin() return result def daily_panel_csv_initializer(csv_name): #not used now if os.path.exists(csv_name)==False: stock_list=local_source.get_stock_list(cols='TS_CODE,INDUSTRY') date_list=local_source.get_indices_daily(cols='TRADE_DATE',condition='INDEX_CODE = "000001.SH"') dataset=0 for date in date_list["TRADE_DATE"]: stock_list[date]=stock_list["INDUSTRY"] stock_list.drop("INDUSTRY",axis=1,inplace=True) stock_list.set_index("TS_CODE", inplace=True) dataset = pd.DataFrame(stock_list.stack()) dataset.reset_index(inplace=True) dataset.columns=["TS_CODE","TRADE_DATE","INDUSTRY"] dataset.to_csv(csv_name,encoding='utf-8-sig',index=False) else: dataset=pd.read_csv(csv_name) return dataset def IndustryAverage_vwap(): stock_list=local_source.get_stock_list(cols='TS_CODE,INDUSTRY').set_index("TS_CODE") industry_list=stock_list["INDUSTRY"].drop_duplicates() date_list=local_source.get_indices_daily(cols='TRADE_DATE',condition='INDEX_CODE = "000001.SH"')["TRADE_DATE"].astype(int) #check for building/updating/reading dataset try: result_industryaveraged_df = pd.read_csv("IndustryAverage_Data_vwap.csv") result_industryaveraged_df["TRADE_DATE"] = result_industryaveraged_df["TRADE_DATE"].astype(int) result_industryaveraged_df.set_index("TRADE_DATE",inplace=True) date_list_existed = pd.Series(result_industryaveraged_df.index) date_list_update = date_list[~date_list.isin(date_list_existed)] if len(date_list_update)==0: print("The corresponding industry average vwap data needs not to be updated.") return result_industryaveraged_df else: print("The corresponding industry average vwap data needs to be updated.") first_date_update = date_list_update[0] except: print("The corresponding industry average vwap data is missing.") result_industryaveraged_df=pd.DataFrame(index=date_list,columns=industry_list) date_list_update = date_list first_date_update=0 #building/updating dataset result_unaveraged_industry=0 for industry in pb(industry_list, desc='Please wait', colour='#ffffff'): stock_list_industry=stock_list[stock_list["INDUSTRY"]==industry] #calculating unindentralized data for ts_code in stock_list_industry.index: quotations_daily_chosen=local_source.get_quotations_daily(cols='TRADE_DATE,TS_CODE,OPEN,CLOSE,LOW,HIGH,VOL,CHANGE,AMOUNT',condition='TS_CODE = '+'"'+ts_code+'"').sort_values(by="TRADE_DATE", ascending=True) quotations_daily_chosen["TRADE_DATE"]=quotations_daily_chosen["TRADE_DATE"].astype(int) quotations_daily_chosen=quotations_daily_chosen.applymap(lambda x: np.nan if x=="NULL" else x) try: #valid only in updating index_first_date_needed = date_list_existed[date_list_existed.values == first_date_update].index[0] first_date_needed = date_list_existed.loc[index_first_date_needed] quotations_daily_chosen = quotations_daily_chosen[quotations_daily_chosen["TRADE_DATE"]>=first_date_needed] except: pass VWAP = (quotations_daily_chosen['AMOUNT']*1000)/(quotations_daily_chosen['VOL']*100+1) result_unaveraged_piece = VWAP result_unaveraged_piece.rename("VWAP_UNAVERAGED",inplace=True) result_unaveraged_piece = pd.DataFrame(result_unaveraged_piece) result_unaveraged_piece.insert(loc=0,column='INDUSTRY',value=industry) result_unaveraged_piece.insert(loc=0,column='TRADE_DATE',value=quotations_daily_chosen["TRADE_DATE"]) result_unaveraged_piece.insert(loc=0,column='TS_CODE',value=ts_code) result_unaveraged_piece = result_unaveraged_piece[result_unaveraged_piece["TRADE_DATE"]>=first_date_update] #to lower the memory needed if type(result_unaveraged_industry)==int: result_unaveraged_industry=result_unaveraged_piece else: result_unaveraged_industry=pd.concat([result_unaveraged_industry,result_unaveraged_piece],axis=0) #indentralizing data for date in date_list_update: try: #to prevent the case that the stock is suspended, so that there's no data for the stock at some dates result_piece=result_unaveraged_industry[result_unaveraged_industry["TRADE_DATE"]==date] value=result_piece["VWAP_UNAVERAGED"].mean() result_industryaveraged_df.loc[date,industry]=value except: pass result_unaveraged_industry=0 result_industryaveraged_df.to_csv("IndustryAverage_Data_vwap.csv",encoding='utf-8-sig') return result_industryaveraged_df def