prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
# # Copyright (c) 2021 salesforce.com, inc. # All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause # import logging import os import requests from tqdm import tqdm import pandas as pd from ts_datasets.base import BaseDataset logger = logging.getLogger(__name__) class M4(BaseDataset): """ The M4 Competition data is an extended and diverse set of time series to identify the most accurate forecasting method(s) for different types of domains, including Business, financial and economic forecasting, and different type of granularity, including Yearly (23,000 sequences), Quarterly (24,000 sequences), Monthly (48,000 sequences), Weekly(359 sequences), Daily (4,227 sequences) and Hourly (414 sequences) data. - source: https://github.com/Mcompetitions/M4-methods/tree/master/Dataset - timeseries sequences: 100,000 """ valid_subsets = ["Yearly", "Quarterly", "Monthly", "Weekly", "Daily", "Hourly"] url = "https://github.com/Mcompetitions/M4-methods/raw/master/Dataset/{}.csv" def __init__(self, subset="Hourly", rootdir=None): super().__init__() self.subset = subset assert subset in self.valid_subsets, f"subset should be in {self.valid_subsets}, but got {subset}" if rootdir is None: fdir = os.path.dirname(os.path.abspath(__file__)) merlion_root = os.path.abspath(os.path.join(fdir, "..", "..", "..")) rootdir = os.path.join(merlion_root, "data", "M4") # download dataset if it is not found in root dir if not os.path.isdir(rootdir): logger.info( f"M4 {subset} dataset cannot be found from {rootdir}.\n" f"M4 {subset} dataset will be downloaded from {self.url}.\n" ) download(rootdir, self.url, "M4-info") # extract starting date from meta-information of dataset info_dataset = pd.read_csv(os.path.join(rootdir, "M4-info.csv"), delimiter=",").set_index("M4id") if subset == "Yearly": logger.warning( "the max length of yearly data is 841 which is too big to convert to " "timestamps, we fallback to quarterly frequency" ) freq = "13W" elif subset == "Quarterly": freq = "13W" elif subset == "Monthly": freq = "30D" else: freq = subset[0] train_csv = os.path.join(rootdir, f"train/{subset}-train.csv") if not os.path.isfile(train_csv): download(os.path.join(rootdir, "train"), self.url, f"{subset}-train", "Train") test_csv = os.path.join(rootdir, f"test/{subset}-test.csv") if not os.path.isfile(test_csv): download(os.path.join(rootdir, "test"), self.url, f"{subset}-test", "Test") train_set = pd.read_csv(train_csv).set_index("V1") test_set = pd.read_csv(test_csv).set_index("V1") for i in tqdm(range(train_set.shape[0])): ntrain = train_set.iloc[i, :].dropna().shape[0] sequence = pd.concat((train_set.iloc[i, :].dropna(), test_set.iloc[i, :].dropna())) # raw data do not follow consistent timestamp format sequence.index = pd.date_range(start=0, periods=sequence.shape[0], freq=freq) sequence = sequence.to_frame() metadata =
pd.DataFrame({"trainval": sequence.index < sequence.index[ntrain]}, index=sequence.index)
pandas.DataFrame
""" Fractional differentiation is a technique to make a time series stationary but also retain as much memory as possible. This is done by differencing by a positive real number. Fractionally differenced series can be used as a feature in machine learning process. """ import numpy as np import pandas as pd class FractionalDifferentiation: """ FractionalDifferentiation class encapsulates the functions that can be used to compute fractionally differentiated series. """ @staticmethod def get_weights(diff_amt, size): """ Source: Chapter 5, AFML (section 5.4.2, page 79) The helper function generates weights that are used to compute fractionally differentiated series. It computes the weights that get used in the computation of fractionally differentiated series. This generates a non-terminating series that approaches zero asymptotically. The side effect of this function is that it leads to negative drift "caused by an expanding window's added weights" (see page 83 AFML) When diff_amt is real (non-integer) positive number then it preserves memory. The book does not discuss what should be expected if d is a negative real number. Conceptually (from set theory) negative d leads to set of negative number of elements. And that translates into a set whose elements can be selected more than once or as many times as one chooses (multisets with unbounded multiplicity) - see http://faculty.uml.edu/jpropp/msri-up12.pdf. :param diff_amt: (float) differencing amount :param size: (int) length of the series :return: (ndarray) weight vector """ # The algorithm below executes the iterative estimation (section 5.4.2, page 78) weights = [1.] # create an empty list and initialize the first element with 1. for k in range(1, size): weights_ = -weights[-1] * (diff_amt - k + 1) / k # compute the next weight weights.append(weights_) # Now, reverse the list, convert into a numpy column vector weights = np.array(weights[::-1]).reshape(-1, 1) return weights @staticmethod def frac_diff(series, diff_amt, thresh=0.01): """ Source: Chapter 5, AFML (section 5.5, page 82); References: https://www.wiley.com/en-us/Advances+in+Financial+Machine+Learning-p-9781119482086 https://wwwf.imperial.ac.uk/~ejm/M3S8/Problems/hosking81.pdf https://en.wikipedia.org/wiki/Fractional_calculus The steps are as follows: - Compute weights (this is a one-time exercise) - Iteratively apply the weights to the price series and generate output points This is the expanding window variant of the fracDiff algorithm Note 1: For thresh-1, nothing is skipped Note 2: diff_amt can be any positive fractional, not necessarility bounded [0, 1] :param series: (pd.Series) a time series that needs to be differenced :param diff_amt: (float) Differencing amount :param thresh: (float) threshold or epsilon :return: (pd.DataFrame) data frame of differenced series """ # 1. Compute weights for the longest series weights = get_weights(diff_amt, series.shape[0]) # 2. Determine initial calculations to be skipped based on weight-loss threshold weights_ = np.cumsum(abs(weights)) weights_ /= weights_[-1] skip = weights_[weights_ > thresh].shape[0] # 3. Apply weights to values output_df = {} for name in series.columns: series_f = series[[name]].fillna(method='ffill').dropna() output_df_ = pd.Series(index=series.index) for iloc in range(skip, series_f.shape[0]): loc = series_f.index[iloc] # At this point all entries are non-NAs so no need for the following check # if np.isfinite(series.loc[loc, name]): output_df_[loc] = np.dot(weights[-(iloc + 1):, :].T, series_f.loc[:loc])[0, 0] output_df[name] = output_df_.copy(deep=True) output_df = pd.concat(output_df, axis=1) return output_df @staticmethod def get_weights_ffd(diff_amt, thresh, lim): """ Source: Chapter 5, AFML (section 5.4.2, page 83) The helper function generates weights that are used to compute fractionally differentiate dseries. It computes the weights that get used in the computation of fractionally differentiated series. The series is of fixed width and same weights (generated by this function) can be used when creating fractional differentiated series. This makes the process more efficient. But the side-effect is that the fractionally differentiated series is skewed and has excess kurtosis. In other words, it is not Gaussian any more. The discussion of positive and negative d is similar to that in get_weights (see the function get_weights) :param diff_amt: (float) differencing amount :param thresh: (float) threshold for minimum weight :param lim: (int) maximum length of the weight vector :return: (ndarray) weight vector """ weights = [1.] k = 1 # The algorithm below executes the iterativetive estimation (section 5.4.2, page 78) # The output weights array is of the indicated length (specified by lim) ctr = 0 while True: # compute the next weight weights_ = -weights[-1] * (diff_amt - k + 1) / k if abs(weights_) < thresh: break weights.append(weights_) k += 1 ctr += 1 if ctr == lim - 1: # if we have reached the size limit, exit the loop break # Now, reverse the list, convert into a numpy column vector weights = np.array(weights[::-1]).reshape(-1, 1) return weights @staticmethod def frac_diff_ffd(series, diff_amt, thresh=1e-5): """ Source: Chapter 5, AFML (section 5.5, page 83); References: https://www.wiley.com/en-us/Advances+in+Financial+Machine+Learning-p-9781119482086 https://wwwf.imperial.ac.uk/~ejm/M3S8/Problems/hosking81.pdf https://en.wikipedia.org/wiki/Fractional_calculus The steps are as follows: - Compute weights (this is a one-time exercise) - Iteratively apply the weights to the price series and generate output points Constant width window (new solution) Note 1: thresh determines the cut-off weight for the window Note 2: diff_amt can be any positive fractional, not necessarity bounded [0, 1]. :param series: (pd.Series) :param diff_amt: (float) differencing amount :param thresh: (float) threshold for minimum weight :return: (pd.DataFrame) a data frame of differenced series """ # 1) Compute weights for the longest series weights = get_weights_ffd(diff_amt, thresh, series.shape[0]) width = len(weights) - 1 # 2) Apply weights to values # 2.1) Start by creating a dictionary to hold all the fractionally differenced series output_df = {} # 2.2) compute fractionally differenced series for each stock for name in series.columns: series_f = series[[name]].fillna(method='ffill').dropna() temp_df_ =
pd.Series(index=series.index)
pandas.Series
import numpy import matplotlib.pyplot as plt import tellurium as te from rrplugins import Plugin auto = Plugin("tel_auto2000") from te_bifurcation import model2te, run_bf import pandas as pd import numpy as np import matplotlib.pyplot as plt from matplotlib.ticker import ScalarFormatter sf = ScalarFormatter() sf.set_scientific(False) import re import seaborn as sns import os from pickle import dump, load from sympy import * import lhsmdu import sobol_seq import pickle # Define symbolic variables for symbolic Jacobian R, r, C1, C2, mR1, mR2, K, K1, K2, m, a, b, sR, ksi, ksm, ki0, ki1, km0, km1, k, sR, a1, a2, b1, b2, A = symbols('R r C1 C2 mR1 mR2 K K1 K2 m a b sR ksi ksm ki0 ki1 km0 km1 k s_R a1 a2 b1 b2 A', positive=True, real=True) c1A, c1B, c2, rev, koff, kR, sR0, sR, g, s, C = symbols('c1A c1B c2 rev koff kR sR0 sR g s C', positive=True, real=True) R, r, C, mR1, mR2, K, K1, K2, m, a, b, sR, ksi, ksm, ki0, ki1, km0, km1, k, kR, A = \ symbols('R r C mR1 mR2 K K1 K2 m a b sR ksi ksm ki0 ki1 km0 km1 k k_R A', positive=True, real=True) # Samples of parameter values n = int(1E2) # Production run 1E5 ss = sobol_seq.i4_sobol_generate(4, n) l = np.power(2, -3 + (4+3)*ss[:,:2]) a1sp, b1sp = l[:,0], l[:,1] Ksp = 10**(ss[:,-2]*(np.log10(70000)-np.log10(7)) + np.log10(7)) gsp = 10**(ss[:,-1]*(np.log10(2)-np.log10(0.02)) + np.log10(0.02)) # Model definition model_mmi1_full = { 'pars': { 'sR': 0.0, 'a1' : 1, 'b1' : 1, 'sR0': 0.0, 'g': 1.0, 'K' : 10000, 'koff': 100, }, 'vars': { 'r': '1 - koff*K*R*r + koff*C - g*r + a1*C', 'R': 'sR0 + sR - koff*K*R*r + koff*C - R + b1*g*C', 'C': 'koff*K*R*r - koff*C - a1*C - b1*g*C', }, 'fns': {}, 'aux': [], 'name': 'mmi1_full'} ics_1_mmi1_full = {'r': 0.9, 'R': 0.0, 'C': 0.0} # Symbolic Jacobian eqnD = {} for k, v in model_mmi1_full['vars'].items(): eqnD[k] = parsing.sympy_parser.parse_expr(v, locals()) JnD = Matrix([eqnD['R'], eqnD['r'], eqnD['C']]).jacobian(Matrix([R, r, C])) fJnD = lambdify((K, R, r, C, a1, b1, g, koff), JnD, 'numpy') # Tellurium object r = model2te(model_mmi1_full, ics=ics_1_mmi1_full) uplim = 120 if 1: # A new run hb_cts, hbi, hbnds = 0, [], [] data_all = [] inuerr = [] for i in range(n): print(i) for j, p in enumerate(['a1', 'b1']): r[p] = l[i,j] r['g'], r['K'] = gsp[i], Ksp[i] data, bounds, boundsh = run_bf(r, auto, dirc="+", par="sR", lims=[0,uplim], ds=1E-2, dsmin=1E-5, dsmax=0.1) if data.r.iloc[-1] < -1: data, bounds, boundsh = run_bf(r, auto, dirc="+", par="sR", lims=[0,uplim], ds=1E-2, dsmin=1E-5, dsmax=0.01) data_all.append(data) if len(boundsh) > 0: print('HB point found') hb_cts += 1 hbi.append(i) hbnds.append(boundsh) if 1: # Save the output fn = './te_data/bf_data_MMI1.tebf' specs = {'model':model_mmi1_full, 'n':n, 'uplim':uplim, 'Ksp':Ksp, 'gsp':gsp, 'a1sp':a1sp, 'b1sp':b1sp } with open(fn, 'wb') as f: pickle.dump({'data_all': data_all, 'specs': specs}, f) print('Sets with HB: ', hb_cts) print('Numerical errors', len(inuerr)) else: # Reading a single file fn = './te_data/bf_data_MMI1.tebf' print('Reading', fn) with open(fn, 'rb') as f: f_cont = pickle.load(f) data_all, specs = f_cont['data_all'], f_cont['specs'] n, uplim, Ksp, gsp = specs['n'], specs['uplim'], specs['Ksp'], specs['gsp'] a1sp, b1sp = specs['a1sp'], specs['b1sp'] print('Curves: '+str(n)+'\t','uplim: '+str(uplim)) for sp in ['Ksp', 'gsp', 'a1sp', 'b1sp']: print(sp + ' is between %.4f and %.4f'%(specs[sp].min(), specs[sp].max())) print('\n') # More detailed analysis of the continuation output oui = [] # Spiral sinks hbi = [] # Hopf mxi = [] # Hopf and SN inuerr = [] binned_Rs = [] binned_Rts = [] binned_cons = [] hist_imag = np.zeros(60) nR = 62 do_pars = [] for i, data in enumerate(data_all[:]): if ((i+1) % 10000) == 0: print(i+1) if len(data) == 0: inuerr.append(i) continue if data.PAR.iloc[-1] < (uplim-1) or data.PAR.iloc[-1] > (uplim+1): mxi.append(i) if (data.TY == 3).sum()>0: hbi.append(i) Rsp, rsp, Csp = data.R.values, data.r.values, data.C.values JnDsp = fJnD(Ksp[i], Rsp, rsp, Csp, a1sp[i], b1sp[i], gsp[i], 100.0) Jsp = np.zeros((JnDsp.shape[0], JnDsp.shape[0], Rsp.shape[0])) for p in range(JnDsp.shape[0]): for q in range(JnDsp.shape[1]): Jsp[p,q,:] = JnDsp[p,q] Jsp = np.swapaxes(np.swapaxes(Jsp, 0, 2), 1,2) w, v = np.linalg.eig(Jsp) #print(w) if_imag = np.imag(w) != 0 imags = ((if_imag).sum(axis=1)>0) & (Rsp>-10) & (rsp>-10) igt = np.where(Rsp>0.01)[0] if (len(igt) > 0): sRthr = data.PAR[igt[0]] std_sigs = np.linspace(sRthr*0.0, sRthr*3.1, nR) ids = np.searchsorted(data.PAR, std_sigs) binned_R, binned_Rt = np.empty(nR), np.empty(nR) binned_R[:], binned_Rt[:] = np.NaN, np.NaN R_data = Rsp[[x for x in ids if x < Rsp.size]] Rt_data = R_data + Csp[[x for x in ids if x < Rsp.size]] binned_R[:R_data.size] = R_data binned_Rt[:R_data.size] = Rt_data binned_Rs.append(binned_R) binned_Rts.append(binned_Rt) binned_cons.append(std_sigs) if imags.sum() > 0: if (a1sp[i]>1 and b1sp[i]>1) or (a1sp[i]<1 and b1sp[i]<1): continue rmax, imax = np.real(w).min(axis=1), np.imag(w).max(axis=1) oui.append(i) imagi = np.where(imags>0)[0] if len(igt) > 0: hs, bins = np.histogram(data.PAR[imagi], bins=np.linspace(sRthr*0.0, sRthr*3.0, hist_imag.size+1)) hist_imag = hist_imag + ((hs>0)+0) fig, ax = plt.subplots(figsize=(3,3)) fig.subplots_adjust(bottom=0.2, right=0.78, left=0.15) ax2 = ax.twinx() ax2.bar(range(hist_imag.size), hist_imag/n, color='y', zorder=-10, width=1.0, alpha=0.5) dfl = pd.DataFrame(binned_Rs).melt() sns.lineplot(x="variable", y="value", data=dfl, color='k', ax=ax, ci=99.9, palette="flare") ax.set_ylabel(r'Steady state $\it{R}$ (A.U.)') ax.set_xlabel(r'$\sigma_R$') ax.set_xticks([0, 20, 40, 60]) ltr = r'$\hat{\it{\sigma_R}}$' ax.set_xticklabels([0, ltr, r'2$\times$'+ltr, r'3$\times$'+ltr]) ax.set_xlim(0, 40) ax.spines['right'].set_color('y') ax2.spines['right'].set_color('y') ax2.yaxis.label.set_color('y') ax2.tick_params(axis='y', colors='y') ax2.set_ylabel(r'Frequency (spiral sink)') plt.show() figc, axc = plt.subplots(figsize=(4,3)) figc.subplots_adjust(bottom=0.2, right=0.90, left=0.25) sns.lineplot(x="variable", y="value", data=dfl, color='k', ax=axc, ci=99.9, palette="flare", label=r'$\it{R}$') dft =
pd.DataFrame(binned_Rts)
pandas.DataFrame
# coding: utf-8 # --- # # _You are currently looking at **version 1.2** of this notebook. To download notebooks and datafiles, as well as get help on Jupyter notebooks in the Coursera platform, visit the [Jupyter Notebook FAQ](https://www.coursera.org/learn/python-social-network-analysis/resources/yPcBs) course resource._ # # --- # # Assignment 4 # In[3]: import networkx as nx import pandas as pd import numpy as np import pickle # --- # # ## Part 1 - Random Graph Identification # # For the first part of this assignment you will analyze randomly generated graphs and determine which algorithm created them. # In[4]: P1_Graphs = pickle.load(open('A4_graphs','rb')) P1_Graphs # <br> # `P1_Graphs` is a list containing 5 networkx graphs. Each of these graphs were generated by one of three possible algorithms: # * Preferential Attachment (`'PA'`) # * Small World with low probability of rewiring (`'SW_L'`) # * Small World with high probability of rewiring (`'SW_H'`) # # Anaylze each of the 5 graphs and determine which of the three algorithms generated the graph. # # *The `graph_identification` function should return a list of length 5 where each element in the list is either `'PA'`, `'SW_L'`, or `'SW_H'`.* # In[5]: def degree_distribution(G): degrees = G.degree() degree_values = sorted(set(degrees.values())) histogram = [list(degrees.values()).count(i) / float(nx.number_of_nodes(G)) for i in degree_values] return histogram # In[6]: degree_distribution(P1_Graphs[2]) # In[7]: nx.average_clustering(P1_Graphs[1]) # In[9]: nx.average_shortest_path_length(P1_Graphs[1]) # In[10]: for G in P1_Graphs: print(nx.average_clustering(G), nx.average_shortest_path_length(G), len(degree_distribution(G))) # In[11]: def graph_identification(): methods = [] for G in P1_Graphs: clustering = nx.average_clustering(G) shortest_path = nx.average_shortest_path_length(G) degree_hist = degree_distribution(G) if len(degree_hist) > 10: methods.append('PA') elif clustering < 0.1: methods.append('SW_H') else: methods.append('SW_L') return methods # In[12]: graph_identification() # --- # # ## Part 2 - Company Emails # # For the second part of this assignment you will be working with a company's email network where each node corresponds to a person at the company, and each edge indicates that at least one email has been sent between two people. # # The network also contains the node attributes `Department` and `ManagementSalary`. # # `Department` indicates the department in the company which the person belongs to, and `ManagementSalary` indicates whether that person is receiving a management position salary. # In[13]: G = nx.read_gpickle('email_prediction.txt') print(nx.info(G)) # In[14]: G.nodes(data = True)[:10] # ### Part 2A - Salary Prediction # # Using network `G`, identify the people in the network with missing values for the node attribute `ManagementSalary` and predict whether or not these individuals are receiving a management position salary. # # To accomplish this, you will need to create a matrix of node features using networkx, train a sklearn classifier on nodes that have `ManagementSalary` data, and predict a probability of the node receiving a management salary for nodes where `ManagementSalary` is missing. # # # # Your predictions will need to be given as the probability that the corresponding employee is receiving a management position salary. # # The evaluation metric for this assignment is the Area Under the ROC Curve (AUC). # # Your grade will be based on the AUC score computed for your classifier. A model which with an AUC of 0.88 or higher will receive full points, and with an AUC of 0.82 or higher will pass (get 80% of the full points). # # Using your trained classifier, return a series of length 252 with the data being the probability of receiving management salary, and the index being the node id. # # Example: # # 1 1.0 # 2 0.0 # 5 0.8 # 8 1.0 # ... # 996 0.7 # 1000 0.5 # 1001 0.0 # Length: 252, dtype: float64 # In[15]: G.nodes(data = True)[0][1] # In[16]: from sklearn.svm import SVC from sklearn.neural_network import MLPClassifier from sklearn.preprocessing import MinMaxScaler def salary_predictions(): def is_management(node): managementSalary = node[1]['ManagementSalary'] if managementSalary == 0: return 0 elif managementSalary == 1: return 1 else: return None df = pd.DataFrame(index=G.nodes()) df['clustering'] = pd.Series(nx.clustering(G)) df['degree'] = pd.Series(G.degree()) df['degree_centrality'] = pd.Series(nx.degree_centrality(G)) df['closeness'] = pd.Series(nx.closeness_centrality(G, normalized=True)) df['betweeness'] = pd.Series(nx.betweenness_centrality(G, normalized=True)) df['pr'] = pd.Series(nx.pagerank(G)) df['is_management'] = pd.Series([is_management(node) for node in G.nodes(data=True)]) df_train = df[~pd.isnull(df['is_management'])] df_test = df[pd.isnull(df['is_management'])] features = ['clustering', 'degree', 'degree_centrality', 'closeness', 'betweeness', 'pr'] X_train = df_train[features] Y_train = df_train['is_management'] X_test = df_test[features] scaler = MinMaxScaler() X_train_scaled = scaler.fit_transform(X_train) X_test_scaled = scaler.transform(X_test) clf = MLPClassifier(hidden_layer_sizes = [10, 5], alpha = 5, random_state = 0, solver='lbfgs', verbose=0) clf.fit(X_train_scaled, Y_train) test_proba = clf.predict_proba(X_test_scaled)[:, 1] return pd.Series(test_proba,X_test.index) # prediction = salary_predictions() # In[17]: salary_predictions() # ### Part 2B - New Connections Prediction # # For the last part of this assignment, you will predict future connections between employees of the network. The future connections information has been loaded into the variable `future_connections`. The index is a tuple indicating a pair of nodes that currently do not have a connection, and the `Future Connection` column indicates if an edge between those two nodes will exist in the future, where a value of 1.0 indicates a future connection. # In[18]: future_connections = pd.read_csv('Future_Connections.csv', index_col=0, converters={0: eval}) future_connections.head(10) # Using network `G` and `future_connections`, identify the edges in `future_connections` with missing values and predict whether or not these edges will have a future connection. # # To accomplish this, you will need to create a matrix of features for the edges found in `future_connections` using networkx, train a sklearn classifier on those edges in `future_connections` that have `Future Connection` data, and predict a probability of the edge being a future connection for those edges in `future_connections` where `Future Connection` is missing. # # # # Your predictions will need to be given as the probability of the corresponding edge being a future connection. # # The evaluation metric for this assignment is the Area Under the ROC Curve (AUC). # # Your grade will be based on the AUC score computed for your classifier. A model which with an AUC of 0.88 or higher will receive full points, and with an AUC of 0.82 or higher will pass (get 80% of the full points). # # Using your trained classifier, return a series of length 122112 with the data being the probability of the edge being a future connection, and the index being the edge as represented by a tuple of nodes. # # Example: # # (107, 348) 0.35 # (542, 751) 0.40 # (20, 426) 0.55 # (50, 989) 0.35 # ... # (939, 940) 0.15 # (555, 905) 0.35 # (75, 101) 0.65 # Length: 122112, dtype: float64 # In[19]: future_connections.head() # In[20]: G.node[1] # In[22]: from sklearn.neural_network import MLPClassifier from sklearn.preprocessing import MinMaxScaler def new_connections_predictions(): for node in G.nodes(): G.node[node]['community'] = G.node[node]['Department'] preferential_attachment = list(nx.preferential_attachment(G)) df = pd.DataFrame(index=[(x[0], x[1]) for x in preferential_attachment]) df['preferential_attachment'] = [x[2] for x in preferential_attachment] cn_soundarajan_hopcroft = list(nx.cn_soundarajan_hopcroft(G)) df_cn_soundarajan_hopcroft = pd.DataFrame(index=[(x[0], x[1]) for x in cn_soundarajan_hopcroft]) df_cn_soundarajan_hopcroft['cn_soundarajan_hopcroft'] = [x[2] for x in cn_soundarajan_hopcroft] df = df.join(df_cn_soundarajan_hopcroft,how='outer') df['cn_soundarajan_hopcroft'] = df['cn_soundarajan_hopcroft'].fillna(value=0) df['resource_allocation_index'] = [x[2] for x in list(nx.resource_allocation_index(G))] df['jaccard_coefficient'] = [x[2] for x in list(nx.jaccard_coefficient(G))] df = future_connections.join(df,how='outer') df_train = df[~
pd.isnull(df['Future Connection'])
pandas.isnull
""" XGBoost regressor for construction machine price prediction """ import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import xgboost as xgb from sklearn.model_selection import train_test_split from pandas_profiling import ProfileReport pd.set_option('display.max_rows', 500) plt.style.use('ggplot') def load_data(path: str) -> pd.DataFrame: """loads data Args: path (str): path to data Returns: pd.DataFrame: DataFrame of data """ data_df = pd.read_csv( path, parse_dates=["saledate"], low_memory=False ) return data_df def analyze_data(data_df: pd.DataFrame, profile_title='') -> None: """analyze data and make Pandas Profile Args: data_df (pd.DataFrame): Data profile_title (str, optional): Profile title. Defaults to ''. """ print(data_df.describe()) data_df.dtypes.value_counts() if profile_title != '': profile = ProfileReport( data_df, title=profile_title, explorative=True) profile.to_file(f"figures/{profile_title.split(' ', 1)[0]}_report.html") def transform_data(raw_df: pd.DataFrame) -> pd.DataFrame: """Transform data to ML-ready format Args: raw_df (pd.DataFrame): Raw data Returns: pd.DataFrame: Transformed data """ raw_df["saleYear"] = raw_df.saledate.dt.year raw_df["saleMonth"] = raw_df.saledate.dt.month raw_df["saleDay"] = raw_df.saledate.dt.day raw_df["saleDayOfWeek"] = raw_df.saledate.dt.dayofweek raw_df["saleDayOfYear"] = raw_df.saledate.dt.dayofyear raw_df.drop("saledate", axis=1, inplace=True) for label, content in raw_df.items(): if
pd.api.types.is_string_dtype(content)
pandas.api.types.is_string_dtype
import requests import pandas as pd import numpy as np import pathlib import zipline as zl import logbook import datetime import os from azul import price_manager_registry, BasePriceManager log = logbook.Logger('PolygonPriceManager') @price_manager_registry.register('polygon') class PolygonPriceManager(BasePriceManager): def __init__(self): super().__init__() api_key = os.getenv('AZUL_POLYGON_API_KEY') if not api_key or not isinstance(api_key, str): raise ValueError('The Polygon API key must be provided ' 'through the environment variable ' 'AZUL_POLYGON_API_KEY') self._api_key = api_key def _url(self, path): return 'https://api.polygon.io' + path # def get_stock_symbols(self, start_page=1, otc=False): # # symbols = [] # still_getting_pages = True # page = start_page # isOTC = 'true' if otc else 'false' # # while still_getting_pages: # # params = { # 'apikey': self._api_key, # 'type': 'cs', # 'perpage': 50, # 'page': page, # 'isOTC': isOTC # } # url = self._url('/v1/meta/symbols') # response = requests.get(url, params=params) # # if response.status_code in[401, 404, 409]: # log.error('Error getting symbols. Response code: {}'.format(response.status_code)) # still_getting_pages = False # continue # elif response.status_code != 200: # still_getting_pages = False # continue # # try: # json_dict = response.json() # symbol_object_list = json_dict['symbols'] # except Exception as e: # log.info('Could not read symbols.') # log.info('Exception: {}', e) # log.info('Status Code: {}'.format(response.status_code)) # # if not symbol_object_list: # still_getting_pages = False # continue # # for symbol_object in symbol_object_list: # symbols.append(symbol_object['symbol']) # # log.info('Getting symbols page: {}'.format(page)) # page += 1 # # return symbols # def _list_date(self, ticker): # # list_date = None # # params = { # 'apikey': self._api_key, # } # # url = self._url('/v1/meta/symbols/{}/company'.format(ticker)) # response = requests.get(url, params=params) # # if response.status_code != 200: # log.info('Error getting company information for {}.'.format(ticker)) # log.info('Response status code: {}'.format(response.status_code)) # return list_date # # try: # json_dict = response.json() # list_date = json_dict['listdate'] # except Exception as e: # log.info('Did not get company list date information for: {}'.format(ticker)) # # if list_date is None: # log.info('No list date provided for {}'.format(ticker)) # else: # log.info('The list date for {} was {}'.format(ticker, list_date)) # # return list_date def _minute_dataframe_for_date(self, ticker: str, start_timestamp: pd.Timestamp) -> pd.DataFrame: # https://api.polygon.io/v1/historic/agg/minute/{symbol}?from=2000-01-03&to=2000-01-04&apikey=xxx end_timestamp = start_timestamp.replace(hour=23, minute=59) df =
pd.DataFrame()
pandas.DataFrame
# -------------- import pandas as pd from sklearn import preprocessing #path : File path # Code starts here dataset =
pd.read_csv(path)
pandas.read_csv
#====================================================== # Model Utility Functions #====================================================== ''' Info: Utility functions for model building. Version: 2.0 Author: <NAME> Created: Saturday, 13 April 2019 ''' # Import modules import os import uuid import copy import time import random import numpy as np import pandas as pd from subprocess import call import itertools from datetime import datetime import matplotlib.pyplot as plt from matplotlib.pyplot import cm from sklearn.utils import resample from sklearn.tree import export_graphviz from sklearn.metrics import confusion_matrix from sklearn.preprocessing import Imputer from sklearn.model_selection import train_test_split, cross_val_score, GridSearchCV from sklearn.metrics import precision_score, recall_score, accuracy_score, f1_score from sklearn.ensemble import VotingClassifier from sklearn.metrics import classification_report from sklearn.metrics import roc_auc_score as roc from sklearn.metrics import f1_score #------------------------------ # Utility Functions #------------------------------ # Set section def set_section(string): # Check if string is too long string_size = len(string) max_length = 100 if string_size > max_length: print('TITLE TOO LONG') else: full_buffer_len = string_size print('\n') print(full_buffer_len * '-') print(string) print(full_buffer_len * '-'+'\n') def downsample_df(df, labels_df, random_seed): num_of_yt = sum(labels_df) random.seed(random_seed+1) downsample_bad_ix = random.sample(np.where(labels_df == 0)[0], num_of_yt) good_ix = np.where(labels_df == 1)[0] downsampled_full_ix = np.append(downsample_bad_ix, good_ix) df_ds = pd.concat([df.iloc[[index]] for index in downsampled_full_ix]) return df_ds def upsample(df, groupby_cols, random_seed, max_sample_ratio=1.5): max_sample_size = df.groupby(groupby_cols).agg('count').max().max() dfs = [] for i, df_ in df.groupby(groupby_cols): dfs.append(resample(df_, replace=True, n_samples=int(max_sample_size * max_sample_ratio), random_state=random_seed)) upsampled_df =
pd.concat(dfs, axis=0)
pandas.concat
# -*- coding: utf-8 -*- """ Created on Wed May 30 14:47:20 2018 @author: Greydon """ import os import re import numpy as np import pandas as pd from scipy.signal import welch, hanning, butter, lfilter, resample import matplotlib.pyplot as plt from matplotlib.ticker import FormatStrFormatter import matplotlib.ticker as mticker import pywt import tables import subprocess import scipy.io as spio import h5py import json ############################################################################## # HELPER FUNCTIONS # ############################################################################## def sorted_nicely(data, reverse = False): """ Sorts the given iterable in the way that is expected. Parameters ---------- data: array-like The iterable to be sorted. Returns ------- The sorted list. """ convert = lambda text: int(text) if text.isdigit() else text alphanum_key = lambda key: [convert(c) for c in re.split('([0-9]+)', key)] return sorted(data, key = alphanum_key, reverse=reverse) def downsample(data, oldFS, newFS): """ Resample data from oldFS to newFS using the scipy 'resample' function. Parameters ---------- data: array-like 2D matrix of shape (time, data) oldFS: int The sampling frequency of the data. newFS: int The new sampling frequency. Returns ------- newData: array-like The downsampled dataset. """ newNumSamples = int((len(data) / oldFS) * newFS) newData = np.array(resample(data, newNumSamples)) return newData ############################################################################## # FILTERS # ############################################################################## def butter_bandpass(lowcut, highcut, fs, order): nyq = 0.5 * fs low = lowcut / nyq high = highcut / nyq b, a = butter(order, [low, high], btype='band') return b, a def butterBandpass(d, lowcut, highcut, fs, order): b, a = butter_bandpass(lowcut, highcut, fs, order) y = lfilter(b, a, d) return y ############################################################################## # TIME DOMAIN FEATURES # ############################################################################## def MAV(data): """ Mean absolute value: the average of the absolute value of the signal. Parameters ---------- data: array-like 2D matrix of shape (time, data) Returns ------- MAVData: 1D numpy array containing average absolute value Reference --------- <NAME>., <NAME>., & <NAME>. (1993). A new strategy for multifunction myoelectric control. IEEE Transactions on Bio-Medical Engineering, 40(1), 82–94. """ MAVData = sum(abs(data))/len(data) return MAVData def MAVS(data1, data2): """ Mean Absolute Value Slope: the difference between MAVs in adjacent segments. Parameters ---------- data1: array-like 2D matrix of shape (time, data) data2: array-like 2D matrix of shape (time, data) of subsequent segment to x1 Returns ------- MAVSlope: 1D numpy array containing MAV for adjacent signals Reference --------- <NAME>., <NAME>., & <NAME>. (1993). A new strategy for multifunction myoelectric control. IEEE Transactions on Bio-Medical Engineering, 40(1), 82–94. """ MAV1Data = sum(abs(data1))/len(data1) MAV2Data = sum(abs(data2))/len(data2) MAVSlope = MAV2Data - MAV1Data return MAVSlope def MMAV1(data): """ Modified Mean Absolute Value 1: an extension of MAV using a weighting window function on data below 25% and above 75%. Parameters ---------- data: array-like 2D matrix of shape (time, data) Returns ------- MMAV1Data: 1D numpy array containing modified MAV for given signal Reference --------- <NAME>., <NAME>., & <NAME>. (2009). A Novel Feature Extraction for Robust EMG Pattern Recognition. Journal of Medical Engineering and Technology, 40(4), 149–154. """ w1 = 0.5 segment = int(len(data)*0.25) start = abs(data[0:segment,])*w1 middle = abs(data[segment:(len(data)-segment),]) end = abs(data[(len(data)-segment):,])*w1 combined = np.concatenate((start, middle, end)) MMAV1Data = sum(abs(combined))/len(combined) return MMAV1Data def MMAV2(data): """ Modified Mean Absolute Value 2: the smooth window is improved by using a continuous weighting window function on data below 25% and above 75%. Parameters ---------- data: array-like 2D matrix of shape (time, data) Returns ------- MMAV2Data: 1D numpy array containg modified MAV for signal Reference --------- <NAME>., <NAME>., & <NAME>. (2009). A Novel Feature Extraction for Robust EMG Pattern Recognition. Journal of Medical Engineering and Technology, 40(4), 149–154. """ segment = int(len(data)*0.25) a = [] b = [] for i in range(segment): endIdx = (len(data)-segment)+i a.append((4*i)/len(data)) b.append((4*(len(data)-endIdx))/len(data)) start = abs(data[0:segment,])*a middle = abs(data[segment:(len(data)-segment),]) end = abs(data[(len(data)-segment):,])*b combined = np.concatenate((start,middle,end)) MMAV2Data = sum(abs(combined))/len(combined) return MMAV2Data def RMS(data): """ Root mean square: the root mean square of a given recording. Parameters ---------- data: array-like 2D matrix of shape (time, data) Returns ------- RMSData: 1D numpy array containing root mean square of the signal Reference --------- <NAME>., <NAME>., & <NAME>. (2009). A Novel Feature Extraction for Robust EMG Pattern Recognition. Journal of Medical Engineering and Technology, 40(4), 149–154. """ RMSData = (sum(data*data)/len(data))**0.5 return RMSData def VAR(data): """ Variance: deviation of the signal from it's mean. Parameters ---------- data: array-like 2D matrix of shape (time, data) Returns ------- varianceData: 1D numpy array containg the signal variance Reference --------- <NAME>., & <NAME>. (2000). DSP-based controller for a multi-degree prosthetic hand. Robotics and Automation, 2000. …, 2(April), 1378–1383. """ meanData = sum(data)/len(data) varianceData = sum((data-meanData)*(data-meanData))/len(data) return varianceData def curveLen(data): """ Curve length: the cumulative length of the waveform over the time segment. This feature is related to the waveform amplitude, frequency and time. Parameters ---------- data: array-like 2D matrix of shape (time, data) Returns ------- curveLenData: 1D numpy array containing the average curve length for given signal Reference --------- <NAME>., <NAME>., & <NAME>. (1993). A new strategy for multifunction myoelectric control. IEEE Transactions on Bio-Medical Engineering, 40(1), 82–94. """ data1 = data[1:] data2 = data[:-1] curveLenData = sum(abs(data2-data1))/(len(data)-1) return curveLenData def zeroCross(data, threshold): """ Zero crossings: Calculates the number of times the signal amplitude crosses the zero y-axis. Parameters ---------- data: array-like 2D matrix of shape (time, data) Returns ------- zeroCrossData: 1D numpy array containing total number of zero crossings in the given signal Reference --------- <NAME>., <NAME>., & <NAME>. (1993). A new strategy for multifunction myoelectric control. IEEE Transactions on Bio-Medical Engineering, 40(1), 82–94. """ sign = lambda z: (1, -1)[z < 0] i = abs(np.array([sign(x) for x in data[1:]]) - np.array([sign(x) for x in data[:-1]])) zeroCrossData = sum(i)/(len(data)) return zeroCrossData def slopeSign(data): """ Slope Sign Change: The number of changes between positive and negative slope among three consecutive segments are performed with the threshold function. Parameters ---------- data: array-like 2D matrix of shape (time, data) Returns ------- slopeSignData: 1D numpy array containing the total slope sign changes for a given signal Reference --------- <NAME>., <NAME>., & <NAME>. (1993). A new strategy for multifunction myoelectric control. IEEE Transactions on Bio-Medical Engineering, 40(1), 82–94. """ i = (data[1:-1]-data[:-2]) j = (data[1:-1]-data[2:]) slopeSignData = len(np.where((i*j) > 10)[0]) return slopeSignData def threshold(data): """ Threshold: measure of how scattered the sign is (deviation). Parameters ---------- data: array-like 2D matrix of shape (time, data) Returns ------- thresholdData: 1D numpy array containing the total threshold value for a given signal Reference --------- <NAME>., <NAME>., <NAME>., <NAME>., & <NAME>. (2011). Characterization of subcortical structures during deep brain stimulation utilizing support vector machines. Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference, 2011, 7949–7952. """ i = data-(sum(data)/len(data)) j = sum(i*i) thresholdData = (3*(j**(1/2)))/(len(data)-1) return thresholdData def WAMP(data, threshold): """ Willison Amplitude: the number of times that the difference between signal amplitude among two adjacent segments that exceeds a predefined threshold to reduce noise effects. Parameters ---------- data: array-like 2D matrix of shape (time, data) threshold: int threshold level in uV (generally use 10 microvolts) Returns ------- WAMPData: 1D numpy array containing total number of times derivative was above threshold in a given signal Reference --------- <NAME>., & <NAME>. (2000). DSP-based controller for a multi-degree prosthetic hand. Robotics and Automation, 2000. …, 2(April), 1378–1383. """ i = abs(data[:-1]-data[1:]) j = i[i > threshold] WAMPData = len(j) return WAMPData def SSI(data): """ Simple Square Integral: uses the energy of signal as a feature. Parameters ---------- data: array-like 2D matrix of shape (time, data) Returns ------- SSIData: 1D numpy array containing the summed absolute square of the given signal Reference --------- <NAME>., <NAME>., & <NAME>. (2009). A Novel Feature Extraction for Robust EMG Pattern Recognition. Journal of Medical Engineering and Technology, 40(4), 149–154. """ SSIData = sum(abs(data*data)) return SSIData def powerAVG(data): """ Average power: the amount of work done, amount energy transferred per unit time. Parameters ---------- data: array-like 2D matrix of shape (time, data) Returns ------- powerAvgData: 1D numpy array containing average power in a given signal """ powerAvgData = sum(data*data)/len(data) return powerAvgData def peaksNegPos(data): """ Peaks: the number of positive peaks in the data window per unit time. Parameters ---------- data: array-like 2D matrix of shape (time, data) Returns ------- peaksNegPosData: 1D numpy array containing total number of peaks in given signal """ sign = lambda z: (1, -1)[z < 0] i = [sign(z) for z in (data[2:]-data[1:-1])] j = [sign(z) for z in (data[1:-1]-data[:-2])] k = [a_i - b_i for a_i, b_i in zip(j, i)] peaksNegPosData = [max([0,z]) for z in k] peaksNegPosData = sum(peaksNegPosData)/(len(data)-2) return peaksNegPosData def peaksPos(data): """ Peak Density: calculates the density of peaks within the current locality. A peak is defined as a point higher in amplitude than the two points to its left and right side. Parameters ---------- data: array-like 2D matrix of shape (time, data) Returns ------- peaksPosData: 1D numpy array containing the average number of peaks in a given signal """ data1 = data[1:-1] data2 = data[0:-2] data3 = data[2:] data4 = data1 - data2 data5 = data1 - data3 peakcount = 0 for i in range(len(data)-2): if data4[i] > 0 and data5[i]>0: peakcount += 1 peaksPosData = peakcount/(len(data)-2) return peaksPosData def tkeoTwo(data): """ Teager-Kaiser Energy Operator: is analogous to the total (kinetic and potential) energy of a signal. This variation uses the second derivative. Parameters ---------- data: array-like 2D matrix of shape (time, data) Returns ------- tkeoTwoData: 1D numpy array containing total teager energy of a given signal using two samples Reference --------- 1. <NAME>. (1990). On a simple algorithm to calculate the “energy” of a signal. In International Conference on Acoustics, Speech, and Signal Processing (Vol. 2, pp. 381–384). IEEE. 2. <NAME>., <NAME>., & <NAME>. (2007). Teager-Kaiser energy operation of surface EMG improves muscle activity onset detection. Annals of Biomedical Engineering, 35(9), 1532–8. """ i = data[1:-1]*data[1:-1] j = data[2:]*data[:-2] tkeoTwoData = sum(i-j)/(len(data)-2) return tkeoTwoData def tkeoFour(data): """ Teager-Kaiser Energy Operator: is analogous to the total (kinetic and potential) energy of a signal. This variation uses the 4th order derivative. Parameters ---------- data: array-like 2D matrix of shape (time, data) Returns ------- tkeoFourData: 1D numpy array containing total teager energy of a given signal using 4 samples Reference --------- 1. <NAME>. (1990). On a simple algorithm to calculate the “energy” of a signal. In International Conference on Acoustics, Speech, and Signal Processing (Vol. 2, pp. 381–384). IEEE. 2. <NAME>., <NAME>., <NAME>., <NAME>., <NAME>., <NAME>., … <NAME>. (2008). Automated neonatal seizure detection mimicking a human observer reading EEG. Clinical Neurophysiology : Official Journal of the International Federation of Clinical Neurophysiology, 119(11), 2447–54. """ l = 1 p = 2 q = 0 s = 3 tkeoFourData = sum(data[l:-p]*data[p:-l]-data[q:-s]*data[s:])/(len(data)-3) return tkeoFourData def KUR(data): """ Kurtosis: calculates the degree to which the signal has 'tails'. Heavy-tail would mean many outliers. A normal distribution kurtosis value is 3. Parameters ---------- data: array-like 2D matrix of shape (time, data) Returns ------- kurtosisData: 1D numpy array containing the total kurtosis for a given signal Reference --------- <NAME>., <NAME>., & <NAME>. (2000). Flexible Independent Component Analysis. Journal of VLSI Signal Processing Systems for Signal, Image and Video Technology, 26(1), 25–38. """ meanX = sum(data)/len(data) diff = [z - meanX for z in data] sq_differences = [d**2 for d in diff] var = sum(sq_differences)/len(data) stdData = var**0.5 i = sum((data-meanX)**4) j = (len(data)-1)*(stdData)**4 kurtosisData = i/j return kurtosisData def SKW(data): """ Skewness: measures symmetry in the signal, the data is symmetric if it looks the same to the left and right of the center point. A skewness of 0 would indicate absolutely no skew. Parameters ---------- data: array-like 2D matrix of shape (time, data) Returns ------- skewnessData: 1D numpy array containing the total skewness for a given signal Reference --------- <NAME>., <NAME>., & <NAME>. (2011). Rolling element bearing fault detection in industrial environments based on a K-means clustering approach. Expert Systems with Applications, 38(3), 2888–2911. """ meanX = sum(data)/len(data) diff = [z - meanX for z in data] sq_differences = [d**2 for d in diff] var = sum(sq_differences)/len(data) stdX = var**0.5 i = sum((data-meanX)**3) j = (len(data)-1)*(stdX)**3 skewnessData = i/j return skewnessData def crestF(data): """ Crest factor: the relation between the peak amplitude and the RMS of the signal. Parameters ---------- data: array-like 2D matrix of shape (time, data) Returns ------- crestFactorData: 1D numpy array containing the total crest factor for a given signal Reference --------- <NAME>., <NAME>., & <NAME>. (2011). Rolling element bearing fault detection in industrial environments based on a K-means clustering approach. Expert Systems with Applications, 38(3), 2888–2911. """ DC_remove = data - (sum(data)/len(data)) peakAmp = max(abs(DC_remove)) RMS = (sum(DC_remove*DC_remove)/len(DC_remove))**0.5 crestFactorData = peakAmp/RMS return crestFactorData def entropy(data): """ Entropy: is an indicator of disorder or unpredictability. The entropy is smaller inside STN region because of its more rhythmic firing compared to the mostly noisy background activity in adjacent regions. Parameters ---------- data: array-like 2D matrix of shape (time, data) Returns ------- entropyData: 1D numpy array containing the total entropy for a given signal Reference --------- <NAME>., & <NAME>. (2004). Entropy And Entropy-based Features In Signal Processing. Laboratory of Intelligent Communication Systems, Dept. of Computer Science and Engineering, University of West Bohemia, Plzen, Czech Republic, 1–2. """ ent = 0 m = np.mean(data) for i in range(len(data)): quo = abs(data[i] - m) ent = ent + (quo* np.log10(quo)) entropyData = -ent return entropyData def shapeFactor(data): """ Shape Factor: value affected by objects shape but is independent of its dimensions. Parameters ---------- data: array-like 2D matrix of shape (time, data) Returns ------- shapeFactorData: 1D numpy array containing shape factor value for a given signal Reference --------- <NAME>., <NAME>., & <NAME>. (2011). Rolling element bearing fault detection in industrial environments based on a K-means clustering approach. Expert Systems with Applications, 38(3), 2888–2911. """ RMS = (sum(data*data)/len(data))**0.5 shapeFactorData = RMS/(sum(abs(data))/len(data)) return shapeFactorData def impulseFactor(data): """ Impulse Factor: Parameters ---------- data: array-like 2D matrix of shape (time, data) Returns ------- impulseFactorData: 1D numpy array containing impulse factor value for a given signal Reference --------- <NAME>., <NAME>., & <NAME>. (2011). Rolling element bearing fault detection in industrial environments based on a K-means clustering approach. Expert Systems with Applications, 38(3), 2888–2911. """ impulseFactorData = max(abs(data))/(sum(abs(data))/len(data)) return impulseFactorData def clearanceFactor(data): """ Clearance Factor: Parameters ---------- data: array-like 2D matrix of shape (time, data) Returns ------- clearanceFactorData: 1D numpy array containing impulse factor value for a given signal Reference --------- <NAME>., <NAME>., & <NAME>. (2011). Rolling element bearing fault detection in industrial environments based on a K-means clustering approach. Expert Systems with Applications, 38(3), 2888–2911. """ clearanceFactorData = max(abs(data))/((sum(abs(data)**0.5)/len(data))**2) return clearanceFactorData ############################################################################## # FREQUENCY DOMAIN # ############################################################################## def computeFFT(data, Fs, normalize=False): """ Compute the FFT of `data` and return. Also returns the axis in Hz for further plot. Parameters ---------- data: array-like 2D matrix of shape (time, data) Fs: int Sampling frequency in Hz. Returns ------- fAx: array-like Axis in Hz to plot the FFT. fftData: array-like Value of the fft. """ N = data.shape[0] fAx = np.arange(N/2) * Fs/N if normalize: Y = np.fft.fft(data)/int(len(data)) fftData = abs(Y[range(int(len(data)/2))]) else: Y = np.abs(np.fft.fft(data)) fftData = 2.0/N * np.abs(Y[0:N//2]) return fAx, fftData def wrcoef(data, coef_type, coeffs, wavename, level): N = np.array(data).size a, ds = coeffs[0], list(reversed(coeffs[1:])) if coef_type =='a': return pywt.upcoef('a', a, wavename, level=level)[:N] elif coef_type == 'd': return pywt.upcoef('d', ds[level-1], wavename, level=level)[:N] else: raise ValueError("Invalid coefficient type: {}".format(coef_type)) def wavlet(data, nLevels, waveletName, timewindow, windowSize, Fs): """ Wavelet Transform: captures both frequency and time information. Parameters ---------- data: array-like 2D matrix of shape (time, data) nLevels: int Number of levels for the wavlet convolution waveletName: str Name of the wavelet to be used timewindow: boolean Option to split the given signal into discrete time bins windowSize: int If timewindow is TRUE then provide the size of the time window Fs: int If timewindow is TRUE then provide the sampling rate of the given signal Returns ------- waveletData: 1D numpy array containing the standard deviation of the wavelet convolution for a given signal """ if timewindow == True: windowsize = windowSize*Fs n = int(len(data)) windown=int(np.floor(n/windowsize)) waveletData=[] for i in range(windown-1): xSeg = data[windowsize*i:windowsize*(i+1)] coeffs = pywt.wavedec(xSeg, waveletName, level=nLevels) waveletData.append(np.std(wrcoef(xSeg, 'd', coeffs, waveletName, nLevels))) else: coeffs = pywt.wavedec(data, waveletName, level=nLevels) waveletData = np.std(wrcoef(data, 'd', coeffs, waveletName, nLevels)) return waveletData def computeAvgDFFT(data, Fs, windowLength = 256, windowOverlapPrcnt = 50, Low=500, High=5000): """ Fast Fourier Transform: captures the frequency information within a signal. Parameters ---------- data: array-like 2D matrix of shape (time, data) Fs: int Sampling rate of the given signal Low: int The highpass frequency cutoff High: int The lowpass frequency cutoff Returns ------- averagePxxWelch: average power in defined passband """ # Defining hanning window win = hanning(windowLength, True) welchNoverlap = int(windowLength*windowOverlapPrcnt/100.0) f, Pxxf = welch(data, Fs, window=win, noverlap=welchNoverlap, nfft=windowLength, return_onesided=True) indexLow = np.where(f == min(f, key=lambda x:abs(x-Low)))[0][0] indexHigh = np.where(f == min(f, key=lambda x:abs(x-High)))[0][0] averagePxxWelch = np.mean(Pxxf[indexLow:indexHigh]) return averagePxxWelch def meanFrq(data, Fs): """ Mean Frequency: calculated as the sum of the product of the spectrogram intensity (in dB) and the frequency, divided by the total sum of spectrogram intensity. Parameters ---------- data: array-like 2D matrix of shape (time, data) Fs: int Sampling rate of the given signal Returns ------- meanFrqData: 1D numpy array containing the mean frequency of a given signal Reference --------- <NAME>., & <NAME>. (2006). GA-based Feature Subset Selection for Myoelectric Classification. In 2006 IEEE International Conference on Robotics and Biomimetics (pp. 1465–1470). IEEE. """ win = 4 * Fs freqs, psd = welch(data, Fs, nperseg=win, scaling='density') meanFrqData = sum(freqs*psd)/sum(psd) return meanFrqData def freqRatio(data, Fs): """ Frequency Ratio: ratio between power in lower frequencies and power in higher frequencies Parameters ---------- data: array-like 2D matrix of shape (time, data) Fs: int Sampling rate of the given signal Returns ------- freqRatioData: Reference --------- <NAME>., <NAME>., <NAME>., <NAME>., <NAME>., & <NAME>. (2000). New EMG pattern recognition based on soft computing techniques and its application to control of a rehabilitation robotic arm. Proc. of 6th International Conference on Soft Computing (IIZUKA2000), 890–897. """ win = 4 * Fs freqs, psd = welch(data, Fs, nperseg=win, scaling='density') freqRatioData = abs(psd[:int(len(freqs)/2)])/abs(psd[int(len(freqs)/2):-1]) return freqRatioData def meanAmpFreq(data, windowSize, Fs): """ Mean Frequency Amplitude: Parameters ---------- data: array-like 2D matrix of shape (time, data) windowSize: int Size of the window Fs: int Sampling rate of the given signal Returns ------- meanAmpFreqData: 1D numpy array containing """ window = windowSize*Fs n = int(len(data)) windown=int(np.floor(n/window)) meanAmpFreqData=[] for i in range(windown-1): xSeg = data[window*i:window*(i+1)] meanAmpFreqData.append(np.median(abs(np.fft.fft(xSeg)))) return meanAmpFreqData ############################################################################## # VISUALIZATION # ############################################################################## channelLabels = {1:"Center", 2:"Anterior", 3:"Posterior", 4:"Medial", 5:"Lateral"} class MathTextSciFormatter(mticker.Formatter): def __init__(self, fmt="%1.2e"): self.fmt = fmt def __call__(self, x, pos=None): s = self.fmt % x decimal_point = '.' positive_sign = '+' tup = s.split('e') significand = tup[0].rstrip(decimal_point) sign = tup[1][0].replace(positive_sign, '') exponent = tup[1][1:].lstrip('0') if exponent: exponent = '10^{%s%s}' % (sign, exponent) if significand and exponent: s = r'\bf %s{\times}%s' % (significand, exponent) else: s = r'\bf %s%s' % (significand, exponent) return "${}$".format(s) def axFormat(a): a.yaxis.set_major_formatter(MathTextSciFormatter("%1.2e")) a.xaxis.set_major_formatter(FormatStrFormatter('%.02f')) for tick in a.xaxis.get_major_ticks(): tick.label1.set_fontweight('bold') # for tick in a.yaxis.get_major_ticks(): # tick.label1.set_fontweight('bold') def axFormaty(a): a.yaxis.set_major_formatter(FormatStrFormatter('%.02f')) a.xaxis.set_major_formatter(FormatStrFormatter('%.02f')) for tick in a.yaxis.get_major_ticks(): tick.label1.set_fontweight('bold') def plotting(x, showOnly, timeWindow, processedFolder): featureLabels = pd.DataFrame([{'mav': 'Mean Absolute Value', 'mavSlope': 'Mean Absolute Value Slope', 'variance': 'Variance', 'mmav1': 'Mean Absolute Value 1', 'mmav2': 'Mean Absolute Value 2', 'rms': 'Root Mean Square', 'curveLength': 'Curve Length', 'zeroCross': 'Zero Crossings', 'slopeSign': 'Slope Sign', 'threshold': 'Threshold', 'wamp': 'Willison Amplitude', 'ssi': 'Simple Square Integral', 'power': 'Power', 'peaksNegPos': 'Peaks - Negative and Positive', 'peaksPos': 'Peaks - Positive', 'tkeoTwo': 'Teager-Kaiser Energy Operator - Two Samples', 'tkeoFour': 'Teager-Kaiser Energy Operator - Four Samples', 'kurtosis': 'Kurtosis', 'skew': 'Skewness', 'crestF': 'Crest Factor', 'meanF': 'Mean Frequency', 'binData': 'Raw Data', 'AvgPowerMU': 'Bandpass Power (500-1000Hz)', 'AvgPowerSU': 'Bandpass Power (1000-3000Hz)', 'entropy': 'Signal Entropy', 'waveletStd': 'STD of Wavlet Convolution', 'spikeISI': 'Inter-Spike Interval', 'meanISI': 'Mean of ISI', 'stdISI': 'STD of ISI', 'burstIndex': 'Burst Index', 'pauseIndex': 'Pause Index', 'pauseRatio': 'Pause Ratio', 'spikeDensity': 'Spike Density'}]) subList = np.unique(x['subject']) for isub in range(len(subList)): if timeWindow==True: outputDir = processedFolder + '/sub-' + str(subList[isub]) + '/timeWindow/' if not os.path.exists(outputDir): os.makedirs(outputDir) else: outputDir = processedFolder + '/sub-' + str(subList[isub]) + '/depthWindow/' if not os.path.exists(outputDir): os.makedirs(outputDir) numSides = np.unique(x[(x['subject']==subList[isub])]['side']) for iside in range(len(numSides)): numChans = np.unique(x[(x['subject']==subList[isub]) & (x['side'] == numSides[iside])]['channel']) numFeatures = list(x.drop(['subject','side','channel','depth','labels', 'chanChosen'], axis=1)) if np.isnan(x[(x['subject']==subList[isub]) & (x['side'] == numSides[iside])]['chanChosen']).any(): chanSel = np.nan else: chanSel = np.unique(x[(x['subject']==subList[isub]) & (x['side'] == numSides[iside])]['chanChosen']) for ifeatures in range(len(numFeatures)): if 'binData' in numFeatures[ifeatures]: fileName = 'sub-' + str(subList[isub]) + '_side-' + numSides[iside] + '_' + featureLabels[numFeatures[ifeatures]].values[0].replace(" ", "") plotRaw(x,subList[isub],numSides[iside], numChans, chanSel, fileName, outputDir, 24000) print('Finished subject', str(subList[isub]), numSides[iside], 'side', 'feature:', featureLabels[numFeatures[ifeatures]].values[0]) elif 'spikeISI' in numFeatures[ifeatures]: nothing = [] elif numFeatures[ifeatures] in {'PositiveSpikes','PositiveTimes','NegativeSpikes','NegativeTimes'}: nothing = [] else: fig, axs = plt.subplots(len(numChans),1, sharex=True, sharey=False) fig.subplots_adjust(hspace=0.1, wspace=0) titleLab = 'Sub-' + str(subList[isub]) + ' ' + numSides[iside] + ' Side: ' + featureLabels[numFeatures[ifeatures]].values[0] fileName = 'sub-' + str(subList[isub]) + '_side-' + numSides[iside] + '_' + featureLabels[numFeatures[ifeatures]].values[0].replace(" ", "") for ichan in range(len(numChans)): feature = np.array(x[(x['subject']==subList[isub]) & (x['side'] == numSides[iside]) & (x['channel'] == numChans[ichan])][numFeatures[ifeatures]]) depths = np.array(x[(x['subject']==subList[isub]) & (x['side'] == numSides[iside]) & (x['channel'] == numChans[ichan])]['depth']) labels = np.array(x[(x['subject']==subList[isub]) & (x['side'] == numSides[iside]) & (x['channel'] == numChans[ichan])]['labels']) channel = channelLabels.get(numChans[ichan]) muA = np.mean(feature) if timeWindow==False: if len(numChans) ==1: axs.plot(depths, feature) axs.set_xlim(depths[0,],depths[-1]) else: axs[ichan].plot(depths, feature) axs[ichan].set_xlim(depths[0,],depths[-1]) else: if len(numChans) ==1: axs.plot(np.arange(0,x.shape[1],1), feature) axs.set_xlim(0,(feature.shape[1])) else: axs[ichan].plot(np.arange(0,x.shape[1],1), feature) axs[ichan].set_xlim(0,(feature.shape[1])) if len(numChans) ==1: axs.plot(axs.get_xlim(), [muA,muA], ls= 'dashed', c='black') if ~np.isnan(chanSel): if numChans[ichan] == chanSel: axs.annotate(channel, xy=(1.01,0.5),xycoords='axes fraction', fontsize=12, fontweight='bold', color='red') else: axs.annotate(channel, xy=(1.01,0.5),xycoords='axes fraction', fontsize=12, fontweight='bold') else: axs.annotate(channel, xy=(1.01,0.5),xycoords='axes fraction', fontsize=12, fontweight='bold') if timeWindow==False: xticlabs = np.arange(depths[0],depths[-1],1) axs.xaxis.set_ticks(xticlabs) axs.xaxis.set_ticklabels(xticlabs, rotation = 45) else: xticlabs = np.arange(0,len(feature),5) axs.xaxis.set_ticks(xticlabs) axs.xaxis.set_ticklabels((xticlabs*2).astype(int), rotation = 45) axFormat(axs) if np.size(np.where(labels==1)) != 0: inDepth = depths[np.min(np.where(labels==1))] outDepth = depths[np.max(np.where(labels==1))] axs.axvspan(inDepth, outDepth, color='purple', alpha=0.2) for xc in depths: axs.axvline(x=xc, color='k', linestyle='--', alpha=0.2) else: axs[ichan].plot(axs[ichan].get_xlim(), [muA,muA], ls= 'dashed', c='black') if ~np.isnan(chanSel): if numChans[ichan] == chanSel: axs[ichan].annotate(channel, xy=(1.01,0.5),xycoords='axes fraction', fontsize=12, fontweight='bold', color='red') else: axs[ichan].annotate(channel, xy=(1.01,0.5),xycoords='axes fraction', fontsize=12, fontweight='bold') else: axs[ichan].annotate(channel, xy=(1.01,0.5),xycoords='axes fraction', fontsize=12, fontweight='bold') if timeWindow==False: xticlabs = np.arange(depths[0],depths[-1],1) axs[ichan].xaxis.set_ticks(xticlabs) axs[ichan].xaxis.set_ticklabels(xticlabs, rotation = 45) else: xticlabs = np.arange(0,len(feature),5) axs[ichan].xaxis.set_ticks(xticlabs) axs[ichan].xaxis.set_ticklabels((xticlabs*2).astype(int), rotation = 45) axFormat(axs[ichan]) if np.size(np.where(labels==1)) != 0: inDepth = depths[np.min(np.where(labels==1))] outDepth = depths[np.max(np.where(labels==1))] axs[ichan].axvspan(inDepth, outDepth, color='purple', alpha=0.2) for xc in depths: axs[ichan].axvline(x=xc, color='k', linestyle='--', alpha=0.2) plt.suptitle(titleLab, y=0.96,x=0.51, size=16, fontweight='bold') fig.text(0.51, 0.03, 'Depth (mm)', ha='center', size=14, fontweight='bold') fig.text(0.035, 0.5, featureLabels[numFeatures[ifeatures]].values[0], va='center', rotation='vertical', size=14, fontweight='bold') if showOnly == True: plt.show() else: figure = plt.gcf() # get current figure figure.set_size_inches(12, 8) if timeWindow==True: filepath = outputDir + fileName + '.png' else: filepath = outputDir + fileName + '.png' plt.savefig(filepath, dpi=100) # save the figure to file plt.close('all') print('Finished subject', str(subList[isub]), numSides[iside], 'side', 'feature:', featureLabels[numFeatures[ifeatures]].values[0]) def extract_raw_nwbFile(file_name, trimData, FilterData): patientDF =
pd.DataFrame([])
pandas.DataFrame
import mongomanager import intriniowrapper import logging import inspect import copy import pandas as pd import commonqueries from datetime import datetime from dateutil.relativedelta import relativedelta import os import configwrapper class IntrinioUpdater(): def __init__(self,config_file,proxies=None,timeout=300,max_retries=50,error_codes=[500,503],internal_error_codes=[401,403,404,429]): self.config = configwrapper.ConfigWrapper(config_file=config_file) collections=self.build_collections() self.collections=collections auth=(self.config.get_string('INTRINIO','username'),self.config.get_string('INTRINIO','password')) if auth is None: auth=() if proxies is None: proxies={} if collections is None: collections={} self.mongo = mongomanager.MongoManager(port=self.config.get_int('FINANCIALDATA_MONGO','port'),host=self.config.get_string('FINANCIALDATA_MONGO','host'), username=self.config.get_string('FINANCIALDATA_MONGO','username'), password=self.config.get_string('FINANCIALDATA_MONGO','password'), dbname=self.config.get_string('FINANCIALDATA_MONGO','dbname')) self.cq=commonqueries.CommonQueries(port=self.config.get_int('FINANCIALDATA_MONGO','port'),host=self.config.get_string('FINANCIALDATA_MONGO','host'), username=self.config.get_string('FINANCIALDATA_MONGO','username'), password=self.config.get_string('FINANCIALDATA_MONGO','password'), dbname=self.config.get_string('FINANCIALDATA_MONGO','dbname'),collections=collections) self.intrinio=intriniowrapper.IntrinioWrapper(auth,proxies,timeout,max_retries,error_codes,internal_error_codes) self.last_trade_day=pd.to_datetime(self.cq.get_last_complete_market_day()) return def build_collections(self): collections={} for option in self.config.get_options('FINANCIALDATA_COLLECTIONS'): collections[option]=self.config.get_string('FINANCIALDATA_COLLECTIONS',option) return collections def update_company(self,value): company_details=self.intrinio.get_companies(identifier=value) if company_details is None or 'cik' not in company_details or company_details['cik'] is None or 'latest_filing_date' not in company_details or company_details['latest_filing_date'] is None: logging.error('company details is none') return False self.mongo.db[self.collections['intrinio_companies']].update({'cik':company_details['cik']},company_details,upsert=True) logging.info('company update:'+value) return True def update_companies(self,full_update=False): #will update the intrinio_companies collection also includs details in the same collection self.mongo.create_index(self.collections['intrinio_companies'],'latest_filing_date') self.mongo.create_index(self.collections['intrinio_companies'],'cik',unique=True) self.mongo.create_index(self.collections['intrinio_companies'],'ticker') max_date=self.mongo.db[self.collections['intrinio_companies']].find_one(sort=[("latest_filing_date",-1)]) logging.info('max_company:'+str(max_date)) if max_date==None or full_update==True: max_date=None else: max_date=max_date['latest_filing_date'] companies=self.intrinio.get_companies(latest_filing_date=max_date) if companies is None or len(companies)==0: logging.info('companies len is 0 or companies is none') return False companies=pd.DataFrame(companies) companies=companies[pd.notnull(companies['cik'])] companies=companies[pd.notnull(companies['latest_filing_date'])] companies=companies[pd.notnull(companies['ticker'])] companies=companies.sort_values('latest_filing_date') #so we always process the oldest one first, this way if we ever need to do it again, we have the correct date for index,company in companies.iterrows(): self.update_company(company['cik']) logging.info(str(len(companies))+':companies updated sucessfully') return True def update_all_company_filings(self): logging.info('Now in func:update_all_company_filings') self.mongo.create_index(self.collections['intrinio_filings'],'filing_date') self.mongo.create_index(self.collections['intrinio_filings'],'cik') self.mongo.create_index(self.collections['intrinio_filings'],'accno',unique=True) self.mongo.create_index(self.collections['intrinio_filings'],'report_type') self.mongo.create_index(self.collections['intrinio_filings'],'period_ended') self.mongo.create_index(self.collections['intrinio_pull_times'],'collection') self.mongo.create_index(self.collections['intrinio_pull_times'],'date') self.mongo.create_index(self.collections['intrinio_pull_times'],'cik') last_trade_day=self.last_trade_day logging.info('last_trade_day:'+str(last_trade_day)) max_filing_date=self.mongo.db[self.collections['intrinio_filings']].find_one({},sort=[("filing_date",-1)]) logging.info('max_filing_date:'+str(max_filing_date)) if max_filing_date is not None and pd.to_datetime(max_filing_date['filing_date'])>=last_trade_day: logging.info('we are already up to date on filings, no need to get things, this can wait until tomorrow') pass if max_filing_date is None or pd.to_datetime(max_filing_date['filing_date'])<=last_trade_day-relativedelta(days=15): logging.error('waited too long (15 days) to update filings, need to download all filings for each company, this will take a lot of calls') companies=self.cq.get_companies() ciks=companies['cik'].unique() self.update_filings(ciks=[ciks]) filings=self.intrinio.get_filings() #gets all filings in the past 30 days from intinio if filings is None or len(filings)==0: logging.error('no filings found when getting the last 30 days of filings for all companies') return filings=pd.DataFrame(filings) filings=filings.sort_values('accepted_date') min_filings_date=pd.to_datetime(filings['filing_date']).min() logging.info('min_filings_date:'+str(min_filings_date)) ciks=list(filings['cik'].unique()) for cik in ciks: logging.info('updating filing for cik:'+cik) cik_filings=filings[filings['cik']==cik].copy(deep=True) last_filing_pull=self.mongo.db[self.collections['intrinio_pull_times']].find_one({"cik":cik,'collection':self.collections['intrinio_filings']}) last_already_pulled_cik_filing=self.mongo.db[self.collections['intrinio_filings']].find_one({"cik":cik},sort=[("filing_date",-1)]) if last_filing_pull is None and last_already_pulled_cik_filing is not None: last_filing_pull=pd.to_datetime(last_already_pulled_cik_filing['filing_date']).date() elif last_filing_pull is not None: last_filing_pull=pd.to_datetime(last_filing_pull['date']).date() else: last_filing_pull=None logging.info('last_filing_pull:'+str(last_filing_pull)) if last_filing_pull is None: logging.info('doing a full update of filings for cik:'+cik) self.update_filings(ciks=[cik],full_update=True) elif last_filing_pull is not None and last_filing_pull < min_filings_date.date(): logging.info('doing a parital of filings for cik:'+cik) self.update_filings(ciks=[cik]) elif last_filing_pull is not None and last_filing_pull >= min_filings_date.date(): logging.info('only updating what we need to, the last pull we have is greater than the min in the last 30 days') cik_filings['cik']=cik cik_filings['_id']=cik_filings['accno'] cik_filings=cik_filings.sort_values('accepted_date') for index,filing in cik_filings.iterrows(): filing_data=filing.to_dict() self.mongo.db[self.collections['intrinio_filings']].update({'accno':filing_data['accno']},filing_data,upsert=True) logging.info(str(len(cik_filings))+': filings updated for:'+cik) logging.info('update filings pull date') else: logging.error(str(last_filing_pull)) logging.error((pd.to_datetime(last_filing_pull['date'])).date()) logging.error(min_filings_date.date()) logging.error('we should never get here') exit() pull_data={'cik':cik,'collection':self.collections['intrinio_filings'],'date':last_trade_day.strftime('%Y-%m-%d')} self.mongo.db[self.collections['intrinio_pull_times']].update({"cik":cik,'collection':self.collections['intrinio_filings']},pull_data,upsert=True) return def update_filings(self,full_update=False,ciks=None): last_trade_day=self.last_trade_day self.mongo.create_index(self.collections['intrinio_filings'],'filing_date') self.mongo.create_index(self.collections['intrinio_filings'],'cik') self.mongo.create_index(self.collections['intrinio_filings'],'accno',unique=True) self.mongo.create_index(self.collections['intrinio_filings'],'report_type') self.mongo.create_index(self.collections['intrinio_filings'],'period_ended') self.mongo.create_index(self.collections['intrinio_pull_times'],'collection') self.mongo.create_index(self.collections['intrinio_pull_times'],'date') self.mongo.create_index(self.collections['intrinio_pull_times'],'cik') if ciks is None: #pass in a list of ciks that we want to update companies=self.cq.get_companies() ciks=companies['cik'].unique() for cik in ciks: company=self.cq.get_company(cik) if company is None or len(company)>1 or len(company)==0 or 'latest_filing_date' not in company: logging.error('cik:'+cik+' has no matching company') continue last_filing_pull=self.mongo.db[self.collections['intrinio_pull_times']].find_one({"cik":cik,'collection':self.collections['intrinio_filings']}) if full_update is not True and last_filing_pull is not None and pd.to_datetime(last_filing_pull['date'])>=last_trade_day: logging.info('last_filing_pull:'+str(last_filing_pull['date'])) logging.info('we are already up to date on this company filings, continueing:'+cik) continue max_filing_date=self.mongo.db[self.collections['intrinio_filings']].find_one({"cik":cik},sort=[("filing_date",-1)]) if max_filing_date!=None and full_update is not True: max_filing_date=(pd.to_datetime(max_filing_date['filing_date'])).date().strftime('%Y-%m-%d') else: max_filing_date=None logging.info('max_filing_date:'+str(max_filing_date)) filings=self.intrinio.get_company_filings(start_date=max_filing_date,identifier=cik) if filings is None or len(filings)==0: logging.info('filings is none or filings are empty') else: filings=pd.DataFrame(filings) filings['cik']=cik filings['_id']=filings['accno'] filings=filings.sort_values('accepted_date') for index,filing in filings.iterrows(): filing_data=filing.to_dict() self.mongo.db[self.collections['intrinio_filings']].update({'accno':filing_data['accno']},filing_data,upsert=True) logging.info(str(len(filings))+': filings updated for:'+cik) logging.info('update filings pull date for cik:'+cik+' to:'+str(last_trade_day)) pull_data={'cik':cik,'collection':self.collections['intrinio_filings'],'date':last_trade_day.strftime('%Y-%m-%d')} self.mongo.db[self.collections['intrinio_pull_times']].update({"cik":cik,'collection':self.collections['intrinio_filings']},pull_data,upsert=True) return True def update_standardized_fundamentals(self,full_update=False,ciks=None): last_trade_day=self.last_trade_day self.mongo.create_index(self.collections['intrinio_standardized_fundamentals'],'cik') self.mongo.create_index(self.collections['intrinio_standardized_fundamentals'],'fiscal_year') self.mongo.create_index(self.collections['intrinio_standardized_fundamentals'],'fiscal_period') self.mongo.create_index(self.collections['intrinio_standardized_fundamentals'],'statement_type') self.mongo.create_index(self.collections['intrinio_standardized_fundamentals'],'filing_date') self.mongo.create_index(self.collections['intrinio_pull_times'],'collection') self.mongo.create_index(self.collections['intrinio_pull_times'],'date') self.mongo.create_index(self.collections['intrinio_pull_times'],'cik') if ciks is None: #pass in a list of ciks that we want to update ciks=self.cq.existing_ciks() for cik in ciks: company=self.cq.get_company(cik) if company is None or len(company)==0 or 'latest_filing_date' not in company.columns: continue company_latest_filing_date=(pd.to_datetime(company['latest_filing_date'].iloc[0])).date() max_fundamental_date=self.mongo.db[self.collections['intrinio_standardized_fundamentals']].find_one({"cik":cik},sort=[("filing_date",-1)]) last_fundamental_pull=self.mongo.db[self.collections['intrinio_pull_times']].find_one({"cik":cik,'collection':self.collections['intrinio_standardized_fundamentals']}) if last_fundamental_pull==None: if max_fundamental_date==None: last_fundamental_pull=datetime(1900,1,1).date() else: last_fundamental_pull=(pd.to_datetime(max_fundamental_date['filing_date'])).date() else: last_fundamental_pull=(pd.to_datetime(last_fundamental_pull['date'])).date() if full_update==True: #then we need to re-download everything last_fundamental_pull=datetime(1900,1,1).date() if last_fundamental_pull>company_latest_filing_date: logging.info('fundamentals up to date for, not updating:'+cik) logging.info('last_fundamental_pull:'+str(last_fundamental_pull)) logging.info('company_latest_filing_date:'+str(company_latest_filing_date)) continue filings=pd.DataFrame(list(self.mongo.db[self.collections['intrinio_filings']].find({'cik':cik}))) if len(filings)==0: logging.info('no filings found, continueing') continue filings['filing_date']=pd.to_datetime(filings['filing_date']).dt.date filings=filings[filings['filing_date']>=last_fundamental_pull] filings=filings[filings['report_type'].isin(['10-K','10-K/A','10-Q','10-Q/A'])] filings=filings.sort_values('accepted_date') if len(filings)==0: logging.info('empty filings after statement type and date filter, no need to update, continuing') continue statements_df=
pd.DataFrame()
pandas.DataFrame
import unittest import numpy as np import pandas as pd import scipy.stats as st from ..analysis import determine_analysis_type from ..analysis.exc import NoDataError from ..data import Vector, Categorical class MyTestCase(unittest.TestCase): def test_small_float_array(self): np.random.seed(123456789) input_array = st.norm.rvs(0, 1, 30) self.assertIsInstance(determine_analysis_type(input_array), Vector) def test_small_float_list(self): np.random.seed(123456789) input_array = st.norm.rvs(0, 1, 30).tolist() self.assertIsInstance(determine_analysis_type(input_array), Vector) def test_small_float_series(self): np.random.seed(123456789) input_array = pd.Series(st.norm.rvs(0, 1, 30)) self.assertIsInstance(determine_analysis_type(input_array), Vector) def test_large_float_array(self): np.random.seed(123456789) input_array = st.norm.rvs(0, 1, 10000) self.assertIsInstance(determine_analysis_type(input_array), Vector) def test_large_float_list(self): np.random.seed(123456789) input_array = st.norm.rvs(0, 1, 10000).tolist() self.assertIsInstance(determine_analysis_type(input_array), Vector) def test_large_float_series(self): np.random.seed(123456789) input_array = pd.Series(st.norm.rvs(0, 1, 10000)) self.assertIsInstance(determine_analysis_type(input_array), Vector) def test_small_float32_array(self): np.random.seed(123456789) input_array = st.norm.rvs(0, 1, 30).astype('float32') self.assertIsInstance(determine_analysis_type(input_array), Vector) def test_small_float32_list(self): np.random.seed(123456789) input_array = st.norm.rvs(0, 1, 30).astype('float32').tolist() self.assertIsInstance(determine_analysis_type(input_array), Vector) def test_small_float32_series(self): np.random.seed(123456789) input_array = pd.Series(st.norm.rvs(0, 1, 30).astype('float32')) self.assertIsInstance(determine_analysis_type(input_array), Vector) def test_small_float16_array(self): np.random.seed(123456789) input_array = st.norm.rvs(0, 1, 30).astype('float16') self.assertIsInstance(determine_analysis_type(input_array), Vector) def test_small_float16_list(self): np.random.seed(123456789) input_array = st.norm.rvs(0, 1, 30).astype('float16').tolist() self.assertIsInstance(determine_analysis_type(input_array), Vector) def test_small_float16_series(self): np.random.seed(123456789) input_array = pd.Series(st.norm.rvs(0, 1, 30).astype('float16')) self.assertIsInstance(determine_analysis_type(input_array), Vector) def test_small_single_float_array(self): np.random.seed(123456789) input_array = st.norm.rvs(0, 1, 1) self.assertIsInstance(determine_analysis_type(input_array), Vector) def test_small_single_float_list(self): np.random.seed(123456789) input_array = st.norm.rvs(0, 1, 1).tolist() self.assertIsInstance(determine_analysis_type(input_array), Vector) def test_small_single_float_series(self): np.random.seed(123456789) input_array = pd.Series(st.norm.rvs(0, 1, 1)) self.assertIsInstance(determine_analysis_type(input_array), Vector) def test_small_vector(self): np.random.seed(123456789) input_array = Vector(st.norm.rvs(0, 1, 30)) self.assertIsInstance(determine_analysis_type(input_array), Vector) def test_large_vector(self): np.random.seed(123456789) input_array = Vector(st.norm.rvs(0, 1, 10000)) self.assertIsInstance(determine_analysis_type(input_array), Vector) def test_small_array_with_nan(self): np.random.seed(123456789) input_array = st.norm.rvs(0, 1, 30) input_array[4] = np.nan input_array[10] = np.nan input_array[17] = np.nan input_array[22] = np.nan input_array[24] = np.nan self.assertIsInstance(determine_analysis_type(input_array), Vector) def test_small_list_with_nan(self): np.random.seed(123456789) input_array = st.norm.rvs(0, 1, 30) input_array[4] = np.nan input_array[10] = np.nan input_array[17] = np.nan input_array[22] = np.nan input_array[24] = np.nan self.assertIsInstance(determine_analysis_type(input_array.tolist()), Vector) def test_small_series_with_nan(self): np.random.seed(123456789) input_array = st.norm.rvs(0, 1, 30) input_array[4] = np.nan input_array[10] = np.nan input_array[17] = np.nan input_array[22] = np.nan input_array[24] = np.nan self.assertIsInstance(determine_analysis_type(pd.Series(input_array)), Vector) def test_none(self): input_array = None self.assertRaises(ValueError, lambda: determine_analysis_type(input_array)) def test_empty_list(self): input_array = list() self.assertRaises(NoDataError, lambda: determine_analysis_type(input_array)) def test_empty_array(self): input_array = np.array([]) self.assertRaises(NoDataError, lambda: determine_analysis_type(input_array)) def test_empty_vector(self): input_array = Vector([]) self.assertRaises(NoDataError, lambda: determine_analysis_type(input_array)) def test_float_scalar(self): input_array = 3.14159256 self.assertRaises(ValueError, lambda: determine_analysis_type(input_array)) def test_small_int_array(self): np.random.seed(123456789) input_array = np.random.randint(-10, 11, 30) self.assertIsInstance(determine_analysis_type(input_array), Vector) def test_small_int_list(self): np.random.seed(123456789) input_array = np.random.randint(-10, 11, 30).tolist() self.assertIsInstance(determine_analysis_type(input_array), Vector) def test_small_int_series(self): np.random.seed(123456789) input_array = pd.Series(np.random.randint(-10, 11, 30)) self.assertIsInstance(determine_analysis_type(input_array), Vector) def test_large_int_array(self): np.random.seed(123456789) input_array = np.random.randint(-10, 11, 10000) self.assertIsInstance(determine_analysis_type(input_array), Vector) def test_large_int_list(self): np.random.seed(123456789) input_array = np.random.randint(-10, 11, 10000).tolist() self.assertIsInstance(determine_analysis_type(input_array), Vector) def test_large_int_series(self): np.random.seed(123456789) input_array = pd.Series(np.random.randint(-10, 11, 10000)) self.assertIsInstance(determine_analysis_type(input_array), Vector) def test_small_int32_array(self): np.random.seed(123456789) input_array = np.random.randint(-10, 11, 30).astype('int32') self.assertIsInstance(determine_analysis_type(input_array), Vector) def test_small_int32_list(self): np.random.seed(123456789) input_array = np.random.randint(-10, 11, 30).astype('int32').tolist() self.assertIsInstance(determine_analysis_type(input_array), Vector) def test_small_int32_series(self): np.random.seed(123456789) input_array = pd.Series(np.random.randint(-10, 11, 30).astype('int32')) self.assertIsInstance(determine_analysis_type(input_array), Vector) def test_small_int16_array(self): np.random.seed(123456789) input_array = np.random.randint(-10, 11, 30).astype('int16') self.assertIsInstance(determine_analysis_type(input_array), Vector) def test_small_int16_list(self): np.random.seed(123456789) input_array = np.random.randint(-10, 11, 30).astype('int16').tolist() self.assertIsInstance(determine_analysis_type(input_array), Vector) def test_small_int16_series(self): np.random.seed(123456789) input_array = pd.Series(np.random.randint(-10, 11, 30).astype('int16')) self.assertIsInstance(determine_analysis_type(input_array), Vector) def test_small_int8_array(self): np.random.seed(123456789) input_array = np.random.randint(-10, 11, 30).astype('int8') self.assertIsInstance(determine_analysis_type(input_array), Vector) def test_small_int8_list(self): np.random.seed(123456789) input_array = np.random.randint(-10, 11, 30).astype('int8').tolist() self.assertIsInstance(determine_analysis_type(input_array), Vector) def test_small_int8_series(self): np.random.seed(123456789) input_array = pd.Series(np.random.randint(-10, 11, 30).astype('int8')) self.assertIsInstance(determine_analysis_type(input_array), Vector) def test_int_scalar(self): input_array = 3 self.assertRaises(ValueError, lambda: determine_analysis_type(input_array)) def test_small_cat_list(self): np.random.seed(123456789) input_array = ['abcdefghijklmnopqrstuvwxyz'[:np.random.randint(1, 26)] for _ in range(30)] self.assertIsInstance(determine_analysis_type(input_array), Categorical) self.assertNotIsInstance(determine_analysis_type(input_array), Vector) def test_small_cat_array(self): np.random.seed(123456789) input_array = np.array(['abcdefghijklmnopqrstuvwxyz'[:np.random.randint(1, 26)] for _ in range(30)]) self.assertIsInstance(determine_analysis_type(input_array), Categorical) self.assertNotIsInstance(determine_analysis_type(input_array), Vector) def test_small_cat_series(self): np.random.seed(123456789) input_array = pd.Series(['abcdefghijklmnopqrstuvwxyz'[:np.random.randint(1, 26)] for _ in range(30)]) self.assertIsInstance(determine_analysis_type(input_array), Categorical) self.assertNotIsInstance(determine_analysis_type(input_array), Vector) def test_large_cat_list(self): np.random.seed(123456789) input_array = ['abcdefghijklmnopqrstuvwxyz'[:np.random.randint(1, 26)] for _ in range(10000)] self.assertIsInstance(determine_analysis_type(input_array), Categorical) self.assertNotIsInstance(determine_analysis_type(input_array), Vector) def test_large_cat_array(self): np.random.seed(123456789) input_array = np.array(['abcdefghijklmnopqrstuvwxyz'[:np.random.randint(1, 26)] for _ in range(10000)]) self.assertIsInstance(determine_analysis_type(input_array), Categorical) self.assertNotIsInstance(determine_analysis_type(input_array), Vector) def test_large_cat_series(self): np.random.seed(123456789) input_array = pd.Series(['abcdefghijklmnopqrstuvwxyz'[:np.random.randint(1, 26)] for _ in range(10000)]) self.assertIsInstance(determine_analysis_type(input_array), Categorical) self.assertNotIsInstance(determine_analysis_type(input_array), Vector) def test_single_cat_list(self): input_array = ['a'] self.assertIsInstance(determine_analysis_type(input_array), Categorical) self.assertNotIsInstance(determine_analysis_type(input_array), Vector) def test_single_cat_array(self): input_array = np.array(['a']) self.assertIsInstance(determine_analysis_type(input_array), Categorical) self.assertNotIsInstance(determine_analysis_type(input_array), Vector) def test_single_cat_series(self): input_array =
pd.Series(['a'])
pandas.Series
# GetData.py # <NAME> # 29 November 2019 # # This program takes as input an output filename and a starting date and # returns song/artist names to the specified file. import csv import sys import time import pandas as pd from selenium import webdriver from datetime import datetime, timedelta # get the list of songs/artists from a specified csv file def getOldSongs(fname): try: #if there is data in the file already data =
pd.read_csv(fname)
pandas.read_csv
#!/usr/bin/env python """Script for generating figures of catalog statistics. Run `QCreport.py -h` for command line usage. """ import os import sys import errno import argparse from datetime import date, datetime from math import sqrt, radians, cos import markdown import numpy as np import pandas as pd import cartopy.crs as ccrs import cartopy.feature as cfeature import matplotlib.pyplot as plt from matplotlib.colors import LinearSegmentedColormap from matplotlib.patches import Polygon from obspy.geodetics.base import gps2dist_azimuth # Python 2 try: from urllib2 import urlopen, HTTPError # Python 3 except ImportError: from urllib.request import urlopen, HTTPError import QCutils as qcu from decorators import retry, printstatus ############################################################################### ############################################################################### ############################################################################### @printstatus('Creating basic catalog summary') def basic_cat_sum(catalog, dirname, dup1, dup2, timewindow, distwindow): """Gather basic catalog summary statistics.""" lines = [] lines.append('Catalog name: %s\n\n' % dirname[:-9].upper()) lines.append('First date in catalog: %s\n' % catalog['time'].min()) lines.append('Last date in catalog: %s\n\n' % catalog['time'].max()) lines.append('Total number of events: %s\n\n' % len(catalog)) lines.append('Minimum latitude: %s\n' % catalog['latitude'].min()) lines.append('Maximum latitude: %s\n' % catalog['latitude'].max()) lines.append('Minimum longitude: %s\n' % catalog['longitude'].min()) lines.append('Maximum longitude: %s\n\n' % catalog['longitude'].max()) lines.append('Minimum depth: %s\n' % catalog['depth'].min()) lines.append('Maximum depth: %s\n' % catalog['depth'].max()) lines.append('Number of 0 km depth events: %s\n' % len(catalog[catalog['depth'] == 0])) lines.append('Number of NaN depth events: %s\n\n' % len(catalog[pd.isnull(catalog['depth'])])) lines.append('Minimum magnitude: %s\n' % catalog['mag'].min()) lines.append('Maximum magnitude: %s\n' % catalog['mag'].max()) lines.append('Number of 0 magnitude events: %s\n' % len(catalog[catalog['mag'] == 0])) lines.append('Number of NaN magnitude events: %s\n\n' % len(catalog[pd.isnull(catalog['mag'])])) lines.append('Number of possible duplicates (%ss and %skm threshold): %d\n' % (timewindow, distwindow, dup1)) lines.append('Number of possible duplicates (16s and 100km threshold): %d' % dup2) with open('%s_catalogsummary.txt' % dirname, 'w') as sumfile: for line in lines: sumfile.write(line) def largest_ten(catalog, dirname): """Make a list of the 10 events with largest magnitude.""" catalog = catalog.sort_values(by='mag', ascending=False) topten = catalog.head(n=10) topten = topten[['time', 'id', 'latitude', 'longitude', 'depth', 'mag']] with open('%s_largestten.txt' % dirname, 'w') as magfile: for event in topten.itertuples(): line = ' '.join([str(x) for x in event[1:]]) + '\n' magfile.write(line) @printstatus('Finding possible duplicates') def list_duplicates(catalog, dirname, timewindow=2, distwindow=15, magwindow=None, minmag=-5, locfilter=None): """Make a list of possible duplicate events.""" catalog.loc[:, 'convtime'] = [' '.join(x.split('T')) for x in catalog['time'].tolist()] catalog.loc[:, 'convtime'] = catalog['convtime'].astype('datetime64[ns]') catalog = catalog[catalog['mag'] >= minmag] if locfilter: catalog = catalog[catalog['place'].str.contains(locfilter, na=False)] cat = catalog[['time', 'convtime', 'id', 'latitude', 'longitude', 'depth', 'mag']].copy() cat.loc[:, 'time'] = [qcu.to_epoch(x) for x in cat['time']] duplines1 = [('Possible duplicates using %ss time threshold and %skm ' 'distance threshold\n') % (timewindow, distwindow), '***********************\n' 'date time id latitude longitude depth magnitude ' '(distance) (Δ time) (Δ magnitude)\n'] duplines2 = [('\n\nPossible duplicates using 16s time threshold and 100km ' 'distance threshold\n'), '***********************\n' 'date time id latitude longitude depth magnitude ' '(distance) (Δ time) (Δ magnitude)\n'] sep = '-----------------------\n' thresh1dupes, thresh2dupes = 0, 0 for event in cat.itertuples(): trimdf = cat[cat['convtime'].between(event.convtime, event.convtime +
pd.Timedelta(seconds=16)
pandas.Timedelta
import os try: import fool except: print("缺少fool工具") import math import pandas as pd import numpy as np import random import tensorflow as tf import re np.random.seed(1) def add2vocab(path,word): vocab_data=pd.read_csv(path) idx_to_chars=list(vocab_data['vocabulary'])+[word] df_data = pd.DataFrame(idx_to_chars, columns=['vocabulary']) df_data.to_csv(path,index=0) def get_corpus_indices(data,chars_to_idx,mlm=False,nsp=False): """ 转化成词库索引 """ corpus_indices=[] keys=chars_to_idx.keys() #print(data) for d in data: if nsp==True: corpus_chars=d corpus_chars_idx=[] if len(d)>0 and len(d[0])==1: corpus_chars=['[cls]']+corpus_chars index=-1 for word in corpus_chars: index=index+1 if word not in keys: corpus_chars[index]='[mask]'#用[mask]替换不存在词库中的单词 corpus_chars_idx=[chars_to_idx[char] for char in corpus_chars] find_end=np.where(np.asarray(corpus_chars_idx)==chars_to_idx['。']) for i in range(find_end[0].shape[0]): corpus_chars_idx.insert(find_end[0][i]+i+1,chars_to_idx['[sep]']) else: corpus_chars_idx=[chars_to_idx[char] for char in corpus_chars] elif mlm==True: d=d.replace('\n','').replace('\r','').replace(' ','').replace('\u3000','') corpus_chars=list(d) corpus_chars_idx=[] #print(2) ''' index=-1 for word in corpus_chars: index=index+1 if word not in keys: corpus_chars[index]='[mask]'#用[mask]替换不存在词库中的单词 ''' index=-1 for word in corpus_chars: index=index+1 if word not in keys: corpus_chars[index]='[mask]'#用[mask]替换不存在词库中的单词 corpus_chars_idx=[chars_to_idx[char] for char in corpus_chars] else: corpus_chars=d if isinstance(corpus_chars,(list)):#corpus_chars必须是列表list index=-1 for word in corpus_chars: index=index+1 if word not in keys: corpus_chars[index]='[mask]'#用[mask]替换不存在词库中的单词 else: corpus_chars=[corpus_chars]#转化成list corpus_chars_idx=[chars_to_idx[char] for char in corpus_chars] corpus_indices.append(corpus_chars_idx)#语料索引,既读入的文本,并通过chars_to_idx转化成索引 return corpus_indices def data_format(data,labels): ''' 数据格式化,把整个批次的数据转化成最大数据长度的数据相同的数据长度(以-1进行填充) ''' def format_inner(inputs,max_size): new_data=[] for x_t in inputs: if(abs(len(x_t)-max_size)!=0): for i in range(abs(len(x_t)-max_size)): x_t.extend([-1]) new_data.append(tf.reshape(x_t,[1,-1])) return new_data max_size=0 new_data=[] mask=[] masks=[] new_labels = [] #获取最大数据长度 for x in data: if(max_size<len(x)): max_size=len(x) #得到masks for d in data: for i in range(max_size): if(i<len(d)): mask.append(1.0) else: mask.append(0.0) masks.append(tf.reshape(mask,[1,-1])) mask=[] #print(masks,"max_size") if data is not None: new_data=format_inner(data,max_size)#格式化数据 if labels is not None: new_labels=format_inner(labels,max_size) #格式化标签 #print(new_labels) #print(new_data) return new_data,new_labels,masks def get_data(data,labels,chars_to_idx,label_chars_to_idx,batch_size,char2idx=True,mlm=False,nsp=False): ''' function: 一个批次一个批次的yield数据 parameter: data:需要批次化的一组数据 labels:data对应的情感类型 chars_to_idx;词汇到索引的映射 label_chars_to_idx;标签到索引的映射 batch_size;批次大小 ''' num_example=math.ceil(len(data)/batch_size) example_indices=list(range(num_example)) random.shuffle(example_indices) #print(data,"get_data") for i in example_indices: start=i*batch_size if start >(len(data)-1): start=(len(data)-1) end=i*batch_size+batch_size if end >(len(data)-1): end=(len(data)-1)+1 X=data[start:end] Y=labels[start:end] #print(chars_to_idx,"aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa") #print(char2idx," ",mlm," ",nsp,"进1") if char2idx==True: #print("进") X=get_corpus_indices(X,chars_to_idx,mlm=mlm,nsp=nsp) if mlm==True: Y=X else: Y=get_corpus_indices(Y,label_chars_to_idx,mlm=mlm,nsp=nsp) #print(X,"XXXXXX") yield X,Y #只是索引化的文本,且长度不一 def nsp_vocab(folder,name): path=folder+"\\"+name df = pd.read_csv(path) data = list(df["evaluation"]) #print(len(data)) datas=[] labels=[] for i in range(len(data)): if data[i].find("。")==-1: continue #print(data[i]) x,y=build_sample_nsp(data[i]) if x==-1: continue datas.extend(x) labels.extend(y) #print(datas[-1]) #print(labels[-1]) datas=[list(d) for d in datas] df_data =
pd.DataFrame(datas)
pandas.DataFrame
""" Функции и классы для проведения WoE-преобразований """ import math import warnings import numpy as np import pandas as pd import sklearn as sk from IPython.display import display from matplotlib import pyplot as plt from sklearn.base import BaseEstimator, TransformerMixin from sklearn.model_selection import train_test_split from tqdm.auto import tqdm class _GroupedPredictor(pd.DataFrame): """ Вспомогательный класс для удобства доступа к некоторым данным """ def get_predictor(self, x): """ Получение подвыборки по имени предиктора(ов) Parameters --------------- x : str/int/list-like Предиктор или список предикторов Returns: ----------- self : pd.DataFrame Часть датафрейма (самого себя) """ if isinstance(x, (list, set, tuple)): return self[self["predictor"].isin(x)] else: return self[self["predictor"] == x] def append(self, other): return _GroupedPredictor(super().append(other)) class WoeTransformer(TransformerMixin, BaseEstimator): """Класс для построения и применения WOE группировки к датасету Parameters ---------- min_sample_rate : float, default 0.05 Минимальный размер группы (доля от размера выборки) min_count : int, default 3 Минимальное количество наблюдений каждого класса в группе save_data : bool, default False Параметр, определяющий, нужно ли сохранить данные для обучения трансформера внутри экземпляра класса join_bad_categories : bool, default False Определяет, должени ли трансформер предпринять попытку для объединения катогориальных групп в более крупные Warning ------- join_bad_categories - Экспериментальная функция. Способ группировки категорий нестабилен Attributes ---------- stats : pandas.DataFrame Результаты WOE-группировки по всем предикторам predictors : list Список предикторов, на которых была построена группировка cat_values : dict[str, list] Словарь со списками категорий по предикторам, переданный при обучении alpha_values : dict[str, float] Словарь со значениями alpha для регуляризации групп possible groups : pandas.DataFrame Данные о значениях предиктора, которые могли бы стать отдельными категориями bad_groups : pandas.DataFrame Данные о группах, которые не удовлетворяют условиям """ def __repr__(self): return "WoeTransformer(min_sample_rate={!r}, min_count={!r}, n_fitted_predictors={!r})".format( self.min_sample_rate, self.min_count, len(self.predictors), ) def __init__( self, min_sample_rate: float = 0.05, min_count: int = 3, save_data: bool = False, join_bad_categories: bool = False, ): """ Инициализация экземпляра класса """ self.min_sample_rate = min_sample_rate self.min_count = min_count self.predictors = [] self.alpha_values = {} self.save_data = save_data self.join_bad_categories = join_bad_categories # ------------------------- # Функции интерфейса класса # ------------------------- def fit(self, X, y, cat_values={}, alpha_values={}): """ Обучение трансформера и расчет всех промежуточных данных Parameters --------------- X : pd.DataFrame Датафрейм с предикторами, которые нужно сгруппировать y : pd.Series Целевая переменная cat_values : dict[str, list[str]], optional Словарь списков с особыми значениями, которые нужно выделить в категории По умолчанию все строковые и пропущенные значения выделяются в отдельные категории alpha_values : dict[str, float], optional Словарь со значениями alpha для регуляризации WOE-групп Returns ------- self : WoeTransformer """ # Сброс текущего состояния трансформера self._reset_state() # Сохранение категориальных значений self.cat_values = cat_values # Валидация данных и решейпинг if hasattr(self, "_validate_data"): X, y = self._validate_and_convert_data(X, y) if self.save_data: self.data = X self.target = y # Инициализация коэффициентов для регуляризации групп self.alpha_values = {i: 0 for i in X.columns} self.alpha_values.update(alpha_values) # Агрегация значений предикторов self._grouping(X, y) # Расчет WOE и IV self._fit_numeric(X, y) # Поиск потенциальных групп # Поиск "плохих" групп self._get_bad_groups() return self def transform(self, X, y=None): """ Применение обученного трансформера к новым данным Parameters --------------- X : pandas.DataFrame Датафрейм, который нужно преобразовать Предикторы, которые не были сгруппированы ранее, будут проигнорированы и выведется сообщение y : pandas.Series Игнорируется Returns ----------- transformed : pandas.DataFrame Преобразованный датасет """ transformed = pd.DataFrame() if hasattr(self, "_validate_data"): try: X, y = self._validate_and_convert_data(X, y) except AttributeError: pass for i in X: if i in self.predictors: try: transformed[i] = self._transform_single(X[i]) except Exception as e: print(f"Transform failed on predictor: {i}", e) else: print(f"Column is not in fitted predictors list: {i}") return transformed def fit_transform(self, X, y, cat_values={}, alpha_values={}): """ Обучение трансформера и расчет всех промежуточных данных с последующим примененим группировки к тем же данным Parameters --------------- X : pandas.DataFrame Датафрейм с предикторами, которые нужно сгруппировать y : pandas.Series Целевая переменная cat_values : dict[str, list[str]], optional Словарь списков с особыми значениями, которые нужно выделить в категории По умолчанию все строковые и пропущенные значения выделяются в отдельные категории alpha_values : dict[str, float], optional Словарь со значениями alpha для регуляризации WOE-групп Returns ----------- transformed : pd.DataFrame Преобразованный датасет """ self.fit(X, y, cat_values=cat_values, alpha_values=alpha_values) return self.transform(X) def plot_woe(self, predictors=None): """ Отрисовка одного или нескольких графиков группировки Parameters --------------- predictors : str or array, default None Предиктор(ы), по которым нужны графики -- если str - отрисовывается один график -- если array - отрисовываются графики из списка -- если None - отрисовываются все сгруппированные предикторы Warning ------- Запуск метода без аргументов может занять длительное время при большом количестве предикторов """ if predictors is None: predictors = self.predictors elif isinstance(predictors, str): predictors = [predictors] elif isinstance(predictors, (list, tuple, set)): predictors = predictors _, axes = plt.subplots(figsize=(10, len(predictors) * 5), nrows=len(predictors)) try: for i, col in enumerate(predictors): self._plot_single_woe_grouping(self.stats.get_predictor(col), axes[i]) except TypeError: self._plot_single_woe_grouping(self.stats.get_predictor(col), axes) # return fig def get_iv(self, sort=False): """Получение списка значений IV по предикторам Parameters ---------- sort : bool, default False Включает сортировку результата по убыванию IV Returns ------- pandas.Series """ try: res = self.stats.groupby("predictor")["IV"].sum() if sort: res = res.sort_values(ascending=False) res = dict(res) except AttributeError as e: print(f"Transformer was not fitted yet. {e}") res = {} return res # ------------------------- # Внутренние функции над всем датасетом # ------------------------- def _validate_and_convert_data(self, X, y): """Проверяеn входные данные, трансформирует в объекты pandas Использует метод _validate_data из sklearn/base.py """ if hasattr(X, "columns"): predictors = X.columns else: predictors = ["X" + str(i + 1) for i in range(X.shape[1])] if y is None: X_valid = self._validate_data(X, y, dtype=None, force_all_finite=False) X_valid = pd.DataFrame(X, columns=predictors) y_valid = None else: X_valid, y_valid = self._validate_data( X, y, dtype=None, force_all_finite=False ) y_valid = pd.Series(y, name="target") X_valid = pd.DataFrame(X, columns=predictors) return X_valid, y_valid def _grouping(self, X, y): """ Применение группировки ко всем предикторам """ df = X.copy() df = df.fillna("пусто") df["target"] = y.copy() # Группировка и расчет показателей for col in df.columns[:-1]: grouped_temp = self._group_single(df[col], y) num_mask = self._get_nums_mask(grouped_temp["value"]) cat_val_mask = grouped_temp["value"].isin(self.cat_values.get(col, [])) is_all_categorical = all(~num_mask | cat_val_mask) if self.join_bad_categories and is_all_categorical: repl = self._get_cat_values_for_join(grouped_temp) grouped_temp = self._group_single(df[col].replace(repl), y) self.grouped = self.grouped.append(grouped_temp) # Замена пустых значений обратно на np.nan ИЛИ преобразование в числовой тип try: self.grouped["value"] = self.grouped["value"].replace({"пусто": np.nan}) except TypeError: self.grouped["value"] = pd.to_numeric( self.grouped["value"], downcast="signed" ) def _fit_numeric(self, X, y): """ Расчет WOE и IV Parameters: --------------- X : pd.DataFrame Датафрейм с предикторами, которые нужно сгруппировать y : pd.Series Целевая переменная Returns ------- None """ res = pd.DataFrame() for i in X: res_i = self._fit_single(X[i], y) res = res.append(res_i) self.predictors.append(i) self.stats = self.stats.append(res) # ------------------------- # Внутренние функции над отдельными столбцами # ------------------------- def _group_single(self, x, y): """ Агрегация данных по значениям предиктора. Рассчитывает количество наблюдений, количество целевых событий, долю группы от общего числа наблюдений и долю целевых в группе Parameters: --------------- X : pandas.DataFrame Таблица данных для агрегации y : pandas.Series Целевая переменная """ col = x.name df = pd.DataFrame({col: x.values, "target": y.values}) grouped_temp = df.groupby(col)["target"].agg(["count", "sum"]).reset_index() grouped_temp.columns = ["value", "sample_count", "target_count"] grouped_temp["sample_rate"] = ( grouped_temp["sample_count"] / grouped_temp["sample_count"].sum() ) grouped_temp["target_rate"] = ( grouped_temp["target_count"] / grouped_temp["sample_count"] ) grouped_temp.insert(0, "predictor", col) return _GroupedPredictor(grouped_temp) def _fit_single(self, x, y, gr_subset=None, cat_vals=None): """ Расчет WOE и IV Parameters: --------------- X : pd.DataFrame Датафрейм с предикторами, которые нужно сгруппировать y : pd.Series Целевая переменная gr_subset : _GroupedPredictor Предиктор """ gr_subset_num = pd.DataFrame() gr_subset_cat = pd.DataFrame() col = x.name if gr_subset is None: gr_subset = self.grouped.get_predictor(col) if cat_vals is None: cat_vals = self.cat_values.get(col, []) nan_mask = x.isna() num_mask = self._get_nums_mask(x) & (~x.isin(cat_vals)) & (~nan_mask) num_vals = x.loc[num_mask].unique() try: # Расчет коэффициентов тренда по числовым значениям предиктора if num_mask.sum() > 0: try: poly_coefs = np.polyfit( x.loc[num_mask].astype(float), y.loc[num_mask], deg=1 ) except np.linalg.LinAlgError as e: print(f"Error in np.polyfit on predictor: '{col}'.\nError MSG: {e}") print("Linear Least Squares coefficients were set to [1, 0]") poly_coefs = np.array([1, 0]) self.trend_coefs.update({col: poly_coefs}) # Расчет монотонных границ gr_subset_num = gr_subset[gr_subset["value"].isin(num_vals)].copy() gr_subset_num["value"] = pd.to_numeric(gr_subset_num["value"]) gr_subset_num = gr_subset_num.sort_values("value") borders = self._monotonic_borders(gr_subset_num, self.trend_coefs[col]) self.borders.update({col: borders}) # Применение границ к сгруппированным данным gr_subset_num["groups"] = pd.cut(gr_subset_num["value"], borders) gr_subset_num["type"] = "num" except ValueError as e: print(f"ValueError on predictor {col}.\nError MSG: {e}") # Расчет коэффициентов тренда по категориальным значениям предиктора if (~num_mask).sum() > 0: gr_subset_cat = gr_subset[~gr_subset["value"].isin(num_vals)].copy() gr_subset_cat["groups"] = gr_subset_cat["value"].fillna("пусто") gr_subset_cat["type"] = "cat" # Объединение числовых и категориальных значений gr_subset = pd.concat([gr_subset_num, gr_subset_cat], axis=0, ignore_index=True) # Расчет WOE и IV alpha = self.alpha_values.get(col, 0) res_i = self._statistic(gr_subset, alpha=alpha) is_empty_exists = any(res_i["groups"].astype(str).str.contains("пусто")) if is_empty_exists: res_i["groups"].replace({"пусто": np.nan}, inplace=True) return res_i def _transform_single(self, x, stats=None): """ Применение группировки и WoE-преобразования Parameters --------------- x : pandas.Series Значения предиктора Returns --------------- X_woe : pandas.DataFrame WoE-преобразования значений предиктора WoE = 0, если группа не встречалась в обучающей выборке """ orig_index = x.index X_woe = x.copy() if stats is None: stats = self.stats.get_predictor(X_woe.name) # Маппинги для замены групп на соответствующие значения WOE num_map = { stats.loc[i, "groups"]: stats.loc[i, "WOE"] for i in stats.index if stats.loc[i, "type"] == "num" } cat_map = { stats.loc[i, "groups"]: stats.loc[i, "WOE"] for i in stats.index if stats.loc[i, "type"] == "cat" } # Категориальные группы cat_bounds = stats.loc[stats["type"] == "cat", "groups"] # predict по числовым значениям DF_num = stats.loc[stats["type"] == "num"] if DF_num.shape[0] > 0: # Границы (правые) интервалов для разбивки числовых переменных num_bounds = [-np.inf] + list( pd.IntervalIndex(stats.loc[stats["type"] == "num", "groups"]).right ) # Выделение только числовых значений предиктора # (похожих на числа и тех, что явно не указаны как категориальные) X_woe_num = pd.to_numeric( X_woe[(self._get_nums_mask(X_woe)) & (~X_woe.isin(cat_bounds))] ) # Разбивка значений на интервалы в соответствии с группировкой X_woe_num = pd.cut(X_woe_num, num_bounds) # Замена групп на значения WOE X_woe_num = X_woe_num.replace(num_map) X_woe_num.name = "woe" else: X_woe_num = pd.Series() # predict по категориальным значениям (может обновлять значения по числовым) DF_cat = stats.loc[stats["type"] == "cat"] if DF_cat.shape[0] > 0: # Выделение строковых значений и тех, что явно выделены как категориальные X_woe_cat = X_woe[X_woe.isin(cat_map.keys())] # Замена групп на значения WOE X_woe_cat = X_woe_cat.replace(cat_map) else: X_woe_cat = pd.Series() # predict по новым категориям (нечисловые: которых не было при групприровке) # Сбор индексов категориальных и числовых значений used_index = np.hstack([X_woe_cat.index, X_woe_num.index]) if len(used_index) < len(x): X_woe_oth = X_woe.index.drop(used_index) X_woe_oth = pd.Series(0, index=X_woe_oth) else: X_woe_oth = pd.Series() X_woe =
pd.concat([X_woe_num, X_woe_cat, X_woe_oth])
pandas.concat
import unittest import pandas as pd from pandas.core.dtypes.common import is_numeric_dtype, is_string_dtype from pandas.util.testing import assert_frame_equal from shift_detector.precalculations.store import InsufficientDataError, Store from shift_detector.utils.column_management import ColumnType class TestStore(unittest.TestCase): def test_init_custom_column_types(self): sales = {'brand': ["Jones LLC", "Alpha Co", "Blue Inc", "Blue Inc", "Alpha Co", "Jones LLC", "Alpha Co", "Blue Inc", "Blue Inc", "Alpha Co", "Jones LLC"] * 10, 'payment': [150, 200, 50, 10, 5, 150, 200, 50, 10, 5, 1] * 10, 'description': ["A", "B", "C", "D", "E", "F", "G", "H", "I", "J", "K"] * 10} df1 = df2 = pd.DataFrame.from_dict(sales) with self.subTest("Successful initialisation"): Store(df1, df2, custom_column_types={'description': ColumnType.categorical}) with self.subTest("Exception when no dict is passed as custom_column_types"): self.assertRaises(TypeError, lambda: Store(df1, df2, custom_column_types='no_dict')) with self.subTest("Exception when key of custom_column_types is not a string"): self.assertRaises(TypeError, lambda: Store(df1, df2, custom_column_types={0: ColumnType.numerical})) with self.subTest("Exception when value of custom_column_types is not a ColumnType"): self.assertRaises(TypeError, lambda: Store(df1, df2, custom_column_types={'brand': 0})) def test_min_data_size_is_enforced(self): df1 = pd.DataFrame(list(range(10))) df2 = pd.DataFrame(list(range(10))) store = Store(df1=df1, df2=df2) assert_frame_equal(df1.astype(float), store[ColumnType.numerical][0]) assert_frame_equal(df2.astype(float), store[ColumnType.numerical][1]) self.assertRaises(InsufficientDataError, Store, df1=pd.DataFrame(), df2=pd.DataFrame([0])) self.assertRaises(InsufficientDataError, Store, df1=pd.DataFrame(list(range(9))), df2=pd.DataFrame(list(range(20)))) def test_apply_custom_column_types(self): data = {'to_numerical': ['150', '200', '50', '10', '5', '150', '200', '50', '10', '5', '1'] * 10, 'to_text': ['150', '200', '50', '10', '5', '150', '200', '50', '10', '5', '1'] * 10, 'to_categorical': [150, 200, 50, 10, 5, 150, 200, 50, 10, 5, 1] * 10, 'stay_categorical': ['150', '200', '50', '10', '5', '150', '200', '50', '10', '5', '1'] * 10} df1 = df2 = pd.DataFrame.from_dict(data) custom_column_types = { 'to_numerical': ColumnType.numerical, 'to_text': ColumnType.text, 'to_categorical': ColumnType.categorical } store = Store(df1, df2, custom_column_types=custom_column_types) with self.subTest("Apply custom_column_types"): self.assertEqual(['to_categorical', 'stay_categorical'], store.type_to_columns[ColumnType.categorical]) self.assertEqual(['to_text'], store.type_to_columns[ColumnType.text]) self.assertEqual(['to_numerical'], store.type_to_columns[ColumnType.numerical]) with self.subTest("Apply numerical conversion for custom_column_types to dataframes"): self.assertTrue(is_numeric_dtype(store.df1['to_numerical'])) self.assertTrue(store.df1['to_numerical'].equals(pd.Series([150.0, 200.0, 50.0, 10.0, 5.0, 150.0, 200.0, 50.0, 10.0, 5.0, 1.0] * 10))) with self.subTest("Apply categorical conversion for custom_column_types to dataframes"): self.assertTrue(is_string_dtype(store.df1['to_categorical'])) self.assertTrue(store.df1['to_categorical'].equals(pd.Series(['150', '200', '50', '10', '5', '150', '200', '50', '10', '5', '1'] * 10))) with self.subTest("Apply textual conversion for custom_column_types to dataframes"): self.assertTrue(is_string_dtype(store.df1['to_text'])) self.assertTrue(store.df1['to_text'].equals(pd.Series(['150', '200', '50', '10', '5', '150', '200', '50', '10', '5', '1'] * 10))) def test_change_column_type(self): data = {'to_numerical': ['a', '200', '50', '10', '5', '150', '200', '50', '10', '5', '1'] * 10} df1 = df2 =
pd.DataFrame.from_dict(data)
pandas.DataFrame.from_dict
import numpy as np import matplotlib.pyplot as plt import pandas as pd import pickle met_df = pd.read_csv('../datasets/cleaned_dataset.csv', index_col=0) from sklearn.preprocessing import OneHotEncoder, LabelEncoder le = LabelEncoder() ohe = OneHotEncoder(sparse=False) val = le.fit_transform(met_df['rest_type']).reshape(-1,1) res = met_df['rest_type'].values res = ohe.fit_transform(val) res = pd.DataFrame(res) new = pd.concat([met_df,res], axis=1) new.dropna(inplace=True) new.drop('rest_type', axis=1, inplace=True) X = new.drop('cost_for_two', axis=1) y = new['cost_for_two'] X_train = X[:round(0.7*len(X))] X_valid = X[round(0.7*len(X))+1 : -round(0.15*len(X))] X_test = X[-round(0.15*len(X)):] #y y_train = y[:round(0.7*len(y))] y_valid = y[round(0.7*len(y))+1 : -round(0.15*len(y))] y_test = y[-round(0.15*len(y)):] from sklearn.ensemble import RandomForestRegressor print("modelling.....") rf_100 = RandomForestRegressor(n_estimators=50, criterion='mae') rf_100.fit(X_train, y_train) print("modelling done.....") pickle.dump(rf_100, open('model.pkl','wb')) pickle.dump(le, open('label.pkl','wb')) pickle.dump(ohe, open('hot.pkl','wb')) model = pickle.load(open('model.pkl','rb')) le = pickle.load(open('label.pkl','rb')) ohe = pickle.load(open('hot.pkl','rb')) node = [[1,1,340,240,10,1, 'Casual Dining', 3.8, 4.0, 4.3]] node = pd.DataFrame(node) node.columns = met_df.drop('cost_for_two',axis=1).columns val = le.transform(node['rest_type']).reshape(-1,1) res = node['rest_type'].values res = ohe.transform(val) res = pd.DataFrame(res) new =
pd.concat([node,res], axis=1)
pandas.concat
import builtins from io import StringIO from itertools import product from string import ascii_lowercase import numpy as np import pytest from pandas.errors import UnsupportedFunctionCall import pandas as pd from pandas import ( DataFrame, Index, MultiIndex, Series, Timestamp, date_range, isna) import pandas.core.nanops as nanops from pandas.util import testing as tm @pytest.mark.parametrize("agg_func", ['any', 'all']) @pytest.mark.parametrize("skipna", [True, False]) @pytest.mark.parametrize("vals", [ ['foo', 'bar', 'baz'], ['foo', '', ''], ['', '', ''], [1, 2, 3], [1, 0, 0], [0, 0, 0], [1., 2., 3.], [1., 0., 0.], [0., 0., 0.], [True, True, True], [True, False, False], [False, False, False], [np.nan, np.nan, np.nan] ]) def test_groupby_bool_aggs(agg_func, skipna, vals): df = DataFrame({'key': ['a'] * 3 + ['b'] * 3, 'val': vals * 2}) # Figure out expectation using Python builtin exp = getattr(builtins, agg_func)(vals) # edge case for missing data with skipna and 'any' if skipna and all(isna(vals)) and agg_func == 'any': exp = False exp_df = DataFrame([exp] * 2, columns=['val'], index=Index( ['a', 'b'], name='key')) result = getattr(df.groupby('key'), agg_func)(skipna=skipna) tm.assert_frame_equal(result, exp_df) def test_max_min_non_numeric(): # #2700 aa = DataFrame({'nn': [11, 11, 22, 22], 'ii': [1, 2, 3, 4], 'ss': 4 * ['mama']}) result = aa.groupby('nn').max() assert 'ss' in result result = aa.groupby('nn').max(numeric_only=False) assert 'ss' in result result = aa.groupby('nn').min() assert 'ss' in result result = aa.groupby('nn').min(numeric_only=False) assert 'ss' in result def test_intercept_builtin_sum(): s = Series([1., 2., np.nan, 3.]) grouped = s.groupby([0, 1, 2, 2]) result = grouped.agg(builtins.sum) result2 = grouped.apply(builtins.sum) expected = grouped.sum() tm.assert_series_equal(result, expected) tm.assert_series_equal(result2, expected) # @pytest.mark.parametrize("f", [max, min, sum]) # def test_builtins_apply(f): @pytest.mark.parametrize("f", [max, min, sum]) @pytest.mark.parametrize('keys', [ "jim", # Single key ["jim", "joe"] # Multi-key ]) def test_builtins_apply(keys, f): # see gh-8155 df = pd.DataFrame(np.random.randint(1, 50, (1000, 2)), columns=["jim", "joe"]) df["jolie"] = np.random.randn(1000) fname = f.__name__ result = df.groupby(keys).apply(f) ngroups = len(df.drop_duplicates(subset=keys)) assert_msg = ("invalid frame shape: {} " "(expected ({}, 3))".format(result.shape, ngroups)) assert result.shape == (ngroups, 3), assert_msg tm.assert_frame_equal(result, # numpy's equivalent function df.groupby(keys).apply(getattr(np, fname))) if f != sum: expected = df.groupby(keys).agg(fname).reset_index() expected.set_index(keys, inplace=True, drop=False) tm.assert_frame_equal(result, expected, check_dtype=False) tm.assert_series_equal(getattr(result, fname)(), getattr(df, fname)()) def test_arg_passthru(): # make sure that we are passing thru kwargs # to our agg functions # GH3668 # GH5724 df = pd.DataFrame( {'group': [1, 1, 2], 'int': [1, 2, 3], 'float': [4., 5., 6.], 'string': list('abc'), 'category_string': pd.Series(list('abc')).astype('category'), 'category_int': [7, 8, 9], 'datetime': pd.date_range('20130101', periods=3), 'datetimetz': pd.date_range('20130101', periods=3, tz='US/Eastern'), 'timedelta': pd.timedelta_range('1 s', periods=3, freq='s')}, columns=['group', 'int', 'float', 'string', 'category_string', 'category_int', 'datetime', 'datetimetz', 'timedelta']) expected_columns_numeric = Index(['int', 'float', 'category_int']) # mean / median expected = pd.DataFrame( {'category_int': [7.5, 9], 'float': [4.5, 6.], 'timedelta': [pd.Timedelta('1.5s'), pd.Timedelta('3s')], 'int': [1.5, 3], 'datetime': [pd.Timestamp('2013-01-01 12:00:00'), pd.Timestamp('2013-01-03 00:00:00')], 'datetimetz': [ pd.Timestamp('2013-01-01 12:00:00', tz='US/Eastern'), pd.Timestamp('2013-01-03 00:00:00', tz='US/Eastern')]}, index=Index([1, 2], name='group'), columns=['int', 'float', 'category_int', 'datetime', 'datetimetz', 'timedelta']) for attr in ['mean', 'median']: f = getattr(df.groupby('group'), attr) result = f() tm.assert_index_equal(result.columns, expected_columns_numeric) result = f(numeric_only=False) tm.assert_frame_equal(result.reindex_like(expected), expected) # TODO: min, max *should* handle # categorical (ordered) dtype expected_columns = Index(['int', 'float', 'string', 'category_int', 'datetime', 'datetimetz', 'timedelta']) for attr in ['min', 'max']: f = getattr(df.groupby('group'), attr) result = f() tm.assert_index_equal(result.columns, expected_columns) result = f(numeric_only=False) tm.assert_index_equal(result.columns, expected_columns) expected_columns = Index(['int', 'float', 'string', 'category_string', 'category_int', 'datetime', 'datetimetz', 'timedelta']) for attr in ['first', 'last']: f = getattr(df.groupby('group'), attr) result = f() tm.assert_index_equal(result.columns, expected_columns) result = f(numeric_only=False) tm.assert_index_equal(result.columns, expected_columns) expected_columns = Index(['int', 'float', 'string', 'category_int', 'timedelta']) for attr in ['sum']: f = getattr(df.groupby('group'), attr) result = f() tm.assert_index_equal(result.columns, expected_columns_numeric) result = f(numeric_only=False) tm.assert_index_equal(result.columns, expected_columns) expected_columns = Index(['int', 'float', 'category_int']) for attr in ['prod', 'cumprod']: f = getattr(df.groupby('group'), attr) result = f() tm.assert_index_equal(result.columns, expected_columns_numeric) result = f(numeric_only=False) tm.assert_index_equal(result.columns, expected_columns) # like min, max, but don't include strings expected_columns = Index(['int', 'float', 'category_int', 'datetime', 'datetimetz', 'timedelta']) for attr in ['cummin', 'cummax']: f = getattr(df.groupby('group'), attr) result = f() # GH 15561: numeric_only=False set by default like min/max tm.assert_index_equal(result.columns, expected_columns) result = f(numeric_only=False) tm.assert_index_equal(result.columns, expected_columns) expected_columns = Index(['int', 'float', 'category_int', 'timedelta']) for attr in ['cumsum']: f = getattr(df.groupby('group'), attr) result = f() tm.assert_index_equal(result.columns, expected_columns_numeric) result = f(numeric_only=False) tm.assert_index_equal(result.columns, expected_columns) def test_non_cython_api(): # GH5610 # non-cython calls should not include the grouper df = DataFrame( [[1, 2, 'foo'], [1, np.nan, 'bar'], [3, np.nan, 'baz']], columns=['A', 'B', 'C']) g = df.groupby('A') gni = df.groupby('A', as_index=False) # mad expected = DataFrame([[0], [np.nan]], columns=['B'], index=[1, 3]) expected.index.name = 'A' result = g.mad() tm.assert_frame_equal(result, expected) expected = DataFrame([[0., 0.], [0, np.nan]], columns=['A', 'B'], index=[0, 1]) result = gni.mad() tm.assert_frame_equal(result, expected) # describe expected_index = pd.Index([1, 3], name='A') expected_col = pd.MultiIndex(levels=[['B'], ['count', 'mean', 'std', 'min', '25%', '50%', '75%', 'max']], codes=[[0] * 8, list(range(8))]) expected = pd.DataFrame([[1.0, 2.0, np.nan, 2.0, 2.0, 2.0, 2.0, 2.0], [0.0, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan]], index=expected_index, columns=expected_col) result = g.describe() tm.assert_frame_equal(result, expected) expected = pd.concat([df[df.A == 1].describe().unstack().to_frame().T, df[df.A == 3].describe().unstack().to_frame().T]) expected.index = pd.Index([0, 1]) result = gni.describe() tm.assert_frame_equal(result, expected) # any expected = DataFrame([[True, True], [False, True]], columns=['B', 'C'], index=[1, 3]) expected.index.name = 'A' result = g.any() tm.assert_frame_equal(result, expected) # idxmax expected = DataFrame([[0.0], [np.nan]], columns=['B'], index=[1, 3]) expected.index.name = 'A' result = g.idxmax() tm.assert_frame_equal(result, expected) def test_cython_api2(): # this takes the fast apply path # cumsum (GH5614) df = DataFrame( [[1, 2, np.nan], [1, np.nan, 9], [3, 4, 9] ], columns=['A', 'B', 'C']) expected = DataFrame( [[2, np.nan], [np.nan, 9], [4, 9]], columns=['B', 'C']) result = df.groupby('A').cumsum() tm.assert_frame_equal(result, expected) # GH 5755 - cumsum is a transformer and should ignore as_index result = df.groupby('A', as_index=False).cumsum() tm.assert_frame_equal(result, expected) # GH 13994 result = df.groupby('A').cumsum(axis=1) expected = df.cumsum(axis=1) tm.assert_frame_equal(result, expected) result = df.groupby('A').cumprod(axis=1) expected = df.cumprod(axis=1) tm.assert_frame_equal(result, expected) def test_cython_median(): df = DataFrame(np.random.randn(1000)) df.values[::2] = np.nan labels = np.random.randint(0, 50, size=1000).astype(float) labels[::17] = np.nan result = df.groupby(labels).median() exp = df.groupby(labels).agg(nanops.nanmedian) tm.assert_frame_equal(result, exp) df = DataFrame(np.random.randn(1000, 5)) rs = df.groupby(labels).agg(np.median) xp = df.groupby(labels).median() tm.assert_frame_equal(rs, xp) def test_median_empty_bins(observed): df = pd.DataFrame(np.random.randint(0, 44, 500)) grps = range(0, 55, 5) bins = pd.cut(df[0], grps) result = df.groupby(bins, observed=observed).median() expected = df.groupby(bins, observed=observed).agg(lambda x: x.median()) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("dtype", [ 'int8', 'int16', 'int32', 'int64', 'float32', 'float64']) @pytest.mark.parametrize("method,data", [ ('first', {'df': [{'a': 1, 'b': 1}, {'a': 2, 'b': 3}]}), ('last', {'df': [{'a': 1, 'b': 2}, {'a': 2, 'b': 4}]}), ('min', {'df': [{'a': 1, 'b': 1}, {'a': 2, 'b': 3}]}), ('max', {'df': [{'a': 1, 'b': 2}, {'a': 2, 'b': 4}]}), ('nth', {'df': [{'a': 1, 'b': 2}, {'a': 2, 'b': 4}], 'args': [1]}), ('count', {'df': [{'a': 1, 'b': 2}, {'a': 2, 'b': 2}], 'out_type': 'int64'}) ]) def test_groupby_non_arithmetic_agg_types(dtype, method, data): # GH9311, GH6620 df = pd.DataFrame( [{'a': 1, 'b': 1}, {'a': 1, 'b': 2}, {'a': 2, 'b': 3}, {'a': 2, 'b': 4}]) df['b'] = df.b.astype(dtype) if 'args' not in data: data['args'] = [] if 'out_type' in data: out_type = data['out_type'] else: out_type = dtype exp = data['df'] df_out = pd.DataFrame(exp) df_out['b'] = df_out.b.astype(out_type) df_out.set_index('a', inplace=True) grpd = df.groupby('a') t = getattr(grpd, method)(*data['args']) tm.assert_frame_equal(t, df_out) @pytest.mark.parametrize("i", [ (Timestamp("2011-01-15 12:50:28.502376"), Timestamp("2011-01-20 12:50:28.593448")), (24650000000000001, 24650000000000002) ]) def test_groupby_non_arithmetic_agg_int_like_precision(i): # see gh-6620, gh-9311 df = pd.DataFrame([{"a": 1, "b": i[0]}, {"a": 1, "b": i[1]}]) grp_exp = {"first": {"expected": i[0]}, "last": {"expected": i[1]}, "min": {"expected": i[0]}, "max": {"expected": i[1]}, "nth": {"expected": i[1], "args": [1]}, "count": {"expected": 2}} for method, data in grp_exp.items(): if "args" not in data: data["args"] = [] grouped = df.groupby("a") res = getattr(grouped, method)(*data["args"]) assert res.iloc[0].b == data["expected"] @pytest.mark.parametrize("func, values", [ ("idxmin", {'c_int': [0, 2], 'c_float': [1, 3], 'c_date': [1, 2]}), ("idxmax", {'c_int': [1, 3], 'c_float': [0, 2], 'c_date': [0, 3]}) ]) def test_idxmin_idxmax_returns_int_types(func, values): # GH 25444 df = pd.DataFrame({'name': ['A', 'A', 'B', 'B'], 'c_int': [1, 2, 3, 4], 'c_float': [4.02, 3.03, 2.04, 1.05], 'c_date': ['2019', '2018', '2016', '2017']}) df['c_date'] = pd.to_datetime(df['c_date']) result = getattr(df.groupby('name'), func)() expected = pd.DataFrame(values, index=Index(['A', 'B'], name="name")) tm.assert_frame_equal(result, expected) def test_fill_consistency(): # GH9221 # pass thru keyword arguments to the generated wrapper # are set if the passed kw is None (only) df = DataFrame(index=pd.MultiIndex.from_product( [['value1', 'value2'], date_range('2014-01-01', '2014-01-06')]), columns=Index( ['1', '2'], name='id')) df['1'] = [np.nan, 1, np.nan, np.nan, 11, np.nan, np.nan, 2, np.nan, np.nan, 22, np.nan] df['2'] = [np.nan, 3, np.nan, np.nan, 33, np.nan, np.nan, 4, np.nan, np.nan, 44, np.nan] expected = df.groupby(level=0, axis=0).fillna(method='ffill') result = df.T.groupby(level=0, axis=1).fillna(method='ffill').T tm.assert_frame_equal(result, expected) def test_groupby_cumprod(): # GH 4095 df = pd.DataFrame({'key': ['b'] * 10, 'value': 2}) actual = df.groupby('key')['value'].cumprod() expected = df.groupby('key')['value'].apply(lambda x: x.cumprod()) expected.name = 'value' tm.assert_series_equal(actual, expected) df = pd.DataFrame({'key': ['b'] * 100, 'value': 2}) actual = df.groupby('key')['value'].cumprod() # if overflows, groupby product casts to float # while numpy passes back invalid values df['value'] = df['value'].astype(float) expected = df.groupby('key')['value'].apply(lambda x: x.cumprod()) expected.name = 'value' tm.assert_series_equal(actual, expected) def test_ops_general(): ops = [('mean', np.mean), ('median', np.median), ('std', np.std), ('var', np.var), ('sum', np.sum), ('prod', np.prod), ('min', np.min), ('max', np.max), ('first', lambda x: x.iloc[0]), ('last', lambda x: x.iloc[-1]), ('count', np.size), ] try: from scipy.stats import sem except ImportError: pass else: ops.append(('sem', sem)) df = DataFrame(np.random.randn(1000)) labels = np.random.randint(0, 50, size=1000).astype(float) for op, targop in ops: result = getattr(df.groupby(labels), op)().astype(float) expected = df.groupby(labels).agg(targop) try: tm.assert_frame_equal(result, expected) except BaseException as exc: exc.args += ('operation: %s' % op, ) raise def test_max_nan_bug(): raw = """,Date,app,File -04-23,2013-04-23 00:00:00,,log080001.log -05-06,2013-05-06 00:00:00,,log.log -05-07,2013-05-07 00:00:00,OE,xlsx""" df = pd.read_csv(StringIO(raw), parse_dates=[0]) gb = df.groupby('Date') r = gb[['File']].max() e = gb['File'].max().to_frame() tm.assert_frame_equal(r, e) assert not r['File'].isna().any() def test_nlargest(): a = Series([1, 3, 5, 7, 2, 9, 0, 4, 6, 10]) b = Series(list('a' * 5 + 'b' * 5)) gb = a.groupby(b) r = gb.nlargest(3) e = Series([ 7, 5, 3, 10, 9, 6 ], index=MultiIndex.from_arrays([list('aaabbb'), [3, 2, 1, 9, 5, 8]])) tm.assert_series_equal(r, e) a = Series([1, 1, 3, 2, 0, 3, 3, 2, 1, 0]) gb = a.groupby(b) e = Series([ 3, 2, 1, 3, 3, 2 ], index=MultiIndex.from_arrays([list('aaabbb'), [2, 3, 1, 6, 5, 7]])) tm.assert_series_equal(gb.nlargest(3, keep='last'), e) def test_nsmallest(): a = Series([1, 3, 5, 7, 2, 9, 0, 4, 6, 10]) b = Series(list('a' * 5 + 'b' * 5)) gb = a.groupby(b) r = gb.nsmallest(3) e = Series([ 1, 2, 3, 0, 4, 6 ], index=MultiIndex.from_arrays([list('aaabbb'), [0, 4, 1, 6, 7, 8]])) tm.assert_series_equal(r, e) a = Series([1, 1, 3, 2, 0, 3, 3, 2, 1, 0]) gb = a.groupby(b) e = Series([ 0, 1, 1, 0, 1, 2 ], index=MultiIndex.from_arrays([list('aaabbb'), [4, 1, 0, 9, 8, 7]])) tm.assert_series_equal(gb.nsmallest(3, keep='last'), e) @pytest.mark.parametrize("func", [ 'mean', 'var', 'std', 'cumprod', 'cumsum' ]) def test_numpy_compat(func): # see gh-12811 df = pd.DataFrame({'A': [1, 2, 1], 'B': [1, 2, 3]}) g = df.groupby('A') msg = "numpy operations are not valid with groupby" with pytest.raises(UnsupportedFunctionCall, match=msg): getattr(g, func)(1, 2, 3) with pytest.raises(UnsupportedFunctionCall, match=msg): getattr(g, func)(foo=1) def test_cummin_cummax(): # GH 15048 num_types = [np.int32, np.int64, np.float32, np.float64] num_mins = [np.iinfo(np.int32).min, np.iinfo(np.int64).min, np.finfo(np.float32).min, np.finfo(np.float64).min] num_max = [np.iinfo(np.int32).max, np.iinfo(np.int64).max, np.finfo(np.float32).max, np.finfo(np.float64).max] base_df = pd.DataFrame({'A': [1, 1, 1, 1, 2, 2, 2, 2], 'B': [3, 4, 3, 2, 2, 3, 2, 1]}) expected_mins = [3, 3, 3, 2, 2, 2, 2, 1] expected_maxs = [3, 4, 4, 4, 2, 3, 3, 3] for dtype, min_val, max_val in zip(num_types, num_mins, num_max): df = base_df.astype(dtype) # cummin expected = pd.DataFrame({'B': expected_mins}).astype(dtype) result = df.groupby('A').cummin() tm.assert_frame_equal(result, expected) result = df.groupby('A').B.apply(lambda x: x.cummin()).to_frame() tm.assert_frame_equal(result, expected) # Test cummin w/ min value for dtype df.loc[[2, 6], 'B'] = min_val expected.loc[[2, 3, 6, 7], 'B'] = min_val result = df.groupby('A').cummin() tm.assert_frame_equal(result, expected) expected = df.groupby('A').B.apply(lambda x: x.cummin()).to_frame() tm.assert_frame_equal(result, expected) # cummax expected = pd.DataFrame({'B': expected_maxs}).astype(dtype) result = df.groupby('A').cummax() tm.assert_frame_equal(result, expected) result = df.groupby('A').B.apply(lambda x: x.cummax()).to_frame() tm.assert_frame_equal(result, expected) # Test cummax w/ max value for dtype df.loc[[2, 6], 'B'] = max_val expected.loc[[2, 3, 6, 7], 'B'] = max_val result = df.groupby('A').cummax() tm.assert_frame_equal(result, expected) expected = df.groupby('A').B.apply(lambda x: x.cummax()).to_frame() tm.assert_frame_equal(result, expected) # Test nan in some values base_df.loc[[0, 2, 4, 6], 'B'] = np.nan expected = pd.DataFrame({'B': [np.nan, 4, np.nan, 2, np.nan, 3, np.nan, 1]}) result = base_df.groupby('A').cummin() tm.assert_frame_equal(result, expected) expected = (base_df.groupby('A') .B .apply(lambda x: x.cummin()) .to_frame()) tm.assert_frame_equal(result, expected) expected = pd.DataFrame({'B': [np.nan, 4, np.nan, 4, np.nan, 3, np.nan, 3]}) result = base_df.groupby('A').cummax() tm.assert_frame_equal(result, expected) expected = (base_df.groupby('A') .B .apply(lambda x: x.cummax()) .to_frame()) tm.assert_frame_equal(result, expected) # Test nan in entire column base_df['B'] = np.nan expected = pd.DataFrame({'B': [np.nan] * 8}) result = base_df.groupby('A').cummin() tm.assert_frame_equal(expected, result) result = base_df.groupby('A').B.apply(lambda x: x.cummin()).to_frame() tm.assert_frame_equal(expected, result) result = base_df.groupby('A').cummax() tm.assert_frame_equal(expected, result) result = base_df.groupby('A').B.apply(lambda x: x.cummax()).to_frame() tm.assert_frame_equal(expected, result) # GH 15561 df = pd.DataFrame(dict(a=[1], b=pd.to_datetime(['2001']))) expected = pd.Series(pd.to_datetime('2001'), index=[0], name='b') for method in ['cummax', 'cummin']: result = getattr(df.groupby('a')['b'], method)() tm.assert_series_equal(expected, result) # GH 15635 df = pd.DataFrame(dict(a=[1, 2, 1], b=[2, 1, 1])) result = df.groupby('a').b.cummax() expected = pd.Series([2, 1, 2], name='b') tm.assert_series_equal(result, expected) df = pd.DataFrame(dict(a=[1, 2, 1], b=[1, 2, 2])) result = df.groupby('a').b.cummin() expected = pd.Series([1, 2, 1], name='b') tm.assert_series_equal(result, expected) @pytest.mark.parametrize('in_vals, out_vals', [ # Basics: strictly increasing (T), strictly decreasing (F), # abs val increasing (F), non-strictly increasing (T) ([1, 2, 5, 3, 2, 0, 4, 5, -6, 1, 1], [True, False, False, True]), # Test with inf vals ([1, 2.1, np.inf, 3, 2, np.inf, -np.inf, 5, 11, 1, -np.inf], [True, False, True, False]), # Test with nan vals; should always be False ([1, 2, np.nan, 3, 2, np.nan, np.nan, 5, -np.inf, 1, np.nan], [False, False, False, False]), ]) def test_is_monotonic_increasing(in_vals, out_vals): # GH 17015 source_dict = { 'A': ['1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11'], 'B': ['a', 'a', 'a', 'b', 'b', 'b', 'c', 'c', 'c', 'd', 'd'], 'C': in_vals} df = pd.DataFrame(source_dict) result = df.groupby('B').C.is_monotonic_increasing index = Index(list('abcd'), name='B') expected = pd.Series(index=index, data=out_vals, name='C') tm.assert_series_equal(result, expected) # Also check result equal to manually taking x.is_monotonic_increasing. expected = ( df.groupby(['B']).C.apply(lambda x: x.is_monotonic_increasing)) tm.assert_series_equal(result, expected) @pytest.mark.parametrize('in_vals, out_vals', [ # Basics: strictly decreasing (T), strictly increasing (F), # abs val decreasing (F), non-strictly increasing (T) ([10, 9, 7, 3, 4, 5, -3, 2, 0, 1, 1], [True, False, False, True]), # Test with inf vals ([np.inf, 1, -np.inf, np.inf, 2, -3, -np.inf, 5, -3, -np.inf, -np.inf], [True, True, False, True]), # Test with nan vals; should always be False ([1, 2, np.nan, 3, 2, np.nan, np.nan, 5, -np.inf, 1, np.nan], [False, False, False, False]), ]) def test_is_monotonic_decreasing(in_vals, out_vals): # GH 17015 source_dict = { 'A': ['1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11'], 'B': ['a', 'a', 'a', 'b', 'b', 'b', 'c', 'c', 'c', 'd', 'd'], 'C': in_vals} df = pd.DataFrame(source_dict) result = df.groupby('B').C.is_monotonic_decreasing index = Index(list('abcd'), name='B') expected = pd.Series(index=index, data=out_vals, name='C') tm.assert_series_equal(result, expected) # describe # -------------------------------- def test_apply_describe_bug(mframe): grouped = mframe.groupby(level='first') grouped.describe() # it works! def test_series_describe_multikey(): ts = tm.makeTimeSeries() grouped = ts.groupby([lambda x: x.year, lambda x: x.month]) result = grouped.describe() tm.assert_series_equal(result['mean'], grouped.mean(), check_names=False) tm.assert_series_equal(result['std'], grouped.std(), check_names=False) tm.assert_series_equal(result['min'], grouped.min(), check_names=False) def test_series_describe_single(): ts = tm.makeTimeSeries() grouped = ts.groupby(lambda x: x.month) result = grouped.apply(lambda x: x.describe()) expected = grouped.describe().stack() tm.assert_series_equal(result, expected) def test_series_index_name(df): grouped = df.loc[:, ['C']].groupby(df['A']) result = grouped.agg(lambda x: x.mean()) assert result.index.name == 'A' def test_frame_describe_multikey(tsframe): grouped = tsframe.groupby([lambda x: x.year, lambda x: x.month]) result = grouped.describe() desc_groups = [] for col in tsframe: group = grouped[col].describe() # GH 17464 - Remove duplicate MultiIndex levels group_col = pd.MultiIndex( levels=[[col], group.columns], codes=[[0] * len(group.columns), range(len(group.columns))]) group = pd.DataFrame(group.values, columns=group_col, index=group.index) desc_groups.append(group) expected = pd.concat(desc_groups, axis=1) tm.assert_frame_equal(result, expected) groupedT = tsframe.groupby({'A': 0, 'B': 0, 'C': 1, 'D': 1}, axis=1) result = groupedT.describe() expected = tsframe.describe().T expected.index = pd.MultiIndex( levels=[[0, 1], expected.index], codes=[[0, 0, 1, 1], range(len(expected.index))]) tm.assert_frame_equal(result, expected) def test_frame_describe_tupleindex(): # GH 14848 - regression from 0.19.0 to 0.19.1 df1 = DataFrame({'x': [1, 2, 3, 4, 5] * 3, 'y': [10, 20, 30, 40, 50] * 3, 'z': [100, 200, 300, 400, 500] * 3}) df1['k'] = [(0, 0, 1), (0, 1, 0), (1, 0, 0)] * 5 df2 = df1.rename(columns={'k': 'key'}) msg = "Names should be list-like for a MultiIndex" with pytest.raises(ValueError, match=msg): df1.groupby('k').describe() with pytest.raises(ValueError, match=msg): df2.groupby('key').describe() def test_frame_describe_unstacked_format(): # GH 4792 prices = {pd.Timestamp('2011-01-06 10:59:05', tz=None): 24990, pd.Timestamp('2011-01-06 12:43:33', tz=None): 25499, pd.Timestamp('2011-01-06 12:54:09', tz=None): 25499} volumes = {pd.Timestamp('2011-01-06 10:59:05', tz=None): 1500000000, pd.Timestamp('2011-01-06 12:43:33', tz=None): 5000000000, pd.Timestamp('2011-01-06 12:54:09', tz=None): 100000000} df = pd.DataFrame({'PRICE': prices, 'VOLUME': volumes}) result = df.groupby('PRICE').VOLUME.describe() data = [df[df.PRICE == 24990].VOLUME.describe().values.tolist(), df[df.PRICE == 25499].VOLUME.describe().values.tolist()] expected = pd.DataFrame(data, index=pd.Index([24990, 25499], name='PRICE'), columns=['count', 'mean', 'std', 'min', '25%', '50%', '75%', 'max']) tm.assert_frame_equal(result, expected) # nunique # -------------------------------- @pytest.mark.parametrize('n', 10 ** np.arange(2, 6)) @pytest.mark.parametrize('m', [10, 100, 1000]) @pytest.mark.parametrize('sort', [False, True]) @pytest.mark.parametrize('dropna', [False, True]) def test_series_groupby_nunique(n, m, sort, dropna): def check_nunique(df, keys, as_index=True): gr = df.groupby(keys, as_index=as_index, sort=sort) left = gr['julie'].nunique(dropna=dropna) gr = df.groupby(keys, as_index=as_index, sort=sort) right = gr['julie'].apply(Series.nunique, dropna=dropna) if not as_index: right = right.reset_index(drop=True) tm.assert_series_equal(left, right, check_names=False) days = date_range('2015-08-23', periods=10) frame = DataFrame({'jim': np.random.choice(list(ascii_lowercase), n), 'joe': np.random.choice(days, n), 'julie': np.random.randint(0, m, n)}) check_nunique(frame, ['jim']) check_nunique(frame, ['jim', 'joe']) frame.loc[1::17, 'jim'] = None frame.loc[3::37, 'joe'] = None frame.loc[7::19, 'julie'] = None frame.loc[8::19, 'julie'] = None frame.loc[9::19, 'julie'] = None check_nunique(frame, ['jim']) check_nunique(frame, ['jim', 'joe']) check_nunique(frame, ['jim'], as_index=False) check_nunique(frame, ['jim', 'joe'], as_index=False) def test_nunique(): df = DataFrame({ 'A': list('abbacc'), 'B': list('abxacc'), 'C': list('abbacx'), }) expected = DataFrame({'A': [1] * 3, 'B': [1, 2, 1], 'C': [1, 1, 2]}) result = df.groupby('A', as_index=False).nunique() tm.assert_frame_equal(result, expected) # as_index expected.index = list('abc') expected.index.name = 'A' result = df.groupby('A').nunique() tm.assert_frame_equal(result, expected) # with na result = df.replace({'x': None}).groupby('A').nunique(dropna=False) tm.assert_frame_equal(result, expected) # dropna expected = DataFrame({'A': [1] * 3, 'B': [1] * 3, 'C': [1] * 3}, index=list('abc')) expected.index.name = 'A' result = df.replace({'x': None}).groupby('A').nunique() tm.assert_frame_equal(result, expected) def test_nunique_with_object(): # GH 11077 data = pd.DataFrame( [[100, 1, 'Alice'], [200, 2, 'Bob'], [300, 3, 'Charlie'], [-400, 4, 'Dan'], [500, 5, 'Edith']], columns=['amount', 'id', 'name'] ) result = data.groupby(['id', 'amount'])['name'].nunique() index = MultiIndex.from_arrays([data.id, data.amount]) expected = pd.Series([1] * 5, name='name', index=index) tm.assert_series_equal(result, expected) def test_nunique_with_empty_series(): # GH 12553 data = pd.Series(name='name') result = data.groupby(level=0).nunique() expected = pd.Series(name='name', dtype='int64') tm.assert_series_equal(result, expected) def test_nunique_with_timegrouper(): # GH 13453 test = pd.DataFrame({ 'time': [Timestamp('2016-06-28 09:35:35'), Timestamp('2016-06-28 16:09:30'), Timestamp('2016-06-28 16:46:28')], 'data': ['1', '2', '3']}).set_index('time') result = test.groupby(pd.Grouper(freq='h'))['data'].nunique() expected = test.groupby( pd.Grouper(freq='h') )['data'].apply(pd.Series.nunique) tm.assert_series_equal(result, expected) def test_nunique_preserves_column_level_names(): # GH 23222 test = pd.DataFrame([1, 2, 2], columns=pd.Index(['A'], name="level_0")) result = test.groupby([0, 0, 0]).nunique() expected = pd.DataFrame([2], columns=test.columns) tm.assert_frame_equal(result, expected) # count # -------------------------------- def test_groupby_timedelta_cython_count(): df = DataFrame({'g': list('ab' * 2), 'delt': np.arange(4).astype('timedelta64[ns]')}) expected = Series([ 2, 2 ], index=pd.Index(['a', 'b'], name='g'), name='delt') result = df.groupby('g').delt.count() tm.assert_series_equal(expected, result) def test_count(): n = 1 << 15 dr = date_range('2015-08-30', periods=n // 10, freq='T') df = DataFrame({ '1st': np.random.choice( list(ascii_lowercase), n), '2nd': np.random.randint(0, 5, n), '3rd': np.random.randn(n).round(3), '4th': np.random.randint(-10, 10, n), '5th': np.random.choice(dr, n), '6th': np.random.randn(n).round(3), '7th': np.random.randn(n).round(3), '8th': np.random.choice(dr, n) - np.random.choice(dr, 1), '9th': np.random.choice( list(ascii_lowercase), n) }) for col in df.columns.drop(['1st', '2nd', '4th']): df.loc[np.random.choice(n, n // 10), col] = np.nan df['9th'] = df['9th'].astype('category') for key in '1st', '2nd', ['1st', '2nd']: left = df.groupby(key).count() right = df.groupby(key).apply(DataFrame.count).drop(key, axis=1) tm.assert_frame_equal(left, right) # GH5610 # count counts non-nulls df = pd.DataFrame([[1, 2, 'foo'], [1, np.nan, 'bar'], [3, np.nan, np.nan]], columns=['A', 'B', 'C']) count_as = df.groupby('A').count() count_not_as = df.groupby('A', as_index=False).count() expected = DataFrame([[1, 2], [0, 0]], columns=['B', 'C'], index=[1, 3]) expected.index.name = 'A' tm.assert_frame_equal(count_not_as, expected.reset_index()) tm.assert_frame_equal(count_as, expected) count_B = df.groupby('A')['B'].count() tm.assert_series_equal(count_B, expected['B']) def test_count_object(): df = pd.DataFrame({'a': ['a'] * 3 + ['b'] * 3, 'c': [2] * 3 + [3] * 3}) result = df.groupby('c').a.count() expected = pd.Series([ 3, 3 ], index=pd.Index([2, 3], name='c'), name='a') tm.assert_series_equal(result, expected) df = pd.DataFrame({'a': ['a', np.nan, np.nan] + ['b'] * 3, 'c': [2] * 3 + [3] * 3}) result = df.groupby('c').a.count() expected = pd.Series([ 1, 3 ], index=pd.Index([2, 3], name='c'), name='a') tm.assert_series_equal(result, expected) def test_count_cross_type(): # GH8169 vals = np.hstack((np.random.randint(0, 5, (100, 2)), np.random.randint( 0, 2, (100, 2)))) df = pd.DataFrame(vals, columns=['a', 'b', 'c', 'd']) df[df == 2] = np.nan expected = df.groupby(['c', 'd']).count() for t in ['float32', 'object']: df['a'] = df['a'].astype(t) df['b'] = df['b'].astype(t) result = df.groupby(['c', 'd']).count() tm.assert_frame_equal(result, expected) def test_lower_int_prec_count(): df = DataFrame({'a': np.array( [0, 1, 2, 100], np.int8), 'b': np.array( [1, 2, 3, 6], np.uint32), 'c': np.array( [4, 5, 6, 8], np.int16), 'grp': list('ab' * 2)}) result = df.groupby('grp').count() expected = DataFrame({'a': [2, 2], 'b': [2, 2], 'c': [2, 2]}, index=pd.Index(list('ab'), name='grp')) tm.assert_frame_equal(result, expected) def test_count_uses_size_on_exception(): class RaisingObjectException(Exception): pass class RaisingObject(object): def __init__(self, msg='I will raise inside Cython'): super(RaisingObject, self).__init__() self.msg = msg def __eq__(self, other): # gets called in Cython to check that raising calls the method raise RaisingObjectException(self.msg) df = DataFrame({'a': [RaisingObject() for _ in range(4)], 'grp': list('ab' * 2)}) result = df.groupby('grp').count() expected = DataFrame({'a': [2, 2]}, index=pd.Index( list('ab'), name='grp')) tm.assert_frame_equal(result, expected) # size # -------------------------------- def test_size(df): grouped = df.groupby(['A', 'B']) result = grouped.size() for key, group in grouped: assert result[key] == len(group) grouped = df.groupby('A') result = grouped.size() for key, group in grouped: assert result[key] == len(group) grouped = df.groupby('B') result = grouped.size() for key, group in grouped: assert result[key] == len(group) df = DataFrame(np.random.choice(20, (1000, 3)), columns=list('abc')) for sort, key in product((False, True), ('a', 'b', ['a', 'b'])): left = df.groupby(key, sort=sort).size() right = df.groupby(key, sort=sort)['c'].apply(lambda a: a.shape[0]) tm.assert_series_equal(left, right, check_names=False) # GH11699 df = DataFrame(columns=['A', 'B']) out = Series(dtype='int64', index=Index([], name='A')) tm.assert_series_equal(df.groupby('A').size(), out) def test_size_groupby_all_null(): # GH23050 # Assert no 'Value Error : Length of passed values is 2, index implies 0' df = DataFrame({'A': [None, None]}) # all-null groups result = df.groupby('A').size() expected = Series(dtype='int64', index=Index([], name='A'))
tm.assert_series_equal(result, expected)
pandas.util.testing.assert_series_equal
# -*- coding: utf-8 -*- """Interface for flopy's implementation for MODFLOW.""" __all__ = ["MfSfrNetwork"] import pickle from itertools import combinations, zip_longest from textwrap import dedent import geopandas import numpy as np import pandas as pd from shapely import wkt from shapely.geometry import LineString, Point, Polygon, box from shapely.ops import linemerge from swn.core import SurfaceWaterNetwork from swn.spatial import compare_crs, get_sindex from swn.util import abbr_str try: import matplotlib except ImportError: matplotlib = False class MfSfrNetwork: """MODFLOW SFR network class. Attributes ---------- model : flopy.modflow.mf.Modflow Instance of a flopy MODFLOW model segments : geopandas.GeoDataFrame Copied from swn.segments, but with additional columns added segment_data : pandas.DataFrame Similar to structure in model.sfr.segment_data, but for one stress period. Transient data (where applicable) will show summary statistics. The index is 'nseg', ordered and starting from 1. An additional column 'segnum' is used to identify segments, and if defined, abstraction/diversion identifiers, where iupseg != 0. reaches : geopandas.GeoDataFrame Similar to structure in model.sfr.reach_data with index 'reachID', ordered and starting from 1. Contains geometry and other columns not used by flopy. Use get_reach_data() for use with flopy. diversions : geopandas.GeoDataFrame, pd.DataFrame or None Copied from swn.diversions, if set/defined. logger : logging.Logger Logger to show messages. """ def __init__(self, logger=None): """Initialise MfSfrNetwork. Parameters ---------- logger : logging.Logger, optional Logger to show messages. """ from swn.logger import get_logger, logging from importlib.util import find_spec if logger is None: self.logger = get_logger(self.__class__.__name__) elif isinstance(logger, logging.Logger): self.logger = logger else: raise ValueError( "expected 'logger' to be Logger; found " + str(type(logger))) self.logger.warning( "using legacy MfSfrNetwork; consider using SwnModflow") self.logger.info('creating new %s object', self.__class__.__name__) if not find_spec('flopy'): raise ImportError(self.__class__.__name__ + ' requires flopy') self.segments = None self.segment_data = None self.reaches = None self.diversions = None # all other properties added afterwards @classmethod def from_swn_flopy( cls, swn, model, ibound_action='freeze', reach_include_fraction=0.2, min_slope=1./1000, hyd_cond1=1., hyd_cond_out=None, thickness1=1., thickness_out=None, width1=10., width_out=None, roughch=0.024, abstraction={}, inflow={}, flow={}, runoff={}, etsw={}, pptsw={}): """Create a MODFLOW SFR structure from a surface water network. Parameters ---------- swn : swn.SurfaceWaterNetwork Instance of a SurfaceWaterNetwork. model : flopy.modflow.mf.Modflow Instance of a flopy MODFLOW model with DIS and BAS6 packages. ibound_action : str, optional Action to handle IBOUND: - ``freeze`` : Freeze IBOUND, but clip streams to fit bounds. - ``modify`` : Modify IBOUND to fit streams, where possible. reach_include_fraction : float or pandas.Series, optional Fraction of cell size used as a threshold distance to determine if reaches outside the active grid should be included to a cell. Based on the furthest distance of the line and cell geometries. Default 0.2 (e.g. for a 100 m grid cell, this is 20 m). min_slope : float or pandas.Series, optional Minimum downwards slope imposed on segments. If float, then this is a global value, otherwise it is per-segment with a Series. Default 1./1000 (or 0.001). hyd_cond1 : float or pandas.Series, optional Hydraulic conductivity of the streambed, as a global or per top of each segment. Used for either STRHC1 or HCOND1/HCOND2 outputs. Default 1. hyd_cond_out : None, float or pandas.Series, optional Similar to thickness1, but for the hydraulic conductivity of each segment outlet. If None (default), the same hyd_cond1 value for the top of the outlet segment is used for the bottom. thickness1 : float or pandas.Series, optional Thickness of the streambed, as a global or per top of each segment. Used for either STRTHICK or THICKM1/THICKM2 outputs. Default 1. thickness_out : None, float or pandas.Series, optional Similar to thickness1, but for the bottom of each segment outlet. If None (default), the same thickness1 value for the top of the outlet segment is used for the bottom. width1 : float or pandas.Series, optional Channel width, as a global or per top of each segment. Used for WIDTH1/WIDTH2 outputs. Default 10. width_out : None, float or pandas.Series, optional Similar to width1, but for the bottom of each segment outlet. If None (default), the same width1 value for the top of the outlet segment is used for the bottom. roughch : float or pandas.Series, optional Manning's roughness coefficient for the channel. If float, then this is a global value, otherwise it is per-segment with a Series. Default 0.024. abstraction : dict or pandas.DataFrame, optional See generate_segment_data for details. Default is {} (no abstraction from diversions). inflow : dict or pandas.DataFrame, optional See generate_segment_data for details. Default is {} (no outside inflow added to flow term). flow : dict or pandas.DataFrame, optional See generate_segment_data. Default is {} (zero). runoff : dict or pandas.DataFrame, optional See generate_segment_data. Default is {} (zero). etsw : dict or pandas.DataFrame, optional See generate_segment_data. Default is {} (zero). pptsw : dict or pandas.DataFrame, optional See generate_segment_data. Default is {} (zero). logger : logging.Logger, optional Logger to show messages. """ obj = cls() import flopy if not isinstance(swn, SurfaceWaterNetwork): raise ValueError('swn must be a SurfaceWaterNetwork object') elif ibound_action not in ('freeze', 'modify'): raise ValueError('ibound_action must be one of freeze or modify') obj.model = model obj.segments = swn.segments.copy() # Make sure model CRS and segments CRS are the same (if defined) crs = None segments_crs = getattr(obj.segments.geometry, 'crs', None) modelgrid_crs = None modelgrid = obj.model.modelgrid epsg = modelgrid.epsg proj4_str = modelgrid.proj4 if epsg is not None: segments_crs, modelgrid_crs, same = compare_crs(segments_crs, epsg) else: segments_crs, modelgrid_crs, same = compare_crs(segments_crs, proj4_str) if (segments_crs is not None and modelgrid_crs is not None and not same): obj.logger.warning( 'CRS for segments and modelgrid are different: {0} vs. {1}' .format(segments_crs, modelgrid_crs)) crs = segments_crs or modelgrid_crs # Make sure their extents overlap minx, maxx, miny, maxy = modelgrid.extent model_bbox = box(minx, miny, maxx, maxy) rstats = obj.segments.bounds.describe() segments_bbox = box( rstats.loc['min', 'minx'], rstats.loc['min', 'miny'], rstats.loc['max', 'maxx'], rstats.loc['max', 'maxy']) if model_bbox.disjoint(segments_bbox): raise ValueError('modelgrid extent does not cover segments extent') # More careful check of overlap of lines with grid polygons obj.logger.debug('building model grid cell geometries') dis = obj.model.dis cols, rows = np.meshgrid(np.arange(dis.ncol), np.arange(dis.nrow)) ibound = obj.model.bas6.ibound[0].array.copy() ibound_modified = 0 grid_df = pd.DataFrame({'row': rows.flatten(), 'col': cols.flatten()}) grid_df.set_index(['row', 'col'], inplace=True) grid_df['ibound'] = ibound.flatten() if ibound_action == 'freeze' and (ibound == 0).any(): # Remove any inactive grid cells from analysis grid_df = grid_df.loc[grid_df['ibound'] != 0] # Determine grid cell size col_size = np.median(dis.delr.array) if dis.delr.array.min() != dis.delr.array.max(): obj.logger.warning( 'assuming constant column spacing %s', col_size) row_size = np.median(dis.delc.array) if dis.delc.array.min() != dis.delc.array.max(): obj.logger.warning( 'assuming constant row spacing %s', row_size) cell_size = (row_size + col_size) / 2.0 # Note: modelgrid.get_cell_vertices(row, col) is slow! xv = modelgrid.xvertices yv = modelgrid.yvertices r, c = [np.array(s[1]) for s in grid_df.reset_index()[['row', 'col']].iteritems()] cell_verts = zip( zip(xv[r, c], yv[r, c]), zip(xv[r, c + 1], yv[r, c + 1]), zip(xv[r + 1, c + 1], yv[r + 1, c + 1]), zip(xv[r + 1, c], yv[r + 1, c]) ) obj.grid_cells = grid_cells = geopandas.GeoDataFrame( grid_df, geometry=[Polygon(r) for r in cell_verts], crs=crs) obj.logger.debug('evaluating reach data on model grid') grid_sindex = get_sindex(grid_cells) reach_include = swn.segments_series(reach_include_fraction) * cell_size # Make an empty DataFrame for reaches obj.reaches = pd.DataFrame(columns=['geometry']) obj.reaches.insert(1, column='row', value=pd.Series(dtype=int)) obj.reaches.insert(2, column='col', value=pd.Series(dtype=int)) empty_reach_df = obj.reaches.copy() # take this before more added obj.reaches.insert( 1, column='segnum', value=pd.Series(dtype=obj.segments.index.dtype)) obj.reaches.insert(2, column='dist', value=pd.Series(dtype=float)) empty_reach_df.insert(3, column='length', value=pd.Series(dtype=float)) empty_reach_df.insert(4, column='moved', value=pd.Series(dtype=bool)) # recursive helper function def append_reach_df(df, row, col, reach_geom, moved=False): if reach_geom.geom_type == 'LineString': df.loc[len(df.index)] = { 'geometry': reach_geom, 'row': row, 'col': col, 'length': reach_geom.length, 'moved': moved, } elif reach_geom.geom_type.startswith('Multi'): for sub_reach_geom in reach_geom.geoms: # recurse append_reach_df(df, row, col, sub_reach_geom, moved) else: raise NotImplementedError(reach_geom.geom_type) # helper function that returns early, if necessary def assign_short_reach(reach_df, idx, segnum): reach = reach_df.loc[idx] reach_geom = reach['geometry'] threshold = reach_include[segnum] if reach_geom.length > threshold: return cell_lengths = reach_df.groupby(['row', 'col'])['length'].sum() this_row_col = reach['row'], reach['col'] this_cell_length = cell_lengths[this_row_col] if this_cell_length > threshold: return grid_geom = grid_cells.at[(reach['row'], reach['col']), 'geometry'] # determine if it is crossing the grid once or twice grid_points = reach_geom.intersection(grid_geom.exterior) split_short = ( grid_points.geom_type == 'Point' or (grid_points.geom_type == 'MultiPoint' and len(grid_points) == 2)) if not split_short: return matches = [] # sequence scan on reach_df for oidx, orch in reach_df.iterrows(): if oidx == idx or orch['moved']: continue other_row_col = orch['row'], orch['col'] other_cell_length = cell_lengths[other_row_col] if (orch['geometry'].distance(reach_geom) < 1e-6 and this_cell_length < other_cell_length): matches.append((oidx, orch['geometry'])) if len(matches) == 0: # don't merge, e.g. reach does not connect to adjacent cell pass elif len(matches) == 1: # short segment is in one other cell only # update new row and col values, keep geometry as it is row_col1 = tuple(reach_df.loc[matches[0][0], ['row', 'col']]) reach_df.loc[idx, ['row', 'col', 'moved']] = row_col1 + (True,) # self.logger.debug( # 'moved short segment of %s from %s to %s', # segnum, this_row_col, row_col1) elif len(matches) == 2: assert grid_points.geom_type == 'MultiPoint', grid_points.wkt if len(grid_points) != 2: obj.logger.critical( 'expected 2 points, found %s', len(grid_points)) # Build a tiny DataFrame of coordinates for this reach reach_c = pd.DataFrame({ 'pt': [Point(c) for c in reach_geom.coords[:]] }) if len(reach_c) == 2: # If this is a simple line with two coords, split it reach_c.index = [0, 2] reach_c.loc[1] = { 'pt': reach_geom.interpolate(0.5, normalized=True)} reach_c.sort_index(inplace=True) reach_geom = LineString(list(reach_c['pt'])) # rebuild # first match assumed to be touching the start of the line if reach_c.at[0, 'pt'].distance(matches[1][1]) < 1e-6: matches.reverse() reach_c['d1'] = reach_c['pt'].apply( lambda p: p.distance(matches[0][1])) reach_c['d2'] = reach_c['pt'].apply( lambda p: p.distance(matches[1][1])) reach_c['dm'] = reach_c[['d1', 'd2']].min(1) # try a simple split where distances switch ds = reach_c['d1'] < reach_c['d2'] cidx = ds[ds].index[-1] # ensure it's not the index of either end if cidx == 0: cidx = 1 elif cidx == len(reach_c) - 1: cidx = len(reach_c) - 2 row1, col1 = list(reach_df.loc[matches[0][0], ['row', 'col']]) reach_geom1 = LineString(reach_geom.coords[:(cidx + 1)]) row2, col2 = list(reach_df.loc[matches[1][0], ['row', 'col']]) reach_geom2 = LineString(reach_geom.coords[cidx:]) # update the first, append the second reach_df.loc[idx, ['row', 'col', 'length', 'moved']] = \ (row1, col1, reach_geom1.length, True) reach_df.at[idx, 'geometry'] = reach_geom1 append_reach_df(reach_df, row2, col2, reach_geom2, moved=True) # self.logger.debug( # 'split and moved short segment of %s from %s to %s and %s', # segnum, this_row_col, (row1, col1), (row2, col2)) else: obj.logger.critical( 'unhandled assign_short_reach case with %d matches: %s\n' '%s\n%s', len(matches), matches, reach, grid_points.wkt) def assign_remaining_reach(reach_df, segnum, rem): if rem.geom_type == 'LineString': threshold = cell_size * 2.0 if rem.length > threshold: obj.logger.debug( 'remaining line segment from %s too long to merge ' '(%.1f > %.1f)', segnum, rem.length, threshold) return # search full grid for other cells that could match if grid_sindex: bbox_match = sorted(grid_sindex.intersection(rem.bounds)) sub = grid_cells.geometry.iloc[bbox_match] else: # slow scan of all cells sub = grid_cells.geometry assert len(sub) > 0, len(sub) matches = [] for (row, col), grid_geom in sub.iteritems(): if grid_geom.touches(rem): matches.append((row, col, grid_geom)) if len(matches) == 0: return threshold = reach_include[segnum] # Build a tiny DataFrame for just the remaining coordinates rem_c = pd.DataFrame({ 'pt': [Point(c) for c in rem.coords[:]] }) if len(matches) == 1: # merge it with adjacent cell row, col, grid_geom = matches[0] mdist = rem_c['pt'].apply( lambda p: grid_geom.distance(p)).max() if mdist > threshold: obj.logger.debug( 'remaining line segment from %s too far away to ' 'merge (%.1f > %.1f)', segnum, mdist, threshold) return append_reach_df(reach_df, row, col, rem, moved=True) elif len(matches) == 2: # complex: need to split it if len(rem_c) == 2: # If this is a simple line with two coords, split it rem_c.index = [0, 2] rem_c.loc[1] = { 'pt': rem.interpolate(0.5, normalized=True)} rem_c.sort_index(inplace=True) rem = LineString(list(rem_c['pt'])) # rebuild # first match assumed to be touching the start of the line if rem_c.at[0, 'pt'].touches(matches[1][2]): matches.reverse() rem_c['d1'] = rem_c['pt'].apply( lambda p: p.distance(matches[0][2])) rem_c['d2'] = rem_c['pt'].apply( lambda p: p.distance(matches[1][2])) rem_c['dm'] = rem_c[['d1', 'd2']].min(1) mdist = rem_c['dm'].max() if mdist > threshold: obj.logger.debug( 'remaining line segment from %s too far away to ' 'merge (%.1f > %.1f)', segnum, mdist, threshold) return # try a simple split where distances switch ds = rem_c['d1'] < rem_c['d2'] cidx = ds[ds].index[-1] # ensure it's not the index of either end if cidx == 0: cidx = 1 elif cidx == len(rem_c) - 1: cidx = len(rem_c) - 2 row, col = matches[0][0:2] rem1 = LineString(rem.coords[:(cidx + 1)]) append_reach_df(reach_df, row, col, rem1, moved=True) row, col = matches[1][0:2] rem2 = LineString(rem.coords[cidx:]) append_reach_df(reach_df, row, col, rem2, moved=True) else: obj.logger.critical( 'how does this happen? Segments from %d touching %d ' 'grid cells', segnum, len(matches)) elif rem.geom_type.startswith('Multi'): for sub_rem_geom in rem.geoms: # recurse assign_remaining_reach(reach_df, segnum, sub_rem_geom) else: raise NotImplementedError(rem.geom_type) for segnum, line in obj.segments.geometry.iteritems(): remaining_line = line if grid_sindex: bbox_match = sorted(grid_sindex.intersection(line.bounds)) if not bbox_match: continue sub = grid_cells.geometry.iloc[bbox_match] else: # slow scan of all cells sub = grid_cells.geometry # Find all intersections between segment and grid cells reach_df = empty_reach_df.copy() for (row, col), grid_geom in sub.iteritems(): reach_geom = grid_geom.intersection(line) if reach_geom.is_empty or reach_geom.geom_type == 'Point': continue remaining_line = remaining_line.difference(grid_geom) append_reach_df(reach_df, row, col, reach_geom) # Determine if any remaining portions of the line can be used if line is not remaining_line and remaining_line.length > 0: assign_remaining_reach(reach_df, segnum, remaining_line) # Reassign short reaches to two or more adjacent grid cells # starting with the shortest reach reach_lengths = reach_df['length'].loc[ reach_df['length'] < reach_include[segnum]] for idx in list(reach_lengths.sort_values().index): assign_short_reach(reach_df, idx, segnum) # Potentially merge a few reaches for each row/col of this segnum drop_reach_ids = [] gb = reach_df.groupby(['row', 'col'])['geometry'].apply(list) for (row, col), geoms in gb.copy().iteritems(): row_col = row, col if len(geoms) > 1: geom = linemerge(geoms) if geom.geom_type == 'MultiLineString': # workaround for odd floating point issue geom = linemerge([wkt.loads(g.wkt) for g in geoms]) if geom.geom_type == 'LineString': sel = ((reach_df['row'] == row) & (reach_df['col'] == col)) drop_reach_ids += list(sel.index[sel]) obj.logger.debug( 'merging %d reaches for segnum %s at %s', sel.sum(), segnum, row_col) append_reach_df(reach_df, row, col, geom) elif any(a.distance(b) < 1e-6 for a, b in combinations(geoms, 2)): obj.logger.warning( 'failed to merge segnum %s at %s: %s', segnum, row_col, geom.wkt) # else: this is probably a meandering MultiLineString if drop_reach_ids: reach_df.drop(drop_reach_ids, axis=0, inplace=True) # TODO: Some reaches match multiple cells if they share a border # Add all reaches for this segment for _, reach in reach_df.iterrows(): row, col, reach_geom = reach.loc[['row', 'col', 'geometry']] if line.has_z: # intersection(line) does not preserve Z coords, # but line.interpolate(d) works as expected reach_geom = LineString(line.interpolate( line.project(Point(c))) for c in reach_geom.coords) # Get a point from the middle of the reach_geom reach_mid_pt = reach_geom.interpolate(0.5, normalized=True) reach_record = { 'geometry': reach_geom, 'segnum': segnum, 'dist': line.project(reach_mid_pt, normalized=True), 'row': row, 'col': col, } obj.reaches.loc[len(obj.reaches.index)] = reach_record if ibound_action == 'modify' and ibound[row, col] == 0: ibound_modified += 1 ibound[row, col] = 1 if ibound_action == 'modify': if ibound_modified: obj.logger.debug( 'updating %d cells from IBOUND array for top layer', ibound_modified) obj.model.bas6.ibound[0] = ibound obj.reaches = obj.reaches.merge( grid_df[['ibound']], left_on=['row', 'col'], right_index=True) obj.reaches.rename( columns={'ibound': 'prev_ibound'}, inplace=True) else: obj.reaches['prev_ibound'] = 1 # Now convert from DataFrame to GeoDataFrame obj.reaches = geopandas.GeoDataFrame( obj.reaches, geometry='geometry', crs=crs) # Assign segment data obj.segments['min_slope'] = swn.segments_series(min_slope) if (obj.segments['min_slope'] < 0.0).any(): raise ValueError('min_slope must be greater than zero') # Column names common to segments and segment_data segment_cols = [ 'roughch', 'hcond1', 'thickm1', 'elevup', 'width1', 'hcond2', 'thickm2', 'elevdn', 'width2'] # Tidy any previous attempts for col in segment_cols: if col in obj.segments.columns: del obj.segments[col] # Combine pairs of series for each segment more_segment_columns = pd.concat([ swn.pair_segments_frame(hyd_cond1, hyd_cond_out, 'hcond'), swn.pair_segments_frame(thickness1, thickness_out, 'thickm'), swn.pair_segments_frame(width1, width_out, name='width', method="constant") ], axis=1, copy=False) for name, series in more_segment_columns.iteritems(): obj.segments[name] = series obj.segments['roughch'] = swn.segments_series(roughch) # Mark segments that are not used obj.segments['in_model'] = True outside_model = \ set(swn.segments.index).difference(obj.reaches['segnum']) obj.segments.loc[list(outside_model), 'in_model'] = False # Add information from segments obj.reaches = obj.reaches.merge( obj.segments[['sequence', 'min_slope']], 'left', left_on='segnum', right_index=True) obj.reaches.sort_values(['sequence', 'dist'], inplace=True) # Interpolate segment properties to each reach obj.reaches['strthick'] = 0.0 obj.reaches['strhc1'] = 0.0 for segnum, seg in obj.segments.iterrows(): sel = obj.reaches['segnum'] == segnum if seg['thickm1'] == seg['thickm2']: val = seg['thickm1'] else: # linear interpolate to mid points tk1 = seg['thickm1'] tk2 = seg['thickm2'] dtk = tk2 - tk1 val = dtk * obj.reaches.loc[sel, 'dist'] + tk1 obj.reaches.loc[sel, 'strthick'] = val if seg['hcond1'] == seg['hcond2']: val = seg['hcond1'] else: # linear interpolate to mid points in log-10 space lhc1 = np.log10(seg['hcond1']) lhc2 = np.log10(seg['hcond2']) dlhc = lhc2 - lhc1 val = 10 ** (dlhc * obj.reaches.loc[sel, 'dist'] + lhc1) obj.reaches.loc[sel, 'strhc1'] = val del obj.reaches['sequence'] del obj.reaches['dist'] # Use MODFLOW SFR dataset 2 terms ISEG and IREACH, counting from 1 obj.reaches['iseg'] = 0 obj.reaches['ireach'] = 0 iseg = ireach = 0 prev_segnum = None for idx, segnum in obj.reaches['segnum'].iteritems(): if segnum != prev_segnum: iseg += 1 ireach = 0 ireach += 1 obj.reaches.at[idx, 'iseg'] = iseg obj.reaches.at[idx, 'ireach'] = ireach prev_segnum = segnum obj.reaches.reset_index(inplace=True, drop=True) obj.reaches.index += 1 # flopy series starts at one obj.reaches.index.name = 'reachID' obj.reaches['rchlen'] = obj.reaches.geometry.length obj.reaches['strtop'] = 0.0 obj.reaches['slope'] = 0.0 if swn.has_z: for reachID, item in obj.reaches.iterrows(): geom = item.geometry # Get Z from each end z0 = geom.coords[0][2] z1 = geom.coords[-1][2] dz = z0 - z1 dx = geom.length slope = dz / dx obj.reaches.at[reachID, 'slope'] = slope # Get strtop from LineString mid-point Z zm = geom.interpolate(0.5, normalized=True).z obj.reaches.at[reachID, 'strtop'] = zm else: r = obj.reaches['row'].values c = obj.reaches['col'].values # Estimate slope from top and grid spacing px, py = np.gradient(dis.top.array, col_size, row_size) grid_slope = np.sqrt(px ** 2 + py ** 2) obj.reaches['slope'] = grid_slope[r, c] # Get stream values from top of model obj.reaches['strtop'] = dis.top.array[r, c] # Enforce min_slope sel = obj.reaches['slope'] < obj.reaches['min_slope'] if sel.any(): obj.logger.warning( 'enforcing min_slope for %d reaches (%.2f%%)', sel.sum(), 100.0 * sel.sum() / len(sel)) obj.reaches.loc[sel, 'slope'] = obj.reaches.loc[sel, 'min_slope'] if not hasattr(obj.reaches.geometry, 'geom_type'): # workaround needed for reaches.to_file() obj.reaches.geometry.geom_type = obj.reaches.geom_type # Build segment_data for Data Set 6 obj.segment_data = obj.reaches[['iseg', 'segnum']]\ .drop_duplicates().rename(columns={'iseg': 'nseg'}) # index changes from 'reachID', to 'segnum', to finally 'nseg' segnum2nseg_d = obj.segment_data.set_index('segnum')['nseg'].to_dict() obj.segment_data['icalc'] = 1 # assumption for all streams obj.segment_data['outseg'] = obj.segment_data['segnum'].map( lambda x: segnum2nseg_d.get(obj.segments.loc[x, 'to_segnum'], 0)) obj.segment_data['iupseg'] = 0 # handle diversions next obj.segment_data['iprior'] = 0 obj.segment_data['flow'] = 0.0 obj.segment_data['runoff'] = 0.0 obj.segment_data['etsw'] = 0.0 obj.segment_data['pptsw'] = 0.0 # upper elevation from the first and last reachID items from reaches obj.segment_data['elevup'] = \ obj.reaches.loc[obj.segment_data.index, 'strtop'] obj.segment_data['elevdn'] = obj.reaches.loc[ obj.reaches.groupby(['iseg']).ireach.idxmax().values, 'strtop'].values obj.segment_data.set_index('segnum', drop=False, inplace=True) # copy several columns over (except 'elevup' and 'elevdn', for now) segment_cols.remove('elevup') segment_cols.remove('elevdn') obj.segment_data[segment_cols] = obj.segments[segment_cols] # now use nseg as primary index, not reachID or segnum obj.segment_data.set_index('nseg', inplace=True) obj.segment_data.sort_index(inplace=True) # Add diversions (i.e. SW takes) if swn.diversions is not None: obj.diversions = swn.diversions.copy() # Mark diversions that are not used / outside model obj.diversions['in_model'] = True outside_model = [] # Add columns for ICALC=0 obj.segment_data['depth1'] = 0.0 obj.segment_data['depth2'] = 0.0 # workaround for coercion issue obj.segment_data['foo'] = '' is_spatial = ( isinstance(obj.diversions, geopandas.GeoDataFrame) and 'geometry' in obj.diversions.columns and (~obj.diversions.is_empty).all()) if swn.has_z: empty_geom = wkt.loads('linestring z empty') else: empty_geom = wkt.loads('linestring empty') for divid, divn in obj.diversions.iterrows(): if divn.from_segnum not in segnum2nseg_d: # segnum does not exist -- segment is outside model outside_model.append(divid) continue iupseg = segnum2nseg_d[divn.from_segnum] assert iupseg != 0, iupseg nseg = len(obj.segment_data) + 1 rchlen = 1.0 # length required thickm = 1.0 # thickness required hcond = 0.0 # don't allow GW exchange seg_d = dict(obj.segment_data.loc[iupseg]) seg_d.update({ # index is nseg 'segnum': divid, 'icalc': 0, # stream depth is specified 'outseg': 0, 'iupseg': iupseg, 'iprior': 0, # normal behaviour for SW takes 'flow': 0.0, # abstraction assigned later 'runoff': 0.0, 'etsw': 0.0, 'pptsw': 0.0, 'roughch': 0.0, # not used 'hcond1': hcond, 'hcond2': hcond, 'thickm1': thickm, 'thickm2': thickm, 'width1': 0.0, 'width2': 0.0, # not used }) # Use the last reach as a template to modify for new reach reach_d = dict(obj.reaches.loc[ obj.reaches.iseg == iupseg].iloc[-1]) reach_d.update({ 'segnum': divid, 'iseg': nseg, 'ireach': 1, 'rchlen': rchlen, 'min_slope': 0.0, 'slope': 0.0, 'strthick': thickm, 'strhc1': hcond, }) # Assign one reach at grid cell if is_spatial: # Find grid cell nearest to diversion if grid_sindex: bbox_match = sorted( grid_sindex.nearest(divn.geometry.bounds)) # more than one nearest can exist! just take one... num_found = len(bbox_match) grid_cell = grid_cells.iloc[bbox_match[0]] else: # slow scan of all cells sel = grid_cells.intersects(divn.geometry) num_found = sel.sum() grid_cell = grid_cells.loc[sel].iloc[0] if num_found > 1: obj.logger.warning( '%d grid cells are nearest to diversion %r, ' 'but only taking the first %s', num_found, divid, grid_cell) row, col = grid_cell.name strtop = dis.top[row, col] reach_d.update({ 'geometry': empty_geom, # divn.geometry, 'row': row, 'col': col, 'strtop': strtop, }) else: strtop = dis.top[reach_d['row'], reach_d['col']] reach_d['strtop'] = strtop seg_d.update({ 'geometry': empty_geom, 'elevup': strtop, 'elevdn': strtop, }) depth = strtop + thickm seg_d.update({'depth1': depth, 'depth2': depth}) obj.reaches.loc[len(obj.reaches) + 1] = reach_d obj.segment_data.loc[nseg] = seg_d if outside_model: obj.diversions.loc[list(outside_model), 'in_model'] = False obj.logger.debug( 'added %d diversions, ignoring %d that did not connect to ' 'existing segments', obj.diversions['in_model'].sum(), len(outside_model)) else: obj.logger.debug( 'added all %d diversions', len(obj.diversions)) # end of coercion workaround obj.segment_data.drop('foo', axis=1, inplace=True) else: obj.diversions = None # Finally, add/rename a few columns to align with reach_data obj.reaches.insert(2, column='k', value=0) obj.reaches.insert(3, column='outreach', value=
pd.Series(dtype=int)