IndustryAverage_close(): stock_list=local_source.get_stock_list(cols='TS_CODE,INDUSTRY').set_index("TS_CODE") industry_list=stock_list["INDUSTRY"].drop_duplicates() date_list=local_source.get_indices_daily(cols='TRADE_DATE',condition='INDEX_CODE = "000001.SH"')["TRADE_DATE"].astype(int) #check for building/updating/reading dataset try: result_industryaveraged_df = pd.read_csv("IndustryAverage_Data_close.csv") result_industryaveraged_df["TRADE_DATE"] = result_industryaveraged_df["TRADE_DATE"].astype(int) result_industryaveraged_df.set_index("TRADE_DATE",inplace=True) date_list_existed = pd.Series(result_industryaveraged_df.index) date_list_update = date_list[~date_list.isin(date_list_existed)] if len(date_list_update)==0: print("The corresponding industry average close data needs not to be updated.") return result_industryaveraged_df else: print("The corresponding industry average close data needs to be updated.") first_date_update = date_list_update[0] except: print("The corresponding industry average close data is missing.") result_industryaveraged_df=pd.DataFrame(index=date_list,columns=industry_list) date_list_update = date_list first_date_update=0 #building/updating dataset result_unaveraged_industry=0 for industry in pb(industry_list, desc='Please wait', colour='#ffffff'): stock_list_industry=stock_list[stock_list["INDUSTRY"]==industry] #calculating unindentralized data for ts_code in stock_list_industry.index: quotations_daily_chosen=local_source.get_quotations_daily(cols='TRADE_DATE,TS_CODE,OPEN,CLOSE,LOW,HIGH,VOL,CHANGE,AMOUNT',condition='TS_CODE = '+'"'+ts_code+'"').sort_values(by="TRADE_DATE", ascending=True) quotations_daily_chosen["TRADE_DATE"]=quotations_daily_chosen["TRADE_DATE"].astype(int) quotations_daily_chosen=quotations_daily_chosen.applymap(lambda x: np.nan if x=="NULL" else x) try: #valid only in updating index_first_date_needed = date_list_existed[date_list_existed.values == first_date_update].index[0] first_date_needed = date_list_existed.loc[index_first_date_needed] quotations_daily_chosen = quotations_daily_chosen[quotations_daily_chosen["TRADE_DATE"]>=first_date_needed] except: pass CLOSE = quotations_daily_chosen['CLOSE'] result_unaveraged_piece = CLOSE result_unaveraged_piece.rename("CLOSE_UNAVERAGED",inplace=True) result_unaveraged_piece = pd.DataFrame(result_unaveraged_piece) result_unaveraged_piece.insert(loc=0,column='INDUSTRY',value=industry) result_unaveraged_piece.insert(loc=0,column='TRADE_DATE',value=quotations_daily_chosen["TRADE_DATE"]) result_unaveraged_piece.insert(loc=0,column='TS_CODE',value=ts_code) result_unaveraged_piece = result_unaveraged_piece[result_unaveraged_piece["TRADE_DATE"]>=first_date_update] #to lower the memory needed if type(result_unaveraged_industry)==int: result_unaveraged_industry=result_unaveraged_piece else: result_unaveraged_industry=pd.concat([result_unaveraged_industry,result_unaveraged_piece],axis=0) #indentralizing data for date in date_list_update: try: #to prevent the case that the stock is suspended, so that there's no data for the stock at some dates result_piece=result_unaveraged_industry[result_unaveraged_industry["TRADE_DATE"]==date] value=result_piece["CLOSE_UNAVERAGED"].mean() result_industryaveraged_df.loc[date,industry]=value except: pass result_unaveraged_industry=0 result_industryaveraged_df.to_csv("IndustryAverage_Data_close.csv",encoding='utf-8-sig') return result_industryaveraged_df def IndustryAverage_low(): stock_list=local_source.get_stock_list(cols='TS_CODE,INDUSTRY').set_index("TS_CODE") industry_list=stock_list["INDUSTRY"].drop_duplicates() date_list=local_source.get_indices_daily(cols='TRADE_DATE',condition='INDEX_CODE = "000001.SH"')["TRADE_DATE"].astype(int) #check for building/updating/reading dataset try: result_industryaveraged_df = pd.read_csv("IndustryAverage_Data_low.csv") result_industryaveraged_df["TRADE_DATE"] = result_industryaveraged_df["TRADE_DATE"].astype(int) result_industryaveraged_df.set_index("TRADE_DATE",inplace=True) date_list_existed = pd.Series(result_industryaveraged_df.index) date_list_update = date_list[~date_list.isin(date_list_existed)] if len(date_list_update)==0: print("The corresponding industry average low data needs not to be updated.") return