pandas.Series
import numpy as np import random import pandas as pd import korbinian import sys ##########parameters############# seq_len = 10000 number_seq = 50 number_mutations = 2000 subset_num = 12 ident = 100 * (seq_len - number_mutations) / seq_len List_rand_TM = r"D:\Databases\summaries\01\List01_rand\List01_rand_TM.csv" #List_rand_TM = r"D:\Databases\summaries\03\List03_rand\List03_rand_TM.csv" aa_prop_ser =
pd.Series.from_csv(List_rand_TM, sep="\t")
pandas.Series.from_csv
"""Legacy feature computation from depart.""" import itertools import re import numpy as np import pandas as pd from Bio.SeqUtils.ProtParam import ProteinAnalysis from Bio.SeqUtils.ProtParamData import kd from pyteomics import parser from sklearn.preprocessing import PolynomialFeatures from xirt import sequences def create_simple_features(df, seq_column="Sequence"): """ Create a simple feature matrix using the complete sequence (not position specific). Parameters: df: dataframe, containing a "Sequence" column Returns: df, feature dataframe """ df[seq_column] = df[seq_column].apply(simply_alphabet).values ff_df =
pd.DataFrame()
pandas.DataFrame
import unittest from yauber_algo.errors import * class IIFTestCase(unittest.TestCase): def test_iif(self): import yauber_algo.sanitychecks as sc from numpy import array, nan, inf import os import sys import pandas as pd import numpy as np from yauber_algo.algo import iif # # Function settings # algo = 'iif' func = iif setattr(sys.modules[func.__module__], 'IS_WARN_FUTREF', False) setattr(sys.modules[func.__module__], 'IS_RAISE_FUTREF', False) cond = array([0, 1, 0, 1, 0, 1], dtype=np.float) cond_nan = array([0, 1, 0, 1, nan, 1], dtype=np.float) cond_non_bin = array([0, 1, 0, 2, 0, 1], dtype=np.float) cond_bool = array([False, True, False, True, False, True], dtype=np.bool) cond_object = array([False, True, False, True, False, nan], dtype=np.object) cond_nan_inf = array([0, inf, 0, 1, nan, 1], dtype=np.float) cond_int32 = array([0, 1, 0, 1, 0, 1], dtype=np.int32) arr_true = array([1, 2, 3, 4, 5, 6], dtype=np.float) arr_false = array([-1, -2, -3, -4, -5, -6], dtype=np.float) arr_true_int32 = array([1, 2, 3, 4, 5, 6], dtype=np.int32) arr_false_int32 = array([-1, -2, -3, -4, -5, -6], dtype=np.int32) arr_true_bool = array([True, True, True, True, True, True], dtype=np.bool) arr_false_bool = array([False, False, False, False, False, False], dtype=np.bool) arr_true_nan_inf = array([1, 2, 3, 4, 5, inf], dtype=np.float) arr_false_nan_inf = array([inf, -2, -3, -4, -5, -6], dtype=np.float) with sc.SanityChecker(algo) as s: # # Check regular algorithm logic # s.check_regular( array([-1, 2, -3, 4, -5, 6], dtype=np.float), func, (cond, arr_true, arr_false), suffix='cond' ) s.check_regular( array([-1, 2, -3, 4, nan, 6], dtype=np.float), func, (cond_nan, arr_true, arr_false), suffix='cond_nan' ) s.check_regular( array([-1, 2, -3, 4, nan, 6], dtype=np.float), func, (cond_non_bin, arr_true, arr_false), suffix='cond_non_bin_exception', exception=YaUberAlgoInternalError, ) s.check_regular( array([-1, 2, -3, 4, -5, 6], dtype=np.float), func, (cond_bool, arr_true, arr_false), suffix='cond_bool', ) s.check_regular( array([-1, 2, -3, 4, -5, 6], dtype=np.float), func, (cond_object, arr_true, arr_false), suffix='cond_object', exception=YaUberAlgoDtypeNotSupportedError, ) s.check_regular( array([-1, 2, -3, 4, -5, 6], dtype=np.float), func, (cond_bool[:2], arr_true, arr_false), suffix='cond_diff_length1', exception=YaUberAlgoArgumentError, ) s.check_regular( array([-1, 2, -3, 4, -5, 6], dtype=np.float), func, (cond_bool, arr_true, arr_false[:2]), suffix='cond_diff_length2', exception=YaUberAlgoArgumentError, ) s.check_naninf( array([nan, nan, -3, 4, nan, nan], dtype=np.float), func, ( array([0, inf, 0, 1, nan, 1], dtype=np.float), arr_true_nan_inf, arr_false_nan_inf ), ) s.check_regular( array([-1, 1, -3, 1, -5, 1], dtype=np.float), func, (cond, 1, arr_false), suffix='cond_true_is_number' ) s.check_regular( array([-2, 1, -2, 1, -2, 1], dtype=np.float), func, (cond, 1, -2), suffix='cond_false_is_number' ) s.check_regular( array([-2, 1, -2, 1, -2, 1], dtype=np.float), func, (cond, 1, pd.Series(arr_false)), suffix='different_types', exception=YaUberAlgoArgumentError ) s.check_regular( array([-2, 1, -2, 1, -2, 1], dtype=np.float), func, ([1, 2, 3], 1, pd.Series(arr_false)), suffix='cond_different_types', exception=YaUberAlgoArgumentError ) s.check_series( pd.Series(array([-1, 2, -3, 4, -5, 6], dtype=np.float)), func, (pd.Series(cond), pd.Series(arr_true),
pd.Series(arr_false)
pandas.Series
import pandas as pd import matplotlib.pyplot as plt from matplotlib import cm # # Read in data frame # df =
pd.read_csv("mcs_interestrate_change.csv", skiprows=1)
pandas.read_csv
import argparse import os import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns parser = argparse.ArgumentParser(description="TF_diversity_rw") parser.add_argument( "file_names", type=str, help="Name of folder and filenames for the promoters extracted", ) parser.add_argument( "Czechowski_gene_categories", type=str, help="Input location of Czechowski gene categories text file", ) parser.add_argument( "window_bed", type=str, help="Input location of window bed file" ) parser.add_argument( "TF_diversity_bed", type=str, help="Input location of TF diversity bed file", ) parser.add_argument( "EPD_TSS_bed", type=str, help="Input location of eukaryotic promoter database transcription start site bed file", ) parser.add_argument( "promoter_bed", type=str, help="Input location of promoter bed file" ) parser.add_argument( "promoter_no_5UTR", type=str, help="Input location of promoter no 5UTR bed file", ) parser.add_argument( "foldername_prefix", type=str, help="Output folder name prefix to use" ) parser.add_argument( "root_chrom_bp_covered", type=str, help="Input location of root chromatin bed file", ) parser.add_argument( "shoot_chrom_bp_covered", type=str, help="Input location of shoot chromatin bed file", ) parser.add_argument( "rootshootintersect_chrom_bp_covered", type=str, help="Input location of rootshootintersect chromatin bed file", ) parser.add_argument( "palette", type=str, help="Optional replacement colour palette for plots", default=None, nargs="?", ) parser.add_argument( "author_name", type=str, help="Optional author name to add to output file names", default="Czechowski", nargs="?", ) parser.add_argument( "variable1_name", type=str, help="Optional replacement name for 2nd variable eg. non-specific", default="constitutive", nargs="?", ) parser.add_argument( "variable2_name", type=str, help="Optional variable 2 name eg. tissue_specific", default="variable", nargs="?", ) args = parser.parse_args() # make directory for the plots to be exported to dirName = f"../../data/output/{args.file_names}/rolling_window/{args.foldername_prefix}/" try: # Create target Directory os.mkdir(dirName) print("Directory ", dirName, " created") except FileExistsError: print("Directory ", dirName, " already exists") # make directory for the plots to be exported to dirName = f"../../data/output/{args.file_names}/rolling_window/{args.foldername_prefix}/plots" try: # Create target Directory os.mkdir(dirName) print("Directory ", dirName, " created") except FileExistsError: print("Directory ", dirName, " already exists") def process_input_files(TF_diversity_bed, window_bed): """process and merge the input files into a df""" # Read in TF_diversity_bed TF_diversity = pd.read_table(TF_diversity_bed, sep="\t", header=0) # Read in windows_bed windows_df = pd.read_table(window_bed, sep="\t", header=None) cols = ["chr", "start", "stop", "name"] windows_df.columns = cols # merge windows bed with TF_diversity TF_diversity = pd.merge(windows_df, TF_diversity, how="left", on="name") # turn NaN into 0s TF_diversity[ [ "Shannon_diversity_TF", "Shannon_diversity_TF_family", "unique_TF_count", "total_TF_count", "TF_family_count", ] ] = TF_diversity[ [ "Shannon_diversity_TF", "Shannon_diversity_TF_family", "unique_TF_count", "total_TF_count", "TF_family_count", ] ].fillna( 0 ) # Make AGI column TF_diversity["AGI"] = TF_diversity.name.str.split("_", expand=True)[0] # make window number column TF_diversity["window_number"] = TF_diversity.name.str.split( "_", expand=True )[1] # make df columns integars TF_diversity = TF_diversity.astype( { "stop": "int", "start": "int", "chr": "int", "Shannon_diversity_TF": "int", "Shannon_diversity_TF_family": "int", "unique_TF_count": "int", "total_TF_count": "int", "TF_family_count": "int", } ) # add window length column TF_diversity = TF_diversity.assign( window_length=TF_diversity.stop - TF_diversity.start ) # drop name column TF_diversity.drop(["name"], axis=1, inplace=True) # rename df all_combined = TF_diversity # set default seaborn settings for plotting # allow colour codes in seaborn sns.set(color_codes=True) sns.set_style("ticks") sns.set_palette(args.palette) # remove windows with fewer than 100 promoters extending to that location all_combined = all_combined[ all_combined["window_number"].map( all_combined["window_number"].value_counts() ) > 99 ] return all_combined def add_coverage(df, coverage_bed, suffix): """add % bp covered data from a bed file to the df. Prefix is a name added to any new columns""" # read in bed file coverage_df = pd.read_table(coverage_bed, sep="\t", header=None) cols = [ "chr", "start", "stop", "name", "no._of_overlaps", "no._of_bases_covered", "window_length", "fraction_bases_covered", ] coverage_df.columns = cols # add % bases covered column coverage_df["percentage_bases_covered"] = ( coverage_df["fraction_bases_covered"] * 100 ) # filter columns coverage_df = coverage_df[ ["chr", "start", "stop", "name", "percentage_bases_covered"] ] # make df columns integars df = df.astype({"stop": "int", "start": "int", "chr": "int"}) coverage_df = coverage_df.astype( {"stop": "int", "start": "int", "chr": "int"} ) # merge the dfs merged = pd.merge( df, coverage_df, how="left", on=["chr", "start", "stop"], suffixes=("", f"_{suffix}"), ) # remove NaN # merged = merged[merged['name'].notnull()] return merged def rep_sample(df, col, n, random_state): """function to return a df with equal sample sizes taken from here: https://stackoverflow.com/questions/39457762/python-pandas-conditionally-select-a-uniform-sample-from-a-dataframe""" # identify number of categories nu = df[col].nunique() # find number of rows # m = len(df) # integar divide total sample size by number of categories mpb = n // nu # multiply this by the number of categories and subtract from the number of samples to find the remainder mku = n - mpb * nu # make an array fileld with zeros corresponding to each category fills = np.zeros(nu) # make values in the array 1s up until the remainder fills[:mku] = 1 # calculate sample sizes for each category sample_sizes = (np.ones(nu) * mpb + fills).astype(int) # group the df by categories gb = df.groupby(col) # define sample size function def sample(sub_df, i): return sub_df.sample(sample_sizes[i], random_state=random_state) # sample = lambda sub_df, i: sub_df.sample( # sample_sizes[i], random_state=random_state # ) # run sample size function on each category subs = [sample(sub_df, i) for i, (_, sub_df) in enumerate(gb)] # return concatenated sub dfs return pd.concat(subs) def windows_coords( output_prefix, all_combined_df, variable_of_interest1, variable_of_interest1_name, variable_of_interest2, variable_of_interest2_name, promoter_bed, promoter_no_5UTR, window_offset, EPD_TSS_bed, includeEPDTSS=False, chromatin_tissue_variable="percentage_bases_covered_rootshootintersect_chrom", chromatin_tissue_variable_name="% open chromatin root and shoot intersect", x_range=False, estimator="median", ci=95, n_boot=10000, genetype=False, genetype2=False, genetype3=False, ): """function to add the centre of each window corresponding to each window no. and return a lineplot.""" # read in bed file promoter_df = pd.read_table(promoter_bed, sep="\t", header=None) col = [ "chr", "start", "stop", "AGI", "dot1", "strand", "source", "type", "dot2", "attributes", ] promoter_df.columns = col # add promoter length column promoter_df["length"] = promoter_df.stop - promoter_df.start # merge promoter_bed with all_combined_df on AGI merged = pd.merge( all_combined_df, promoter_df, on="AGI", how="left", suffixes=("", "_wholeprom"), ) # remove NaN for all variables of interest merged = merged[merged[variable_of_interest1].notnull()] merged = merged[merged[variable_of_interest2].notnull()] # merged = merged[merged[variable_of_interest3].notnull()] # make columns integars merged = merged.astype( { "stop_wholeprom": "int", "start_wholeprom": "int", "start": "int", "stop": "int", } ) # split merged into 2 dfs by strand pos = merged[merged.strand == "+"].copy() neg = merged[merged.strand == "-"].copy() # add variable of interest position column where position is the middle of the window, with whole length of the longest promoter pos["position"] = (pos.stop_wholeprom) - ( pos.start + 0.5 * (pos.stop - pos.start) ) neg["position"] = ( neg.start + 0.5 * (neg.stop - neg.start) ) - neg.start_wholeprom merged2 = pd.merge(pos, neg, how="outer") merged2 = merged2.astype({"position": "int64"}) # get longest transcript TSS distribution (if Araport 11 definition used) promoter_no_5UTR_df = pd.read_table( promoter_no_5UTR, sep="\t", header=None ) col = [ "chr", "source", "type", "start", "stop", "dot1", "strand", "dot2", "attributes", ] promoter_no_5UTR_df.columns = col # add AGI column promoter_no_5UTR_df_agi = promoter_no_5UTR_df.assign( AGI=promoter_no_5UTR_df.attributes.str.extract(r"ID=gene:(.*?)\;") ) # merged with windows merged2 = pd.merge( merged2, promoter_no_5UTR_df_agi, on="AGI", how="left", suffixes=("", "_no_UTR"), ) # remove NaN (promoters in promoters.gff but not in promoters_5UTR) merged2 = merged2[merged2.length.notnull()] # remove NaN (promoters in promoters_5UTR but not in promoters.gff - ie. only 5'UTRs) merged2 = merged2[merged2.chr_no_UTR.notnull()] # Get most common transcript TSS location from eukaryotic promoter database (last modified on EPD 06/06/2018) # Note - not all promoters have a TSS on EPD if includeEPDTSS is True: EPD_TSS_df = pd.read_table( EPD_TSS_bed, delim_whitespace=True, header=None, skiprows=4 ) cols = [ "chr", "start", "stop", "transcript_EPD", "score_EPD", "strand_EPD", "thickstart_EPD", "thickend_EPD", ] EPD_TSS_df.columns = cols # add AGI column EPD_TSS_df["AGI"] = EPD_TSS_df.transcript_EPD.str.split( "_", expand=True )[0] # add TSS location column EPD_TSS_df.loc[ EPD_TSS_df.strand_EPD == "+", "TSS_EPD" ] = EPD_TSS_df.loc[EPD_TSS_df.strand_EPD == "+", "thickstart_EPD"] EPD_TSS_df.loc[EPD_TSS_df.strand_EPD == "-", "TSS_EPD"] = ( EPD_TSS_df.loc[EPD_TSS_df.strand_EPD == "-", "thickend_EPD"] - 1 ) # merged with windows merged2 = pd.merge( merged2, EPD_TSS_df, on="AGI", how="left", suffixes=("", "_EPD") ) # remove NaN (promoters in EPD but not in promoters_5UTR) merged2 = merged2[merged2.length.notnull()] # transfrom EPD TSS column in the same way as the position column merged2.loc[merged2.strand == "-", "TSS_transformed_EPD"] = ( merged2.loc[merged2.strand == "-", "TSS_EPD"] - merged2.loc[merged2.strand == "-", "start_wholeprom"] ) merged2.loc[merged2.strand == "+", "TSS_transformed_EPD"] = ( merged2.loc[merged2.strand == "+", "stop_wholeprom"] - merged2.loc[merged2.strand == "+", "TSS_EPD"] ) # make integars merged2 = merged2.astype({"TSS_transformed_EPD": "float64"}) # calculate longest promoter length based on window cutoff number_of_windows = len(all_combined_df.window_number.unique()) window_length = all_combined_df.window_length.max() length_of_longest_promoter = number_of_windows * ( window_length - window_offset ) # make 0 start like in bed files merged2.start_no_UTR = merged2.start_no_UTR - 1 # add Araport TSS location column # merged2['TSS'] = int() merged2.loc[merged2.strand == "+", "TSS"] = merged2.loc[ merged2.strand == "+", "stop_no_UTR" ] merged2.loc[merged2.strand == "-", "TSS"] = ( merged2.loc[merged2.strand == "-", "start_no_UTR"] - 1 ) # transform TSS location in the same way as the position column merged2.loc[merged2.strand == "-", "TSS_transformed_Araport11"] = ( merged2.loc[merged2.strand == "-", "TSS"] - merged2.loc[merged2.strand == "-", "start_wholeprom"] ) merged2.loc[merged2.strand == "+", "TSS_transformed_Araport11"] = ( merged2.loc[merged2.strand == "+", "stop_wholeprom"] - merged2.loc[merged2.strand == "+", "TSS"] ) # make integars merged2 = merged2.astype( { "start_no_UTR": "float64", "stop_no_UTR": "float64", "TSS": "float64", "TSS_transformed_Araport11": "float64", f"{variable_of_interest1}": "float64", f"{variable_of_interest2}": "float64", f"{chromatin_tissue_variable}": "float64", } ) # return merged2[['AGI','strand','start','stop','start_wholeprom','stop_wholeprom','start_no_UTR','stop_no_UTR','TSS','TSS_transformed','position','chr_no_UTR','window_number']] # change estimator if estimator == "mean": new_estimator = estimator if estimator == "median": new_estimator = np.median # set number of subplots so can easily change all output possibilities, where subplotA is the top subplots = 2 # make subplots if includeEPDTSS is True: subplots = subplots + 1 f, axes = plt.subplots(subplots, figsize=(10, 10)) # OpenChromplot = axes[subplots-subplots] # Araport11TSSplot = axes[subplots-(subplots-1)] EPDTSSplot = axes[subplots - (subplots)] # promlengthsplot = axes[subplots-(subplots-3)] variableofinterest1plot = axes[subplots - (subplots - 1)] variableofinterest2plot = axes[subplots - (subplots - 2)] else: f, axes = plt.subplots(subplots, figsize=(10, 8)) # OpenChromplot = axes[subplots-subplots] # Araport11TSSplot = axes[subplots-(subplots-1)] # promlengthsplot = axes[subplots-(subplots-2)] variableofinterest1plot = axes[subplots - (subplots)] variableofinterest2plot = axes[subplots - (subplots - 1)] # check the plot axes variables are there. If they are not, assign None to them # try: # OpenChromplot # except NameError: # OpenChromplot = None # try: # Araport11TSSplot # except NameError: # Araport11TSSplot = None try: EPDTSSplot except NameError: EPDTSSplot = None # try: # promlengthsplot # except NameError: # promlengthsplot = None try: variableofinterest1plot except NameError: variableofinterest1plot = None try: variableofinterest2plot except NameError: variableofinterest2plot = None # try: # variableofinterest3plot # except NameError: # variableofinterest3plot = None # If EPD TSS plot is present, filter promoters which aren't in EPD to remove NaNs if EPDTSSplot is not None: # remove NaN (promoters in promoters_5UTR but not in promoters.gff - ie. only 5'UTRs) merged2 = merged2[merged2.TSS_transformed_EPD.notnull()] if genetype is not False: # filter so only genetype subset present merged2 = merged2[merged2.gene_type.notnull()] # remove windows with fewer than 50 promoters extending to that location if looking at specific genetypes merged2 = merged2[ merged2["window_number"].map( merged2["window_number"].value_counts() ) > 49 ] # redefine longest promoter length based on window cutoff number_of_windows = len(merged2.window_number.unique()) window_length = merged2.window_length.max() length_of_longest_promoter = number_of_windows * ( window_length - window_offset ) # make all values of interest negative as upstream from ATG # merged_positive = merged2.copy() if includeEPDTSS is True: merged2[ [ "length", "TSS_transformed_Araport11", "position", "TSS_transformed_EPD", ] ] = -merged2[ [ "length", "TSS_transformed_Araport11", "position", "TSS_transformed_EPD", ] ] else: merged2[ ["length", "TSS_transformed_Araport11", "position"] ] = -merged2[["length", "TSS_transformed_Araport11", "position"]] if genetype is False: # length_of_longest_promoter = merged_positive.length.max() # if openchromplot variable present, add that plot # next plot letter name nextletter = "A" # if variableofinterest1plot variable present, add that plot if variableofinterest1plot is not None: # variable of interest lineplot sns.lineplot( y=merged2[variable_of_interest1], x=merged2.position, ax=variableofinterest1plot, estimator=new_estimator, ci=ci, n_boot=n_boot, ) # set titles and axes labels variableofinterest1plot.set_title( f"{nextletter}: All promoters sliding windows {variable_of_interest1_name}", weight="bold", ) variableofinterest1plot.set_ylabel( f"{estimator} {variable_of_interest1_name}" ) variableofinterest1plot.set_xlabel("") variableofinterest1plot.set_xticklabels([]) # change to next letter nextletter = chr(ord(nextletter) + 1) # if variableofinterest2plot variable present, add that plot if variableofinterest2plot is not None: # variable of interest lineplot sns.lineplot( y=merged2[variable_of_interest2], x=merged2.position, ax=variableofinterest2plot, estimator=new_estimator, ci=ci, n_boot=n_boot, ) # set titles and axes labels variableofinterest2plot.set_title( f"{nextletter}: All promoters sliding windows {variable_of_interest2_name}", weight="bold", ) variableofinterest2plot.set_ylabel( f"{estimator} {variable_of_interest2_name}" ) variableofinterest2plot.set_xlabel("position upstream of ATG") # change to next letter nextletter = chr(ord(nextletter) + 1) # #if variableofinterestplot variable present, add that plot # if variableofinterest3plot !=None: # #variable of interest lineplot # sns.lineplot(y=merged2[variable_of_interest3], x=merged2.position, ax=variableofinterest3plot,estimator=new_estimator,ci=ci, n_boot=n_boot) # #set titles and axes labels # variableofinterest3plot.set_title(f'{nextletter}: All promoters sliding windows {variable_of_interest3_name}', weight='bold') # variableofinterest3plot.set_ylabel(f'{estimator} {variable_of_interest3_name}') # variableofinterest3plot.set_xlabel('position upstream of ATG') elif genetype2 is False: # filter so only genetype subset present merged2 = merged2[merged2.gene_type.notnull()] # next plot letter name nextletter = "A" # if openchromplot variable present, add that plot # if variableofinterest1plot variable present, add that plot if variableofinterest1plot is not None: # variable of interest lineplot sns.lineplot( y=merged2[merged2.gene_type == genetype][ variable_of_interest1 ], x=merged2[merged2.gene_type == genetype].position, ax=variableofinterest1plot, estimator=new_estimator, ci=ci, n_boot=n_boot, ) # set titles and axes labels variableofinterest1plot.set_title( f"{nextletter}: {genetype} {variable_of_interest1_name}", weight="bold", ) variableofinterest1plot.set_ylabel( f"{estimator} {variable_of_interest1_name}" ) variableofinterest1plot.set_xlabel("") variableofinterest1plot.set_xticklabels([]) # change to next letter nextletter = chr(ord(nextletter) + 1) # if variableofinterest2plot variable present, add that plot if variableofinterest2plot is not None: # variable of interest lineplot sns.lineplot( y=merged2[merged2.gene_type == genetype][ variable_of_interest2 ], x=merged2[merged2.gene_type == genetype].position, ax=variableofinterest2plot, estimator=new_estimator, ci=ci, n_boot=n_boot, ) # set titles and axes labels variableofinterest2plot.set_title( f"{nextletter}: {genetype} {variable_of_interest2_name}", weight="bold", ) variableofinterest2plot.set_ylabel( f"{estimator} {variable_of_interest2_name}" ) variableofinterest2plot.set_xlabel("position upstream of ATG") # change to next letter nextletter = chr(ord(nextletter) + 1) # if variableofinterest3plot variable present, add that plot # if variableofinterest3plot is not None: # # variable of interest lineplot # sns.lineplot( # y=merged2[merged2.gene_type == genetype][ # variable_of_interest3 # ], # x=merged2[merged2.gene_type == genetype].position, # ax=variableofinterest3plot, # estimator=new_estimator, # ci=ci, # n_boot=n_boot, # ) # # set titles and axes labels # variableofinterest3plot.set_title( # f"{nextletter}: {genetype} {variable_of_interest3_name}", # weight="bold", # ) # variableofinterest3plot.set_ylabel( # f"{estimator} {variable_of_interest3_name}" # ) # variableofinterest3plot.set_xlabel("position upstream of ATG") # set y axis as maximum mean window % bp covered of all genetype subset # variableofinterestplot.set_ylim([0,merged2.groupby('window_number')[variable_of_interest].median().max()+20]) # set x axis range if specified # if x_range==False: # pass # else: # length_of_longest_promoter = x_range # #for all subplots: # for n in axes: # #remove grids # n.grid(False) # n.set_xlim([-length_of_longest_promoter,0]) # f.tight_layout() elif genetype3 is False: # filter so only genetype subset present merged2 = merged2[merged2.gene_type.notnull()] # make a subselection of categories so all sample sizes are equal # first select only the relevant genetypes merged2 = merged2[merged2.gene_type.isin([genetype, genetype2])] # make each promoter unique merged2_unique = merged2.drop_duplicates("AGI") # identify sample size of the minimum category minimum_sample_size = merged2_unique.gene_type.value_counts().min() # print this print(f"sample size in each category = {minimum_sample_size}") # save sample size as file with open( f"../../data/output/{args.file_names}/rolling_window/{args.foldername_prefix}/plots/number_of_genes_in_each_category.txt", "w", ) as file: file.write( "number_of_genes_in_each_category=" + str(minimum_sample_size) ) # multiply this by the number of categories total_sample_size = minimum_sample_size * len( merged2_unique.gene_type.unique() ) # select equal sample sizes of each category with a random state of 1 so it's reproducible equal_samplesizes = rep_sample( merged2_unique, "gene_type", total_sample_size, random_state=1 ) # now filter out genes which were not selected using the minimum sample size to_remove = merged2_unique[ ~merged2_unique.AGI.isin(equal_samplesizes.AGI) ] merged2 = merged2[~merged2.AGI.isin(to_remove.AGI)] # if openchromplot variable present, add that plot # add plot letter name nextletter = "A" # if variableofinterest1plot variable present, add that plot if variableofinterest1plot is not None: # lineplot variable of interest sns.lineplot( y=merged2[merged2.gene_type == genetype][ variable_of_interest1 ], x=merged2[merged2.gene_type == genetype].position, ax=variableofinterest1plot, label=genetype, estimator=new_estimator, ci=ci, n_boot=n_boot, ) sns.lineplot( y=merged2[merged2.gene_type == genetype2][ variable_of_interest1 ], x=merged2[merged2.gene_type == genetype2].position, ax=variableofinterest1plot, label=genetype2, estimator=new_estimator, ci=ci, n_boot=n_boot, ) # set titles & axes names variableofinterest1plot.set_title( f"{nextletter}: {variable_of_interest1_name}", weight="bold" ) variableofinterest1plot.set_ylabel( f"{estimator} {variable_of_interest1_name}" ) variableofinterest1plot.set_xlabel("") variableofinterest1plot.set_xticklabels([]) # change to next letter nextletter = chr(ord(nextletter) + 1) # if variableofinterest2plot variable present, add that plot if variableofinterest2plot is not None: # lineplot variable of interest sns.lineplot( y=merged2[merged2.gene_type == genetype][ variable_of_interest2 ], x=merged2[merged2.gene_type == genetype].position, ax=variableofinterest2plot, label=genetype, estimator=new_estimator, ci=ci, n_boot=n_boot, ) sns.lineplot( y=merged2[merged2.gene_type == genetype2][ variable_of_interest2 ], x=merged2[merged2.gene_type == genetype2].position, ax=variableofinterest2plot, label=genetype2, estimator=new_estimator, ci=ci, n_boot=n_boot, ) # set titles & axes names variableofinterest2plot.set_title( f"{nextletter}: {variable_of_interest2_name}", weight="bold" ) variableofinterest2plot.set_ylabel( f"{estimator} {variable_of_interest2_name}" ) variableofinterest2plot.set_xlabel("position upstream of ATG") # change to next letter nextletter = chr(ord(nextletter) + 1) # if variableofinterest3plot variable present, add that plot # if variableofinterest3plot is not None: # # lineplot variable of interest # l1 = sns.lineplot( # y=merged2[merged2.gene_type == genetype][ # variable_of_interest3 # ], # x=merged2[merged2.gene_type == genetype].position, # ax=variableofinterest3plot, # label=genetype, # estimator=new_estimator, # ci=ci, # n_boot=n_boot, # ) # l2 = sns.lineplot( # y=merged2[merged2.gene_type == genetype2][ # variable_of_interest3 # ], # x=merged2[merged2.gene_type == genetype2].position, # ax=variableofinterest3plot, # label=genetype2, # estimator=new_estimator, # ci=ci, # n_boot=n_boot, # ) # # set titles & axes names # variableofinterest3plot.set_title( # f"{nextletter}: {variable_of_interest3_name}", weight="bold" # ) # variableofinterest3plot.set_ylabel( # f"{estimator} {variable_of_interest3_name}" # ) # variableofinterest3plot.set_xlabel("position upstream of ATG") # set y axis as maximum mean window % bp covered of all genetype subset # axes[2].set_ylim([0,merged2.groupby('window_number').percentage_bases_covered.median().max()+20]) # gene_type labels # gene_type_labels = [genetype, genetype2] # Create the legend axes[0].legend() # if x_range==False: # pass # else: # length_of_longest_promoter = x_range # #for all subplots: # for n in axes: # #remove grids # n.grid(False) # n.set_xlim([-length_of_longest_promoter,0]) # f.tight_layout() else: # filter so only genetype subset present merged2 = merged2[merged2.gene_type.notnull()] # make a subselection of categories so all sample sizes are equal # make each promoter unique merged2_unique = merged2.drop_duplicates("AGI") # identify sample size of the minimum category minimum_sample_size = merged2_unique.gene_type.value_counts().min() # print this print(f"sample size in each category = {minimum_sample_size}") # save sample size as file with open( f"../../data/output/{args.file_names}/rolling_window/{args.foldername_prefix}/plots/number_of_genes_in_each_category.txt", "w", ) as file: file.write( "number_of_genes_in_each_category=" + str(minimum_sample_size) ) # multiply this by the number of categories total_sample_size = minimum_sample_size * len( merged2_unique.gene_type.unique() ) # select equal sample sizes of each category with a random state of 1 so it's reproducible equal_samplesizes = rep_sample( merged2_unique, "gene_type", total_sample_size, random_state=1 ) # now filter out genes which were not selected using the minimum sample size to_remove = merged2_unique[ ~merged2_unique.AGI.isin(equal_samplesizes.AGI) ] merged2 = merged2[~merged2.AGI.isin(to_remove.AGI)] # add plot letter name nextletter = "A" # if openchromplot variable present, add that plot # if variableofinterest1plot variable present, add that plot if variableofinterest1plot is not None: # lineplot sns.lineplot( y=merged2[merged2.gene_type == genetype][ variable_of_interest1 ], x=merged2[merged2.gene_type == genetype].position, ax=variableofinterest1plot, label=genetype, estimator=new_estimator, ci=ci, n_boot=n_boot, ) sns.lineplot( y=merged2[merged2.gene_type == genetype2][ variable_of_interest1 ], x=merged2[merged2.gene_type == genetype2].position, ax=variableofinterest1plot, label=genetype2, estimator=new_estimator, ci=ci, n_boot=n_boot, ) sns.lineplot( y=merged2[merged2.gene_type == genetype3][ variable_of_interest1 ], x=merged2[merged2.gene_type == genetype3].position, ax=variableofinterest1plot, label=genetype3, estimator=new_estimator, ci=ci, n_boot=n_boot, ) # set titles & axes names variableofinterest1plot.set_title( f"{variable_of_interest1_name}", weight="bold" ) variableofinterest1plot.set_ylabel( f"{estimator} {variable_of_interest1_name}" ) variableofinterest1plot.set_xlabel("") variableofinterest1plot.set_xticklabels([]) # change to next letter nextletter = chr(ord(nextletter) + 1) # if variableofinterest2plot variable present, add that plot if variableofinterest2plot is not None: # lineplot sns.lineplot( y=merged2[merged2.gene_type == genetype][ variable_of_interest2 ], x=merged2[merged2.gene_type == genetype].position, ax=variableofinterest2plot, label=genetype, estimator=new_estimator, ci=ci, n_boot=n_boot, ) sns.lineplot( y=merged2[merged2.gene_type == genetype2][ variable_of_interest2 ], x=merged2[merged2.gene_type == genetype2].position, ax=variableofinterest2plot, label=genetype2, estimator=new_estimator, ci=ci, n_boot=n_boot, ) sns.lineplot( y=merged2[merged2.gene_type == genetype3][ variable_of_interest2 ], x=merged2[merged2.gene_type == genetype3].position, ax=variableofinterest2plot, label=genetype3, estimator=new_estimator, ci=ci, n_boot=n_boot, ) # set titles & axes names variableofinterest2plot.set_title( f"{variable_of_interest2_name}", weight="bold" ) variableofinterest2plot.set_ylabel( f"{estimator} {variable_of_interest2_name}" ) variableofinterest2plot.set_xlabel("position upstream of ATG") # change to next letter nextletter = chr(ord(nextletter) + 1) # if variableofinterest3plot variable present, add that plot # if variableofinterest3plot != None: # # lineplot # l1 = sns.lineplot( # y=merged2[merged2.gene_type == genetype][ # variable_of_interest3 # ], # x=merged2[merged2.gene_type == genetype].position, # ax=variableofinterest3plot, # label=genetype, # estimator=new_estimator, # ci=ci, # n_boot=n_boot, # ) # l2 = sns.lineplot( # y=merged2[merged2.gene_type == genetype2][ # variable_of_interest3 # ], # x=merged2[merged2.gene_type == genetype2].position, # ax=variableofinterest3plot, # label=genetype2, # estimator=new_estimator, # ci=ci, # n_boot=n_boot, # ) # l3 = sns.lineplot( # y=merged2[merged2.gene_type == genetype3][ # variable_of_interest3 # ], # x=merged2[merged2.gene_type == genetype3].position, # ax=variableofinterest3plot, # label=genetype3, # estimator=new_estimator, # ci=ci, # n_boot=n_boot, # ) # # set titles & axes names # variableofinterest3plot.set_title( # f"{variable_of_interest3_name}", weight="bold" # ) # variableofinterest3plot.set_ylabel( # f"{estimator} {variable_of_interest3_name}" # ) # variableofinterest3plot.set_xlabel("position upstream of ATG") # set y axis as maximum mean window % bp covered of all genetype subset # axes[2].set_ylim([0,merged2.groupby('window_number').percentage_bases_covered.median().max()+20]) # gene_type labels # gene_type_labels = [genetype, genetype2, genetype3] # Create the legend axes[0].legend() # set x axis length # if x_range==False: # pass # else: # length_of_longest_promoter = x_range # #for all subplots: # for n in axes: # #remove grids # n.grid(False) # n.set_xlim([-length_of_longest_promoter,0]) # leg = n.legend() # f.tight_layout() # set x axis range if specified if x_range is False: pass else: length_of_longest_promoter = x_range # for all subplots: for n in axes: # remove grids n.grid(False) n.set_xlim([(-length_of_longest_promoter - 50), 0]) # set a tight layout f.tight_layout() # save figure plt.savefig( f"../../data/output/{args.file_names}/rolling_window/{args.foldername_prefix}/plots/{output_prefix}_TF_diversity_{estimator}_sliding_window.pdf", format="pdf", ) # remove plot plt.clf() return merged2 def add_genetype(df, gene_categories): """function to add gene type to the df, and remove random genes""" select_genes = pd.read_table(gene_categories, sep="\t", header=None) cols = ["AGI", "gene_type"] select_genes.columns = cols merged =
pd.merge(select_genes, df, on="AGI", how="left")
pandas.merge
"""Script of my solution to DrivenData Modeling Women's Health Care Decisions Use this script in the following way: python solution.py <name-of-submission> Argument is optional, the script will assign default name. """ from __future__ import division import sys import pdb import numpy as np import pandas as pd from sklearn.cross_validation import train_test_split from sklearn import multiclass from XGBoostClassifier import XGBoostClassifier np.random.seed(17411) def multiclass_log_loss(y_true, y_prob, eps=1e-15): """Multi class version of Logarithmic Loss metric. https://www.kaggle.com/wiki/MultiClassLogLoss Parameters ---------- y_true : array, shape = [n_samples, n_classes] y_prob : array, shape = [n_samples, n_classes] Returns ------- loss : float """ predictions = np.clip(y_prob, eps, 1 - eps) rows = y_prob.shape[0] cols = y_prob.shape[1] vsota = np.sum(y_true * np.log(predictions) + (1-y_true) * np.log(1-predictions)) vsota = vsota / cols return -1.0 / rows * vsota def load_train_data(path=None, train_size=0.8): train_values =
pd.read_csv('data/processed_train.csv')
pandas.read_csv
# -*- coding: utf-8 -*- # pylint: disable=E1101 # flake8: noqa from datetime import datetime import csv import os import sys import re import nose import platform from multiprocessing.pool import ThreadPool from numpy import nan import numpy as np from pandas.io.common import DtypeWarning from pandas import DataFrame, Series, Index, MultiIndex, DatetimeIndex from pandas.compat import( StringIO, BytesIO, PY3, range, long, lrange, lmap, u ) from pandas.io.common import URLError import pandas.io.parsers as parsers from pandas.io.parsers import (read_csv, read_table, read_fwf, TextFileReader, TextParser) import pandas.util.testing as tm import pandas as pd from pandas.compat import parse_date import pandas.lib as lib from pandas import compat from pandas.lib import Timestamp from pandas.tseries.index import date_range import pandas.tseries.tools as tools from numpy.testing.decorators import slow import pandas.parser class ParserTests(object): """ Want to be able to test either C+Cython or Python+Cython parsers """ data1 = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo2,12,13,14,15 bar2,12,13,14,15 """ def read_csv(self, *args, **kwargs): raise NotImplementedError def read_table(self, *args, **kwargs): raise NotImplementedError def setUp(self): import warnings warnings.filterwarnings(action='ignore', category=FutureWarning) self.dirpath = tm.get_data_path() self.csv1 = os.path.join(self.dirpath, 'test1.csv') self.csv2 = os.path.join(self.dirpath, 'test2.csv') self.xls1 = os.path.join(self.dirpath, 'test.xls') def construct_dataframe(self, num_rows): df = DataFrame(np.random.rand(num_rows, 5), columns=list('abcde')) df['foo'] = 'foo' df['bar'] = 'bar' df['baz'] = 'baz' df['date'] = pd.date_range('20000101 09:00:00', periods=num_rows, freq='s') df['int'] = np.arange(num_rows, dtype='int64') return df def generate_multithread_dataframe(self, path, num_rows, num_tasks): def reader(arg): start, nrows = arg if not start: return pd.read_csv(path, index_col=0, header=0, nrows=nrows, parse_dates=['date']) return pd.read_csv(path, index_col=0, header=None, skiprows=int(start) + 1, nrows=nrows, parse_dates=[9]) tasks = [ (num_rows * i / num_tasks, num_rows / num_tasks) for i in range(num_tasks) ] pool = ThreadPool(processes=num_tasks) results = pool.map(reader, tasks) header = results[0].columns for r in results[1:]: r.columns = header final_dataframe = pd.concat(results) return final_dataframe def test_converters_type_must_be_dict(self): with tm.assertRaisesRegexp(TypeError, 'Type converters.+'): self.read_csv(StringIO(self.data1), converters=0) def test_empty_decimal_marker(self): data = """A|B|C 1|2,334|5 10|13|10. """ self.assertRaises(ValueError, read_csv, StringIO(data), decimal='') def test_empty_thousands_marker(self): data = """A|B|C 1|2,334|5 10|13|10. """ self.assertRaises(ValueError, read_csv, StringIO(data), thousands='') def test_multi_character_decimal_marker(self): data = """A|B|C 1|2,334|5 10|13|10. """ self.assertRaises(ValueError, read_csv, StringIO(data), thousands=',,') def test_empty_string(self): data = """\ One,Two,Three a,1,one b,2,two ,3,three d,4,nan e,5,five nan,6, g,7,seven """ df = self.read_csv(StringIO(data)) xp = DataFrame({'One': ['a', 'b', np.nan, 'd', 'e', np.nan, 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['one', 'two', 'three', np.nan, 'five', np.nan, 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) df = self.read_csv(StringIO(data), na_values={'One': [], 'Three': []}, keep_default_na=False) xp = DataFrame({'One': ['a', 'b', '', 'd', 'e', 'nan', 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['one', 'two', 'three', 'nan', 'five', '', 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) df = self.read_csv( StringIO(data), na_values=['a'], keep_default_na=False) xp = DataFrame({'One': [np.nan, 'b', '', 'd', 'e', 'nan', 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['one', 'two', 'three', 'nan', 'five', '', 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) df = self.read_csv(StringIO(data), na_values={'One': [], 'Three': []}) xp = DataFrame({'One': ['a', 'b', np.nan, 'd', 'e', np.nan, 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['one', 'two', 'three', np.nan, 'five', np.nan, 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) # GH4318, passing na_values=None and keep_default_na=False yields # 'None' as a na_value data = """\ One,Two,Three a,1,None b,2,two ,3,None d,4,nan e,5,five nan,6, g,7,seven """ df = self.read_csv( StringIO(data), keep_default_na=False) xp = DataFrame({'One': ['a', 'b', '', 'd', 'e', 'nan', 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['None', 'two', 'None', 'nan', 'five', '', 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) def test_read_csv(self): if not compat.PY3: if compat.is_platform_windows(): prefix = u("file:///") else: prefix = u("file://") fname = prefix + compat.text_type(self.csv1) # it works! read_csv(fname, index_col=0, parse_dates=True) def test_dialect(self): data = """\ label1,label2,label3 index1,"a,c,e index2,b,d,f """ dia = csv.excel() dia.quoting = csv.QUOTE_NONE df = self.read_csv(StringIO(data), dialect=dia) data = '''\ label1,label2,label3 index1,a,c,e index2,b,d,f ''' exp = self.read_csv(StringIO(data)) exp.replace('a', '"a', inplace=True) tm.assert_frame_equal(df, exp) def test_dialect_str(self): data = """\ fruit:vegetable apple:brocolli pear:tomato """ exp = DataFrame({ 'fruit': ['apple', 'pear'], 'vegetable': ['brocolli', 'tomato'] }) dia = csv.register_dialect('mydialect', delimiter=':') # noqa df = self.read_csv(StringIO(data), dialect='mydialect') tm.assert_frame_equal(df, exp) csv.unregister_dialect('mydialect') def test_1000_sep(self): data = """A|B|C 1|2,334|5 10|13|10. """ expected = DataFrame({ 'A': [1, 10], 'B': [2334, 13], 'C': [5, 10.] }) df = self.read_csv(StringIO(data), sep='|', thousands=',') tm.assert_frame_equal(df, expected) df = self.read_table(StringIO(data), sep='|', thousands=',') tm.assert_frame_equal(df, expected) def test_1000_sep_with_decimal(self): data = """A|B|C 1|2,334.01|5 10|13|10. """ expected = DataFrame({ 'A': [1, 10], 'B': [2334.01, 13], 'C': [5, 10.] }) tm.assert_equal(expected.A.dtype, 'int64') tm.assert_equal(expected.B.dtype, 'float') tm.assert_equal(expected.C.dtype, 'float') df = self.read_csv(StringIO(data), sep='|', thousands=',', decimal='.') tm.assert_frame_equal(df, expected) df = self.read_table(StringIO(data), sep='|', thousands=',', decimal='.') tm.assert_frame_equal(df, expected) data_with_odd_sep = """A|B|C 1|2.334,01|5 10|13|10, """ df = self.read_csv(StringIO(data_with_odd_sep), sep='|', thousands='.', decimal=',') tm.assert_frame_equal(df, expected) df = self.read_table(StringIO(data_with_odd_sep), sep='|', thousands='.', decimal=',') tm.assert_frame_equal(df, expected) def test_separator_date_conflict(self): # Regression test for issue #4678: make sure thousands separator and # date parsing do not conflict. data = '06-02-2013;13:00;1-000.215' expected = DataFrame( [[datetime(2013, 6, 2, 13, 0, 0), 1000.215]], columns=['Date', 2] ) df = self.read_csv(StringIO(data), sep=';', thousands='-', parse_dates={'Date': [0, 1]}, header=None) tm.assert_frame_equal(df, expected) def test_squeeze(self): data = """\ a,1 b,2 c,3 """ idx = Index(['a', 'b', 'c'], name=0) expected = Series([1, 2, 3], name=1, index=idx) result = self.read_table(StringIO(data), sep=',', index_col=0, header=None, squeeze=True) tm.assertIsInstance(result, Series) tm.assert_series_equal(result, expected) def test_squeeze_no_view(self): # GH 8217 # series should not be a view data = """time,data\n0,10\n1,11\n2,12\n4,14\n5,15\n3,13""" result = self.read_csv(StringIO(data), index_col='time', squeeze=True) self.assertFalse(result._is_view) def test_inf_parsing(self): data = """\ ,A a,inf b,-inf c,Inf d,-Inf e,INF f,-INF g,INf h,-INf i,inF j,-inF""" inf = float('inf') expected = Series([inf, -inf] * 5) df = read_csv(StringIO(data), index_col=0) tm.assert_almost_equal(df['A'].values, expected.values) df = read_csv(StringIO(data), index_col=0, na_filter=False) tm.assert_almost_equal(df['A'].values, expected.values) def test_multiple_date_col(self): # Can use multiple date parsers data = """\ KORD,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000 """ def func(*date_cols): return lib.try_parse_dates(parsers._concat_date_cols(date_cols)) df = self.read_csv(StringIO(data), header=None, date_parser=func, prefix='X', parse_dates={'nominal': [1, 2], 'actual': [1, 3]}) self.assertIn('nominal', df) self.assertIn('actual', df) self.assertNotIn('X1', df) self.assertNotIn('X2', df) self.assertNotIn('X3', df) d = datetime(1999, 1, 27, 19, 0) self.assertEqual(df.ix[0, 'nominal'], d) df = self.read_csv(StringIO(data), header=None, date_parser=func, parse_dates={'nominal': [1, 2], 'actual': [1, 3]}, keep_date_col=True) self.assertIn('nominal', df) self.assertIn('actual', df) self.assertIn(1, df) self.assertIn(2, df) self.assertIn(3, df) data = """\ KORD,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000 """ df = read_csv(StringIO(data), header=None, prefix='X', parse_dates=[[1, 2], [1, 3]]) self.assertIn('X1_X2', df) self.assertIn('X1_X3', df) self.assertNotIn('X1', df) self.assertNotIn('X2', df) self.assertNotIn('X3', df) d = datetime(1999, 1, 27, 19, 0) self.assertEqual(df.ix[0, 'X1_X2'], d) df = read_csv(StringIO(data), header=None, parse_dates=[[1, 2], [1, 3]], keep_date_col=True) self.assertIn('1_2', df) self.assertIn('1_3', df) self.assertIn(1, df) self.assertIn(2, df) self.assertIn(3, df) data = '''\ KORD,19990127 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD,19990127 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD,19990127 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD,19990127 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD,19990127 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 ''' df = self.read_csv(StringIO(data), sep=',', header=None, parse_dates=[1], index_col=1) d = datetime(1999, 1, 27, 19, 0) self.assertEqual(df.index[0], d) def test_multiple_date_cols_int_cast(self): data = ("KORD,19990127, 19:00:00, 18:56:00, 0.8100\n" "KORD,19990127, 20:00:00, 19:56:00, 0.0100\n" "KORD,19990127, 21:00:00, 20:56:00, -0.5900\n" "KORD,19990127, 21:00:00, 21:18:00, -0.9900\n" "KORD,19990127, 22:00:00, 21:56:00, -0.5900\n" "KORD,19990127, 23:00:00, 22:56:00, -0.5900") date_spec = {'nominal': [1, 2], 'actual': [1, 3]} import pandas.io.date_converters as conv # it works! df = self.read_csv(StringIO(data), header=None, parse_dates=date_spec, date_parser=conv.parse_date_time) self.assertIn('nominal', df) def test_multiple_date_col_timestamp_parse(self): data = """05/31/2012,15:30:00.029,1306.25,1,E,0,,1306.25 05/31/2012,15:30:00.029,1306.25,8,E,0,,1306.25""" result = self.read_csv(StringIO(data), sep=',', header=None, parse_dates=[[0, 1]], date_parser=Timestamp) ex_val = Timestamp('05/31/2012 15:30:00.029') self.assertEqual(result['0_1'][0], ex_val) def test_single_line(self): # GH 6607 # Test currently only valid with python engine because sep=None and # delim_whitespace=False. Temporarily copied to TestPythonParser. # Test for ValueError with other engines: with tm.assertRaisesRegexp(ValueError, 'sep=None with delim_whitespace=False'): # sniff separator buf = StringIO() sys.stdout = buf # printing warning message when engine == 'c' for now try: # it works! df = self.read_csv(StringIO('1,2'), names=['a', 'b'], header=None, sep=None) tm.assert_frame_equal(DataFrame({'a': [1], 'b': [2]}), df) finally: sys.stdout = sys.__stdout__ def test_multiple_date_cols_with_header(self): data = """\ ID,date,NominalTime,ActualTime,TDew,TAir,Windspeed,Precip,WindDir KORD,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000""" df = self.read_csv(StringIO(data), parse_dates={'nominal': [1, 2]}) self.assertNotIsInstance(df.nominal[0], compat.string_types) ts_data = """\ ID,date,nominalTime,actualTime,A,B,C,D,E KORD,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000 """ def test_multiple_date_col_name_collision(self): self.assertRaises(ValueError, self.read_csv, StringIO(self.ts_data), parse_dates={'ID': [1, 2]}) data = """\ date_NominalTime,date,NominalTime,ActualTime,TDew,TAir,Windspeed,Precip,WindDir KORD1,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD2,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD3,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD4,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD5,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD6,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000""" # noqa self.assertRaises(ValueError, self.read_csv, StringIO(data), parse_dates=[[1, 2]]) def test_index_col_named(self): no_header = """\ KORD1,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD2,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD3,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD4,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD5,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD6,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000""" h = "ID,date,NominalTime,ActualTime,TDew,TAir,Windspeed,Precip,WindDir\n" data = h + no_header rs = self.read_csv(StringIO(data), index_col='ID') xp = self.read_csv(StringIO(data), header=0).set_index('ID') tm.assert_frame_equal(rs, xp) self.assertRaises(ValueError, self.read_csv, StringIO(no_header), index_col='ID') data = """\ 1,2,3,4,hello 5,6,7,8,world 9,10,11,12,foo """ names = ['a', 'b', 'c', 'd', 'message'] xp = DataFrame({'a': [1, 5, 9], 'b': [2, 6, 10], 'c': [3, 7, 11], 'd': [4, 8, 12]}, index=Index(['hello', 'world', 'foo'], name='message')) rs = self.read_csv(StringIO(data), names=names, index_col=['message']) tm.assert_frame_equal(xp, rs) self.assertEqual(xp.index.name, rs.index.name) rs = self.read_csv(StringIO(data), names=names, index_col='message') tm.assert_frame_equal(xp, rs) self.assertEqual(xp.index.name, rs.index.name) def test_usecols_index_col_False(self): # Issue 9082 s = "a,b,c,d\n1,2,3,4\n5,6,7,8" s_malformed = "a,b,c,d\n1,2,3,4,\n5,6,7,8," cols = ['a', 'c', 'd'] expected = DataFrame({'a': [1, 5], 'c': [3, 7], 'd': [4, 8]}) df = self.read_csv(StringIO(s), usecols=cols, index_col=False) tm.assert_frame_equal(expected, df) df = self.read_csv(StringIO(s_malformed), usecols=cols, index_col=False) tm.assert_frame_equal(expected, df) def test_index_col_is_True(self): # Issue 9798 self.assertRaises(ValueError, self.read_csv, StringIO(self.ts_data), index_col=True) def test_converter_index_col_bug(self): # 1835 data = "A;B\n1;2\n3;4" rs = self.read_csv(StringIO(data), sep=';', index_col='A', converters={'A': lambda x: x}) xp = DataFrame({'B': [2, 4]}, index=Index([1, 3], name='A')) tm.assert_frame_equal(rs, xp) self.assertEqual(rs.index.name, xp.index.name) def test_date_parser_int_bug(self): # #3071 log_file = StringIO( 'posix_timestamp,elapsed,sys,user,queries,query_time,rows,' 'accountid,userid,contactid,level,silo,method\n' '1343103150,0.062353,0,4,6,0.01690,3,' '12345,1,-1,3,invoice_InvoiceResource,search\n' ) def f(posix_string): return datetime.utcfromtimestamp(int(posix_string)) # it works! read_csv(log_file, index_col=0, parse_dates=0, date_parser=f) def test_multiple_skts_example(self): data = "year, month, a, b\n 2001, 01, 0.0, 10.\n 2001, 02, 1.1, 11." pass def test_malformed(self): # all data = """ignore A,B,C 1,2,3 # comment 1,2,3,4,5 2,3,4 """ try: df = self.read_table( StringIO(data), sep=',', header=1, comment='#') self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 4, saw 5', str(inst)) # skip_footer data = """ignore A,B,C 1,2,3 # comment 1,2,3,4,5 2,3,4 footer """ # GH 6607 # Test currently only valid with python engine because # skip_footer != 0. Temporarily copied to TestPythonParser. # Test for ValueError with other engines: try: with tm.assertRaisesRegexp(ValueError, 'skip_footer'): # XXX df = self.read_table( StringIO(data), sep=',', header=1, comment='#', skip_footer=1) self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 4, saw 5', str(inst)) # first chunk data = """ignore A,B,C skip 1,2,3 3,5,10 # comment 1,2,3,4,5 2,3,4 """ try: it = self.read_table(StringIO(data), sep=',', header=1, comment='#', iterator=True, chunksize=1, skiprows=[2]) df = it.read(5) self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 6, saw 5', str(inst)) # middle chunk data = """ignore A,B,C skip 1,2,3 3,5,10 # comment 1,2,3,4,5 2,3,4 """ try: it = self.read_table(StringIO(data), sep=',', header=1, comment='#', iterator=True, chunksize=1, skiprows=[2]) df = it.read(1) it.read(2) self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 6, saw 5', str(inst)) # last chunk data = """ignore A,B,C skip 1,2,3 3,5,10 # comment 1,2,3,4,5 2,3,4 """ try: it = self.read_table(StringIO(data), sep=',', header=1, comment='#', iterator=True, chunksize=1, skiprows=[2]) df = it.read(1) it.read() self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 6, saw 5', str(inst)) def test_passing_dtype(self): # GH 6607 # Passing dtype is currently only supported by the C engine. # Temporarily copied to TestCParser*. # Test for ValueError with other engines: with tm.assertRaisesRegexp(ValueError, "The 'dtype' option is not supported"): df = DataFrame(np.random.rand(5, 2), columns=list( 'AB'), index=['1A', '1B', '1C', '1D', '1E']) with tm.ensure_clean('__passing_str_as_dtype__.csv') as path: df.to_csv(path) # GH 3795 # passing 'str' as the dtype result = self.read_csv(path, dtype=str, index_col=0) tm.assert_series_equal(result.dtypes, Series( {'A': 'object', 'B': 'object'})) # we expect all object columns, so need to convert to test for # equivalence result = result.astype(float) tm.assert_frame_equal(result, df) # invalid dtype self.assertRaises(TypeError, self.read_csv, path, dtype={'A': 'foo', 'B': 'float64'}, index_col=0) # valid but we don't support it (date) self.assertRaises(TypeError, self.read_csv, path, dtype={'A': 'datetime64', 'B': 'float64'}, index_col=0) self.assertRaises(TypeError, self.read_csv, path, dtype={'A': 'datetime64', 'B': 'float64'}, index_col=0, parse_dates=['B']) # valid but we don't support it self.assertRaises(TypeError, self.read_csv, path, dtype={'A': 'timedelta64', 'B': 'float64'}, index_col=0) with tm.assertRaisesRegexp(ValueError, "The 'dtype' option is not supported"): # empty frame # GH12048 self.read_csv(StringIO('A,B'), dtype=str) def test_quoting(self): bad_line_small = """printer\tresult\tvariant_name Klosterdruckerei\tKlosterdruckerei <Salem> (1611-1804)\tMuller, Jacob Klosterdruckerei\tKlosterdruckerei <Salem> (1611-1804)\tMuller, Jakob Klosterdruckerei\tKlosterdruckerei <Kempten> (1609-1805)\t"Furststiftische Hofdruckerei, <Kempten"" Klosterdruckerei\tKlosterdruckerei <Kempten> (1609-1805)\tGaller, Alois Klosterdruckerei\tKlosterdruckerei <Kempten> (1609-1805)\tHochfurstliche Buchhandlung <Kempten>""" self.assertRaises(Exception, self.read_table, StringIO(bad_line_small), sep='\t') good_line_small = bad_line_small + '"' df = self.read_table(StringIO(good_line_small), sep='\t') self.assertEqual(len(df), 3) def test_non_string_na_values(self): # GH3611, na_values that are not a string are an issue with tm.ensure_clean('__non_string_na_values__.csv') as path: df = DataFrame({'A': [-999, 2, 3], 'B': [1.2, -999, 4.5]}) df.to_csv(path, sep=' ', index=False) result1 = read_csv(path, sep=' ', header=0, na_values=['-999.0', '-999']) result2 = read_csv(path, sep=' ', header=0, na_values=[-999, -999.0]) result3 = read_csv(path, sep=' ', header=0, na_values=[-999.0, -999]) tm.assert_frame_equal(result1, result2) tm.assert_frame_equal(result2, result3) result4 = read_csv(path, sep=' ', header=0, na_values=['-999.0']) result5 = read_csv(path, sep=' ', header=0, na_values=['-999']) result6 = read_csv(path, sep=' ', header=0, na_values=[-999.0]) result7 = read_csv(path, sep=' ', header=0, na_values=[-999]) tm.assert_frame_equal(result4, result3) tm.assert_frame_equal(result5, result3) tm.assert_frame_equal(result6, result3) tm.assert_frame_equal(result7, result3) good_compare = result3 # with an odd float format, so we can't match the string 999.0 # exactly, but need float matching df.to_csv(path, sep=' ', index=False, float_format='%.3f') result1 = read_csv(path, sep=' ', header=0, na_values=['-999.0', '-999']) result2 = read_csv(path, sep=' ', header=0, na_values=[-999, -999.0]) result3 = read_csv(path, sep=' ', header=0, na_values=[-999.0, -999]) tm.assert_frame_equal(result1, good_compare) tm.assert_frame_equal(result2, good_compare) tm.assert_frame_equal(result3, good_compare) result4 = read_csv(path, sep=' ', header=0, na_values=['-999.0']) result5 = read_csv(path, sep=' ', header=0, na_values=['-999']) result6 = read_csv(path, sep=' ', header=0, na_values=[-999.0]) result7 = read_csv(path, sep=' ', header=0, na_values=[-999]) tm.assert_frame_equal(result4, good_compare) tm.assert_frame_equal(result5, good_compare) tm.assert_frame_equal(result6, good_compare) tm.assert_frame_equal(result7, good_compare) def test_default_na_values(self): _NA_VALUES = set(['-1.#IND', '1.#QNAN', '1.#IND', '-1.#QNAN', '#N/A', 'N/A', 'NA', '#NA', 'NULL', 'NaN', 'nan', '-NaN', '-nan', '#N/A N/A', '']) self.assertEqual(_NA_VALUES, parsers._NA_VALUES) nv = len(_NA_VALUES) def f(i, v): if i == 0: buf = '' elif i > 0: buf = ''.join([','] * i) buf = "{0}{1}".format(buf, v) if i < nv - 1: buf = "{0}{1}".format(buf, ''.join([','] * (nv - i - 1))) return buf data = StringIO('\n'.join([f(i, v) for i, v in enumerate(_NA_VALUES)])) expected = DataFrame(np.nan, columns=range(nv), index=range(nv)) df = self.read_csv(data, header=None) tm.assert_frame_equal(df, expected) def test_custom_na_values(self): data = """A,B,C ignore,this,row 1,NA,3 -1.#IND,5,baz 7,8,NaN """ expected = [[1., nan, 3], [nan, 5, nan], [7, 8, nan]] df = self.read_csv(StringIO(data), na_values=['baz'], skiprows=[1]) tm.assert_almost_equal(df.values, expected) df2 = self.read_table(StringIO(data), sep=',', na_values=['baz'], skiprows=[1]) tm.assert_almost_equal(df2.values, expected) df3 = self.read_table(StringIO(data), sep=',', na_values='baz', skiprows=[1]) tm.assert_almost_equal(df3.values, expected) def test_nat_parse(self): # GH 3062 df = DataFrame(dict({ 'A': np.asarray(lrange(10), dtype='float64'), 'B': pd.Timestamp('20010101')})) df.iloc[3:6, :] = np.nan with tm.ensure_clean('__nat_parse_.csv') as path: df.to_csv(path) result = read_csv(path, index_col=0, parse_dates=['B']) tm.assert_frame_equal(result, df) expected = Series(dict(A='float64', B='datetime64[ns]')) tm.assert_series_equal(expected, result.dtypes) # test with NaT for the nan_rep # we don't have a method to specif the Datetime na_rep (it defaults # to '') df.to_csv(path) result = read_csv(path, index_col=0, parse_dates=['B']) tm.assert_frame_equal(result, df) def test_skiprows_bug(self): # GH #505 text = """#foo,a,b,c #foo,a,b,c #foo,a,b,c #foo,a,b,c #foo,a,b,c #foo,a,b,c 1/1/2000,1.,2.,3. 1/2/2000,4,5,6 1/3/2000,7,8,9 """ data = self.read_csv(StringIO(text), skiprows=lrange(6), header=None, index_col=0, parse_dates=True) data2 = self.read_csv(StringIO(text), skiprows=6, header=None, index_col=0, parse_dates=True) expected = DataFrame(np.arange(1., 10.).reshape((3, 3)), columns=[1, 2, 3], index=[datetime(2000, 1, 1), datetime(2000, 1, 2), datetime(2000, 1, 3)]) expected.index.name = 0 tm.assert_frame_equal(data, expected) tm.assert_frame_equal(data, data2) def test_deep_skiprows(self): # GH #4382 text = "a,b,c\n" + \ "\n".join([",".join([str(i), str(i + 1), str(i + 2)]) for i in range(10)]) condensed_text = "a,b,c\n" + \ "\n".join([",".join([str(i), str(i + 1), str(i + 2)]) for i in [0, 1, 2, 3, 4, 6, 8, 9]]) data = self.read_csv(StringIO(text), skiprows=[6, 8]) condensed_data = self.read_csv(StringIO(condensed_text)) tm.assert_frame_equal(data, condensed_data) def test_skiprows_blank(self): # GH 9832 text = """#foo,a,b,c #foo,a,b,c #foo,a,b,c #foo,a,b,c 1/1/2000,1.,2.,3. 1/2/2000,4,5,6 1/3/2000,7,8,9 """ data = self.read_csv(StringIO(text), skiprows=6, header=None, index_col=0, parse_dates=True) expected = DataFrame(np.arange(1., 10.).reshape((3, 3)), columns=[1, 2, 3], index=[datetime(2000, 1, 1), datetime(2000, 1, 2), datetime(2000, 1, 3)]) expected.index.name = 0 tm.assert_frame_equal(data, expected) def test_detect_string_na(self): data = """A,B foo,bar NA,baz NaN,nan """ expected = [['foo', 'bar'], [nan, 'baz'], [nan, nan]] df = self.read_csv(StringIO(data)) tm.assert_almost_equal(df.values, expected) def test_unnamed_columns(self): data = """A,B,C,, 1,2,3,4,5 6,7,8,9,10 11,12,13,14,15 """ expected = [[1, 2, 3, 4, 5.], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15]] df = self.read_table(StringIO(data), sep=',') tm.assert_almost_equal(df.values, expected) self.assert_numpy_array_equal(df.columns, ['A', 'B', 'C', 'Unnamed: 3', 'Unnamed: 4']) def test_string_nas(self): data = """A,B,C a,b,c d,,f ,g,h """ result = self.read_csv(StringIO(data)) expected = DataFrame([['a', 'b', 'c'], ['d', np.nan, 'f'], [np.nan, 'g', 'h']], columns=['A', 'B', 'C']) tm.assert_frame_equal(result, expected) def test_duplicate_columns(self): for engine in ['python', 'c']: data = """A,A,B,B,B 1,2,3,4,5 6,7,8,9,10 11,12,13,14,15 """ # check default beahviour df = self.read_table(StringIO(data), sep=',', engine=engine) self.assertEqual(list(df.columns), ['A', 'A.1', 'B', 'B.1', 'B.2']) df = self.read_table(StringIO(data), sep=',', engine=engine, mangle_dupe_cols=False) self.assertEqual(list(df.columns), ['A', 'A', 'B', 'B', 'B']) df = self.read_table(StringIO(data), sep=',', engine=engine, mangle_dupe_cols=True) self.assertEqual(list(df.columns), ['A', 'A.1', 'B', 'B.1', 'B.2']) def test_csv_mixed_type(self): data = """A,B,C a,1,2 b,3,4 c,4,5 """ df = self.read_csv(StringIO(data)) # TODO def test_csv_custom_parser(self): data = """A,B,C 20090101,a,1,2 20090102,b,3,4 20090103,c,4,5 """ f = lambda x: datetime.strptime(x, '%Y%m%d') df = self.read_csv(StringIO(data), date_parser=f) expected = self.read_csv(StringIO(data), parse_dates=True) tm.assert_frame_equal(df, expected) def test_parse_dates_implicit_first_col(self): data = """A,B,C 20090101,a,1,2 20090102,b,3,4 20090103,c,4,5 """ df = self.read_csv(StringIO(data), parse_dates=True) expected = self.read_csv(StringIO(data), index_col=0, parse_dates=True) self.assertIsInstance( df.index[0], (datetime, np.datetime64, Timestamp)) tm.assert_frame_equal(df, expected) def test_parse_dates_string(self): data = """date,A,B,C 20090101,a,1,2 20090102,b,3,4 20090103,c,4,5 """ rs = self.read_csv( StringIO(data), index_col='date', parse_dates='date') idx = date_range('1/1/2009', periods=3) idx.name = 'date' xp = DataFrame({'A': ['a', 'b', 'c'], 'B': [1, 3, 4], 'C': [2, 4, 5]}, idx) tm.assert_frame_equal(rs, xp) def test_yy_format(self): data = """date,time,B,C 090131,0010,1,2 090228,1020,3,4 090331,0830,5,6 """ rs = self.read_csv(StringIO(data), index_col=0, parse_dates=[['date', 'time']]) idx = DatetimeIndex([datetime(2009, 1, 31, 0, 10, 0), datetime(2009, 2, 28, 10, 20, 0), datetime(2009, 3, 31, 8, 30, 0)], dtype=object, name='date_time') xp = DataFrame({'B': [1, 3, 5], 'C': [2, 4, 6]}, idx) tm.assert_frame_equal(rs, xp) rs = self.read_csv(StringIO(data), index_col=0, parse_dates=[[0, 1]]) idx = DatetimeIndex([datetime(2009, 1, 31, 0, 10, 0), datetime(2009, 2, 28, 10, 20, 0), datetime(2009, 3, 31, 8, 30, 0)], dtype=object, name='date_time') xp = DataFrame({'B': [1, 3, 5], 'C': [2, 4, 6]}, idx) tm.assert_frame_equal(rs, xp) def test_parse_dates_column_list(self): from pandas.core.datetools import to_datetime data = '''date;destination;ventilationcode;unitcode;units;aux_date 01/01/2010;P;P;50;1;12/1/2011 01/01/2010;P;R;50;1;13/1/2011 15/01/2010;P;P;50;1;14/1/2011 01/05/2010;P;P;50;1;15/1/2011''' expected = self.read_csv(StringIO(data), sep=";", index_col=lrange(4)) lev = expected.index.levels[0] levels = list(expected.index.levels) levels[0] = lev.to_datetime(dayfirst=True) # hack to get this to work - remove for final test levels[0].name = lev.name expected.index.set_levels(levels, inplace=True) expected['aux_date'] = to_datetime(expected['aux_date'], dayfirst=True) expected['aux_date'] = lmap(Timestamp, expected['aux_date']) tm.assertIsInstance(expected['aux_date'][0], datetime) df = self.read_csv(StringIO(data), sep=";", index_col=lrange(4), parse_dates=[0, 5], dayfirst=True) tm.assert_frame_equal(df, expected) df = self.read_csv(StringIO(data), sep=";", index_col=lrange(4), parse_dates=['date', 'aux_date'], dayfirst=True) tm.assert_frame_equal(df, expected) def test_no_header(self): data = """1,2,3,4,5 6,7,8,9,10 11,12,13,14,15 """ df = self.read_table(StringIO(data), sep=',', header=None) df_pref = self.read_table(StringIO(data), sep=',', prefix='X', header=None) names = ['foo', 'bar', 'baz', 'quux', 'panda'] df2 = self.read_table(StringIO(data), sep=',', names=names) expected = [[1, 2, 3, 4, 5.], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15]] tm.assert_almost_equal(df.values, expected) tm.assert_almost_equal(df.values, df2.values) self.assert_numpy_array_equal(df_pref.columns, ['X0', 'X1', 'X2', 'X3', 'X4']) self.assert_numpy_array_equal(df.columns, lrange(5)) self.assert_numpy_array_equal(df2.columns, names) def test_no_header_prefix(self): data = """1,2,3,4,5 6,7,8,9,10 11,12,13,14,15 """ df_pref = self.read_table(StringIO(data), sep=',', prefix='Field', header=None) expected = [[1, 2, 3, 4, 5.], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15]] tm.assert_almost_equal(df_pref.values, expected) self.assert_numpy_array_equal(df_pref.columns, ['Field0', 'Field1', 'Field2', 'Field3', 'Field4']) def test_header_with_index_col(self): data = """foo,1,2,3 bar,4,5,6 baz,7,8,9 """ names = ['A', 'B', 'C'] df = self.read_csv(StringIO(data), names=names) self.assertEqual(names, ['A', 'B', 'C']) values = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] expected = DataFrame(values, index=['foo', 'bar', 'baz'], columns=['A', 'B', 'C']) tm.assert_frame_equal(df, expected) def test_read_csv_dataframe(self): df = self.read_csv(self.csv1, index_col=0, parse_dates=True) df2 = self.read_table(self.csv1, sep=',', index_col=0, parse_dates=True) self.assert_numpy_array_equal(df.columns, ['A', 'B', 'C', 'D']) self.assertEqual(df.index.name, 'index') self.assertIsInstance( df.index[0], (datetime, np.datetime64, Timestamp)) self.assertEqual(df.values.dtype, np.float64) tm.assert_frame_equal(df, df2) def test_read_csv_no_index_name(self): df = self.read_csv(self.csv2, index_col=0, parse_dates=True) df2 = self.read_table(self.csv2, sep=',', index_col=0, parse_dates=True) self.assert_numpy_array_equal(df.columns, ['A', 'B', 'C', 'D', 'E']) self.assertIsInstance( df.index[0], (datetime, np.datetime64, Timestamp)) self.assertEqual(df.ix[:, ['A', 'B', 'C', 'D'] ].values.dtype, np.float64) tm.assert_frame_equal(df, df2) def test_read_csv_infer_compression(self): # GH 9770 expected = self.read_csv(self.csv1, index_col=0, parse_dates=True) inputs = [self.csv1, self.csv1 + '.gz', self.csv1 + '.bz2', open(self.csv1)] for f in inputs: df = self.read_csv(f, index_col=0, parse_dates=True, compression='infer') tm.assert_frame_equal(expected, df) inputs[3].close() def test_read_table_unicode(self): fin = BytesIO(u('\u0141aski, Jan;1').encode('utf-8')) df1 = read_table(fin, sep=";", encoding="utf-8", header=None) tm.assertIsInstance(df1[0].values[0], compat.text_type) def test_read_table_wrong_num_columns(self): # too few! data = """A,B,C,D,E,F 1,2,3,4,5,6 6,7,8,9,10,11,12 11,12,13,14,15,16 """ self.assertRaises(Exception, self.read_csv, StringIO(data)) def test_read_table_duplicate_index(self): data = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo,12,13,14,15 bar,12,13,14,15 """ result = self.read_csv(StringIO(data), index_col=0) expected = self.read_csv(StringIO(data)).set_index('index', verify_integrity=False) tm.assert_frame_equal(result, expected) def test_read_table_duplicate_index_implicit(self): data = """A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo,12,13,14,15 bar,12,13,14,15 """ # it works! result = self.read_csv(StringIO(data)) def test_parse_bools(self): data = """A,B True,1 False,2 True,3 """ data = self.read_csv(StringIO(data)) self.assertEqual(data['A'].dtype, np.bool_) data = """A,B YES,1 no,2 yes,3 No,3 Yes,3 """ data = self.read_csv(StringIO(data), true_values=['yes', 'Yes', 'YES'], false_values=['no', 'NO', 'No']) self.assertEqual(data['A'].dtype, np.bool_) data = """A,B TRUE,1 FALSE,2 TRUE,3 """ data = self.read_csv(StringIO(data)) self.assertEqual(data['A'].dtype, np.bool_) data = """A,B foo,bar bar,foo""" result = self.read_csv(StringIO(data), true_values=['foo'], false_values=['bar']) expected = DataFrame({'A': [True, False], 'B': [False, True]}) tm.assert_frame_equal(result, expected) def test_int_conversion(self): data = """A,B 1.0,1 2.0,2 3.0,3 """ data = self.read_csv(StringIO(data)) self.assertEqual(data['A'].dtype, np.float64) self.assertEqual(data['B'].dtype, np.int64) def test_infer_index_col(self): data = """A,B,C foo,1,2,3 bar,4,5,6 baz,7,8,9 """ data = self.read_csv(StringIO(data)) self.assertTrue(data.index.equals(Index(['foo', 'bar', 'baz']))) def test_read_nrows(self): df = self.read_csv(StringIO(self.data1), nrows=3) expected = self.read_csv(StringIO(self.data1))[:3] tm.assert_frame_equal(df, expected) def test_read_chunksize(self): reader = self.read_csv(StringIO(self.data1), index_col=0, chunksize=2) df = self.read_csv(StringIO(self.data1), index_col=0) chunks = list(reader) tm.assert_frame_equal(chunks[0], df[:2]) tm.assert_frame_equal(chunks[1], df[2:4]) tm.assert_frame_equal(chunks[2], df[4:]) def test_read_chunksize_named(self): reader = self.read_csv( StringIO(self.data1), index_col='index', chunksize=2) df = self.read_csv(StringIO(self.data1), index_col='index') chunks = list(reader) tm.assert_frame_equal(chunks[0], df[:2]) tm.assert_frame_equal(chunks[1], df[2:4]) tm.assert_frame_equal(chunks[2], df[4:]) def test_get_chunk_passed_chunksize(self): data = """A,B,C 1,2,3 4,5,6 7,8,9 1,2,3""" result = self.read_csv(StringIO(data), chunksize=2) piece = result.get_chunk() self.assertEqual(len(piece), 2) def test_read_text_list(self): data = """A,B,C\nfoo,1,2,3\nbar,4,5,6""" as_list = [['A', 'B', 'C'], ['foo', '1', '2', '3'], ['bar', '4', '5', '6']] df = self.read_csv(StringIO(data), index_col=0) parser = TextParser(as_list, index_col=0, chunksize=2) chunk = parser.read(None) tm.assert_frame_equal(chunk, df) def test_iterator(self): # GH 6607 # Test currently only valid with python engine because # skip_footer != 0. Temporarily copied to TestPythonParser. # Test for ValueError with other engines: with tm.assertRaisesRegexp(ValueError, 'skip_footer'): reader = self.read_csv(StringIO(self.data1), index_col=0, iterator=True) df = self.read_csv(StringIO(self.data1), index_col=0) chunk = reader.read(3) tm.assert_frame_equal(chunk, df[:3]) last_chunk = reader.read(5) tm.assert_frame_equal(last_chunk, df[3:]) # pass list lines = list(csv.reader(StringIO(self.data1))) parser = TextParser(lines, index_col=0, chunksize=2) df = self.read_csv(StringIO(self.data1), index_col=0) chunks = list(parser) tm.assert_frame_equal(chunks[0], df[:2]) tm.assert_frame_equal(chunks[1], df[2:4]) tm.assert_frame_equal(chunks[2], df[4:]) # pass skiprows parser = TextParser(lines, index_col=0, chunksize=2, skiprows=[1]) chunks = list(parser) tm.assert_frame_equal(chunks[0], df[1:3]) # test bad parameter (skip_footer) reader = self.read_csv(StringIO(self.data1), index_col=0, iterator=True, skip_footer=True) self.assertRaises(ValueError, reader.read, 3) treader = self.read_table(StringIO(self.data1), sep=',', index_col=0, iterator=True) tm.assertIsInstance(treader, TextFileReader) # stopping iteration when on chunksize is specified, GH 3967 data = """A,B,C foo,1,2,3 bar,4,5,6 baz,7,8,9 """ reader = self.read_csv(StringIO(data), iterator=True) result = list(reader) expected = DataFrame(dict(A=[1, 4, 7], B=[2, 5, 8], C=[ 3, 6, 9]), index=['foo', 'bar', 'baz']) tm.assert_frame_equal(result[0], expected) # chunksize = 1 reader = self.read_csv(StringIO(data), chunksize=1) result = list(reader) expected = DataFrame(dict(A=[1, 4, 7], B=[2, 5, 8], C=[ 3, 6, 9]), index=['foo', 'bar', 'baz']) self.assertEqual(len(result), 3) tm.assert_frame_equal(pd.concat(result), expected) def test_header_not_first_line(self): data = """got,to,ignore,this,line got,to,ignore,this,line index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 """ data2 = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 """ df = self.read_csv(StringIO(data), header=2, index_col=0) expected = self.read_csv(StringIO(data2), header=0, index_col=0) tm.assert_frame_equal(df, expected) def test_header_multi_index(self): expected = tm.makeCustomDataframe( 5, 3, r_idx_nlevels=2, c_idx_nlevels=4) data = """\ C0,,C_l0_g0,C_l0_g1,C_l0_g2 C1,,C_l1_g0,C_l1_g1,C_l1_g2 C2,,C_l2_g0,C_l2_g1,C_l2_g2 C3,,C_l3_g0,C_l3_g1,C_l3_g2 R0,R1,,, R_l0_g0,R_l1_g0,R0C0,R0C1,R0C2 R_l0_g1,R_l1_g1,R1C0,R1C1,R1C2 R_l0_g2,R_l1_g2,R2C0,R2C1,R2C2 R_l0_g3,R_l1_g3,R3C0,R3C1,R3C2 R_l0_g4,R_l1_g4,R4C0,R4C1,R4C2 """ df = self.read_csv(StringIO(data), header=[0, 1, 2, 3], index_col=[ 0, 1], tupleize_cols=False) tm.assert_frame_equal(df, expected) # skipping lines in the header df = self.read_csv(StringIO(data), header=[0, 1, 2, 3], index_col=[ 0, 1], tupleize_cols=False) tm.assert_frame_equal(df, expected) #### invalid options #### # no as_recarray self.assertRaises(ValueError, self.read_csv, StringIO(data), header=[0, 1, 2, 3], index_col=[0, 1], as_recarray=True, tupleize_cols=False) # names self.assertRaises(ValueError, self.read_csv, StringIO(data), header=[0, 1, 2, 3], index_col=[0, 1], names=['foo', 'bar'], tupleize_cols=False) # usecols self.assertRaises(ValueError, self.read_csv, StringIO(data), header=[0, 1, 2, 3], index_col=[0, 1], usecols=['foo', 'bar'], tupleize_cols=False) # non-numeric index_col self.assertRaises(ValueError, self.read_csv, StringIO(data), header=[0, 1, 2, 3], index_col=['foo', 'bar'], tupleize_cols=False) def test_header_multiindex_common_format(self): df = DataFrame([[1, 2, 3, 4, 5, 6], [7, 8, 9, 10, 11, 12]], index=['one', 'two'], columns=MultiIndex.from_tuples([('a', 'q'), ('a', 'r'), ('a', 's'), ('b', 't'), ('c', 'u'), ('c', 'v')])) # to_csv data = """,a,a,a,b,c,c ,q,r,s,t,u,v ,,,,,, one,1,2,3,4,5,6 two,7,8,9,10,11,12""" result = self.read_csv(StringIO(data), header=[0, 1], index_col=0) tm.assert_frame_equal(df, result) # common data = """,a,a,a,b,c,c ,q,r,s,t,u,v one,1,2,3,4,5,6 two,7,8,9,10,11,12""" result = self.read_csv(StringIO(data), header=[0, 1], index_col=0) tm.assert_frame_equal(df, result) # common, no index_col data = """a,a,a,b,c,c q,r,s,t,u,v 1,2,3,4,5,6 7,8,9,10,11,12""" result = self.read_csv(StringIO(data), header=[0, 1], index_col=None) tm.assert_frame_equal(df.reset_index(drop=True), result) # malformed case 1 expected = DataFrame(np.array([[2, 3, 4, 5, 6], [8, 9, 10, 11, 12]], dtype='int64'), index=Index([1, 7]), columns=MultiIndex(levels=[[u('a'), u('b'), u('c')], [u('r'), u('s'), u('t'), u('u'), u('v')]], labels=[[0, 0, 1, 2, 2], [ 0, 1, 2, 3, 4]], names=[u('a'), u('q')])) data = """a,a,a,b,c,c q,r,s,t,u,v 1,2,3,4,5,6 7,8,9,10,11,12""" result = self.read_csv(StringIO(data), header=[0, 1], index_col=0) tm.assert_frame_equal(expected, result) # malformed case 2 expected = DataFrame(np.array([[2, 3, 4, 5, 6], [8, 9, 10, 11, 12]], dtype='int64'), index=Index([1, 7]), columns=MultiIndex(levels=[[u('a'), u('b'), u('c')], [u('r'), u('s'), u('t'), u('u'), u('v')]], labels=[[0, 0, 1, 2, 2], [ 0, 1, 2, 3, 4]], names=[None, u('q')])) data = """,a,a,b,c,c q,r,s,t,u,v 1,2,3,4,5,6 7,8,9,10,11,12""" result = self.read_csv(StringIO(data), header=[0, 1], index_col=0) tm.assert_frame_equal(expected, result) # mi on columns and index (malformed) expected = DataFrame(np.array([[3, 4, 5, 6], [9, 10, 11, 12]], dtype='int64'), index=MultiIndex(levels=[[1, 7], [2, 8]], labels=[[0, 1], [0, 1]]), columns=MultiIndex(levels=[[u('a'), u('b'), u('c')], [u('s'), u('t'), u('u'), u('v')]], labels=[[0, 1, 2, 2], [0, 1, 2, 3]], names=[None, u('q')])) data = """,a,a,b,c,c q,r,s,t,u,v 1,2,3,4,5,6 7,8,9,10,11,12""" result = self.read_csv(StringIO(data), header=[0, 1], index_col=[0, 1]) tm.assert_frame_equal(expected, result) def test_pass_names_with_index(self): lines = self.data1.split('\n') no_header = '\n'.join(lines[1:]) # regular index names = ['index', 'A', 'B', 'C', 'D'] df = self.read_csv(StringIO(no_header), index_col=0, names=names) expected = self.read_csv(StringIO(self.data1), index_col=0) tm.assert_frame_equal(df, expected) # multi index data = """index1,index2,A,B,C,D foo,one,2,3,4,5 foo,two,7,8,9,10 foo,three,12,13,14,15 bar,one,12,13,14,15 bar,two,12,13,14,15 """ lines = data.split('\n') no_header = '\n'.join(lines[1:]) names = ['index1', 'index2', 'A', 'B', 'C', 'D'] df = self.read_csv(StringIO(no_header), index_col=[0, 1], names=names) expected = self.read_csv(StringIO(data), index_col=[0, 1]) tm.assert_frame_equal(df, expected) df = self.read_csv(StringIO(data), index_col=['index1', 'index2']) tm.assert_frame_equal(df, expected) def test_multi_index_no_level_names(self): data = """index1,index2,A,B,C,D foo,one,2,3,4,5 foo,two,7,8,9,10 foo,three,12,13,14,15 bar,one,12,13,14,15 bar,two,12,13,14,15 """ data2 = """A,B,C,D foo,one,2,3,4,5 foo,two,7,8,9,10 foo,three,12,13,14,15 bar,one,12,13,14,15 bar,two,12,13,14,15 """ lines = data.split('\n') no_header = '\n'.join(lines[1:]) names = ['A', 'B', 'C', 'D'] df = self.read_csv(StringIO(no_header), index_col=[0, 1], header=None, names=names) expected = self.read_csv(StringIO(data), index_col=[0, 1]) tm.assert_frame_equal(df, expected, check_names=False) # 2 implicit first cols df2 = self.read_csv(StringIO(data2)) tm.assert_frame_equal(df2, df) # reverse order of index df = self.read_csv(StringIO(no_header), index_col=[1, 0], names=names, header=None) expected = self.read_csv(StringIO(data), index_col=[1, 0]) tm.assert_frame_equal(df, expected, check_names=False) def test_multi_index_parse_dates(self): data = """index1,index2,A,B,C 20090101,one,a,1,2 20090101,two,b,3,4 20090101,three,c,4,5 20090102,one,a,1,2 20090102,two,b,3,4 20090102,three,c,4,5 20090103,one,a,1,2 20090103,two,b,3,4 20090103,three,c,4,5 """ df = self.read_csv(StringIO(data), index_col=[0, 1], parse_dates=True) self.assertIsInstance(df.index.levels[0][0], (datetime, np.datetime64, Timestamp)) # specify columns out of order! df2 = self.read_csv(StringIO(data), index_col=[1, 0], parse_dates=True) self.assertIsInstance(df2.index.levels[1][0], (datetime, np.datetime64, Timestamp)) def test_skip_footer(self): # GH 6607 # Test currently only valid with python engine because # skip_footer != 0. Temporarily copied to TestPythonParser. # Test for ValueError with other engines: with tm.assertRaisesRegexp(ValueError, 'skip_footer'): data = """A,B,C 1,2,3 4,5,6 7,8,9 want to skip this also also skip this """ result = self.read_csv(StringIO(data), skip_footer=2) no_footer = '\n'.join(data.split('\n')[:-3]) expected = self.read_csv(StringIO(no_footer)) tm.assert_frame_equal(result, expected) result = self.read_csv(StringIO(data), nrows=3) tm.assert_frame_equal(result, expected) # skipfooter alias result = read_csv(StringIO(data), skipfooter=2) no_footer = '\n'.join(data.split('\n')[:-3]) expected = read_csv(StringIO(no_footer)) tm.assert_frame_equal(result, expected) def test_no_unnamed_index(self): data = """ id c0 c1 c2 0 1 0 a b 1 2 0 c d 2 2 2 e f """ df = self.read_table(StringIO(data), sep=' ') self.assertIsNone(df.index.name) def test_converters(self): data = """A,B,C,D a,1,2,01/01/2009 b,3,4,01/02/2009 c,4,5,01/03/2009 """ from pandas.compat import parse_date result = self.read_csv(StringIO(data), converters={'D': parse_date}) result2 = self.read_csv(StringIO(data), converters={3: parse_date}) expected = self.read_csv(StringIO(data)) expected['D'] = expected['D'].map(parse_date) tm.assertIsInstance(result['D'][0], (datetime, Timestamp)) tm.assert_frame_equal(result, expected) tm.assert_frame_equal(result2, expected) # produce integer converter = lambda x: int(x.split('/')[2]) result = self.read_csv(StringIO(data), converters={'D': converter}) expected = self.read_csv(StringIO(data)) expected['D'] = expected['D'].map(converter) tm.assert_frame_equal(result, expected) def test_converters_no_implicit_conv(self): # GH2184 data = """000102,1.2,A\n001245,2,B""" f = lambda x: x.strip() converter = {0: f} df = self.read_csv(StringIO(data), header=None, converters=converter) self.assertEqual(df[0].dtype, object) def test_converters_euro_decimal_format(self): data = """Id;Number1;Number2;Text1;Text2;Number3 1;1521,1541;187101,9543;ABC;poi;4,738797819 2;121,12;14897,76;DEF;uyt;0,377320872 3;878,158;108013,434;GHI;rez;2,735694704""" f = lambda x: float(x.replace(",", ".")) converter = {'Number1': f, 'Number2': f, 'Number3': f} df2 = self.read_csv(StringIO(data), sep=';', converters=converter) self.assertEqual(df2['Number1'].dtype, float) self.assertEqual(df2['Number2'].dtype, float) self.assertEqual(df2['Number3'].dtype, float) def test_converter_return_string_bug(self): # GH #583 data = """Id;Number1;Number2;Text1;Text2;Number3 1;1521,1541;187101,9543;ABC;poi;4,738797819 2;121,12;14897,76;DEF;uyt;0,377320872 3;878,158;108013,434;GHI;rez;2,735694704""" f = lambda x: float(x.replace(",", ".")) converter = {'Number1': f, 'Number2': f, 'Number3': f} df2 = self.read_csv(StringIO(data), sep=';', converters=converter) self.assertEqual(df2['Number1'].dtype, float) def test_read_table_buglet_4x_multiindex(self): # GH 6607 # Parsing multi-level index currently causes an error in the C parser. # Temporarily copied to TestPythonParser. # Here test that CParserError is raised: with tm.assertRaises(pandas.parser.CParserError): text = """ A B C D E one two three four a b 10.0032 5 -0.5109 -2.3358 -0.4645 0.05076 0.3640 a q 20 4 0.4473 1.4152 0.2834 1.00661 0.1744 x q 30 3 -0.6662 -0.5243 -0.3580 0.89145 2.5838""" # it works! df = self.read_table(StringIO(text), sep='\s+') self.assertEqual(df.index.names, ('one', 'two', 'three', 'four')) def test_line_comment(self): data = """# empty A,B,C 1,2.,4.#hello world #ignore this line 5.,NaN,10.0 """ expected = [[1., 2., 4.], [5., np.nan, 10.]] df = self.read_csv(StringIO(data), comment='#') tm.assert_almost_equal(df.values, expected) def test_comment_skiprows(self): data = """# empty random line # second empty line 1,2,3 A,B,C 1,2.,4. 5.,NaN,10.0 """ expected = [[1., 2., 4.], [5., np.nan, 10.]] # this should ignore the first four lines (including comments) df = self.read_csv(StringIO(data), comment='#', skiprows=4) tm.assert_almost_equal(df.values, expected) def test_comment_header(self): data = """# empty # second empty line 1,2,3 A,B,C 1,2.,4. 5.,NaN,10.0 """ expected = [[1., 2., 4.], [5., np.nan, 10.]] # header should begin at the second non-comment line df = self.read_csv(StringIO(data), comment='#', header=1) tm.assert_almost_equal(df.values, expected) def test_comment_skiprows_header(self): data = """# empty # second empty line # third empty line X,Y,Z 1,2,3 A,B,C 1,2.,4. 5.,NaN,10.0 """ expected = [[1., 2., 4.], [5., np.nan, 10.]] # skiprows should skip the first 4 lines (including comments), while # header should start from the second non-commented line starting # with line 5 df = self.read_csv(StringIO(data), comment='#', skiprows=4, header=1) tm.assert_almost_equal(df.values, expected) def test_read_csv_parse_simple_list(self): text = """foo bar baz qux foo foo bar""" df = read_csv(StringIO(text), header=None) expected = DataFrame({0: ['foo', 'bar baz', 'qux foo', 'foo', 'bar']}) tm.assert_frame_equal(df, expected) def test_parse_dates_custom_euroformat(self): text = """foo,bar,baz 31/01/2010,1,2 01/02/2010,1,NA 02/02/2010,1,2 """ parser = lambda d: parse_date(d, dayfirst=True) df = self.read_csv(StringIO(text), names=['time', 'Q', 'NTU'], header=0, index_col=0, parse_dates=True, date_parser=parser, na_values=['NA']) exp_index = Index([datetime(2010, 1, 31), datetime(2010, 2, 1), datetime(2010, 2, 2)], name='time') expected = DataFrame({'Q': [1, 1, 1], 'NTU': [2, np.nan, 2]}, index=exp_index, columns=['Q', 'NTU']) tm.assert_frame_equal(df, expected) parser = lambda d: parse_date(d, day_first=True) self.assertRaises(Exception, self.read_csv, StringIO(text), skiprows=[0], names=['time', 'Q', 'NTU'], index_col=0, parse_dates=True, date_parser=parser, na_values=['NA']) def test_na_value_dict(self): data = """A,B,C foo,bar,NA bar,foo,foo foo,bar,NA bar,foo,foo""" df = self.read_csv(StringIO(data), na_values={'A': ['foo'], 'B': ['bar']}) expected = DataFrame({'A': [np.nan, 'bar', np.nan, 'bar'], 'B': [np.nan, 'foo', np.nan, 'foo'], 'C': [np.nan, 'foo', np.nan, 'foo']}) tm.assert_frame_equal(df, expected) data = """\ a,b,c,d 0,NA,1,5 """ xp = DataFrame({'b': [np.nan], 'c': [1], 'd': [5]}, index=[0]) xp.index.name = 'a' df = self.read_csv(StringIO(data), na_values={}, index_col=0) tm.assert_frame_equal(df, xp) xp = DataFrame({'b': [np.nan], 'd': [5]}, MultiIndex.from_tuples([(0, 1)])) xp.index.names = ['a', 'c'] df = self.read_csv(StringIO(data), na_values={}, index_col=[0, 2]) tm.assert_frame_equal(df, xp) xp = DataFrame({'b': [np.nan], 'd': [5]}, MultiIndex.from_tuples([(0, 1)])) xp.index.names = ['a', 'c'] df = self.read_csv(StringIO(data), na_values={}, index_col=['a', 'c']) tm.assert_frame_equal(df, xp) @tm.network def test_url(self): # HTTP(S) url = ('https://raw.github.com/pydata/pandas/master/' 'pandas/io/tests/data/salary.table') url_table = self.read_table(url) dirpath = tm.get_data_path() localtable = os.path.join(dirpath, 'salary.table') local_table = self.read_table(localtable) tm.assert_frame_equal(url_table, local_table) # TODO: ftp testing @slow def test_file(self): # FILE if sys.version_info[:2] < (2, 6): raise nose.SkipTest("file:// not supported with Python < 2.6") dirpath = tm.get_data_path() localtable = os.path.join(dirpath, 'salary.table') local_table = self.read_table(localtable) try: url_table = self.read_table('file://localhost/' + localtable) except URLError: # fails on some systems raise nose.SkipTest("failing on %s" % ' '.join(platform.uname()).strip()) tm.assert_frame_equal(url_table, local_table) def test_parse_tz_aware(self): import pytz # #1693 data = StringIO("Date,x\n2012-06-13T01:39:00Z,0.5") # it works result = read_csv(data, index_col=0, parse_dates=True) stamp = result.index[0] self.assertEqual(stamp.minute, 39) try: self.assertIs(result.index.tz, pytz.utc) except AssertionError: # hello Yaroslav arr = result.index.to_pydatetime() result = tools.to_datetime(arr, utc=True)[0] self.assertEqual(stamp.minute, result.minute) self.assertEqual(stamp.hour, result.hour) self.assertEqual(stamp.day, result.day) def test_multiple_date_cols_index(self): data = """\ ID,date,NominalTime,ActualTime,TDew,TAir,Windspeed,Precip,WindDir KORD1,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD2,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD3,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD4,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD5,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD6,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000""" xp = self.read_csv(StringIO(data), parse_dates={'nominal': [1, 2]}) df = self.read_csv(StringIO(data), parse_dates={'nominal': [1, 2]}, index_col='nominal') tm.assert_frame_equal(xp.set_index('nominal'), df) df2 = self.read_csv(StringIO(data), parse_dates={'nominal': [1, 2]}, index_col=0) tm.assert_frame_equal(df2, df) df3 = self.read_csv(StringIO(data), parse_dates=[[1, 2]], index_col=0) tm.assert_frame_equal(df3, df, check_names=False) def test_multiple_date_cols_chunked(self): df = self.read_csv(StringIO(self.ts_data), parse_dates={ 'nominal': [1, 2]}, index_col='nominal') reader = self.read_csv(StringIO(self.ts_data), parse_dates={'nominal': [1, 2]}, index_col='nominal', chunksize=2) chunks = list(reader) self.assertNotIn('nominalTime', df) tm.assert_frame_equal(chunks[0], df[:2]) tm.assert_frame_equal(chunks[1], df[2:4]) tm.assert_frame_equal(chunks[2], df[4:]) def test_multiple_date_col_named_components(self): xp = self.read_csv(StringIO(self.ts_data), parse_dates={'nominal': [1, 2]}, index_col='nominal') colspec = {'nominal': ['date', 'nominalTime']} df = self.read_csv(StringIO(self.ts_data), parse_dates=colspec, index_col='nominal') tm.assert_frame_equal(df, xp) def test_multiple_date_col_multiple_index(self): df = self.read_csv(StringIO(self.ts_data), parse_dates={'nominal': [1, 2]}, index_col=['nominal', 'ID']) xp = self.read_csv(StringIO(self.ts_data), parse_dates={'nominal': [1, 2]}) tm.assert_frame_equal(xp.set_index(['nominal', 'ID']), df) def test_comment(self): data = """A,B,C 1,2.,4.#hello world 5.,NaN,10.0 """ expected = [[1., 2., 4.], [5., np.nan, 10.]] df = self.read_csv(StringIO(data), comment='#') tm.assert_almost_equal(df.values, expected) df = self.read_table(StringIO(data), sep=',', comment='#', na_values=['NaN']) tm.assert_almost_equal(df.values, expected) def test_bool_na_values(self): data = """A,B,C True,False,True NA,True,False False,NA,True""" result = self.read_csv(StringIO(data)) expected = DataFrame({'A': np.array([True, nan, False], dtype=object), 'B': np.array([False, True, nan], dtype=object), 'C': [True, False, True]}) tm.assert_frame_equal(result, expected) def test_nonexistent_path(self): # don't segfault pls #2428 path = '%s.csv' % tm.rands(10) self.assertRaises(Exception, self.read_csv, path) def test_missing_trailing_delimiters(self): data = """A,B,C,D 1,2,3,4 1,3,3, 1,4,5""" result = self.read_csv(StringIO(data)) self.assertTrue(result['D'].isnull()[1:].all()) def test_skipinitialspace(self): s = ('"09-Apr-2012", "01:10:18.300", 2456026.548822908, 12849, ' '1.00361, 1.12551, 330.65659, 0355626618.16711, 73.48821, ' '314.11625, 1917.09447, 179.71425, 80.000, 240.000, -350, ' '70.06056, 344.98370, 1, 1, -0.689265, -0.692787, ' '0.212036, 14.7674, 41.605, -9999.0, -9999.0, ' '-9999.0, -9999.0, -9999.0, -9999.0, 000, 012, 128') sfile = StringIO(s) # it's 33 columns result = self.read_csv(sfile, names=lrange(33), na_values=['-9999.0'], header=None, skipinitialspace=True) self.assertTrue(pd.isnull(result.ix[0, 29])) def test_utf16_bom_skiprows(self): # #2298 data = u("""skip this skip this too A\tB\tC 1\t2\t3 4\t5\t6""") data2 = u("""skip this skip this too A,B,C 1,2,3 4,5,6""") path = '__%s__.csv' % tm.rands(10) with tm.ensure_clean(path) as path: for sep, dat in [('\t', data), (',', data2)]: for enc in ['utf-16', 'utf-16le', 'utf-16be']: bytes = dat.encode(enc) with open(path, 'wb') as f: f.write(bytes) s = BytesIO(dat.encode('utf-8')) if compat.PY3: # somewhat False since the code never sees bytes from io import TextIOWrapper s = TextIOWrapper(s, encoding='utf-8') result = self.read_csv(path, encoding=enc, skiprows=2, sep=sep) expected = self.read_csv(s, encoding='utf-8', skiprows=2, sep=sep) tm.assert_frame_equal(result, expected) def test_utf16_example(self): path = tm.get_data_path('utf16_ex.txt') # it works! and is the right length result = self.read_table(path, encoding='utf-16') self.assertEqual(len(result), 50) if not compat.PY3: buf = BytesIO(open(path, 'rb').read()) result = self.read_table(buf, encoding='utf-16') self.assertEqual(len(result), 50) def test_converters_corner_with_nas(self): # skip aberration observed on Win64 Python 3.2.2 if hash(np.int64(-1)) != -2: raise nose.SkipTest("skipping because of windows hash on Python" " 3.2.2") csv = """id,score,days 1,2,12 2,2-5, 3,,14+ 4,6-12,2""" def convert_days(x): x = x.strip() if not x: return np.nan is_plus = x.endswith('+') if is_plus: x = int(x[:-1]) + 1 else: x = int(x) return x def convert_days_sentinel(x): x = x.strip() if not x: return np.nan is_plus = x.endswith('+') if is_plus: x = int(x[:-1]) + 1 else: x = int(x) return x def convert_score(x): x = x.strip() if not x: return np.nan if x.find('-') > 0: valmin, valmax = lmap(int, x.split('-')) val = 0.5 * (valmin + valmax) else: val = float(x) return val fh = StringIO(csv) result = self.read_csv(fh, converters={'score': convert_score, 'days': convert_days}, na_values=['', None]) self.assertTrue(pd.isnull(result['days'][1])) fh = StringIO(csv) result2 = self.read_csv(fh, converters={'score': convert_score, 'days': convert_days_sentinel}, na_values=['', None]) tm.assert_frame_equal(result, result2) def test_unicode_encoding(self): pth = tm.get_data_path('unicode_series.csv') result = self.read_csv(pth, header=None, encoding='latin-1') result = result.set_index(0) got = result[1][1632] expected = u('\xc1 k\xf6ldum klaka (Cold Fever) (1994)') self.assertEqual(got, expected) def test_trailing_delimiters(self): # #2442. grumble grumble data = """A,B,C 1,2,3, 4,5,6, 7,8,9,""" result = self.read_csv(StringIO(data), index_col=False) expected = DataFrame({'A': [1, 4, 7], 'B': [2, 5, 8], 'C': [3, 6, 9]}) tm.assert_frame_equal(result, expected) def test_escapechar(self): # http://stackoverflow.com/questions/13824840/feature-request-for- # pandas-read-csv data = '''SEARCH_TERM,ACTUAL_URL "bra tv bord","http://www.ikea.com/se/sv/catalog/categories/departments/living_room/10475/?se%7cps%7cnonbranded%7cvardagsrum%7cgoogle%7ctv_bord" "tv p\xc3\xa5 hjul","http://www.ikea.com/se/sv/catalog/categories/departments/living_room/10475/?se%7cps%7cnonbranded%7cvardagsrum%7cgoogle%7ctv_bord" "SLAGBORD, \\"Bergslagen\\", IKEA:s 1700-tals serie","http://www.ikea.com/se/sv/catalog/categories/departments/living_room/10475/?se%7cps%7cnonbranded%7cvardagsrum%7cgoogle%7ctv_bord"''' result = self.read_csv(StringIO(data), escapechar='\\', quotechar='"', encoding='utf-8') self.assertEqual(result['SEARCH_TERM'][2], 'SLAGBORD, "Bergslagen", IKEA:s 1700-tals serie') self.assertTrue(np.array_equal(result.columns, ['SEARCH_TERM', 'ACTUAL_URL'])) def test_header_names_backward_compat(self): # #2539 data = '1,2,3\n4,5,6' result = self.read_csv(StringIO(data), names=['a', 'b', 'c']) expected = self.read_csv(StringIO(data), names=['a', 'b', 'c'], header=None) tm.assert_frame_equal(result, expected) data2 = 'foo,bar,baz\n' + data result = self.read_csv(StringIO(data2), names=['a', 'b', 'c'], header=0) tm.assert_frame_equal(result, expected) def test_int64_min_issues(self): # #2599 data = 'A,B\n0,0\n0,' result = self.read_csv(StringIO(data)) expected = DataFrame({'A': [0, 0], 'B': [0, np.nan]}) tm.assert_frame_equal(result, expected) def test_parse_integers_above_fp_precision(self): data = """Numbers 17007000002000191 17007000002000191 17007000002000191 17007000002000191 17007000002000192 17007000002000192 17007000002000192 17007000002000192 17007000002000192 17007000002000194""" result = self.read_csv(StringIO(data)) expected = DataFrame({'Numbers': [17007000002000191, 17007000002000191, 17007000002000191, 17007000002000191, 17007000002000192, 17007000002000192, 17007000002000192, 17007000002000192, 17007000002000192, 17007000002000194]}) self.assertTrue(np.array_equal(result['Numbers'], expected['Numbers'])) def test_usecols_index_col_conflict(self): # Issue 4201 Test that index_col as integer reflects usecols data = """SecId,Time,Price,P2,P3 10000,2013-5-11,100,10,1 500,2013-5-12,101,11,1 """ expected = DataFrame({'Price': [100, 101]}, index=[ datetime(2013, 5, 11), datetime(2013, 5, 12)]) expected.index.name = 'Time' df = self.read_csv(StringIO(data), usecols=[ 'Time', 'Price'], parse_dates=True, index_col=0) tm.assert_frame_equal(expected, df) df = self.read_csv(StringIO(data), usecols=[ 'Time', 'Price'], parse_dates=True, index_col='Time') tm.assert_frame_equal(expected, df) df = self.read_csv(StringIO(data), usecols=[ 1, 2], parse_dates=True, index_col='Time') tm.assert_frame_equal(expected, df) df = self.read_csv(StringIO(data), usecols=[ 1, 2], parse_dates=True, index_col=0) tm.assert_frame_equal(expected, df) expected = DataFrame( {'P3': [1, 1], 'Price': (100, 101), 'P2': (10, 11)}) expected = expected.set_index(['Price', 'P2']) df = self.read_csv(StringIO(data), usecols=[ 'Price', 'P2', 'P3'], parse_dates=True, index_col=['Price', 'P2']) tm.assert_frame_equal(expected, df) def test_chunks_have_consistent_numerical_type(self): integers = [str(i) for i in range(499999)] data = "a\n" + "\n".join(integers + ["1.0", "2.0"] + integers) with tm.assert_produces_warning(False): df = self.read_csv(StringIO(data)) # Assert that types were coerced. self.assertTrue(type(df.a[0]) is np.float64) self.assertEqual(df.a.dtype, np.float) def test_warn_if_chunks_have_mismatched_type(self): # See test in TestCParserLowMemory. integers = [str(i) for i in range(499999)] data = "a\n" + "\n".join(integers + ['a', 'b'] + integers) with tm.assert_produces_warning(False): df = self.read_csv(StringIO(data)) self.assertEqual(df.a.dtype, np.object) def test_usecols(self): data = """\ a,b,c 1,2,3 4,5,6 7,8,9 10,11,12""" result = self.read_csv(StringIO(data), usecols=(1, 2)) result2 = self.read_csv(StringIO(data), usecols=('b', 'c')) exp = self.read_csv(StringIO(data)) self.assertEqual(len(result.columns), 2) self.assertTrue((result['b'] == exp['b']).all()) self.assertTrue((result['c'] == exp['c']).all()) tm.assert_frame_equal(result, result2) result = self.read_csv(StringIO(data), usecols=[1, 2], header=0, names=['foo', 'bar']) expected = self.read_csv(StringIO(data), usecols=[1, 2]) expected.columns = ['foo', 'bar'] tm.assert_frame_equal(result, expected) data = """\ 1,2,3 4,5,6 7,8,9 10,11,12""" result = self.read_csv(StringIO(data), names=['b', 'c'], header=None, usecols=[1, 2]) expected = self.read_csv(StringIO(data), names=['a', 'b', 'c'], header=None) expected = expected[['b', 'c']] tm.assert_frame_equal(result, expected) result2 = self.read_csv(StringIO(data), names=['a', 'b', 'c'], header=None, usecols=['b', 'c']) tm.assert_frame_equal(result2, result) # 5766 result = self.read_csv(StringIO(data), names=['a', 'b'], header=None, usecols=[0, 1]) expected = self.read_csv(StringIO(data), names=['a', 'b', 'c'], header=None) expected = expected[['a', 'b']] tm.assert_frame_equal(result, expected) # length conflict, passed names and usecols disagree self.assertRaises(ValueError, self.read_csv, StringIO(data), names=['a', 'b'], usecols=[1], header=None) def test_integer_overflow_bug(self): # #2601 data = "65248E10 11\n55555E55 22\n" result = self.read_csv(StringIO(data), header=None, sep=' ') self.assertTrue(result[0].dtype == np.float64) result = self.read_csv(StringIO(data), header=None, sep='\s+') self.assertTrue(result[0].dtype == np.float64) def test_catch_too_many_names(self): # Issue 5156 data = """\ 1,2,3 4,,6 7,8,9 10,11,12\n""" tm.assertRaises(Exception, read_csv, StringIO(data), header=0, names=['a', 'b', 'c', 'd']) def test_ignore_leading_whitespace(self): # GH 6607, GH 3374 data = ' a b c\n 1 2 3\n 4 5 6\n 7 8 9' result = self.read_table(StringIO(data), sep='\s+') expected = DataFrame({'a': [1, 4, 7], 'b': [2, 5, 8], 'c': [3, 6, 9]}) tm.assert_frame_equal(result, expected) def test_nrows_and_chunksize_raises_notimplemented(self): data = 'a b c' self.assertRaises(NotImplementedError, self.read_csv, StringIO(data), nrows=10, chunksize=5) def test_single_char_leading_whitespace(self): # GH 9710 data = """\ MyColumn a b a b\n""" expected = DataFrame({'MyColumn': list('abab')}) result = self.read_csv(StringIO(data), skipinitialspace=True) tm.assert_frame_equal(result, expected) def test_chunk_begins_with_newline_whitespace(self): # GH 10022 data = '\n hello\nworld\n' result = self.read_csv(StringIO(data), header=None) self.assertEqual(len(result), 2) # GH 9735 chunk1 = 'a' * (1024 * 256 - 2) + '\na' chunk2 = '\n a' result = pd.read_csv(StringIO(chunk1 + chunk2), header=None) expected = pd.DataFrame(['a' * (1024 * 256 - 2), 'a', ' a']) tm.assert_frame_equal(result, expected) def test_empty_with_index(self): # GH 10184 data = 'x,y' result = self.read_csv(StringIO(data), index_col=0) expected = DataFrame([], columns=['y'], index=Index([], name='x')) tm.assert_frame_equal(result, expected) def test_emtpy_with_multiindex(self): # GH 10467 data = 'x,y,z' result = self.read_csv(StringIO(data), index_col=['x', 'y']) expected = DataFrame([], columns=['z'], index=MultiIndex.from_arrays([[]] * 2, names=['x', 'y'])) tm.assert_frame_equal(result, expected, check_index_type=False) def test_empty_with_reversed_multiindex(self): data = 'x,y,z' result = self.read_csv(StringIO(data), index_col=[1, 0]) expected = DataFrame([], columns=['z'], index=MultiIndex.from_arrays([[]] * 2, names=['y', 'x'])) tm.assert_frame_equal(result, expected, check_index_type=False) def test_empty_index_col_scenarios(self): data = 'x,y,z' # None, no index index_col, expected = None, DataFrame([], columns=list('xyz')), tm.assert_frame_equal(self.read_csv( StringIO(data), index_col=index_col), expected) # False, no index index_col, expected = False, DataFrame([], columns=list('xyz')), tm.assert_frame_equal(self.read_csv( StringIO(data), index_col=index_col), expected) # int, first column index_col, expected = 0, DataFrame( [], columns=['y', 'z'], index=Index([], name='x')) tm.assert_frame_equal(self.read_csv( StringIO(data), index_col=index_col), expected) # int, not first column index_col, expected = 1, DataFrame( [], columns=['x', 'z'], index=Index([], name='y')) tm.assert_frame_equal(self.read_csv( StringIO(data), index_col=index_col), expected) # str, first column index_col, expected = 'x', DataFrame( [], columns=['y', 'z'], index=Index([], name='x')) tm.assert_frame_equal(self.read_csv( StringIO(data), index_col=index_col), expected) # str, not the first column index_col, expected = 'y', DataFrame( [], columns=['x', 'z'], index=Index([], name='y')) tm.assert_frame_equal(self.read_csv( StringIO(data), index_col=index_col), expected) # list of int index_col, expected = [0, 1], DataFrame([], columns=['z'], index=MultiIndex.from_arrays([[]] * 2, names=['x', 'y'])) tm.assert_frame_equal(self.read_csv(StringIO(data), index_col=index_col), expected, check_index_type=False) # list of str index_col = ['x', 'y'] expected = DataFrame([], columns=['z'], index=MultiIndex.from_arrays( [[]] * 2, names=['x', 'y'])) tm.assert_frame_equal(self.read_csv(StringIO(data), index_col=index_col), expected, check_index_type=False) # list of int, reversed sequence index_col = [1, 0] expected = DataFrame([], columns=['z'], index=MultiIndex.from_arrays( [[]] * 2, names=['y', 'x'])) tm.assert_frame_equal(self.read_csv(StringIO(data), index_col=index_col), expected, check_index_type=False) # list of str, reversed sequence index_col = ['y', 'x'] expected = DataFrame([], columns=['z'], index=MultiIndex.from_arrays( [[]] * 2, names=['y', 'x'])) tm.assert_frame_equal(self.read_csv(StringIO(data), index_col=index_col), expected, check_index_type=False) def test_empty_with_index_col_false(self): # GH 10413 data = 'x,y' result = self.read_csv(StringIO(data), index_col=False) expected = DataFrame([], columns=['x', 'y']) tm.assert_frame_equal(result, expected) def test_float_parser(self): # GH 9565 data = '45e-1,4.5,45.,inf,-inf' result = self.read_csv(StringIO(data), header=None) expected = pd.DataFrame([[float(s) for s in data.split(',')]]) tm.assert_frame_equal(result, expected) def test_int64_overflow(self): data = """ID 00013007854817840016671868 00013007854817840016749251 00013007854817840016754630 00013007854817840016781876 00013007854817840017028824 00013007854817840017963235 00013007854817840018860166""" result = self.read_csv(StringIO(data)) self.assertTrue(result['ID'].dtype == object) self.assertRaises((OverflowError, pandas.parser.OverflowError), self.read_csv, StringIO(data), converters={'ID': np.int64}) # Just inside int64 range: parse as integer i_max = np.iinfo(np.int64).max i_min = np.iinfo(np.int64).min for x in [i_max, i_min]: result = pd.read_csv(StringIO(str(x)), header=None) expected = pd.DataFrame([x]) tm.assert_frame_equal(result, expected) # Just outside int64 range: parse as string too_big = i_max + 1 too_small = i_min - 1 for x in [too_big, too_small]: result = pd.read_csv(StringIO(str(x)), header=None) expected = pd.DataFrame([str(x)]) tm.assert_frame_equal(result, expected) def test_empty_with_nrows_chunksize(self): # GH 9535 expected = pd.DataFrame([], columns=['foo', 'bar']) result = self.read_csv(StringIO('foo,bar\n'), nrows=10) tm.assert_frame_equal(result, expected) result = next(iter(pd.read_csv(StringIO('foo,bar\n'), chunksize=10))) tm.assert_frame_equal(result, expected) result = pd.read_csv(StringIO('foo,bar\n'), nrows=10, as_recarray=True) result = pd.DataFrame(result[2], columns=result[1], index=result[0]) tm.assert_frame_equal(pd.DataFrame.from_records( result), expected, check_index_type=False) result = next( iter(pd.read_csv(StringIO('foo,bar\n'), chunksize=10, as_recarray=True))) result = pd.DataFrame(result[2], columns=result[1], index=result[0]) tm.assert_frame_equal(pd.DataFrame.from_records( result), expected, check_index_type=False) def test_eof_states(self): # GH 10728 and 10548 # With skip_blank_lines = True expected = pd.DataFrame([[4, 5, 6]], columns=['a', 'b', 'c']) # GH 10728 # WHITESPACE_LINE data = 'a,b,c\n4,5,6\n ' result = self.read_csv(StringIO(data)) tm.assert_frame_equal(result, expected) # GH 10548 # EAT_LINE_COMMENT data = 'a,b,c\n4,5,6\n#comment' result = self.read_csv(StringIO(data), comment='#') tm.assert_frame_equal(result, expected) # EAT_CRNL_NOP data = 'a,b,c\n4,5,6\n\r' result = self.read_csv(StringIO(data)) tm.assert_frame_equal(result, expected) # EAT_COMMENT data = 'a,b,c\n4,5,6#comment' result = self.read_csv(StringIO(data), comment='#') tm.assert_frame_equal(result, expected) # SKIP_LINE data = 'a,b,c\n4,5,6\nskipme' result = self.read_csv(StringIO(data), skiprows=[2]) tm.assert_frame_equal(result, expected) # With skip_blank_lines = False # EAT_LINE_COMMENT data = 'a,b,c\n4,5,6\n#comment' result = self.read_csv( StringIO(data), comment='#', skip_blank_lines=False) expected = pd.DataFrame([[4, 5, 6]], columns=['a', 'b', 'c']) tm.assert_frame_equal(result, expected) # IN_FIELD data = 'a,b,c\n4,5,6\n ' result = self.read_csv(StringIO(data), skip_blank_lines=False) expected = pd.DataFrame( [['4', 5, 6], [' ', None, None]], columns=['a', 'b', 'c']) tm.assert_frame_equal(result, expected) # EAT_CRNL data = 'a,b,c\n4,5,6\n\r' result = self.read_csv(StringIO(data), skip_blank_lines=False) expected = pd.DataFrame( [[4, 5, 6], [None, None, None]], columns=['a', 'b', 'c']) tm.assert_frame_equal(result, expected) # Should produce exceptions # ESCAPED_CHAR data = "a,b,c\n4,5,6\n\\" self.assertRaises(Exception, self.read_csv, StringIO(data), escapechar='\\') # ESCAPE_IN_QUOTED_FIELD data = 'a,b,c\n4,5,6\n"\\' self.assertRaises(Exception, self.read_csv, StringIO(data), escapechar='\\') # IN_QUOTED_FIELD data = 'a,b,c\n4,5,6\n"' self.assertRaises(Exception, self.read_csv, StringIO(data), escapechar='\\') class TestPythonParser(ParserTests, tm.TestCase): def test_negative_skipfooter_raises(self): text = """#foo,a,b,c #foo,a,b,c #foo,a,b,c #foo,a,b,c #foo,a,b,c #foo,a,b,c 1/1/2000,1.,2.,3. 1/2/2000,4,5,6 1/3/2000,7,8,9 """ with tm.assertRaisesRegexp(ValueError, 'skip footer cannot be negative'): df = self.read_csv(StringIO(text), skipfooter=-1) def read_csv(self, *args, **kwds): kwds = kwds.copy() kwds['engine'] = 'python' return read_csv(*args, **kwds) def read_table(self, *args, **kwds): kwds = kwds.copy() kwds['engine'] = 'python' return read_table(*args, **kwds) def test_sniff_delimiter(self): text = """index|A|B|C foo|1|2|3 bar|4|5|6 baz|7|8|9 """ data = self.read_csv(StringIO(text), index_col=0, sep=None) self.assertTrue(data.index.equals(Index(['foo', 'bar', 'baz']))) data2 = self.read_csv(StringIO(text), index_col=0, delimiter='|') tm.assert_frame_equal(data, data2) text = """ignore this ignore this too index|A|B|C foo|1|2|3 bar|4|5|6 baz|7|8|9 """ data3 = self.read_csv(StringIO(text), index_col=0, sep=None, skiprows=2) tm.assert_frame_equal(data, data3) text = u("""ignore this ignore this too index|A|B|C foo|1|2|3 bar|4|5|6 baz|7|8|9 """).encode('utf-8') s = BytesIO(text) if compat.PY3: # somewhat False since the code never sees bytes from io import TextIOWrapper s = TextIOWrapper(s, encoding='utf-8') data4 = self.read_csv(s, index_col=0, sep=None, skiprows=2, encoding='utf-8') tm.assert_frame_equal(data, data4) def test_regex_separator(self): data = """ A B C D a 1 2 3 4 b 1 2 3 4 c 1 2 3 4 """ df = self.read_table(StringIO(data), sep='\s+') expected = self.read_csv(StringIO(re.sub('[ ]+', ',', data)), index_col=0) self.assertIsNone(expected.index.name) tm.assert_frame_equal(df, expected) def test_1000_fwf(self): data = """ 1 2,334.0 5 10 13 10. """ expected = [[1, 2334., 5], [10, 13, 10]] df = read_fwf(StringIO(data), colspecs=[(0, 3), (3, 11), (12, 16)], thousands=',') tm.assert_almost_equal(df.values, expected) def test_1000_sep_with_decimal(self): data = """A|B|C 1|2,334.01|5 10|13|10. """ expected = DataFrame({ 'A': [1, 10], 'B': [2334.01, 13], 'C': [5, 10.] }) df = self.read_csv(StringIO(data), sep='|', thousands=',') tm.assert_frame_equal(df, expected) df = self.read_table(StringIO(data), sep='|', thousands=',') tm.assert_frame_equal(df, expected) def test_comment_fwf(self): data = """ 1 2. 4 #hello world 5 NaN 10.0 """ expected = [[1, 2., 4], [5, np.nan, 10.]] df = read_fwf(StringIO(data), colspecs=[(0, 3), (4, 9), (9, 25)], comment='#') tm.assert_almost_equal(df.values, expected) def test_fwf(self): data_expected = """\ 2011,58,360.242940,149.910199,11950.7 2011,59,444.953632,166.985655,11788.4 2011,60,364.136849,183.628767,11806.2 2011,61,413.836124,184.375703,11916.8 2011,62,502.953953,173.237159,12468.3 """ expected = self.read_csv(StringIO(data_expected), header=None) data1 = """\ 201158 360.242940 149.910199 11950.7 201159 444.953632 166.985655 11788.4 201160 364.136849 183.628767 11806.2 201161 413.836124 184.375703 11916.8 201162 502.953953 173.237159 12468.3 """ colspecs = [(0, 4), (4, 8), (8, 20), (21, 33), (34, 43)] df = read_fwf(StringIO(data1), colspecs=colspecs, header=None) tm.assert_frame_equal(df, expected) data2 = """\ 2011 58 360.242940 149.910199 11950.7 2011 59 444.953632 166.985655 11788.4 2011 60 364.136849 183.628767 11806.2 2011 61 413.836124 184.375703 11916.8 2011 62 502.953953 173.237159 12468.3 """ df = read_fwf(StringIO(data2), widths=[5, 5, 13, 13, 7], header=None) tm.assert_frame_equal(df, expected) # From <NAME>: apparently some non-space filler characters can # be seen, this is supported by specifying the 'delimiter' character: # http://publib.boulder.ibm.com/infocenter/dmndhelp/v6r1mx/index.jsp?topic=/com.ibm.wbit.612.help.config.doc/topics/rfixwidth.html data3 = """\ 201158~~~~360.242940~~~149.910199~~~11950.7 201159~~~~444.953632~~~166.985655~~~11788.4 201160~~~~364.136849~~~183.628767~~~11806.2 201161~~~~413.836124~~~184.375703~~~11916.8 201162~~~~502.953953~~~173.237159~~~12468.3 """ df = read_fwf( StringIO(data3), colspecs=colspecs, delimiter='~', header=None) tm.assert_frame_equal(df, expected) with tm.assertRaisesRegexp(ValueError, "must specify only one of"): read_fwf(StringIO(data3), colspecs=colspecs, widths=[6, 10, 10, 7]) with tm.assertRaisesRegexp(ValueError, "Must specify either"): read_fwf(StringIO(data3), colspecs=None, widths=None) def test_fwf_colspecs_is_list_or_tuple(self): with tm.assertRaisesRegexp(TypeError, 'column specifications must be a list or ' 'tuple.+'): pd.io.parsers.FixedWidthReader(StringIO(self.data1), {'a': 1}, ',', '#') def test_fwf_colspecs_is_list_or_tuple_of_two_element_tuples(self): with tm.assertRaisesRegexp(TypeError, 'Each column specification must be.+'): read_fwf(StringIO(self.data1), [('a', 1)]) def test_fwf_colspecs_None(self): # GH 7079 data = """\ 123456 456789 """ colspecs = [(0, 3), (3, None)] result = read_fwf(StringIO(data), colspecs=colspecs, header=None) expected = DataFrame([[123, 456], [456, 789]]) tm.assert_frame_equal(result, expected) colspecs = [(None, 3), (3, 6)] result = read_fwf(StringIO(data), colspecs=colspecs, header=None) expected = DataFrame([[123, 456], [456, 789]]) tm.assert_frame_equal(result, expected) colspecs = [(0, None), (3, None)] result = read_fwf(StringIO(data), colspecs=colspecs, header=None) expected = DataFrame([[123456, 456], [456789, 789]]) tm.assert_frame_equal(result, expected) colspecs = [(None, None), (3, 6)] result = read_fwf(StringIO(data), colspecs=colspecs, header=None) expected = DataFrame([[123456, 456], [456789, 789]]) tm.assert_frame_equal(result, expected) def test_fwf_regression(self): # GH 3594 # turns out 'T060' is parsable as a datetime slice! tzlist = [1, 10, 20, 30, 60, 80, 100] ntz = len(tzlist) tcolspecs = [16] + [8] * ntz tcolnames = ['SST'] + ["T%03d" % z for z in tzlist[1:]] data = """ 2009164202000 9.5403 9.4105 8.6571 7.8372 6.0612 5.8843 5.5192 2009164203000 9.5435 9.2010 8.6167 7.8176 6.0804 5.8728 5.4869 2009164204000 9.5873 9.1326 8.4694 7.5889 6.0422 5.8526 5.4657 2009164205000 9.5810 9.0896 8.4009 7.4652 6.0322 5.8189 5.4379 2009164210000 9.6034 9.0897 8.3822 7.4905 6.0908 5.7904 5.4039 """ df = read_fwf(StringIO(data), index_col=0, header=None, names=tcolnames, widths=tcolspecs, parse_dates=True, date_parser=lambda s: datetime.strptime(s, '%Y%j%H%M%S')) for c in df.columns: res = df.loc[:, c] self.assertTrue(len(res)) def test_fwf_for_uint8(self): data = """1421302965.213420 PRI=3 PGN=0xef00 DST=0x17 SRC=0x28 04 154 00 00 00 00 00 127 1421302964.226776 PRI=6 PGN=0xf002 SRC=0x47 243 00 00 255 247 00 00 71""" df = read_fwf(StringIO(data), colspecs=[(0, 17), (25, 26), (33, 37), (49, 51), (58, 62), (63, 1000)], names=['time', 'pri', 'pgn', 'dst', 'src', 'data'], converters={ 'pgn': lambda x: int(x, 16), 'src': lambda x: int(x, 16), 'dst': lambda x: int(x, 16), 'data': lambda x: len(x.split(' '))}) expected = DataFrame([[1421302965.213420, 3, 61184, 23, 40, 8], [1421302964.226776, 6, 61442, None, 71, 8]], columns=["time", "pri", "pgn", "dst", "src", "data"]) expected["dst"] = expected["dst"].astype(object) tm.assert_frame_equal(df, expected) def test_fwf_compression(self): try: import gzip import bz2 except ImportError: raise nose.SkipTest("Need gzip and bz2 to run this test") data = """1111111111 2222222222 3333333333""".strip() widths = [5, 5] names = ['one', 'two'] expected = read_fwf(StringIO(data), widths=widths, names=names) if compat.PY3: data = bytes(data, encoding='utf-8') comps = [('gzip', gzip.GzipFile), ('bz2', bz2.BZ2File)] for comp_name, compresser in comps: with tm.ensure_clean() as path: tmp = compresser(path, mode='wb') tmp.write(data) tmp.close() result = read_fwf(path, widths=widths, names=names, compression=comp_name) tm.assert_frame_equal(result, expected) def test_BytesIO_input(self): if not compat.PY3: raise nose.SkipTest( "Bytes-related test - only needs to work on Python 3") result = pd.read_fwf(BytesIO("שלום\nשלום".encode('utf8')), widths=[ 2, 2], encoding='utf8') expected = pd.DataFrame([["של", "ום"]], columns=["של", "ום"]) tm.assert_frame_equal(result, expected) data = BytesIO("שלום::1234\n562::123".encode('cp1255')) result = pd.read_table(data, sep="::", engine='python', encoding='cp1255') expected = pd.DataFrame([[562, 123]], columns=["שלום", "1234"]) tm.assert_frame_equal(result, expected) def test_verbose_import(self): text = """a,b,c,d one,1,2,3 one,1,2,3 ,1,2,3 one,1,2,3 ,1,2,3 ,1,2,3 one,1,2,3 two,1,2,3""" buf = StringIO() sys.stdout = buf try: # it works! df = self.read_csv(StringIO(text), verbose=True) self.assertEqual( buf.getvalue(), 'Filled 3 NA values in column a\n') finally: sys.stdout = sys.__stdout__ buf = StringIO() sys.stdout = buf text = """a,b,c,d one,1,2,3 two,1,2,3 three,1,2,3 four,1,2,3 five,1,2,3 ,1,2,3 seven,1,2,3 eight,1,2,3""" try: # it works! df = self.read_csv(StringIO(text), verbose=True, index_col=0) self.assertEqual( buf.getvalue(), 'Filled 1 NA values in column a\n') finally: sys.stdout = sys.__stdout__ def test_float_precision_specified(self): # Should raise an error if float_precision (C parser option) is # specified with tm.assertRaisesRegexp(ValueError, "The 'float_precision' option " "is not supported with the 'python' engine"): self.read_csv(StringIO('a,b,c\n1,2,3'), float_precision='high') def test_iteration_open_handle(self): if PY3: raise nose.SkipTest( "won't work in Python 3 {0}".format(sys.version_info)) with tm.ensure_clean() as path: with open(path, 'wb') as f: f.write('AAA\nBBB\nCCC\nDDD\nEEE\nFFF\nGGG') with open(path, 'rb') as f: for line in f: if 'CCC' in line: break try: read_table(f, squeeze=True, header=None, engine='c') except Exception: pass else: raise ValueError('this should not happen') result = read_table(f, squeeze=True, header=None, engine='python') expected = Series(['DDD', 'EEE', 'FFF', 'GGG'], name=0) tm.assert_series_equal(result, expected) def test_iterator(self): # GH 6607 # This is a copy which should eventually be merged into ParserTests # when the issue with the C parser is fixed reader = self.read_csv(StringIO(self.data1), index_col=0, iterator=True) df = self.read_csv(StringIO(self.data1), index_col=0) chunk = reader.read(3) tm.assert_frame_equal(chunk, df[:3]) last_chunk = reader.read(5) tm.assert_frame_equal(last_chunk, df[3:]) # pass list lines = list(csv.reader(StringIO(self.data1))) parser = TextParser(lines, index_col=0, chunksize=2) df = self.read_csv(StringIO(self.data1), index_col=0) chunks = list(parser) tm.assert_frame_equal(chunks[0], df[:2]) tm.assert_frame_equal(chunks[1], df[2:4]) tm.assert_frame_equal(chunks[2], df[4:]) # pass skiprows parser = TextParser(lines, index_col=0, chunksize=2, skiprows=[1]) chunks = list(parser) tm.assert_frame_equal(chunks[0], df[1:3]) # test bad parameter (skip_footer) reader = self.read_csv(StringIO(self.data1), index_col=0, iterator=True, skip_footer=True) self.assertRaises(ValueError, reader.read, 3) treader = self.read_table(StringIO(self.data1), sep=',', index_col=0, iterator=True) tm.assertIsInstance(treader, TextFileReader) # stopping iteration when on chunksize is specified, GH 3967 data = """A,B,C foo,1,2,3 bar,4,5,6 baz,7,8,9 """ reader = self.read_csv(StringIO(data), iterator=True) result = list(reader) expected = DataFrame(dict(A=[1, 4, 7], B=[2, 5, 8], C=[ 3, 6, 9]), index=['foo', 'bar', 'baz']) tm.assert_frame_equal(result[0], expected) # chunksize = 1 reader = self.read_csv(StringIO(data), chunksize=1) result = list(reader) expected = DataFrame(dict(A=[1, 4, 7], B=[2, 5, 8], C=[ 3, 6, 9]), index=['foo', 'bar', 'baz']) self.assertEqual(len(result), 3) tm.assert_frame_equal(pd.concat(result), expected) def test_single_line(self): # GH 6607 # This is a copy which should eventually be merged into ParserTests # when the issue with the C parser is fixed # sniff separator buf = StringIO() sys.stdout = buf # printing warning message when engine == 'c' for now try: # it works! df = self.read_csv(StringIO('1,2'), names=['a', 'b'], header=None, sep=None) tm.assert_frame_equal(DataFrame({'a': [1], 'b': [2]}), df) finally: sys.stdout = sys.__stdout__ def test_malformed(self): # GH 6607 # This is a copy which should eventually be merged into ParserTests # when the issue with the C parser is fixed # all data = """ignore A,B,C 1,2,3 # comment 1,2,3,4,5 2,3,4 """ try: df = self.read_table( StringIO(data), sep=',', header=1, comment='#') self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 4, saw 5', str(inst)) # skip_footer data = """ignore A,B,C 1,2,3 # comment 1,2,3,4,5 2,3,4 footer """ try: df = self.read_table( StringIO(data), sep=',', header=1, comment='#', skip_footer=1) self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 4, saw 5', str(inst)) # first chunk data = """ignore A,B,C skip 1,2,3 3,5,10 # comment 1,2,3,4,5 2,3,4 """ try: it = self.read_table(StringIO(data), sep=',', header=1, comment='#', iterator=True, chunksize=1, skiprows=[2]) df = it.read(5) self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 6, saw 5', str(inst)) # middle chunk data = """ignore A,B,C skip 1,2,3 3,5,10 # comment 1,2,3,4,5 2,3,4 """ try: it = self.read_table(StringIO(data), sep=',', header=1, comment='#', iterator=True, chunksize=1, skiprows=[2]) df = it.read(1) it.read(2) self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 6, saw 5', str(inst)) # last chunk data = """ignore A,B,C skip 1,2,3 3,5,10 # comment 1,2,3,4,5 2,3,4 """ try: it = self.read_table(StringIO(data), sep=',', header=1, comment='#', iterator=True, chunksize=1, skiprows=[2]) df = it.read(1) it.read() self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 6, saw 5', str(inst)) def test_skip_footer(self): # GH 6607 # This is a copy which should eventually be merged into ParserTests # when the issue with the C parser is fixed data = """A,B,C 1,2,3 4,5,6 7,8,9 want to skip this also also skip this """ result = self.read_csv(StringIO(data), skip_footer=2) no_footer = '\n'.join(data.split('\n')[:-3]) expected = self.read_csv(StringIO(no_footer)) tm.assert_frame_equal(result, expected) result = self.read_csv(StringIO(data), nrows=3) tm.assert_frame_equal(result, expected) # skipfooter alias result = self.read_csv(StringIO(data), skipfooter=2) no_footer = '\n'.join(data.split('\n')[:-3]) expected = self.read_csv(StringIO(no_footer)) tm.assert_frame_equal(result, expected) def test_decompression_regex_sep(self): # GH 6607 # This is a copy which should eventually be moved to ParserTests # when the issue with the C parser is fixed try: import gzip import bz2 except ImportError: raise nose.SkipTest('need gzip and bz2 to run') data = open(self.csv1, 'rb').read() data = data.replace(b',', b'::') expected = self.read_csv(self.csv1) with tm.ensure_clean() as path: tmp = gzip.GzipFile(path, mode='wb') tmp.write(data) tmp.close() result = self.read_csv(path, sep='::', compression='gzip') tm.assert_frame_equal(result, expected) with tm.ensure_clean() as path: tmp = bz2.BZ2File(path, mode='wb') tmp.write(data) tmp.close() result = self.read_csv(path, sep='::', compression='bz2') tm.assert_frame_equal(result, expected) self.assertRaises(ValueError, self.read_csv, path, compression='bz3') def test_read_table_buglet_4x_multiindex(self): # GH 6607 # This is a copy which should eventually be merged into ParserTests # when the issue with multi-level index is fixed in the C parser. text = """ A B C D E one two three four a b 10.0032 5 -0.5109 -2.3358 -0.4645 0.05076 0.3640 a q 20 4 0.4473 1.4152 0.2834 1.00661 0.1744 x q 30 3 -0.6662 -0.5243 -0.3580 0.89145 2.5838""" # it works! df = self.read_table(StringIO(text), sep='\s+') self.assertEqual(df.index.names, ('one', 'two', 'three', 'four')) # GH 6893 data = ' A B C\na b c\n1 3 7 0 3 6\n3 1 4 1 5 9' expected = DataFrame.from_records([(1, 3, 7, 0, 3, 6), (3, 1, 4, 1, 5, 9)], columns=list('abcABC'), index=list('abc')) actual = self.read_table(StringIO(data), sep='\s+') tm.assert_frame_equal(actual, expected) def test_line_comment(self): data = """# empty A,B,C 1,2.,4.#hello world #ignore this line 5.,NaN,10.0 """ expected = [[1., 2., 4.], [5., np.nan, 10.]] df = self.read_csv(StringIO(data), comment='#') tm.assert_almost_equal(df.values, expected) def test_empty_lines(self): data = """\ A,B,C 1,2.,4. 5.,NaN,10.0 -70,.4,1 """ expected = [[1., 2., 4.], [5., np.nan, 10.], [-70., .4, 1.]] df = self.read_csv(StringIO(data)) tm.assert_almost_equal(df.values, expected) df = self.read_csv(StringIO(data.replace(',', ' ')), sep='\s+') tm.assert_almost_equal(df.values, expected) expected = [[1., 2., 4.], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [5., np.nan, 10.], [np.nan, np.nan, np.nan], [-70., .4, 1.]] df = self.read_csv(
StringIO(data)
pandas.compat.StringIO
# -*- coding: utf-8 -*- """ Created on Tue Dec 17 17:28:40 2019 @author: Administrator """ import pdblp import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns con = pdblp.BCon(debug=False, port=8194, timeout=5000) con.start() from datetime import date start = '20040101' today = date.today().strftime('%Y%m%d') firstday = '19991230' ###################################################Germany swap_spread_de = con.bdh( 'EUSS1 CMPN Curncy', 'PX LAST' , firstday , today) #eu : EUSS1 CMPN Curncy , swap-bond spread swap_spread_de.names = 'DE' ######################################################UK swap_spread_uk = con.bdh( 'BPSP1 CMPN Curncy', 'PX LAST' , firstday , today) swap_spread_uk.names = 'UK' ######################################################Japan: swap_spread_jp = con.bdh( 'JYSS1 CMPN Curncy', 'PX LAST' , firstday , today) swap_spread_jp.names = 'JP' #####################################################China: #swap_interest_rate_ch = con.bdh( 'CCUSWO1 BGN Curncy', 'PX LAST' , start , today) #govt_ch = con.bdh( 'GCNY10YR Index', 'PX LAST' , start , today) rates_ch = con.bdh(['GCNY10YR Index','CCUSWO1 BGN Curncy'], 'PX LAST' , firstday , today) #rates_ch_w = rates_ch.groupby(pd.Grouper(freq='W')).last() #rates_ch = rates_ch[rates_ch.index>start] swap_spread_ch = rates_ch.iloc[:,0] - rates_ch.iloc[:,1].values swap_spread_ch.names = 'CH' #CCUSWO1 BGN Curncy , interest rate swap aldık , GOV BOND: GCNY10YR Index ####################################################Turkey rates_tr = con.bdh( ['TYUSSW1 BGN Curncy','IECM1Y Index'], 'PX LAST' , firstday , today) #rates_tr = rates_tr[rates_tr.index>start] #rates_tr_w = rates_tr.groupby(pd.Grouper(freq='W')).last() swap_spread_tr = rates_tr.iloc[:,0] - rates_tr.iloc[:,1].values swap_spread_tr.names = 'TR' #govt_tr = con.bdh( 'IECM1Y Index', 'PX LAST' , start , today) #govt_tr_int = govt_ch.interpolate(method= 'linear') #govt_tr_int_w = govt_tr_int.groupby(pd.Grouper(freq='W')).last() #govt_tr_int_w = govt_tr_int_w[govt_tr_int_w.index>start] #TYUSSW1 BGN Curncy, interest rate swap , IECM1Y Index ###################################################Mexico #swap_spread_mx = con.bdh( 'MPSP1 BGN Curncy', 'PX LAST' , start , today) #swap_spread_mx.names = 'MX' #mxn : MPSP1 BGN Curncy , NO DATA ##################################################Brazil rates_br = con.bdh( ['BCSCN1Y CMPN Curncy','GTBRL1Y Govt'], 'PX LAST' , firstday , today) #rates_br_w = rates_br[rates_br.index>start] #rates_br_w = rates_br.groupby(pd.Grouper(freq='W')).last() swap_spread_br = rates_br.iloc[:,0] - rates_br.iloc[:,1].values swap_spread_br.names = 'BR' #Brazil : BCSCN1Y CMPN Curncy, interest rate swap , GTBRL1Y Govt #################################################Russia swap_spread_ru = con.bdh( 'RRUSSW1 BGN Curncy', 'PX LAST' , firstday , today) #russia: RRUSSW1 BGN Curncy, spread swap_spread_ru.names = 'RU' ################################################South Africa rates_sa = con.bdh( ['SASW1 BGN Curncy','GTZAR10Y Govt'], 'PX LAST' , firstday , today) #rates_sa_w = rates_sa[rates_sa.index>start] #rates_sa_w = rates_sa.groupby(pd.Grouper(freq='W')).last() swap_spread_sa = rates_sa.iloc[:,0] - rates_sa.iloc[:,1].values swap_spread_sa.names = 'SA' #South Africa : SASW1 BGN Curncy, interest rate swap aldık, GTZAR10Y GOvt swap_spread=
pd.concat( [swap_spread_de, swap_spread_uk, swap_spread_jp, swap_spread_ch, swap_spread_tr, swap_spread_br, swap_spread_ru, swap_spread_sa ],axis=1)
pandas.concat
import pandas as pd def full_describe(series: pd.Series, verbose=True): """ Calculates a pandas describe of series, plus a count of unique and NaN :param verbose: printing some other info :param series: Pandas Series :return: df with stats as cols """ stats_df =
pd.DataFrame()
pandas.DataFrame
# Pre-Process Text Data # Import Modules import os import pandas as pd import numpy as np import csv import matplotlib.pyplot as plt import nltk import string import re import datetime from tqdm import tqdm from textblob import TextBlob from nltk.corpus import wordnet as wn from nltk.stem.wordnet import WordNetLemmatizer from nltk.stem.porter import * from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer import collections from gensim import corpora, models, similarities import gensim from gensim.utils import simple_preprocess from gensim.models import CoherenceModel from gensim.models import Word2Vec from gensim.models.phrases import Phrases, Phraser import logging import pickle import collections import matplotlib.pyplot as plt import warnings warnings.filterwarnings("ignore", category=DeprecationWarning) analyser = SentimentIntensityAnalyzer() def get_date(created): return datetime.datetime.fromtimestamp(created) def main(): print('Pre-Processing Reddit Data') print('First Pre-Process the Posts themselves') # Read in CSV as pandas dataframe data = pd.read_csv('ClimateSkepticsAllPosts.csv') ### Clean Text ### # 1. Remove URLs from posts and make text lowercase def remove_url(input_txt): url_temp = re.findall(r"http\S*", input_txt) url_links.append(url_temp) # Append links to other subreddits to array for further network analysis input_txt = re.sub(r"http\S+", "", input_txt) input_txt = input_txt.lower() return input_txt url_links = [] # Set up empty array to count URLs data['Clean_Post'] = data['title'].apply(lambda post: remove_url(post)) # 2. Remove Punctuation, Numbers, and Special Characters data['Clean_Post'] = data['Clean_Post'].str.replace("[^a-zA-Z#]", " ") # 3. Remove Short Words (3 Letters or Less) data['Clean_Post'] = data['Clean_Post'].apply(lambda x: ' '.join([w for w in x.split() if len(w)>3])) # 4. Tokenisation data['Tokenised_Post'] = data['Clean_Post'].apply(lambda x: x.split()) # 5. Remove Stopwords stopword = nltk.corpus.stopwords.words('english') def remove_stopwords(text): text = [word for word in text if word not in stopword] return text data['Post_Nonstop'] = data['Tokenised_Post'].apply(lambda x: remove_stopwords(x)) print('Saving to CSV') data.to_csv('Reddit_Post_DF_PP.csv') print('Read and Pre-Process Top-Level Comments and Subcomments') subreddit_links = [] # Define Functions outside of loop def remove_deleted_comments(input_txt): input_txt = re.sub(r"deleted", "", input_txt) return input_txt def remove_user_subreddit(input_txt): input_txt = re.sub(r"/u/[\w]*", '', input_txt) sr_temp = re.findall(r"/r/[\w]*", input_txt) subreddit_links.append(sr_temp) # Append links to other subreddits to array for further network analysis input_txt = re.sub(r"/r/[\w]*", '', input_txt) return input_txt # Read in CSV as pandas dataframe toplevelcomments = pd.DataFrame(columns=['comment','timestamp','Score']) for i in list(range(0,len(data['id']))): if os.path.isfile('Comments/%s.csv' %(data['id'][i])): try: data2 = pd.read_csv('Comments/' + '%s.csv' %(data['id'][i])) row = next(data2.iterrows()) tempdf = pd.DataFrame(row[1]) tempdf['timestamp'] = pd.to_numeric(data2.iloc[2]) tempdf['Score'] = data2.iloc[1] tempdf.columns = ['comment','timestamp','Score'] toplevelcomments = pd.concat([toplevelcomments,tempdf]) # Subcomments subcom_list = [] scores = [] subcom_ts = [] for j in list(range(0,data2.shape[1])): try: subc = eval(data2.loc[3,:][j]) # Read text representation of dictionary as dictionary except: print(j) print(data2.loc[3,:][j]) for key in subc: try: val = subc.get(key) score = val[0] comment = val[1] timestamp = int(val[2]) blob = TextBlob(comment) sentences = blob.sentences temp = [] for sentence in sentences: string = str(sentence) if string.startswith(">"): # Remove quotes of previous comments and other sources pass else: temp.append(str(sentence)) new_comment = ' '.join(temp) subcom_list.append(new_comment) scores.append(score) subcom_ts.append(timestamp) except: pass if len(subcom_list)>0: try: tempsc = pd.DataFrame(subcom_list) tempsc.columns = ['subcomment'] tempsc['timestamp'] = subcom_ts tempsc['Score'] = scores tempsc = tempsc[tempsc['subcomment'].map(lambda d: len(d)) > 0] subcomments = pd.concat([subcomments,tempsc]) except NameError: subcomments = pd.DataFrame(subcom_list) subcomments.columns = ['subcomment'] subcomments['timestamp'] = subcom_ts subcomments['Score'] = scores subcomments = subcomments[subcomments['subcomment'].map(lambda d: len(d)) > 0] except: pass # Pass if no comments for post # Convert timestamps to Dates for comments and subcomments (posts done so in the get data phase) _timestamp = toplevelcomments["timestamp"].apply(get_date) toplevelcomments = toplevelcomments.assign(timestamp = _timestamp) _timestamp = subcomments["timestamp"].apply(get_date) subcomments = subcomments.assign(timestamp = _timestamp) print('Top Level Comments: ' + str(len(toplevelcomments))) print('Subcomments: ' + str(len(subcomments))) print('Total Comments: ' + str(len(toplevelcomments) + len(subcomments))) print('Pre-Processing Comments') # 0. Remove NaNs toplevelcomments.dropna(axis = 0, subset=['comment'], inplace=True) # 1. Remove URLs from comments and make text lowercase. Also remove deleted comments, usernames and subreddit names. toplevelcomments['Clean_Comment'] = toplevelcomments['comment'].apply(lambda x: remove_url(x)) toplevelcomments['Clean_Comment'] = toplevelcomments['Clean_Comment'].apply(lambda x: remove_deleted_comments(x)) toplevelcomments['Clean_Comment'] = toplevelcomments['Clean_Comment'].apply(lambda x: remove_user_subreddit(x)) #toplevelcomments['Clean_Comment'] = toplevelcomments['Clean_Comment'].apply(lambda x: remove_climate_words(x)) # 2. Remove Punctuation, Numbers, and Special Characters toplevelcomments['Clean_Comment'] = toplevelcomments['Clean_Comment'].str.replace("[^a-zA-Z#]", " ") # 3. Remove Short Words (3 Letters or Less) toplevelcomments['Clean_Comment'] = toplevelcomments['Clean_Comment'].apply(lambda x: ' '.join([w for w in x.split() if len(w)>3])) # 4. Tokenisation toplevelcomments['Tokenised_Comment'] = toplevelcomments['Clean_Comment'].apply(lambda x: x.split()) # 5. Remove Stopwords toplevelcomments['Comment_Nonstop'] = toplevelcomments['Tokenised_Comment'].apply(lambda x: remove_stopwords(x)) # 6. Remove Blank Rows from Dataframe toplevelcomments = toplevelcomments[toplevelcomments['Comment_Nonstop'].map(lambda d: len(d)) > 0] # Only keep rows where tokenised comments has at least 1 element path=os.getcwd() dirname = path + '/Comments_PP' if not os.path.exists(dirname): os.mkdir(dirname) toplevelcomments.to_csv('Comments_PP/' + 'All_TLC_PP.csv') # Clean Subcomments # 0. Remove NaNs subcomments.dropna(axis = 0, subset=['subcomment'], inplace=True) # 1. Remove URLs from comments and make text lowercase. Also remove deleted comments, usernames and subreddit names. subcomments['Clean_Comment'] = subcomments['subcomment'].apply(lambda x: remove_url(x)) subcomments['Clean_Comment'] = subcomments['Clean_Comment'].apply(lambda x: remove_deleted_comments(x)) subcomments['Clean_Comment'] = subcomments['Clean_Comment'].apply(lambda x: remove_user_subreddit(x)) #subcomments['Clean_Comment'] = subcomments['Clean_Comment'].apply(lambda x: remove_climate_words(x)) # 2. Remove Punctuation, Numbers, and Special Characters subcomments['Clean_Comment'] = subcomments['Clean_Comment'].str.replace("[^a-zA-Z#]", " ") # 3. Remove Short Words (3 Letters or Less) subcomments['Clean_Comment'] = subcomments['Clean_Comment'].apply(lambda x: ' '.join([w for w in x.split() if len(w)>3])) # 4. Tokenisation subcomments['Tokenised_Comment'] = subcomments['Clean_Comment'].apply(lambda x: x.split()) # 5. Remove Stopwords subcomments['Comment_Nonstop'] = subcomments['Tokenised_Comment'].apply(lambda x: remove_stopwords(x)) # 6. Remove Blank Rows from Dataframe subcomments = subcomments[subcomments['Comment_Nonstop'].map(lambda d: len(d)) > 0] # Only keep rows where tokenised comments has at least 1 element path=os.getcwd() dirname = path + '/Comments_PP' if not os.path.exists(dirname): os.mkdir(dirname) subcomments.to_csv('Comments_PP/' + 'All_SC_PP.csv') ## Combine Dataframes # Extract the key columns from main post dataframe posts = data[['title','timestamp','score','Clean_Post','Tokenised_Post','Post_Nonstop']] # Make sure column names are the same posts.columns = ['Comment','timestamp','Score','Clean_Comment','Tokenised_Comment','Comment_Nonstop'] toplevelcomments.columns = ['Comment','timestamp','Score','Clean_Comment','Tokenised_Comment','Comment_Nonstop'] subcomments.columns = ['Comment','timestamp','Score','Clean_Comment','Tokenised_Comment','Comment_Nonstop'] full_df =
pd.concat([posts,toplevelcomments,subcomments])
pandas.concat
""" Test output formatting for Series/DataFrame, including to_string & reprs """ from datetime import datetime from io import StringIO import itertools from operator import methodcaller import os from pathlib import Path import re from shutil import get_terminal_size import sys import textwrap import dateutil import numpy as np import pytest import pytz from pandas.compat import ( IS64, is_platform_windows, ) import pandas.util._test_decorators as td import pandas as pd from pandas import ( DataFrame, Index, MultiIndex, NaT, Series, Timestamp, date_range, get_option, option_context, read_csv, reset_option, set_option, ) import pandas._testing as tm import pandas.io.formats.format as fmt import pandas.io.formats.printing as printing use_32bit_repr = is_platform_windows() or not IS64 @pytest.fixture(params=["string", "pathlike", "buffer"]) def filepath_or_buffer_id(request): """ A fixture yielding test ids for filepath_or_buffer testing. """ return request.param @pytest.fixture def filepath_or_buffer(filepath_or_buffer_id, tmp_path): """ A fixture yielding a string representing a filepath, a path-like object and a StringIO buffer. Also checks that buffer is not closed. """ if filepath_or_buffer_id == "buffer": buf = StringIO() yield buf assert not buf.closed else: assert isinstance(tmp_path, Path) if filepath_or_buffer_id == "pathlike": yield tmp_path / "foo" else: yield str(tmp_path / "foo") @pytest.fixture def assert_filepath_or_buffer_equals( filepath_or_buffer, filepath_or_buffer_id, encoding ): """ Assertion helper for checking filepath_or_buffer. """ def _assert_filepath_or_buffer_equals(expected): if filepath_or_buffer_id == "string": with open(filepath_or_buffer, encoding=encoding) as f: result = f.read() elif filepath_or_buffer_id == "pathlike": result = filepath_or_buffer.read_text(encoding=encoding) elif filepath_or_buffer_id == "buffer": result = filepath_or_buffer.getvalue() assert result == expected return _assert_filepath_or_buffer_equals def curpath(): pth, _ = os.path.split(os.path.abspath(__file__)) return pth def has_info_repr(df): r = repr(df) c1 = r.split("\n")[0].startswith("<class") c2 = r.split("\n")[0].startswith(r"&lt;class") # _repr_html_ return c1 or c2 def has_non_verbose_info_repr(df): has_info = has_info_repr(df) r = repr(df) # 1. <class> # 2. Index # 3. Columns # 4. dtype # 5. memory usage # 6. trailing newline nv = len(r.split("\n")) == 6 return has_info and nv def has_horizontally_truncated_repr(df): try: # Check header row fst_line = np.array(repr(df).splitlines()[0].split()) cand_col = np.where(fst_line == "...")[0][0] except IndexError: return False # Make sure each row has this ... in the same place r = repr(df) for ix, l in enumerate(r.splitlines()): if not r.split()[cand_col] == "...": return False return True def has_vertically_truncated_repr(df): r = repr(df) only_dot_row = False for row in r.splitlines(): if re.match(r"^[\.\ ]+$", row): only_dot_row = True return only_dot_row def has_truncated_repr(df): return has_horizontally_truncated_repr(df) or has_vertically_truncated_repr(df) def has_doubly_truncated_repr(df): return has_horizontally_truncated_repr(df) and has_vertically_truncated_repr(df) def has_expanded_repr(df): r = repr(df) for line in r.split("\n"): if line.endswith("\\"): return True return False @pytest.mark.filterwarnings("ignore::FutureWarning:.*format") class TestDataFrameFormatting: def test_eng_float_formatter(self, float_frame): df = float_frame df.loc[5] = 0 fmt.set_eng_float_format() repr(df) fmt.set_eng_float_format(use_eng_prefix=True) repr(df) fmt.set_eng_float_format(accuracy=0) repr(df) tm.reset_display_options() def test_show_null_counts(self): df = DataFrame(1, columns=range(10), index=range(10)) df.iloc[1, 1] = np.nan def check(show_counts, result): buf = StringIO() df.info(buf=buf, show_counts=show_counts) assert ("non-null" in buf.getvalue()) is result with option_context( "display.max_info_rows", 20, "display.max_info_columns", 20 ): check(None, True) check(True, True) check(False, False) with option_context("display.max_info_rows", 5, "display.max_info_columns", 5): check(None, False) check(True, False) check(False, False) # GH37999 with tm.assert_produces_warning( FutureWarning, match="null_counts is deprecated.+" ): buf = StringIO() df.info(buf=buf, null_counts=True) assert "non-null" in buf.getvalue() # GH37999 with pytest.raises(ValueError, match=r"null_counts used with show_counts.+"): df.info(null_counts=True, show_counts=True) def test_repr_truncation(self): max_len = 20 with option_context("display.max_colwidth", max_len): df = DataFrame( { "A": np.random.randn(10), "B": [ tm.rands(np.random.randint(max_len - 1, max_len + 1)) for i in range(10) ], } ) r = repr(df) r = r[r.find("\n") + 1 :] adj = fmt.get_adjustment() for line, value in zip(r.split("\n"), df["B"]): if adj.len(value) + 1 > max_len: assert "..." in line else: assert "..." not in line with option_context("display.max_colwidth", 999999): assert "..." not in repr(df) with option_context("display.max_colwidth", max_len + 2): assert "..." not in repr(df) def test_repr_deprecation_negative_int(self): # TODO(2.0): remove in future version after deprecation cycle # Non-regression test for: # https://github.com/pandas-dev/pandas/issues/31532 width = get_option("display.max_colwidth") with tm.assert_produces_warning(FutureWarning): set_option("display.max_colwidth", -1) set_option("display.max_colwidth", width) def test_repr_chop_threshold(self): df = DataFrame([[0.1, 0.5], [0.5, -0.1]]) reset_option("display.chop_threshold") # default None assert repr(df) == " 0 1\n0 0.1 0.5\n1 0.5 -0.1" with option_context("display.chop_threshold", 0.2): assert repr(df) == " 0 1\n0 0.0 0.5\n1 0.5 0.0" with option_context("display.chop_threshold", 0.6): assert repr(df) == " 0 1\n0 0.0 0.0\n1 0.0 0.0" with option_context("display.chop_threshold", None): assert repr(df) == " 0 1\n0 0.1 0.5\n1 0.5 -0.1" def test_repr_chop_threshold_column_below(self): # GH 6839: validation case df = DataFrame([[10, 20, 30, 40], [8e-10, -1e-11, 2e-9, -2e-11]]).T with option_context("display.chop_threshold", 0): assert repr(df) == ( " 0 1\n" "0 10.0 8.000000e-10\n" "1 20.0 -1.000000e-11\n" "2 30.0 2.000000e-09\n" "3 40.0 -2.000000e-11" ) with option_context("display.chop_threshold", 1e-8): assert repr(df) == ( " 0 1\n" "0 10.0 0.000000e+00\n" "1 20.0 0.000000e+00\n" "2 30.0 0.000000e+00\n" "3 40.0 0.000000e+00" ) with option_context("display.chop_threshold", 5e-11): assert repr(df) == ( " 0 1\n" "0 10.0 8.000000e-10\n" "1 20.0 0.000000e+00\n" "2 30.0 2.000000e-09\n" "3 40.0 0.000000e+00" ) def test_repr_obeys_max_seq_limit(self): with option_context("display.max_seq_items", 2000): assert len(printing.pprint_thing(list(range(1000)))) > 1000 with option_context("display.max_seq_items", 5): assert len(printing.pprint_thing(list(range(1000)))) < 100 with option_context("display.max_seq_items", 1): assert len(printing.pprint_thing(list(range(1000)))) < 9 def test_repr_set(self): assert printing.pprint_thing({1}) == "{1}" def test_repr_is_valid_construction_code(self): # for the case of Index, where the repr is traditional rather than # stylized idx = Index(["a", "b"]) res = eval("pd." + repr(idx)) tm.assert_series_equal(Series(res), Series(idx)) def test_repr_should_return_str(self): # https://docs.python.org/3/reference/datamodel.html#object.__repr__ # "...The return value must be a string object." # (str on py2.x, str (unicode) on py3) data = [8, 5, 3, 5] index1 = ["\u03c3", "\u03c4", "\u03c5", "\u03c6"] cols = ["\u03c8"] df = DataFrame(data, columns=cols, index=index1) assert type(df.__repr__()) == str # both py2 / 3 def test_repr_no_backslash(self): with option_context("mode.sim_interactive", True): df = DataFrame(np.random.randn(10, 4)) assert "\\" not in repr(df) def test_expand_frame_repr(self): df_small = DataFrame("hello", index=[0], columns=[0]) df_wide = DataFrame("hello", index=[0], columns=range(10)) df_tall = DataFrame("hello", index=range(30), columns=range(5)) with option_context("mode.sim_interactive", True): with option_context( "display.max_columns", 10, "display.width", 20, "display.max_rows", 20, "display.show_dimensions", True, ): with option_context("display.expand_frame_repr", True): assert not has_truncated_repr(df_small) assert not has_expanded_repr(df_small) assert not has_truncated_repr(df_wide) assert has_expanded_repr(df_wide) assert has_vertically_truncated_repr(df_tall) assert has_expanded_repr(df_tall) with option_context("display.expand_frame_repr", False): assert not has_truncated_repr(df_small) assert not has_expanded_repr(df_small) assert not has_horizontally_truncated_repr(df_wide) assert not has_expanded_repr(df_wide) assert has_vertically_truncated_repr(df_tall) assert not has_expanded_repr(df_tall) def test_repr_non_interactive(self): # in non interactive mode, there can be no dependency on the # result of terminal auto size detection df = DataFrame("hello", index=range(1000), columns=range(5)) with option_context( "mode.sim_interactive", False, "display.width", 0, "display.max_rows", 5000 ): assert not has_truncated_repr(df) assert not has_expanded_repr(df) def test_repr_truncates_terminal_size(self, monkeypatch): # see gh-21180 terminal_size = (118, 96) monkeypatch.setattr( "pandas.io.formats.format.get_terminal_size", lambda: terminal_size ) index = range(5) columns = MultiIndex.from_tuples( [ ("This is a long title with > 37 chars.", "cat"), ("This is a loooooonger title with > 43 chars.", "dog"), ] ) df = DataFrame(1, index=index, columns=columns) result = repr(df) h1, h2 = result.split("\n")[:2] assert "long" in h1 assert "loooooonger" in h1 assert "cat" in h2 assert "dog" in h2 # regular columns df2 = DataFrame({"A" * 41: [1, 2], "B" * 41: [1, 2]}) result = repr(df2) assert df2.columns[0] in result.split("\n")[0] def test_repr_truncates_terminal_size_full(self, monkeypatch): # GH 22984 ensure entire window is filled terminal_size = (80, 24) df = DataFrame(np.random.rand(1, 7)) monkeypatch.setattr( "pandas.io.formats.format.get_terminal_size", lambda: terminal_size ) assert "..." not in str(df) def test_repr_truncation_column_size(self): # dataframe with last column very wide -> check it is not used to # determine size of truncation (...) column df = DataFrame( { "a": [108480, 30830], "b": [12345, 12345], "c": [12345, 12345], "d": [12345, 12345], "e": ["a" * 50] * 2, } ) assert "..." in str(df) assert " ... " not in str(df) def test_repr_max_columns_max_rows(self): term_width, term_height = get_terminal_size() if term_width < 10 or term_height < 10: pytest.skip(f"terminal size too small, {term_width} x {term_height}") def mkframe(n): index = [f"{i:05d}" for i in range(n)] return DataFrame(0, index, index) df6 = mkframe(6) df10 = mkframe(10) with option_context("mode.sim_interactive", True): with option_context("display.width", term_width * 2): with option_context("display.max_rows", 5, "display.max_columns", 5): assert not has_expanded_repr(mkframe(4)) assert not has_expanded_repr(mkframe(5)) assert not has_expanded_repr(df6) assert has_doubly_truncated_repr(df6) with option_context("display.max_rows", 20, "display.max_columns", 10): # Out off max_columns boundary, but no extending # since not exceeding width assert not has_expanded_repr(df6) assert not has_truncated_repr(df6) with option_context("display.max_rows", 9, "display.max_columns", 10): # out vertical bounds can not result in expanded repr assert not has_expanded_repr(df10) assert has_vertically_truncated_repr(df10) # width=None in terminal, auto detection with option_context( "display.max_columns", 100, "display.max_rows", term_width * 20, "display.width", None, ): df = mkframe((term_width // 7) - 2) assert not has_expanded_repr(df) df = mkframe((term_width // 7) + 2) printing.pprint_thing(df._repr_fits_horizontal_()) assert has_expanded_repr(df) def test_repr_min_rows(self): df = DataFrame({"a": range(20)}) # default setting no truncation even if above min_rows assert ".." not in repr(df) assert ".." not in df._repr_html_() df = DataFrame({"a": range(61)}) # default of max_rows 60 triggers truncation if above assert ".." in repr(df) assert ".." in df._repr_html_() with option_context("display.max_rows", 10, "display.min_rows", 4): # truncated after first two rows assert ".." in repr(df) assert "2 " not in repr(df) assert "..." in df._repr_html_() assert "<td>2</td>" not in df._repr_html_() with option_context("display.max_rows", 12, "display.min_rows", None): # when set to None, follow value of max_rows assert "5 5" in repr(df) assert "<td>5</td>" in df._repr_html_() with option_context("display.max_rows", 10, "display.min_rows", 12): # when set value higher as max_rows, use the minimum assert "5 5" not in repr(df) assert "<td>5</td>" not in df._repr_html_() with option_context("display.max_rows", None, "display.min_rows", 12): # max_rows of None -> never truncate assert ".." not in repr(df) assert ".." not in df._repr_html_() def test_str_max_colwidth(self): # GH 7856 df = DataFrame( [ { "a": "foo", "b": "bar", "c": "uncomfortably long line with lots of stuff", "d": 1, }, {"a": "foo", "b": "bar", "c": "stuff", "d": 1}, ] ) df.set_index(["a", "b", "c"]) assert str(df) == ( " a b c d\n" "0 foo bar uncomfortably long line with lots of stuff 1\n" "1 foo bar stuff 1" ) with option_context("max_colwidth", 20): assert str(df) == ( " a b c d\n" "0 foo bar uncomfortably lo... 1\n" "1 foo bar stuff 1" ) def test_auto_detect(self): term_width, term_height = get_terminal_size() fac = 1.05 # Arbitrary large factor to exceed term width cols = range(int(term_width * fac)) index = range(10) df = DataFrame(index=index, columns=cols) with option_context("mode.sim_interactive", True): with option_context("display.max_rows", None): with option_context("display.max_columns", None): # Wrap around with None assert has_expanded_repr(df) with option_context("display.max_rows", 0): with option_context("display.max_columns", 0): # Truncate with auto detection. assert has_horizontally_truncated_repr(df) index = range(int(term_height * fac)) df = DataFrame(index=index, columns=cols) with option_context("display.max_rows", 0): with option_context("display.max_columns", None): # Wrap around with None assert has_expanded_repr(df) # Truncate vertically assert has_vertically_truncated_repr(df) with option_context("display.max_rows", None): with option_context("display.max_columns", 0): assert has_horizontally_truncated_repr(df) def test_to_string_repr_unicode(self): buf = StringIO() unicode_values = ["\u03c3"] * 10 unicode_values = np.array(unicode_values, dtype=object) df = DataFrame({"unicode": unicode_values}) df.to_string(col_space=10, buf=buf) # it works! repr(df) idx = Index(["abc", "\u03c3a", "aegdvg"]) ser = Series(np.random.randn(len(idx)), idx) rs = repr(ser).split("\n") line_len = len(rs[0]) for line in rs[1:]: try: line = line.decode(get_option("display.encoding")) except AttributeError: pass if not line.startswith("dtype:"): assert len(line) == line_len # it works even if sys.stdin in None _stdin = sys.stdin try: sys.stdin = None repr(df) finally: sys.stdin = _stdin def test_east_asian_unicode_false(self): # not aligned properly because of east asian width # mid col df = DataFrame( {"a": ["あ", "いいい", "う", "ええええええ"], "b": [1, 222, 33333, 4]}, index=["a", "bb", "c", "ddd"], ) expected = ( " a b\na あ 1\n" "bb いいい 222\nc う 33333\n" "ddd ええええええ 4" ) assert repr(df) == expected # last col df = DataFrame( {"a": [1, 222, 33333, 4], "b": ["あ", "いいい", "う", "ええええええ"]}, index=["a", "bb", "c", "ddd"], ) expected = ( " a b\na 1 あ\n" "bb 222 いいい\nc 33333 う\n" "ddd 4 ええええええ" ) assert repr(df) == expected # all col df = DataFrame( {"a": ["あああああ", "い", "う", "えええ"], "b": ["あ", "いいい", "う", "ええええええ"]}, index=["a", "bb", "c", "ddd"], ) expected = ( " a b\na あああああ あ\n" "bb い いいい\nc う う\n" "ddd えええ ええええええ" ) assert repr(df) == expected # column name df = DataFrame( {"b": ["あ", "いいい", "う", "ええええええ"], "あああああ": [1, 222, 33333, 4]}, index=["a", "bb", "c", "ddd"], ) expected = ( " b あああああ\na あ 1\n" "bb いいい 222\nc う 33333\n" "ddd ええええええ 4" ) assert repr(df) == expected # index df = DataFrame( {"a": ["あああああ", "い", "う", "えええ"], "b": ["あ", "いいい", "う", "ええええええ"]}, index=["あああ", "いいいいいい", "うう", "え"], ) expected = ( " a b\nあああ あああああ あ\n" "いいいいいい い いいい\nうう う う\n" "え えええ ええええええ" ) assert repr(df) == expected # index name df = DataFrame( {"a": ["あああああ", "い", "う", "えええ"], "b": ["あ", "いいい", "う", "ええええええ"]}, index=Index(["あ", "い", "うう", "え"], name="おおおお"), ) expected = ( " a b\n" "おおおお \n" "あ あああああ あ\n" "い い いいい\n" "うう う う\n" "え えええ ええええええ" ) assert repr(df) == expected # all df = DataFrame( {"あああ": ["あああ", "い", "う", "えええええ"], "いいいいい": ["あ", "いいい", "う", "ええ"]}, index=Index(["あ", "いいい", "うう", "え"], name="お"), ) expected = ( " あああ いいいいい\n" "お \n" "あ あああ あ\n" "いいい い いいい\n" "うう う う\n" "え えええええ ええ" ) assert repr(df) == expected # MultiIndex idx = MultiIndex.from_tuples( [("あ", "いい"), ("う", "え"), ("おおお", "かかかか"), ("き", "くく")] ) df = DataFrame( {"a": ["あああああ", "い", "う", "えええ"], "b": ["あ", "いいい", "う", "ええええええ"]}, index=idx, ) expected = ( " a b\n" "あ いい あああああ あ\n" "う え い いいい\n" "おおお かかかか う う\n" "き くく えええ ええええええ" ) assert repr(df) == expected # truncate with option_context("display.max_rows", 3, "display.max_columns", 3): df = DataFrame( { "a": ["あああああ", "い", "う", "えええ"], "b": ["あ", "いいい", "う", "ええええええ"], "c": ["お", "か", "ききき", "くくくくくく"], "ああああ": ["さ", "し", "す", "せ"], }, columns=["a", "b", "c", "ああああ"], ) expected = ( " a ... ああああ\n0 あああああ ... さ\n" ".. ... ... ...\n3 えええ ... せ\n" "\n[4 rows x 4 columns]" ) assert repr(df) == expected df.index = ["あああ", "いいいい", "う", "aaa"] expected = ( " a ... ああああ\nあああ あああああ ... さ\n" ".. ... ... ...\naaa えええ ... せ\n" "\n[4 rows x 4 columns]" ) assert repr(df) == expected def test_east_asian_unicode_true(self): # Enable Unicode option ----------------------------------------- with option_context("display.unicode.east_asian_width", True): # mid col df = DataFrame( {"a": ["あ", "いいい", "う", "ええええええ"], "b": [1, 222, 33333, 4]}, index=["a", "bb", "c", "ddd"], ) expected = ( " a b\na あ 1\n" "bb いいい 222\nc う 33333\n" "ddd ええええええ 4" ) assert repr(df) == expected # last col df = DataFrame( {"a": [1, 222, 33333, 4], "b": ["あ", "いいい", "う", "ええええええ"]}, index=["a", "bb", "c", "ddd"], ) expected = ( " a b\na 1 あ\n" "bb 222 いいい\nc 33333 う\n" "ddd 4 ええええええ" ) assert repr(df) == expected # all col df = DataFrame( {"a": ["あああああ", "い", "う", "えええ"], "b": ["あ", "いいい", "う", "ええええええ"]}, index=["a", "bb", "c", "ddd"], ) expected = ( " a b\n" "a あああああ あ\n" "bb い いいい\n" "c う う\n" "ddd えええ ええええええ" ) assert repr(df) == expected # column name df = DataFrame( {"b": ["あ", "いいい", "う", "ええええええ"], "あああああ": [1, 222, 33333, 4]}, index=["a", "bb", "c", "ddd"], ) expected = ( " b あああああ\n" "a あ 1\n" "bb いいい 222\n" "c う 33333\n" "ddd ええええええ 4" ) assert repr(df) == expected # index df = DataFrame( {"a": ["あああああ", "い", "う", "えええ"], "b": ["あ", "いいい", "う", "ええええええ"]}, index=["あああ", "いいいいいい", "うう", "え"], ) expected = ( " a b\n" "あああ あああああ あ\n" "いいいいいい い いいい\n" "うう う う\n" "え えええ ええええええ" ) assert repr(df) == expected # index name df = DataFrame( {"a": ["あああああ", "い", "う", "えええ"], "b": ["あ", "いいい", "う", "ええええええ"]}, index=Index(["あ", "い", "うう", "え"], name="おおおお"), ) expected = ( " a b\n" "おおおお \n" "あ あああああ あ\n" "い い いいい\n" "うう う う\n" "え えええ ええええええ" ) assert repr(df) == expected # all df = DataFrame( {"あああ": ["あああ", "い", "う", "えええええ"], "いいいいい": ["あ", "いいい", "う", "ええ"]}, index=Index(["あ", "いいい", "うう", "え"], name="お"), ) expected = ( " あああ いいいいい\n" "お \n" "あ あああ あ\n" "いいい い いいい\n" "うう う う\n" "え えええええ ええ" ) assert repr(df) == expected # MultiIndex idx = MultiIndex.from_tuples( [("あ", "いい"), ("う", "え"), ("おおお", "かかかか"), ("き", "くく")] ) df = DataFrame( {"a": ["あああああ", "い", "う", "えええ"], "b": ["あ", "いいい", "う", "ええええええ"]}, index=idx, ) expected = ( " a b\n" "あ いい あああああ あ\n" "う え い いいい\n" "おおお かかかか う う\n" "き くく えええ ええええええ" ) assert repr(df) == expected # truncate with option_context("display.max_rows", 3, "display.max_columns", 3): df = DataFrame( { "a": ["あああああ", "い", "う", "えええ"], "b": ["あ", "いいい", "う", "ええええええ"], "c": ["お", "か", "ききき", "くくくくくく"], "ああああ": ["さ", "し", "す", "せ"], }, columns=["a", "b", "c", "ああああ"], ) expected = ( " a ... ああああ\n" "0 あああああ ... さ\n" ".. ... ... ...\n" "3 えええ ... せ\n" "\n[4 rows x 4 columns]" ) assert repr(df) == expected df.index = ["あああ", "いいいい", "う", "aaa"] expected = ( " a ... ああああ\n" "あああ あああああ ... さ\n" "... ... ... ...\n" "aaa えええ ... せ\n" "\n[4 rows x 4 columns]" ) assert repr(df) == expected # ambiguous unicode df = DataFrame( {"b": ["あ", "いいい", "¡¡", "ええええええ"], "あああああ": [1, 222, 33333, 4]}, index=["a", "bb", "c", "¡¡¡"], ) expected = ( " b あああああ\n" "a あ 1\n" "bb いいい 222\n" "c ¡¡ 33333\n" "¡¡¡ ええええええ 4" ) assert repr(df) == expected def test_to_string_buffer_all_unicode(self): buf = StringIO() empty = DataFrame({"c/\u03c3": Series(dtype=object)}) nonempty = DataFrame({"c/\u03c3": Series([1, 2, 3])}) print(empty, file=buf) print(nonempty, file=buf) # this should work buf.getvalue() def test_to_string_with_col_space(self): df = DataFrame(np.random.random(size=(1, 3))) c10 = len(df.to_string(col_space=10).split("\n")[1]) c20 = len(df.to_string(col_space=20).split("\n")[1]) c30 = len(df.to_string(col_space=30).split("\n")[1]) assert c10 < c20 < c30 # GH 8230 # col_space wasn't being applied with header=False with_header = df.to_string(col_space=20) with_header_row1 = with_header.splitlines()[1] no_header = df.to_string(col_space=20, header=False) assert len(with_header_row1) == len(no_header) def test_to_string_with_column_specific_col_space_raises(self): df = DataFrame(np.random.random(size=(3, 3)), columns=["a", "b", "c"]) msg = ( "Col_space length\\(\\d+\\) should match " "DataFrame number of columns\\(\\d+\\)" ) with pytest.raises(ValueError, match=msg): df.to_string(col_space=[30, 40]) with pytest.raises(ValueError, match=msg): df.to_string(col_space=[30, 40, 50, 60]) msg = "unknown column" with pytest.raises(ValueError, match=msg): df.to_string(col_space={"a": "foo", "b": 23, "d": 34}) def test_to_string_with_column_specific_col_space(self): df = DataFrame(np.random.random(size=(3, 3)), columns=["a", "b", "c"]) result = df.to_string(col_space={"a": 10, "b": 11, "c": 12}) # 3 separating space + each col_space for (id, a, b, c) assert len(result.split("\n")[1]) == (3 + 1 + 10 + 11 + 12) result = df.to_string(col_space=[10, 11, 12]) assert len(result.split("\n")[1]) == (3 + 1 + 10 + 11 + 12) def test_to_string_truncate_indices(self): for index in [ tm.makeStringIndex, tm.makeUnicodeIndex, tm.makeIntIndex, tm.makeDateIndex, tm.makePeriodIndex, ]: for column in [tm.makeStringIndex]: for h in [10, 20]: for w in [10, 20]: with option_context("display.expand_frame_repr", False): df = DataFrame(index=index(h), columns=column(w)) with option_context("display.max_rows", 15): if h == 20: assert has_vertically_truncated_repr(df) else: assert not has_vertically_truncated_repr(df) with option_context("display.max_columns", 15): if w == 20: assert has_horizontally_truncated_repr(df) else: assert not (has_horizontally_truncated_repr(df)) with option_context( "display.max_rows", 15, "display.max_columns", 15 ): if h == 20 and w == 20: assert has_doubly_truncated_repr(df) else: assert not has_doubly_truncated_repr(df) def test_to_string_truncate_multilevel(self): arrays = [ ["bar", "bar", "baz", "baz", "foo", "foo", "qux", "qux"], ["one", "two", "one", "two", "one", "two", "one", "two"], ] df = DataFrame(index=arrays, columns=arrays) with option_context("display.max_rows", 7, "display.max_columns", 7): assert has_doubly_truncated_repr(df) def test_truncate_with_different_dtypes(self): # 11594, 12045 # when truncated the dtypes of the splits can differ # 11594 import datetime s = Series( [datetime.datetime(2012, 1, 1)] * 10 + [datetime.datetime(1012, 1, 2)] + [datetime.datetime(2012, 1, 3)] * 10 ) with option_context("display.max_rows", 8): result = str(s) assert "object" in result # 12045 df = DataFrame({"text": ["some words"] + [None] * 9}) with option_context("display.max_rows", 8, "display.max_columns", 3): result = str(df) assert "None" in result assert "NaN" not in result def test_truncate_with_different_dtypes_multiindex(self): # GH#13000 df = DataFrame({"Vals": range(100)}) frame = pd.concat([df], keys=["Sweep"], names=["Sweep", "Index"]) result = repr(frame) result2 = repr(frame.iloc[:5]) assert result.startswith(result2) def test_datetimelike_frame(self): # GH 12211 df = DataFrame({"date": [Timestamp("20130101").tz_localize("UTC")] + [NaT] * 5}) with option_context("display.max_rows", 5): result = str(df) assert "2013-01-01 00:00:00+00:00" in result assert "NaT" in result assert "..." in result assert "[6 rows x 1 columns]" in result dts = [Timestamp("2011-01-01", tz="US/Eastern")] * 5 + [NaT] * 5 df = DataFrame({"dt": dts, "x": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]}) with option_context("display.max_rows", 5): expected = ( " dt x\n" "0 2011-01-01 00:00:00-05:00 1\n" "1 2011-01-01 00:00:00-05:00 2\n" ".. ... ..\n" "8 NaT 9\n" "9 NaT 10\n\n" "[10 rows x 2 columns]" ) assert repr(df) == expected dts = [NaT] * 5 + [Timestamp("2011-01-01", tz="US/Eastern")] * 5 df = DataFrame({"dt": dts, "x": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]}) with option_context("display.max_rows", 5): expected = ( " dt x\n" "0 NaT 1\n" "1 NaT 2\n" ".. ... ..\n" "8 2011-01-01 00:00:00-05:00 9\n" "9 2011-01-01 00:00:00-05:00 10\n\n" "[10 rows x 2 columns]" ) assert repr(df) == expected dts = [Timestamp("2011-01-01", tz="Asia/Tokyo")] * 5 + [ Timestamp("2011-01-01", tz="US/Eastern") ] * 5 df = DataFrame({"dt": dts, "x": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]}) with option_context("display.max_rows", 5): expected = ( " dt x\n" "0 2011-01-01 00:00:00+09:00 1\n" "1 2011-01-01 00:00:00+09:00 2\n" ".. ... ..\n" "8 2011-01-01 00:00:00-05:00 9\n" "9 2011-01-01 00:00:00-05:00 10\n\n" "[10 rows x 2 columns]" ) assert repr(df) == expected @pytest.mark.parametrize( "start_date", [ "2017-01-01 23:59:59.999999999", "2017-01-01 23:59:59.99999999", "2017-01-01 23:59:59.9999999", "2017-01-01 23:59:59.999999", "2017-01-01 23:59:59.99999", "2017-01-01 23:59:59.9999", ], ) def test_datetimeindex_highprecision(self, start_date): # GH19030 # Check that high-precision time values for the end of day are # included in repr for DatetimeIndex df = DataFrame({"A": date_range(start=start_date, freq="D", periods=5)}) result = str(df) assert start_date in result dti = date_range(start=start_date, freq="D", periods=5) df = DataFrame({"A": range(5)}, index=dti) result = str(df.index) assert start_date in result def test_nonunicode_nonascii_alignment(self): df = DataFrame([["aa\xc3\xa4\xc3\xa4", 1], ["bbbb", 2]]) rep_str = df.to_string() lines = rep_str.split("\n") assert len(lines[1]) == len(lines[2]) def test_unicode_problem_decoding_as_ascii(self): dm = DataFrame({"c/\u03c3": Series({"test": np.nan})}) str(dm.to_string()) def test_string_repr_encoding(self, datapath): filepath = datapath("io", "parser", "data", "unicode_series.csv") df = read_csv(filepath, header=None, encoding="latin1") repr(df) repr(df[1]) def test_repr_corner(self): # representing infs poses no problems df = DataFrame({"foo": [-np.inf, np.inf]}) repr(df) def test_frame_info_encoding(self): index = ["'Til There Was You (1997)", "ldum klaka (Cold Fever) (1994)"] fmt.set_option("display.max_rows", 1) df = DataFrame(columns=["a", "b", "c"], index=index) repr(df) repr(df.T) fmt.set_option("display.max_rows", 200) def test_wide_repr(self): with option_context( "mode.sim_interactive", True, "display.show_dimensions", True, "display.max_columns", 20, ): max_cols = get_option("display.max_columns") df = DataFrame(tm.rands_array(25, size=(10, max_cols - 1))) set_option("display.expand_frame_repr", False) rep_str = repr(df) assert f"10 rows x {max_cols - 1} columns" in rep_str set_option("display.expand_frame_repr", True) wide_repr = repr(df) assert rep_str != wide_repr with option_context("display.width", 120): wider_repr = repr(df) assert len(wider_repr) < len(wide_repr) reset_option("display.expand_frame_repr") def test_wide_repr_wide_columns(self): with option_context("mode.sim_interactive", True, "display.max_columns", 20): df = DataFrame( np.random.randn(5, 3), columns=["a" * 90, "b" * 90, "c" * 90] ) rep_str = repr(df) assert len(rep_str.splitlines()) == 20 def test_wide_repr_named(self): with option_context("mode.sim_interactive", True, "display.max_columns", 20): max_cols = get_option("display.max_columns") df = DataFrame(tm.rands_array(25, size=(10, max_cols - 1))) df.index.name = "DataFrame Index" set_option("display.expand_frame_repr", False) rep_str = repr(df) set_option("display.expand_frame_repr", True) wide_repr = repr(df) assert rep_str != wide_repr with option_context("display.width", 150): wider_repr = repr(df) assert len(wider_repr) < len(wide_repr) for line in wide_repr.splitlines()[1::13]: assert "DataFrame Index" in line reset_option("display.expand_frame_repr") def test_wide_repr_multiindex(self): with option_context("mode.sim_interactive", True, "display.max_columns", 20): midx = MultiIndex.from_arrays(tm.rands_array(5, size=(2, 10))) max_cols = get_option("display.max_columns") df = DataFrame(tm.rands_array(25, size=(10, max_cols - 1)), index=midx) df.index.names = ["Level 0", "Level 1"] set_option("display.expand_frame_repr", False) rep_str = repr(df) set_option("display.expand_frame_repr", True) wide_repr = repr(df) assert rep_str != wide_repr with option_context("display.width", 150): wider_repr = repr(df) assert len(wider_repr) < len(wide_repr) for line in wide_repr.splitlines()[1::13]: assert "Level 0 Level 1" in line reset_option("display.expand_frame_repr") def test_wide_repr_multiindex_cols(self): with option_context("mode.sim_interactive", True, "display.max_columns", 20): max_cols = get_option("display.max_columns") midx = MultiIndex.from_arrays(tm.rands_array(5, size=(2, 10))) mcols = MultiIndex.from_arrays(tm.rands_array(3, size=(2, max_cols - 1))) df = DataFrame( tm.rands_array(25, (10, max_cols - 1)), index=midx, columns=mcols ) df.index.names = ["Level 0", "Level 1"] set_option("display.expand_frame_repr", False) rep_str = repr(df) set_option("display.expand_frame_repr", True) wide_repr = repr(df) assert rep_str != wide_repr with option_context("display.width", 150, "display.max_columns", 20): wider_repr = repr(df) assert len(wider_repr) < len(wide_repr) reset_option("display.expand_frame_repr") def test_wide_repr_unicode(self): with option_context("mode.sim_interactive", True, "display.max_columns", 20): max_cols = 20 df = DataFrame(tm.rands_array(25, size=(10, max_cols - 1))) set_option("display.expand_frame_repr", False) rep_str = repr(df) set_option("display.expand_frame_repr", True) wide_repr = repr(df) assert rep_str != wide_repr with option_context("display.width", 150): wider_repr = repr(df) assert len(wider_repr) < len(wide_repr) reset_option("display.expand_frame_repr") def test_wide_repr_wide_long_columns(self): with option_context("mode.sim_interactive", True): df = DataFrame({"a": ["a" * 30, "b" * 30], "b": ["c" * 70, "d" * 80]}) result = repr(df) assert "ccccc" in result assert "ddddd" in result def test_long_series(self): n = 1000 s = Series( np.random.randint(-50, 50, n), index=[f"s{x:04d}" for x in range(n)], dtype="int64", ) import re str_rep = str(s) nmatches = len(re.findall("dtype", str_rep)) assert nmatches == 1 def test_index_with_nan(self): # GH 2850 df = DataFrame( { "id1": {0: "1a3", 1: "9h4"}, "id2": {0: np.nan, 1: "d67"}, "id3": {0: "78d", 1: "79d"}, "value": {0: 123, 1: 64}, } ) # multi-index y = df.set_index(["id1", "id2", "id3"]) result = y.to_string() expected = ( " value\nid1 id2 id3 \n" "1a3 NaN 78d 123\n9h4 d67 79d 64" ) assert result == expected # index y = df.set_index("id2") result = y.to_string() expected = ( " id1 id3 value\nid2 \n" "NaN 1a3 78d 123\nd67 9h4 79d 64" ) assert result == expected # with append (this failed in 0.12) y = df.set_index(["id1", "id2"]).set_index("id3", append=True) result = y.to_string() expected = ( " value\nid1 id2 id3 \n" "1a3 NaN 78d 123\n9h4 d67 79d 64" ) assert result == expected # all-nan in mi df2 = df.copy() df2.loc[:, "id2"] = np.nan y = df2.set_index("id2") result = y.to_string() expected = ( " id1 id3 value\nid2 \n" "NaN 1a3 78d 123\nNaN 9h4 79d 64" ) assert result == expected # partial nan in mi df2 = df.copy() df2.loc[:, "id2"] = np.nan y = df2.set_index(["id2", "id3"]) result = y.to_string() expected = ( " id1 value\nid2 id3 \n" "NaN 78d 1a3 123\n 79d 9h4 64" ) assert result == expected df = DataFrame( { "id1": {0: np.nan, 1: "9h4"}, "id2": {0: np.nan, 1: "d67"}, "id3": {0: np.nan, 1: "79d"}, "value": {0: 123, 1: 64}, } ) y = df.set_index(["id1", "id2", "id3"]) result = y.to_string() expected = ( " value\nid1 id2 id3 \n" "NaN NaN NaN 123\n9h4 d67 79d 64" ) assert result == expected def test_to_string(self): # big mixed biggie = DataFrame( {"A": np.random.randn(200), "B": tm.makeStringIndex(200)}, index=np.arange(200), ) biggie.loc[:20, "A"] = np.nan biggie.loc[:20, "B"] = np.nan s = biggie.to_string() buf = StringIO() retval = biggie.to_string(buf=buf) assert retval is None assert buf.getvalue() == s assert isinstance(s, str) # print in right order result = biggie.to_string( columns=["B", "A"], col_space=17, float_format="%.5f".__mod__ ) lines = result.split("\n") header = lines[0].strip().split() joined = "\n".join([re.sub(r"\s+", " ", x).strip() for x in lines[1:]]) recons = read_csv(StringIO(joined), names=header, header=None, sep=" ") tm.assert_series_equal(recons["B"], biggie["B"]) assert recons["A"].count() == biggie["A"].count() assert (np.abs(recons["A"].dropna() - biggie["A"].dropna()) < 0.1).all() # expected = ['B', 'A'] # assert header == expected result = biggie.to_string(columns=["A"], col_space=17) header = result.split("\n")[0].strip().split() expected = ["A"] assert header == expected biggie.to_string(columns=["B", "A"], formatters={"A": lambda x: f"{x:.1f}"}) biggie.to_string(columns=["B", "A"], float_format=str) biggie.to_string(columns=["B", "A"], col_space=12, float_format=str) frame = DataFrame(index=np.arange(200)) frame.to_string() def test_to_string_no_header(self): df = DataFrame({"x": [1, 2, 3], "y": [4, 5, 6]}) df_s = df.to_string(header=False) expected = "0 1 4\n1 2 5\n2 3 6" assert df_s == expected def test_to_string_specified_header(self): df = DataFrame({"x": [1, 2, 3], "y": [4, 5, 6]}) df_s = df.to_string(header=["X", "Y"]) expected = " X Y\n0 1 4\n1 2 5\n2 3 6" assert df_s == expected msg = "Writing 2 cols but got 1 aliases" with pytest.raises(ValueError, match=msg): df.to_string(header=["X"]) def test_to_string_no_index(self): # GH 16839, GH 13032 df = DataFrame({"x": [11, 22], "y": [33, -44], "z": ["AAA", " "]}) df_s = df.to_string(index=False) # Leading space is expected for positive numbers. expected = " x y z\n11 33 AAA\n22 -44 " assert df_s == expected df_s = df[["y", "x", "z"]].to_string(index=False) expected = " y x z\n 33 11 AAA\n-44 22 " assert df_s == expected def test_to_string_line_width_no_index(self): # GH 13998, GH 22505 df = DataFrame({"x": [1, 2, 3], "y": [4, 5, 6]}) df_s = df.to_string(line_width=1, index=False) expected = " x \\\n 1 \n 2 \n 3 \n\n y \n 4 \n 5 \n 6 " assert df_s == expected df = DataFrame({"x": [11, 22, 33], "y": [4, 5, 6]}) df_s = df.to_string(line_width=1, index=False) expected = " x \\\n11 \n22 \n33 \n\n y \n 4 \n 5 \n 6 " assert df_s == expected df = DataFrame({"x": [11, 22, -33], "y": [4, 5, -6]}) df_s = df.to_string(line_width=1, index=False) expected = " x \\\n 11 \n 22 \n-33 \n\n y \n 4 \n 5 \n-6 " assert df_s == expected def test_to_string_float_formatting(self): tm.reset_display_options() fmt.set_option( "display.precision", 5, "display.column_space", 12, "display.notebook_repr_html", False, ) df = DataFrame( {"x": [0, 0.25, 3456.000, 12e45, 1.64e6, 1.7e8, 1.253456, np.pi, -1e6]} ) df_s = df.to_string() if _three_digit_exp(): expected = ( " x\n0 0.00000e+000\n1 2.50000e-001\n" "2 3.45600e+003\n3 1.20000e+046\n4 1.64000e+006\n" "5 1.70000e+008\n6 1.25346e+000\n7 3.14159e+000\n" "8 -1.00000e+006" ) else: expected = ( " x\n0 0.00000e+00\n1 2.50000e-01\n" "2 3.45600e+03\n3 1.20000e+46\n4 1.64000e+06\n" "5 1.70000e+08\n6 1.25346e+00\n7 3.14159e+00\n" "8 -1.00000e+06" ) assert df_s == expected df = DataFrame({"x": [3234, 0.253]}) df_s = df.to_string() expected = " x\n0 3234.000\n1 0.253" assert df_s == expected tm.reset_display_options() assert get_option("display.precision") == 6 df = DataFrame({"x": [1e9, 0.2512]}) df_s = df.to_string() if _three_digit_exp(): expected = " x\n0 1.000000e+009\n1 2.512000e-001" else: expected = " x\n0 1.000000e+09\n1 2.512000e-01" assert df_s == expected def test_to_string_float_format_no_fixed_width(self): # GH 21625 df = DataFrame({"x": [0.19999]}) expected = " x\n0 0.200" assert df.to_string(float_format="%.3f") == expected # GH 22270 df = DataFrame({"x": [100.0]}) expected = " x\n0 100" assert df.to_string(float_format="%.0f") == expected def test_to_string_small_float_values(self): df = DataFrame({"a": [1.5, 1e-17, -5.5e-7]}) result = df.to_string() # sadness per above if _three_digit_exp(): expected = ( " a\n" "0 1.500000e+000\n" "1 1.000000e-017\n" "2 -5.500000e-007" ) else: expected = ( " a\n" "0 1.500000e+00\n" "1 1.000000e-17\n" "2 -5.500000e-07" ) assert result == expected # but not all exactly zero df = df * 0 result = df.to_string() expected = " 0\n0 0\n1 0\n2 -0" def test_to_string_float_index(self): index = Index([1.5, 2, 3, 4, 5]) df = DataFrame(np.arange(5), index=index) result = df.to_string() expected = " 0\n1.5 0\n2.0 1\n3.0 2\n4.0 3\n5.0 4" assert result == expected def test_to_string_complex_float_formatting(self): # GH #25514, 25745 with