result_industryaveraged_df else: print("The corresponding industry average low data needs to be updated.") first_date_update = date_list_update[0] except: print("The corresponding industry average low data is missing.") result_industryaveraged_df=pd.DataFrame(index=date_list,columns=industry_list) date_list_update = date_list first_date_update=0 #building/updating dataset result_unaveraged_industry=0 for industry in pb(industry_list, desc='Please wait', colour='#ffffff'): stock_list_industry=stock_list[stock_list["INDUSTRY"]==industry] #calculating unindentralized data for ts_code in stock_list_industry.index: quotations_daily_chosen=local_source.get_quotations_daily(cols='TRADE_DATE,TS_CODE,OPEN,CLOSE,LOW,HIGH,VOL,CHANGE,AMOUNT',condition='TS_CODE = '+'"'+ts_code+'"').sort_values(by="TRADE_DATE", ascending=True) quotations_daily_chosen["TRADE_DATE"]=quotations_daily_chosen["TRADE_DATE"].astype(int) quotations_daily_chosen=quotations_daily_chosen.applymap(lambda x: np.nan if x=="NULL" else x) try: #valid only in updating index_first_date_needed = date_list_existed[date_list_existed.values == first_date_update].index[0] first_date_needed = date_list_existed.loc[index_first_date_needed] quotations_daily_chosen = quotations_daily_chosen[quotations_daily_chosen["TRADE_DATE"]>=first_date_needed] except: pass LOW = quotations_daily_chosen['LOW'] result_unaveraged_piece = LOW result_unaveraged_piece.rename("LOW_UNAVERAGED",inplace=True) result_unaveraged_piece = pd.DataFrame(result_unaveraged_piece) result_unaveraged_piece.insert(loc=0,column='INDUSTRY',value=industry) result_unaveraged_piece.insert(loc=0,column='TRADE_DATE',value=quotations_daily_chosen["TRADE_DATE"]) result_unaveraged_piece.insert(loc=0,column='TS_CODE',value=ts_code) result_unaveraged_piece = result_unaveraged_piece[result_unaveraged_piece["TRADE_DATE"]>=first_date_update] #to lower the memory needed if type(result_unaveraged_industry)==int: result_unaveraged_industry=result_unaveraged_piece else: result_unaveraged_industry=pd.concat([result_unaveraged_industry,result_unaveraged_piece],axis=0) #indentralizing data for date in date_list_update: try: #to prevent the case that the stock is suspended, so that there's no data for the stock at some dates result_piece=result_unaveraged_industry[result_unaveraged_industry["TRADE_DATE"]==date] value=result_piece["LOW_UNAVERAGED"].mean() result_industryaveraged_df.loc[date,industry]=value except: pass result_unaveraged_industry=0 result_industryaveraged_df.to_csv("IndustryAverage_Data_low.csv",encoding='utf-8-sig') return result_industryaveraged_df def IndustryAverage_volume(): stock_list=local_source.get_stock_list(cols='TS_CODE,INDUSTRY').set_index("TS_CODE") industry_list=stock_list["INDUSTRY"].drop_duplicates() date_list=local_source.get_indices_daily(cols='TRADE_DATE',condition='INDEX_CODE = "000001.SH"')["TRADE_DATE"].astype(int) #check for building/updating/reading dataset try: result_industryaveraged_df = pd.read_csv("IndustryAverage_Data_volume.csv") result_industryaveraged_df["TRADE_DATE"] = result_industryaveraged_df["TRADE_DATE"].astype(int) result_industryaveraged_df.set_index("TRADE_DATE",inplace=True) date_list_existed = pd.Series(result_industryaveraged_df.index) date_list_update = date_list[~date_list.isin(date_list_existed)] if len(date_list_update)==0: print("The corresponding industry average volume data needs not to be updated.") return result_industryaveraged_df else: print("The corresponding industry average volume data needs to be updated.") first_date_update = date_list_update[0] except: print("The corresponding industry average volume data is missing.") result_industryaveraged_df=pd.DataFrame(index=date_list,columns=industry_list) date_list_update = date_list first_date_update=0 #building/updating dataset result_unaveraged_industry=0 for industry in pb(industry_list, desc='Please wait', colour='#ffffff'): stock_list_industry=stock_list[stock_list["INDUSTRY"]==industry] #calculating unindentralized data for ts_code in stock_list_industry.index: quotations_daily_chosen=local_source.get_quotations_daily(cols='TRADE_DATE,TS_CODE,OPEN,CLOSE,LOW,HIGH,VOL,CHANGE,AMOUNT',condition='TS_CODE = '+'"'+ts_code+'"').sort_values(by="TRADE_DATE", ascending=True) quotations_daily_chosen["TRADE_DATE"]=quotations_daily_chosen["TRADE_DATE"].astype(int) quotations_daily_chosen=quotations_daily_chosen.applymap(lambda x: np.nan if x=="NULL" else x) try: #valid only in updating index_first_date_needed = date_list_existed[date_list_existed.values == first_date_update].index[0] first_date_needed = date_list_existed.loc[index_first_date_needed] quotations_daily_chosen = quotations_daily_chosen[quotations_daily_chosen["TRADE_DATE"]>=first_date_needed] except: pass VOLUME = quotations_daily_chosen['VOL']*100 result_unaveraged_piece = VOLUME result_unaveraged_piece.rename("VOLUME_UNAVERAGED",inplace=True) result_unaveraged_piece = pd.DataFrame(result_unaveraged_piece) result_unaveraged_piece.insert(loc=0,column='INDUSTRY',value=industry) result_unaveraged_piece.insert(loc=0,column='TRADE_DATE',value=quotations_daily_chosen["TRADE_DATE"]) result_unaveraged_piece.insert(loc=0,column='TS_CODE',value=ts_code) result_unaveraged_piece = result_unaveraged_piece[result_unaveraged_piece["TRADE_DATE"]>=first_date_update] #to lower the memory needed if type(result_unaveraged_industry)==int: result_unaveraged_industry=result_unaveraged_piece else: result_unaveraged_industry=pd.concat([result_unaveraged_industry,result_unaveraged_piece],axis=0) #indentralizing data for date in date_list_update: try: #to prevent the case that the stock is suspended, so that there's no data for the stock at some dates result_piece=result_unaveraged_industry[result_unaveraged_industry["TRADE_DATE"]==date] value=result_piece["VOLUME_UNAVERAGED"].mean() result_industryaveraged_df.loc[date,industry]=value except: pass result_unaveraged_industry=0 result_industryaveraged_df.to_csv("IndustryAverage_Data_volume.csv",encoding='utf-8-sig') return result_industryaveraged_df def IndustryAverage_adv(num): stock_list=local_source.get_stock_list(cols='TS_CODE,INDUSTRY').set_index("TS_CODE") industry_list=stock_list["INDUSTRY"].drop_duplicates() date_list=local_source.get_indices_daily(cols='TRADE_DATE',condition='INDEX_CODE = "000001.SH"')["TRADE_DATE"].astype(int) #check for building/updating/reading dataset try: result_industryaveraged_df = pd.read_csv("IndustryAverage_Data_adv{num}.csv".format(num=num)) result_industryaveraged_df["TRADE_DATE"] = result_industryaveraged_df["TRADE_DATE"].astype(int) result_industryaveraged_df.set_index("TRADE_DATE",inplace=True) date_list_existed = pd.Series(result_industryaveraged_df.index) date_list_update = date_list[~date_list.isin(date_list_existed)] if len(date_list_update)==0: print("The corresponding industry average adv{num} data needs not to be updated.".format(num=num)) return result_industryaveraged_df else: print("The corresponding industry average adv{num} data needs to be updated.".format(num=num)) first_date_update = date_list_update[0] except: print("The corresponding industry average adv{num} data is missing.".format(num=num)) result_industryaveraged_df=pd.DataFrame(index=date_list,columns=industry_list) date_list_update = date_list first_date_update=0 #building/updating dataset result_unaveraged_industry=0 for industry in pb(industry_list, desc='Please wait', colour='#ffffff'): stock_list_industry=stock_list[stock_list["INDUSTRY"]==industry] #calculating unindentralized data for ts_code in stock_list_industry.index: quotations_daily_chosen=local_source.get_quotations_daily(cols='TRADE_DATE,TS_CODE,OPEN,CLOSE,LOW,HIGH,VOL,CHANGE,AMOUNT',condition='TS_CODE = '+'"'+ts_code+'"').sort_values(by="TRADE_DATE", ascending=True) quotations_daily_chosen["TRADE_DATE"]=quotations_daily_chosen["TRADE_DATE"].astype(int) quotations_daily_chosen=quotations_daily_chosen.applymap(lambda x: np.nan if x=="NULL" else x) try: #valid only in updating index_first_date_needed = date_list_existed[date_list_existed.values == first_date_update].index[0] first_date_needed = date_list_existed.loc[index_first_date_needed] quotations_daily_chosen = quotations_daily_chosen[quotations_daily_chosen["TRADE_DATE"]>=first_date_needed] except: pass VOLUME = quotations_daily_chosen['VOL']*100 result_unaveraged_piece = sma(VOLUME, num) result_unaveraged_piece.rename("ADV{num}_UNAVERAGED".format(num=num),inplace=True) result_unaveraged_piece = pd.DataFrame(result_unaveraged_piece) result_unaveraged_piece.insert(loc=0,column='INDUSTRY',value=industry) result_unaveraged_piece.insert(loc=0,column='TRADE_DATE',value=quotations_daily_chosen["TRADE_DATE"]) result_unaveraged_piece.insert(loc=0,column='TS_CODE',value=ts_code) result_unaveraged_piece = result_unaveraged_piece[result_unaveraged_piece["TRADE_DATE"]>=first_date_update] #to lower the memory needed if type(result_unaveraged_industry)==int: result_unaveraged_industry=result_unaveraged_piece else: result_unaveraged_industry=pd.concat([result_unaveraged_industry,result_unaveraged_piece],axis=0) #indentralizing data for date in date_list_update: try: #to prevent the case that the stock is suspended, so that there's no data for the stock at some dates result_piece=result_unaveraged_industry[result_unaveraged_industry["TRADE_DATE"]==date] value=result_piece["ADV{num}_UNAVERAGED".format(num=num)].mean() result_industryaveraged_df.loc[date,industry]=value except: pass result_unaveraged_industry=0 result_industryaveraged_df.to_csv("IndustryAverage_Data_adv{num}.csv".format(num=num),encoding='utf-8-sig') return result_industryaveraged_df #(correlation(delta(close, 1), delta(delay(close, 1), 1), 250) *delta(close, 1)) / close def IndustryAverage_PreparationForAlpha048(): stock_list=local_source.get_stock_list(cols='TS_CODE,INDUSTRY').set_index("TS_CODE") industry_list=stock_list["INDUSTRY"].drop_duplicates() date_list=local_source.get_indices_daily(cols='TRADE_DATE',condition='INDEX_CODE = "000001.SH"')["TRADE_DATE"].astype(int) #check for building/updating/reading dataset try: result_industryaveraged_df = pd.read_csv("IndustryAverage_Data_PreparationForAlpha048.csv") result_industryaveraged_df["TRADE_DATE"] = result_industryaveraged_df["TRADE_DATE"].astype(int) result_industryaveraged_df.set_index("TRADE_DATE",inplace=True) date_list_existed = pd.Series(result_industryaveraged_df.index) date_list_update = date_list[~date_list.isin(date_list_existed)] if len(date_list_update)==0: print("The corresponding industry average data for alpha048 needs not to be updated.") return result_industryaveraged_df else: print("The corresponding industry average data for alpha048 needs to be updated.") first_date_update = date_list_update[0] except: print("The corresponding industry average dataset for alpha048 is missing.") result_industryaveraged_df=pd.DataFrame(index=date_list,columns=industry_list) date_list_update = date_list first_date_update=0 #building/updating dataset result_unaveraged_industry=0 for industry in pb(industry_list, desc='Please wait', colour='#ffffff'): stock_list_industry=stock_list[stock_list["INDUSTRY"]==industry] #calculating unindentralized data for ts_code in stock_list_industry.index: quotations_daily_chosen=local_source.get_quotations_daily(cols='TRADE_DATE,TS_CODE,OPEN,CLOSE,LOW,HIGH,VOL,CHANGE,AMOUNT',condition='TS_CODE = '+'"'+ts_code+'"').sort_values(by="TRADE_DATE", ascending=True) quotations_daily_chosen["TRADE_DATE"]=quotations_daily_chosen["TRADE_DATE"].astype(int) quotations_daily_chosen=quotations_daily_chosen.applymap(lambda x: np.nan if x=="NULL" else x) try: #valid only in updating index_first_date_needed = date_list_existed[date_list_existed.values == first_date_update].index[0] first_date_needed = date_list_existed.loc[index_first_date_needed] quotations_daily_chosen = quotations_daily_chosen[quotations_daily_chosen["TRADE_DATE"]>=first_date_needed] except: pass CLOSE = quotations_daily_chosen['CLOSE'] result_unaveraged_piece = (correlation(delta(CLOSE, 1), delta(delay(CLOSE, 1), 1), 250) *delta(CLOSE, 1)) / CLOSE result_unaveraged_piece.rename("PREPARATION_FOR_ALPHA048_UNAVERAGED",inplace=True) result_unaveraged_piece = pd.DataFrame(result_unaveraged_piece) result_unaveraged_piece.insert(loc=0,column='INDUSTRY',value=industry) result_unaveraged_piece.insert(loc=0,column='TRADE_DATE',value=quotations_daily_chosen["TRADE_DATE"]) result_unaveraged_piece.insert(loc=0,column='TS_CODE',value=ts_code) result_unaveraged_piece = result_unaveraged_piece[result_unaveraged_piece["TRADE_DATE"]>=first_date_update] #to lower the memory needed