option_context("display.precision", 5)
pandas.option_context
import pytrec_eval from repro_eval.Evaluator import RplEvaluator from repro_eval.util import trim import pandas as pd from matplotlib import pyplot as plt import seaborn as sns sns.set() sns.set_style('whitegrid') palette = sns.color_palette("GnBu_d") sns.set_palette(palette) colors = sns.color_palette() ORIG_B = './data/runs/orig/input.WCrobust04' ORIG_A = './data/runs/orig/input.WCrobust0405' QREL = 'data/qrels/core17.txt' QREL_RPL = 'data/qrels/core18.txt' runs_rpl = { 'rpl_wcr04_tf_1': {'path': './data/runs/rpl/45/irc_task2_WCrobust04_001'}, 'rpl_wcr0405_tf_1': {'path': './data/runs/rpl/45/irc_task2_WCrobust0405_001'}, 'rpl_wcr04_tf_2': {'path': './data/runs/rpl/46/irc_task2_WCrobust04_001'}, 'rpl_wcr0405_tf_2': {'path': './data/runs/rpl/46/irc_task2_WCrobust0405_001'}, 'rpl_wcr04_tf_3': {'path': './data/runs/rpl/47/irc_task2_WCrobust04_001'}, 'rpl_wcr0405_tf_3': {'path': './data/runs/rpl/47/irc_task2_WCrobust0405_001'}, 'rpl_wcr04_tf_4': {'path': './data/runs/rpl/48/irc_task2_WCrobust04_001'}, 'rpl_wcr0405_tf_4': {'path': './data/runs/rpl/48/irc_task2_WCrobust0405_001'}, 'rpl_wcr04_tf_5': {'path': './data/runs/rpl/49/irc_task2_WCrobust04_001'}, 'rpl_wcr0405_tf_5': {'path': './data/runs/rpl/49/irc_task2_WCrobust0405_001'} } def main(): rpl_eval = RplEvaluator(qrel_orig_path=QREL, run_b_orig_path=ORIG_B, run_a_orig_path=ORIG_A, run_b_rep_path=None, run_a_rep_path=None, qrel_rpd_path=QREL_RPL) rpl_eval.trim() rpl_eval.evaluate() for run_name, info in runs_rpl.items(): with open(info.get('path')) as run_file: info['run'] = pytrec_eval.parse_run(run_file) trim(info['run']) info['scores'] = rpl_eval.evaluate(info['run']) pairs = [('rpl_wcr04_tf_1', 'rpl_wcr0405_tf_1'), ('rpl_wcr04_tf_2', 'rpl_wcr0405_tf_2'), ('rpl_wcr04_tf_3', 'rpl_wcr0405_tf_3'), ('rpl_wcr04_tf_4', 'rpl_wcr0405_tf_4'), ('rpl_wcr04_tf_5', 'rpl_wcr0405_tf_5')] df_content = { 'P_10': [rpl_eval.er(run_b_score=runs_rpl[pair[0]]['scores'], run_a_score=runs_rpl[pair[1]]['scores'])['P_10'] for pair in pairs], 'ndcg': [rpl_eval.er(run_b_score=runs_rpl[pair[0]]['scores'], run_a_score=runs_rpl[pair[1]]['scores'])['ndcg'] for pair in pairs], 'map': [rpl_eval.er(run_b_score=runs_rpl[pair[0]]['scores'], run_a_score=runs_rpl[pair[1]]['scores'])['map'] for pair in pairs], } df =
pd.DataFrame(df_content, index=['tf_1', 'tf_2', 'tf_3', 'tf_4', 'tf_5'])
pandas.DataFrame
import os, datetime, pymongo, configparser import pandas as pd from bson import json_util global_config = None global_client = None global_stocklist = None def getConfig(root_path): global global_config if global_config is None: #print("initial Config...") global_config = configparser.ConfigParser() global_config.read(root_path + "/" + "config.ini") return global_config def getClient(): global global_client from pymongo import MongoClient if global_client is None: #print("initial DB Client...") global_client = MongoClient('localhost', 27017) return global_client def getCollection(database, collection): client = getClient() db = client[database] return db[collection] def getStockList(root_path, database, sheet): global global_stocklist if global_stocklist is None: #print("initial Stock List...") global_stocklist = queryStockList(root_path, database, sheet) return global_stocklist def setStockList(df): global global_stocklist df.set_index('symbol', inplace=True) global_stocklist = df return global_stocklist def readFromCollection(collection, queryString=None): if queryString is None: result = collection.find() else: result = collection.find(queryString) df = pd.DataFrame(list(result)) if df.empty == False: del df['_id'] return df def writeToCollection(collection, df, id = None): jsonStrings = df.to_json(orient='records') bsonStrings = json_util.loads(jsonStrings) for string in bsonStrings: if id is not None: id_string = ''.join([string[item] for item in id]) string['_id'] = id_string collection.save(string) def readFromCollectionExtend(collection, queryString=None): if queryString is None: result = collection.find() else: result = collection.find_one(queryString) if result is None: return pd.DataFrame(), {} return pd.read_json(result['data'], orient='records'), result['metadata'] def writeToCollectionExtend(collection, symbol, df, metadata=None): jsonStrings = {"_id":symbol, "symbol":symbol, "data":df.to_json(orient='records'), "metadata":metadata} #bsonStrings = json_util.loads(jsonStrings) collection.save(jsonStrings) def writeToCSV(csv_dir, CollectionKey, df): if os.path.exists(csv_dir) == False: os.makedirs(csv_dir) filename = csv_dir + CollectionKey + '.csv' df.to_csv(filename) def queryStockList(root_path, database, sheet): CollectionKey = sheet + "_LIST" config = getConfig(root_path) storeType = int(config.get('Setting', 'StoreType')) try: if storeType == 1: collection = getCollection(database, CollectionKey) df = readFromCollection(collection) if df.empty == False: df = setStockList(df) return df if storeType == 2: csv_dir = root_path + "/" + config.get('Paths', database) + config.get('Paths', sheet) + config.get('Paths', 'CSV_SHARE') filename = csv_dir + CollectionKey + '.csv' if os.path.exists(filename): df = pd.read_csv(filename, index_col=0) if df.empty == False: df = setStockList(df) return df return pd.DataFrame() except Exception as e: print("queryStockList Exception", e) return pd.DataFrame() return pd.DataFrame() def storeStockList(root_path, database, sheet, df, symbol = None): CollectionKey = sheet + "_LIST" config = getConfig(root_path) storeType = int(config.get('Setting', 'StoreType')) try: if storeType == 1: collection = getCollection(database, CollectionKey) if symbol is not None: df = df[df.index == symbol].reset_index() writeToCollection(collection, df, ['symbol']) # try: # index_info = collection.index_information() # print("index info", index_info) # except Exception as e: # print(e) # writeToCollection(collection, df) # #collection.create_index('symbol', unique=True, drop_dups=True) # else: # writeToCollection(collection, df) if storeType == 2: csv_dir = root_path + "/" + config.get('Paths', database) + config.get('Paths', sheet) + config.get('Paths', 'CSV_SHARE') writeToCSV(csv_dir, CollectionKey, df) except Exception as e: print("storeStockList Exception", e) def queryStockPublishDay(root_path, database, sheet, symbol): CollectionKey = sheet + "_IPO" config = getConfig(root_path) storeType = int(config.get('Setting', 'StoreType')) try: if storeType == 1: collection = getCollection(database, CollectionKey) df = readFromCollection(collection) if df.empty == False: publishDay = df[df['symbol'] == symbol] if len(publishDay) == 1: return publishDay['date'].values[0] return '' if storeType == 2: csv_dir = root_path + "/" + config.get('Paths', database) + config.get('Paths', sheet) + config.get('Paths', 'CSV_SHARE') filename = csv_dir + CollectionKey + '.csv' if os.path.exists(filename) == False: return '' df = pd.read_csv(filename, index_col=["index"]) if df.empty == False: publishDay = df[df['symbol'] == symbol] if len(publishDay) == 1: return publishDay['date'].values[0] return '' except Exception as e: print("queryStockPublishDay Exception", e) return '' return '' def storePublishDay(root_path, database, sheet, symbol, date): CollectionKey = sheet + "_IPO" config = getConfig(root_path) storeType = int(config.get('Setting', 'StoreType')) try: if storeType == 1: collection = getCollection(database, CollectionKey) df = pd.DataFrame(columns = ['symbol', 'date']) df.index.name = 'index' df.loc[len(df)] = [symbol, date] writeToCollection(collection, df) if storeType == 2: csv_dir = root_path + "/" + config.get('Paths', database) + config.get('Paths', sheet) + config.get('Paths', 'CSV_SHARE') filename = csv_dir + CollectionKey + '.csv' if os.path.exists(filename): df = pd.read_csv(filename, index_col=["index"]) publishDate = df[df['symbol'] == symbol] if publishDate.empty: df.loc[len(df)] = [symbol, date] else: df = pd.DataFrame(columns = ['symbol', 'date']) df.index.name = 'index' df.loc[len(df)] = [symbol, date] writeToCSV(csv_dir, CollectionKey, df) except Exception as e: print("storePublishDay Exception", e) def queryStock(root_path, database, sheet_1, sheet_2, symbol, update_key): CollectionKey = sheet_1 + sheet_2 + '_DATA' config = getConfig(root_path) storeType = int(config.get('Setting', 'StoreType')) stockList = getStockList(root_path, database, sheet_1) lastUpdateTime = pd.Timestamp(stockList.loc[symbol][update_key]) try: if storeType == 1: collection = getCollection(database, CollectionKey) queryString = { "symbol" : symbol } df, metadata = readFromCollectionExtend(collection, queryString) if df.empty: return pd.DataFrame(), lastUpdateTime df.set_index('date', inplace=True) if 'index' in df: del df['index'] return df, lastUpdateTime if storeType == 2: csv_dir = root_path + "/" + config.get('Paths', database) + config.get('Paths', sheet) filename = csv_dir + symbol + '.csv' if os.path.exists(filename) == False: return pd.DataFrame(), lastUpdateTime df = pd.read_csv(filename, index_col=["date"]) return df, lastUpdateTime except Exception as e: print("queryStock Exception", e) return pd.DataFrame(), lastUpdateTime return pd.DataFrame(), lastUpdateTime def storeStock(root_path, database, sheet_1, sheet_2, symbol, df, update_key): CollectionKey = sheet_1 + sheet_2 + '_DATA' config = getConfig(root_path) storeType = int(config.get('Setting', 'StoreType')) now_date = datetime.datetime.now().strftime("%Y-%m-%d") stockList = getStockList(root_path, database, sheet_1) if (stockList[stockList.index == symbol][update_key][0] != now_date): stockList.set_value(symbol, update_key, now_date) storeStockList(root_path, database, sheet_1, stockList, symbol) # df.set_index('date') # df.index = df.index.astype(str) # df.sort_index(ascending=True, inplace=True) try: if storeType == 1: collection = getCollection(database, CollectionKey) df = df.reset_index() if 'date' in df: df.date = df.date.astype(str) writeToCollectionExtend(collection, symbol, df, {}) if storeType == 2: csv_dir = root_path + "/" + config.get('Paths', database)+ config.get('Paths', sheet) writeToCSV(csv_dir, symbol, df) except Exception as e: print("storeStock Exception", e) def queryNews(root_path, database, sheet, symbol): config = getConfig(root_path) storeType = int(config.get('Setting', 'StoreType')) lastUpdateTime = pd.Timestamp(getStockList(root_path, database, 'SHEET_US_DAILY').loc[symbol]['news_update']) try: if storeType == 1: collection = getCollection(database, sheet) queryString = { "symbol" : symbol } df = readFromCollection(collection, queryString) if df.empty: return pd.DataFrame(), lastUpdateTime #df.set_index('date', inplace=True) return df, lastUpdateTime if storeType == 2: dir = root_path + "/" + config.get('Paths', database) + config.get('Paths', sheet) filename = dir + symbol + '.csv' if os.path.exists(filename) == False: return pd.DataFrame(), lastUpdateTime df = pd.read_csv(filename) return df, lastUpdateTime except Exception as e: print("queryNews Exception", e) return pd.DataFrame(), lastUpdateTime return
pd.DataFrame()
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Sun May 3 18:37:20 2020 @author: Blackr The following is a script I wrote to automatically find the tafel data a .csv file with the appropriate I, Ewe, and time columns time = s I = mA E = V This is mostly used as a coding excerise for post processing. Re-evaluate when it is time to write more post-processing scripts """ import pandas as pd import numpy as np import matplotlib.pyplot as plt from scipy import stats df = pd.read_csv('March5_2020_Cell4.csv') #Drop columns that have all NaN (.csv problem?) df.dropna(axis =1, how ='all', inplace = True) #Determine what Ewe data is "stable" compared to transition noise and drop the "noise" data df['Ewe'].value_counts() #Explanation of how the code below works is here: #https://stackoverflow.com/questions/34913546/remove-low-counts-from-pandas-data-frame-column-on-condition s = df['Ewe'].value_counts() dfclean = df[df.isin(s.index[s >= 100]).values] #MDetermine median value of I vs. t curves #Create an array of unique Ewe values unique = dfclean['Ewe'].unique() #For loop to create an array of median values corresponding to the median aggregate of each unique Ewe median_values = [] for x in unique: df2 = df[df['Ewe'] == x] median_value = df2['I'].median() median_values.append(median_value) #Convert unique and median_value variables into Series following by a dataframe median_values = pd.Series(median_values) unique =
pd.Series(unique)
pandas.Series
# pylint: disable=redefined-outer-name import filecmp from io import StringIO from pathlib import Path from tempfile import TemporaryDirectory import pandas as pd import pytest from courier.config import get_config from courier.elements import CourierIssue, IssueStatistics, export_articles from courier.elements.export_articles import extract_percentage, save_overlap, save_statistics, save_statistics_by_case CONFIG = get_config() def test_export_articles_generates_expected_output(): with TemporaryDirectory() as output_dir: errors = export_articles('012656', output_dir) assert len(sorted(Path(output_dir).glob('*.txt'))) == 5 assert not filecmp.dircmp(output_dir, CONFIG.test_files_dir / 'expected/export_articles').diff_files assert len(filecmp.dircmp(output_dir, CONFIG.test_files_dir / 'not_expected').diff_files) == 1 assert len(errors) == 0 def test_export_articles_with_errors_generates_expected_output(): courier_id = '063436' issue = CourierIssue(courier_id) with TemporaryDirectory() as output_dir: errors = export_articles('063436', output_dir) assert len(sorted(Path(output_dir).glob('*.txt'))) == IssueStatistics(issue).number_of_articles assert len(errors) != 0 def test_stats(): courier_ids = ['066943', '014255', '016653'] stats = [] with TemporaryDirectory() as output_dir: for courier_id in courier_ids: stats += export_articles(courier_id, output_dir) statistics = (
pd.DataFrame(stats)
pandas.DataFrame
""" To test the quality of the estimators, we generate data both from a semilinear Choo and Siow model and from a semilinear nested logit model. We use both the Poisson estimator and the minimum-distance estimator on the former model, and only the minimum-distance estimator on the latter. """ from typing import List, Tuple import matplotlib.pyplot as plt import numpy as np from numpy.random import SeedSequence import pandas as pd import seaborn as sns from .utils import nprepeat_col, nprepeat_row, print_stars from .choo_siow import entropy_choo_siow from .entropy import EntropyFunctions from .min_distance_utils import MDEResults from .min_distance import estimate_semilinear_mde from .model_classes import ChooSiowPrimitives, NestedLogitPrimitives from .nested_logit import setup_standard_nested_logit from .poisson_glm import PoissonGLMResults, choo_siow_poisson_glm def choo_siow_simul( phi_bases: np.ndarray, n: np.ndarray, m: np.ndarray, true_coeffs: np.ndarray, n_households: int, n_simuls: int, seed: int = None, ) -> Tuple[List[MDEResults], List[PoissonGLMResults]]: """ Monte Carlo simulation of the minimum distance and Poisson estimators for the Choo and Siow model Args: phi_bases: an (X,Y,K) array of bases n: an X-vector, margins for men m: an Y-vector, margins for women true_coeffs: a K-vector, the true values of the coefficients of the bases n_households: the number of households n_simuls: the number of samples for the simulation seed: an integer seed for the random number generator Returns: the lists of results for the min distance estimator and the Poisson GLM estimator """ Phi = phi_bases @ true_coeffs choo_siow_instance = ChooSiowPrimitives(Phi, n, m) ss = SeedSequence(seed) child_seeds = ss.spawn(n_simuls) min_distance_results = [] poisson_results = [] for s in range(n_simuls): mus_sim = choo_siow_instance.simulate(n_households, child_seeds[s]) mde_results = estimate_semilinear_mde(mus_sim, phi_bases, entropy_choo_siow) min_distance_results.append(mde_results) poisson_glm_results = choo_siow_poisson_glm(mus_sim, phi_bases, verbose=1) poisson_results.append(poisson_glm_results) print(f"\nChoo-Siow: estimates for sample {s}:") print(" MDE:") print(mde_results.estimated_coefficients) print(" Poisson:") print(poisson_glm_results.estimated_beta) return min_distance_results, poisson_results def nested_logit_simul( phi_bases: np.ndarray, n: np.ndarray, m: np.ndarray, entropy_model: EntropyFunctions, true_alphas: np.ndarray, true_betas: np.ndarray, n_households: int, n_simuls: int, seed: int = None, ) -> List[MDEResults]: """ Monte Carlo simulation of the minimum distance estimator for the nested logit Args: phi_bases: an (X,Y,K) array of bases n: an X-vector, margins for men m: an Y-vector, margins for women entropy_model: the nested logit specification true_alphas: an (n_rhos+n_deltas)-vector, the true values of the nests parameters true_betas: a K-vector, the true values of the coefficients of the bases n_households: the number of households n_simuls: the number of samples for the simulation seed: an integer seed for the random number generator Returns: the list of results for the min distance estimator """ Phi = phi_bases @ true_betas nests_for_each_x, nests_for_each_y = entropy_model.more_params nested_logit_instance = NestedLogitPrimitives( Phi, n, m, nests_for_each_x, nests_for_each_y, true_alphas ) ss = SeedSequence(seed) child_seeds = ss.spawn(n_simuls) min_distance_results = [] for s in range(n_simuls): mus_sim = nested_logit_instance.simulate(n_households, child_seeds[s]) mde_result = estimate_semilinear_mde( mus_sim, phi_bases, entropy_model, more_params=entropy_model.more_params, ) min_distance_results.append(mde_result) print(f"\nNested logit: MDE estimates for sample {s}:") print(mde_result.estimated_coefficients) return min_distance_results if __name__ == "__main__": """we draw n_simuls samples of n_households households""" n_households = 100_000 n_simuls = 1000 run_choo_siow = True run_nested_logit = False plot_choo_siow = True plot_nested_logit = False # integer to select a variant; None to do the central scenario do_variant = None X, Y, K = 20, 20, 8 # set of 8 basis functions phi_bases = np.zeros((X, Y, K)) phi_bases[:, :, 0] = 1.0 vec_x = np.arange(X) vec_y = np.arange(Y) phi_bases[:, :, 1] = nprepeat_col(vec_x, Y) phi_bases[:, :, 2] = nprepeat_row(vec_y, X) phi_bases[:, :, 3] = phi_bases[:, :, 1] * phi_bases[:, :, 1] phi_bases[:, :, 4] = phi_bases[:, :, 1] * phi_bases[:, :, 2] phi_bases[:, :, 5] = phi_bases[:, :, 2] * phi_bases[:, :, 2] for i in range(X): for j in range(i, Y): phi_bases[i, j, 6] = 1 phi_bases[i, j, 7] = i - j true_betas = np.array([1.0, 0.0, 0.0, -0.01, 0.02, -0.01, 0.5, 0.0]) str_variant = "" if do_variant is not None: if do_variant == 1: X, Y, K = 10, 10, 4 phi_bases = phi_bases[:X, :Y, :K] true_betas = true_betas[:K] elif do_variant == 2: X, Y, K = 4, 5, 6 phi_bases = phi_bases[:X, :Y, :K] true_betas = true_betas[:K] elif do_variant == 3: X, Y, K = 20, 20, 2 phi_bases = phi_bases[:X, :Y, :K] true_betas = true_betas[:K] str_variant = f"_v{do_variant}" t = 0.2 n = np.logspace(start=0, base=1 - t, stop=X - 1, num=X) m = np.logspace(start=0, base=1 - t, stop=Y - 1, num=Y) beta_names = [f"beta[{i}]" for i in range(1, K + 1)] seed = 5456456 if run_choo_siow: choo_siow_results_file = ( "choo_siow_simul_results" + f"{str_variant}_N{n_households}_seed{seed}" + ".csv" ) min_distance_results, poisson_results = choo_siow_simul( phi_bases, n, m, true_betas, n_households, n_simuls, seed ) mde_estimated_beta = np.zeros((n_simuls, K)) poisson_estimated_beta = np.zeros((n_simuls, K)) mde_stderrs_beta = np.zeros((n_simuls, K)) poisson_stderrs_beta = np.zeros((n_simuls, K)) K2 = 2 * K n_rows = K2 * n_simuls simulation = np.zeros(n_rows, dtype=int) estimate = np.zeros(n_rows) stderrs = np.zeros(n_rows) estimator = [] coefficient = [] beg_s = 0 for s in range(n_simuls): mde_resus_s = min_distance_results[s] poisson_resus_s = poisson_results[s] mde_estimated_beta[s, :] = mde_resus_s.estimated_coefficients poisson_estimated_beta[s, :] = poisson_resus_s.estimated_beta mde_stderrs_beta[s, :] = mde_resus_s.stderrs_coefficients poisson_stderrs_beta[s, :] = poisson_resus_s.stderrs_beta slice_K2 = slice(beg_s, beg_s + K2) simulation[slice_K2] = s estimator.extend(["Minimum distance"] * K) estimator.extend(["Poisson"] * K) coefficient.extend(beta_names) coefficient.extend(beta_names) slice_K = slice(beg_s, beg_s + K) estimate[slice_K] = mde_estimated_beta[s, :] stderrs[slice_K] = mde_stderrs_beta[s, :] slice_K_K2 = slice(beg_s + K, beg_s + K2) estimate[slice_K_K2] = poisson_estimated_beta[s, :] stderrs[slice_K_K2] = poisson_stderrs_beta[s, :] beg_s += K2 true_values = np.tile(true_betas, 2 * n_simuls) choo_siow_results = pd.DataFrame( { "Simulation": simulation, "Estimator": estimator, "Parameter": coefficient, "Estimate": estimate, "Standard Error": stderrs, "True value": true_values, } ) choo_siow_results.to_csv(choo_siow_results_file) if plot_choo_siow: choo_siow_results_file = ( "choo_siow_simul_results" + f"{str_variant}_N{n_households}_seed{seed}" + ".csv" ) choo_siow_results =
pd.read_csv(choo_siow_results_file)
pandas.read_csv
#! /usr/bin/env python # -*- coding: utf-8 -*- # vim:fenc=utf-8 # # Copyright © 2020 qizai <<EMAIL>> # # Distributed under terms of the MIT license. """ This script will search for all lp{0, 1, ..., N}_{right, left, middle}_100_region.csv file. Each line in the csv file is a complex, with at least two fragment intersected with the loop region. 'complex_direction' indicate the side of motif this complex has at least one fragment overlap with. NOTE [TODO]: annotation file need to contain 'convergence' info. Original ChIA-PET annot has a extended annotated file which has it. pseudo_annot needs to be change accordingly. """ import pandas as pd import numpy as np import matplotlib.pyplot as plt import time import ipdb import os import functools import tqdm import argparse def mainfn(args): p2loop_annot = args.p2loop_annot p2loop_tag = args.p2loop_tag p2root = args.p2intersected_complex_folder p2res_root = args.p2binning_results_saved_folder expr_name = args.expr_name nbins = args.nbins pseudo_loop = args.pseudo annot_col_name = ['left_chr', 'left_start', 'left_end', 'right_chr', 'right_start', 'right_end', 'PET count', 'left_max_intensity', 'right_max_intensity', 'left_max_index', 'right_max_index', 'loop_ID', 'left_motif_chr', 'left_motif_start', 'left_motif_end', 'left_motif_strand', 'left_distance', 'right_motif_chr', 'right_motif_start', 'right_motif_end', 'right_motif_strand', 'right_distance'] if pseudo_loop: df_loop_annot = pd.read_csv(p2loop_annot, sep='\t', names = annot_col_name) df_loop_annot = df_loop_annot.assign(convergence = 'convergence') else: # annot_col_name = ['bias', 'convergence', 'NULL motif'] df_loop_annot_raw = pd.read_csv(p2loop_annot, sep='\t', names = annot_col_name) df_loop_tag = pd.read_csv(p2loop_tag, sep = '\t', index_col = 0) loop_conv_tag = df_loop_tag.loc[df_loop_annot_raw.index]['convergence'].values df_loop_annot = df_loop_annot_raw.assign(convergence = loop_conv_tag) p2region = os.path.join(p2root, expr_name) left_region_set = set([x.split('_')[0] for x in os.listdir(p2region) if ('right' in x)]) right_region_set = set([x.split('_')[0] for x in os.listdir(p2region) if ('left' in x)]) middle_region_set = set([x.split('_')[0] for x in os.listdir(p2region) if ('middle' in x)]) common_regions = list(right_region_set.intersection(left_region_set).intersection(middle_region_set)) # ---- filter out the larger loops. com_idxs = df_loop_annot['loop_ID'].isin(common_regions) df_coms = df_loop_annot[com_idxs] com_convergence_idxs = (df_coms['convergence'] == 'convergence') df_coms_conv = df_coms[com_convergence_idxs] coms_conv_2kb_idx = df_coms_conv.apply(lambda x: (x.right_end - x.left_start) > 2e5, axis=1) df_coms_conv_2kb = df_coms_conv[coms_conv_2kb_idx] # ----- main loop ---- df_combine_mid_right_bin_vectors = df_combine_mid_left_bin_vectors =
pd.DataFrame()
pandas.DataFrame
import io import textwrap from collections import namedtuple import numpy as np import pandas as pd import statsmodels.api as sm from estimagic.config import EXAMPLE_DIR from estimagic.visualization.estimation_table import _convert_model_to_series from estimagic.visualization.estimation_table import _create_statistics_sr from estimagic.visualization.estimation_table import _process_body_df from estimagic.visualization.estimation_table import _process_model from estimagic.visualization.estimation_table import estimation_table from pandas.testing import assert_frame_equal as afe from pandas.testing import assert_series_equal as ase # test process_model for different model types NamedTup = namedtuple("NamedTup", "params info") fix_path = EXAMPLE_DIR / "diabetes.csv" df_ = pd.read_csv(fix_path, index_col=0) est = sm.OLS(endog=df_["target"], exog=sm.add_constant(df_[df_.columns[0:4]])).fit() def test_estimation_table(): models = [est] return_type = "python" res = estimation_table(models, return_type, append_notes=False) exp = {} body_str = """ index,{(1)} const,152.13$^{*** }$ ,(2.85) Age,37.24$^{ }$ ,(64.12) Sex,-106.58$^{* }$ ,(62.13) BMI,787.18$^{*** }$ ,(65.42) ABP,416.67$^{*** }$ ,(69.49) """ exp["body_df"] = _read_csv_string(body_str).fillna("") exp["body_df"].set_index("index", inplace=True) footer_str = """ ,{(1)} Observations,442.0 R$^2$,0.4 Adj. R$^2$,0.39 Residual Std. Error,59.98 F Statistic,72.91$^{***}$ """ exp["footer_df"] = _read_csv_string(footer_str).fillna("") exp["footer_df"].set_index(" ", inplace=True) exp["footer_df"].index.names = [None] exp["footer_df"].index = pd.MultiIndex.from_arrays([exp["footer_df"].index]) exp["notes_tex"] = "\\midrule\n" exp[ "notes_html" ] = """<tr><td colspan="2" style="border-bottom: 1px solid black"> </td></tr>""" afe(exp["footer_df"], res["footer_df"]) afe(exp["body_df"], res["body_df"], check_index_type=False) ase(pd.Series(exp["notes_html"]), pd.Series(res["notes_html"])) ase(pd.Series(exp["notes_tex"]), pd.Series(res["notes_tex"])) def test_process_model_namedtuple(): # checks that process_model doesn't alter values df = pd.DataFrame(columns=["value", "p_value", "ci_lower", "ci_upper"]) df["value"] = np.arange(10) df["p_value"] = np.arange(10) df["ci_lower"] = np.arange(10) df["ci_upper"] = np.arange(10) info = {"stat1": 0, "stat2": 0} model = NamedTup(params=df, info=info) res = _process_model(model) afe(res.params, df) ase(pd.Series(res.info), pd.Series(info)) def test_process_model_stats_model(): par_df = pd.DataFrame( columns=["value", "p_value", "standard_error", "ci_lower", "ci_upper"], index=["const", "Age", "Sex", "BMI", "ABP"], ) par_df["value"] = [152.133484, 37.241211, -106.577520, 787.179313, 416.673772] par_df["p_value"] = [ 2.048808e-193, 5.616557e-01, 8.695658e-02, 5.345260e-29, 4.245663e-09, ] par_df["standard_error"] = [2.852749, 64.117433, 62.125062, 65.424126, 69.494666] par_df["ci_lower"] = [146.526671, -88.775663, -228.678572, 658.594255, 280.088446] par_df["ci_upper"] = [157.740298, 163.258084, 15.523532, 915.764371, 553.259097] info_dict = {} info_dict["rsquared"] = 0.40026108237714 info_dict["rsquared_adj"] = 0.39477148130050055 info_dict["fvalue"] = 72.91259907398705 info_dict["f_pvalue"] = 2.700722880950139e-47 info_dict["df_model"] = 4.0 info_dict["df_resid"] = 437.0 info_dict["dependent_variable"] = "target" info_dict["resid_std_err"] = 59.97560860753488 info_dict["n_obs"] = 442.0 res = _process_model(est) afe(res.params, par_df) ase(pd.Series(res.info), pd.Series(info_dict)) def test_process_model_dict(): df = pd.DataFrame(columns=["value", "p_value", "standard_error"]) df["value"] = np.arange(10) df["p_value"] = np.arange(10) df["standard_error"] = np.arange(10) info = {"stat1": 0, "stat2": 0} mod = {} mod["params"] = df mod["info"] = info res = _process_model(mod) afe(res.params, mod["params"]) ase(pd.Series(res.info), pd.Series(mod["info"])) # test convert_model_to_series for different arguments def test_convert_model_to_series_conf_int(): df = pd.DataFrame( np.array( [[0.6, 2.3, 3.3], [0.11, 0.049, 0.009], [0.6, 2.3, 3.3], [1.2, 3.3, 4.3]] ).T, columns=["value", "p_value", "ci_lower", "ci_upper"], index=["a", "b", "c"], ) si_lev = [0.1, 0.05, 0.01] si_dig = 2 ci = True si = True ss = True res = _convert_model_to_series(df, si_lev, si_dig, si, ci, ss) exp = pd.Series( [ "0.6$^{ }$", r"{(0.6\,;\,1.2)}", "2.3$^{** }$", r"{(2.3\,;\,3.3)}", "3.3$^{*** }$", r"{(3.3\,;\,4.3)}", ], index=["a", "", "b", "", "c", ""], name="", ) exp.index.name = "index"
ase(exp, res)
pandas.testing.assert_series_equal
# Streamlit live coding script import streamlit as st import pandas as pd import matplotlib.pyplot as plt import numpy as np from PIL import Image import plotly.express as px import plotly.graph_objects as go df = pd.read_csv('src/data/marketing_campaign_cleaned.csv', index_col=[0]) st.title("Customer personality analysis") st.markdown('## 1. Descriptive statistics') st.subheader('Education') fig = px.histogram(df, x='Education', color='Education') st.plotly_chart(fig) st.subheader('Income distribution') fig = px.histogram(df, x='Income') st.plotly_chart(fig) st.subheader('Martial status') fig = px.histogram(df, x='Living_With', color='Living_With') st.plotly_chart(fig) st.subheader('Education by martial status') sunburst_df = df[['Education', 'Living_With']] fig = px.sunburst(sunburst_df, path=['Living_With', 'Education']) st.plotly_chart(fig) st.subheader('Success of advertising campaings') campaigns_df = pd.melt(df, value_vars=['AcceptedCmp1','AcceptedCmp2','AcceptedCmp3','AcceptedCmp4','AcceptedCmp5', 'Response'], var_name='campaign', value_name='success', ignore_index=True) success_df = campaigns_df[campaigns_df.success == 1] fig = px.histogram(success_df, x='success', y='campaign', color='campaign') st.plotly_chart(fig) st.subheader('Amount spent by age group') category = pd.cut(df.Age,bins=[25,40,65,81],labels=['Adults','Seniors', 'Elderly']) df.insert(2,'Age_Groups',category) mean_spent = df.groupby(['Age_Groups']).Spent.mean().reset_index() fig = px.bar(mean_spent, x='Age_Groups', y='Spent', color='Age_Groups') fig.update_layout( xaxis=dict( title={'text': ''}, tickvals=[0, 1, 2], ticktext=['25-40', '40-65', '65+'] ), yaxis={'title': {'text': 'Mean spendings'}} ) st.plotly_chart(fig) st.subheader('Number of customers per spent group') spend_5_500 = df["Spent"][(df["Spent"] >=5) & (df["Spent"] <= 500)] spend_501_1000 = df["Spent"][(df["Spent"] >=501) & (df["Spent"] <= 1000)] spend_1001_1500 = df["Spent"][(df["Spent"] >=1001) & (df["Spent"] <= 1500)] spend_1501_2000 = df["Spent"][(df["Spent"] >=1501) & (df["Spent"] <= 2000 )] spend_2001_2525 = df["Spent"][(df["Spent"] >=2001) & (df["Spent"] <= 2525)] spend_x = ['5-500', '501-1000', '1001-1500', '1501-2000', '2001-2525'] spend_y = [len(spend_5_500.values), len(spend_501_1000.values), len(spend_1001_1500.values), len(spend_1501_2000.values), len(spend_2001_2525.values)] d = {'spent_group': spend_x, 'count': spend_y} spent_df = pd.DataFrame(d) fig = px.bar(spent_df, x='spent_group', y='count', color='spent_group') fig.update_layout( xaxis={'title': {'text': 'Spent group'}}, yaxis={'title': {'text': 'Number of customers'}} ) st.plotly_chart(fig) st.subheader('Number of customers per income group') income_1_30k = df["Income"][(df["Income"] >=1000) & (df["Income"] <= 30000)] income_30_60k = df["Income"][(df["Income"] >=30001) & (df["Income"] <= 60000)] income_60_90k = df["Income"][(df["Income"] >=60001) & (df["Income"] <= 90000)] income_90_120k = df["Income"][(df["Income"] >=90001) & (df["Income"] <= 120000 )] income_120_170k = df["Income"][(df["Income"] >=120001) & (df["Income"] <= 170000)] income_x = ['1k - 30k', '30k - 60k', '60k - 90k', '90k - 120k', '120k - 170k'] income_y = [len(income_1_30k.values), len(income_30_60k.values), len(income_60_90k.values), len(income_90_120k.values), len(income_120_170k.values)] d = {'income_group': income_x, 'count': income_y} income_df =
pd.DataFrame(d)
pandas.DataFrame
import os import pandas as pd import datetime import numpy as np from talib import abstract from .crawler import check_monthly_revenue class Data(): def __init__(self): self.date = datetime.datetime.now().date() self.warrning = False self.col2table = {} tnames = os.listdir(os.path.join('history', 'items')) for tname in tnames: path = os.path.join('history', 'items', tname) if not os.path.isdir(path): continue items = [f[:-4] for f in os.listdir(path)] for item in items: if item not in self.col2table: self.col2table[item] = [] self.col2table[item].append(tname) def get(self, name, amount=0, table=None, convert_to_numeric=True): if table is None: candidates = self.col2table[name] if len(candidates) > 1 and self.warrning: print('**WARRN there are tables have the same item', name, ':', candidates) print('** take', candidates[0]) print('** please specify the table name as an argument if you need the file from another table') for c in candidates: print('** data.get(', name, ',',amount, ', table=', c, ')') table = candidates[0] df = pd.read_pickle(os.path.join('history', 'items', table, name + '.pkl')) return df.loc[:self.date.strftime("%Y-%m-%d")].iloc[-amount:] def talib(self, func_name, amount=0, **args): func = getattr(abstract, func_name) isSeries = True if len(func.output_names) == 1 else False names = func.output_names if isSeries: dic = {} else: dics = {n:{} for n in names} close = self.get('收盤價', amount) open_ = self.get('開盤價', amount) high = self.get('最高價', amount) low = self.get('最低價', amount) volume= self.get('成交股數', amount) for key in close.columns: try: s = func({'open':open_[key].ffill(), 'high':high[key].ffill(), 'low':low[key].ffill(), 'close':close[key].ffill(), 'volume':volume[key].ffill()}, **args) except Exception as e: if "inputs are all NaN" != str(e): print('Warrning occur during calculating stock '+key+':',e) print('The indicator values are set to NaN.') if isSeries: s = pd.Series(index=close[key].index) else: s = pd.DataFrame(index=close[key].index, columns=dics.keys()) if isSeries: dic[key] = s else: for colname, si in zip(names, s): dics[colname][key] = si if isSeries: ret = pd.DataFrame(dic, index=close.index) ret = ret.apply(lambda s:pd.to_numeric(s, errors='coerce')) else: newdic = {} for key, dic in dics.items(): newdic[key] = pd.DataFrame(dic, close.index).loc[:self.date] ret = [newdic[n] for n in names]#pd.Panel(newdic) ret = [d.apply(lambda s:
pd.to_numeric(s, errors='coerce')
pandas.to_numeric
from bs4 import BeautifulSoup as BS from selenium import webdriver from functools import reduce import pandas as pd import time import xport import pandas as pd def render_page(url): driver = webdriver.Chrome('/Users/cp/Downloads/chromedriver') driver.get(url) time.sleep(3) r = driver.page_source driver.quit() return r def scraper2(page, dates): output = pd.DataFrame() for d in dates: url = str(str(page) + str(d)) r = render_page(url) soup = BS(r, "html.parser") container = soup.find('lib-city-history-observation') check = container.find('tbody') data = [] for c in check.find_all('tr', class_='ng-star-inserted'): for i in c.find_all('td', class_='ng-star-inserted'): trial = i.text trial = trial.strip(' ') data.append(trial) if len(data)%2 == 0: hour = pd.DataFrame(data[0::10], columns = ['hour']) temp = pd.DataFrame(data[1::10], columns = ['temp']) dew = pd.DataFrame(data[2::10], columns = ['dew']) humidity = pd.DataFrame(data[3::10], columns = ['humidity']) wind_speed = pd.DataFrame(data[5::10], columns = ['wind_speed']) pressure = pd.DataFrame(data[7::10], columns = ['pressure']) precip = pd.DataFrame(data[8::10], columns = ['precip']) cloud = pd.DataFrame(data[9::10], columns = ['cloud']) dfs = [hour, temp,dew,humidity, wind_speed, pressure, precip, cloud] df_final = reduce(lambda left, right: pd.merge(left, right, left_index=True, right_index=True), dfs) df_final['Date'] = str(d) + "-" + df_final.iloc[:, :1].astype(str) output = output.append(df_final) print('Scraper done!') output = output[['hour', 'temp', 'dew', 'humidity', 'wind_speed', 'pressure', 'precip', 'cloud']] return output def jan_dates(): lst = [] for i in range(1, 32): i = str(i) lst.append(str("2021-1-"+i)) return lst january = jan_dates() def feb_dates(): lst = [] for i in range(1, 30): i = str(i) lst.append(str("2020-2-"+i)) return lst feb = feb_dates() def march_dates(): lst = [] for i in range(1, 32): i = str(i) lst.append(str("2020-3-"+i)) return lst mar = march_dates() def april_dates(): lst = [] for i in range(1, 31): i = str(i) lst.append(str("2020-4-"+i)) return lst april = april_dates() def may_dates(): lst = [] for i in range(1, 32): i = str(i) lst.append(str("2020-5-"+i)) return lst may = may_dates() def june_dates(): lst = [] for i in range(1, 31): i = str(i) lst.append(str("2020-6-"+i)) return lst june = june_dates() def july_dates(): lst = [] for i in range(1, 32): i = str(i) lst.append(str("2020-7-"+i)) return lst july = july_dates() def august_dates(): lst = [] for i in range(1, 32): i = str(i) lst.append(str("2020-8-"+i)) return lst august = august_dates() def september_dates(): lst = [] for i in range(1, 31): i = str(i) lst.append(str("2020-9-"+i)) return lst september = september_dates() def october_dates(): lst = [] for i in range(1, 32): i = str(i) lst.append(str("2020-10-"+i)) return lst october = october_dates() def november_dates(): lst = [] for i in range(1, 8): i = str(i) lst.append(str("2020-11-"+i)) return lst november_to7 = november_dates() def november_dates_end(): lst = [] for i in range(9, 31): i = str(i) lst.append(str("2020-11-"+i)) return lst november_end = november_dates_end() def december_dates(): lst = [] for i in range(1, 32): i = str(i) lst.append(str("2020-12-"+i)) return lst december = december_dates() def scraper3(page, dates): output = pd.DataFrame() for d in dates: url = str(str(page) + str(d)) r = render_page(url) soup = BS(r, "html.parser") container = soup.find('lib-city-history-observation') check = container.find('tbody') data = [] for c in check.find_all('tr', class_='ng-star-inserted'): for i in c.find_all('td', class_='ng-star-inserted'): trial = i.text trial = trial.strip(' ') data.append(trial) if len(data)%2 == 0: hour = pd.DataFrame(data[0::10], columns = ['hour']) temp = pd.DataFrame(data[1::10], columns = ['temp']) dew = pd.DataFrame(data[2::10], columns = ['dew']) humidity = pd.DataFrame(data[3::10], columns = ['humidity']) wind_speed = pd.DataFrame(data[5::10], columns = ['wind_speed']) pressure = pd.DataFrame(data[7::10], columns = ['pressure']) precip = pd.DataFrame(data[8::10], columns = ['precip']) cloud = pd.DataFrame(data[9::10], columns = ['cloud']) # date2 = pd.DataFrame(str(str(d)), columns = ['date2']) dfs = [hour, temp,dew,humidity, wind_speed, pressure, precip, cloud] df_final = reduce(lambda left, right: pd.merge(left, right, left_index=True, right_index=True), dfs) df_final['Date'] = str(d) output = output.append(df_final) print('Scraper done!') output = output[['hour', 'temp', 'dew', 'humidity', 'wind_speed', 'pressure', 'precip', 'cloud', 'Date']] # output.to_csv (f"r'/Users/cp/Desktop/capstone2/{dates[0]}_scraped_temps.csv'", index = False, header=True) return output # return data def weather_scrape(lst2): months = [] for i in lst2: month1 = scraper3(page, i) months.append(month1) year = pd.concat(months) return year # year_2020 = weather_scrape(lst) # year_2020.to_csv (r'/Users/cp/Desktop/capstone2/DALLAS_YEAR_SCRAPE.csv', index = False, header=True) if __name__ =='__main__': #page = 'https://www.wunderground.com/history/daily/us/tx/dallas/KDAL/date/' def scraper(page, dates): output = pd.DataFrame() for d in dates: url = str(str(page) + str(d)) r = render_page(url) soup = BS(r, "html.parser") container = soup.find('lib-city-history-observation') check = container.find('tbody') data = [] for c in check.find_all('tr', class_='ng-star-inserted'): for i in c.find_all('td', class_='ng-star-inserted'): trial = i.text trial = trial.strip(' ') data.append(trial) if round(len(data) / 10) == 23: hour = pd.DataFrame(data[0::10], columns = ['hour']) temp = pd.DataFrame(data[1::10], columns = ['temp']) dew = pd.DataFrame(data[2::10], columns = ['dew']) humidity = pd.DataFrame(data[3::10], columns = ['humidity']) wind_speed = pd.DataFrame(data[5::10], columns = ['wind_speed']) pressure = pd.DataFrame(data[7::10], columns = ['pressure']) precip = pd.DataFrame(data[8::10], columns = ['precip']) cloud = pd.DataFrame(data[9::10], columns = ['cloud']) dfs = [hour, temp,dew,humidity, wind_speed, pressure, precip, cloud] df_final = reduce(lambda left, right:
pd.merge(left, right, left_index=True, right_index=True)
pandas.merge
import pytest from datetime import datetime, timedelta import pytz import numpy as np from pandas import (NaT, Index, Timestamp, Timedelta, Period, DatetimeIndex, PeriodIndex, TimedeltaIndex, Series, isna) from pandas.util import testing as tm from pandas._libs.tslib import iNaT @pytest.mark.parametrize('nat, idx', [(
Timestamp('NaT')
pandas.Timestamp
""" Testing that functions from rpy work as expected """ import pandas as pd import numpy as np import unittest import nose import pandas.util.testing as tm try: import pandas.rpy.common as com from rpy2.robjects import r import rpy2.robjects as robj except ImportError: raise nose.SkipTest('R not installed') class TestCommon(unittest.TestCase): def test_convert_list(self): obj = r('list(a=1, b=2, c=3)') converted = com.convert_robj(obj) expected = {'a': [1], 'b': [2], 'c': [3]} tm.assert_dict_equal(converted, expected) def test_convert_nested_list(self): obj = r('list(a=list(foo=1, bar=2))') converted = com.convert_robj(obj) expected = {'a': {'foo': [1], 'bar': [2]}} tm.assert_dict_equal(converted, expected) def test_convert_frame(self): # built-in dataset df = r['faithful'] converted = com.convert_robj(df) assert np.array_equal(converted.columns, ['eruptions', 'waiting']) assert np.array_equal(converted.index, np.arange(1, 273)) def _test_matrix(self): r('mat <- matrix(rnorm(9), ncol=3)') r('colnames(mat) <- c("one", "two", "three")') r('rownames(mat) <- c("a", "b", "c")') return r['mat'] def test_convert_matrix(self): mat = self._test_matrix() converted = com.convert_robj(mat) assert np.array_equal(converted.index, ['a', 'b', 'c']) assert np.array_equal(converted.columns, ['one', 'two', 'three']) def test_convert_r_dataframe(self): is_na = robj.baseenv.get("is.na") seriesd = tm.getSeriesData() frame = pd.DataFrame(seriesd, columns=['D', 'C', 'B', 'A']) # Null data frame["E"] = [np.nan for item in frame["A"]] # Some mixed type data frame["F"] = ["text" if item % 2 == 0 else np.nan for item in range(30)] r_dataframe = com.convert_to_r_dataframe(frame) assert np.array_equal( com.convert_robj(r_dataframe.rownames), frame.index) assert np.array_equal( com.convert_robj(r_dataframe.colnames), frame.columns) assert all(is_na(item) for item in r_dataframe.rx2("E")) for column in frame[["A", "B", "C", "D"]]: coldata = r_dataframe.rx2(column) original_data = frame[column] assert np.array_equal(com.convert_robj(coldata), original_data) for column in frame[["D", "E"]]: for original, converted in zip(frame[column], r_dataframe.rx2(column)): if pd.isnull(original): assert is_na(converted) else: assert original == converted def test_convert_r_matrix(self): is_na = robj.baseenv.get("is.na") seriesd = tm.getSeriesData() frame = pd.DataFrame(seriesd, columns=['D', 'C', 'B', 'A']) # Null data frame["E"] = [np.nan for item in frame["A"]] r_dataframe = com.convert_to_r_matrix(frame) assert np.array_equal( com.convert_robj(r_dataframe.rownames), frame.index) assert np.array_equal( com.convert_robj(r_dataframe.colnames), frame.columns) assert all(is_na(item) for item in r_dataframe.rx(True, "E")) for column in frame[["A", "B", "C", "D"]]: coldata = r_dataframe.rx(True, column) original_data = frame[column] assert np.array_equal(com.convert_robj(coldata), original_data) # Pandas bug 1282 frame["F"] = ["text" if item % 2 == 0 else np.nan for item in range(30)] try: wrong_matrix = com.convert_to_r_matrix(frame) except TypeError: pass except Exception: raise def test_dist(self): for name in ('eurodist',): df = com.load_data(name) dist = r[name] labels = r['labels'](dist) assert np.array_equal(df.index, labels) assert np.array_equal(df.columns, labels) def test_timeseries(self): """ Test that the series has an informative index. Unfortunately the code currently does not build a DateTimeIndex """ for name in ( 'austres', 'co2', 'fdeaths', 'freeny.y', 'JohnsonJohnson', 'ldeaths', 'mdeaths', 'nottem', 'presidents', 'sunspot.month', 'sunspots', 'UKDriverDeaths', 'UKgas', 'USAccDeaths', 'airmiles', 'discoveries', 'EuStockMarkets', 'LakeHuron', 'lh', 'lynx', 'nhtemp', 'Nile', 'Seatbelts', 'sunspot.year', 'treering', 'uspop'): series = com.load_data(name) ts = r[name] assert np.array_equal(series.index, r['time'](ts)) def test_numeric(self): for name in ('euro', 'islands', 'precip'): series = com.load_data(name) numeric = r[name] names = numeric.names assert np.array_equal(series.index, names) def test_table(self): iris3 = pd.DataFrame({'X0': {0: '0', 1: '1', 2: '2', 3: '3', 4: '4'}, 'X1': {0: 'Sepal L.', 1: 'Sepal L.', 2: 'Sepal L.', 3: 'Sepal L.', 4: 'Sepal L.'}, 'X2': {0: 'Setosa', 1: 'Setosa', 2: 'Setosa', 3: 'Setosa', 4: 'Setosa'}, 'value': {0: '5.1', 1: '4.9', 2: '4.7', 3: '4.6', 4: '5.0'}}) hec = pd.DataFrame( { 'Eye': {0: 'Brown', 1: 'Brown', 2: 'Brown', 3: 'Brown', 4: 'Blue'}, 'Hair': {0: 'Black', 1: 'Brown', 2: 'Red', 3: 'Blond', 4: 'Black'}, 'Sex': {0: 'Male', 1: 'Male', 2: 'Male', 3: 'Male', 4: 'Male'}, 'value': {0: '32.0', 1: '53.0', 2: '10.0', 3: '3.0', 4: '11.0'}}) titanic = pd.DataFrame( { 'Age': {0: 'Child', 1: 'Child', 2: 'Child', 3: 'Child', 4: 'Child'}, 'Class': {0: '1st', 1: '2nd', 2: '3rd', 3: 'Crew', 4: '1st'}, 'Sex': {0: 'Male', 1: 'Male', 2: 'Male', 3: 'Male', 4: 'Female'}, 'Survived': {0: 'No', 1: 'No', 2: 'No', 3: 'No', 4: 'No'}, 'value': {0: '0.0', 1: '0.0', 2: '35.0', 3: '0.0', 4: '0.0'}}) for name, expected in zip(('HairEyeColor', 'Titanic', 'iris3'), (hec, titanic, iris3)): df =
com.load_data(name)
pandas.rpy.common.load_data
from model.toolkits.parse_conf import parse_config_vina, parse_protein_vina, parse_ligand_vina import os import pandas as pd import numpy as np from pathlib import Path import argparse import rdkit from rdkit import Chem, DataStructs from rdkit.Chem import Descriptors, rdMolDescriptors, AllChem, QED try: from openbabel import pybel except: import pybel # from metrics_utils import logP, QED, SA, weight, NP from functools import partial from multiprocessing import Pool from tqdm.auto import tqdm def walk_folder(path, suffix): # processed = [] files = os.listdir(path) print(f"{len(files)} files have been detected!") outpdbqt = [] for file in files: # print(file) if suffix in file: outpdbqt.append(file) # base_name = os.path.basename(file) # # print(base_name) # simple_name = base_name.replace('_', '.').split('.') # simple_name = simple_name[0] # processed.append({'simple_name': simple_name, # 'base_name': base_name, 'full_name': file}) # # print(processed) return outpdbqt def prepare_ecfp(args): dataset = args.dataset path = args.path df = pd.read_csv(dataset) # smi_df = pd.read_csv(args.smi) # smi_df = smi_df.set_index('ChEMBL ID') df['index'] = df['Molecule'] df = df.set_index('index') # counts = 0 # for index in df.index: # smi_index = index.strip().split("_")[0] # counts += 1 # try: # # print(smi_df.loc[smi_index, 'Smiles']) # smiRaw = smi_df.loc[smi_index, 'Smiles'] # mol = pybel.readstring("smi", smiRaw) # # strip salt # mol.OBMol.StripSalts(10) # mols = mol.OBMol.Separate() # # print(pybel.Molecule(mols)) # mol = pybel.Molecule(mols[0]) # for imol in mols: # imol = pybel.Molecule(imol) # if len(imol.atoms) > len(mol.atoms): # mol = imol # smi_clean = mol.write('smi') # smi_clean = smi_clean.replace('\n', '') # smi_clean = smi_clean.split()[0] # df.loc[index, 'smi'] = smi_clean # print(f'NO.{counts}: {smi_clean} was processed successfully') # except Exception as e: # print(e) # continue df = df.dropna(axis=0, how='any') smiList = df['smi'] index = df['Molecule'] # print(smiList) new_index, ecfpList = [], [] for i in range(len(index)): try: smi = smiList[i] if i % 1000 == 0: print(f"index: {i}; smi= {smi}") mol = Chem.MolFromSmiles(smi) ecfp = AllChem.GetMorganFingerprintAsBitVect( mol, 3, nBits=1024) ecfp=[index[i]]+list(ecfp) ecfpList.append(ecfp) # new_index.append() except: continue # molList = [Chem.MolFromSmiles(smi) # for smi in smiList] # ecfpList = [list(AllChem.GetMorganFingerprintAsBitVect( # mol, 3, nBits=1024)) for mol in molList] # print(ecfpList) colName = ['index']+[f'ecfp{i}' for i in range(len(ecfpList[0])-1)] # print(colName) dfEcfp = pd.DataFrame(ecfpList, columns=colName) # dfEcfp['index'] = new_index dfEcfp = dfEcfp.set_index('index') # print(dfEcfp) # print(df) dfEcfp = pd.concat([df, dfEcfp], axis=1) dfEcfp = dfEcfp.dropna(axis=0, how='any') suffix = '_ecfpSmi.csv' outdf = dataset.replace('.csv', suffix) # dfEcfp = dfEcfp.dropna(axis=0, how='any') # if not os.path.exists(outdf): dfEcfp.to_csv(outdf, index=False) def prepare_DScorePPropIFP(args, getScore=True, getSMILES=True): dataset = args.dataset # smiDataset = args.smi df = pd.read_csv(dataset) df = df.set_index('Molecule') smi_df =
pd.read_csv(args.smi)
pandas.read_csv
import numpy as np from datetime import timedelta from distutils.version import LooseVersion import pandas as pd import pandas.util.testing as tm from pandas import to_timedelta from pandas.util.testing import assert_series_equal, assert_frame_equal from pandas import (Series, Timedelta, DataFrame, Timestamp, TimedeltaIndex, timedelta_range, date_range, DatetimeIndex, Int64Index, _np_version_under1p10, Float64Index, Index, tslib) from pandas.tests.test_base import Ops class TestTimedeltaIndexOps(Ops): def setUp(self): super(TestTimedeltaIndexOps, self).setUp() mask = lambda x: isinstance(x, TimedeltaIndex) self.is_valid_objs = [o for o in self.objs if mask(o)] self.not_valid_objs = [] def test_ops_properties(self): self.check_ops_properties(['days', 'hours', 'minutes', 'seconds', 'milliseconds']) self.check_ops_properties(['microseconds', 'nanoseconds']) def test_asobject_tolist(self): idx = timedelta_range(start='1 days', periods=4, freq='D', name='idx') expected_list = [Timedelta('1 days'), Timedelta('2 days'), Timedelta('3 days'), Timedelta('4 days')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) self.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(idx.tolist(), expected_list) idx = TimedeltaIndex([timedelta(days=1), timedelta(days=2), pd.NaT, timedelta(days=4)], name='idx') expected_list = [Timedelta('1 days'), Timedelta('2 days'), pd.NaT, Timedelta('4 days')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) self.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(idx.tolist(), expected_list) def test_minmax(self): # monotonic idx1 = TimedeltaIndex(['1 days', '2 days', '3 days']) self.assertTrue(idx1.is_monotonic) # non-monotonic idx2 = TimedeltaIndex(['1 days', np.nan, '3 days', 'NaT']) self.assertFalse(idx2.is_monotonic) for idx in [idx1, idx2]: self.assertEqual(idx.min(), Timedelta('1 days')), self.assertEqual(idx.max(), Timedelta('3 days')), self.assertEqual(idx.argmin(), 0) self.assertEqual(idx.argmax(), 2) for op in ['min', 'max']: # Return NaT obj = TimedeltaIndex([]) self.assertTrue(pd.isnull(getattr(obj, op)())) obj = TimedeltaIndex([pd.NaT]) self.assertTrue(pd.isnull(getattr(obj, op)())) obj = TimedeltaIndex([pd.NaT, pd.NaT, pd.NaT]) self.assertTrue(pd.isnull(getattr(obj, op)())) def test_numpy_minmax(self): dr = pd.date_range(start='2016-01-15', end='2016-01-20') td = TimedeltaIndex(np.asarray(dr)) self.assertEqual(np.min(td), Timedelta('16815 days')) self.assertEqual(np.max(td), Timedelta('16820 days')) errmsg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, errmsg, np.min, td, out=0) tm.assertRaisesRegexp(ValueError, errmsg, np.max, td, out=0) self.assertEqual(np.argmin(td), 0) self.assertEqual(np.argmax(td), 5) if not _np_version_under1p10: errmsg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, errmsg, np.argmin, td, out=0) tm.assertRaisesRegexp(ValueError, errmsg, np.argmax, td, out=0) def test_round(self): td = pd.timedelta_range(start='16801 days', periods=5, freq='30Min') elt = td[1] expected_rng = TimedeltaIndex([ Timedelta('16801 days 00:00:00'), Timedelta('16801 days 00:00:00'), Timedelta('16801 days 01:00:00'), Timedelta('16801 days 02:00:00'), Timedelta('16801 days 02:00:00'), ]) expected_elt = expected_rng[1] tm.assert_index_equal(td.round(freq='H'), expected_rng) self.assertEqual(elt.round(freq='H'), expected_elt) msg = pd.tseries.frequencies._INVALID_FREQ_ERROR with self.assertRaisesRegexp(ValueError, msg): td.round(freq='foo') with tm.assertRaisesRegexp(ValueError, msg): elt.round(freq='foo') msg = "<MonthEnd> is a non-fixed frequency" tm.assertRaisesRegexp(ValueError, msg, td.round, freq='M') tm.assertRaisesRegexp(ValueError, msg, elt.round, freq='M') def test_representation(self): idx1 = TimedeltaIndex([], freq='D') idx2 = TimedeltaIndex(['1 days'], freq='D') idx3 = TimedeltaIndex(['1 days', '2 days'], freq='D') idx4 = TimedeltaIndex(['1 days', '2 days', '3 days'], freq='D') idx5 = TimedeltaIndex(['1 days 00:00:01', '2 days', '3 days']) exp1 = """TimedeltaIndex([], dtype='timedelta64[ns]', freq='D')""" exp2 = ("TimedeltaIndex(['1 days'], dtype='timedelta64[ns]', " "freq='D')") exp3 = ("TimedeltaIndex(['1 days', '2 days'], " "dtype='timedelta64[ns]', freq='D')") exp4 = ("TimedeltaIndex(['1 days', '2 days', '3 days'], " "dtype='timedelta64[ns]', freq='D')") exp5 = ("TimedeltaIndex(['1 days 00:00:01', '2 days 00:00:00', " "'3 days 00:00:00'], dtype='timedelta64[ns]', freq=None)") with pd.option_context('display.width', 300): for idx, expected in zip([idx1, idx2, idx3, idx4, idx5], [exp1, exp2, exp3, exp4, exp5]): for func in ['__repr__', '__unicode__', '__str__']: result = getattr(idx, func)() self.assertEqual(result, expected) def test_representation_to_series(self): idx1 = TimedeltaIndex([], freq='D') idx2 = TimedeltaIndex(['1 days'], freq='D') idx3 = TimedeltaIndex(['1 days', '2 days'], freq='D') idx4 = TimedeltaIndex(['1 days', '2 days', '3 days'], freq='D') idx5 = TimedeltaIndex(['1 days 00:00:01', '2 days', '3 days']) exp1 = """Series([], dtype: timedelta64[ns])""" exp2 = """0 1 days dtype: timedelta64[ns]""" exp3 = """0 1 days 1 2 days dtype: timedelta64[ns]""" exp4 = """0 1 days 1 2 days 2 3 days dtype: timedelta64[ns]""" exp5 = """0 1 days 00:00:01 1 2 days 00:00:00 2 3 days 00:00:00 dtype: timedelta64[ns]""" with pd.option_context('display.width', 300): for idx, expected in zip([idx1, idx2, idx3, idx4, idx5], [exp1, exp2, exp3, exp4, exp5]): result = repr(pd.Series(idx)) self.assertEqual(result, expected) def test_summary(self): # GH9116 idx1 = TimedeltaIndex([], freq='D') idx2 = TimedeltaIndex(['1 days'], freq='D') idx3 = TimedeltaIndex(['1 days', '2 days'], freq='D') idx4 = TimedeltaIndex(['1 days', '2 days', '3 days'], freq='D') idx5 = TimedeltaIndex(['1 days 00:00:01', '2 days', '3 days']) exp1 = """TimedeltaIndex: 0 entries Freq: D""" exp2 = """TimedeltaIndex: 1 entries, 1 days to 1 days Freq: D""" exp3 = """TimedeltaIndex: 2 entries, 1 days to 2 days Freq: D""" exp4 = """TimedeltaIndex: 3 entries, 1 days to 3 days Freq: D""" exp5 = ("TimedeltaIndex: 3 entries, 1 days 00:00:01 to 3 days " "00:00:00") for idx, expected in zip([idx1, idx2, idx3, idx4, idx5], [exp1, exp2, exp3, exp4, exp5]): result = idx.summary() self.assertEqual(result, expected) def test_add_iadd(self): # only test adding/sub offsets as + is now numeric # offset offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)] for delta in offsets: rng = timedelta_range('1 days', '10 days') result = rng + delta expected = timedelta_range('1 days 02:00:00', '10 days 02:00:00', freq='D') tm.assert_index_equal(result, expected) rng += delta tm.assert_index_equal(rng, expected) # int rng = timedelta_range('1 days 09:00:00', freq='H', periods=10) result = rng + 1 expected = timedelta_range('1 days 10:00:00', freq='H', periods=10) tm.assert_index_equal(result, expected) rng += 1 tm.assert_index_equal(rng, expected) def test_sub_isub(self): # only test adding/sub offsets as - is now numeric # offset offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)] for delta in offsets: rng = timedelta_range('1 days', '10 days') result = rng - delta expected = timedelta_range('0 days 22:00:00', '9 days 22:00:00') tm.assert_index_equal(result, expected) rng -= delta tm.assert_index_equal(rng, expected) # int rng = timedelta_range('1 days 09:00:00', freq='H', periods=10) result = rng - 1 expected = timedelta_range('1 days 08:00:00', freq='H', periods=10) tm.assert_index_equal(result, expected) rng -= 1 tm.assert_index_equal(rng, expected) idx = TimedeltaIndex(['1 day', '2 day']) msg = "cannot subtract a datelike from a TimedeltaIndex" with tm.assertRaisesRegexp(TypeError, msg): idx - Timestamp('2011-01-01') result = Timestamp('2011-01-01') + idx expected = DatetimeIndex(['2011-01-02', '2011-01-03']) tm.assert_index_equal(result, expected) def test_ops_compat(self): offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)] rng = timedelta_range('1 days', '10 days', name='foo') # multiply for offset in offsets: self.assertRaises(TypeError, lambda: rng * offset) # divide expected = Int64Index((np.arange(10) + 1) * 12, name='foo') for offset in offsets: result = rng / offset tm.assert_index_equal(result, expected, exact=False) # divide with nats rng = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') expected = Float64Index([12, np.nan, 24], name='foo') for offset in offsets: result = rng / offset tm.assert_index_equal(result, expected) # don't allow division by NaT (make could in the future) self.assertRaises(TypeError, lambda: rng / pd.NaT) def test_subtraction_ops(self): # with datetimes/timedelta and tdi/dti tdi = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') dti = date_range('20130101', periods=3, name='bar') td = Timedelta('1 days') dt = Timestamp('20130101') self.assertRaises(TypeError, lambda: tdi - dt) self.assertRaises(TypeError, lambda: tdi - dti) self.assertRaises(TypeError, lambda: td - dt) self.assertRaises(TypeError, lambda: td - dti) result = dt - dti expected = TimedeltaIndex(['0 days', '-1 days', '-2 days'], name='bar') tm.assert_index_equal(result, expected) result = dti - dt expected = TimedeltaIndex(['0 days', '1 days', '2 days'], name='bar') tm.assert_index_equal(result, expected) result = tdi - td expected = TimedeltaIndex(['0 days', pd.NaT, '1 days'], name='foo') tm.assert_index_equal(result, expected, check_names=False) result = td - tdi expected = TimedeltaIndex(['0 days', pd.NaT, '-1 days'], name='foo') tm.assert_index_equal(result, expected, check_names=False) result = dti - td expected = DatetimeIndex( ['20121231', '20130101', '20130102'], name='bar') tm.assert_index_equal(result, expected, check_names=False) result = dt - tdi expected = DatetimeIndex(['20121231', pd.NaT, '20121230'], name='foo') tm.assert_index_equal(result, expected) def test_subtraction_ops_with_tz(self): # check that dt/dti subtraction ops with tz are validated dti = date_range('20130101', periods=3) ts = Timestamp('20130101') dt = ts.to_pydatetime() dti_tz = date_range('20130101', periods=3).tz_localize('US/Eastern') ts_tz = Timestamp('20130101').tz_localize('US/Eastern') ts_tz2 = Timestamp('20130101').tz_localize('CET') dt_tz = ts_tz.to_pydatetime() td = Timedelta('1 days') def _check(result, expected): self.assertEqual(result, expected) self.assertIsInstance(result, Timedelta) # scalars result = ts - ts expected = Timedelta('0 days') _check(result, expected) result = dt_tz - ts_tz expected = Timedelta('0 days') _check(result, expected) result = ts_tz - dt_tz expected = Timedelta('0 days') _check(result, expected) # tz mismatches self.assertRaises(TypeError, lambda: dt_tz - ts) self.assertRaises(TypeError, lambda: dt_tz - dt) self.assertRaises(TypeError, lambda: dt_tz - ts_tz2) self.assertRaises(TypeError, lambda: dt - dt_tz) self.assertRaises(TypeError, lambda: ts - dt_tz) self.assertRaises(TypeError, lambda: ts_tz2 - ts) self.assertRaises(TypeError, lambda: ts_tz2 - dt) self.assertRaises(TypeError, lambda: ts_tz - ts_tz2) # with dti self.assertRaises(TypeError, lambda: dti - ts_tz) self.assertRaises(TypeError, lambda: dti_tz - ts) self.assertRaises(TypeError, lambda: dti_tz - ts_tz2) result = dti_tz - dt_tz expected = TimedeltaIndex(['0 days', '1 days', '2 days']) tm.assert_index_equal(result, expected) result = dt_tz - dti_tz expected = TimedeltaIndex(['0 days', '-1 days', '-2 days']) tm.assert_index_equal(result, expected) result = dti_tz - ts_tz expected = TimedeltaIndex(['0 days', '1 days', '2 days']) tm.assert_index_equal(result, expected) result = ts_tz - dti_tz expected = TimedeltaIndex(['0 days', '-1 days', '-2 days']) tm.assert_index_equal(result, expected) result = td - td expected = Timedelta('0 days') _check(result, expected) result = dti_tz - td expected = DatetimeIndex( ['20121231', '20130101', '20130102'], tz='US/Eastern') tm.assert_index_equal(result, expected) def test_dti_tdi_numeric_ops(self): # These are normally union/diff set-like ops tdi = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') dti = date_range('20130101', periods=3, name='bar') # TODO(wesm): unused? # td = Timedelta('1 days') # dt = Timestamp('20130101') result = tdi - tdi expected = TimedeltaIndex(['0 days', pd.NaT, '0 days'], name='foo') tm.assert_index_equal(result, expected) result = tdi + tdi expected = TimedeltaIndex(['2 days', pd.NaT, '4 days'], name='foo') tm.assert_index_equal(result, expected) result = dti - tdi # name will be reset expected = DatetimeIndex(['20121231', pd.NaT, '20130101']) tm.assert_index_equal(result, expected) def test_sub_period(self): # GH 13078 # not supported, check TypeError p = pd.Period('2011-01-01', freq='D') for freq in [None, 'H']: idx = pd.TimedeltaIndex(['1 hours', '2 hours'], freq=freq) with tm.assertRaises(TypeError): idx - p with tm.assertRaises(TypeError): p - idx def test_addition_ops(self): # with datetimes/timedelta and tdi/dti tdi = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') dti = date_range('20130101', periods=3, name='bar') td = Timedelta('1 days') dt = Timestamp('20130101') result = tdi + dt expected = DatetimeIndex(['20130102', pd.NaT, '20130103'], name='foo') tm.assert_index_equal(result, expected) result = dt + tdi expected = DatetimeIndex(['20130102', pd.NaT, '20130103'], name='foo') tm.assert_index_equal(result, expected) result = td + tdi expected = TimedeltaIndex(['2 days', pd.NaT, '3 days'], name='foo') tm.assert_index_equal(result, expected) result = tdi + td expected = TimedeltaIndex(['2 days', pd.NaT, '3 days'], name='foo') tm.assert_index_equal(result, expected) # unequal length self.assertRaises(ValueError, lambda: tdi + dti[0:1]) self.assertRaises(ValueError, lambda: tdi[0:1] + dti) # random indexes self.assertRaises(TypeError, lambda: tdi + Int64Index([1, 2, 3])) # this is a union! # self.assertRaises(TypeError, lambda : Int64Index([1,2,3]) + tdi) result = tdi + dti # name will be reset expected = DatetimeIndex(['20130102', pd.NaT, '20130105']) tm.assert_index_equal(result, expected) result = dti + tdi # name will be reset expected = DatetimeIndex(['20130102', pd.NaT, '20130105']) tm.assert_index_equal(result, expected) result = dt + td expected =
Timestamp('20130102')
pandas.Timestamp
# -*- coding: utf-8 -*- # pylint: disable=E1101,E1103,W0232 import os import sys from datetime import datetime from distutils.version import LooseVersion import numpy as np import pandas as pd import pandas.compat as compat import pandas.core.common as com import pandas.util.testing as tm from pandas import (Categorical, Index, Series, DataFrame, PeriodIndex, Timestamp, CategoricalIndex) from pandas.compat import range, lrange, u, PY3 from pandas.core.config import option_context # GH 12066 # flake8: noqa class TestCategorical(tm.TestCase): _multiprocess_can_split_ = True def setUp(self): self.factor = Categorical.from_array(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c'], ordered=True) def test_getitem(self): self.assertEqual(self.factor[0], 'a') self.assertEqual(self.factor[-1], 'c') subf = self.factor[[0, 1, 2]] tm.assert_almost_equal(subf._codes, [0, 1, 1]) subf = self.factor[np.asarray(self.factor) == 'c'] tm.assert_almost_equal(subf._codes, [2, 2, 2]) def test_getitem_listlike(self): # GH 9469 # properly coerce the input indexers np.random.seed(1) c = Categorical(np.random.randint(0, 5, size=150000).astype(np.int8)) result = c.codes[np.array([100000]).astype(np.int64)] expected = c[np.array([100000]).astype(np.int64)].codes self.assert_numpy_array_equal(result, expected) def test_setitem(self): # int/positional c = self.factor.copy() c[0] = 'b' self.assertEqual(c[0], 'b') c[-1] = 'a' self.assertEqual(c[-1], 'a') # boolean c = self.factor.copy() indexer = np.zeros(len(c), dtype='bool') indexer[0] = True indexer[-1] = True c[indexer] = 'c' expected = Categorical.from_array(['c', 'b', 'b', 'a', 'a', 'c', 'c', 'c'], ordered=True) self.assert_categorical_equal(c, expected) def test_setitem_listlike(self): # GH 9469 # properly coerce the input indexers np.random.seed(1) c = Categorical(np.random.randint(0, 5, size=150000).astype( np.int8)).add_categories([-1000]) indexer = np.array([100000]).astype(np.int64) c[indexer] = -1000 # we are asserting the code result here # which maps to the -1000 category result = c.codes[np.array([100000]).astype(np.int64)] self.assertEqual(result, np.array([5], dtype='int8')) def test_constructor_unsortable(self): # it works! arr = np.array([1, 2, 3, datetime.now()], dtype='O') factor = Categorical.from_array(arr, ordered=False) self.assertFalse(factor.ordered) if compat.PY3: self.assertRaises( TypeError, lambda: Categorical.from_array(arr, ordered=True)) else: # this however will raise as cannot be sorted (on PY3 or older # numpies) if LooseVersion(np.__version__) < "1.10": self.assertRaises( TypeError, lambda: Categorical.from_array(arr, ordered=True)) else: Categorical.from_array(arr, ordered=True) def test_is_equal_dtype(self): # test dtype comparisons between cats c1 = Categorical(list('aabca'), categories=list('abc'), ordered=False) c2 = Categorical(list('aabca'), categories=list('cab'), ordered=False) c3 = Categorical(list('aabca'), categories=list('cab'), ordered=True) self.assertTrue(c1.is_dtype_equal(c1)) self.assertTrue(c2.is_dtype_equal(c2)) self.assertTrue(c3.is_dtype_equal(c3)) self.assertFalse(c1.is_dtype_equal(c2)) self.assertFalse(c1.is_dtype_equal(c3)) self.assertFalse(c1.is_dtype_equal(Index(list('aabca')))) self.assertFalse(c1.is_dtype_equal(c1.astype(object))) self.assertTrue(c1.is_dtype_equal(CategoricalIndex(c1))) self.assertFalse(c1.is_dtype_equal( CategoricalIndex(c1, categories=list('cab')))) self.assertFalse(c1.is_dtype_equal(CategoricalIndex(c1, ordered=True))) def test_constructor(self): exp_arr = np.array(["a", "b", "c", "a", "b", "c"]) c1 = Categorical(exp_arr) self.assert_numpy_array_equal(c1.__array__(), exp_arr) c2 = Categorical(exp_arr, categories=["a", "b", "c"]) self.assert_numpy_array_equal(c2.__array__(), exp_arr) c2 = Categorical(exp_arr, categories=["c", "b", "a"]) self.assert_numpy_array_equal(c2.__array__(), exp_arr) # categories must be unique def f(): Categorical([1, 2], [1, 2, 2]) self.assertRaises(ValueError, f) def f(): Categorical(["a", "b"], ["a", "b", "b"]) self.assertRaises(ValueError, f) def f(): with tm.assert_produces_warning(FutureWarning): Categorical([1, 2], [1, 2, np.nan, np.nan]) self.assertRaises(ValueError, f) # The default should be unordered c1 = Categorical(["a", "b", "c", "a"]) self.assertFalse(c1.ordered) # Categorical as input c1 = Categorical(["a", "b", "c", "a"]) c2 = Categorical(c1) self.assertTrue(c1.equals(c2)) c1 = Categorical(["a", "b", "c", "a"], categories=["a", "b", "c", "d"]) c2 = Categorical(c1) self.assertTrue(c1.equals(c2)) c1 = Categorical(["a", "b", "c", "a"], categories=["a", "c", "b"]) c2 = Categorical(c1) self.assertTrue(c1.equals(c2)) c1 = Categorical(["a", "b", "c", "a"], categories=["a", "c", "b"]) c2 = Categorical(c1, categories=["a", "b", "c"]) self.assert_numpy_array_equal(c1.__array__(), c2.__array__()) self.assert_numpy_array_equal(c2.categories, np.array(["a", "b", "c"])) # Series of dtype category c1 = Categorical(["a", "b", "c", "a"], categories=["a", "b", "c", "d"]) c2 = Categorical(Series(c1)) self.assertTrue(c1.equals(c2)) c1 = Categorical(["a", "b", "c", "a"], categories=["a", "c", "b"]) c2 = Categorical(Series(c1)) self.assertTrue(c1.equals(c2)) # Series c1 = Categorical(["a", "b", "c", "a"]) c2 = Categorical(Series(["a", "b", "c", "a"])) self.assertTrue(c1.equals(c2)) c1 = Categorical(["a", "b", "c", "a"], categories=["a", "b", "c", "d"]) c2 = Categorical( Series(["a", "b", "c", "a"]), categories=["a", "b", "c", "d"]) self.assertTrue(c1.equals(c2)) # This should result in integer categories, not float! cat = pd.Categorical([1, 2, 3, np.nan], categories=[1, 2, 3]) self.assertTrue(com.is_integer_dtype(cat.categories)) # https://github.com/pydata/pandas/issues/3678 cat = pd.Categorical([np.nan, 1, 2, 3]) self.assertTrue(com.is_integer_dtype(cat.categories)) # this should result in floats cat = pd.Categorical([np.nan, 1, 2., 3]) self.assertTrue(com.is_float_dtype(cat.categories)) cat = pd.Categorical([np.nan, 1., 2., 3.]) self.assertTrue(com.is_float_dtype(cat.categories)) # Deprecating NaNs in categoires (GH #10748) # preserve int as far as possible by converting to object if NaN is in # categories with tm.assert_produces_warning(FutureWarning): cat = pd.Categorical([np.nan, 1, 2, 3], categories=[np.nan, 1, 2, 3]) self.assertTrue(com.is_object_dtype(cat.categories)) # This doesn't work -> this would probably need some kind of "remember # the original type" feature to try to cast the array interface result # to... # vals = np.asarray(cat[cat.notnull()]) # self.assertTrue(com.is_integer_dtype(vals)) with tm.assert_produces_warning(FutureWarning): cat = pd.Categorical([np.nan, "a", "b", "c"], categories=[np.nan, "a", "b", "c"]) self.assertTrue(com.is_object_dtype(cat.categories)) # but don't do it for floats with tm.assert_produces_warning(FutureWarning): cat = pd.Categorical([np.nan, 1., 2., 3.], categories=[np.nan, 1., 2., 3.]) self.assertTrue(com.is_float_dtype(cat.categories)) # corner cases cat = pd.Categorical([1]) self.assertTrue(len(cat.categories) == 1) self.assertTrue(cat.categories[0] == 1) self.assertTrue(len(cat.codes) == 1) self.assertTrue(cat.codes[0] == 0) cat = pd.Categorical(["a"]) self.assertTrue(len(cat.categories) == 1) self.assertTrue(cat.categories[0] == "a") self.assertTrue(len(cat.codes) == 1) self.assertTrue(cat.codes[0] == 0) # Scalars should be converted to lists cat = pd.Categorical(1) self.assertTrue(len(cat.categories) == 1) self.assertTrue(cat.categories[0] == 1) self.assertTrue(len(cat.codes) == 1) self.assertTrue(cat.codes[0] == 0) cat = pd.Categorical([1], categories=1) self.assertTrue(len(cat.categories) == 1) self.assertTrue(cat.categories[0] == 1) self.assertTrue(len(cat.codes) == 1) self.assertTrue(cat.codes[0] == 0) # Catch old style constructor useage: two arrays, codes + categories # We can only catch two cases: # - when the first is an integer dtype and the second is not # - when the resulting codes are all -1/NaN with tm.assert_produces_warning(RuntimeWarning): c_old = Categorical([0, 1, 2, 0, 1, 2], categories=["a", "b", "c"]) # noqa with tm.assert_produces_warning(RuntimeWarning): c_old = Categorical([0, 1, 2, 0, 1, 2], # noqa categories=[3, 4, 5]) # the next one are from the old docs, but unfortunately these don't # trigger :-( with tm.assert_produces_warning(None): c_old2 = Categorical([0, 1, 2, 0, 1, 2], [1, 2, 3]) # noqa cat = Categorical([1, 2], categories=[1, 2, 3]) # this is a legitimate constructor with tm.assert_produces_warning(None): c = Categorical(np.array([], dtype='int64'), # noqa categories=[3, 2, 1], ordered=True) def test_constructor_with_index(self): ci = CategoricalIndex(list('aabbca'), categories=list('cab')) self.assertTrue(ci.values.equals(Categorical(ci))) ci = CategoricalIndex(list('aabbca'), categories=list('cab')) self.assertTrue(ci.values.equals(Categorical( ci.astype(object), categories=ci.categories))) def test_constructor_with_generator(self): # This was raising an Error in isnull(single_val).any() because isnull # returned a scalar for a generator xrange = range exp = Categorical([0, 1, 2]) cat = Categorical((x for x in [0, 1, 2])) self.assertTrue(cat.equals(exp)) cat = Categorical(xrange(3)) self.assertTrue(cat.equals(exp)) # This uses xrange internally from pandas.core.index import MultiIndex MultiIndex.from_product([range(5), ['a', 'b', 'c']]) # check that categories accept generators and sequences cat = pd.Categorical([0, 1, 2], categories=(x for x in [0, 1, 2])) self.assertTrue(cat.equals(exp)) cat = pd.Categorical([0, 1, 2], categories=xrange(3)) self.assertTrue(cat.equals(exp)) def test_from_codes(self): # too few categories def f(): Categorical.from_codes([1, 2], [1, 2]) self.assertRaises(ValueError, f) # no int codes def f(): Categorical.from_codes(["a"], [1, 2]) self.assertRaises(ValueError, f) # no unique categories def f(): Categorical.from_codes([0, 1, 2], ["a", "a", "b"]) self.assertRaises(ValueError, f) # too negative def f(): Categorical.from_codes([-2, 1, 2], ["a", "b", "c"]) self.assertRaises(ValueError, f) exp = Categorical(["a", "b", "c"], ordered=False) res = Categorical.from_codes([0, 1, 2], ["a", "b", "c"]) self.assertTrue(exp.equals(res)) # Not available in earlier numpy versions if hasattr(np.random, "choice"): codes = np.random.choice([0, 1], 5, p=[0.9, 0.1]) pd.Categorical.from_codes(codes, categories=["train", "test"]) def test_comparisons(self): result = self.factor[self.factor == 'a'] expected = self.factor[np.asarray(self.factor) == 'a'] self.assertTrue(result.equals(expected)) result = self.factor[self.factor != 'a'] expected = self.factor[np.asarray(self.factor) != 'a'] self.assertTrue(result.equals(expected)) result = self.factor[self.factor < 'c'] expected = self.factor[np.asarray(self.factor) < 'c'] self.assertTrue(result.equals(expected)) result = self.factor[self.factor > 'a'] expected = self.factor[np.asarray(self.factor) > 'a'] self.assertTrue(result.equals(expected)) result = self.factor[self.factor >= 'b'] expected = self.factor[np.asarray(self.factor) >= 'b'] self.assertTrue(result.equals(expected)) result = self.factor[self.factor <= 'b'] expected = self.factor[np.asarray(self.factor) <= 'b'] self.assertTrue(result.equals(expected)) n = len(self.factor) other = self.factor[np.random.permutation(n)] result = self.factor == other expected = np.asarray(self.factor) == np.asarray(other) self.assert_numpy_array_equal(result, expected) result = self.factor == 'd' expected = np.repeat(False, len(self.factor)) self.assert_numpy_array_equal(result, expected) # comparisons with categoricals cat_rev = pd.Categorical(["a", "b", "c"], categories=["c", "b", "a"], ordered=True) cat_rev_base = pd.Categorical( ["b", "b", "b"], categories=["c", "b", "a"], ordered=True) cat = pd.Categorical(["a", "b", "c"], ordered=True) cat_base = pd.Categorical(["b", "b", "b"], categories=cat.categories, ordered=True) # comparisons need to take categories ordering into account res_rev = cat_rev > cat_rev_base exp_rev = np.array([True, False, False]) self.assert_numpy_array_equal(res_rev, exp_rev) res_rev = cat_rev < cat_rev_base exp_rev = np.array([False, False, True]) self.assert_numpy_array_equal(res_rev, exp_rev) res = cat > cat_base exp = np.array([False, False, True]) self.assert_numpy_array_equal(res, exp) # Only categories with same categories can be compared def f(): cat > cat_rev self.assertRaises(TypeError, f) cat_rev_base2 = pd.Categorical( ["b", "b", "b"], categories=["c", "b", "a", "d"]) def f(): cat_rev > cat_rev_base2 self.assertRaises(TypeError, f) # Only categories with same ordering information can be compared cat_unorderd = cat.set_ordered(False) self.assertFalse((cat > cat).any()) def f(): cat > cat_unorderd self.assertRaises(TypeError, f) # comparison (in both directions) with Series will raise s = Series(["b", "b", "b"]) self.assertRaises(TypeError, lambda: cat > s) self.assertRaises(TypeError, lambda: cat_rev > s) self.assertRaises(TypeError, lambda: s < cat) self.assertRaises(TypeError, lambda: s < cat_rev) # comparison with numpy.array will raise in both direction, but only on # newer numpy versions a = np.array(["b", "b", "b"]) self.assertRaises(TypeError, lambda: cat > a) self.assertRaises(TypeError, lambda: cat_rev > a) # The following work via '__array_priority__ = 1000' # works only on numpy >= 1.7.1 if LooseVersion(np.__version__) > "1.7.1": self.assertRaises(TypeError, lambda: a < cat) self.assertRaises(TypeError, lambda: a < cat_rev) # Make sure that unequal comparison take the categories order in # account cat_rev = pd.Categorical( list("abc"), categories=list("cba"), ordered=True) exp = np.array([True, False, False]) res = cat_rev > "b" self.assert_numpy_array_equal(res, exp) def test_na_flags_int_categories(self): # #1457 categories = lrange(10) labels = np.random.randint(0, 10, 20) labels[::5] = -1 cat = Categorical(labels, categories, fastpath=True) repr(cat) self.assert_numpy_array_equal(com.isnull(cat), labels == -1) def test_categories_none(self): factor = Categorical(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c'], ordered=True) self.assertTrue(factor.equals(self.factor)) def test_describe(self): # string type desc = self.factor.describe() expected = DataFrame({'counts': [3, 2, 3], 'freqs': [3 / 8., 2 / 8., 3 / 8.]}, index=pd.CategoricalIndex(['a', 'b', 'c'], name='categories')) tm.assert_frame_equal(desc, expected) # check unused categories cat = self.factor.copy() cat.set_categories(["a", "b", "c", "d"], inplace=True) desc = cat.describe() expected = DataFrame({'counts': [3, 2, 3, 0], 'freqs': [3 / 8., 2 / 8., 3 / 8., 0]}, index=pd.CategoricalIndex(['a', 'b', 'c', 'd'], name='categories')) tm.assert_frame_equal(desc, expected) # check an integer one desc = Categorical([1, 2, 3, 1, 2, 3, 3, 2, 1, 1, 1]).describe() expected = DataFrame({'counts': [5, 3, 3], 'freqs': [5 / 11., 3 / 11., 3 / 11.]}, index=pd.CategoricalIndex([1, 2, 3], name='categories')) tm.assert_frame_equal(desc, expected) # https://github.com/pydata/pandas/issues/3678 # describe should work with NaN cat = pd.Categorical([np.nan, 1, 2, 2]) desc = cat.describe() expected = DataFrame({'counts': [1, 2, 1], 'freqs': [1 / 4., 2 / 4., 1 / 4.]}, index=pd.CategoricalIndex([1, 2, np.nan], categories=[1, 2], name='categories')) tm.assert_frame_equal(desc, expected) # NA as a category with tm.assert_produces_warning(FutureWarning): cat = pd.Categorical(["a", "c", "c", np.nan], categories=["b", "a", "c", np.nan]) result = cat.describe() expected = DataFrame([[0, 0], [1, 0.25], [2, 0.5], [1, 0.25]], columns=['counts', 'freqs'], index=pd.CategoricalIndex(['b', 'a', 'c', np.nan], name='categories')) tm.assert_frame_equal(result, expected) # NA as an unused category with tm.assert_produces_warning(FutureWarning): cat = pd.Categorical(["a", "c", "c"], categories=["b", "a", "c", np.nan]) result = cat.describe() exp_idx = pd.CategoricalIndex( ['b', 'a', 'c', np.nan], name='categories') expected = DataFrame([[0, 0], [1, 1 / 3.], [2, 2 / 3.], [0, 0]], columns=['counts', 'freqs'], index=exp_idx) tm.assert_frame_equal(result, expected) def test_print(self): expected = ["[a, b, b, a, a, c, c, c]", "Categories (3, object): [a < b < c]"] expected = "\n".join(expected) actual = repr(self.factor) self.assertEqual(actual, expected) def test_big_print(self): factor = Categorical([0, 1, 2, 0, 1, 2] * 100, ['a', 'b', 'c'], name='cat', fastpath=True) expected = ["[a, b, c, a, b, ..., b, c, a, b, c]", "Length: 600", "Categories (3, object): [a, b, c]"] expected = "\n".join(expected) actual = repr(factor) self.assertEqual(actual, expected) def test_empty_print(self): factor =
Categorical([], ["a", "b", "c"])
pandas.Categorical
""" test the scalar Timedelta """ import numpy as np from datetime import timedelta import pandas as pd import pandas.util.testing as tm from pandas.tseries.timedeltas import _coerce_scalar_to_timedelta_type as ct from pandas import (Timedelta, TimedeltaIndex, timedelta_range, Series, to_timedelta, compat, isnull) from pandas._libs.tslib import iNaT, NaTType class TestTimedeltas(tm.TestCase): _multiprocess_can_split_ = True def setUp(self): pass def test_construction(self): expected = np.timedelta64(10, 'D').astype('m8[ns]').view('i8') self.assertEqual(Timedelta(10, unit='d').value, expected) self.assertEqual(
Timedelta(10.0, unit='d')
pandas.Timedelta
#coding=utf-8 #键盘分析 #(1)分别读取csdn和yahoo数据库中的passwd #(2)自定义了常见的14种键盘密码字符串 #(3)将从数据库中读取的passwd与定义的字符串进行子串匹配(忽略单个的字母和数字) #(4)只选择相对高频的密码,生成保存频率最高的密码和对应频率的csv import pandas as pd import numpy as np import csv np.set_printoptions(suppress=True) ############################################## #(1)读取数据 ############################################## yahoo_data = pd.read_csv('Yahoo-original-mail-passwd.csv',engine='python',sep='\t', quoting=csv.QUOTE_NONE,names=["email","passwd"], quotechar='"', error_bad_lines=False) csdn_data = pd.read_csv('csdn-original-username-mail-passwd.csv',engine='python',sep='\t', quoting=csv.QUOTE_NONE,names=["name","email","passwd"],quotechar='"', error_bad_lines=False) #读取密码 yahoo_passwd =
pd.Series(yahoo_data['passwd'].values)
pandas.Series
"""Functions for transofrmation of films and books datasets. Functions --------- get_books_ratings - transform books dataset get_films_ratings - transform films dataset generate_datasets - generate films and books datasets """ from typing import Set import pandas as pd from pathlib import Path from os import mkdir, path BOOKS_LOCATION = 'raw_data/books.csv' FILMS_LOCATIONS = ['raw_data/title.basics.tsv', 'raw_data/title.ratings.tsv'] BOOKS_COLS = {'original_title': 'title', 'ratings_count': 'num_votes'} FILMS_COLS = {'originalTitle': 'title', 'startYear': 'year', 'averageRating': 'average_rating', 'numVotes': 'num_votes'} def get_books_ratings(location: str) -> pd.DataFrame: """ Read data from books rating dataset, select <NAME>' books and remove unnecessary data. :param location: location of the dataset :return: transformed data >>> get_books_ratings(BOOKS_LOCATION) title average_rating num_votes 0 The Time Machine 7.74 276076 1 The War of the Worlds 7.60 159752 2 The Invisible Man 7.24 84778 3 The Island of Dr. Moreau 7.44 60346 """ dataframe = pd.read_csv(location, low_memory=False) dataframe = dataframe.loc[(dataframe['authors'].str.contains( '<NAME>')) & (~dataframe['language_code'].isnull())] # transform rating from 0-5 to 0-10 system dataframe['average_rating'] *= 2 # only keep columns with title, rating and ratings count dataframe = dataframe.loc[:, ['original_title', 'average_rating', 'ratings_count']].reset_index(drop=True) # rename columns dataframe.rename(columns=BOOKS_COLS, inplace=True) return dataframe def get_films_ratings(location_1: str, location_2: str, books: Set[str]) -> pd.DataFrame: """ Read and transform data from two film datasets, only selecting corresponding films for the given set of books. :param location_1: location of film titles dataset :param location_1: location of film ratings dataset :param books: a set of books to select films to :return: a dataframe with films ratings >>> get_films_ratings(*FILMS_LOCATIONS, {'The Time Machine', 'The Island of Dr. Moreau',\ 'The Invisible Man', 'The War of the Worlds'}) title year average_rating num_votes 0 The Invisible Man 1933 7.7 30172 1 The War of the Worlds 1953 7.1 32429 2 The Time Machine 1960 7.6 35786 3 The Island of Dr. Moreau 1977 5.9 5677 4 The Island of Dr. Moreau 1996 4.6 30894 5 The Time Machine 2002 6.0 117796 6 The Invisible Man 2020 7.1 152154 7 The Invisible Man 2017 3.3 168 """ # read title basics data df_basics = pd.read_csv(location_1, sep='\t', low_memory=False) df_ratings =
pd.read_csv(location_2, sep='\t', low_memory=False)
pandas.read_csv
import empyrical import pandas as pd def main(payload): port_vals_df = _convert_port_vals_to_df(payload["portVals"]) # Calculates per data point returns port_vals_returns = port_vals_df["value"].pct_change() cum_returns = empyrical.cum_returns(port_vals_returns, starting_value=0) # aggregate_returns = empyrical.aggregate_returns(port_vals_returns, convert_to='weekly') max_drawdowns = empyrical.max_drawdown(port_vals_returns) annual_return = empyrical.annual_return( port_vals_returns, period="daily", annualization=None ) annual_volatility = empyrical.annual_volatility( port_vals_returns, period="daily", alpha=2.0, annualization=None ) calmar_ratio = empyrical.calmar_ratio( port_vals_returns, period="daily", annualization=None ) omega_ratio = empyrical.omega_ratio( port_vals_returns, risk_free=0.0, required_return=0.0, annualization=1 ) sharpe_ratio = empyrical.sharpe_ratio( port_vals_returns, risk_free=0, period="daily", annualization=None ) sortino_ratio = empyrical.sortino_ratio( port_vals_returns, required_return=0, period="daily", annualization=None, _downside_risk=None, ) downside_risk = empyrical.downside_risk( port_vals_returns, required_return=0, period="daily", annualization=None ) stability_of_timeseries = empyrical.stability_of_timeseries(port_vals_returns) tail_ratio = empyrical.tail_ratio(port_vals_returns) cagr = empyrical.cagr(port_vals_returns, period="daily", annualization=None) # TODO: These are for benchmarking against stocks and indexes # information_ratio = empyrical.information_ratio(port_vals_returns, 0.3) # alpha_beta = empyrical.alpha_beta(port_vals_returns, factor_returns, risk_free=0.0, period='daily', annualization=None) # alpha = empyrical.alpha(port_vals_returns, factor_returns, risk_free=0.0, period='daily', annualization=None, _beta=None) # beta = empyrical.beta(port_vals_returns, factor_returns, risk_free=0.0) return { "cards": [ {"label": "Max Drawdowns", "value": max_drawdowns}, { "label": "Annual Return", "value": annual_return, "type": "PERCENTAGE", }, { "label": "Annual Volatility", "value": annual_volatility, "type": "PERCENTAGE", }, { "label": "Calmar Ratio", "value": calmar_ratio, "type": "FIXED", }, { "label": "Omega Ratio", "value": omega_ratio, "type": "FIXED", }, { "label": "Sharpe Ratio", "value": sharpe_ratio, "type": "FIXED", }, { "label": "Sortino Ratio", "value": sortino_ratio, "type": "FIXED", }, { "label": "Downside Risk", "value": downside_risk, "type": "FIXED", }, { "label": "Stability of Time Series", "value": stability_of_timeseries, "type": "FIXED", }, { "label": "Tail Ratio", "value": tail_ratio, "type": "FIXED", }, { "label": "CAGR", "value": cagr, "type": "FIXED", }, ], "graphs": [ {"title": "Portfolio Values", "data": payload["portVals"]}, { "title": "Portfolio Values Returns", "data": _convert_df_to_json(port_vals_returns), }, { "title": "Cumulative Returns", "data": _convert_df_to_json(cum_returns), }, ], "tables": [{"title": "Trades", "data": payload["trades"]}], } def _convert_port_vals_to_df(port_vals): df =
pd.DataFrame.from_dict(port_vals, orient="columns")
pandas.DataFrame.from_dict
import pandas as pd from traja.dataset import dataset def test_category_wise_sampling_few_categories(): data = list() num_categories = 5 for category in range(num_categories): for sequence in range(40 + int(category / 14)): data.append([sequence, sequence, category]) df = pd.DataFrame(data, columns=['x', 'y', 'ID']) # Hyperparameters batch_size = 1 num_past = 10 num_future = 5 train_split_ratio = 0.5 validation_split_ratio = 0.2 dataloaders = dataset.MultiModalDataLoader(df, batch_size=batch_size, n_past=num_past, n_future=num_future, num_workers=1, train_split_ratio=train_split_ratio, validation_split_ratio=validation_split_ratio) verify_category_wise_sampled_dataloaders(dataloaders, train_split_ratio, validation_split_ratio, num_categories) def test_category_wise_sampling(): data = list() num_categories = 150 for category in range(num_categories): for sequence in range(40): data.append([sequence, sequence, category]) df =
pd.DataFrame(data, columns=['x', 'y', 'ID'])
pandas.DataFrame
import pandas as pd from bs4 import BeautifulSoup import requests import re from tqdm import tqdm def get_fund_holding(symbol): url = 'http://finance.sina.com.cn/fund/quotes/{}/bc.shtml'.format(symbol) html = requests.get(url) bs = BeautifulSoup(html.content, features="lxml") tbl = bs.find('table', {'id':'fund_sdzc_table'}) if tbl is None or tbl.tbody.text=='\n': return pat = re.compile('\d\d\d\d-\d\d-\d\d') report_date = pd.to_datetime( pat.findall(bs.find('div', {'class':'zqx_zcpz_date'}).text)[0] ) stocks = tbl.attrs['codelist'].split(',') ts_codes = [ s[2:]+'.'+s[:2].upper() for s in stocks] holding = pd.read_html(tbl.prettify())[0] data_dict = dict(zip(ts_codes, holding[('占净值比例(%)', '持股比例')].str[:-1].astype(float))) data = pd.DataFrame.from_dict(data_dict, 'index', columns=['holding']) # lib_fund_holding.write(fund, data, metadata={'report_date':report_date}) return data if __name__ == "__main__": import numpy as np symbols, _ = np.genfromtxt( './refData/fund_list.csv', dtype = str, delimiter = ',', unpack = True ) symbols = [ symbol.zfill(6) for symbol in symbols ] res = [] for symbol in tqdm(symbols): df = get_fund_holding(symbol) if df is not None: res.append( df.reset_index().assign(fund=symbol) ) fund_holding =
pd.concat(res, ignore_index=True)
pandas.concat
import pandas as pd from Datasets.utils import read_parquet, get_bib_info, clean import json import sys import time import csv import random from tqdm import tqdm sys.path.append("Models/") from Models import * from position_rank import get_weights def mask(text1, text2): """ a simple vectorization function """ base = 0 vectors = {} vector1, vector2 = [], [] for phrase in text1: if phrase not in vectors: vectors[phrase] = base base += 1 vector1.append(vectors[phrase]) for phrase in text2: if phrase not in vectors: vectors[phrase] = base base += 1 vector2.append(vectors[phrase]) return vector1, vector2 def get_recall(l1,l2): c = 0.0 C = float(len(l1)) for each in l2: if each in l1: c += 1.0 return c/C def get_precision(l1,l2): c = 0.0 C = float(len(l2)) for each in l2: if each in l1: c += 1.0 return c/C def get_f1(r,p): if r + p == 0: return 0.0 return (2.0*p*r)/(p+r) def get_Rprecision (phrase1, phrase2): """ relaxed since it uses "in" instead of checkign the position of words """ c = 0.0 for w1 in phrase2.split(): if w1 in phrase1: c += 1 return c/max(len(phrase2.split()), len(phrase1.split())) def get_all_Rprecision (gold_keywords, predicted_keywords): scores=[] for gphrase in gold_keywords: rscores=[] for pphrase in predicted_keywords: rscores.append(get_Rprecision(gphrase,pphrase)) scores.append(max(rscores)) return sum(scores) / len(scores) def get_scores (gold_keywords, predicted_keywords): recall = get_recall(gold_keywords, predicted_keywords) precision = get_precision(gold_keywords, predicted_keywords) f1 = get_f1(recall, precision) Rprecision = get_all_Rprecision(gold_keywords, predicted_keywords) return f1, recall, precision, Rprecision def get_all_scores (gold_keywords, predicted_keywords, text=None, adjust=False): """ SemEval-2010 Task 5, micro averaged f1, recall, precision """ metrics = get_scores(gold_keywords, predicted_keywords) adjusted_gold = [] adjusted_metrics = [] if adjust: if text: for each in gold_keywords: if each in text: adjusted_gold.append(each) if len(adjusted_gold) < 1: adjusted_metrics = [] else: adjusted_metrics = get_scores(adjusted_gold, predicted_keywords) return metrics, adjusted_metrics def get_key_abs(filepath,year1=1900,year2=2020, bib_files=[], types=[], journals=[], count=None, rand=False): """{'science-history-journals': 'Journals on the history, philosophy, and popularization of mathematics and science', 'compsci': 'Computer science journals and topics', 'acm': 'ACM Transactions', 'cryptography': 'Cryptography', 'fonts': 'Fonts and typography', 'ieee': 'IEEE journals', 'computational': 'Computational/quantum chemistry/physics journals', 'numerical': 'Numerical analysis journals', 'probstat': 'Probability and statistics journals', 'siam': 'SIAM journals', 'math': 'Mathematics journals', 'mathbio': 'Mathematical and computational biology'} """ jfile = open("Datasets/bib_info.json").read() tables, names = json.loads(jfile) new_tables = {} for table in tables: new_tables[table] = [] for f in tables[table]: new_tables[table].append(list(f.keys())[0]) df = read_parquet(filepath) #df =df[df["bib_file"]=="ibmjrd.bib"] #print(df.columns) #exit() if bib_files: try: df = df[df["bib_file"].isin(bib_files)] except: df = df[df["bibsource"].isin(bib_files)] if types: types_list = [] for type in types: types_list.extend(new_tables[type]) df = df[df['bib_file'].isin(types_list)] if journals: df = df[df["journal"].isin(journals)] # year try: df["year"] = df["year"].astype("int") df = df[df["year"] >= year1] df = df[df["year"] <= year2] except: pass if rand and count: df = df.sample(n=count) else: df = df[:count] keywords = df["keywords"].tolist() abstracts = df["abstract"].tolist() c1,c2=0.0,0.0 print(df.shape) print(df["year"].value_counts()) processed_keywords = [] for i in range(len(keywords)): if ";" in keywords[i]: keyword = keywords[i].split(";") elif "," in keywords[i]: keyword = keywords[i].split(",") elif "\t" in keywords[i]: keyword = keywords[i].split("\t") else: keyword = keywords[i].split(" to") new = [] for key in keyword: if "---" in key: key = key.split("---") new.extend([clean(k) for k in key]) else: new.append(clean(key)) processed_keywords.append(new) return processed_keywords, abstracts def eval_file(filepath, model, year1=1900, year2=2020, bib_files=[], types=[], journals=[], limit=None, rand=False, log=True, model_param = "",outputpaths= ["output.json","output.tsv"], bib_weights = {}): t1 = time.time() keywords_gold, abstracts = get_key_abs(filepath, year1, year2, bib_files, types, journals, limit, rand) if bib_weights: keywords_gold_w, t = get_key_abs(filepath=bib_weights["dataset"], year1 = bib_weights["year1"], year2= bib_weights["year2"], types = bib_weights["types"]) weights = get_weights(keywords_gold_w) model = BibRank(weights) all_scores = [] all_scores_adjust = [] T0 = 0.0 T1 = 0.0 for i in tqdm(range(len(keywords_gold))): t3 = time.time() predicted_keywords = model.get_keywords(abstracts[i]) t4 = time.time() try: scores = get_all_scores(keywords_gold[i], predicted_keywords[0], abstracts[i], adjust=True) except: scores = [[0.0, 0.0, 0.0,0.0] , [0.0, 0.0, 0.0,0.0]] t5 = time.time() all_scores.append(scores[0]) if scores[1]: all_scores_adjust.append(scores[1]) T0 += (t4 - t3) T1 += (t5 - t4) all_scores = pd.DataFrame(all_scores) all_scores_adjust =
pd.DataFrame(all_scores_adjust)
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Computes broadband power, offset and slope of power spectrum Based on selected epochs (e.g. ASCIIS) in the list of files a power spectrum is computed. Based on this power spectrum the broadband power is calculated, followed by the offset and slope using the FOOOF algorithm. Reference paper FOOOF: <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME> (2018) Parameterizing Neural Power Spectra. bioRxiv, 299859. doi: https://doi.org/10.1101/299859 reference Github: https://fooof-tools.github.io/fooof/index.html """ __author__ = '<NAME>' __contact__ = '<EMAIL>' # or <EMAIL> __date__ = '2020/09/14' ### Date it was created __status__ = 'Finished' #################### # Review History # #################### # Reviewed and Updated by Eduarda Centeno 20201030 #################### # Libraries # #################### # Standard imports import time import os import glob import ast from datetime import date # Third party imports import numpy as np # version 1.19.1 import matplotlib.pyplot as plt # version 3.3.0 import pandas as pd # version 1.1.0 from scipy import signal # version 1.4.1 from fooof import FOOOF # version 0.1.3 # Define Functions ------------------------------------------------------------ def find_paths(main_dir, subject, extension, **kwargs): """ Flexible way to find files in subdirectories based on keywords Parameters ---------- main_dir: str Give the main directory where the subjects' folders are stored subject: str Give the name of the subject to be analyzed extension: str Give the extension type **kwargs: str Give keywords that will be used in the filtering of paths !Important! It is possible to use the kwargs 'start' & 'end' (int) OR 'selection' (list or str) for selecting epochs. The 'selection' list should contain the exact way in which the Tr is written, e.g. Tr01, or Tr_1, etc. Examples ------- Ex.1 find_paths(main_dir='/data/KNW/NO-cohorten/Scans/', subject='sub-9690', extension='.asc', key1='T1', key2='BNA', key3='Tr_7') This example will result in a list with a single path: ['.../T1/BNA/1_100_WITH_200_WITH_246_VE_89.643to102.750_Tr_7.asc'] Ex2. find_paths(main_dir='/data/KNW/NO-cohorten/Scans/', subject='sub-9690', extension='.asc', key1='T1', key2='BNA', start=20, end=23) This example will result in a list with several paths: ['.../T1/BNA/1_100_WITH_200_WITH_246_VE_260.037to273.143_Tr_20.asc', '.../T1/BNA/1_100_WITH_200_WITH_246_VE_273.144to286.250_Tr_21.asc', '.../T1/BNA/1_100_WITH_200_WITH_246_VE_286.251to299.358_Tr_22.asc', '.../T1/BNA/1_100_WITH_200_WITH_246_VE_299.358to312.465_Tr_23.asc'] Ex3. find_paths(main_dir='/data/doorgeefluik/', subject='mumo_002', extension='.asc', key1='OD1', selection=['Tr01', 'Tr04']) Returns ------- updatedfilter: list List with path strings Notes ------- Be careful that final slicing for 'start' & 'end' is done assuming that the sorting step was correct. Thus, it is based on index not on finding the specific start-end values in the string. This was done because the tested paths had various ways of using Tr (e.g. Tr_1 or Tr_01, or Tr1 or Tr_01) - what caused inconsistencies in the output. """ # Check if arguments are in the correct type assert isinstance(main_dir, str), 'Argument must be str' assert isinstance(subject, str), 'Argument must be str' assert isinstance(extension, str), 'Argument must be str' # Filtering step based on keywords firstfilter = glob.glob(main_dir + subject + '/**/*' + extension, recursive=True) updatedfilter = firstfilter print('\n..............NaN keys will be printed.................') start = None end = None selection = None for key, value in kwargs.items(): # In case the key value is NaN (possible in subjects dataframe) if not isinstance(value,list) and pd.isnull(value): print(key + '= NaN') continue elif key == 'start': assert isinstance(value, (int,str,float)), 'Argument must be int or number str' start = int(value) elif key == 'end': assert isinstance(value, (int,str,float)), 'Argument must be int or number str' end = int(value) elif key == 'selection': if isinstance(value, list): selection = value elif isinstance(value, str): selection = value.replace(';',',') # Step that convert ; to , (used in example.csv) selection = ast.literal_eval(selection) assert isinstance(selection, list), 'Argument should end up being a list of Tr numbers strings' assert all(isinstance(item, str) for item in selection), 'Argument must be a list of of Tr numbers strings' else: start = None end = None selection = None # Update list accoring to key value updatedfilter = list(filter(lambda path: value in path, updatedfilter)) # Check if too many arguments were passed! print('\n..............Checking if input is correct!.................') #print(start, end, selection) if (start and end) != None and selection != None: raise RuntimeError('User should use Start&End OR Selection') else: print('All good to continue! \n') pass # To find index of Tr (last appearance) location = updatedfilter[0].rfind('Tr') # Sort list according to Tr* ending (+1 was necessary to work properly) updatedfilter.sort(key=lambda path:int(''.join(filter(str.isdigit, path[location+1 :])))) # After the list is sorted, slice by index. if (start and end) != None: print('Start&End were given. \n' + '-- Start is: ' + str(start) + '\n--End is: ' + str(end)) updatedfilter = updatedfilter[start-1:end] # for number in range(start, end): # updatedfilter = [ # list(filter(lambda k: str(number) in k[location:], # updatedfilter))[0] for number in range(start, end) # ] # After the list is sorted, interesect with selection. elif selection != None: print('\nA selection of values was given.' + '\nThe selection was: ' + str(selection)) updatedlist=[] for item in selection: updatedlist += list(filter(lambda path: item + extension in path[location:], updatedfilter)) updatedfilter = updatedlist return updatedfilter def make_csv(csv_path, output_path, extension = '.asc'): """Function to insert the number of epochs to include in analysis into csv. Number of epochs is calculated by comparing the number of epochs available for each subject and including the minimum amount. Parameters ---------- csv_path : str, path to the csv containing information on subjects to include output_path: str, complete path to output new csv (e.g. '/path/to/folder/new_csv.csv') extension : str, file extension of meg files (e.g. '.asc') default = '.asc' Returns ------- None saves the extended csv to the same directory where found old csv (i.e. overwrites old csv) epochs_df: pandas DataFrame, dataframe containing the filepaths to the epochs included for every subject """ df = pd.read_csv(csv_path, delimiter = ',', header =0) nr_epochs = [] for index, row in df.iterrows(): asc_paths = find_paths(main_dir=row['Path'], subject=row['Case_ID'], extension=extension, timepoint=row['MM'], atlas=row['Atlas']) #store nr of epochs available for each subject nr_epochs.append(len(asc_paths)) #find smallest number of epochs available min_nr_epochs = min(nr_epochs) #add start and stop epochs to df df['Start'] = np.repeat(1,len(df['Path'])) df['End'] = np.repeat(min_nr_epochs, len(df['Path'])) #save new csv file that includes the epochs to analyse df.to_csv(output_path, index = False, sep = ',') #load new csv file with start and end epochs new_csv = pd.read_csv(output_path) subs = [] paths = [] #search for asc files between start and end epoch range specified in csv for index, row in new_csv.iterrows(): subs.append(row['Case_ID']) asc_paths = find_paths(main_dir=row['Path'], subject=row['Case_ID'], extension=extension, timepoint=row['MM'], atlas=row['Atlas'], start = row['Start'], end = row['End']) #append list of asc_paths for subject to list paths.append(asc_paths) #store lists of asc_paths (for every subject) in dataframe epochs_df = pd.DataFrame(paths) #index rows to subject IDs epochs_df.set_index([pd.Index(subs)], 'Subs', inplace = True) return(epochs_df) def cal_power_spectrum(timeseries, nr_rois=np.arange(92), fs=1250, window='hamming', nperseg=4096, scaling='spectrum', plot_figure=False, title_plot='average power spectrum'): """ Calculate (and plot) power spectrum of timeseries Parameters ---------- timeseries: DataFrame with ndarrays Rows are timepoints, columns are rois/electrodes Give list with rois/electrodes you want to include, default=np.arange(92) fs: int, optional Sample frequency, default=1250 window: str or tuple, optional Type of window you want to use, check spectral.py for details, default='hamming' nperseg : int, optional Length of each segment, default=4096 scaling : str, optional 'density' calculates the power spectral density (V**2/Hz), 'spectrum' calculates the power spectrum (V**2), default='spectrum' plot_figure: bool Creates a figure of the mean + std over all rois/electrodes, default=False title_plot: str Give title of the plot, default='average power spectrum' Returns ------- f: ndarray Array with sample frequencies (x-axis of power spectrum plot) pxx: ndarray Columns of power spectra for each roi/VE """ pxx = np.empty([int(nperseg/2+1), np.size(nr_rois)]) i = 0 for roi in nr_rois: (f, pxx[:,i]) = signal.welch(timeseries[roi].values, fs, window, nperseg, scaling=scaling) i = i + 1 if plot_figure==True: plt.figure() plt.plot(f, np.mean(pxx,1), color='teal') plt.plot(f, np.mean(pxx,1)+np.std(pxx,1), color='teal', linewidth=0.7) plt.plot(f, np.mean(pxx,1)-np.std(pxx,1), color='teal', linewidth=0.7) plt.fill_between(f, np.mean(pxx,1)+np.std(pxx,1), np.mean(pxx,1) -np.std(pxx,1), color='teal', alpha=0.2) plt.xlim(0, 50) plt.xlabel('Frequency (Hz)') plt.title(title_plot) plt.show() return f, pxx def find_nearest(array, value): """ Find nearest value of interest in array (used for frequencies, no double value issues) Parameters ---------- array: array Give the array in which you want to find index of value nearest-by value: int or float The value of interest Return ------ idx: int Index of value nearest by value of interest """ array = np.asarray(array) idx = (np.abs(array - value)).argmin() return idx def cal_FOOOF_parameters(pxx, f, freq_range=[0.5, 48]): """ Obtain slope and offset using the FOOOF algorithm Reference paper: <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME> (2018) Parameterizing Neural Power Spectra. bioRxiv, 299859. doi: https://doi.org/10.1101/299859 Reference Github: https://fooof-tools.github.io/fooof/index.html Parameters ---------- pxx: ndarray Column of power spectra f: 1d-array Array with sample frequencies (x-asix of power spectrum plot) freq_range: list, optional Gives the upper and lower boundaries to calculate the broadband power, default=[0.5, 48] Returns ------- FOOOF_offset: float Offset FOOOF_slope: float Slope """ # initialize FOOOF oject fm = FOOOF() # create variables fm.fit(f, pxx, freq_range) FOOOF_offset = fm.background_params_[0] FOOOF_slope = fm.background_params_[1] time.sleep(1) # heavy algorithm return FOOOF_offset, FOOOF_slope def run_loop_powerspectrum(subject_list, extension='.asc', nr_rois=np.arange(92), Fs=1250, window_length=4096, freq_range=[0.5, 48], plot_figure=False): """ Calculate power spectrum for all cases within the subject_list Parameters ---------- subject_list: string String with the file path. extension: str, optional Give the extension of ASCIIs, '.txt' or '.asc', default='.asc', nr_rois: int, optional Give list with rois you want to analyse, default=np.arange(92) Fs: int, optional Sample frequency, default=1250 window_length: int, optional Window length to calculate power spectrum, default=4096 freq_range: list, optional Gives the upper and lower boundaries to calculate the broadband power, default=[0.5, 48] plot_figure: bool To plot average power spectrum plot per epoch or not, default=False Return ------ mean_pxx: ndarray (size: len(subjects), len(power spectrum), nr_rois) Power spectum for all subjects, and all rois/VE, averaged over nr_epochs broadband_power : ndarray (size: len(subjects), nr_rois) Broadband power between freq_range f: ndarray Array with sample frequencies (x-axis of power spectrum plot) """ print('\n____STARTING TO COMPUTE POWER SPECTRUM!____') subjects = pd.read_csv(subject_list, delimiter=',', header=0) print('\nThis is the content of the subjects_list file: \n' + str(subjects)) mean_pxx = np.empty([len(subjects), int(window_length/2+1), np.size(nr_rois)]) broadband_power = np.empty([len(subjects), np.size(nr_rois)]) freq = np.empty([len(subjects), int(window_length/2+1)]) for index, row in subjects.iterrows(): print('\n\n//////////// Subject ' + str(index) + ' on subject_list ////////////') files_list = find_paths(main_dir=row['Path'], subject=row['Case_ID'], extension=extension, timepoint=row['MM'], atlas=row['Atlas'], start=row['Start'], end=row['End'], selection=row['Selection']) print('\nThe paths found are: \n' + str(files_list)) if len(files_list) == 0: print('No ASCIIs available for: ' + row) continue elif len(files_list) == 1: single_ascii = files_list[0] timeseries = pd.read_csv(single_ascii, index_col=False, header=None, delimiter='\t') f, pxx = cal_power_spectrum(timeseries, nr_rois=nr_rois, fs=Fs, plot_figure=plot_figure, title_plot='power spectrum') mean_pxx = pxx broadband_power = np.sum( mean_pxx[ find_nearest(f,freq_range[0]): find_nearest(f, freq_range[1]),:], axis=0) freq = f else: sub_pxx = np.zeros((len(files_list), int(window_length/2+1), np.size(nr_rois))) #mean_pxx[index,:,:] = 'nan' #broadband_power[index,:] = 'nan' for file, name in zip(range(len(files_list)),files_list): location = name.rfind('Tr') timeseries = pd.read_csv(files_list[file], index_col=False, header=None, delimiter='\t') # Compute power spectrum f, pxx = cal_power_spectrum(timeseries, nr_rois=nr_rois, fs=Fs, plot_figure=plot_figure, title_plot= 'avg power spectrum - epoch: ' + ''.join(filter(str.isdigit, name[location:]))) sub_pxx[file,:,:] = pxx freq[index,:] = f mean_pxx[index,:,:] = np.nanmean(sub_pxx, axis=0) broadband_power[index,:] = np.sum( mean_pxx[index, find_nearest(f, freq_range[0]): find_nearest(f, freq_range[1]),:], axis=0) return mean_pxx, broadband_power, freq # ----------------------------------------------------------------------------- ########################### # Settings # ########################### # set nice level to 10, especially FOOOF algorithm is heavy! os.nice(10) # 1. Create correctly your list of subjects you want to process # an example is given here: 'example_MEG_list.csv' subject_list = '/path/to/example_MEG_alternative.csv' # 2. Define the type of file extension your are looking for extension = '.asc' # extension type # 3. Select which roi or rois you want to analyze # if you want to analyze 1 roi, specify its number (nr_rois = (10,)) nr_rois = [0,5,9]#(10,) if only run for roi 11 # note that python indexes at 0! # if you want to analyze multiple rois, create list with these rois # (for example nr_rois = np.arange(78) for all 78 cortical AAL rois) # 4. Set sample frequency (1250 Hz for Elekta data) Fs = 1250 # sample frequency # 5. Set frequency range you want to study freq_range=[0.5, 48] # frequency range you want to analyze # 6. Give output directory dir_output = '/path/to/output/folder/' # 7. Do you want to see the plots? plot_choice = False # 7a. Do you want to save the output? save_output = False # you can save output ########################### # Run analysis # ########################### # mean_pxx contains the average power spectra over nr_epochs, for all subjects # for all rois, broadband_power is the area under the average power spectra # over the frequency range for all subjects and rois, f gives the frequencies # of the power spectrum (can be useful when plotting power spectrum) mean_pxx, broadband_power, f = run_loop_powerspectrum(subject_list, extension, nr_rois=nr_rois, Fs=Fs, window_length=4096, freq_range=freq_range, plot_figure=plot_choice) # save output if save_output == True: subjects = pd.read_csv(subject_list, delimiter=',', header=0) print('\n.....Saving power spectra and frequency data......') for index, row in subjects.iterrows(): if len(mean_pxx.shape) > 2: df_pxx_f =
pd.DataFrame(mean_pxx[index,:,:])
pandas.DataFrame
# 均分321个区间,统计落入格区间的数目 import pandas as pd import numpy as np df =
pd.read_csv('submit-final.csv', index_col=0)
pandas.read_csv
# Copyright (c) Microsoft Corporation. # Licensed under the MIT License. """ This file contains training and testing settings to be used in this benchmark, mainly: TRAIN_BASE_END: Base training end date common across all rounds TRAIN_ROUNDS_ENDS: a set of dates denoting end of training period for each of the 6 rounds of the benchmark TEST_STARTS_ENDS: a set of dates denoting start and end of testing period for each of the 6 rounds of the benchmark """ import pandas as pd TRAIN_BASE_END = pd.to_datetime("2016-11-01") TRAIN_ROUNDS_ENDS = pd.to_datetime( ["2016-12-01", "2016-12-01", "2017-01-01", "2017-01-01", "2017-02-01", "2017-02-01",] ) TEST_STARTS_ENDS = [ pd.to_datetime(("2017-01-01", "2017-02-01")), pd.to_datetime(("2017-02-01", "2017-03-01")), pd.to_datetime(("2017-02-01", "2017-03-01")), pd.to_datetime(("2017-03-01", "2017-04-01")), pd.to_datetime(("2017-03-01", "2017-04-01")),
pd.to_datetime(("2017-04-01", "2017-05-01"))
pandas.to_datetime
# -*- coding: utf-8 -*- """ This script can be used to convert a .mat simulation result file into a .csv file with a subset of model variables, as defined in the "outputs" list. The .csv file is saved in the same directory as the .mat file, and is based on the case, climate, and scenario. """ from buildingspy.io.outputfile import Reader import os import pandas as pd import glob use_result_file = False outputs = ['res.PHeaAhu', 'res.PHeaReh', 'res.PCooSen', 'res.PCooLat', 'res.PFan', 'AHU.returnAir.m_flow','AHU.TSup.T','AHU.VOut1.V_flow','weather.weaBus.TDryBul','weather.weaBus.HGloHor', 'Building.zoneVAV1.VSupRoo_flow.V_flow','Building.zoneVAV2.VSupRoo_flow.V_flow','Building.zoneVAV3.VSupRoo_flow.V_flow', 'Building.zoneVAV4.VSupRoo_flow.V_flow','Building.zoneVAV5.VSupRoo_flow.V_flow','Building.zoneVAV6.VSupRoo_flow.V_flow', 'Building.zoneVAV7.VSupRoo_flow.V_flow','Building.zoneVAV8.VSupRoo_flow.V_flow','Building.zoneVAV9.VSupRoo_flow.V_flow', 'Building.zoneVAV10.VSupRoo_flow.V_flow','Building.zoneVAV11.VSupRoo_flow.V_flow','Building.zoneVAV12.VSupRoo_flow.V_flow', 'Building.zoneVAV13.VSupRoo_flow.V_flow','Building.zoneVAV14.VSupRoo_flow.V_flow','Building.zoneVAV15.VSupRoo_flow.V_flow', 'Building.zoneVAV16.VSupRoo_flow.V_flow','Building.zoneVAV17.VSupRoo_flow.V_flow','Building.zoneVAV18.VSupRoo_flow.V_flow', 'Building.zoneVAV19.VSupRoo_flow.V_flow','Building.zoneVAV20.VSupRoo_flow.V_flow','Building.zoneVAV21.VSupRoo_flow.V_flow', 'Building.zoneVAV1.TSupRoo.T','Building.zoneVAV2.TSupRoo.T','Building.zoneVAV3.TSupRoo.T', 'Building.zoneVAV4.TSupRoo.T','Building.zoneVAV5.TSupRoo.T','Building.zoneVAV6.TSupRoo.T', 'Building.zoneVAV7.TSupRoo.T','Building.zoneVAV8.TSupRoo.T','Building.zoneVAV9.TSupRoo.T', 'Building.zoneVAV10.TSupRoo.T','Building.zoneVAV11.TSupRoo.T','Building.zoneVAV12.TSupRoo.T', 'Building.zoneVAV13.TSupRoo.T','Building.zoneVAV14.TSupRoo.T','Building.zoneVAV15.TSupRoo.T', 'Building.zoneVAV16.TSupRoo.T','Building.zoneVAV17.TSupRoo.T','Building.zoneVAV18.TSupRoo.T', 'Building.zoneVAV19.TSupRoo.T','Building.zoneVAV20.TSupRoo.T','Building.zoneVAV21.TSupRoo.T', 'res.EHea', "res.ECooSen", "res.ECooLat", "res.EFan", 'res.DiscomfortHeating', 'res.DiscomfortCooling', 'Building.zoneVAV1.zon.TAir','Building.zoneVAV2.zon.TAir','Building.zoneVAV3.zon.TAir', 'Building.zoneVAV4.zon.TAir','Building.zoneVAV5.zon.TAir','Building.zoneVAV6.zon.TAir', 'Building.zoneVAV7.zon.TAir','Building.zoneVAV8.zon.TAir','Building.zoneVAV9.zon.TAir', 'Building.zoneVAV10.zon.TAir','Building.zoneVAV11.zon.TAir','Building.zoneVAV12.zon.TAir', 'Building.zoneVAV13.zon.TAir','Building.zoneVAV14.zon.TAir','Building.zoneVAV15.zon.TAir', 'Building.zoneVAV16.zon.TAir','Building.zoneVAV17.zon.TAir','Building.zoneVAV18.zon.TAir', 'Building.zoneVAV19.zon.TAir','Building.zoneVAV20.zon.TAir','Building.zoneVAV21.zon.TAir', 'Building.TRooHeaSet','Building.TRooCooSet'] print('Loading results...') if use_result_file: # use result file path directly result_file = "Base_LA_hLoad_lHours/BICBase.mat" path = os.path.abspath(os.path.join(__file__,"..","..","simulations",result_file)) r = Reader(path, 'dymola') print('Done loading results.') # Parse results into dataframe print('Parsing and saving results...') df = pd.DataFrame() for variable in outputs: try: (time, values) = r.values(variable) except KeyError: print('Warning: {0} not in data'.format(variable)) continue df_var =
pd.DataFrame(index=time,data=values,columns=[variable])
pandas.DataFrame
""" Module contains tools for processing Stata files into DataFrames The StataReader below was originally written by <NAME> as part of PyDTA. It has been extended and improved by <NAME> from the Statsmodels project who also developed the StataWriter and was finally added to pandas in a once again improved version. You can find more information on http://presbrey.mit.edu/PyDTA and https://www.statsmodels.org/devel/ """ from __future__ import annotations from collections import abc import datetime from io import BytesIO import os import struct import sys from typing import ( Any, AnyStr, Hashable, Sequence, cast, ) import warnings from dateutil.relativedelta import relativedelta import numpy as np from pandas._libs.lib import infer_dtype from pandas._libs.writers import max_len_string_array from pandas._typing import ( Buffer, CompressionOptions, FilePathOrBuffer, StorageOptions, ) from pandas.util._decorators import ( Appender, doc, ) from pandas.core.dtypes.common import ( ensure_object, is_categorical_dtype, is_datetime64_dtype, ) from pandas import ( Categorical, DatetimeIndex, NaT, Timestamp, concat, isna, to_datetime, to_timedelta, ) from pandas.core import generic from pandas.core.frame import DataFrame from pandas.core.indexes.base import Index from pandas.core.series import Series from pandas.io.common import get_handle _version_error = ( "Version of given Stata file is {version}. pandas supports importing " "versions 105, 108, 111 (Stata 7SE), 113 (Stata 8/9), " "114 (Stata 10/11), 115 (Stata 12), 117 (Stata 13), 118 (Stata 14/15/16)," "and 119 (Stata 15/16, over 32,767 variables)." ) _statafile_processing_params1 = """\ convert_dates : bool, default True Convert date variables to DataFrame time values. convert_categoricals : bool, default True Read value labels and convert columns to Categorical/Factor variables.""" _statafile_processing_params2 = """\ index_col : str, optional Column to set as index. convert_missing : bool, default False Flag indicating whether to convert missing values to their Stata representations. If False, missing values are replaced with nan. If True, columns containing missing values are returned with object data types and missing values are represented by StataMissingValue objects. preserve_dtypes : bool, default True Preserve Stata datatypes. If False, numeric data are upcast to pandas default types for foreign data (float64 or int64). columns : list or None Columns to retain. Columns will be returned in the given order. None returns all columns. order_categoricals : bool, default True Flag indicating whether converted categorical data are ordered.""" _chunksize_params = """\ chunksize : int, default None Return StataReader object for iterations, returns chunks with given number of lines.""" _compression_params = f"""\ compression : str or dict, default None If string, specifies compression mode. If dict, value at key 'method' specifies compression mode. Compression mode must be one of {{'infer', 'gzip', 'bz2', 'zip', 'xz', None}}. If compression mode is 'infer' and `filepath_or_buffer` is path-like, then detect compression from the following extensions: '.gz', '.bz2', '.zip', or '.xz' (otherwise no compression). If dict and compression mode is one of {{'zip', 'gzip', 'bz2'}}, or inferred as one of the above, other entries passed as additional compression options. {generic._shared_docs["storage_options"]}""" _iterator_params = """\ iterator : bool, default False Return StataReader object.""" _reader_notes = """\ Notes ----- Categorical variables read through an iterator may not have the same categories and dtype. This occurs when a variable stored in a DTA file is associated to an incomplete set of value labels that only label a strict subset of the values.""" _read_stata_doc = f""" Read Stata file into DataFrame. Parameters ---------- filepath_or_buffer : str, path object or file-like object Any valid string path is acceptable. The string could be a URL. Valid URL schemes include http, ftp, s3, and file. For file URLs, a host is expected. A local file could be: ``file://localhost/path/to/table.dta``. If you want to pass in a path object, pandas accepts any ``os.PathLike``. By file-like object, we refer to objects with a ``read()`` method, such as a file handle (e.g. via builtin ``open`` function) or ``StringIO``. {_statafile_processing_params1} {_statafile_processing_params2} {_chunksize_params} {_iterator_params} {_compression_params} Returns ------- DataFrame or StataReader See Also -------- io.stata.StataReader : Low-level reader for Stata data files. DataFrame.to_stata: Export Stata data files. {_reader_notes} Examples -------- Creating a dummy stata for this example >>> df = pd.DataFrame({{'animal': ['falcon', 'parrot', 'falcon', ... 'parrot'], ... 'speed': [350, 18, 361, 15]}}) >>> df.to_stata('animals.dta') Read a Stata dta file: >>> df = pd.read_stata('animals.dta') Read a Stata dta file in 10,000 line chunks: >>> values = np.random.randint(0, 10, size=(20_000, 1), dtype="uint8") >>> df = pd.DataFrame(values, columns=["i"]) >>> df.to_stata('filename.dta') >>> itr = pd.read_stata('filename.dta', chunksize=10000) >>> for chunk in itr: ... # Operate on a single chunk, e.g., chunk.mean() ... pass >>> import os >>> os.remove("./filename.dta") >>> os.remove("./animals.dta") """ _read_method_doc = f"""\ Reads observations from Stata file, converting them into a dataframe Parameters ---------- nrows : int Number of lines to read from data file, if None read whole file. {_statafile_processing_params1} {_statafile_processing_params2} Returns ------- DataFrame """ _stata_reader_doc = f"""\ Class for reading Stata dta files. Parameters ---------- path_or_buf : path (string), buffer or path object string, path object (pathlib.Path or py._path.local.LocalPath) or object implementing a binary read() functions. {_statafile_processing_params1} {_statafile_processing_params2} {_chunksize_params} {_compression_params} {_reader_notes} """ _date_formats = ["%tc", "%tC", "%td", "%d", "%tw", "%tm", "%tq", "%th", "%ty"] stata_epoch = datetime.datetime(1960, 1, 1) # TODO: Add typing. As of January 2020 it is not possible to type this function since # mypy doesn't understand that a Series and an int can be combined using mathematical # operations. (+, -). def _stata_elapsed_date_to_datetime_vec(dates, fmt) -> Series: """ Convert from SIF to datetime. https://www.stata.com/help.cgi?datetime Parameters ---------- dates : Series The Stata Internal Format date to convert to datetime according to fmt fmt : str The format to convert to. Can be, tc, td, tw, tm, tq, th, ty Returns Returns ------- converted : Series The converted dates Examples -------- >>> dates = pd.Series([52]) >>> _stata_elapsed_date_to_datetime_vec(dates , "%tw") 0 1961-01-01 dtype: datetime64[ns] Notes ----- datetime/c - tc milliseconds since 01jan1960 00:00:00.000, assuming 86,400 s/day datetime/C - tC - NOT IMPLEMENTED milliseconds since 01jan1960 00:00:00.000, adjusted for leap seconds date - td days since 01jan1960 (01jan1960 = 0) weekly date - tw weeks since 1960w1 This assumes 52 weeks in a year, then adds 7 * remainder of the weeks. The datetime value is the start of the week in terms of days in the year, not ISO calendar weeks. monthly date - tm months since 1960m1 quarterly date - tq quarters since 1960q1 half-yearly date - th half-years since 1960h1 yearly date - ty years since 0000 """ MIN_YEAR, MAX_YEAR = Timestamp.min.year, Timestamp.max.year MAX_DAY_DELTA = (Timestamp.max - datetime.datetime(1960, 1, 1)).days MIN_DAY_DELTA = (Timestamp.min - datetime.datetime(1960, 1, 1)).days MIN_MS_DELTA = MIN_DAY_DELTA * 24 * 3600 * 1000 MAX_MS_DELTA = MAX_DAY_DELTA * 24 * 3600 * 1000 def convert_year_month_safe(year, month) -> Series: """ Convert year and month to datetimes, using pandas vectorized versions when the date range falls within the range supported by pandas. Otherwise it falls back to a slower but more robust method using datetime. """ if year.max() < MAX_YEAR and year.min() > MIN_YEAR: return to_datetime(100 * year + month, format="%Y%m") else: index = getattr(year, "index", None) return Series( [datetime.datetime(y, m, 1) for y, m in zip(year, month)], index=index ) def convert_year_days_safe(year, days) -> Series: """ Converts year (e.g. 1999) and days since the start of the year to a datetime or datetime64 Series """ if year.max() < (MAX_YEAR - 1) and year.min() > MIN_YEAR: return to_datetime(year, format="%Y") + to_timedelta(days, unit="d") else: index = getattr(year, "index", None) value = [ datetime.datetime(y, 1, 1) + relativedelta(days=int(d)) for y, d in zip(year, days) ] return Series(value, index=index) def convert_delta_safe(base, deltas, unit) -> Series: """ Convert base dates and deltas to datetimes, using pandas vectorized versions if the deltas satisfy restrictions required to be expressed as dates in pandas. """ index = getattr(deltas, "index", None) if unit == "d": if deltas.max() > MAX_DAY_DELTA or deltas.min() < MIN_DAY_DELTA: values = [base + relativedelta(days=int(d)) for d in deltas] return Series(values, index=index) elif unit == "ms": if deltas.max() > MAX_MS_DELTA or deltas.min() < MIN_MS_DELTA: values = [ base + relativedelta(microseconds=(int(d) * 1000)) for d in deltas ] return Series(values, index=index) else: raise ValueError("format not understood") base = to_datetime(base) deltas = to_timedelta(deltas, unit=unit) return base + deltas # TODO: If/when pandas supports more than datetime64[ns], this should be # improved to use correct range, e.g. datetime[Y] for yearly bad_locs = np.isnan(dates) has_bad_values = False if bad_locs.any(): has_bad_values = True data_col = Series(dates) data_col[bad_locs] = 1.0 # Replace with NaT dates = dates.astype(np.int64) if fmt.startswith(("%tc", "tc")): # Delta ms relative to base base = stata_epoch ms = dates conv_dates = convert_delta_safe(base, ms, "ms") elif fmt.startswith(("%tC", "tC")): warnings.warn("Encountered %tC format. Leaving in Stata Internal Format.") conv_dates = Series(dates, dtype=object) if has_bad_values: conv_dates[bad_locs] = NaT return conv_dates # Delta days relative to base elif fmt.startswith(("%td", "td", "%d", "d")): base = stata_epoch days = dates conv_dates = convert_delta_safe(base, days, "d") # does not count leap days - 7 days is a week. # 52nd week may have more than 7 days elif fmt.startswith(("%tw", "tw")): year = stata_epoch.year + dates // 52 days = (dates % 52) * 7 conv_dates = convert_year_days_safe(year, days) elif fmt.startswith(("%tm", "tm")): # Delta months relative to base year = stata_epoch.year + dates // 12 month = (dates % 12) + 1 conv_dates = convert_year_month_safe(year, month) elif fmt.startswith(("%tq", "tq")): # Delta quarters relative to base year = stata_epoch.year + dates // 4 quarter_month = (dates % 4) * 3 + 1 conv_dates = convert_year_month_safe(year, quarter_month) elif fmt.startswith(("%th", "th")): # Delta half-years relative to base year = stata_epoch.year + dates // 2 month = (dates % 2) * 6 + 1 conv_dates = convert_year_month_safe(year, month) elif fmt.startswith(("%ty", "ty")): # Years -- not delta year = dates first_month = np.ones_like(dates) conv_dates = convert_year_month_safe(year, first_month) else: raise ValueError(f"Date fmt {fmt} not understood") if has_bad_values: # Restore NaT for bad values conv_dates[bad_locs] = NaT return conv_dates def _datetime_to_stata_elapsed_vec(dates: Series, fmt: str) -> Series: """ Convert from datetime to SIF. https://www.stata.com/help.cgi?datetime Parameters ---------- dates : Series Series or array containing datetime.datetime or datetime64[ns] to convert to the Stata Internal Format given by fmt fmt : str The format to convert to. Can be, tc, td, tw, tm, tq, th, ty """ index = dates.index NS_PER_DAY = 24 * 3600 * 1000 * 1000 * 1000 US_PER_DAY = NS_PER_DAY / 1000 def parse_dates_safe(dates, delta=False, year=False, days=False): d = {} if is_datetime64_dtype(dates.dtype): if delta: time_delta = dates - stata_epoch d["delta"] = time_delta._values.view(np.int64) // 1000 # microseconds if days or year: date_index = DatetimeIndex(dates) d["year"] = date_index._data.year d["month"] = date_index._data.month if days: days_in_ns = dates.view(np.int64) - to_datetime( d["year"], format="%Y" ).view(np.int64) d["days"] = days_in_ns // NS_PER_DAY elif infer_dtype(dates, skipna=False) == "datetime": if delta: delta = dates._values - stata_epoch def f(x: datetime.timedelta) -> float: return US_PER_DAY * x.days + 1000000 * x.seconds + x.microseconds v = np.vectorize(f) d["delta"] = v(delta) if year: year_month = dates.apply(lambda x: 100 * x.year + x.month) d["year"] = year_month._values // 100 d["month"] = year_month._values - d["year"] * 100 if days: def g(x: datetime.datetime) -> int: return (x - datetime.datetime(x.year, 1, 1)).days v = np.vectorize(g) d["days"] = v(dates) else: raise ValueError( "Columns containing dates must contain either " "datetime64, datetime.datetime or null values." ) return DataFrame(d, index=index) bad_loc = isna(dates) index = dates.index if bad_loc.any(): dates = Series(dates) if is_datetime64_dtype(dates): dates[bad_loc] = to_datetime(stata_epoch) else: dates[bad_loc] = stata_epoch if fmt in ["%tc", "tc"]: d = parse_dates_safe(dates, delta=True) conv_dates = d.delta / 1000 elif fmt in ["%tC", "tC"]: warnings.warn("Stata Internal Format tC not supported.") conv_dates = dates elif fmt in ["%td", "td"]: d = parse_dates_safe(dates, delta=True) conv_dates = d.delta // US_PER_DAY elif fmt in ["%tw", "tw"]: d = parse_dates_safe(dates, year=True, days=True) conv_dates = 52 * (d.year - stata_epoch.year) + d.days // 7 elif fmt in ["%tm", "tm"]: d = parse_dates_safe(dates, year=True) conv_dates = 12 * (d.year - stata_epoch.year) + d.month - 1 elif fmt in ["%tq", "tq"]: d = parse_dates_safe(dates, year=True) conv_dates = 4 * (d.year - stata_epoch.year) + (d.month - 1) // 3 elif fmt in ["%th", "th"]: d = parse_dates_safe(dates, year=True) conv_dates = 2 * (d.year - stata_epoch.year) + (d.month > 6).astype(int) elif fmt in ["%ty", "ty"]: d = parse_dates_safe(dates, year=True) conv_dates = d.year else: raise ValueError(f"Format {fmt} is not a known Stata date format") conv_dates = Series(conv_dates, dtype=np.float64) missing_value = struct.unpack("<d", b"\x00\x00\x00\x00\x00\x00\xe0\x7f")[0] conv_dates[bad_loc] = missing_value return Series(conv_dates, index=index) excessive_string_length_error = """ Fixed width strings in Stata .dta files are limited to 244 (or fewer) characters. Column '{0}' does not satisfy this restriction. Use the 'version=117' parameter to write the newer (Stata 13 and later) format. """ class PossiblePrecisionLoss(Warning): pass precision_loss_doc = """ Column converted from {0} to {1}, and some data are outside of the lossless conversion range. This may result in a loss of precision in the saved data. """ class ValueLabelTypeMismatch(Warning): pass value_label_mismatch_doc = """ Stata value labels (pandas categories) must be strings. Column {0} contains non-string labels which will be converted to strings. Please check that the Stata data file created has not lost information due to duplicate labels. """ class InvalidColumnName(Warning): pass invalid_name_doc = """ Not all pandas column names were valid Stata variable names. The following replacements have been made: {0} If this is not what you expect, please make sure you have Stata-compliant column names in your DataFrame (strings only, max 32 characters, only alphanumerics and underscores, no Stata reserved words) """ class CategoricalConversionWarning(Warning): pass categorical_conversion_warning = """ One or more series with value labels are not fully labeled. Reading this dataset with an iterator results in categorical variable with different categories. This occurs since it is not possible to know all possible values until the entire dataset has been read. To avoid this warning, you can either read dataset without an iterator, or manually convert categorical data by ``convert_categoricals`` to False and then accessing the variable labels through the value_labels method of the reader. """ def _cast_to_stata_types(data: DataFrame) -> DataFrame: """ Checks the dtypes of the columns of a pandas DataFrame for compatibility with the data types and ranges supported by Stata, and converts if necessary. Parameters ---------- data : DataFrame The DataFrame to check and convert Notes ----- Numeric columns in Stata must be one of int8, int16, int32, float32 or float64, with some additional value restrictions. int8 and int16 columns are checked for violations of the value restrictions and upcast if needed. int64 data is not usable in Stata, and so it is downcast to int32 whenever the value are in the int32 range, and sidecast to float64 when larger than this range. If the int64 values are outside of the range of those perfectly representable as float64 values, a warning is raised. bool columns are cast to int8. uint columns are converted to int of the same size if there is no loss in precision, otherwise are upcast to a larger type. uint64 is currently not supported since it is concerted to object in a DataFrame. """ ws = "" # original, if small, if large conversion_data = ( (np.bool_, np.int8, np.int8), (np.uint8, np.int8, np.int16), (np.uint16, np.int16, np.int32), (np.uint32, np.int32, np.int64), ) float32_max = struct.unpack("<f", b"\xff\xff\xff\x7e")[0] float64_max = struct.unpack("<d", b"\xff\xff\xff\xff\xff\xff\xdf\x7f")[0] for col in data: dtype = data[col].dtype # Cast from unsupported types to supported types for c_data in conversion_data: if dtype == c_data[0]: if data[col].max() <= np.iinfo(c_data[1]).max: dtype = c_data[1] else: dtype = c_data[2] if c_data[2] == np.int64: # Warn if necessary if data[col].max() >= 2 ** 53: ws = precision_loss_doc.format("uint64", "float64") data[col] = data[col].astype(dtype) # Check values and upcast if necessary if dtype == np.int8: if data[col].max() > 100 or data[col].min() < -127: data[col] = data[col].astype(np.int16) elif dtype == np.int16: if data[col].max() > 32740 or data[col].min() < -32767: data[col] = data[col].astype(np.int32) elif dtype == np.int64: if data[col].max() <= 2147483620 and data[col].min() >= -2147483647: data[col] = data[col].astype(np.int32) else: data[col] = data[col].astype(np.float64) if data[col].max() >= 2 ** 53 or data[col].min() <= -(2 ** 53): ws = precision_loss_doc.format("int64", "float64") elif dtype in (np.float32, np.float64): value = data[col].max() if np.isinf(value): raise ValueError( f"Column {col} has a maximum value of infinity which is outside " "the range supported by Stata." ) if dtype == np.float32 and value > float32_max: data[col] = data[col].astype(np.float64) elif dtype == np.float64: if value > float64_max: raise ValueError( f"Column {col} has a maximum value ({value}) outside the range " f"supported by Stata ({float64_max})" ) if ws: warnings.warn(ws, PossiblePrecisionLoss) return data class StataValueLabel: """ Parse a categorical column and prepare formatted output Parameters ---------- catarray : Series Categorical Series to encode encoding : {"latin-1", "utf-8"} Encoding to use for value labels. """ def __init__(self, catarray: Series, encoding: str = "latin-1"): if encoding not in ("latin-1", "utf-8"): raise ValueError("Only latin-1 and utf-8 are supported.") self.labname = catarray.name self._encoding = encoding categories = catarray.cat.categories self.value_labels = list(zip(np.arange(len(categories)), categories)) self.value_labels.sort(key=lambda x: x[0]) self.text_len = 0 self.txt: list[bytes] = [] self.n = 0 # Compute lengths and setup lists of offsets and labels offsets: list[int] = [] values: list[int] = [] for vl in self.value_labels: category = vl[1] if not isinstance(category, str): category = str(category) warnings.warn( value_label_mismatch_doc.format(catarray.name), ValueLabelTypeMismatch, ) category = category.encode(encoding) offsets.append(self.text_len) self.text_len += len(category) + 1 # +1 for the padding values.append(vl[0]) self.txt.append(category) self.n += 1 if self.text_len > 32000: raise ValueError( "Stata value labels for a single variable must " "have a combined length less than 32,000 characters." ) # Ensure int32 self.off = np.array(offsets, dtype=np.int32) self.val = np.array(values, dtype=np.int32) # Total length self.len = 4 + 4 + 4 * self.n + 4 * self.n + self.text_len def generate_value_label(self, byteorder: str) -> bytes: """ Generate the binary representation of the value labels. Parameters ---------- byteorder : str Byte order of the output Returns ------- value_label : bytes Bytes containing the formatted value label """ encoding = self._encoding bio = BytesIO() null_byte = b"\x00" # len bio.write(struct.pack(byteorder + "i", self.len)) # labname labname = str(self.labname)[:32].encode(encoding) lab_len = 32 if encoding not in ("utf-8", "utf8") else 128 labname = _pad_bytes(labname, lab_len + 1) bio.write(labname) # padding - 3 bytes for i in range(3): bio.write(struct.pack("c", null_byte)) # value_label_table # n - int32 bio.write(struct.pack(byteorder + "i", self.n)) # textlen - int32 bio.write(struct.pack(byteorder + "i", self.text_len)) # off - int32 array (n elements) for offset in self.off: bio.write(struct.pack(byteorder + "i", offset)) # val - int32 array (n elements) for value in self.val: bio.write(struct.pack(byteorder + "i", value)) # txt - Text labels, null terminated for text in self.txt: bio.write(text + null_byte) return bio.getvalue() class StataMissingValue: """ An observation's missing value. Parameters ---------- value : {int, float} The Stata missing value code Notes ----- More information: <https://www.stata.com/help.cgi?missing> Integer missing values make the code '.', '.a', ..., '.z' to the ranges 101 ... 127 (for int8), 32741 ... 32767 (for int16) and 2147483621 ... 2147483647 (for int32). Missing values for floating point data types are more complex but the pattern is simple to discern from the following table. np.float32 missing values (float in Stata) 0000007f . 0008007f .a 0010007f .b ... 00c0007f .x 00c8007f .y 00d0007f .z np.float64 missing values (double in Stata) 000000000000e07f . 000000000001e07f .a 000000000002e07f .b ... 000000000018e07f .x 000000000019e07f .y 00000000001ae07f .z """ # Construct a dictionary of missing values MISSING_VALUES: dict[float, str] = {} bases = (101, 32741, 2147483621) for b in bases: # Conversion to long to avoid hash issues on 32 bit platforms #8968 MISSING_VALUES[b] = "." for i in range(1, 27): MISSING_VALUES[i + b] = "." + chr(96 + i) float32_base = b"\x00\x00\x00\x7f" increment = struct.unpack("<i", b"\x00\x08\x00\x00")[0] for i in range(27): key = struct.unpack("<f", float32_base)[0] MISSING_VALUES[key] = "." if i > 0: MISSING_VALUES[key] += chr(96 + i) int_value = struct.unpack("<i", struct.pack("<f", key))[0] + increment float32_base = struct.pack("<i", int_value) float64_base = b"\x00\x00\x00\x00\x00\x00\xe0\x7f" increment = struct.unpack("q", b"\x00\x00\x00\x00\x00\x01\x00\x00")[0] for i in range(27): key = struct.unpack("<d", float64_base)[0] MISSING_VALUES[key] = "." if i > 0: MISSING_VALUES[key] += chr(96 + i) int_value = struct.unpack("q", struct.pack("<d", key))[0] + increment float64_base = struct.pack("q", int_value) BASE_MISSING_VALUES = { "int8": 101, "int16": 32741, "int32": 2147483621, "float32": struct.unpack("<f", float32_base)[0], "float64": struct.unpack("<d", float64_base)[0], } def __init__(self, value: int | float): self._value = value # Conversion to int to avoid hash issues on 32 bit platforms #8968 value = int(value) if value < 2147483648 else float(value) self._str = self.MISSING_VALUES[value] @property def string(self) -> str: """ The Stata representation of the missing value: '.', '.a'..'.z' Returns ------- str The representation of the missing value. """ return self._str @property def value(self) -> int | float: """ The binary representation of the missing value. Returns ------- {int, float} The binary representation of the missing value. """ return self._value def __str__(self) -> str: return self.string def __repr__(self) -> str: return f"{type(self)}({self})" def __eq__(self, other: Any) -> bool: return ( isinstance(other, type(self)) and self.string == other.string and self.value == other.value ) @classmethod def get_base_missing_value(cls, dtype: np.dtype) -> int | float: # error: Non-overlapping equality check (left operand type: "dtype[Any]", right # operand type: "Type[signedinteger[Any]]") if dtype == np.int8: # type: ignore[comparison-overlap] value = cls.BASE_MISSING_VALUES["int8"] # error: Non-overlapping equality check (left operand type: "dtype[Any]", right # operand type: "Type[signedinteger[Any]]") elif dtype == np.int16: # type: ignore[comparison-overlap] value = cls.BASE_MISSING_VALUES["int16"] # error: Non-overlapping equality check (left operand type: "dtype[Any]", right # operand type: "Type[signedinteger[Any]]") elif dtype == np.int32: # type: ignore[comparison-overlap] value = cls.BASE_MISSING_VALUES["int32"] # error: Non-overlapping equality check (left operand type: "dtype[Any]", right # operand type: "Type[floating[Any]]") elif dtype == np.float32: # type: ignore[comparison-overlap] value = cls.BASE_MISSING_VALUES["float32"] # error: Non-overlapping equality check (left operand type: "dtype[Any]", right # operand type: "Type[floating[Any]]") elif dtype == np.float64: # type: ignore[comparison-overlap] value = cls.BASE_MISSING_VALUES["float64"] else: raise ValueError("Unsupported dtype") return value class StataParser: def __init__(self): # type code. # -------------------- # str1 1 = 0x01 # str2 2 = 0x02 # ... # str244 244 = 0xf4 # byte 251 = 0xfb (sic) # int 252 = 0xfc # long 253 = 0xfd # float 254 = 0xfe # double 255 = 0xff # -------------------- # NOTE: the byte type seems to be reserved for categorical variables # with a label, but the underlying variable is -127 to 100 # we're going to drop the label and cast to int self.DTYPE_MAP = dict( list(zip(range(1, 245), [np.dtype("a" + str(i)) for i in range(1, 245)])) + [ (251, np.dtype(np.int8)), (252, np.dtype(np.int16)), (253, np.dtype(np.int32)), (254, np.dtype(np.float32)), (255, np.dtype(np.float64)), ] ) self.DTYPE_MAP_XML = { 32768: np.dtype(np.uint8), # Keys to GSO 65526: np.dtype(np.float64), 65527: np.dtype(np.float32), 65528: np.dtype(np.int32), 65529: np.dtype(np.int16), 65530: np.dtype(np.int8), } # error: Argument 1 to "list" has incompatible type "str"; # expected "Iterable[int]" [arg-type] self.TYPE_MAP = list(range(251)) + list("bhlfd") # type: ignore[arg-type] self.TYPE_MAP_XML = { # Not really a Q, unclear how to handle byteswap 32768: "Q", 65526: "d", 65527: "f", 65528: "l", 65529: "h", 65530: "b", } # NOTE: technically, some of these are wrong. there are more numbers # that can be represented. it's the 27 ABOVE and BELOW the max listed # numeric data type in [U] 12.2.2 of the 11.2 manual float32_min = b"\xff\xff\xff\xfe" float32_max = b"\xff\xff\xff\x7e" float64_min = b"\xff\xff\xff\xff\xff\xff\xef\xff" float64_max = b"\xff\xff\xff\xff\xff\xff\xdf\x7f" self.VALID_RANGE = { "b": (-127, 100), "h": (-32767, 32740), "l": (-2147483647, 2147483620), "f": ( np.float32(struct.unpack("<f", float32_min)[0]), np.float32(struct.unpack("<f", float32_max)[0]), ), "d": ( np.float64(struct.unpack("<d", float64_min)[0]), np.float64(struct.unpack("<d", float64_max)[0]), ), } self.OLD_TYPE_MAPPING = { 98: 251, # byte 105: 252, # int 108: 253, # long 102: 254, # float 100: 255, # double } # These missing values are the generic '.' in Stata, and are used # to replace nans self.MISSING_VALUES = { "b": 101, "h": 32741, "l": 2147483621, "f": np.float32(struct.unpack("<f", b"\x00\x00\x00\x7f")[0]), "d": np.float64( struct.unpack("<d", b"\x00\x00\x00\x00\x00\x00\xe0\x7f")[0] ), } self.NUMPY_TYPE_MAP = { "b": "i1", "h": "i2", "l": "i4", "f": "f4", "d": "f8", "Q": "u8", } # Reserved words cannot be used as variable names self.RESERVED_WORDS = ( "aggregate", "array", "boolean", "break", "byte", "case", "catch", "class", "colvector", "complex", "const", "continue", "default", "delegate", "delete", "do", "double", "else", "eltypedef", "end", "enum", "explicit", "export", "external", "float", "for", "friend", "function", "global", "goto", "if", "inline", "int", "local", "long", "NULL", "pragma", "protected", "quad", "rowvector", "short", "typedef", "typename", "virtual", "_all", "_N", "_skip", "_b", "_pi", "str#", "in", "_pred", "strL", "_coef", "_rc", "using", "_cons", "_se", "with", "_n", ) class StataReader(StataParser, abc.Iterator): __doc__ = _stata_reader_doc def __init__( self, path_or_buf: FilePathOrBuffer, convert_dates: bool = True, convert_categoricals: bool = True, index_col: str | None = None, convert_missing: bool = False, preserve_dtypes: bool = True, columns: Sequence[str] | None = None, order_categoricals: bool = True, chunksize: int | None = None, compression: CompressionOptions = "infer", storage_options: StorageOptions = None, ): super().__init__() self.col_sizes: list[int] = [] # Arguments to the reader (can be temporarily overridden in # calls to read). self._convert_dates = convert_dates self._convert_categoricals = convert_categoricals self._index_col = index_col self._convert_missing = convert_missing self._preserve_dtypes = preserve_dtypes self._columns = columns self._order_categoricals = order_categoricals self._encoding = "" self._chunksize = chunksize self._using_iterator = False if self._chunksize is None: self._chunksize = 1 elif not isinstance(chunksize, int) or chunksize <= 0: raise ValueError("chunksize must be a positive integer when set.") # State variables for the file self._has_string_data = False self._missing_values = False self._can_read_value_labels = False self._column_selector_set = False self._value_labels_read = False self._data_read = False self._dtype: np.dtype | None = None self._lines_read = 0 self._native_byteorder = _set_endianness(sys.byteorder) with get_handle( path_or_buf, "rb", storage_options=storage_options, is_text=False, compression=compression, ) as handles: # Copy to BytesIO, and ensure no encoding # Argument 1 to "BytesIO" has incompatible type "Union[Any, bytes, None, # str]"; expected "bytes" self.path_or_buf = BytesIO(handles.handle.read()) # type: ignore[arg-type] self._read_header() self._setup_dtype() def __enter__(self) -> StataReader: """enter context manager""" return self def __exit__(self, exc_type, exc_value, traceback) -> None: """exit context manager""" self.close() def close(self) -> None: """close the handle if its open""" self.path_or_buf.close() def _set_encoding(self) -> None: """ Set string encoding which depends on file version """ if self.format_version < 118: self._encoding = "latin-1" else: self._encoding = "utf-8" def _read_header(self) -> None: first_char = self.path_or_buf.read(1) if struct.unpack("c", first_char)[0] == b"<": self._read_new_header() else: self._read_old_header(first_char) self.has_string_data = len([x for x in self.typlist if type(x) is int]) > 0 # calculate size of a data record self.col_sizes = [self._calcsize(typ) for typ in self.typlist] def _read_new_header(self) -> None: # The first part of the header is common to 117 - 119. self.path_or_buf.read(27) # stata_dta><header><release> self.format_version = int(self.path_or_buf.read(3)) if self.format_version not in [117, 118, 119]: raise ValueError(_version_error.format(version=self.format_version)) self._set_encoding() self.path_or_buf.read(21) # </release><byteorder> self.byteorder = self.path_or_buf.read(3) == b"MSF" and ">" or "<" self.path_or_buf.read(15) # </byteorder><K> nvar_type = "H" if self.format_version <= 118 else "I" nvar_size = 2 if self.format_version <= 118 else 4 self.nvar = struct.unpack( self.byteorder + nvar_type, self.path_or_buf.read(nvar_size) )[0] self.path_or_buf.read(7) # </K><N> self.nobs = self._get_nobs() self.path_or_buf.read(11) # </N><label> self._data_label = self._get_data_label() self.path_or_buf.read(19) # </label><timestamp> self.time_stamp = self._get_time_stamp() self.path_or_buf.read(26) # </timestamp></header><map> self.path_or_buf.read(8) # 0x0000000000000000 self.path_or_buf.read(8) # position of <map> self._seek_vartypes = ( struct.unpack(self.byteorder + "q", self.path_or_buf.read(8))[0] + 16 ) self._seek_varnames = ( struct.unpack(self.byteorder + "q", self.path_or_buf.read(8))[0] + 10 ) self._seek_sortlist = ( struct.unpack(self.byteorder + "q", self.path_or_buf.read(8))[0] + 10 ) self._seek_formats = ( struct.unpack(self.byteorder + "q", self.path_or_buf.read(8))[0] + 9 ) self._seek_value_label_names = ( struct.unpack(self.byteorder + "q", self.path_or_buf.read(8))[0] + 19 ) # Requires version-specific treatment self._seek_variable_labels = self._get_seek_variable_labels() self.path_or_buf.read(8) # <characteristics> self.data_location = ( struct.unpack(self.byteorder + "q", self.path_or_buf.read(8))[0] + 6 ) self.seek_strls = ( struct.unpack(self.byteorder + "q", self.path_or_buf.read(8))[0] + 7 ) self.seek_value_labels = ( struct.unpack(self.byteorder + "q", self.path_or_buf.read(8))[0] + 14 ) self.typlist, self.dtyplist = self._get_dtypes(self._seek_vartypes) self.path_or_buf.seek(self._seek_varnames) self.varlist = self._get_varlist() self.path_or_buf.seek(self._seek_sortlist) self.srtlist = struct.unpack( self.byteorder + ("h" * (self.nvar + 1)), self.path_or_buf.read(2 * (self.nvar + 1)), )[:-1] self.path_or_buf.seek(self._seek_formats) self.fmtlist = self._get_fmtlist() self.path_or_buf.seek(self._seek_value_label_names) self.lbllist = self._get_lbllist() self.path_or_buf.seek(self._seek_variable_labels) self._variable_labels = self._get_variable_labels() # Get data type information, works for versions 117-119. def _get_dtypes( self, seek_vartypes: int ) -> tuple[list[int | str], list[str | np.dtype]]: self.path_or_buf.seek(seek_vartypes) raw_typlist = [ struct.unpack(self.byteorder + "H", self.path_or_buf.read(2))[0] for _ in range(self.nvar) ] def f(typ: int) -> int | str: if typ <= 2045: return typ try: return self.TYPE_MAP_XML[typ] except KeyError as err: raise ValueError(f"cannot convert stata types [{typ}]") from err typlist = [f(x) for x in raw_typlist] def g(typ: int) -> str | np.dtype: if typ <= 2045: return str(typ) try: # error: Incompatible return value type (got "Type[number]", expected # "Union[str, dtype]") return self.DTYPE_MAP_XML[typ] # type: ignore[return-value] except KeyError as err: raise ValueError(f"cannot convert stata dtype [{typ}]") from err dtyplist = [g(x) for x in raw_typlist] return typlist, dtyplist def _get_varlist(self) -> list[str]: # 33 in order formats, 129 in formats 118 and 119 b = 33 if self.format_version < 118 else 129 return [self._decode(self.path_or_buf.read(b)) for _ in range(self.nvar)] # Returns the format list def _get_fmtlist(self) -> list[str]: if self.format_version >= 118: b = 57 elif self.format_version > 113: b = 49 elif self.format_version > 104: b = 12 else: b = 7 return [self._decode(self.path_or_buf.read(b)) for _ in range(self.nvar)] # Returns the label list def _get_lbllist(self) -> list[str]: if self.format_version >= 118: b = 129 elif self.format_version > 108: b = 33 else: b = 9 return [self._decode(self.path_or_buf.read(b)) for _ in range(self.nvar)] def _get_variable_labels(self) -> list[str]: if self.format_version >= 118: vlblist = [ self._decode(self.path_or_buf.read(321)) for _ in range(self.nvar) ] elif self.format_version > 105: vlblist = [ self._decode(self.path_or_buf.read(81)) for _ in range(self.nvar) ] else: vlblist = [ self._decode(self.path_or_buf.read(32)) for _ in range(self.nvar) ] return vlblist def _get_nobs(self) -> int: if self.format_version >= 118: return struct.unpack(self.byteorder + "Q", self.path_or_buf.read(8))[0] else: return struct.unpack(self.byteorder + "I", self.path_or_buf.read(4))[0] def _get_data_label(self) -> str: if self.format_version >= 118: strlen = struct.unpack(self.byteorder + "H", self.path_or_buf.read(2))[0] return self._decode(self.path_or_buf.read(strlen)) elif self.format_version == 117: strlen = struct.unpack("b", self.path_or_buf.read(1))[0] return self._decode(self.path_or_buf.read(strlen)) elif self.format_version > 105: return self._decode(self.path_or_buf.read(81)) else: return self._decode(self.path_or_buf.read(32)) def _get_time_stamp(self) -> str: if self.format_version >= 118: strlen = struct.unpack("b", self.path_or_buf.read(1))[0] return self.path_or_buf.read(strlen).decode("utf-8") elif self.format_version == 117: strlen = struct.unpack("b", self.path_or_buf.read(1))[0] return self._decode(self.path_or_buf.read(strlen)) elif self.format_version > 104: return self._decode(self.path_or_buf.read(18)) else: raise ValueError() def _get_seek_variable_labels(self) -> int: if self.format_version == 117: self.path_or_buf.read(8) # <variable_labels>, throw away # Stata 117 data files do not follow the described format. This is # a work around that uses the previous label, 33 bytes for each # variable, 20 for the closing tag and 17 for the opening tag return self._seek_value_label_names + (33 * self.nvar) + 20 + 17 elif self.format_version >= 118: return struct.unpack(self.byteorder + "q", self.path_or_buf.read(8))[0] + 17 else: raise ValueError() def _read_old_header(self, first_char: bytes) -> None: self.format_version = struct.unpack("b", first_char)[0] if self.format_version not in [104, 105, 108, 111, 113, 114, 115]: raise ValueError(_version_error.format(version=self.format_version)) self._set_encoding() self.byteorder = ( struct.unpack("b", self.path_or_buf.read(1))[0] == 0x1 and ">" or "<" ) self.filetype = struct.unpack("b", self.path_or_buf.read(1))[0] self.path_or_buf.read(1) # unused self.nvar = struct.unpack(self.byteorder + "H", self.path_or_buf.read(2))[0] self.nobs = self._get_nobs() self._data_label = self._get_data_label() self.time_stamp = self._get_time_stamp() # descriptors if self.format_version > 108: typlist = [ord(self.path_or_buf.read(1)) for _ in range(self.nvar)] else: buf = self.path_or_buf.read(self.nvar) typlistb = np.frombuffer(buf, dtype=np.uint8) typlist = [] for tp in typlistb: if tp in self.OLD_TYPE_MAPPING: typlist.append(self.OLD_TYPE_MAPPING[tp]) else: typlist.append(tp - 127) # bytes try: self.typlist = [self.TYPE_MAP[typ] for typ in typlist] except ValueError as err: invalid_types = ",".join([str(x) for x in typlist]) raise ValueError(f"cannot convert stata types [{invalid_types}]") from err try: self.dtyplist = [self.DTYPE_MAP[typ] for typ in typlist] except ValueError as err: invalid_dtypes = ",".join([str(x) for x in typlist]) raise ValueError(f"cannot convert stata dtypes [{invalid_dtypes}]") from err if self.format_version > 108: self.varlist = [ self._decode(self.path_or_buf.read(33)) for _ in range(self.nvar) ] else: self.varlist = [ self._decode(self.path_or_buf.read(9)) for _ in range(self.nvar) ] self.srtlist = struct.unpack( self.byteorder + ("h" * (self.nvar + 1)), self.path_or_buf.read(2 * (self.nvar + 1)), )[:-1] self.fmtlist = self._get_fmtlist() self.lbllist = self._get_lbllist() self._variable_labels = self._get_variable_labels() # ignore expansion fields (Format 105 and later) # When reading, read five bytes; the last four bytes now tell you # the size of the next read, which you discard. You then continue # like this until you read 5 bytes of zeros. if self.format_version > 104: while True: data_type = struct.unpack( self.byteorder + "b", self.path_or_buf.read(1) )[0] if self.format_version > 108: data_len = struct.unpack( self.byteorder + "i", self.path_or_buf.read(4) )[0] else: data_len = struct.unpack( self.byteorder + "h", self.path_or_buf.read(2) )[0] if data_type == 0: break self.path_or_buf.read(data_len) # necessary data to continue parsing self.data_location = self.path_or_buf.tell() def _setup_dtype(self) -> np.dtype: """Map between numpy and state dtypes""" if self._dtype is not None: return self._dtype dtypes = [] # Convert struct data types to numpy data type for i, typ in enumerate(self.typlist): if typ in self.NUMPY_TYPE_MAP: typ = cast(str, typ) # only strs in NUMPY_TYPE_MAP dtypes.append(("s" + str(i), self.byteorder + self.NUMPY_TYPE_MAP[typ])) else: dtypes.append(("s" + str(i), "S" + str(typ))) self._dtype = np.dtype(dtypes) return self._dtype def _calcsize(self, fmt: int | str) -> int: if isinstance(fmt, int): return fmt return struct.calcsize(self.byteorder + fmt) def _decode(self, s: bytes) -> str: # have bytes not strings, so must decode s = s.partition(b"\0")[0] try: return s.decode(self._encoding) except UnicodeDecodeError: # GH 25960, fallback to handle incorrect format produced when 117 # files are converted to 118 files in Stata encoding = self._encoding msg = f""" One or more strings in the dta file could not be decoded using {encoding}, and so the fallback encoding of latin-1 is being used. This can happen when a file has been incorrectly encoded by Stata or some other software. You should verify the string values returned are correct.""" warnings.warn(msg, UnicodeWarning) return s.decode("latin-1") def _read_value_labels(self) -> None: if self._value_labels_read: # Don't read twice return if self.format_version <= 108: # Value labels are not supported in version 108 and earlier. self._value_labels_read = True self.value_label_dict: dict[str, dict[float | int, str]] = {} return if self.format_version >= 117: self.path_or_buf.seek(self.seek_value_labels) else: assert self._dtype is not None offset = self.nobs * self._dtype.itemsize self.path_or_buf.seek(self.data_location + offset) self._value_labels_read = True self.value_label_dict = {} while True: if self.format_version >= 117: if self.path_or_buf.read(5) == b"</val": # <lbl> break # end of value label table slength = self.path_or_buf.read(4) if not slength: break # end of value label table (format < 117) if self.format_version <= 117: labname = self._decode(self.path_or_buf.read(33)) else: labname = self._decode(self.path_or_buf.read(129)) self.path_or_buf.read(3) # padding n = struct.unpack(self.byteorder + "I", self.path_or_buf.read(4))[0] txtlen = struct.unpack(self.byteorder + "I", self.path_or_buf.read(4))[0] off = np.frombuffer( self.path_or_buf.read(4 * n), dtype=self.byteorder + "i4", count=n ) val = np.frombuffer( self.path_or_buf.read(4 * n), dtype=self.byteorder + "i4", count=n ) ii = np.argsort(off) off = off[ii] val = val[ii] txt = self.path_or_buf.read(txtlen) self.value_label_dict[labname] = {} for i in range(n): end = off[i + 1] if i < n - 1 else txtlen self.value_label_dict[labname][val[i]] = self._decode(txt[off[i] : end]) if self.format_version >= 117: self.path_or_buf.read(6) # </lbl> self._value_labels_read = True def _read_strls(self) -> None: self.path_or_buf.seek(self.seek_strls) # Wrap v_o in a string to allow uint64 values as keys on 32bit OS self.GSO = {"0": ""} while True: if self.path_or_buf.read(3) != b"GSO": break if self.format_version == 117: v_o = struct.unpack(self.byteorder + "Q", self.path_or_buf.read(8))[0] else: buf = self.path_or_buf.read(12) # Only tested on little endian file on little endian machine. v_size = 2 if self.format_version == 118 else 3 if self.byteorder == "<": buf = buf[0:v_size] + buf[4 : (12 - v_size)] else: # This path may not be correct, impossible to test buf = buf[0:v_size] + buf[(4 + v_size) :] v_o = struct.unpack("Q", buf)[0] typ = struct.unpack("B", self.path_or_buf.read(1))[0] length = struct.unpack(self.byteorder + "I", self.path_or_buf.read(4))[0] va = self.path_or_buf.read(length) if typ == 130: decoded_va = va[0:-1].decode(self._encoding) else: # Stata says typ 129 can be binary, so use str decoded_va = str(va) # Wrap v_o in a string to allow uint64 values as keys on 32bit OS self.GSO[str(v_o)] = decoded_va def __next__(self) -> DataFrame: self._using_iterator = True return self.read(nrows=self._chunksize) def get_chunk(self, size: int | None = None) -> DataFrame: """ Reads lines from Stata file and returns as dataframe Parameters ---------- size : int, defaults to None Number of lines to read. If None, reads whole file. Returns ------- DataFrame """ if size is None: size = self._chunksize return self.read(nrows=size) @Appender(_read_method_doc) def read( self, nrows: int | None = None, convert_dates: bool | None = None, convert_categoricals: bool | None = None, index_col: str | None = None, convert_missing: bool | None = None, preserve_dtypes: bool | None = None, columns: Sequence[str] | None = None, order_categoricals: bool | None = None, ) -> DataFrame: # Handle empty file or chunk. If reading incrementally raise # StopIteration. If reading the whole thing return an empty # data frame. if (self.nobs == 0) and (nrows is None): self._can_read_value_labels = True self._data_read = True self.close() return DataFrame(columns=self.varlist) # Handle options if convert_dates is None: convert_dates = self._convert_dates if convert_categoricals is None: convert_categoricals = self._convert_categoricals if convert_missing is None: convert_missing = self._convert_missing if preserve_dtypes is None: preserve_dtypes = self._preserve_dtypes if columns is None: columns = self._columns if order_categoricals is None: order_categoricals = self._order_categoricals if index_col is None: index_col = self._index_col if nrows is None: nrows = self.nobs if (self.format_version >= 117) and (not self._value_labels_read): self._can_read_value_labels = True self._read_strls() # Read data assert self._dtype is not None dtype = self._dtype max_read_len = (self.nobs - self._lines_read) * dtype.itemsize read_len = nrows * dtype.itemsize read_len = min(read_len, max_read_len) if read_len <= 0: # Iterator has finished, should never be here unless # we are reading the file incrementally if convert_categoricals: self._read_value_labels() self.close() raise StopIteration offset = self._lines_read * dtype.itemsize self.path_or_buf.seek(self.data_location + offset) read_lines = min(nrows, self.nobs - self._lines_read) data = np.frombuffer( self.path_or_buf.read(read_len), dtype=dtype, count=read_lines ) self._lines_read += read_lines if self._lines_read == self.nobs: self._can_read_value_labels = True self._data_read = True # if necessary, swap the byte order to native here if self.byteorder != self._native_byteorder: data = data.byteswap().newbyteorder() if convert_categoricals: self._read_value_labels() if len(data) == 0: data = DataFrame(columns=self.varlist) else: data =