if type(result_unaveraged_industry)==int: result_unaveraged_industry=result_unaveraged_piece else: result_unaveraged_industry=pd.concat([result_unaveraged_industry,result_unaveraged_piece],axis=0) #indentralizing data for date in date_list_update: try: #to prevent the case that the stock is suspended, so that there's no data for the stock at some dates result_piece=result_unaveraged_industry[result_unaveraged_industry["TRADE_DATE"]==date] value=result_piece["PREPARATION_FOR_ALPHA048_UNAVERAGED"].mean() result_industryaveraged_df.loc[date,industry]=value except: pass result_unaveraged_industry=0 result_industryaveraged_df.to_csv("IndustryAverage_Data_PreparationForAlpha048.csv",encoding='utf-8-sig') return result_industryaveraged_df #(vwap * 0.728317) + (vwap *(1 - 0.728317)) def IndustryAverage_PreparationForAlpha059(): stock_list=local_source.get_stock_list(cols='TS_CODE,INDUSTRY').set_index("TS_CODE") industry_list=stock_list["INDUSTRY"].drop_duplicates() date_list=local_source.get_indices_daily(cols='TRADE_DATE',condition='INDEX_CODE = "000001.SH"')["TRADE_DATE"].astype(int) #check for building/updating/reading dataset try: result_industryaveraged_df = pd.read_csv("IndustryAverage_Data_PreparationForAlpha059.csv") result_industryaveraged_df["TRADE_DATE"] = result_industryaveraged_df["TRADE_DATE"].astype(int) result_industryaveraged_df.set_index("TRADE_DATE",inplace=True) date_list_existed = pd.Series(result_industryaveraged_df.index) date_list_update = date_list[~date_list.isin(date_list_existed)] if len(date_list_update)==0: print("The corresponding industry average data for alpha059 needs not to be updated.") return result_industryaveraged_df else: print("The corresponding industry average data for alpha059 needs to be updated.") first_date_update = date_list_update[0] except: print("The corresponding industry average dataset for alpha059 is missing.") result_industryaveraged_df=pd.DataFrame(index=date_list,columns=industry_list) date_list_update = date_list first_date_update=0 #building/updating dataset result_unaveraged_industry=0 for industry in pb(industry_list, desc='Please wait', colour='#ffffff'): stock_list_industry=stock_list[stock_list["INDUSTRY"]==industry] #calculating unindentralized data for ts_code in stock_list_industry.index: quotations_daily_chosen=local_source.get_quotations_daily(cols='TRADE_DATE,TS_CODE,OPEN,CLOSE,LOW,HIGH,VOL,CHANGE,AMOUNT',condition='TS_CODE = '+'"'+ts_code+'"').sort_values(by="TRADE_DATE", ascending=True) quotations_daily_chosen["TRADE_DATE"]=quotations_daily_chosen["TRADE_DATE"].astype(int) quotations_daily_chosen=quotations_daily_chosen.applymap(lambda x: np.nan if x=="NULL" else x) try: #valid only in updating index_first_date_needed = date_list_existed[date_list_existed.values == first_date_update].index[0] first_date_needed = date_list_existed.loc[index_first_date_needed] quotations_daily_chosen = quotations_daily_chosen[quotations_daily_chosen["TRADE_DATE"]>=first_date_needed] except: pass VWAP = (quotations_daily_chosen['AMOUNT']*1000)/(quotations_daily_chosen['VOL']*100+1) result_unaveraged_piece = (VWAP * 0.728317) + (VWAP *(1 - 0.728317)) result_unaveraged_piece.rename("PREPARATION_FOR_ALPHA059_UNAVERAGED",inplace=True) result_unaveraged_piece = pd.DataFrame(result_unaveraged_piece) result_unaveraged_piece.insert(loc=0,column='INDUSTRY',value=industry) result_unaveraged_piece.insert(loc=0,column='TRADE_DATE',value=quotations_daily_chosen["TRADE_DATE"]) result_unaveraged_piece.insert(loc=0,column='TS_CODE',value=ts_code) result_unaveraged_piece = result_unaveraged_piece[result_unaveraged_piece["TRADE_DATE"]>=first_date_update] #to lower the memory needed if type(result_unaveraged_industry)==int: result_unaveraged_industry=result_unaveraged_piece else: result_unaveraged_industry=pd.concat([result_unaveraged_industry,result_unaveraged_piece],axis=0) #indentralizing data for date in date_list_update: try: #to prevent the case that the stock is suspended, so that there's no data for the stock at some dates result_piece=result_unaveraged_industry[result_unaveraged_industry["TRADE_DATE"]==date] value=result_piece["PREPARATION_FOR_ALPHA059_UNAVERAGED"].mean() result_industryaveraged_df.loc[date,industry]=value