DataFrame.from_records(data)
pandas.core.frame.DataFrame.from_records
# pylint: disable=E1101,E1103,W0232 from datetime import datetime, timedelta from pandas.compat import range, lrange, lzip, u, zip import operator import re import nose import warnings import os import numpy as np from numpy.testing import assert_array_equal from pandas import period_range, date_range from pandas.core.index import (Index, Float64Index, Int64Index, MultiIndex, InvalidIndexError, NumericIndex) from pandas.tseries.index import DatetimeIndex from pandas.tseries.tdi import TimedeltaIndex from pandas.tseries.period import PeriodIndex from pandas.core.series import Series from pandas.util.testing import (assert_almost_equal, assertRaisesRegexp, assert_copy) from pandas import compat from pandas.compat import long import pandas.util.testing as tm import pandas.core.config as cf from pandas.tseries.index import _to_m8 import pandas.tseries.offsets as offsets import pandas as pd from pandas.lib import Timestamp class Base(object): """ base class for index sub-class tests """ _holder = None _compat_props = ['shape', 'ndim', 'size', 'itemsize', 'nbytes'] def verify_pickle(self,index): unpickled = self.round_trip_pickle(index) self.assertTrue(index.equals(unpickled)) def test_pickle_compat_construction(self): # this is testing for pickle compat if self._holder is None: return # need an object to create with self.assertRaises(TypeError, self._holder) def test_numeric_compat(self): idx = self.create_index() tm.assertRaisesRegexp(TypeError, "cannot perform __mul__", lambda : idx * 1) tm.assertRaisesRegexp(TypeError, "cannot perform __mul__", lambda : 1 * idx) div_err = "cannot perform __truediv__" if compat.PY3 else "cannot perform __div__" tm.assertRaisesRegexp(TypeError, div_err, lambda : idx / 1) tm.assertRaisesRegexp(TypeError, div_err, lambda : 1 / idx) tm.assertRaisesRegexp(TypeError, "cannot perform __floordiv__", lambda : idx // 1) tm.assertRaisesRegexp(TypeError, "cannot perform __floordiv__", lambda : 1 // idx) def test_boolean_context_compat(self): # boolean context compat idx = self.create_index() def f(): if idx: pass tm.assertRaisesRegexp(ValueError,'The truth value of a',f) def test_ndarray_compat_properties(self): idx = self.create_index() self.assertTrue(idx.T.equals(idx)) self.assertTrue(idx.transpose().equals(idx)) values = idx.values for prop in self._compat_props: self.assertEqual(getattr(idx, prop), getattr(values, prop)) # test for validity idx.nbytes idx.values.nbytes class TestIndex(Base, tm.TestCase): _holder = Index _multiprocess_can_split_ = True def setUp(self): self.indices = dict( unicodeIndex = tm.makeUnicodeIndex(100), strIndex = tm.makeStringIndex(100), dateIndex = tm.makeDateIndex(100), intIndex = tm.makeIntIndex(100), floatIndex = tm.makeFloatIndex(100), boolIndex = Index([True,False]), empty = Index([]), tuples = MultiIndex.from_tuples(lzip(['foo', 'bar', 'baz'], [1, 2, 3])) ) for name, ind in self.indices.items(): setattr(self, name, ind) def create_index(self): return Index(list('abcde')) def test_wrong_number_names(self): def testit(ind): ind.names = ["apple", "banana", "carrot"] for ind in self.indices.values(): assertRaisesRegexp(ValueError, "^Length", testit, ind) def test_set_name_methods(self): new_name = "This is the new name for this index" indices = (self.dateIndex, self.intIndex, self.unicodeIndex, self.empty) for ind in indices: original_name = ind.name new_ind = ind.set_names([new_name]) self.assertEqual(new_ind.name, new_name) self.assertEqual(ind.name, original_name) res = ind.rename(new_name, inplace=True) # should return None self.assertIsNone(res) self.assertEqual(ind.name, new_name) self.assertEqual(ind.names, [new_name]) #with assertRaisesRegexp(TypeError, "list-like"): # # should still fail even if it would be the right length # ind.set_names("a") with assertRaisesRegexp(ValueError, "Level must be None"): ind.set_names("a", level=0) # rename in place just leaves tuples and other containers alone name = ('A', 'B') ind = self.intIndex ind.rename(name, inplace=True) self.assertEqual(ind.name, name) self.assertEqual(ind.names, [name]) def test_hash_error(self): with tm.assertRaisesRegexp(TypeError, "unhashable type: %r" % type(self.strIndex).__name__): hash(self.strIndex) def test_new_axis(self): new_index = self.dateIndex[None, :] self.assertEqual(new_index.ndim, 2) tm.assert_isinstance(new_index, np.ndarray) def test_copy_and_deepcopy(self): from copy import copy, deepcopy for func in (copy, deepcopy): idx_copy = func(self.strIndex) self.assertIsNot(idx_copy, self.strIndex) self.assertTrue(idx_copy.equals(self.strIndex)) new_copy = self.strIndex.copy(deep=True, name="banana") self.assertEqual(new_copy.name, "banana") new_copy2 = self.intIndex.copy(dtype=int) self.assertEqual(new_copy2.dtype.kind, 'i') def test_duplicates(self): idx = Index([0, 0, 0]) self.assertFalse(idx.is_unique) def test_sort(self): self.assertRaises(TypeError, self.strIndex.sort) def test_mutability(self): self.assertRaises(TypeError, self.strIndex.__setitem__, 0, 'foo') def test_constructor(self): # regular instance creation tm.assert_contains_all(self.strIndex, self.strIndex) tm.assert_contains_all(self.dateIndex, self.dateIndex) # casting arr = np.array(self.strIndex) index = Index(arr) tm.assert_contains_all(arr, index) self.assert_numpy_array_equal(self.strIndex, index) # copy arr = np.array(self.strIndex) index = Index(arr, copy=True, name='name') tm.assert_isinstance(index, Index) self.assertEqual(index.name, 'name') assert_array_equal(arr, index) arr[0] = "SOMEBIGLONGSTRING" self.assertNotEqual(index[0], "SOMEBIGLONGSTRING") # what to do here? # arr = np.array(5.) # self.assertRaises(Exception, arr.view, Index) def test_constructor_corner(self): # corner case self.assertRaises(TypeError, Index, 0) def test_constructor_from_series(self): expected = DatetimeIndex([Timestamp('20110101'),Timestamp('20120101'),Timestamp('20130101')]) s = Series([Timestamp('20110101'),Timestamp('20120101'),Timestamp('20130101')]) result = Index(s) self.assertTrue(result.equals(expected)) result = DatetimeIndex(s) self.assertTrue(result.equals(expected)) # GH 6273 # create from a series, passing a freq s = Series(pd.to_datetime(['1-1-1990', '2-1-1990', '3-1-1990', '4-1-1990', '5-1-1990'])) result = DatetimeIndex(s, freq='MS') expected = DatetimeIndex(['1-1-1990', '2-1-1990', '3-1-1990', '4-1-1990', '5-1-1990'],freq='MS') self.assertTrue(result.equals(expected)) df = pd.DataFrame(np.random.rand(5,3)) df['date'] = ['1-1-1990', '2-1-1990', '3-1-1990', '4-1-1990', '5-1-1990'] result = DatetimeIndex(df['date'], freq='MS') # GH 6274 # infer freq of same result = pd.infer_freq(df['date']) self.assertEqual(result,'MS') def test_constructor_ndarray_like(self): # GH 5460#issuecomment-44474502 # it should be possible to convert any object that satisfies the numpy # ndarray interface directly into an Index class ArrayLike(object): def __init__(self, array): self.array = array def __array__(self, dtype=None): return self.array for array in [np.arange(5), np.array(['a', 'b', 'c']), date_range('2000-01-01', periods=3).values]: expected = pd.Index(array) result = pd.Index(ArrayLike(array)) self.assertTrue(result.equals(expected)) def test_index_ctor_infer_periodindex(self): xp = period_range('2012-1-1', freq='M', periods=3) rs = Index(xp) assert_array_equal(rs, xp) tm.assert_isinstance(rs, PeriodIndex) def test_constructor_simple_new(self): idx = Index([1, 2, 3, 4, 5], name='int') result = idx._simple_new(idx, 'int') self.assertTrue(result.equals(idx)) idx = Index([1.1, np.nan, 2.2, 3.0], name='float') result = idx._simple_new(idx, 'float') self.assertTrue(result.equals(idx)) idx = Index(['A', 'B', 'C', np.nan], name='obj') result = idx._simple_new(idx, 'obj') self.assertTrue(result.equals(idx)) def test_copy(self): i = Index([], name='Foo') i_copy = i.copy() self.assertEqual(i_copy.name, 'Foo') def test_view(self): i = Index([], name='Foo') i_view = i.view() self.assertEqual(i_view.name, 'Foo') def test_legacy_pickle_identity(self): # GH 8431 pth = tm.get_data_path() s1 = pd.read_pickle(os.path.join(pth,'s1-0.12.0.pickle')) s2 = pd.read_pickle(os.path.join(pth,'s2-0.12.0.pickle')) self.assertFalse(s1.index.identical(s2.index)) self.assertFalse(s1.index.equals(s2.index)) def test_astype(self): casted = self.intIndex.astype('i8') # it works! casted.get_loc(5) # pass on name self.intIndex.name = 'foobar' casted = self.intIndex.astype('i8') self.assertEqual(casted.name, 'foobar') def test_compat(self): self.strIndex.tolist() def test_equals(self): # same self.assertTrue(Index(['a', 'b', 'c']).equals(Index(['a', 'b', 'c']))) # different length self.assertFalse(Index(['a', 'b', 'c']).equals(Index(['a', 'b']))) # same length, different values self.assertFalse(Index(['a', 'b', 'c']).equals(Index(['a', 'b', 'd']))) # Must also be an Index self.assertFalse(Index(['a', 'b', 'c']).equals(['a', 'b', 'c'])) def test_insert(self): # GH 7256 # validate neg/pos inserts result = Index(['b', 'c', 'd']) #test 0th element self.assertTrue(Index(['a', 'b', 'c', 'd']).equals( result.insert(0, 'a'))) #test Nth element that follows Python list behavior self.assertTrue(Index(['b', 'c', 'e', 'd']).equals( result.insert(-1, 'e'))) #test loc +/- neq (0, -1) self.assertTrue(result.insert(1, 'z').equals( result.insert(-2, 'z'))) #test empty null_index = Index([]) self.assertTrue(Index(['a']).equals( null_index.insert(0, 'a'))) def test_delete(self): idx = Index(['a', 'b', 'c', 'd'], name='idx') expected = Index(['b', 'c', 'd'], name='idx') result = idx.delete(0) self.assertTrue(result.equals(expected)) self.assertEqual(result.name, expected.name) expected = Index(['a', 'b', 'c'], name='idx') result = idx.delete(-1) self.assertTrue(result.equals(expected)) self.assertEqual(result.name, expected.name) with tm.assertRaises((IndexError, ValueError)): # either depeidnig on numpy version result = idx.delete(5) def test_identical(self): # index i1 = Index(['a', 'b', 'c']) i2 = Index(['a', 'b', 'c']) self.assertTrue(i1.identical(i2)) i1 = i1.rename('foo') self.assertTrue(i1.equals(i2)) self.assertFalse(i1.identical(i2)) i2 = i2.rename('foo') self.assertTrue(i1.identical(i2)) i3 = Index([('a', 'a'), ('a', 'b'), ('b', 'a')]) i4 = Index([('a', 'a'), ('a', 'b'), ('b', 'a')], tupleize_cols=False) self.assertFalse(i3.identical(i4)) def test_is_(self): ind = Index(range(10)) self.assertTrue(ind.is_(ind)) self.assertTrue(ind.is_(ind.view().view().view().view())) self.assertFalse(ind.is_(Index(range(10)))) self.assertFalse(ind.is_(ind.copy())) self.assertFalse(ind.is_(ind.copy(deep=False))) self.assertFalse(ind.is_(ind[:])) self.assertFalse(ind.is_(ind.view(np.ndarray).view(Index))) self.assertFalse(ind.is_(np.array(range(10)))) # quasi-implementation dependent self.assertTrue(ind.is_(ind.view())) ind2 = ind.view() ind2.name = 'bob' self.assertTrue(ind.is_(ind2)) self.assertTrue(ind2.is_(ind)) # doesn't matter if Indices are *actually* views of underlying data, self.assertFalse(ind.is_(Index(ind.values))) arr = np.array(range(1, 11)) ind1 = Index(arr, copy=False) ind2 = Index(arr, copy=False) self.assertFalse(ind1.is_(ind2)) def test_asof(self): d = self.dateIndex[0] self.assertIs(self.dateIndex.asof(d), d) self.assertTrue(np.isnan(self.dateIndex.asof(d - timedelta(1)))) d = self.dateIndex[-1] self.assertEqual(self.dateIndex.asof(d + timedelta(1)), d) d = self.dateIndex[0].to_datetime() tm.assert_isinstance(self.dateIndex.asof(d), Timestamp) def test_asof_datetime_partial(self): idx = pd.date_range('2010-01-01', periods=2, freq='m') expected = Timestamp('2010-01-31') result = idx.asof('2010-02') self.assertEqual(result, expected) def test_nanosecond_index_access(self): s = Series([Timestamp('20130101')]).values.view('i8')[0] r = DatetimeIndex([s + 50 + i for i in range(100)]) x = Series(np.random.randn(100), index=r) first_value = x.asof(x.index[0]) # this does not yet work, as parsing strings is done via dateutil #self.assertEqual(first_value, x['2013-01-01 00:00:00.000000050+0000']) self.assertEqual(first_value, x[Timestamp(np.datetime64('2013-01-01 00:00:00.000000050+0000', 'ns'))]) def test_argsort(self): result = self.strIndex.argsort() expected = np.array(self.strIndex).argsort() self.assert_numpy_array_equal(result, expected) def test_comparators(self): index = self.dateIndex element = index[len(index) // 2] element = _to_m8(element) arr = np.array(index) def _check(op): arr_result = op(arr, element) index_result = op(index, element) self.assertIsInstance(index_result, np.ndarray) self.assert_numpy_array_equal(arr_result, index_result) _check(operator.eq) _check(operator.ne) _check(operator.gt) _check(operator.lt) _check(operator.ge) _check(operator.le) def test_booleanindex(self): boolIdx = np.repeat(True, len(self.strIndex)).astype(bool) boolIdx[5:30:2] = False subIndex = self.strIndex[boolIdx] for i, val in enumerate(subIndex): self.assertEqual(subIndex.get_loc(val), i) subIndex = self.strIndex[list(boolIdx)] for i, val in enumerate(subIndex): self.assertEqual(subIndex.get_loc(val), i) def test_fancy(self): sl = self.strIndex[[1, 2, 3]] for i in sl: self.assertEqual(i, sl[sl.get_loc(i)]) def test_empty_fancy(self): empty_farr = np.array([], dtype=np.float_) empty_iarr = np.array([], dtype=np.int_) empty_barr = np.array([], dtype=np.bool_) # pd.DatetimeIndex is excluded, because it overrides getitem and should # be tested separately. for idx in [self.strIndex, self.intIndex, self.floatIndex]: empty_idx = idx.__class__([]) values = idx.values self.assertTrue(idx[[]].identical(empty_idx)) self.assertTrue(idx[empty_iarr].identical(empty_idx)) self.assertTrue(idx[empty_barr].identical(empty_idx)) # np.ndarray only accepts ndarray of int & bool dtypes, so should # Index. self.assertRaises(IndexError, idx.__getitem__, empty_farr) def test_getitem(self): arr = np.array(self.dateIndex) exp = self.dateIndex[5] exp = _to_m8(exp) self.assertEqual(exp, arr[5]) def test_shift(self): shifted = self.dateIndex.shift(0, timedelta(1)) self.assertIs(shifted, self.dateIndex) shifted = self.dateIndex.shift(5, timedelta(1)) self.assert_numpy_array_equal(shifted, self.dateIndex + timedelta(5)) shifted = self.dateIndex.shift(1, 'B') self.assert_numpy_array_equal(shifted, self.dateIndex + offsets.BDay()) shifted.name = 'shifted' self.assertEqual(shifted.name, shifted.shift(1, 'D').name) def test_intersection(self): first = self.strIndex[:20] second = self.strIndex[:10] intersect = first.intersection(second) self.assertTrue(tm.equalContents(intersect, second)) # Corner cases inter = first.intersection(first) self.assertIs(inter, first) # non-iterable input assertRaisesRegexp(TypeError, "iterable", first.intersection, 0.5) idx1 = Index([1, 2, 3, 4, 5], name='idx') # if target has the same name, it is preserved idx2 = Index([3, 4, 5, 6, 7], name='idx') expected2 = Index([3, 4, 5], name='idx') result2 = idx1.intersection(idx2) self.assertTrue(result2.equals(expected2)) self.assertEqual(result2.name, expected2.name) # if target name is different, it will be reset idx3 = Index([3, 4, 5, 6, 7], name='other') expected3 = Index([3, 4, 5], name=None) result3 = idx1.intersection(idx3) self.assertTrue(result3.equals(expected3)) self.assertEqual(result3.name, expected3.name) # non monotonic idx1 = Index([5, 3, 2, 4, 1], name='idx') idx2 = Index([4, 7, 6, 5, 3], name='idx') result2 = idx1.intersection(idx2) self.assertTrue(tm.equalContents(result2, expected2)) self.assertEqual(result2.name, expected2.name) idx3 = Index([4, 7, 6, 5, 3], name='other') result3 = idx1.intersection(idx3) self.assertTrue(tm.equalContents(result3, expected3)) self.assertEqual(result3.name, expected3.name) # non-monotonic non-unique idx1 = Index(['A','B','A','C']) idx2 = Index(['B','D']) expected = Index(['B'], dtype='object') result = idx1.intersection(idx2) self.assertTrue(result.equals(expected)) def test_union(self): first = self.strIndex[5:20] second = self.strIndex[:10] everything = self.strIndex[:20] union = first.union(second) self.assertTrue(tm.equalContents(union, everything)) # Corner cases union = first.union(first) self.assertIs(union, first) union = first.union([]) self.assertIs(union, first) union = Index([]).union(first) self.assertIs(union, first) # non-iterable input assertRaisesRegexp(TypeError, "iterable", first.union, 0.5) # preserve names first.name = 'A' second.name = 'A' union = first.union(second) self.assertEqual(union.name, 'A') second.name = 'B' union = first.union(second) self.assertIsNone(union.name) def test_add(self): # - API change GH 8226 with tm.assert_produces_warning(): self.strIndex + self.strIndex firstCat = self.strIndex.union(self.dateIndex) secondCat = self.strIndex.union(self.strIndex) if self.dateIndex.dtype == np.object_: appended = np.append(self.strIndex, self.dateIndex) else: appended = np.append(self.strIndex, self.dateIndex.astype('O')) self.assertTrue(tm.equalContents(firstCat, appended)) self.assertTrue(tm.equalContents(secondCat, self.strIndex)) tm.assert_contains_all(self.strIndex, firstCat) tm.assert_contains_all(self.strIndex, secondCat) tm.assert_contains_all(self.dateIndex, firstCat) def test_append_multiple(self): index = Index(['a', 'b', 'c', 'd', 'e', 'f']) foos = [index[:2], index[2:4], index[4:]] result = foos[0].append(foos[1:]) self.assertTrue(result.equals(index)) # empty result = index.append([]) self.assertTrue(result.equals(index)) def test_append_empty_preserve_name(self): left = Index([], name='foo') right = Index([1, 2, 3], name='foo') result = left.append(right) self.assertEqual(result.name, 'foo') left = Index([], name='foo') right = Index([1, 2, 3], name='bar') result = left.append(right) self.assertIsNone(result.name) def test_add_string(self): # from bug report index = Index(['a', 'b', 'c']) index2 = index + 'foo' self.assertNotIn('a', index2) self.assertIn('afoo', index2) def test_iadd_string(self): index = pd.Index(['a', 'b', 'c']) # doesn't fail test unless there is a check before `+=` self.assertIn('a', index) index += '_x' self.assertIn('a_x', index) def test_difference(self): first = self.strIndex[5:20] second = self.strIndex[:10] answer = self.strIndex[10:20] first.name = 'name' # different names result = first.difference(second) self.assertTrue(tm.equalContents(result, answer)) self.assertEqual(result.name, None) # same names second.name = 'name' result = first.difference(second) self.assertEqual(result.name, 'name') # with empty result = first.difference([]) self.assertTrue(tm.equalContents(result, first)) self.assertEqual(result.name, first.name) # with everythin result = first.difference(first) self.assertEqual(len(result), 0) self.assertEqual(result.name, first.name) # non-iterable input assertRaisesRegexp(TypeError, "iterable", first.diff, 0.5) def test_symmetric_diff(self): # smoke idx1 = Index([1, 2, 3, 4], name='idx1') idx2 = Index([2, 3, 4, 5]) result = idx1.sym_diff(idx2) expected = Index([1, 5]) self.assertTrue(tm.equalContents(result, expected)) self.assertIsNone(result.name) # __xor__ syntax expected = idx1 ^ idx2 self.assertTrue(tm.equalContents(result, expected)) self.assertIsNone(result.name) # multiIndex idx1 = MultiIndex.from_tuples(self.tuples) idx2 = MultiIndex.from_tuples([('foo', 1), ('bar', 3)]) result = idx1.sym_diff(idx2) expected = MultiIndex.from_tuples([('bar', 2), ('baz', 3), ('bar', 3)]) self.assertTrue(tm.equalContents(result, expected)) # nans: # GH #6444, sorting of nans. Make sure the number of nans is right # and the correct non-nan values are there. punt on sorting. idx1 = Index([1, 2, 3, np.nan]) idx2 = Index([0, 1, np.nan]) result = idx1.sym_diff(idx2) # expected = Index([0.0, np.nan, 2.0, 3.0, np.nan]) nans = pd.isnull(result) self.assertEqual(nans.sum(), 2) self.assertEqual((~nans).sum(), 3) [self.assertIn(x, result) for x in [0.0, 2.0, 3.0]] # other not an Index: idx1 = Index([1, 2, 3, 4], name='idx1') idx2 = np.array([2, 3, 4, 5]) expected = Index([1, 5]) result = idx1.sym_diff(idx2) self.assertTrue(tm.equalContents(result, expected)) self.assertEqual(result.name, 'idx1') result = idx1.sym_diff(idx2, result_name='new_name') self.assertTrue(tm.equalContents(result, expected)) self.assertEqual(result.name, 'new_name') # other isn't iterable with tm.assertRaises(TypeError): Index(idx1,dtype='object') - 1 def test_pickle(self): self.verify_pickle(self.strIndex) self.strIndex.name = 'foo' self.verify_pickle(self.strIndex) self.verify_pickle(self.dateIndex) def test_is_numeric(self): self.assertFalse(self.dateIndex.is_numeric()) self.assertFalse(self.strIndex.is_numeric()) self.assertTrue(self.intIndex.is_numeric()) self.assertTrue(self.floatIndex.is_numeric()) def test_is_object(self): self.assertTrue(self.strIndex.is_object()) self.assertTrue(self.boolIndex.is_object()) self.assertFalse(self.intIndex.is_object()) self.assertFalse(self.dateIndex.is_object()) self.assertFalse(self.floatIndex.is_object()) def test_is_all_dates(self): self.assertTrue(self.dateIndex.is_all_dates) self.assertFalse(self.strIndex.is_all_dates) self.assertFalse(self.intIndex.is_all_dates) def test_summary(self): self._check_method_works(Index.summary) # GH3869 ind = Index(['{other}%s', "~:{range}:0"], name='A') result = ind.summary() # shouldn't be formatted accidentally. self.assertIn('~:{range}:0', result) self.assertIn('{other}%s', result) def test_format(self): self._check_method_works(Index.format) index = Index([datetime.now()]) formatted = index.format() expected = [str(index[0])] self.assertEqual(formatted, expected) # 2845 index = Index([1, 2.0+3.0j, np.nan]) formatted = index.format() expected = [str(index[0]), str(index[1]), u('NaN')] self.assertEqual(formatted, expected) # is this really allowed? index = Index([1, 2.0+3.0j, None]) formatted = index.format() expected = [str(index[0]), str(index[1]), u('NaN')] self.assertEqual(formatted, expected) self.strIndex[:0].format() def test_format_with_name_time_info(self): # bug I fixed 12/20/2011 inc = timedelta(hours=4) dates = Index([dt + inc for dt in self.dateIndex], name='something') formatted = dates.format(name=True) self.assertEqual(formatted[0], 'something') def test_format_datetime_with_time(self): t = Index([datetime(2012, 2, 7), datetime(2012, 2, 7, 23)]) result = t.format() expected = ['2012-02-07 00:00:00', '2012-02-07 23:00:00'] self.assertEqual(len(result), 2) self.assertEqual(result, expected) def test_format_none(self): values = ['a', 'b', 'c', None] idx = Index(values) idx.format() self.assertIsNone(idx[3]) def test_take(self): indexer = [4, 3, 0, 2] result = self.dateIndex.take(indexer) expected = self.dateIndex[indexer] self.assertTrue(result.equals(expected)) def _check_method_works(self, method): method(self.empty) method(self.dateIndex) method(self.unicodeIndex) method(self.strIndex) method(self.intIndex) method(self.tuples) def test_get_indexer(self): idx1 = Index([1, 2, 3, 4, 5]) idx2 = Index([2, 4, 6]) r1 = idx1.get_indexer(idx2) assert_almost_equal(r1, [1, 3, -1]) r1 = idx2.get_indexer(idx1, method='pad') assert_almost_equal(r1, [-1, 0, 0, 1, 1]) rffill1 = idx2.get_indexer(idx1, method='ffill') assert_almost_equal(r1, rffill1) r1 = idx2.get_indexer(idx1, method='backfill') assert_almost_equal(r1, [0, 0, 1, 1, 2]) rbfill1 = idx2.get_indexer(idx1, method='bfill') assert_almost_equal(r1, rbfill1) def test_slice_locs(self): for dtype in [int, float]: idx = Index(np.array([0, 1, 2, 5, 6, 7, 9, 10], dtype=dtype)) n = len(idx) self.assertEqual(idx.slice_locs(start=2), (2, n)) self.assertEqual(idx.slice_locs(start=3), (3, n)) self.assertEqual(idx.slice_locs(3, 8), (3, 6)) self.assertEqual(idx.slice_locs(5, 10), (3, n)) self.assertEqual(idx.slice_locs(5.0, 10.0), (3, n)) self.assertEqual(idx.slice_locs(4.5, 10.5), (3, 8)) self.assertEqual(idx.slice_locs(end=8), (0, 6)) self.assertEqual(idx.slice_locs(end=9), (0, 7)) idx2 = idx[::-1] self.assertEqual(idx2.slice_locs(8, 2), (2, 6)) self.assertEqual(idx2.slice_locs(8.5, 1.5), (2, 6)) self.assertEqual(idx2.slice_locs(7, 3), (2, 5)) self.assertEqual(idx2.slice_locs(10.5, -1), (0, n)) def test_slice_locs_dup(self): idx = Index(['a', 'a', 'b', 'c', 'd', 'd']) self.assertEqual(idx.slice_locs('a', 'd'), (0, 6)) self.assertEqual(idx.slice_locs(end='d'), (0, 6)) self.assertEqual(idx.slice_locs('a', 'c'), (0, 4)) self.assertEqual(idx.slice_locs('b', 'd'), (2, 6)) idx2 = idx[::-1] self.assertEqual(idx2.slice_locs('d', 'a'), (0, 6)) self.assertEqual(idx2.slice_locs(end='a'), (0, 6)) self.assertEqual(idx2.slice_locs('d', 'b'), (0, 4)) self.assertEqual(idx2.slice_locs('c', 'a'), (2, 6)) for dtype in [int, float]: idx = Index(np.array([10, 12, 12, 14], dtype=dtype)) self.assertEqual(idx.slice_locs(12, 12), (1, 3)) self.assertEqual(idx.slice_locs(11, 13), (1, 3)) idx2 = idx[::-1] self.assertEqual(idx2.slice_locs(12, 12), (1, 3)) self.assertEqual(idx2.slice_locs(13, 11), (1, 3)) def test_slice_locs_na(self): idx = Index([np.nan, 1, 2]) self.assertRaises(KeyError, idx.slice_locs, start=1.5) self.assertRaises(KeyError, idx.slice_locs, end=1.5) self.assertEqual(idx.slice_locs(1), (1, 3)) self.assertEqual(idx.slice_locs(np.nan), (0, 3)) idx = Index([np.nan, np.nan, 1, 2]) self.assertRaises(KeyError, idx.slice_locs, np.nan) def test_drop(self): n = len(self.strIndex) dropped = self.strIndex.drop(self.strIndex[lrange(5, 10)]) expected = self.strIndex[lrange(5) + lrange(10, n)] self.assertTrue(dropped.equals(expected)) self.assertRaises(ValueError, self.strIndex.drop, ['foo', 'bar']) dropped = self.strIndex.drop(self.strIndex[0]) expected = self.strIndex[1:] self.assertTrue(dropped.equals(expected)) ser = Index([1, 2, 3]) dropped = ser.drop(1) expected = Index([2, 3]) self.assertTrue(dropped.equals(expected)) def test_tuple_union_bug(self): import pandas import numpy as np aidx1 = np.array([(1, 'A'), (2, 'A'), (1, 'B'), (2, 'B')], dtype=[('num', int), ('let', 'a1')]) aidx2 = np.array([(1, 'A'), (2, 'A'), (1, 'B'), (2, 'B'), (1, 'C'), (2, 'C')], dtype=[('num', int), ('let', 'a1')]) idx1 = pandas.Index(aidx1) idx2 = pandas.Index(aidx2) # intersection broken? int_idx = idx1.intersection(idx2) # needs to be 1d like idx1 and idx2 expected = idx1[:4] # pandas.Index(sorted(set(idx1) & set(idx2))) self.assertEqual(int_idx.ndim, 1) self.assertTrue(int_idx.equals(expected)) # union broken union_idx = idx1.union(idx2) expected = idx2 self.assertEqual(union_idx.ndim, 1) self.assertTrue(union_idx.equals(expected)) def test_is_monotonic_incomparable(self): index = Index([5, datetime.now(), 7]) self.assertFalse(index.is_monotonic) self.assertFalse(index.is_monotonic_decreasing) def test_get_set_value(self): values = np.random.randn(100) date = self.dateIndex[67] assert_almost_equal(self.dateIndex.get_value(values, date), values[67]) self.dateIndex.set_value(values, date, 10) self.assertEqual(values[67], 10) def test_isin(self): values = ['foo', 'bar', 'quux'] idx = Index(['qux', 'baz', 'foo', 'bar']) result = idx.isin(values) expected = np.array([False, False, True, True]) self.assert_numpy_array_equal(result, expected) # empty, return dtype bool idx = Index([]) result = idx.isin(values) self.assertEqual(len(result), 0) self.assertEqual(result.dtype, np.bool_) def test_isin_nan(self): self.assert_numpy_array_equal( Index(['a', np.nan]).isin([np.nan]), [False, True]) self.assert_numpy_array_equal( Index(['a', pd.NaT]).isin([pd.NaT]), [False, True]) self.assert_numpy_array_equal( Index(['a', np.nan]).isin([float('nan')]), [False, False]) self.assert_numpy_array_equal( Index(['a', np.nan]).isin([pd.NaT]), [False, False]) # Float64Index overrides isin, so must be checked separately self.assert_numpy_array_equal(
Float64Index([1.0, np.nan])
pandas.core.index.Float64Index
import inspect import json import os import re from urllib.parse import quote from urllib.request import urlopen import pandas as pd import param from .configuration import DEFAULTS class TutorialData(param.Parameterized): label = param.String(allow_None=True) raw = param.Boolean() verbose = param.Boolean() return_meta = param.Boolean() use_cache = param.Boolean() _source = None _base_url = None _data_url = None _description = None def __init__(self, **kwds): super().__init__(**kwds) self._cache_dir = DEFAULTS["cache_kwds"]["directory"] self._remove_href = re.compile(r"<(a|/a).*?>") os.makedirs(self._cache_dir, exist_ok=True) self._init_owid() @property def _cache_path(self): cache_file = f"{self.label}.pkl" return os.path.join(self._cache_dir, cache_file) @property def _dataset_options(self): options = set([]) for method in dir(self): if method.startswith("_load_") and "owid" not in method: options.add(method.replace("_load_", "")) return list(options) + list(self._owid_labels_df.columns) @staticmethod def _specify_cache(cache_path, **kwds): if kwds: cache_ext = "_".join( f"{key}={val}".replace(os.sep, "") for key, val in kwds.items() ) cache_path = f"{os.path.splitext(cache_path)[0]}_{cache_ext}.pkl" return cache_path def _cache_dataset(self, df, cache_path=None, **kwds): if cache_path is None: cache_path = self._cache_path cache_path = self._specify_cache(cache_path, **kwds) df.to_pickle(cache_path) def _read_cache(self, cache_path=None, **kwds): if not self.use_cache: return None if cache_path is None: cache_path = self._cache_path cache_path = self._specify_cache(cache_path, **kwds) try: return pd.read_pickle(cache_path) except Exception: if os.path.exists(cache_path): os.remove(cache_path) return None @staticmethod def _snake_urlify(s): # Replace all hyphens with underscore s = s.replace(" - ", "_").replace("-", "_") # Remove all non-word characters (everything except numbers and letters) s = re.sub(r"[^\w\s]", "", s) # Replace all runs of whitespace with a underscore s = re.sub(r"\s+", "_", s) return s.lower() def _init_owid(self): cache_path = os.path.join(self._cache_dir, "owid_labels.pkl") self._owid_labels_df = self._read_cache(cache_path=cache_path) if self._owid_labels_df is not None: return owid_api_url = ( "https://api.github.com/" "repos/owid/owid-datasets/" "git/trees/master?recursive=1" ) with urlopen(owid_api_url) as f: sources = json.loads(f.read().decode("utf-8")) owid_labels = {} owid_raw_url = "https://raw.githubusercontent.com/owid/owid-datasets/master/" for source_tree in sources["tree"]: path = source_tree["path"] if ".csv" not in path and ".json" not in path: continue label = "owid_" + self._snake_urlify(path.split("/")[-2].strip()) if label not in owid_labels: owid_labels[label] = {} url = f"{owid_raw_url}/{quote(path)}" if ".csv" in path: owid_labels[label]["data"] = url elif ".json" in path: owid_labels[label]["meta"] = url self._owid_labels_df = pd.DataFrame(owid_labels) self._cache_dataset(self._owid_labels_df, cache_path=cache_path) def _load_owid(self, **kwds): self._data_url = self._owid_labels_df[self.label]["data"] meta_url = self._owid_labels_df[self.label]["meta"] with urlopen(meta_url) as response: meta = json.loads(response.read().decode()) self.label = meta["title"] self._source = ( " & ".join(source["dataPublishedBy"] for source in meta["sources"]) + " curated by Our World in Data (OWID)" ) self._base_url = ( " & ".join(source["link"] for source in meta["sources"]) + " through https://github.com/owid/owid-datasets" ) self._description = re.sub(self._remove_href, "", meta["description"]) df = self._read_cache(**kwds) if df is None: df = pd.read_csv(self._data_url, **kwds) self._cache_dataset(df, **kwds) if self.raw: return df df.columns = [self._snake_urlify(col) for col in df.columns] return df def _load_annual_co2(self, **kwds): self._source = "NOAA ESRL" self._base_url = "https://www.esrl.noaa.gov/" self._data_url = ( "https://www.esrl.noaa.gov/" "gmd/webdata/ccgg/trends/co2/co2_annmean_mlo.txt" ) self._description = ( "The carbon dioxide data on Mauna Loa constitute the longest record " "of direct measurements of CO2 in the atmosphere. They were started " "by <NAME> of the Scripps Institution of Oceanography in " "March of 1958 at a facility of the National Oceanic and Atmospheric " "Administration [Keeling, 1976]. NOAA started its own CO2 measurements " "in May of 1974, and they have run in parallel with those made by " "Scripps since then [Thoning, 1989]." ) df = self._read_cache(**kwds) if df is None: base_kwds = dict( header=None, comment="#", sep="\s+", # noqa names=["year", "co2_ppm", "uncertainty"], ) base_kwds.update(kwds) df = pd.read_csv(self._data_url, **base_kwds) self._cache_dataset(df, **kwds) return df def _load_tc_tracks(self, **kwds): self._source = "IBTrACS v04 - USA" self._base_url = "https://www.ncdc.noaa.gov/ibtracs/" self._data_url = ( "https://www.ncei.noaa.gov/data/" "international-best-track-archive-for-climate-stewardship-ibtracs/" "v04r00/access/csv/ibtracs.last3years.list.v04r00.csv" ) self._description = ( "The intent of the IBTrACS project is to overcome data availability " "issues. This was achieved by working directly with all the Regional " "Specialized Meteorological Centers and other international centers " "and individuals to create a global best track dataset, merging storm " "information from multiple centers into one product and archiving " "the data for public use." ) df = self._read_cache(**kwds) if df is None: base_kwds = dict(keep_default_na=False) base_kwds.update(kwds) df =
pd.read_csv(self._data_url, **base_kwds)
pandas.read_csv
import ipyleaflet import ipywidgets import pandas as pd import geopandas as gpd from shapely.geometry import Polygon, Point import datetime import requests import xml.etree.ElementTree as ET import calendar import numpy as np import pathlib import os class ANA_interactive_map: def __init__(self, path_inventario): self.df = pd.read_csv(path_inventario, engine='python', sep='\t', delimiter=';', parse_dates=['UltimaAtualizacao']) self.df[['Latitude', 'Longitude']] = self.df[['Latitude', 'Longitude']].apply(lambda x: x.str.replace(',','.')) self.df['Latitude'] = self.df['Latitude'].astype('float') self.df['Longitude'] = self.df['Longitude'].astype('float') self.gdf = gpd.GeoDataFrame(self.df, geometry=gpd.points_from_xy(self.df.Longitude, self.df.Latitude), crs='epsg:4674') self.m01 = ipyleaflet.Map(zoom=2, center=(-16, -47)) self.layer() self.controls_on_Map() self.control_buttonDownload.on_click(self.download_buttom) self.control_shapefileButtom.on_click(self.shapefile_buttom) display(self.m01) def date_location(self, *args): self.heatmap_byLast.locations = [tuple(s) for s in self.df.loc[self.df['UltimaAtualizacao'] > self.date_slider.value, ['Latitude','Longitude']].to_numpy()] def download_ANA_stations(self, list_codes, typeData, folder_toDownload): numberOfcodes = len(list_codes) count = 0 path_folder = pathlib.Path(folder_toDownload) for station in list_codes: params = {'codEstacao': station, 'dataInicio': '', 'dataFim': '', 'tipoDados': '{}'.format(typeData), 'nivelConsistencia': ''} response = requests.get('http://telemetriaws1.ana.gov.br/ServiceANA.asmx/HidroSerieHistorica', params) tree = ET.ElementTree(ET.fromstring(response.content)) root = tree.getroot() list_data = [] list_consistenciaF = [] list_month_dates = [] for i in root.iter('SerieHistorica'): codigo = i.find("EstacaoCodigo").text consistencia = i.find("NivelConsistencia").text date = i.find("DataHora").text date = datetime.datetime.strptime(date, '%Y-%m-%d %H:%M:%S') last_day = calendar.monthrange(date.year, date.month)[1] month_dates = [date + datetime.timedelta(days=i) for i in range(last_day)] data = [] list_consistencia = [] for day in range(last_day): if params['tipoDados'] == '3': value = 'Vazao{:02}'.format(day+1) try: data.append(float(i.find(value).text)) list_consistencia.append(int(consistencia)) except TypeError: data.append(i.find(value).text) list_consistencia.append(int(consistencia)) except AttributeError: data.append(None) list_consistencia.append(int(consistencia)) if params['tipoDados'] == '2': value = 'Chuva{:02}'.format(day+1) try: data.append(float(i.find(value).text)) list_consistencia.append(consistencia) except TypeError: data.append(i.find(value).text) list_consistencia.append(consistencia) except AttributeError: data.append(None) list_consistencia.append(consistencia) list_data = list_data + data list_consistenciaF = list_consistenciaF + list_consistencia list_month_dates = list_month_dates + month_dates if len(list_data) > 0: df = pd.DataFrame({'Date': list_month_dates, 'Consistence': list_consistenciaF, 'Data': list_data}) filename = '{}_{}.csv'.format(typeData, station) df.to_csv(path_folder / filename) count += 1 self.control_loadingDownload.value = float(count+1)/numberOfcodes else: count += 1 self.control_loadingDownload.value = float(count+1)/numberOfcodes # pass def download_buttom(self, *args): try: # last_draw = self.feature_collection['features'][-1]['geometry'] last_draw = self.control_draw.last_draw['geometry'] last_polygon = Polygon([(i[0], i[1]) for i in last_draw['coordinates'][0]]) except: pass if self.control_choiceDownload.value == 'Rain': option = 2 if self.control_choiceDownload.value == 'Flow': option = 3 if self.control_selectDownload.value == 'All': code_list = self.gdf.loc[self.gdf['geometry'].within(last_polygon), 'Codigo'].to_list() self.download_ANA_stations(list_codes=code_list, typeData=option, folder_toDownload=self.control_pathDownload.value) elif self.control_selectDownload.value == 'byDate': code_list = self.gdf.loc[(self.gdf['geometry'].within(last_polygon)) & (self.gdf['UltimaAtualizacao']>self.date_slider.value), 'Codigo'].to_list() self.download_ANA_stations(list_codes=code_list, typeData=option, folder_toDownload=self.control_pathDownload.value) elif self.control_selectDownload.value == 'Watershed': for i in self.shape['geometry']: code_list = self.gdf.loc[self.gdf['geometry'].within(i), 'Codigo'].to_list() self.download_ANA_stations(list_codes=code_list, typeData=option, folder_toDownload=self.control_pathDownload.value) def dropdown_shapefile(self, *args): if self.control_selectDownload.value == 'Watershed': self.control_shapefileText = ipywidgets.Text(placeholder='Insert Shapefile PATH HERE') hbox_shape = ipywidgets.HBox([self.control_shapefileText, self.control_shapefileButtom]) widget_control04 = ipyleaflet.WidgetControl(widget=hbox_shape, position='bottomright') self.m01.add_control(widget_control04) else: try: self.control_shapefileText.close() self.control_shapefileButtom.close() self.m01.remove_control(widget_control04) self.m01.remove_layer(self.geo_data) except: pass def shapefile_buttom(self, *args): if self.control_selectDownload.value == 'Watershed': try: self.shape = gpd.read_file(self.control_shapefileText.value) self.geo_data = ipyleaflet.GeoData(geo_dataframe=self.shape, name='Bacias',style={'color': 'red', 'fillColor': '#c51b8a', 'opacity':0.05, 'weight':1.9, 'dashArray':'2', 'fillOpacity':0.6}, hover_style={'fillColor': 'red', 'fillOpacity': 0.2}) self.m01.add_layer(self.geo_data) except: pass else: try: # self.m01.remove_layer(geo_data) pass except: pass def controls_on_Map(self): control_layer = ipyleaflet.LayersControl(position='topright') self.m01.add_control(control_layer) control_fullscreen = ipyleaflet.FullScreenControl() self.m01.add_control(control_fullscreen) self.control_draw = ipyleaflet.DrawControl() self.m01.add_control(self.control_draw) control_scale = ipyleaflet.ScaleControl(position='bottomleft') self.m01.add_control(control_scale) slider_heatmap_radius = ipywidgets.IntSlider(description='Radius', min=1, max=50, value=15) ipywidgets.jslink((slider_heatmap_radius, 'value'),(self.heatmap_all,'radius')) widget_control01 = ipyleaflet.WidgetControl(widget=slider_heatmap_radius, position='bottomright') self.m01.add_control(widget_control01) self.date_slider = ipywidgets.SelectionSlider(options=
pd.date_range(start='2000-01-01',end='2020-01-01', freq='M')
pandas.date_range
import warnings warnings.simplefilter(action = 'ignore', category = UserWarning) # Front matter import os import glob import re import pandas as pd import numpy as np import scipy.constants as constants # Find the filepath of all .res NRIXS files resfilepath_list = [filepath for filepath in glob.glob('*/*.res')] # Consistency dictionary: For saving space in df consist_dict = {'ok': 'O', 'acceptable': 'A', 'concerning': 'S'} # Initialize df structures to store all values from phox .ptl files in all_fitParam_df = pd.DataFrame() all_fitQuality_df = pd.DataFrame() all_valsFromData_df = pd.DataFrame() all_valsFromRefData_df = pd.DataFrame() all_valsFromPDOS_df = pd.DataFrame() # resfilepath = resfilepath_list[27] for resfilepath in resfilepath_list: filepath = re.findall('([A-Za-z0-9/_]+/)[A-Za-z0-9_]+.res',resfilepath)[0] filename = re.findall('/([A-Za-z0-9_]+).res',resfilepath)[0] ptlfilepath = filepath+'Output/'+filename+'_phox_ptl.txt' psthfilepath = filepath+'Output/'+filename+'_psth_ptl.txt' folder = re.findall('([A-Za-z0-9/_]+)/',filepath)[0] print(folder) # Get date information from directory names datetag = re.findall('([A-Za-z0-9]+)_',filepath)[0] month = re.findall('[A-Za-z]+',datetag)[0] year = re.findall('[0-9]+',datetag)[0] # Initialize df structure to store values from phox .ptl file in fitParam_df = pd.DataFrame({'Date': [month+' '+year], 'Folder': [folder], 'Index': [filename]}) fitQuality_df =
pd.DataFrame({'Date': [month+' '+year], 'Folder': [folder], 'Index': [filename]})
pandas.DataFrame
def test_get_number_rows_cols_for_fig(): from mspypeline.helpers import get_number_rows_cols_for_fig assert get_number_rows_cols_for_fig([1, 1, 1, 1]) == (2, 2) assert get_number_rows_cols_for_fig(4) == (2, 2) def test_fill_dict(): from mspypeline.helpers import fill_dict def test_default_to_regular(): from mspypeline.helpers import default_to_regular from collections import defaultdict d = defaultdict(int) d["a"] += 1 assert isinstance(d, defaultdict) d = default_to_regular(d) assert isinstance(d, dict) assert not isinstance(d, defaultdict) def test_get_analysis_design(): from mspypeline.helpers import get_analysis_design assert get_analysis_design(["A1_1", "A1_2", "A2_1", "A2_2"]) == { 'A1': {'1': 'A1_1', '2': 'A1_2'}, 'A2': {'1': 'A2_1', '2': 'A2_2'} } assert get_analysis_design(["A_1_1"]) == {"A": {"1": {"1": "A_1_1"}}} def test_plot_annotate_line(): from mspypeline.helpers import plot_annotate_line def test_venn_names(): from mspypeline.helpers import venn_names def test_install_r_dependencies(): from mspypeline.helpers.Utils import install_r_dependencies def test_get_number_of_non_na_values(): from mspypeline.helpers import get_number_of_non_na_values as gna assert gna(20) > gna(10) > gna(5) > gna(3) assert gna(3) == gna(2) and gna(3) == gna(1) def test_get_intersection_and_unique(): from mspypeline.helpers import get_intersection_and_unique import pandas as pd df1 =
pd.DataFrame()
pandas.DataFrame
# This script helps to create TAble 1 (phenotypes per country) import pandas as pd from scipy.stats import chi2_contingency import matplotlib.pyplot as plt import numpy as np # Include all GENES, those containing Indels and SNVS (that's why I repeat this step of loading "alleles" dataframe) This prevents badly groupping in 20210105_plotStacked...INDELS.py alleles = pd.read_csv('/path/to/Alleles_20201228.csv',sep='\t') #alleles['actionable'].loc[(alleles['SYMBOL'] == 'CYP4F2') & (alleles['allele'] == '*2')] = 'Yes' alleles = alleles.loc[(alleles['count_carrier_ids'].astype(str) != 'nan') & (alleles['actionable'] == 'Yes')].copy() GENES = list(set(list(alleles['SYMBOL']))) df =
pd.read_csv('/path/to/phenotypes_20210107.csv',sep='\t')
pandas.read_csv
#%% import os try: os.chdir('/Volumes/GoogleDrive/My Drive/python_code/connectome_tools/') print(os.getcwd()) except: pass #%% import sys sys.path.append("/Volumes/GoogleDrive/My Drive/python_code/connectome_tools/") import pandas as pd import numpy as np import connectome_tools.process_matrix as promat import matplotlib.pyplot as plt import seaborn as sns from tqdm import tqdm import pymaid from pymaid_creds import url, name, password, token # convert pair-sorted brain/sensories matrix to binary matrix based on synapse threshold matrix_ad = pd.read_csv('data/axon-dendrite.csv', header=0, index_col=0) matrix_dd = pd.read_csv('data/dendrite-dendrite.csv', header=0, index_col=0) matrix_aa = pd.read_csv('data/axon-axon.csv', header=0, index_col=0) matrix_da = pd.read_csv('data/dendrite-axon.csv', header=0, index_col=0) # the columns are string by default and the indices int; now both are int matrix_ad.columns =
pd.to_numeric(matrix_ad.columns)
pandas.to_numeric
""" Classes for comparing outputs of two RSMTool experiments. :author: <NAME> (<EMAIL>) :author: <NAME> (<EMAIL>) :author: <NAME> (<EMAIL>) :organization: ETS """ import warnings from collections import defaultdict from copy import deepcopy from os.path import exists, join import numpy as np import pandas as pd from scipy.stats import pearsonr from .reader import DataReader from .utils.files import get_output_directory_extension _df_eval_columns_existing_raw = ["N", "h_mean", "h_sd", "sys_mean.raw_trim", "sys_sd.raw_trim", "corr.raw_trim", "SMD.raw_trim", "sys_mean.raw_trim_round", "sys_sd.raw_trim_round", "exact_agr.raw_trim_round", "kappa.raw_trim_round", "wtkappa.raw_trim", "adj_agr.raw_trim_round", "SMD.raw_trim_round", "R2.raw_trim", "RMSE.raw_trim"] _df_eval_columns_existing_scale = ["N", "h_mean", "h_sd", "sys_mean.scale_trim", "sys_sd.scale_trim", "corr.scale_trim", "SMD.scale_trim", "sys_mean.scale_trim_round", "sys_sd.scale_trim_round", "exact_agr.scale_trim_round", "kappa.scale_trim_round", "wtkappa.scale_trim", "adj_agr.scale_trim_round", "SMD.scale_trim_round", "R2.scale_trim", "RMSE.scale_trim"] _df_eval_columns_renamed = ["N", "H1 mean", "H1 SD", "score mean(b)", "score SD(b)", "Pearson(b)", "SMD(b)", "score mean(br)", "score SD(br)", "Agmt.(br)", "K(br)", "QWK(b)", "Adj. Agmt.(br)", "SMD(br)", "R2(b)", "RMSE(b)"] raw_rename_dict = dict(zip(_df_eval_columns_existing_raw, _df_eval_columns_renamed)) scale_rename_dict = dict(zip(_df_eval_columns_existing_scale, _df_eval_columns_renamed)) class Comparer: """Class to perform comparisons between two RSMTool experiments.""" @staticmethod def _modify_eval_columns_to_ensure_version_compatibilty(df, rename_dict, existing_eval_cols, short_metrics_list, raise_warnings=True): """ Ensure that column names in eval data frames are backwards compatible. This helper method ensures that the column names for eval data frames are forward and backward compatible. There are two major changes in RSMTool (7.0 or greater) that necessitate this: (1) for subgroup calculations, 'DSM' is now used instead of 'SMD', and (2) QWK statistics are now calculated on un-rounded scores. Thus, we need to check these columns to see which sets of names are being used. Parameters ---------- df : pandas Data Frame The evaluation data frame. rename_dict : dict The rename dictionary. existing_eval_cols : list The existing evaluation columns. short_metrics_list : list The list of columns for the short metrics file. raise_warnings : bool, optional Whether to raise warnings. Defaults to ``True``. Returns ------- rename_dict_new : dict The updated rename dictionary. existing_eval_cols_new : list The updated existing evaluation columns short_metrics_list_new : list The updated list of columns for the short metrics file. smd_name : str The SMD column name (either 'SMD' or 'DSM') """ rename_dict_new = deepcopy(rename_dict) existing_eval_cols_new = deepcopy(existing_eval_cols) short_metrics_list_new = deepcopy(short_metrics_list) smd_name = 'SMD' # previously, the QWK metric used `trim_round` scores; now, we use just `trim` scores; # We check whether `trim_round` scores were used and # raise an error if this is the case if any(col.endswith('trim_round') for col in df if col.startswith('wtkappa')): raise ValueError("RSMTool (7.0 or greater) uses " "unrounded scores for weighted kappa calculations. At least one " "of your experiments was run " "using an older version of RSMTool that used " "rounded scores instead. Please re-run " "the experiment with the latest version of RSMTool.") # we check if DSM was calculated (which is what we expect for subgroup evals), # and if so, we update the rename dictionary and column lists accordingly; we # also set `smd_name` equal to 'DSM' if any(col.startswith('DSM') for col in df): smd_name = 'DSM' existing_eval_cols_new = [col.replace('SMD', 'DSM') for col in existing_eval_cols_new] rename_dict_new = {key.replace('SMD', 'DSM'): val.replace('SMD', 'DSM') for key, val in rename_dict_new.items()} return (rename_dict_new, existing_eval_cols_new, short_metrics_list_new, smd_name) @staticmethod def make_summary_stat_df(df): """ Compute summary statistics for the data in the given frame. Parameters ---------- df : pandas DataFrame Data frame containing numeric data. Returns ------- res : pandas DataFrame Data frame containing summary statistics for data in the input frame. """ series = [] for summary_func in [np.mean, np.std, np.median, np.min, np.max]: # apply function, but catch and ignore warnings with warnings.catch_warnings(): warnings.simplefilter('ignore') series.append(df.apply(summary_func)) res = pd.concat(series, axis=1, sort=True) res.columns = ['MEAN', 'SD', 'MEDIAN', 'MIN', 'MAX'] return res @staticmethod def compute_correlations_between_versions(df_old, df_new, human_score='sc1', id_column='spkitemid'): """ Compute correlations between old and new feature values. This method computes correlations between old and new feature values in the two given frames as well as the correlations between each feature value and the human score. Parameters ---------- df_old : pandas DataFrame Data frame with feature values for the 'old' model. df_new : pandas DataFrame Data frame with feature values for the 'new' model. human_score : str, optional Name of the column containing human score. Defaults to "sc1". Must be the same for both data sets. id_column : str, optional Name of the column containing id for each response. Defaults to "spkitemid". Must be the same for both data sets. Returns ------- df_correlations: pandas DataFrame Data frame with a row for each feature and the following columns: - "N": total number of responses - "human_old": correlation with human score in the old frame - "human_new": correlation with human score in the new frame - "old_new": correlation between old and new frames Raises ------ ValueError If there are no shared features between the two sets. ValueError If there are no shared responses between the two sets. """ # Only use features that appear in both datasets features_old = [column for column in df_old if column not in [id_column, human_score]] features_new = [column for column in df_new if column not in [id_column, human_score]] features = list(set(features_old).intersection(features_new)) if len(features) == 0: raise ValueError("There are no matching features " "in these two data sets.") columns = features + [id_column, human_score] # merge the two data sets and display a warning # if there are non-matching ids df_merged = pd.merge(df_old[columns], df_new[columns], on=[id_column], suffixes=['%%%old', '%%%new']) if len(df_merged) == 0: raise ValueError("There are no shared ids between these two datasets.") if len(df_merged) != len(df_old): warnings.warn("Some responses from the old data " "were not present in the new data and therefore " "were excluded from the analysis.") if len(df_merged) != len(df_new): warnings.warn("Some responses from the new data " "were not present in the old data and therefore " "were excluded from the analysis.") # compute correlations between each feature and human score. # we are using the same approach as used in analysis.py correlation_list = [] for feature in features: # compute correlations df_cor = pd.DataFrame({'Feature': [feature], 'N': len(df_merged), 'human_old': pearsonr(df_merged['{}%%%old'.format(human_score)], df_merged['{}%%%old'.format(feature)])[0], 'human_new': pearsonr(df_merged['{}%%%new'.format(human_score)], df_merged['{}%%%new'.format(feature)])[0], 'old_new': pearsonr(df_merged['{}%%%new'.format(feature)], df_merged['{}%%%old'.format(feature)])[0]}) correlation_list.append(df_cor) df_correlations =
pd.concat(correlation_list, sort=True)
pandas.concat
from datetime import ( datetime, timedelta, timezone, ) import numpy as np import pytest import pytz from pandas import ( Categorical, DataFrame, DatetimeIndex, NaT, Period, Series, Timedelta, Timestamp, date_range, isna, ) import pandas._testing as tm class TestSeriesFillNA: def test_fillna_nat(self): series = Series([0, 1, 2, NaT.value], dtype="M8[ns]") filled = series.fillna(method="pad") filled2 = series.fillna(value=series.values[2]) expected = series.copy() expected.values[3] = expected.values[2] tm.assert_series_equal(filled, expected) tm.assert_series_equal(filled2, expected) df = DataFrame({"A": series}) filled = df.fillna(method="pad") filled2 = df.fillna(value=series.values[2]) expected = DataFrame({"A": expected}) tm.assert_frame_equal(filled, expected) tm.assert_frame_equal(filled2, expected) series = Series([NaT.value, 0, 1, 2], dtype="M8[ns]") filled = series.fillna(method="bfill") filled2 = series.fillna(value=series[1]) expected = series.copy() expected[0] = expected[1] tm.assert_series_equal(filled, expected) tm.assert_series_equal(filled2, expected) df = DataFrame({"A": series}) filled = df.fillna(method="bfill") filled2 = df.fillna(value=series[1]) expected = DataFrame({"A": expected}) tm.assert_frame_equal(filled, expected) tm.assert_frame_equal(filled2, expected) def test_fillna_value_or_method(self, datetime_series): msg = "Cannot specify both 'value' and 'method'" with pytest.raises(ValueError, match=msg): datetime_series.fillna(value=0, method="ffill") def test_fillna(self): ts = Series([0.0, 1.0, 2.0, 3.0, 4.0], index=tm.makeDateIndex(5)) tm.assert_series_equal(ts, ts.fillna(method="ffill")) ts[2] = np.NaN exp = Series([0.0, 1.0, 1.0, 3.0, 4.0], index=ts.index) tm.assert_series_equal(ts.fillna(method="ffill"), exp) exp = Series([0.0, 1.0, 3.0, 3.0, 4.0], index=ts.index) tm.assert_series_equal(ts.fillna(method="backfill"), exp) exp = Series([0.0, 1.0, 5.0, 3.0, 4.0], index=ts.index) tm.assert_series_equal(ts.fillna(value=5), exp) msg = "Must specify a fill 'value' or 'method'" with pytest.raises(ValueError, match=msg): ts.fillna() def test_fillna_nonscalar(self): # GH#5703 s1 = Series([np.nan]) s2 = Series([1]) result = s1.fillna(s2) expected = Series([1.0]) tm.assert_series_equal(result, expected) result = s1.fillna({}) tm.assert_series_equal(result, s1) result = s1.fillna(Series((), dtype=object)) tm.assert_series_equal(result, s1) result = s2.fillna(s1) tm.assert_series_equal(result, s2) result = s1.fillna({0: 1}) tm.assert_series_equal(result, expected) result = s1.fillna({1: 1}) tm.assert_series_equal(result, Series([np.nan])) result = s1.fillna({0: 1, 1: 1}) tm.assert_series_equal(result, expected) result = s1.fillna(Series({0: 1, 1: 1})) tm.assert_series_equal(result, expected) result = s1.fillna(Series({0: 1, 1: 1}, index=[4, 5])) tm.assert_series_equal(result, s1) def test_fillna_aligns(self): s1 = Series([0, 1, 2], list("abc")) s2 = Series([0, np.nan, 2], list("bac")) result = s2.fillna(s1) expected = Series([0, 0, 2.0], list("bac")) tm.assert_series_equal(result, expected) def test_fillna_limit(self): ser = Series(np.nan, index=[0, 1, 2]) result = ser.fillna(999, limit=1) expected = Series([999, np.nan, np.nan], index=[0, 1, 2]) tm.assert_series_equal(result, expected) result = ser.fillna(999, limit=2) expected = Series([999, 999, np.nan], index=[0, 1, 2]) tm.assert_series_equal(result, expected) def test_fillna_dont_cast_strings(self): # GH#9043 # make sure a string representation of int/float values can be filled # correctly without raising errors or being converted vals = ["0", "1.5", "-0.3"] for val in vals: ser = Series([0, 1, np.nan, np.nan, 4], dtype="float64") result = ser.fillna(val) expected = Series([0, 1, val, val, 4], dtype="object") tm.assert_series_equal(result, expected) def test_fillna_consistency(self): # GH#16402 # fillna with a tz aware to a tz-naive, should result in object ser = Series([Timestamp("20130101"), NaT]) result = ser.fillna(Timestamp("20130101", tz="US/Eastern")) expected = Series( [Timestamp("20130101"), Timestamp("2013-01-01", tz="US/Eastern")], dtype="object", ) tm.assert_series_equal(result, expected) msg = "The 'errors' keyword in " with tm.assert_produces_warning(FutureWarning, match=msg): # where (we ignore the errors=) result = ser.where( [True, False], Timestamp("20130101", tz="US/Eastern"), errors="ignore" ) tm.assert_series_equal(result, expected) with tm.assert_produces_warning(FutureWarning, match=msg): result = ser.where( [True, False], Timestamp("20130101", tz="US/Eastern"), errors="ignore" ) tm.assert_series_equal(result, expected) # with a non-datetime result = ser.fillna("foo") expected = Series([Timestamp("20130101"), "foo"]) tm.assert_series_equal(result, expected) # assignment ser2 = ser.copy() ser2[1] = "foo" tm.assert_series_equal(ser2, expected) def test_fillna_downcast(self): # GH#15277 # infer int64 from float64 ser = Series([1.0, np.nan]) result = ser.fillna(0, downcast="infer") expected = Series([1, 0]) tm.assert_series_equal(result, expected) # infer int64 from float64 when fillna value is a dict ser = Series([1.0, np.nan]) result = ser.fillna({1: 0}, downcast="infer") expected = Series([1, 0]) tm.assert_series_equal(result, expected) def test_timedelta_fillna(self, frame_or_series): # GH#3371 ser = Series( [ Timestamp("20130101"), Timestamp("20130101"), Timestamp("20130102"), Timestamp("20130103 9:01:01"), ] ) td = ser.diff() obj = frame_or_series(td) # reg fillna result = obj.fillna(Timedelta(seconds=0)) expected = Series( [ timedelta(0), timedelta(0), timedelta(1), timedelta(days=1, seconds=9 * 3600 + 60 + 1), ] ) expected = frame_or_series(expected) tm.assert_equal(result, expected) # interpreted as seconds, no longer supported msg = "value should be a 'Timedelta', 'NaT', or array of those. Got 'int'" with pytest.raises(TypeError, match=msg): obj.fillna(1) result = obj.fillna(Timedelta(seconds=1)) expected = Series( [ timedelta(seconds=1), timedelta(0), timedelta(1), timedelta(days=1, seconds=9 * 3600 + 60 + 1), ] ) expected = frame_or_series(expected) tm.assert_equal(result, expected) result = obj.fillna(timedelta(days=1, seconds=1)) expected = Series( [ timedelta(days=1, seconds=1), timedelta(0), timedelta(1), timedelta(days=1, seconds=9 * 3600 + 60 + 1), ] ) expected = frame_or_series(expected) tm.assert_equal(result, expected) result = obj.fillna(np.timedelta64(10 ** 9)) expected = Series( [ timedelta(seconds=1), timedelta(0), timedelta(1), timedelta(days=1, seconds=9 * 3600 + 60 + 1), ] ) expected = frame_or_series(expected) tm.assert_equal(result, expected) result = obj.fillna(NaT) expected = Series( [ NaT, timedelta(0), timedelta(1), timedelta(days=1, seconds=9 * 3600 + 60 + 1), ], dtype="m8[ns]", ) expected = frame_or_series(expected) tm.assert_equal(result, expected) # ffill td[2] = np.nan obj = frame_or_series(td) result = obj.ffill() expected = td.fillna(Timedelta(seconds=0)) expected[0] = np.nan expected = frame_or_series(expected) tm.assert_equal(result, expected) # bfill td[2] = np.nan obj = frame_or_series(td) result = obj.bfill() expected = td.fillna(Timedelta(seconds=0)) expected[2] = timedelta(days=1, seconds=9 * 3600 + 60 + 1) expected = frame_or_series(expected) tm.assert_equal(result, expected) def test_datetime64_fillna(self): ser = Series( [ Timestamp("20130101"), Timestamp("20130101"), Timestamp("20130102"), Timestamp("20130103 9:01:01"), ] ) ser[2] = np.nan # ffill result = ser.ffill() expected = Series( [ Timestamp("20130101"), Timestamp("20130101"), Timestamp("20130101"), Timestamp("20130103 9:01:01"), ] ) tm.assert_series_equal(result, expected) # bfill result = ser.bfill() expected = Series( [ Timestamp("20130101"), Timestamp("20130101"), Timestamp("20130103 9:01:01"), Timestamp("20130103 9:01:01"), ] ) tm.assert_series_equal(result, expected) def test_datetime64_fillna_backfill(self): # GH#6587 # make sure that we are treating as integer when filling msg = "containing strings is deprecated" with tm.assert_produces_warning(FutureWarning, match=msg): # this also tests inference of a datetime-like with NaT's ser = Series([NaT, NaT, "2013-08-05 15:30:00.000001"]) expected = Series( [ "2013-08-05 15:30:00.000001", "2013-08-05 15:30:00.000001", "2013-08-05 15:30:00.000001", ], dtype="M8[ns]", ) result = ser.fillna(method="backfill") tm.assert_series_equal(result, expected) @pytest.mark.parametrize("tz", ["US/Eastern", "Asia/Tokyo"]) def test_datetime64_tz_fillna(self, tz): # DatetimeLikeBlock ser = Series( [ Timestamp("2011-01-01 10:00"), NaT, Timestamp("2011-01-03 10:00"), NaT, ] ) null_loc = Series([False, True, False, True]) result = ser.fillna(Timestamp("2011-01-02 10:00")) expected = Series( [ Timestamp("2011-01-01 10:00"), Timestamp("2011-01-02 10:00"), Timestamp("2011-01-03 10:00"), Timestamp("2011-01-02 10:00"), ] ) tm.assert_series_equal(expected, result) # check s is not changed tm.assert_series_equal(isna(ser), null_loc) result = ser.fillna(Timestamp("2011-01-02 10:00", tz=tz)) expected = Series( [ Timestamp("2011-01-01 10:00"), Timestamp("2011-01-02 10:00", tz=tz), Timestamp("2011-01-03 10:00"), Timestamp("2011-01-02 10:00", tz=tz), ] ) tm.assert_series_equal(expected, result) tm.assert_series_equal(isna(ser), null_loc) result = ser.fillna("AAA") expected = Series( [ Timestamp("2011-01-01 10:00"), "AAA", Timestamp("2011-01-03 10:00"), "AAA", ], dtype=object, ) tm.assert_series_equal(expected, result) tm.assert_series_equal(isna(ser), null_loc) result = ser.fillna( { 1: Timestamp("2011-01-02 10:00", tz=tz), 3: Timestamp("2011-01-04 10:00"), } ) expected = Series( [ Timestamp("2011-01-01 10:00"), Timestamp("2011-01-02 10:00", tz=tz), Timestamp("2011-01-03 10:00"), Timestamp("2011-01-04 10:00"), ] ) tm.assert_series_equal(expected, result) tm.assert_series_equal(isna(ser), null_loc) result = ser.fillna( {1: Timestamp("2011-01-02 10:00"), 3: Timestamp("2011-01-04 10:00")} ) expected = Series( [ Timestamp("2011-01-01 10:00"), Timestamp("2011-01-02 10:00"), Timestamp("2011-01-03 10:00"), Timestamp("2011-01-04 10:00"), ] ) tm.assert_series_equal(expected, result) tm.assert_series_equal(isna(ser), null_loc) # DatetimeTZBlock idx = DatetimeIndex(["2011-01-01 10:00", NaT, "2011-01-03 10:00", NaT], tz=tz) ser = Series(idx) assert ser.dtype == f"datetime64[ns, {tz}]" tm.assert_series_equal(isna(ser), null_loc) result = ser.fillna(Timestamp("2011-01-02 10:00")) expected = Series( [ Timestamp("2011-01-01 10:00", tz=tz), Timestamp("2011-01-02 10:00"), Timestamp("2011-01-03 10:00", tz=tz), Timestamp("2011-01-02 10:00"), ] ) tm.assert_series_equal(expected, result) tm.assert_series_equal(isna(ser), null_loc) result = ser.fillna(Timestamp("2011-01-02 10:00", tz=tz)) idx = DatetimeIndex( [ "2011-01-01 10:00", "2011-01-02 10:00", "2011-01-03 10:00", "2011-01-02 10:00", ], tz=tz, ) expected = Series(idx) tm.assert_series_equal(expected, result) tm.assert_series_equal(isna(ser), null_loc) result = ser.fillna(Timestamp("2011-01-02 10:00", tz=tz).to_pydatetime()) idx = DatetimeIndex( [ "2011-01-01 10:00", "2011-01-02 10:00", "2011-01-03 10:00", "2011-01-02 10:00", ], tz=tz, ) expected = Series(idx) tm.assert_series_equal(expected, result) tm.assert_series_equal(isna(ser), null_loc) result = ser.fillna("AAA") expected = Series( [ Timestamp("2011-01-01 10:00", tz=tz), "AAA", Timestamp("2011-01-03 10:00", tz=tz), "AAA", ], dtype=object, ) tm.assert_series_equal(expected, result) tm.assert_series_equal(isna(ser), null_loc) result = ser.fillna( { 1: Timestamp("2011-01-02 10:00", tz=tz), 3: Timestamp("2011-01-04 10:00"), } ) expected = Series( [ Timestamp("2011-01-01 10:00", tz=tz), Timestamp("2011-01-02 10:00", tz=tz), Timestamp("2011-01-03 10:00", tz=tz), Timestamp("2011-01-04 10:00"), ] ) tm.assert_series_equal(expected, result) tm.assert_series_equal(isna(ser), null_loc) result = ser.fillna( { 1: Timestamp("2011-01-02 10:00", tz=tz), 3: Timestamp("2011-01-04 10:00", tz=tz), } ) expected = Series( [ Timestamp("2011-01-01 10:00", tz=tz), Timestamp("2011-01-02 10:00", tz=tz), Timestamp("2011-01-03 10:00", tz=tz), Timestamp("2011-01-04 10:00", tz=tz), ] ) tm.assert_series_equal(expected, result) tm.assert_series_equal(isna(ser), null_loc) # filling with a naive/other zone, coerce to object result = ser.fillna(Timestamp("20130101")) expected = Series( [ Timestamp("2011-01-01 10:00", tz=tz), Timestamp("2013-01-01"), Timestamp("2011-01-03 10:00", tz=tz), Timestamp("2013-01-01"), ] ) tm.assert_series_equal(expected, result) tm.assert_series_equal(isna(ser), null_loc) with tm.assert_produces_warning(FutureWarning, match="mismatched timezone"): result = ser.fillna(Timestamp("20130101", tz="US/Pacific")) expected = Series( [ Timestamp("2011-01-01 10:00", tz=tz), Timestamp("2013-01-01", tz="US/Pacific"), Timestamp("2011-01-03 10:00", tz=tz), Timestamp("2013-01-01", tz="US/Pacific"), ] ) tm.assert_series_equal(expected, result) tm.assert_series_equal(isna(ser), null_loc) def test_fillna_dt64tz_with_method(self): # with timezone # GH#15855 ser = Series([Timestamp("2012-11-11 00:00:00+01:00"), NaT]) exp = Series( [ Timestamp("2012-11-11 00:00:00+01:00"),
Timestamp("2012-11-11 00:00:00+01:00")
pandas.Timestamp
from email.mime.multipart import MIMEMultipart from email.mime.text import MIMEText import smtplib import os from os.path import join import json import pandas as pd import subprocess USER_FIELDS = [ "created_at", #"description", #"entities", "id", "location", "name", #"pinned_tweet_id", #"profile_image_url", "protected", "public_metrics", #"url", "username", "verified", #"withheld", ] TWEET_FIELDS = [ #"attachments", "author_id", #"context_annotations", "conversation_id", "created_at", #"entities", #"geo", "id", #"in_reply_to_user_id", "lang", #"public_metrics", "text", #"possibly_sensitive", "referenced_tweets", #"reply_settings", "source", #"withheld", ] EXPANSIONS = ["author_id"] DTYPES = { "id": str, "conversation_id":str, "author_id":str, #"created_at":str, #"retrieved_at":str, "source":str, "lang":str, "text":str, "reference_type":str, "referenced_tweet_id":str, #"author.created_at":str, "author.location":str, "author.name":str, "author.username":str, "author.verified":str, "author.protected":str, "author.public_metrics.followers_count":float, "author.public_metrics.following_count":float, "author.public_metrics.tweet_count":float, "author.public_metrics.listed_count":float} AUTHOR_COLS = [ "author_id", "lang", "author.created_at", "author.location", "author.name", "author.username", "author.verified", "author.protected", "author.public_metrics.followers_count", "author.public_metrics.following_count", "author.public_metrics.tweet_count", "author.public_metrics.listed_count"] def get_twitter_API_credentials(filename="twitter_API_jana.txt", keydst="twitter_API_keys"): ''' Returns the bearer tokens to access the Twitter v2 API for a list of users. ''' credentials = {} with open(join(keydst, filename), 'r') as f: for l in f: if l.startswith("bearer_token"): credentials[l.split('=')[0]] = l.split('=')[1].strip('\n') return credentials def notify(subject, body, credential_src=os.getcwd(), credential_fname="email_credentials.txt"): ''' Writes an email with the given subject and body from a mailserver specified in the email_credentials.txt file at the specified location. The email address to send the email to is also specified in the credentials file. ''' email_credentials = {} with open(join(credential_src, credential_fname), "r") as f: for line in f.readlines(): line = line.strip("\n") email_credentials[line.split("=")[0]] = line.split("=")[1] fromaddr = email_credentials["fromaddr"] toaddr = email_credentials["toaddr"] msg = MIMEMultipart() msg['From'] = fromaddr msg['To'] = toaddr msg['Subject'] = subject msg.attach(MIMEText(body, 'plain')) server = smtplib.SMTP( email_credentials["server"], int(email_credentials["port"]) ) server.ehlo() server.starttls() server.ehlo() server.login(email_credentials["user"], email_credentials["password"]) text = msg.as_string() server.sendmail(fromaddr, toaddr, text) def dump_tweets(tweets, t1, t2, dst, uid, gid): '''Save a list of tweets as binary line-separated json''' daydirname = "{}-{:02d}-{:02d}".format(t1.year, t1.month, t1.day) hourdirname = "{:02d}".format(t1.hour) if not os.path.exists(join(dst, daydirname)): os.mkdir(join(dst, daydirname)) os.chown(join(dst, daydirname), uid, gid) if not os.path.exists(join(dst, daydirname, hourdirname)): os.mkdir(join(dst, daydirname, hourdirname)) os.chown(join(dst, daydirname, hourdirname), uid, gid) datetime1 = "{}-{:02d}-{:02d}_{:02d}:{:02d}:{:02d}"\ .format(t1.year, t1.month, t1.day, t1.hour, t1.minute, t1.second) datetime2 = "{}-{:02d}-{:02d}_{:02d}:{:02d}:{:02d}"\ .format(t2.year, t2.month, t2.day, t2.hour, t2.minute, t2.second) fname = f"sampled_stream_{datetime1}_to_{datetime2}.jsonl" with open(join(dst, daydirname, hourdirname, fname), 'wb') as f: for tweet in tweets: json_str = json.dumps(tweet) + "\n" json_bytes = json_str.encode('utf-8') f.write(json_bytes) os.chown(join(dst, daydirname, hourdirname, fname), uid, gid) def classify_users(t1, t2, dst, m3params): daydirname = "{}-{:02d}-{:02d}".format(t1.year, t1.month, t1.day) hourdirname = "{:02d}".format(t1.hour) datetime1 = "{}-{:02d}-{:02d}_{:02d}:{:02d}:{:02d}"\ .format(t1.year, t1.month, t1.day, t1.hour, t1.minute, t1.second) datetime2 = "{}-{:02d}-{:02d}_{:02d}:{:02d}:{:02d}"\ .format(t2.year, t2.month, t2.day, t2.hour, t2.minute, t2.second) fname = f"sampled_stream_{datetime1}_to_{datetime2}.jsonl" scriptname = "run_m3_classification.sh" scriptpath = m3params["scriptpath"] m3path = m3params["m3path"] keyfile = m3params["keyfile"] cachepath = m3params["cachepath"] # start an asynchronous sub-process to extract user IDs from the tweet json # and run the m3 classifier over the user IDs subprocess.Popen([f"{join(scriptpath, scriptname)} {dst} {daydirname} {hourdirname} {fname} {m3path} {keyfile} {cachepath}"], shell=True) def get_hour_files(hour_dst): all_hour_files = os.listdir(hour_dst) hour_files = [f for f in all_hour_files if f.endswith(".csv")] if len(all_hour_files) != len(hour_files): print(f"too many files in {hour_dst}") hour_tweets = pd.DataFrame() for f in hour_files: tmp = pd.read_csv( join(hour_dst, f), #error_bad_lines=False, dtype=DTYPES, parse_dates=["created_at", "retrieved_at", "author.created_at"] ) hour_tweets =
pd.concat([hour_tweets, tmp])
pandas.concat
### Filename = test_sfw_categorical_autotest_aggregated_functions.py ## ## # # # THIS TEST WAS AUTOGENERATED BY generator_categorical_unit_test.py # # # ## ## import pandas as pd import unittest import riptable as rt from .groupby_categorical_unit_test_parameters import * default_base_index = 0 class categorical_test(unittest.TestCase): def test_aggs_sum_symb_0_10_ncols_1(self): test_class = categorical_base(1, 0.10, "sum") cat = rt.Categorical( values=test_class.bin_ids, categories=test_class.keys, base_index=default_base_index, ) cat = cat.sum(rt.Dataset(test_class.data)) gb = pd.DataFrame(test_class.data) gb = gb.groupby(test_class.bin_ids).sum() for k, v in test_class.data.items(): safe_assert(remove_nan(gb[k]), remove_nan(cat[k])) def test_aggs_mean_symb_0_10_ncols_2(self): test_class = categorical_base(2, 0.10, "mean") cat = rt.Categorical( values=test_class.bin_ids, categories=test_class.keys, base_index=default_base_index, ) cat = cat.mean(rt.Dataset(test_class.data)) gb = pd.DataFrame(test_class.data) gb = gb.groupby(test_class.bin_ids).mean() for k, v in test_class.data.items(): safe_assert(remove_nan(gb[k]), remove_nan(cat[k])) def test_aggs_median_symb_0_10_ncols_3(self): test_class = categorical_base(3, 0.10, "median") cat = rt.Categorical( values=test_class.bin_ids, categories=test_class.keys, base_index=default_base_index, ) cat = cat.median(rt.Dataset(test_class.data)) gb = pd.DataFrame(test_class.data) gb = gb.groupby(test_class.bin_ids).median() for k, v in test_class.data.items(): safe_assert(remove_nan(gb[k]), remove_nan(cat[k])) def test_aggs_min_symb_0_10_ncols_4(self): test_class = categorical_base(4, 0.10, "min") cat = rt.Categorical( values=test_class.bin_ids, categories=test_class.keys, base_index=default_base_index, ) cat = cat.min(rt.Dataset(test_class.data)) gb = pd.DataFrame(test_class.data) gb = gb.groupby(test_class.bin_ids).min() for k, v in test_class.data.items(): safe_assert(remove_nan(gb[k]), remove_nan(cat[k])) def test_aggs_max_symb_0_10_ncols_5(self): test_class = categorical_base(5, 0.10, "max") cat = rt.Categorical( values=test_class.bin_ids, categories=test_class.keys, base_index=default_base_index, ) cat = cat.max(rt.Dataset(test_class.data)) gb = pd.DataFrame(test_class.data) gb = gb.groupby(test_class.bin_ids).max() for k, v in test_class.data.items(): safe_assert(remove_nan(gb[k]), remove_nan(cat[k])) def test_aggs_var_symb_0_10_ncols_6(self): test_class = categorical_base(6, 0.10, "var") cat = rt.Categorical( values=test_class.bin_ids, categories=test_class.keys, base_index=default_base_index, ) cat = cat.var(rt.Dataset(test_class.data)) gb = pd.DataFrame(test_class.data) gb = gb.groupby(test_class.bin_ids).var() for k, v in test_class.data.items(): safe_assert(remove_nan(gb[k]), remove_nan(cat[k])) def test_aggs_sum_symb_0_10_ncols_7(self): test_class = categorical_base(7, 0.10, "sum") cat = rt.Categorical( values=test_class.bin_ids, categories=test_class.keys, base_index=default_base_index, ) cat = cat.sum(rt.Dataset(test_class.data)) gb = pd.DataFrame(test_class.data) gb = gb.groupby(test_class.bin_ids).sum() for k, v in test_class.data.items(): safe_assert(remove_nan(gb[k]), remove_nan(cat[k])) def test_aggs_mean_symb_0_25_ncols_1(self): test_class = categorical_base(1, 0.25, "mean") cat = rt.Categorical( values=test_class.bin_ids, categories=test_class.keys, base_index=default_base_index, ) cat = cat.mean(rt.Dataset(test_class.data)) gb = pd.DataFrame(test_class.data) gb = gb.groupby(test_class.bin_ids).mean() for k, v in test_class.data.items(): safe_assert(remove_nan(gb[k]), remove_nan(cat[k])) def test_aggs_median_symb_0_25_ncols_2(self): test_class = categorical_base(2, 0.25, "median") cat = rt.Categorical( values=test_class.bin_ids, categories=test_class.keys, base_index=default_base_index, ) cat = cat.median(rt.Dataset(test_class.data)) gb = pd.DataFrame(test_class.data) gb = gb.groupby(test_class.bin_ids).median() for k, v in test_class.data.items(): safe_assert(remove_nan(gb[k]), remove_nan(cat[k])) def test_aggs_min_symb_0_25_ncols_3(self): test_class = categorical_base(3, 0.25, "min") cat = rt.Categorical( values=test_class.bin_ids, categories=test_class.keys, base_index=default_base_index, ) cat = cat.min(rt.Dataset(test_class.data)) gb = pd.DataFrame(test_class.data) gb = gb.groupby(test_class.bin_ids).min() for k, v in test_class.data.items(): safe_assert(remove_nan(gb[k]), remove_nan(cat[k])) def test_aggs_max_symb_0_25_ncols_4(self): test_class = categorical_base(4, 0.25, "max") cat = rt.Categorical( values=test_class.bin_ids, categories=test_class.keys, base_index=default_base_index, ) cat = cat.max(rt.Dataset(test_class.data)) gb =
pd.DataFrame(test_class.data)
pandas.DataFrame
import pandas as pd import numpy as np import matplotlib.pyplot as plt import argparse from scipy.signal import butter, lfilter from scipy.signal import freqs def exponential_smooth(data, smooth_fac): """ :param data(np.array) :param smooth_fac(int): span_interval :return: """ ser = pd.Series(data) return ser.ewm(span=smooth_fac).mean() def butter_lowpass(cutOff, fs, order=5): nyq = 0.5 * fs normalCutoff = cutOff / nyq b, a = butter(order, normalCutoff, btype='low', analog=True) return b, a def butter_lowpass_filter(data, cutOff, fs, order=4): b, a = butter_lowpass(cutOff, fs, order=order) y = lfilter(b, a, data) return y def draw_frequency_response(b, a, fs): w, h = freqz(b, a, worN=8000) plt.subplot(2, 1, 1) plt.plot(0.5 * fs * w / np.pi, np.abs(h), 'b') plt.plot(cutoff, 0.5 * np.sqrt(2), 'ko') plt.axvline(cutoff, color='k') plt.xlim(0, 0.5 * fs) plt.title("Lowpass Filter Frequency Response") plt.xlabel('Frequency [Hz]') plt.grid() plt.show() parser = argparse.ArgumentParser() parser.add_argument('--file', nargs=2, help='filename of the rppg and biopac data') parser.add_argument('-se', '--smooth_exp', default=False, action='store_true', help='True if the rppg data is smoothed') parser.add_argument('-sb', '--smooth_butter', default=False, action='store_true') parser.add_argument('--smooth_factor', default=None, type=int, help='Smoooth Factor (span of ewm)') parser.add_argument('--savefig', default=False, action='store_true', help="True to save figure") args = parser.parse_args() rppg_pulse =
pd.read_csv(args.file[0])
pandas.read_csv
# coding=utf-8 # pylint: disable-msg=E1101,W0612 import numpy as np import pytest from pandas.compat import lrange, range import pandas as pd from pandas import DataFrame, Index, Series import pandas.util.testing as tm from pandas.util.testing import assert_series_equal def test_get(): # GH 6383 s = Series(np.array([43, 48, 60, 48, 50, 51, 50, 45, 57, 48, 56, 45, 51, 39, 55, 43, 54, 52, 51, 54])) result = s.get(25, 0) expected = 0 assert result == expected s = Series(np.array([43, 48, 60, 48, 50, 51, 50, 45, 57, 48, 56, 45, 51, 39, 55, 43, 54, 52, 51, 54]), index=pd.Float64Index( [25.0, 36.0, 49.0, 64.0, 81.0, 100.0, 121.0, 144.0, 169.0, 196.0, 1225.0, 1296.0, 1369.0, 1444.0, 1521.0, 1600.0, 1681.0, 1764.0, 1849.0, 1936.0], dtype='object')) result = s.get(25, 0) expected = 43 assert result == expected # GH 7407 # with a boolean accessor df = pd.DataFrame({'i': [0] * 3, 'b': [False] * 3}) vc = df.i.value_counts() result = vc.get(99, default='Missing') assert result == 'Missing' vc = df.b.value_counts() result = vc.get(False, default='Missing') assert result == 3 result = vc.get(True, default='Missing') assert result == 'Missing' def test_get_nan(): # GH 8569 s = pd.Float64Index(range(10)).to_series() assert s.get(np.nan) is None assert s.get(np.nan, default='Missing') == 'Missing' def test_get_nan_multiple(): # GH 8569 # ensure that fixing "test_get_nan" above hasn't broken get # with multiple elements s = pd.Float64Index(range(10)).to_series() idx = [2, 30] with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): assert_series_equal(s.get(idx),
Series([2, np.nan], index=idx)
pandas.Series
import pandas as pd import numpy as np from datetime import datetime def transformData(RideWaits): RideWaits["RideId"] = pd.Categorical(RideWaits["RideId"]) #RideWaits["Status"] = pd.Categorical(RideWaits["Status"]) RideWaits["ParkId"] = pd.Categorical(RideWaits["ParkId"]) RideWaits["Tier"] = pd.Categorical(RideWaits["Tier"]) RideWaits["ParkName"] = pd.Categorical(RideWaits["ParkName"]) RideWaits["IntellectualProp"] = pd.Categorical(RideWaits["IntellectualProp"]) #want to create some more intersting columns: #- is it close to a major event?(Anniversary/Christmas/Thanksgiving/Halloween) RideWaits["Date"] = pd.to_datetime(RideWaits["Date"], infer_datetime_format = True) RideWaits["OpeningDate"] = pd.to_datetime(RideWaits["OpeningDate"], infer_datetime_format = True) RideWaits["Time"] = pd.to_datetime(RideWaits["Time"], format = '%H:%M').dt.time RideWaits["ParkOpen"] = pd.to_datetime(RideWaits["ParkOpen"], format = '%I:%M %p').dt.strftime('%H:%M') RideWaits["ParkOpen"] = pd.to_datetime(RideWaits["ParkOpen"], format = '%H:%M').dt.time RideWaits["ParkClose"] = pd.to_datetime(RideWaits["ParkClose"], format = '%I:%M %p').dt.strftime('%H:%M') RideWaits["ParkClose"] = pd.to_datetime(RideWaits["ParkClose"], format = '%H:%M').dt.time RideWaits["DayOfWeek"] = [datetime.weekday(x) for x in RideWaits["Date"]] RideWaits["EMHOpen"] = pd.to_datetime(RideWaits["EMHOpen"], format = '%I:%M %p', errors = 'coerce').dt.strftime('%H:%M') RideWaits["EMHClose"] = pd.to_datetime(RideWaits["EMHClose"], format = '%I:%M %p', errors = 'coerce').dt.strftime('%H:%M') RideWaits["EMHOpen"] = pd.to_datetime(RideWaits["EMHOpen"], format = '%H:%M', errors = 'coerce').dt.time RideWaits["EMHClose"] = pd.to_datetime(RideWaits["EMHClose"], format = '%H:%M', errors = 'coerce').dt.time RideWaits["Weekend"] = [0 if x == 0 or x == 1 or x ==2 or x==3 or x==4 else 1 for x in RideWaits["DayOfWeek"]] RideWaits["Weekend"].value_counts() RideWaits["CharacterExperience"] = [1 if "Meet" in x else 0 for x in RideWaits["Name"]] validTime = [] inEMH = [] emhDay = [] timeSinceStart = [] timeSinceMidDay = [] magicHourType = [] timeSinceOpenMinutes = [] for index, row in RideWaits.iterrows(): #print(row) tempTime = datetime.now() cTime = row["Time"] pOpen = row["ParkOpen"] pClose = row["ParkClose"] currentParkTime = tempTime.replace(hour = cTime.hour, minute = cTime.minute, second = 0, microsecond = 0) parkOpen = tempTime.replace(hour = pOpen.hour, minute = pOpen.minute, second = 0, microsecond = 0) parkClose = tempTime.replace(hour = pClose.hour, minute = pClose.minute, second = 0, microsecond = 0) if parkClose < parkOpen: parkClose = parkClose.replace(day = parkClose.day + 1) #setup extra magic hours if there are any if (pd.notnull(row["EMHOpen"])) & (pd.notnull(row["EMHClose"])): eOpen = row["EMHOpen"] #print(eOpen) eClose = row["EMHClose"] #print(eClose) emhOpen = tempTime.replace(hour = eOpen.hour, minute = eOpen.minute, second = 0, microsecond = 0) emhClose = tempTime.replace(hour = eClose.hour, minute = eClose.minute, second = 0, microsecond = 0) if emhClose < emhOpen: emhClose = emhClose.replace(day = emhClose.day + 1) emh = "ok" emhDay.append(1) if emhClose.hour == parkOpen.hour: magicHourType.append("Morning") else: magicHourType.append("Night") else: emh = "none" emhDay.append(0) magicHourType.append("None") #setup special ticketed event? is this necessary so we can predict waits during the christmas party #print(emh) if (currentParkTime < parkClose) & (currentParkTime >= parkOpen): #print("Current Time is: " + str(currentParkTime) + " and ParkHours are "+ str(parkOpen) +" to " + str(parkClose) + " " +str(validtime)) tSinceOpen = currentParkTime.hour - parkOpen.hour tSinceOpenMinutes = currentParkTime - parkOpen tSinceMidDay = abs(currentParkTime.hour - 14) if currentParkTime.hour < parkOpen.hour: tSinceOpen = currentParkTime.hour + 24 - parkOpen.hour tSinceOpenMinutes = currentParkTime.replace(day = currentParkTime.day + 1) - parkOpen tSinceMidDay = abs(currentParkTime.hour - 14 + 24) validTime.append(1) inEMH.append(0) else: if (emh == "ok"): if (currentParkTime < emhClose) & (currentParkTime >= emhOpen): validTime.append(1) inEMH.append(1) if (emhClose.hour == parkOpen.hour): tSinceOpen = currentParkTime.hour - emhOpen.hour tSinceOpenMinutes = currentParkTime - emhOpen tSinceMidDay = abs(currentParkTime.hour - 14) else: if currentParkTime.hour < parkOpen.hour: tSinceOpen = currentParkTime.hour + 24 - parkOpen.hour tSinceOpenMinutes = currentParkTime.replace(day = currentParkTime.day + 1) - parkOpen tSinceMidDay = abs(currentParkTime.hour - 14 + 24) else: tSinceOpen = currentParkTime.hour - parkOpen.hour tSinceOpenMinutes = currentParkTime - parkOpen tSinceMidDay = abs(currentParkTime.hour - 14) else: validTime.append(0) inEMH.append(0) tSinceOpen = 0 tSinceMidDay = 0 tSinceOpenMinutes = 0 else: validTime.append(0) inEMH.append(0) tSinceOpen = 0 tSinceMidDay = 0 tSinceOpenMinutes = 0 timeSinceStart.append(tSinceOpen) timeSinceMidDay.append(tSinceMidDay) timeSinceOpenMinutes.append(tSinceOpenMinutes) RideWaits["inEMH"] = inEMH RideWaits["validTime"] = validTime RideWaits["EMHDay"] = emhDay RideWaits["TimeSinceOpen"] = timeSinceStart RideWaits["TimeSinceMidday"] = timeSinceMidDay RideWaits["MagicHourType"] = magicHourType RideWaits["MinutesSinceOpen"] = [x.total_seconds()/60 if x is not 0 else None for x in timeSinceOpenMinutes] #RideWaits["SimpleStatus"] = pd.Categorical(RideWaits["SimpleStatus"]) RideWaits = RideWaits[RideWaits["validTime"] == 1] RideWaits["Month"] = RideWaits["Date"].dt.month RideWaits["TimeSinceRideOpen"] = (RideWaits["Date"] - RideWaits["OpeningDate"]).dt.days #RideWaits["Month"] = RideWaits["Date"].dt.month RideWaits["MagicHourType"] =