except: pass result_unaveraged_industry=0 result_industryaveraged_df.to_csv("IndustryAverage_Data_PreparationForAlpha059.csv",encoding='utf-8-sig') return result_industryaveraged_df #(close * 0.60733) + (open * (1 - 0.60733)) def IndustryAverage_PreparationForAlpha079(): stock_list=local_source.get_stock_list(cols='TS_CODE,INDUSTRY').set_index("TS_CODE") industry_list=stock_list["INDUSTRY"].drop_duplicates() date_list=local_source.get_indices_daily(cols='TRADE_DATE',condition='INDEX_CODE = "000001.SH"')["TRADE_DATE"].astype(int) #check for building/updating/reading dataset try: result_industryaveraged_df = pd.read_csv("IndustryAverage_Data_PreparationForAlpha079.csv") result_industryaveraged_df["TRADE_DATE"] = result_industryaveraged_df["TRADE_DATE"].astype(int) result_industryaveraged_df.set_index("TRADE_DATE",inplace=True) date_list_existed = pd.Series(result_industryaveraged_df.index) date_list_update = date_list[~date_list.isin(date_list_existed)] if len(date_list_update)==0: print("The corresponding industry average data for alpha079 needs not to be updated.") return result_industryaveraged_df else: print("The corresponding industry average data for alpha079 needs to be updated.") first_date_update = date_list_update[0] except: print("The corresponding industry average dataset for alpha079 is missing.") result_industryaveraged_df=pd.DataFrame(index=date_list,columns=industry_list) date_list_update = date_list first_date_update=0 #building/updating dataset result_unaveraged_industry=0 for industry in pb(industry_list, desc='Please wait', colour='#ffffff'): stock_list_industry=stock_list[stock_list["INDUSTRY"]==industry] #calculating unindentralized data for ts_code in stock_list_industry.index: quotations_daily_chosen=local_source.get_quotations_daily(cols='TRADE_DATE,TS_CODE,OPEN,CLOSE,LOW,HIGH,VOL,CHANGE,AMOUNT',condition='TS_CODE = '+'"'+ts_code+'"').sort_values(by="TRADE_DATE", ascending=True) quotations_daily_chosen["TRADE_DATE"]=quotations_daily_chosen["TRADE_DATE"].astype(int) quotations_daily_chosen=quotations_daily_chosen.applymap(lambda x: np.nan if x=="NULL" else x) try: #valid only in updating index_first_date_needed = date_list_existed[date_list_existed.values == first_date_update].index[0] first_date_needed = date_list_existed.loc[index_first_date_needed] quotations_daily_chosen = quotations_daily_chosen[quotations_daily_chosen["TRADE_DATE"]>=first_date_needed] except: pass OPEN = quotations_daily_chosen['OPEN'] CLOSE = quotations_daily_chosen['CLOSE'] result_unaveraged_piece = (CLOSE * 0.60733) + (OPEN * (1 - 0.60733)) result_unaveraged_piece.rename("PREPARATION_FOR_ALPHA079_UNAVERAGED",inplace=True) result_unaveraged_piece = pd.DataFrame(result_unaveraged_piece) result_unaveraged_piece.insert(loc=0,column='INDUSTRY',value=industry) result_unaveraged_piece.insert(loc=0,column='TRADE_DATE',value=quotations_daily_chosen["TRADE_DATE"]) result_unaveraged_piece.insert(loc=0,column='TS_CODE',value=ts_code) result_unaveraged_piece = result_unaveraged_piece[result_unaveraged_piece["TRADE_DATE"]>=first_date_update] #to lower the memory needed if type(result_unaveraged_industry)==int: result_unaveraged_industry=result_unaveraged_piece else: result_unaveraged_industry=pd.concat([result_unaveraged_industry,result_unaveraged_piece],axis=0) #indentralizing data for date in date_list_update: try: #to prevent the case that the stock is suspended, so that there's no data for the stock at some dates result_piece=result_unaveraged_industry[result_unaveraged_industry["TRADE_DATE"]==date] value=result_piece["PREPARATION_FOR_ALPHA079_UNAVERAGED"].mean() result_industryaveraged_df.loc[date,industry]=value except: pass result_unaveraged_industry=0 result_industryaveraged_df.to_csv("IndustryAverage_Data_PreparationForAlpha079.csv",encoding='utf-8-sig') return result_industryaveraged_df #((open * 0.868128) + (high * (1 - 0.868128)) def IndustryAverage_PreparationForAlpha080(): stock_list=local_source.get_stock_list(cols='TS_CODE,INDUSTRY').set_index("TS_CODE") industry_list=stock_list["INDUSTRY"].drop_duplicates() date_list=local_source.get_indices_daily(cols='TRADE_DATE',condition='INDEX_CODE = "000001.SH"')["TRADE_DATE"].astype(int) #check for building/updating/reading dataset try: result_industryaveraged_df = pd.read_csv("IndustryAverage_Data_PreparationForAlpha080.csv") result_industryaveraged_df["TRADE_DATE"] = result_industryaveraged_df["TRADE_DATE"].astype(int) result_industryaveraged_df.set_index("TRADE_DATE",inplace=True) date_list_existed = pd.Series(result_industryaveraged_df.index) date_list_update = date_list[~date_list.isin(date_list_existed)] if len(date_list_update)==0: print("The corresponding industry average data for alpha080 needs not to be updated.") return result_industryaveraged_df else: print("The corresponding industry average data for alpha080 needs to be updated.") first_date_update = date_list_update[0] except: print("The corresponding industry average dataset for alpha080 is missing.") result_industryaveraged_df=pd.DataFrame(index=date_list,columns=industry_list) date_list_update = date_list first_date_update=0 #building/updating dataset result_unaveraged_industry=0 for industry in pb(industry_list, desc='Please wait', colour='#ffffff'): stock_list_industry=stock_list[stock_list["INDUSTRY"]==industry] #calculating unindentralized data for ts_code in stock_list_industry.index: quotations_daily_chosen=local_source.get_quotations_daily(cols='TRADE_DATE,TS_CODE,OPEN,CLOSE,LOW,HIGH,VOL,CHANGE,AMOUNT',condition='TS_CODE = '+'"'+ts_code+'"').sort_values(by="TRADE_DATE", ascending=True) quotations_daily_chosen["TRADE_DATE"]=quotations_daily_chosen["TRADE_DATE"].astype(int) quotations_daily_chosen=quotations_daily_chosen.applymap(lambda x: np.nan if x=="NULL" else x) try: #valid only in updating index_first_date_needed = date_list_existed[date_list_existed.values == first_date_update].index[0] first_date_needed = date_list_existed.loc[index_first_date_needed] quotations_daily_chosen = quotations_daily_chosen[quotations_daily_chosen["TRADE_DATE"]>=first_date_needed] except: pass OPEN = quotations_daily_chosen['OPEN'] HIGH = quotations_daily_chosen['HIGH'] result_unaveraged_piece = (OPEN * 0.868128) + (HIGH * (1 - 0.868128)) result_unaveraged_piece.rename("PREPARATION_FOR_ALPHA080_UNAVERAGED",inplace=True) result_unaveraged_piece = pd.DataFrame(result_unaveraged_piece) result_unaveraged_piece.insert(loc=0,column='INDUSTRY',value=industry) result_unaveraged_piece.insert(loc=0,column='TRADE_DATE',value=quotations_daily_chosen["TRADE_DATE"]) result_unaveraged_piece.insert(loc=0,column='TS_CODE',value=ts_code) result_unaveraged_piece = result_unaveraged_piece[result_unaveraged_piece["TRADE_DATE"]>=first_date_update] #to lower the memory needed if type(result_unaveraged_industry)==int: result_unaveraged_industry=result_unaveraged_piece else: result_unaveraged_industry=pd.concat([result_unaveraged_industry,result_unaveraged_piece],axis=0) #indentralizing data for date in date_list_update: try: #to prevent the case that the stock is suspended, so that there's no data for the stock at some dates result_piece=result_unaveraged_industry[result_unaveraged_industry["TRADE_DATE"]==date] value=result_piece["PREPARATION_FOR_ALPHA080_UNAVERAGED"].mean() result_industryaveraged_df.loc[date,industry]=value except: pass result_unaveraged_industry=0 result_industryaveraged_df.to_csv("IndustryAverage_Data_PreparationForAlpha080.csv",encoding='utf-8-sig') return result_industryaveraged_df #((low * 0.721001) + (vwap * (1 - 0.721001)) def IndustryAverage_PreparationForAlpha097(): stock_list=local_source.get_stock_list(cols='TS_CODE,INDUSTRY').set_index("TS_CODE") industry_list=stock_list["INDUSTRY"].drop_duplicates() date_list=local_source.get_indices_daily(cols='TRADE_DATE',condition='INDEX_CODE = "000001.SH"')["TRADE_DATE"].astype(int) #check for building/updating/reading dataset try: result_industryaveraged_df = pd.read_csv("IndustryAverage_Data_PreparationForAlpha097.csv") result_industryaveraged_df["TRADE_DATE"] = result_industryaveraged_df["TRADE_DATE"].astype(int) result_industryaveraged_df.set_index("TRADE_DATE",inplace=True) date_list_existed =
pd.Series(result_industryaveraged_df.index)
pandas.Series
README.md exists but content is empty. Use the Edit dataset card button to edit it.
Downloads last month
91
Edit dataset card