pd.Categorical(RideWaits["MagicHourType"])
pandas.Categorical
import json from types import SimpleNamespace import pandas as pd from hana_ml.dataframe import ConnectionContext from hana_ml.model_storage import ModelStorage from typing import List from hana_automl.algorithms.base_algo import BaseAlgorithm from hana_automl.algorithms.ensembles.blendcls import BlendingCls from hana_automl.algorithms.ensembles.blendreg import BlendingReg from hana_automl.automl import AutoML from hana_automl.pipeline.modelres import ModelBoard from hana_automl.preprocess.preprocessor import Preprocessor from hana_automl.preprocess.settings import PreprocessorSettings from hana_automl.utils.error import StorageError PREPROCESSORS = "AUTOML_PREPROCESSOR_STORAGE" ensemble_prefix = "ensemble" leaderboard_prefix = "leaderboard" class Storage(ModelStorage): """Storage for models and more. Attributes ---------- connection_context: hana_ml.dataframe.ConnectionContext Connection info for HANA database. schema : str Database schema. Examples -------- >>> from hana_automl.storage import Storage >>> from hana_ml import ConnectionContext >>> cc = ConnectionContext('address', 39015, 'user', 'password') >>> storage = Storage(cc, 'your schema') """ def __init__(self, connection_context: ConnectionContext, schema: str): super().__init__(connection_context, schema) self.cursor = connection_context.connection.cursor() self.create_prep_table = ( f"CREATE TABLE {self.schema}.{PREPROCESSORS} " f"(MODEL NVARCHAR(256), VERSION INT, " f"JSON NVARCHAR(5000), TRAIN_ACC DOUBLE, VALID_ACC DOUBLE, ALGORITHM NVARCHAR(256), METRIC NVARCHAR(256));" ) if not table_exists(self.cursor, self.schema, PREPROCESSORS): self.cursor.execute(self.create_prep_table) preprocessor = Preprocessor() self.cls_dict = preprocessor.clsdict self.reg_dict = preprocessor.regdict def save_model(self, automl: AutoML, if_exists="upgrade"): """ Saves a model to database. Parameters ---------- automl: AutoML The model. if_exists: str Defaults to "upgrade". Not recommended to change. Note ---- If you have ensemble enabled in AutoML model, method will determine it automatically and split ensemble model in multiple usual models. Examples -------- >>> from hana_automl.automl import AutoML >>> automl.fit(df='table in HANA', target='some target', steps=3) >>> automl.model.name = "new model" >>> storage.save_model(automl) """ if not table_exists(self.cursor, self.schema, PREPROCESSORS): self.cursor.execute(self.create_prep_table) if isinstance(automl.model, BlendingCls) or isinstance( automl.model, BlendingReg ): if automl.model.name is None: raise StorageError( "Name your ensemble! Set name via automl.model.name='model name'" ) if isinstance(automl.model, BlendingCls): ensemble_name = "_ensemble_cls_" if isinstance(automl.model, BlendingReg): ensemble_name = "_ensemble_reg_" model_counter = 1 for model in automl.model.model_list: # type: ModelBoard if automl.model.name is None or automl.model.name == "": raise StorageError("Please give your model a name.") name = automl.model.name + ensemble_name + str(model_counter) model.algorithm.model.name = name json_settings = json.dumps(model.preprocessor.__dict__) if self.model_already_exists(name, model.algorithm.model.version): self.cursor.execute( f"UPDATE {self.schema}.{PREPROCESSORS} SET " f"VERSION={model.algorithm.model.version}, " f"JSON='{str(json_settings)}' " f"TRAIN_ACC={model.train_score} " f"VALID_ACC={model.valid_score} " f"ALGORITHM='{model.algorithm.title}'" f"METRIC='{automl.leaderboard_metric}' " f"WHERE MODEL='{name}';" ) else: self.cursor.execute( f"INSERT INTO {self.schema}.{PREPROCESSORS} " f"(MODEL, VERSION, JSON, TRAIN_ACC, VALID_ACC, ALGORITHM, METRIC) " f"VALUES " f"('{name}', {model.algorithm.model.version}, '{str(json_settings)}', {model.train_score}, {model.valid_score}, '{model.algorithm.title}', '{automl.leaderboard_metric}'); " ) super().save_model( model.algorithm.model, if_exists="replace" ) # to avoid duplicates model_counter += 1 else: if automl.model.name is None or automl.model.name == "": raise StorageError("Please name your model! automl.model.name='model name'") if table_exists(self.cursor, self.schema, "HANAML_MODEL_STORAGE"): if len(self.__find_models(automl.model.name, ensemble_prefix)) > 0: raise StorageError( "There is an ensemble with the same name in storage. Please change the name of " "the " "model." ) super().save_model(automl.model, if_exists) json_settings = json.dumps(automl.preprocessor_settings.__dict__) self.cursor.execute( f"INSERT INTO {PREPROCESSORS} (MODEL, VERSION, JSON, TRAIN_ACC, VALID_ACC, ALGORITHM, METRIC) " f"VALUES ('{automl.model.name}', {automl.model.version}, '{json_settings}', " f"{automl.leaderboard[0].train_score}, {automl.leaderboard[0].valid_score}, '{automl.algorithm.title}', '{automl.leaderboard_metric}'); " ) def list_preprocessors(self, name: str = None) -> pd.DataFrame: """ Show preprocessors for models in database. Parameters ---------- name: str, optional Model name. Returns ------- res: pd.DataFrame DataFrame containing all preprocessors in database. Note ---- Do not delete or save preprocessors apart from model! They are saved/deleted/changed automatically WITH model. Examples -------- >>> storage.list_preprocessors() MODEL VERSION JSON 1. test 1 {'tuned_num'...} """ if (name is not None) and name != "": ensembles = self.__find_models(name, ensemble_prefix) if len(ensembles) > 0: result = pd.DataFrame( columns=[ "MODEL", "VERSION", "JSON", "TRAIN_ACC", "VALID_ACC", "ALGORITHM", "METRIC" ] ) for model in ensembles: self.cursor.execute( f"SELECT * FROM {self.schema}.{PREPROCESSORS} WHERE MODEL='{model[0]}';" ) res = self.cursor.fetchall() col_names = [i[0] for i in self.cursor.description] df = pd.DataFrame(res, columns=col_names) result = result.append(df, ignore_index=True) return result else: self.cursor.execute( f"SELECT * FROM {self.schema}.{PREPROCESSORS} WHERE MODEL='{name}';" ) res = self.cursor.fetchall() col_names = [i[0] for i in self.cursor.description] return
pd.DataFrame(res, columns=col_names)
pandas.DataFrame
import pandas as pd import numpy as np import psycopg2 from sklearn.model_selection import KFold import Constants import sys from pathlib import Path output_folder = Path(sys.argv[1]) output_folder.mkdir(parents=True, exist_ok=True) # update database credentials if MIMIC data stored in postgres database conn = psycopg2.connect( "dbname=mimic user=darius host='/var/run/postgresql' password=password") pats = pd.read_sql_query(''' select subject_id, gender, dob, dod from public.patients ''', conn) n_splits = 12 pats = pats.sample(frac=1, random_state=42).reset_index(drop=True) kf = KFold(n_splits=n_splits, shuffle=True, random_state=42) for c, i in enumerate(kf.split(pats, groups=pats.gender)): pats.loc[i[1], 'fold'] = str(c) adm = pd.read_sql_query(''' select subject_id, hadm_id, insurance, language, religion, ethnicity, admittime, deathtime, dischtime, HOSPITAL_EXPIRE_FLAG, DISCHARGE_LOCATION, diagnosis as adm_diag from public.admissions ''', conn) df = pd.merge(pats, adm, on='subject_id', how='inner') def merge_death(row): if not(pd.isnull(row.deathtime)): return row.deathtime else: return row.dod df['dod_merged'] = df.apply(merge_death, axis=1) notes = pd.read_sql_query(''' select category, chartdate, charttime, hadm_id, row_id as note_id, text from public.noteevents where iserror is null ''', conn) # drop all outpatients. They only have a subject_id, so can't link back to insurance or other fields notes = notes[~(pd.isnull(notes['hadm_id']))] df = pd.merge(left=notes, right=df, on='hadm_id', how='left') df.ethnicity.fillna(value='UNKNOWN/NOT SPECIFIED', inplace=True) others_set = set() def cleanField(string): mappings = {'HISPANIC OR LATINO': 'HISPANIC/LATINO', 'BLACK/AFRICAN AMERICAN': 'BLACK', 'UNABLE TO OBTAIN': 'UNKNOWN/NOT SPECIFIED', 'PATIENT DECLINED TO ANSWER': 'UNKNOWN/NOT SPECIFIED'} bases = ['WHITE', 'UNKNOWN/NOT SPECIFIED', 'BLACK', 'HISPANIC/LATINO', 'OTHER', 'ASIAN'] if string in bases: return string elif string in mappings: return mappings[string] else: for i in bases: if i in string: return i others_set.add(string) return 'OTHER' df['ethnicity_to_use'] = df['ethnicity'].apply(cleanField) df = df[df.chartdate >= df.dob] ages = [] for i in range(df.shape[0]): ages.append((df.chartdate.iloc[i] - df.dob.iloc[i]).days/365.24) df['age'] = ages df.loc[(df.category == 'Discharge summary') | (df.category == 'Echo') | (df.category == 'ECG'), 'fold'] = 'NA' icds = (pd.read_sql_query('select * from public.diagnoses_icd', conn) .groupby('hadm_id') .agg({'icd9_code': lambda x: list(x.values)}) .reset_index()) df =
pd.merge(left=df, right=icds, on='hadm_id')
pandas.merge
# -*- coding: utf-8 -*- # Copyright (c) 2018-2021, earthobservations developers. # Distributed under the MIT License. See LICENSE for more info. import numpy as np import pandas as pd import pytest from pandas._testing import assert_frame_equal from wetterdienst import Settings from wetterdienst.exceptions import InvalidEnumeration from wetterdienst.provider.dwd.observation import ( DwdObservationDataset, DwdObservationPeriod, DwdObservationRequest, DwdObservationResolution, ) from wetterdienst.provider.dwd.util import build_parameter_set_identifier from wetterdienst.util.enumeration import parse_enumeration_from_template def test_parse_enumeration_from_template(): assert ( parse_enumeration_from_template("climate_summary", DwdObservationDataset) == DwdObservationDataset.CLIMATE_SUMMARY ) assert ( parse_enumeration_from_template("CLIMATE_SUMMARY", DwdObservationDataset) == DwdObservationDataset.CLIMATE_SUMMARY ) assert parse_enumeration_from_template("kl", DwdObservationDataset) == DwdObservationDataset.CLIMATE_SUMMARY with pytest.raises(InvalidEnumeration): parse_enumeration_from_template("climate", DwdObservationDataset) def test_coerce_field_types(): """Test coercion of fields""" # Special cases # We require a stations object with hourly resolution in order to accurately parse # the hourly timestamp (pandas would fail parsing it because it has a strange # format) Settings.tidy = False Settings.humanize = False Settings.si_units = True request = DwdObservationRequest( parameter=DwdObservationDataset.SOLAR, # RS_IND_01, resolution=DwdObservationResolution.HOURLY, period=DwdObservationPeriod.RECENT, ).all() # Here we don't query the actual data because it takes too long # we rather use a predefined DataFrame to check for coercion df = pd.DataFrame( { "station_id": ["00001"], "dataset": ["climate_summary"], "date": ["1970010100"], "qn": ["1"], "rs_ind_01": [1], "end_of_interval": ["1970010100:00"], "v_vv_i": ["p"], } ) df = request.values._coerce_date_fields(df, "00001") df = request.values._coerce_meta_fields(df) df = request.values._coerce_parameter_types(df) expected_df = pd.DataFrame( { "station_id": pd.Categorical(["00001"]), "dataset": pd.Categorical(["climate_summary"]), "date": [pd.Timestamp("1970-01-01").tz_localize("utc")], "qn": pd.Series([1], dtype=pd.Int64Dtype()), "rs_ind_01": pd.Series([1], dtype=pd.Int64Dtype()), "end_of_interval": [np.NaN], "v_vv_i": pd.Series(["p"], dtype=pd.StringDtype()), } )
assert_frame_equal(df, expected_df, check_categorical=False)
pandas._testing.assert_frame_equal
import unittest from enda.timeseries import TimeSeries import pandas as pd import pytz class TestTimeSeries(unittest.TestCase): def test_collapse_dt_series_into_periods(self): # periods is a list of (start, end) pairs. periods = [ (pd.to_datetime('2018-01-01 00:15:00+01:00'), pd.to_datetime('2018-01-01 00:45:00+01:00')), (pd.to_datetime('2018-01-01 10:15:00+01:00'), pd.to_datetime('2018-01-01 15:45:00+01:00')), (pd.to_datetime('2018-01-01 20:15:00+01:00'), pd.to_datetime('2018-01-01 21:45:00+01:00')), ] # expand periods to build a time-series with gaps dti = pd.DatetimeIndex([]) for s, e in periods: dti = dti.append(pd.date_range(s, e, freq="30min")) self.assertEqual(2+12+4, dti.shape[0]) # now find periods in the time-series # should work with 2 types of freq arguments for freq in ["30min", pd.to_timedelta("30min")]: computed_periods = TimeSeries.collapse_dt_series_into_periods(dti, freq) self.assertEqual(len(computed_periods), len(periods)) for i in range(len(periods)): self.assertEqual(computed_periods[i][0], periods[i][0]) self.assertEqual(computed_periods[i][1], periods[i][1]) def test_collapse_dt_series_into_periods_2(self): dti = pd.DatetimeIndex([ pd.to_datetime('2018-01-01 00:15:00+01:00'), pd.to_datetime('2018-01-01 00:45:00+01:00'), pd.to_datetime('2018-01-01 00:30:00+01:00'), pd.to_datetime('2018-01-01 01:00:00+01:00') ]) with self.assertRaises(ValueError): # should raise an error because 15min gaps are not multiples of freq=30min TimeSeries.collapse_dt_series_into_periods(dti, freq="30min") def test_collapse_dt_series_into_periods_3(self): dti = pd.DatetimeIndex([
pd.to_datetime('2018-01-01 00:00:00+01:00')
pandas.to_datetime
import re import numpy as np import pytest from pandas.core.dtypes.common import pandas_dtype from pandas import ( Float64Index, Index, Int64Index, ) import pandas._testing as tm class TestAstype: def test_astype_float64_to_object(self): float_index = Float64Index([0.0, 2.5, 5.0, 7.5, 10.0]) result = float_index.astype(object) assert result.equals(float_index) assert float_index.equals(result) assert isinstance(result, Index) and not isinstance(result, Float64Index) def test_astype_float64_mixed_to_object(self): # mixed int-float idx = Float64Index([1.5, 2, 3, 4, 5]) idx.name = "foo" result = idx.astype(object) assert result.equals(idx) assert idx.equals(result) assert isinstance(result, Index) and not isinstance(result, Float64Index) @pytest.mark.parametrize("dtype", ["int16", "int32", "int64"]) def test_astype_float64_to_int_dtype(self, dtype): # GH#12881 # a float astype int idx = Float64Index([0, 1, 2]) result = idx.astype(dtype) expected = Int64Index([0, 1, 2]) tm.assert_index_equal(result, expected) idx = Float64Index([0, 1.1, 2]) result = idx.astype(dtype) expected = Int64Index([0, 1, 2]) tm.assert_index_equal(result, expected) @pytest.mark.parametrize("dtype", ["float32", "float64"]) def test_astype_float64_to_float_dtype(self, dtype): # GH#12881 # a float astype int idx = Float64Index([0, 1, 2]) result = idx.astype(dtype) expected = idx tm.assert_index_equal(result, expected) idx = Float64Index([0, 1.1, 2]) result = idx.astype(dtype) expected = Index(idx.values.astype(dtype)) tm.assert_index_equal(result, expected) @pytest.mark.parametrize("dtype", ["M8[ns]", "m8[ns]"]) def test_cannot_cast_to_datetimelike(self, dtype): idx = Float64Index([0, 1.1, 2]) msg = ( f"Cannot convert Float64Index to dtype {pandas_dtype(dtype)}; " f"integer values are required for conversion" ) with pytest.raises(TypeError, match=re.escape(msg)): idx.astype(dtype) @pytest.mark.parametrize("dtype", [int, "int16", "int32", "int64"]) @pytest.mark.parametrize("non_finite", [np.inf, np.nan]) def test_cannot_cast_inf_to_int(self, non_finite, dtype): # GH#13149 idx =
Float64Index([1, 2, non_finite])
pandas.Float64Index
import csv import json import os import re from collections import OrderedDict from io import StringIO import pandas as pd import requests from django.core.management.base import BaseCommand from django.forms.models import model_to_dict from va_explorer.va_data_management.models import CauseCodingIssue from va_explorer.va_data_management.models import CauseOfDeath from va_explorer.va_data_management.models import VerbalAutopsy # Default host-port when running from docker-compose.local.yml PYCROSS_HOST = os.environ.get('PYCROSS_HOST', 'http://127.0.0.1:5001') INTERVA_HOST = os.environ.get('INTERVA_HOST', 'http://127.0.0.1:5002') # TODO: Temporary script to run COD assignment algorithms; this should # eventually become something that's handle with celery class Command(BaseCommand): help = 'Run cause coding algorithms' def handle(self, *args, **options): # Load all verbal autopsies that don't have a cause coding # TODO: This should eventuall check to see that there's a cause coding for every supported algorithm verbal_autopsies_without_causes = VerbalAutopsy.objects.filter(causes__isnull=True) # Get into CSV format, also prefixing keys with - as expected by pyCrossVA (e.g. Id10424 becomes -Id10424) va_data = [model_to_dict(va) for va in verbal_autopsies_without_causes] va_data = [dict([(f'-{k}', v) for k, v in d.items()]) for d in va_data] va_data_csv =
pd.DataFrame.from_records(va_data)
pandas.DataFrame.from_records
import pandas as pd import numpy as np from sklearn.model_selection import train_test_split from sklearn.model_selection import StratifiedKFold, KFold def cv_index(n_fold, feature, label): skf = KFold(n_fold, shuffle=True, random_state=7840) index_list = [] for i, j in skf.split(feature, label): index_list.append((i, j)) return index_list def data_selector(data_name): if data_name == 'cmc': return x_train_cmc, x_test_cmc, y_train_cmc, y_test_cmc, index_cmc elif data_name == 'setap': return x_train_setap, x_test_setap, y_train_setap, y_test_setap, index_setap elif data_name == 'audit': return x_train_audit, x_test_audit, y_train_audit, y_test_audit, index_audit elif data_name == 'titanic': return x_train_tt, x_test_tt, y_train_tt, y_test_tt, index_tt elif data_name == 'dota': return x_train_dota, x_test_dota, y_train_dota, y_test_dota, index_dota no_of_folds = 3 # Dataset cmc data_cmc = pd.read_csv("data/cmc.data", header=None) data_cmc[9] = np.where(data_cmc[9] == 1, 0, 1) data_cmc_label = data_cmc.pop(9) x_train_cmc, x_test_cmc, y_train_cmc, y_test_cmc = train_test_split(data_cmc, data_cmc_label, random_state=7840, test_size=0.25) index_cmc = cv_index(no_of_folds, x_train_cmc, y_train_cmc) # Dataset SETAP data_setap = pd.read_csv("data/setap.csv") data_setap['label'] = np.where(data_setap['label'] == 'A', 0, 1) data_setap_label = data_setap.pop('label') x_train_setap, x_test_setap, y_train_setap, y_test_setap = train_test_split(data_setap, data_setap_label, random_state=7840, test_size=0.25) index_setap = cv_index(no_of_folds, x_train_setap, y_train_setap) # Dataset audit data_audit = pd.read_csv("data/audit_risk.csv") data_audit['LOCATION_ID'] = pd.to_numeric(data_audit['LOCATION_ID'], errors='coerce') data_audit['LOCATION_ID'] = data_audit['LOCATION_ID'].fillna(data_audit['LOCATION_ID'].mode()[0]) data_audit['Money_Value'] = data_audit['Money_Value'].fillna(data_audit['Money_Value'].mean()) data_audit_label = data_audit.pop('Risk') x_train_audit, x_test_audit, y_train_audit, y_test_audit = train_test_split(data_audit, data_audit_label, random_state=7840, test_size=0.25,) index_audit = cv_index(no_of_folds, x_train_audit, y_train_audit) # Dataset titanic data_tt = pd.read_csv("data/titanic_train.csv") data_tt['Age'] = data_tt['Age'].fillna(data_tt['Age'].mean()) data_tt['Embarked'] = data_tt['Embarked'].fillna(data_tt['Embarked'].mode()[0]) data_tt['Pclass'] = data_tt['Pclass'].apply(str) for col in data_tt.dtypes[data_tt.dtypes == 'object'].index: for_dummy = data_tt.pop(col) data_tt = pd.concat([data_tt,
pd.get_dummies(for_dummy, prefix=col)
pandas.get_dummies
import pandas as pd import numpy as np import scipy.sparse as spl from concurrent.futures import ProcessPoolExecutor import sys threads = 4 all_tasks = [ [5, 8000, ['5t', '5nt'], 0.352], [10, 12000, ['10t', '10nt'], 0.38], [25, 40000, ['25f'], 0.43386578246281293], [25, 9000, ['25r'], 0.4], [100, 4000, ['100r'], 0.39], ] split, knn_k, test_task, powb = all_tasks[int(sys.argv[1])] def recode(column, min_val=0): uniques = column.unique() codes = range(min_val, len(uniques) + min_val) code_map = dict(zip(uniques, codes)) return (column.map(code_map), code_map) def reverse_code(column, code_map): inv_map = {v: k for k, v in code_map.items()} return column.map(inv_map) playlist_meta = pd.read_csv('data/million_playlist_dataset/playlist_meta.csv') playlist_meta_c = pd.read_csv('data/challenge_set/playlist_meta.csv') playlist_meta = pd.concat([playlist_meta, playlist_meta_c], axis=0, ignore_index=True) song_meta = pd.read_csv('data/million_playlist_dataset/song_meta_no_duplicates.csv') playlist_meta['pid_code'], pid_codes = recode(playlist_meta['pid']) song_meta['song_code'], song_codes = recode(song_meta['song_id']) train = pd.read_csv('data/million_playlist_dataset/playlists.csv') test =
pd.read_csv('data/challenge_set/playlists.csv')
pandas.read_csv
import nltk nltk.download('punkt') from newspaper import Article, Config from pygooglenews import GoogleNews import requests import pandas as pd from bs4 import BeautifulSoup import re from urllib.parse import urlparse from pathlib import Path class Newspaper_agent: TMP_DIRECTORY = Path("./tmp_data") if not TMP_DIRECTORY.exists(): TMP_DIRECTORY.mkdir() def __init__( self, query, keywords, country_code_final, language_code_final, country, language, ): self.query = query self.keywords = keywords self.country_code_final = country_code_final self.language_code_final = language_code_final self.country = country self.language = language self.custom_tags =
pd.read_csv("data_news/Custom_Websites_Tags.csv")
pandas.read_csv
""" Routines for casting. """ from contextlib import suppress from datetime import date, datetime, timedelta from typing import ( TYPE_CHECKING, Any, Dict, List, Optional, Sequence, Set, Sized, Tuple, Type, Union, ) import numpy as np from pandas._libs import lib, tslib, tslibs from pandas._libs.tslibs import ( NaT, OutOfBoundsDatetime, Period, Timedelta, Timestamp, conversion, iNaT, ints_to_pydatetime, ints_to_pytimedelta, ) from pandas._libs.tslibs.timezones import tz_compare from pandas._typing import AnyArrayLike, ArrayLike, Dtype, DtypeObj, Scalar, Shape from pandas.util._validators import validate_bool_kwarg from pandas.core.dtypes.common import ( DT64NS_DTYPE, INT64_DTYPE, POSSIBLY_CAST_DTYPES, TD64NS_DTYPE, ensure_int8, ensure_int16, ensure_int32, ensure_int64, ensure_object, ensure_str, is_bool, is_bool_dtype, is_categorical_dtype, is_complex, is_complex_dtype, is_datetime64_dtype, is_datetime64_ns_dtype, is_datetime64tz_dtype, is_datetime_or_timedelta_dtype, is_dtype_equal, is_extension_array_dtype, is_float, is_float_dtype, is_integer, is_integer_dtype, is_numeric_dtype, is_object_dtype, is_scalar, is_sparse, is_string_dtype, is_timedelta64_dtype, is_timedelta64_ns_dtype, is_unsigned_integer_dtype, pandas_dtype, ) from pandas.core.dtypes.dtypes import ( DatetimeTZDtype, ExtensionDtype, IntervalDtype, PeriodDtype, ) from pandas.core.dtypes.generic import ( ABCDataFrame, ABCDatetimeArray, ABCDatetimeIndex, ABCExtensionArray, ABCPeriodArray, ABCPeriodIndex, ABCSeries, ) from pandas.core.dtypes.inference import is_list_like from pandas.core.dtypes.missing import ( is_valid_nat_for_dtype, isna, na_value_for_dtype, notna, ) if TYPE_CHECKING: from pandas import Series from pandas.core.arrays import ExtensionArray from pandas.core.indexes.base import Index _int8_max = np.iinfo(np.int8).max _int16_max = np.iinfo(np.int16).max _int32_max = np.iinfo(np.int32).max _int64_max = np.iinfo(np.int64).max def maybe_convert_platform(values): """ try to do platform conversion, allow ndarray or list here """ if isinstance(values, (list, tuple, range)): values = construct_1d_object_array_from_listlike(values) if getattr(values, "dtype", None) == np.object_: if hasattr(values, "_values"): values = values._values values = lib.maybe_convert_objects(values) return values def is_nested_object(obj) -> bool: """ return a boolean if we have a nested object, e.g. a Series with 1 or more Series elements This may not be necessarily be performant. """ if isinstance(obj, ABCSeries) and is_object_dtype(obj.dtype): if any(isinstance(v, ABCSeries) for v in obj._values): return True return False def maybe_box_datetimelike(value: Scalar, dtype: Optional[Dtype] = None) -> Scalar: """ Cast scalar to Timestamp or Timedelta if scalar is datetime-like and dtype is not object. Parameters ---------- value : scalar dtype : Dtype, optional Returns ------- scalar """ if dtype == object: pass elif isinstance(value, (np.datetime64, datetime)): value = tslibs.Timestamp(value) elif isinstance(value, (np.timedelta64, timedelta)): value = tslibs.Timedelta(value) return value def maybe_downcast_to_dtype(result, dtype: Union[str, np.dtype]): """ try to cast to the specified dtype (e.g. convert back to bool/int or could be an astype of float64->float32 """ do_round = False if is_scalar(result): return result elif isinstance(result, ABCDataFrame): # occurs in pivot_table doctest return result if isinstance(dtype, str): if dtype == "infer": inferred_type = lib.infer_dtype(ensure_object(result), skipna=False) if inferred_type == "boolean": dtype = "bool" elif inferred_type == "integer": dtype = "int64" elif inferred_type == "datetime64": dtype = "datetime64[ns]" elif inferred_type == "timedelta64": dtype = "timedelta64[ns]" # try to upcast here elif inferred_type == "floating": dtype = "int64" if issubclass(result.dtype.type, np.number): do_round = True else: dtype = "object" dtype = np.dtype(dtype) elif dtype.type is Period: from pandas.core.arrays import PeriodArray with suppress(TypeError): # e.g. TypeError: int() argument must be a string, a # bytes-like object or a number, not 'Period return PeriodArray(result, freq=dtype.freq) converted = maybe_downcast_numeric(result, dtype, do_round) if converted is not result: return converted # a datetimelike # GH12821, iNaT is cast to float if dtype.kind in ["M", "m"] and result.dtype.kind in ["i", "f"]: if hasattr(dtype, "tz"): # not a numpy dtype if dtype.tz: # convert to datetime and change timezone from pandas import to_datetime result = to_datetime(result).tz_localize("utc") result = result.tz_convert(dtype.tz) else: result = result.astype(dtype) return result def maybe_downcast_numeric(result, dtype: DtypeObj, do_round: bool = False): """ Subset of maybe_downcast_to_dtype restricted to numeric dtypes. Parameters ---------- result : ndarray or ExtensionArray dtype : np.dtype or ExtensionDtype do_round : bool Returns ------- ndarray or ExtensionArray """ if not isinstance(dtype, np.dtype): # e.g. SparseDtype has no itemsize attr return result if isinstance(result, list): # reached via groupby.agg._ohlc; really this should be handled earlier result = np.array(result) def trans(x): if do_round: return x.round() return x if dtype.kind == result.dtype.kind: # don't allow upcasts here (except if empty) if result.dtype.itemsize <= dtype.itemsize and result.size: return result if is_bool_dtype(dtype) or is_integer_dtype(dtype): if not result.size: # if we don't have any elements, just astype it return trans(result).astype(dtype) # do a test on the first element, if it fails then we are done r = result.ravel() arr = np.array([r[0]]) if isna(arr).any(): # if we have any nulls, then we are done return result elif not isinstance(r[0], (np.integer, np.floating, int, float, bool)): # a comparable, e.g. a Decimal may slip in here return result if ( issubclass(result.dtype.type, (np.object_, np.number)) and notna(result).all() ): new_result = trans(result).astype(dtype) if new_result.dtype.kind == "O" or result.dtype.kind == "O": # np.allclose may raise TypeError on object-dtype if (new_result == result).all(): return new_result else: if np.allclose(new_result, result, rtol=0): return new_result elif ( issubclass(dtype.type, np.floating) and not is_bool_dtype(result.dtype) and not is_string_dtype(result.dtype) ): return result.astype(dtype) return result def maybe_cast_result( result: ArrayLike, obj: "Series", numeric_only: bool = False, how: str = "" ) -> ArrayLike: """ Try casting result to a different type if appropriate Parameters ---------- result : array-like Result to cast. obj : Series Input Series from which result was calculated. numeric_only : bool, default False Whether to cast only numerics or datetimes as well. how : str, default "" How the result was computed. Returns ------- result : array-like result maybe casted to the dtype. """ dtype = obj.dtype dtype = maybe_cast_result_dtype(dtype, how) assert not is_scalar(result) if ( is_extension_array_dtype(dtype) and not is_categorical_dtype(dtype) and dtype.kind != "M" ): # We have to special case categorical so as not to upcast # things like counts back to categorical cls = dtype.construct_array_type() result = maybe_cast_to_extension_array(cls, result, dtype=dtype) elif numeric_only and is_numeric_dtype(dtype) or not numeric_only: result = maybe_downcast_to_dtype(result, dtype) return result def maybe_cast_result_dtype(dtype: DtypeObj, how: str) -> DtypeObj: """ Get the desired dtype of a result based on the input dtype and how it was computed. Parameters ---------- dtype : DtypeObj Input dtype. how : str How the result was computed. Returns ------- DtypeObj The desired dtype of the result. """ from pandas.core.arrays.boolean import BooleanDtype from pandas.core.arrays.integer import Int64Dtype if how in ["add", "cumsum", "sum"] and (dtype == np.dtype(bool)): return np.dtype(np.int64) elif how in ["add", "cumsum", "sum"] and isinstance(dtype, BooleanDtype): return Int64Dtype() return dtype def maybe_cast_to_extension_array( cls: Type["ExtensionArray"], obj: ArrayLike, dtype: Optional[ExtensionDtype] = None ) -> ArrayLike: """ Call to `_from_sequence` that returns the object unchanged on Exception. Parameters ---------- cls : class, subclass of ExtensionArray obj : arraylike Values to pass to cls._from_sequence dtype : ExtensionDtype, optional Returns ------- ExtensionArray or obj """ from pandas.core.arrays.string_ import StringArray from pandas.core.arrays.string_arrow import ArrowStringArray assert isinstance(cls, type), f"must pass a type: {cls}" assertion_msg = f"must pass a subclass of ExtensionArray: {cls}" assert issubclass(cls, ABCExtensionArray), assertion_msg # Everything can be converted to StringArrays, but we may not want to convert if ( issubclass(cls, (StringArray, ArrowStringArray)) and lib.infer_dtype(obj) != "string" ): return obj try: result = cls._from_sequence(obj, dtype=dtype) except Exception: # We can't predict what downstream EA constructors may raise result = obj return result def maybe_upcast_putmask( result: np.ndarray, mask: np.ndarray, other: Scalar ) -> Tuple[np.ndarray, bool]: """ A safe version of putmask that potentially upcasts the result. The result is replaced with the first N elements of other, where N is the number of True values in mask. If the length of other is shorter than N, other will be repeated. Parameters ---------- result : ndarray The destination array. This will be mutated in-place if no upcasting is necessary. mask : boolean ndarray other : scalar The source value. Returns ------- result : ndarray changed : bool Set to true if the result array was upcasted. Examples -------- >>> arr = np.arange(1, 6) >>> mask = np.array([False, True, False, True, True]) >>> result, _ = maybe_upcast_putmask(arr, mask, False) >>> result array([1, 0, 3, 0, 0]) """ if not isinstance(result, np.ndarray): raise ValueError("The result input must be a ndarray.") if not is_scalar(other): # We _could_ support non-scalar other, but until we have a compelling # use case, we assume away the possibility. raise ValueError("other must be a scalar") if mask.any(): # Two conversions for date-like dtypes that can't be done automatically # in np.place: # NaN -> NaT # integer or integer array -> date-like array if result.dtype.kind in ["m", "M"]: if isna(other): other = result.dtype.type("nat") elif is_integer(other): other = np.array(other, dtype=result.dtype) def changeit(): # we are forced to change the dtype of the result as the input # isn't compatible r, _ = maybe_upcast(result, fill_value=other, copy=True) np.place(r, mask, other) return r, True # we want to decide whether place will work # if we have nans in the False portion of our mask then we need to # upcast (possibly), otherwise we DON't want to upcast (e.g. if we # have values, say integers, in the success portion then it's ok to not # upcast) new_dtype, _ = maybe_promote(result.dtype, other) if new_dtype != result.dtype: # we have a scalar or len 0 ndarray # and its nan and we are changing some values if isna(other): return changeit() try: np.place(result, mask, other) except TypeError: # e.g. int-dtype result and float-dtype other return changeit() return result, False def maybe_casted_values( index: "Index", codes: Optional[np.ndarray] = None ) -> ArrayLike: """ Convert an index, given directly or as a pair (level, code), to a 1D array. Parameters ---------- index : Index codes : np.ndarray[intp] or None, default None Returns ------- ExtensionArray or ndarray If codes is `None`, the values of `index`. If codes is passed, an array obtained by taking from `index` the indices contained in `codes`. """ values = index._values if values.dtype == np.object_: values = lib.maybe_convert_objects(values) # if we have the codes, extract the values with a mask if codes is not None: mask: np.ndarray = codes == -1 if mask.size > 0 and mask.all(): # we can have situations where the whole mask is -1, # meaning there is nothing found in codes, so make all nan's dtype = index.dtype fill_value = na_value_for_dtype(dtype) values = construct_1d_arraylike_from_scalar(fill_value, len(mask), dtype) else: values = values.take(codes) if mask.any(): if isinstance(values, np.ndarray): values, _ = maybe_upcast_putmask(values, mask, np.nan) else: values[mask] = np.nan return values def maybe_promote(dtype, fill_value=np.nan): """ Find the minimal dtype that can hold both the given dtype and fill_value. Parameters ---------- dtype : np.dtype or ExtensionDtype fill_value : scalar, default np.nan Returns ------- dtype Upcasted from dtype argument if necessary. fill_value Upcasted from fill_value argument if necessary. """ if not is_scalar(fill_value) and not is_object_dtype(dtype): # with object dtype there is nothing to promote, and the user can # pass pretty much any weird fill_value they like raise ValueError("fill_value must be a scalar") # if we passed an array here, determine the fill value by dtype if isinstance(fill_value, np.ndarray): if issubclass(fill_value.dtype.type, (np.datetime64, np.timedelta64)): fill_value = fill_value.dtype.type("NaT", "ns") else: # we need to change to object type as our # fill_value is of object type if fill_value.dtype == np.object_: dtype = np.dtype(np.object_) fill_value = np.nan if dtype == np.object_ or dtype.kind in ["U", "S"]: # We treat string-like dtypes as object, and _always_ fill # with np.nan fill_value = np.nan dtype = np.dtype(np.object_) # returns tuple of (dtype, fill_value) if issubclass(dtype.type, np.datetime64): if isinstance(fill_value, datetime) and fill_value.tzinfo is not None: # Trying to insert tzaware into tznaive, have to cast to object dtype = np.dtype(np.object_) elif is_integer(fill_value) or (is_float(fill_value) and not isna(fill_value)): dtype = np.dtype(np.object_) else: try: fill_value = Timestamp(fill_value).to_datetime64() except (TypeError, ValueError): dtype = np.dtype(np.object_) elif issubclass(dtype.type, np.timedelta64): if ( is_integer(fill_value) or (is_float(fill_value) and not np.isnan(fill_value)) or isinstance(fill_value, str) ): # TODO: What about str that can be a timedelta? dtype = np.dtype(np.object_) else: try: fv = Timedelta(fill_value) except ValueError: dtype = np.dtype(np.object_) else: if fv is NaT: # NaT has no `to_timedelta64` method fill_value = np.timedelta64("NaT", "ns") else: fill_value = fv.to_timedelta64() elif is_datetime64tz_dtype(dtype): if isna(fill_value): fill_value = NaT elif not isinstance(fill_value, datetime): dtype = np.dtype(np.object_) elif fill_value.tzinfo is None: dtype = np.dtype(np.object_) elif not tz_compare(fill_value.tzinfo, dtype.tz): # TODO: sure we want to cast here? dtype = np.dtype(np.object_) elif is_extension_array_dtype(dtype) and isna(fill_value): fill_value = dtype.na_value elif is_float(fill_value): if issubclass(dtype.type, np.bool_): dtype = np.dtype(np.object_) elif issubclass(dtype.type, np.integer): dtype = np.dtype(np.float64) elif dtype.kind == "f": mst = np.min_scalar_type(fill_value) if mst > dtype: # e.g. mst is np.float64 and dtype is np.float32 dtype = mst elif dtype.kind == "c": mst = np.min_scalar_type(fill_value) dtype = np.promote_types(dtype, mst) elif is_bool(fill_value): if not issubclass(dtype.type, np.bool_): dtype = np.dtype(np.object_) elif is_integer(fill_value): if issubclass(dtype.type, np.bool_): dtype = np.dtype(np.object_) elif issubclass(dtype.type, np.integer): if not np.can_cast(fill_value, dtype): # upcast to prevent overflow mst = np.min_scalar_type(fill_value) dtype = np.promote_types(dtype, mst) if dtype.kind == "f": # Case where we disagree with numpy dtype = np.dtype(np.object_) elif is_complex(fill_value): if issubclass(dtype.type, np.bool_): dtype = np.dtype(np.object_) elif issubclass(dtype.type, (np.integer, np.floating)): mst = np.min_scalar_type(fill_value) dtype = np.promote_types(dtype, mst) elif dtype.kind == "c": mst = np.min_scalar_type(fill_value) if mst > dtype: # e.g. mst is np.complex128 and dtype is np.complex64 dtype = mst elif fill_value is None: if is_float_dtype(dtype) or is_complex_dtype(dtype): fill_value = np.nan elif is_integer_dtype(dtype): dtype = np.float64 fill_value = np.nan elif is_datetime_or_timedelta_dtype(dtype): fill_value = dtype.type("NaT", "ns") else: dtype = np.dtype(np.object_) fill_value = np.nan else: dtype = np.dtype(np.object_) # in case we have a string that looked like a number if is_extension_array_dtype(dtype): pass elif issubclass(np.dtype(dtype).type, (bytes, str)): dtype = np.dtype(np.object_) fill_value = _ensure_dtype_type(fill_value, dtype) return dtype, fill_value def _ensure_dtype_type(value, dtype: DtypeObj): """ Ensure that the given value is an instance of the given dtype. e.g. if out dtype is np.complex64_, we should have an instance of that as opposed to a python complex object. Parameters ---------- value : object dtype : np.dtype or ExtensionDtype Returns ------- object """ # Start with exceptions in which we do _not_ cast to numpy types if is_extension_array_dtype(dtype): return value elif dtype == np.object_: return value elif isna(value): # e.g. keep np.nan rather than try to cast to np.float32(np.nan) return value return dtype.type(value) def infer_dtype_from(val, pandas_dtype: bool = False) -> Tuple[DtypeObj, Any]: """ Interpret the dtype from a scalar or array. Parameters ---------- val : object pandas_dtype : bool, default False whether to infer dtype including pandas extension types. If False, scalar/array belongs to pandas extension types is inferred as object """ if is_scalar(val): return infer_dtype_from_scalar(val, pandas_dtype=pandas_dtype) return infer_dtype_from_array(val, pandas_dtype=pandas_dtype) def infer_dtype_from_scalar(val, pandas_dtype: bool = False) -> Tuple[DtypeObj, Any]: """ Interpret the dtype from a scalar. Parameters ---------- pandas_dtype : bool, default False whether to infer dtype including pandas extension types. If False, scalar belongs to pandas extension types is inferred as object """ dtype: DtypeObj = np.dtype(object) # a 1-element ndarray if isinstance(val, np.ndarray): msg = "invalid ndarray passed to infer_dtype_from_scalar" if val.ndim != 0: raise ValueError(msg) dtype = val.dtype val = val.item() elif isinstance(val, str): # If we create an empty array using a string to infer # the dtype, NumPy will only allocate one character per entry # so this is kind of bad. Alternately we could use np.repeat # instead of np.empty (but then you still don't want things # coming out as np.str_! dtype = np.dtype(object) elif isinstance(val, (np.datetime64, datetime)): val = Timestamp(val) if val is NaT or val.tz is None: dtype = np.dtype("M8[ns]") else: if pandas_dtype: dtype = DatetimeTZDtype(unit="ns", tz=val.tz) else: # return datetimetz as object return np.dtype(object), val val = val.value elif isinstance(val, (np.timedelta64, timedelta)): val = Timedelta(val).value dtype = np.dtype("m8[ns]") elif is_bool(val): dtype = np.dtype(np.bool_) elif is_integer(val): if isinstance(val, np.integer): dtype = np.dtype(type(val)) else: dtype = np.dtype(np.int64) try: np.array(val, dtype=dtype) except OverflowError: dtype = np.array(val).dtype elif is_float(val): if isinstance(val, np.floating): dtype = np.dtype(type(val)) else: dtype = np.dtype(np.float64) elif is_complex(val): dtype = np.dtype(np.complex_) elif pandas_dtype: if lib.is_period(val): dtype = PeriodDtype(freq=val.freq) elif lib.is_interval(val): subtype = infer_dtype_from_scalar(val.left, pandas_dtype=True)[0] dtype = IntervalDtype(subtype=subtype) return dtype, val def dict_compat(d: Dict[Scalar, Scalar]) -> Dict[Scalar, Scalar]: """ Convert datetimelike-keyed dicts to a Timestamp-keyed dict. Parameters ---------- d: dict-like object Returns ------- dict """ return {maybe_box_datetimelike(key): value for key, value in d.items()} def infer_dtype_from_array( arr, pandas_dtype: bool = False ) -> Tuple[DtypeObj, ArrayLike]: """ Infer the dtype from an array. Parameters ---------- arr : array pandas_dtype : bool, default False whether to infer dtype including pandas extension types. If False, array belongs to pandas extension types is inferred as object Returns ------- tuple (numpy-compat/pandas-compat dtype, array) Notes ----- if pandas_dtype=False. these infer to numpy dtypes exactly with the exception that mixed / object dtypes are not coerced by stringifying or conversion if pandas_dtype=True. datetime64tz-aware/categorical types will retain there character. Examples -------- >>> np.asarray([1, '1']) array(['1', '1'], dtype='<U21') >>> infer_dtype_from_array([1, '1']) (dtype('O'), [1, '1']) """ if isinstance(arr, np.ndarray): return arr.dtype, arr if not is_list_like(arr): arr = [arr] if pandas_dtype and is_extension_array_dtype(arr): return arr.dtype, arr elif isinstance(arr, ABCSeries): return arr.dtype, np.asarray(arr) # don't force numpy coerce with nan's inferred = lib.infer_dtype(arr, skipna=False) if inferred in ["string", "bytes", "mixed", "mixed-integer"]: return (np.dtype(np.object_), arr) arr = np.asarray(arr) return arr.dtype, arr def maybe_infer_dtype_type(element): """ Try to infer an object's dtype, for use in arithmetic ops. Uses `element.dtype` if that's available. Objects implementing the iterator protocol are cast to a NumPy array, and from there the array's type is used. Parameters ---------- element : object Possibly has a `.dtype` attribute, and possibly the iterator protocol. Returns ------- tipo : type Examples -------- >>> from collections import namedtuple >>> Foo = namedtuple("Foo", "dtype") >>> maybe_infer_dtype_type(Foo(np.dtype("i8"))) dtype('int64') """ tipo = None if hasattr(element, "dtype"): tipo = element.dtype elif is_list_like(element): element = np.asarray(element) tipo = element.dtype return tipo def maybe_upcast( values: ArrayLike, fill_value: Scalar = np.nan, dtype: Dtype = None, copy: bool = False, ) -> Tuple[ArrayLike, Scalar]: """ Provide explicit type promotion and coercion. Parameters ---------- values : ndarray or ExtensionArray The array that we want to maybe upcast. fill_value : what we want to fill with dtype : if None, then use the dtype of the values, else coerce to this type copy : bool, default True If True always make a copy even if no upcast is required. Returns ------- values: ndarray or ExtensionArray the original array, possibly upcast fill_value: the fill value, possibly upcast """ if not is_scalar(fill_value) and not is_object_dtype(values.dtype): # We allow arbitrary fill values for object dtype raise ValueError("fill_value must be a scalar") if is_extension_array_dtype(values): if copy: values = values.copy() else: if dtype is None: dtype = values.dtype new_dtype, fill_value = maybe_promote(dtype, fill_value) if new_dtype != values.dtype: values = values.astype(new_dtype) elif copy: values = values.copy() return values, fill_value def invalidate_string_dtypes(dtype_set: Set[DtypeObj]): """ Change string like dtypes to object for ``DataFrame.select_dtypes()``. """ non_string_dtypes = dtype_set - {np.dtype("S").type, np.dtype("<U").type} if non_string_dtypes != dtype_set: raise TypeError("string dtypes are not allowed, use 'object' instead") def coerce_indexer_dtype(indexer, categories): """ coerce the indexer input array to the smallest dtype possible """ length = len(categories) if length < _int8_max: return ensure_int8(indexer) elif length < _int16_max: return ensure_int16(indexer) elif length < _int32_max: return ensure_int32(indexer) return ensure_int64(indexer) def astype_nansafe( arr, dtype: DtypeObj, copy: bool = True, skipna: bool = False ) -> ArrayLike: """ Cast the elements of an array to a given dtype a nan-safe manner. Parameters ---------- arr : ndarray dtype : np.dtype copy : bool, default True If False, a view will be attempted but may fail, if e.g. the item sizes don't align. skipna: bool, default False Whether or not we should skip NaN when casting as a string-type. Raises ------ ValueError The dtype was a datetime64/timedelta64 dtype, but it had no unit. """ # dispatch on extension dtype if needed if is_extension_array_dtype(dtype): return dtype.construct_array_type()._from_sequence(arr, dtype=dtype, copy=copy) if not isinstance(dtype, np.dtype): dtype = pandas_dtype(dtype) if issubclass(dtype.type, str): return lib.ensure_string_array( arr.ravel(), skipna=skipna, convert_na_value=False ).reshape(arr.shape) elif is_datetime64_dtype(arr): if is_object_dtype(dtype): return ints_to_pydatetime(arr.view(np.int64)) elif dtype == np.int64: if isna(arr).any(): raise ValueError("Cannot convert NaT values to integer") return arr.view(dtype) # allow frequency conversions if dtype.kind == "M": return arr.astype(dtype) raise TypeError(f"cannot astype a datetimelike from [{arr.dtype}] to [{dtype}]") elif is_timedelta64_dtype(arr): if is_object_dtype(dtype): return ints_to_pytimedelta(arr.view(np.int64)) elif dtype == np.int64: if isna(arr).any(): raise ValueError("Cannot convert NaT values to integer") return arr.view(dtype) if dtype not in [INT64_DTYPE, TD64NS_DTYPE]: # allow frequency conversions # we return a float here! if dtype.kind == "m": mask = isna(arr) result = arr.astype(dtype).astype(np.float64) result[mask] = np.nan return result elif dtype == TD64NS_DTYPE: return arr.astype(TD64NS_DTYPE, copy=copy) raise TypeError(f"cannot astype a timedelta from [{arr.dtype}] to [{dtype}]") elif np.issubdtype(arr.dtype, np.floating) and np.issubdtype(dtype, np.integer): if not np.isfinite(arr).all(): raise ValueError("Cannot convert non-finite values (NA or inf) to integer") elif is_object_dtype(arr): # work around NumPy brokenness, #1987 if np.issubdtype(dtype.type, np.integer): return lib.astype_intsafe(arr.ravel(), dtype).reshape(arr.shape) # if we have a datetime/timedelta array of objects # then coerce to a proper dtype and recall astype_nansafe elif is_datetime64_dtype(dtype): from pandas import to_datetime return astype_nansafe(to_datetime(arr).values, dtype, copy=copy) elif is_timedelta64_dtype(dtype): from pandas import to_timedelta return astype_nansafe(to_timedelta(arr)._values, dtype, copy=copy) if dtype.name in ("datetime64", "timedelta64"): msg = ( f"The '{dtype.name}' dtype has no unit. Please pass in " f"'{dtype.name}[ns]' instead." ) raise ValueError(msg) if copy or is_object_dtype(arr) or is_object_dtype(dtype): # Explicit copy, or required since NumPy can't view from / to object. return arr.astype(dtype, copy=True) return arr.view(dtype) def soft_convert_objects( values: np.ndarray, datetime: bool = True, numeric: bool = True, timedelta: bool = True, copy: bool = True, ): """ Try to coerce datetime, timedelta, and numeric object-dtype columns to inferred dtype. Parameters ---------- values : np.ndarray[object] datetime : bool, default True numeric: bool, default True timedelta : bool, default True copy : bool, default True Returns ------- np.ndarray """ validate_bool_kwarg(datetime, "datetime") validate_bool_kwarg(numeric, "numeric") validate_bool_kwarg(timedelta, "timedelta") validate_bool_kwarg(copy, "copy") conversion_count = sum((datetime, numeric, timedelta)) if conversion_count == 0: raise ValueError("At least one of datetime, numeric or timedelta must be True.") # Soft conversions if datetime: # GH 20380, when datetime is beyond year 2262, hence outside # bound of nanosecond-resolution 64-bit integers. try: values = lib.maybe_convert_objects(values, convert_datetime=True) except OutOfBoundsDatetime: pass if timedelta and is_object_dtype(values.dtype): # Object check to ensure only run if previous did not convert values = lib.maybe_convert_objects(values, convert_timedelta=True) if numeric and is_object_dtype(values.dtype): try: converted = lib.maybe_convert_numeric(values, set(), coerce_numeric=True) except (ValueError, TypeError): pass else: # If all NaNs, then do not-alter values = converted if not isna(converted).all() else values values = values.copy() if copy else values return values def convert_dtypes( input_array: AnyArrayLike, convert_string: bool = True, convert_integer: bool = True, convert_boolean: bool = True, convert_floating: bool = True, ) -> Dtype: """ Convert objects to best possible type, and optionally, to types supporting ``pd.NA``. Parameters ---------- input_array : ExtensionArray, Index, Series or np.ndarray convert_string : bool, default True Whether object dtypes should be converted to ``StringDtype()``. convert_integer : bool, default True Whether, if possible, conversion can be done to integer extension types. convert_boolean : bool, defaults True Whether object dtypes should be converted to ``BooleanDtypes()``. convert_floating : bool, defaults True Whether, if possible, conversion can be done to floating extension types. If `convert_integer` is also True, preference will be give to integer dtypes if the floats can be faithfully casted to integers. Returns ------- dtype new dtype """ is_extension = is_extension_array_dtype(input_array.dtype) if ( convert_string or convert_integer or convert_boolean or convert_floating ) and not is_extension: try: inferred_dtype = lib.infer_dtype(input_array) except ValueError: # Required to catch due to Period. Can remove once GH 23553 is fixed inferred_dtype = input_array.dtype if not convert_string and is_string_dtype(inferred_dtype): inferred_dtype = input_array.dtype if convert_integer: target_int_dtype = "Int64" if is_integer_dtype(input_array.dtype): from pandas.core.arrays.integer import INT_STR_TO_DTYPE inferred_dtype = INT_STR_TO_DTYPE.get( input_array.dtype.name, target_int_dtype ) if not is_integer_dtype(input_array.dtype) and is_numeric_dtype( input_array.dtype ): inferred_dtype = target_int_dtype else: if is_integer_dtype(inferred_dtype): inferred_dtype = input_array.dtype if convert_floating: if not is_integer_dtype(input_array.dtype) and is_numeric_dtype( input_array.dtype ): from pandas.core.arrays.floating import FLOAT_STR_TO_DTYPE inferred_float_dtype = FLOAT_STR_TO_DTYPE.get( input_array.dtype.name, "Float64" ) # if we could also convert to integer, check if all floats # are actually integers if convert_integer: arr = input_array[notna(input_array)] if (arr.astype(int) == arr).all(): inferred_dtype = "Int64" else: inferred_dtype = inferred_float_dtype else: inferred_dtype = inferred_float_dtype else: if is_float_dtype(inferred_dtype): inferred_dtype = input_array.dtype if convert_boolean: if is_bool_dtype(input_array.dtype): inferred_dtype = "boolean" else: if isinstance(inferred_dtype, str) and inferred_dtype == "boolean": inferred_dtype = input_array.dtype else: inferred_dtype = input_array.dtype return inferred_dtype def maybe_castable(arr: np.ndarray) -> bool: # return False to force a non-fastpath assert isinstance(arr, np.ndarray) # GH 37024 # check datetime64[ns]/timedelta64[ns] are valid # otherwise try to coerce kind = arr.dtype.kind if kind == "M": return is_datetime64_ns_dtype(arr.dtype) elif kind == "m": return
is_timedelta64_ns_dtype(arr.dtype)
pandas.core.dtypes.common.is_timedelta64_ns_dtype
import matplotlib.pyplot as plt from sklearn.linear_model import LinearRegression from sklearn.preprocessing import PolynomialFeatures import numpy as np from pylab import rcParams ########################################################################################## # Designed and developed by <NAME> # Date : 11 Oct 2018 # Function: batsman4s # This function plots the number of 4s vs the runs scored in the innings by the batsman # ########################################################################################### def batsman4s(file, name="A Hookshot"): ''' Plot the numbers of 4s against the runs scored by batsman Description This function plots the number of 4s against the total runs scored by batsman. A 2nd order polynomial regression curve is also plotted. The predicted number of 4s for 50 runs and 100 runs scored is also plotted Usage batsman4s(file, name="A Hookshot") Arguments file This is the <batsman>.csv file obtained with an initial getPlayerData() name Name of the batsman Note Maintainer: <NAME> <<EMAIL>> Author(s) <NAME> References http://www.espncricinfo.com/ci/content/stats/index.html https://gigadom.wordpress.com/ See Also batsman6s Examples # Get or use the <batsman>.csv obtained with getPlayerData() tendulkar = getPlayerData(35320,dir="../",file="tendulkar.csv",type="batting") homeOrAway=[1,2],result=[1,2,4] ''' # Clean the batsman file and create a complete data frame df = clean(file) # Set figure size rcParams['figure.figsize'] = 10,6 # Get numnber of 4s and runs scored x4s = pd.to_numeric(df['4s']) runs = pd.to_numeric(df['Runs']) atitle = name + "-" + "Runs scored vs No of 4s" # Plot no of 4s and a 2nd order curve fit plt.scatter(runs, x4s, alpha=0.5) plt.xlabel('Runs') plt.ylabel('4s') plt.title(atitle) # Create a polynomial of degree 2 poly = PolynomialFeatures(degree=2) runsPoly = poly.fit_transform(runs.reshape(-1,1)) linreg = LinearRegression().fit(runsPoly,x4s) plt.plot(runs,linreg.predict(runsPoly),'-r') # Predict the number of 4s for 50 runs b=poly.fit_transform((np.array(50))) c=linreg.predict(b) plt.axhline(y=c, color='b', linestyle=':') plt.axvline(x=50, color='b', linestyle=':') # Predict the number of 4s for 100 runs b=poly.fit_transform((np.array(100))) c=linreg.predict(b) plt.axhline(y=c, color='b', linestyle=':') plt.axvline(x=100, color='b', linestyle=':') plt.text(180, 0.5,'Data source-Courtesy:ESPN Cricinfo', horizontalalignment='center', verticalalignment='center', ) plt.show() plt.gcf().clear() return import matplotlib.pyplot as plt import seaborn as sns from pylab import rcParams ########################################################################################## # Designed and developed by <NAME> # Date : 13 Oct 2018 # Function: batsman6s # This function plots the number of 6s vs the runs scored in the innings by the batsman # ########################################################################################### def batsman6s(file, name="A Hookshot") : ''' Description Compute and plot the number of 6s in the total runs scored by batsman Usage batsman6s(file, name="A Hookshot") Arguments file This is the <batsman>.csv file obtained with an initial getPlayerData() name Name of the batsman Examples # Get or use the <batsman>.csv obtained with getPlayerData() # tendulkar = getPlayerData(35320,file="tendulkar.csv",type="batting", homeOrAway=c(1,2),result=c(1,2,4)) ''' x6s = [] # Set figure size rcParams['figure.figsize'] = 10,6 # Clean the batsman file and create a complete data frame df = clean (file) # Remove all rows where 6s are 0 a= df['6s'] !=0 b= df[a] x6s=b['6s'].astype(int) runs=pd.to_numeric(b['Runs']) # Plot the 6s as a boxplot atitle =name + "-" + "Runs scored vs No of 6s" df1=pd.concat([runs,x6s],axis=1) fig = sns.boxplot(x="6s", y="Runs", data=df1) plt.title(atitle) plt.text(2.2, 10,'Data source-Courtesy:ESPN Cricinfo', horizontalalignment='center', verticalalignment='center', ) plt.show() plt.gcf().clear() return import matplotlib.pyplot as plt import seaborn as sns from pylab import rcParams ########################################################################################## # Designed and developed by <NAME> # Date : 14 Oct 2018 # Function: batsmanAvgRunsGround # This function plots the average runs scored by batsman at the ground. The xlabels indicate # the number of innings at ground # ########################################################################################### def batsmanAvgRunsGround(file, name="A Latecut"): ''' Description This function computed the Average Runs scored on different pitches and also indicates the number of innings played at these venues Usage batsmanAvgRunsGround(file, name = "A Latecut") Arguments file This is the <batsman>.csv file obtained with an initial getPlayerData() name Name of the batsman Details More details can be found in my short video tutorial in Youtube https://www.youtube.com/watch?v=q9uMPFVsXsI Value None Note Maintainer: <NAME> <<EMAIL>> Author(s) <NAME> References http://www.espncricinfo.com/ci/content/stats/index.html https://gigadom.wordpress.com/ See Also batsmanDismissals, batsmanMovingAverage, batsmanPerfBoxHist Examples # Get or use the <batsman>.csv obtained with getPlayerData() ##tendulkar = getPlayerData(35320,file="tendulkar.csv",type="batting", homeOrAway=[1,2],result=[1,2,4]) ''' batsman = clean(file) rcParams['figure.figsize'] = 10,6 batsman['Runs']=pd.to_numeric(batsman['Runs']) # Aggregate as sum, mean and count df=batsman[['Runs','Ground']].groupby('Ground').agg(['sum','mean','count']) #Flatten multi-levels to column names df.columns= ['_'.join(col).strip() for col in df.columns.values] # Reset index df1=df.reset_index(inplace=False) atitle = name + "'s Average Runs at Ground" plt.xticks(rotation='vertical') plt.axhline(y=50, color='b', linestyle=':') plt.axhline(y=100, color='r', linestyle=':') ax=sns.barplot(x='Ground', y="Runs_mean", data=df1) plt.title(atitle) plt.text(30, 180,'Data source-Courtesy:ESPN Cricinfo',\ horizontalalignment='center',\ verticalalignment='center',\ ) plt.show() plt.gcf().clear() return import matplotlib.pyplot as plt import seaborn as sns from pylab import rcParams ########################################################################################## # Designed and developed by <NAME> # Date : 14 Oct 2018 # Function: batsmanAvgRunsOpposition # This function plots the average runs scored by batsman versus the opposition. The xlabels indicate # the Opposition and the number of innings at ground # ########################################################################################### def batsmanAvgRunsOpposition(file, name="A Latecut"): ''' This function computes and plots the Average runs against different opposition played by batsman Description This function computes the mean runs scored by batsman against different opposition Usage batsmanAvgRunsOpposition(file, name = "A Latecut") Arguments file This is the <batsman>.csv file obtained with an initial getPlayerData() name Name of the batsman Details More details can be found in my short video tutorial in Youtube https://www.youtube.com/watch?v=q9uMPFVsXsI Value None Note Maintainer: <NAME> <<EMAIL>> Author(s) <NAME> References http://www.espncricinfo.com/ci/content/stats/index.html https://gigadom.wordpress.com/ See Also batsmanDismissals, batsmanMovingAverage, batsmanPerfBoxHist batsmanAvgRunsGround Examples # Get or use the <batsman>.csv obtained with getPlayerData() #tendulkar = getPlayerData(35320,file="tendulkar.csv",type="batting", homeOrAway=[1,2],result=[1,2,4]) ''' batsman = clean(file) # Set figure size rcParams['figure.figsize'] = 10,6 batsman['Runs']=pd.to_numeric(batsman['Runs']) # Aggregate as sum, mean and count df=batsman[['Runs','Opposition']].groupby('Opposition').agg(['sum','mean','count']) #Flatten multi-levels to column names df.columns= ['_'.join(col).strip() for col in df.columns.values] # Reset index df1=df.reset_index(inplace=False) atitle = name + "'s Average Runs vs Opposition" plt.xticks(rotation='vertical') ax=sns.barplot(x='Opposition', y="Runs_mean", data=df1) plt.axhline(y=50, color='b', linestyle=':') plt.title(atitle) plt.text(5, 50, 'Data source-Courtesy:ESPN Cricinfo',\ horizontalalignment='center',\ verticalalignment='center',\ ) plt.show() plt.gcf().clear() return import matplotlib.pyplot as plt import seaborn as sns from pylab import rcParams ########################################################################################## # Designed and developed by <NAME> # Date : 19 Oct 2018 # Function: batsmanContributionWonLost # This plots the batsman's contribution to won and lost matches # ########################################################################################### def batsmanContributionWonLost(file,name="A Hitter"): ''' Display the batsman's contribution in matches that were won and those that were lost Description Plot the comparative contribution of the batsman in matches that were won and lost as box plots Usage batsmanContributionWonLost(file, name = "A Hitter") Arguments file CSV file of batsman from ESPN Cricinfo obtained with getPlayerDataSp() name Name of the batsman Details More details can be found in my short video tutorial in Youtube https://www.youtube.com/watch?v=q9uMPFVsXsI Value None Note Maintainer: <NAME> <<EMAIL>> Author(s) <NAME> References http://www.espncricinfo.com/ci/content/stats/index.html https://gigadom.wordpress.com/ See Also batsmanMovingAverage batsmanRunsPredict batsmanPerfBoxHist Examples # Get or use the <batsman>.csv obtained with getPlayerData() #tendulkarsp = getPlayerDataSp(35320,".","tendulkarsp.csv","batting") batsmanContributionWonLost(tendulkarsp,"<NAME>") ''' playersp = clean(file) # Set figure size rcParams['figure.figsize'] = 10,6 # Create a column based on result won = playersp[playersp['result'] == 1] lost = playersp[(playersp['result']==2) | (playersp['result']==4)] won['status']="won" lost['status']="lost" # Stack dataframes df= pd.concat([won,lost]) df['Runs']= pd.to_numeric(df['Runs']) ax = sns.boxplot(x='status',y='Runs',data=df) atitle = name + "-" + "- Runs in games won/lost-drawn" plt.title(atitle) plt.text(0.5, 200,'Data source-Courtesy:ESPN Cricinfo', horizontalalignment='center', verticalalignment='center', ) plt.show() plt.gcf().clear() return import matplotlib.pyplot as plt from pylab import rcParams ########################################################################################## # Designed and developed by <NAME> # Date : 17 Oct 2018 # Function: batsmanCumulativeAverageRuns # This function computes and plots the cumulative average runs by a batsman # ########################################################################################### def batsmanCumulativeAverageRuns(file,name="A Leg Glance"): ''' Batsman's cumulative average runs Description This function computes and plots the cumulative average runs of a batsman Usage batsmanCumulativeAverageRuns(file,name= "A Leg Glance") Arguments file Data frame name Name of batsman Value None Note Maintainer: <NAME> <EMAIL> Author(s) <NAME> References http://www.espncricinfo.com/ci/content/stats/index.html https://gigadom.wordpress.com/ See Also batsmanCumulativeStrikeRate bowlerCumulativeAvgEconRate bowlerCumulativeAvgWickets Examples ## Not run: # retrieve the file path of a data file installed with cricketr batsmanCumulativeAverageRuns(pathToFile, "<NAME>") ''' batsman= clean(file) # Set figure size rcParams['figure.figsize'] = 10,6 runs=pd.to_numeric(batsman['Runs']) # Compute cumulative average cumAvg = runs.cumsum()/pd.Series(np.arange(1, len(runs)+1), runs.index) atitle = name + "- Cumulative Average vs No of innings" plt.plot(cumAvg) plt.xlabel('Innings') plt.ylabel('Cumulative average') plt.title(atitle) plt.text(200,20,'Data source-Courtesy:ESPN Cricinfo', horizontalalignment='center', verticalalignment='center', ) plt.show() plt.gcf().clear() return import matplotlib.pyplot as plt from pylab import rcParams ########################################################################################## # Designed and developed by <NAME> # Date : 17 Oct 2018 # Function: batsmanCumulativeStrikeRate # This function computes and plots the cumulative average strike rate of a batsman # ########################################################################################### def batsmanCumulativeStrikeRate(file,name="A Leg Glance"): ''' Batsman's cumulative average strike rate Description This function computes and plots the cumulative average strike rate of a batsman Usage batsmanCumulativeStrikeRate(file,name= "A Leg Glance") Arguments file Data frame name Name of batsman Value None Note Maintainer: <NAME> <EMAIL> Author(s) <NAME> References http://www.espncricinfo.com/ci/content/stats/index.html https://gigadom.wordpress.com/ See Also batsmanCumulativeAverageRuns bowlerCumulativeAvgEconRate bowlerCumulativeAvgWickets Examples ## Not run: batsmanCumulativeStrikeRate(pathToFile, "<NAME>") ''' batsman= clean(file) # Set figure size rcParams['figure.figsize'] = 10,6 strikeRate=pd.to_numeric(batsman['SR']) # Compute cumulative strike rate cumStrikeRate = strikeRate.cumsum()/pd.Series(np.arange(1, len(strikeRate)+1), strikeRate.index) atitle = name + "- Cumulative Strike rate vs No of innings" plt.xlabel('Innings') plt.ylabel('Cumulative Strike Rate') plt.title(atitle) plt.plot(cumStrikeRate) plt.text(200,60,'Data source-Courtesy:ESPN Cricinfo', horizontalalignment='center', verticalalignment='center', ) plt.show() plt.gcf().clear() return import matplotlib.pyplot as plt import seaborn as sns from pylab import rcParams ########################################################################################## # Designed and developed by <NAME> # Date : 13 Oct 2018 # Function: batsman6s # This function plots the batsman dismissals # ########################################################################################### def batsmanDismissals(file, name="A Squarecut"): ''' Display a 3D Pie Chart of the dismissals of the batsman Description Display the dismissals of the batsman (caught, bowled, hit wicket etc) as percentages Usage batsmanDismissals(file, name="A Squarecut") Arguments file This is the <batsman>.csv file obtained with an initial getPlayerData() name Name of the batsman Details More details can be found in my short video tutorial in Youtube https://www.youtube.com/watch?v=q9uMPFVsXsI Value None Note Maintainer: <NAME> <<EMAIL>> Author(s) <NAME> References http://www.espncricinfo.com/ci/content/stats/index.html https://gigadom.wordpress.com/ See Also batsmanMeanStrikeRate, batsmanMovingAverage, batsmanPerfBoxHist Examples # Get or use the <batsman>.csv obtained with getPlayerData() #tendulkar= getPlayerData(35320,file="tendulkar.csv",type="batting", homeOrAway=c(1,2),result=c(1,2,4)) batsmanDismissals(pathToFile,"<NAME>") ''' batsman = clean(file) # Set figure size rcParams['figure.figsize'] = 10,6 d = batsman['Dismissal'] # Convert to data frame df = pd.DataFrame(d) df1=df['Dismissal'].groupby(df['Dismissal']).count() df2 = pd.DataFrame(df1) df2.columns=['Count'] df3=df2.reset_index(inplace=False) # Plot a pie chart plt.pie(df3['Count'], labels=df3['Dismissal'],autopct='%.1f%%') atitle = name + "-Pie chart of dismissals" plt.suptitle(atitle, fontsize=16) plt.show() plt.gcf().clear() return import numpy as np import matplotlib.pyplot as plt from pylab import rcParams ########################################################################################## # Designed and developed by <NAME> # Date : 13 Oct 2018 # Function: batsmanMeanStrikeRate # This function plot the Mean Strike Rate of the batsman against Runs scored as a continous graph # ########################################################################################### def batsmanMeanStrikeRate(file, name="A Hitter"): ''' batsmanMeanStrikeRate {cricketr} R Documentation Calculate and plot the Mean Strike Rate of the batsman on total runs scored Description This function calculates the Mean Strike Rate of the batsman for each interval of runs scored Usage batsmanMeanStrikeRate(file, name = "A Hitter") Arguments file This is the <batsman>.csv file obtained with an initial getPlayerData() name Name of the batsman Details More details can be found in my short video tutorial in Youtube https://www.youtube.com/watch?v=q9uMPFVsXsI Value None Note Maintainer: <NAME> <<EMAIL>> Author(s) <NAME> References http://www.espncricinfo.com/ci/content/stats/index.html https://gigadom.wordpress.com/ See Also batsmanDismissals, batsmanMovingAverage, batsmanPerfBoxHist batsmanPerfBoxHist Examples # Get or use the <batsman>.csv obtained with getPlayerData() #tendulkar <- getPlayerData(35320,file="tendulkar.csv",type="batting", homeOrAway=c(1,2),result=c(1,2,4)) batsmanMeanStrikeRate(pathToFile,"<NAME>") ''' batsman = clean(file) # Set figure size rcParams['figure.figsize'] = 10,6 runs= pd.to_numeric(batsman['Runs']) # Create the histogram hist, bins = np.histogram(runs, bins = 20) midBin=[] SR=[] # Loop through for i in range(1,len(bins)): # Find the mean of the bins (Runs) midBin.append(np.mean([bins[i-1],bins[i]])) # Filter runs that are are between 2 bins batsman['Runs']=pd.to_numeric(batsman['Runs']) a=(batsman['Runs'] > bins[i-1]) & (batsman['Runs'] <= bins[i]) df=batsman[a] SR.append(np.mean(df['SR'])) atitle = name + "-" + "Strike rate in run ranges" # Plot no of 4s and a 2nd order curve fit plt.scatter(midBin, SR, alpha=0.5) plt.plot(midBin, SR,color="r", alpha=0.5) plt.xlabel('Runs') plt.ylabel('Strike Rate') plt.title(atitle) plt.text(180, 50,'Data source-Courtesy:ESPN Cricinfo', horizontalalignment='center', verticalalignment='center', ) plt.show() plt.gcf().clear() return import matplotlib.pyplot as plt import numpy as np from pylab import rcParams ########################################################################################## # Designed and developed by <NAME> # Date : 17 Oct 2018 # Function: batsmanMovingAverage # This function computes and plots the Moving Average of the batsman across his career # ########################################################################################### # Compute a moving average def movingaverage(interval, window_size): window= np.ones(int(window_size))/float(window_size) return np.convolve(interval, window, 'same') def batsmanMovingAverage(file,name="A Squarecut") : ''' Calculate and plot the Moving Average of the batsman in his career Description This function calculates and plots the Moving Average of the batsman in his career Usage batsmanMovingAverage(file,name="A Squarecut") Arguments file This is the <batsman>.csv file obtained with an initial getPlayerData() name Name of the batsman Details More details can be found in my short video tutorial in Youtube https://www.youtube.com/watch?v=q9uMPFVsXsI Value None Note Maintainer: <NAME> <<EMAIL>> Author(s) <NAME> References http://www.espncricinfo.com/ci/content/stats/index.html https://gigadom.wordpress.com/ See Also batsmanDismissals, batsmanMeanStrikeRate, batsmanPerfBoxHist Examples # Get or use the <batsman>.csv obtained with getPlayerData() #tendulkar <- getPlayerData(35320,file="tendulkar.csv",type="batting", homeOrAway=c(1,2),result=c(1,2,4)) batsmanMovingAverage(pathToFile,"<NAME>") ''' # Compute the moving average of the time series batsman = clean(file) # Set figure size rcParams['figure.figsize'] = 10,6 runs=pd.to_numeric(batsman['Runs']) date= pd.to_datetime(batsman['Start Date']) atitle = name + "'s Moving average (Runs)" # Plot the runs in grey colo plt.plot(date,runs,"-",color = '0.75') # Compute and plot moving average y_av = movingaverage(runs, 50) plt.xlabel('Date') plt.ylabel('Runs') plt.plot(date, y_av,"b") plt.title(atitle) plt.text('2002-01-03',150,'Data source-Courtesy:ESPN Cricinfo', horizontalalignment='center', verticalalignment='center', ) plt.show() plt.gcf().clear() return import matplotlib.pyplot as plt import seaborn as sns from pylab import rcParams ########################################################################################## # Designed and developed by <NAME> # Date : 14 Oct 2018 # Function: batsmanPerfBoxHist # This function makes a box plot showing the mean, median and the 25th & 75th percentile runs. The # histogram shows the frequency of scoring runs in different run ranges # ########################################################################################### # Plot the batting performance as a combined box plot and histogram def batsmanPerfBoxHist(file, name="A Hitter"): ''' Make a boxplot and a histogram of the runs scored by the batsman Description Make a boxplot and histogram of the runs scored by the batsman. Plot the Mean, Median, 25th and 75th quantile Usage batsmanPerfBoxHist(file, name="A Hitter") Arguments file This is the <batsman>.csv file obtained with an initial getPlayerData() name Name of the batsman Details More details can be found in my short video tutorial in Youtube https://www.youtube.com/watch?v=q9uMPFVsXsI Value None Note Maintainer: <NAME> <<EMAIL>> Author(s) <NAME> References http://www.espncricinfo.com/ci/content/stats/index.html https://gigadom.wordpress.com/ See Also batsmanDismissals, batsmanMeanStrikeRate, batsmanMovingAverage, batsmanPerfBoxHist Examples # Get or use the <batsman>.csv obtained with getPlayerData() #tendulkar = getPlayerData(35320,file="tendulkar.csv",type="batting", homeOrAway=c(1,2),result=c(1,2,4)) batsman4s(pathToFile,"<NAME>") ''' batsman = clean(file) # Set figure size rcParams['figure.figsize'] = 10,6 batsman['Runs']=pd.to_numeric(batsman['Runs']) plt.subplot(2,1,1) sns.boxplot(batsman['Runs']) plt.subplot(2,1,2); atitle = name + "'s" + " - Runs Frequency vs Runs" plt.hist(batsman['Runs'],bins=20, edgecolor='black') plt.xlabel('Runs') plt.ylabel('Strike Rate') plt.title(atitle,size=16) plt.text(180, 70,'Data source-Courtesy:ESPN Cricinfo', horizontalalignment='center', verticalalignment='center', ) plt.show() plt.gcf().clear() return from statsmodels.tsa.arima_model import ARIMA import pandas as pd import numpy as np from statsmodels.tsa.seasonal import seasonal_decompose from pylab import rcParams ########################################################################################## # Designed and developed by <NAME> # Date : 20 Oct 2018 # Function: batsmanPerfForecast # This function forecasts the batsmans performance based on past performance - # To update ########################################################################################### def batsmanPerfForecast(file, name="A Squarecut"): ''' # To do: Currently ARIMA is used. Forecast the batting performance based on past performances using Holt-Winters forecasting Description This function forecasts the performance of the batsman based on past performances using HoltWinters forecasting model Usage batsmanPerfForecast(file, name="A Squarecut") Arguments file This is the <batsman>.csv file obtained with an initial getPlayerData() name Name of the batsman Details More details can be found in my short video tutorial in Youtube https://www.youtube.com/watch?v=q9uMPFVsXsI Value None Note Maintainer: <NAME> <<EMAIL>> Author(s) <NAME> References http://www.espncricinfo.com/ci/content/stats/index.html https://gigadom.wordpress.com/ See Also batsmanDismissals, batsmanMeanStrikeRate, batsmanMovingAverage, batsmanPerfBoxHist Examples # Get or use the <batsman>.csv obtained with getPlayerData() #tendulkar = getPlayerData(35320,file="tendulkar.csv",type="batting", homeOrAway=c(1,2),result=c(1,2,4)) batsmanPerfForecast(pathToFile,"Sachin Tendulkar") # Note: The above example uses the file tendulkar.csv from the /data directory. However # you can use any directory as long as the data file exists in that directory. # The general format is pkg-function(pathToFile,par1,...) ''' batsman= clean(file) # Set figure size rcParams['figure.figsize'] = 10,6 runs=batsman['Runs'].astype('float') # Fit a ARIMA model date= pd.to_datetime(batsman['Start Date']) df=pd.DataFrame({'date':date,'runs':runs}) df1=df.set_index('date') model = ARIMA(df1, order=(5,1,0)) model_fit = model.fit(disp=0) print(model_fit.summary()) # plot residual errors residuals = pd.DataFrame(model_fit.resid) residuals.plot() plt.show() residuals.plot(kind='kde') plt.show() plt.gcf().clear() print(residuals.describe()) import matplotlib.pyplot as plt import seaborn as sns from pylab import rcParams ########################################################################################## # Designed and developed by <NAME> # Date : 19 Oct 2018 # Function: batsmanPerfHomeAway # This plots the batsman's performance in home versus abroad # ########################################################################################### def batsmanPerfHomeAway(file,name="A Hitter"): ''' This function analyses the performance of the batsman at home and overseas Description This function plots the runs scored by the batsman at home and overseas Usage batsmanPerfHomeAway(file, name = "A Hitter") Arguments file CSV file of batsman from ESPN Cricinfo obtained with getPlayerDataSp() name Name of the batsman Details More details can be found in my short video tutorial in Youtube https://www.youtube.com/watch?v=q9uMPFVsXsI Value None Author(s) <NAME> References http://www.espncricinfo.com/ci/content/stats/index.html https://gigadom.wordpress.com/ See Also batsmanMovingAverage batsmanRunsPredict batsmanPerfBoxHist bowlerContributionWonLost Examples # Get or use the <batsman>.csv obtained with getPlayerData() #tendulkarSp <-getPlayerDataSp(35320,".","tendulkarsp.csv","batting") batsmanPerfHomeAway(pathToFile,"<NAME>") ''' playersp = clean(file) # Set figure size rcParams['figure.figsize'] = 10,6 # Create separate DFs for home and away home = playersp[playersp['ha'] == 1] away = playersp[playersp['ha']==2] home['venue']="Home" away['venue']="Overseas" df= pd.concat([home,away]) df['Runs']= pd.to_numeric(df['Runs']) atitle = name + "-" + "- - Runs-Home & overseas" ax = sns.boxplot(x='venue',y='Runs',data=df) plt.title(atitle) plt.text(0.5, 200,'Data source-Courtesy:ESPN Cricinfo', horizontalalignment='center', verticalalignment='center', ) plt.show() plt.gcf().clear() return import numpy as np import matplotlib.pyplot as plt from pylab import rcParams ########################################################################################## # Designed and developed by <NAME> # Date : 30 Jun 2015 # Function: batsmanRunsFreqPerf # This function computes and plots the Moving Average of the batsman across his career # ########################################################################################### # Plot the performance of the batsman as a continous graph # Create a performance plot between Runs and RunsFrequency def batsmanRunsFreqPerf(file, name="A Hookshot"): ''' Calculate and run frequencies in ranges of 10 runs and plot versus Runs the performance of the batsman Description This function calculates frequencies of runs in 10 run buckets and plots this percentage Usage batsmanRunsFreqPerf(file, name="A Hookshot") Arguments file This is the <batsman>.csv file obtained with an initial getPlayerData() name Name of the batsman Details More details can be found in my short video tutorial in Youtube https://www.youtube.com/watch?v=q9uMPFVsXsI Value None Note Maintainer: <NAME> <<EMAIL>> Author(s) <NAME> References http://www.espncricinfo.com/ci/content/stats/index.html https://gigadom.wordpress.com/ See Also batsmanDismissals, batsmanMovingAverage, batsmanPerfBoxHist Examples # Get or use the <batsman>.csv obtained with getPlayerData() #tendulkar <- getPlayerData(35320,file="tendulkar.csv",type="batting", homeOrAway=c(1,2),result=c(1,2,4)) batsmanRunsFreqPerf(pathToFile,"Sachin Tendulkar") ''' df = clean(file) # Set figure size rcParams['figure.figsize'] = 10,6 runs=pd.to_numeric(df['Runs']) # Plot histogram runs.plot.hist(grid=True, bins=20, rwidth=0.9, color='#607c8e') atitle = name + "'s" + " Runs histogram" plt.title(atitle) plt.xlabel('Runs') plt.grid(axis='y', alpha=0.75) plt.text(180, 90,'Data source-Courtesy:ESPN Cricinfo', horizontalalignment='center', verticalalignment='center', ) plt.show() plt.gcf().clear() return from sklearn.cluster import KMeans import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from pylab import rcParams ########################################################################################## # Designed and developed by <NAME> # Date : 14 Oct 2018 # Function: batsmanRunsLikelihood # This function used K-Means to compute and plot the runs likelihood for the batsman # To do - Include scatterplot ########################################################################################### def batsmanRunsLikelihood(file, name="A Squarecut") : ''' This function uses K-Means to determine the likelihood of the batsman to get runs Description This function used K-Means to get the likelihood of getting runs based on clusters of runs the batsman made in the past.It uses K-Means for this. Usage batsmanRunsLikelihood(file, name = "A Squarecut") Arguments file This is the <batsman>.csv file obtained with an initial getPlayerData() name Name of the batsman Details More details can be found in my short video tutorial in Youtube https://www.youtube.com/watch?v=q9uMPFVsXsI Value None Note Maintainer: <NAME> <<EMAIL>> Author(s) <NAME> References http://www.espncricinfo.com/ci/content/stats/index.html https://gigadom.wordpress.com/ See Also batsmanMovingAverage batsmanRunsPredict battingPerf3d batsmanContributionWonLost Examples # Get or use the <batsman>.csv obtained with getPlayerData() # tendulkar= getPlayerData(35320,file="tendulkar.csv",type="batting", homeOrAway=c(1,2),result=c(1,2,4)) batsmanRunsLikelihood(pathToFile,"<NAME>") ''' batsman =clean(file) # Set figure size rcParams['figure.figsize'] = 10,6 data = batsman[['Runs','BF','Mins']] # Create 3 different clusters kmeans = KMeans(n_clusters=3,max_iter=300) # Compute the clusters kmeans.fit(data) y_kmeans = kmeans.predict(data) # Get the cluster centroids centers = kmeans.cluster_centers_ centers # Add a title atitle= name + '-' + "Runs Likelihood" fig = plt.figure() ax = fig.add_subplot(111, projection='3d') # Draw vertical line 1st centroid x=[centers[0][0],centers[0][0]] y=[centers[0][1],centers[0][1]] z=[0,centers[0][2]] ax.plot(x,y,z,'k-',color='r',alpha=0.8, linewidth=2) # Draw vertical line 2nd centroid x=[centers[1][0],centers[1][0]] y=[centers[1][1],centers[1][1]] z=[0,centers[1][2]] ax.plot(x,y,z,'k-',color='b',alpha=0.8, linewidth=2) # Draw vertical line 2nd centroid x=[centers[2][0],centers[2][0]] y=[centers[2][1],centers[2][1]] z=[0,centers[2][2]] ax.plot(x,y,z,'k-',color='k',alpha=0.8, linewidth=2) ax.set_xlabel('BallsFaced') ax.set_ylabel('Minutes') ax.set_zlabel('Runs'); plt.title(atitle) plt.show() plt.gcf().clear() return from sklearn.linear_model import LinearRegression ########################################################################################## # Designed and developed by <NAME> # Date : 19 Oct 2018 # Function: batsmanRunsPredict # This function predicts the runs that will be scored by the batsman for a given numbers # of balls faced and minutes at crease # ########################################################################################### def batsmanRunsPredict(file, newDF, name="A Coverdrive"): ''' Predict the runs for the batsman given the Balls Faced and Minutes in crease Description Fit a linear regression plane between Runs scored and Minutes in Crease and Balls Faced. This will be used to predict the batsman runs for time in crease and balls faced Usage batsmanRunsPredict(file, name="A Coverdrive", newdataframe) Arguments file This is the <batsman>.csv file obtained with an initial getPlayerData() name Name of the batsman newdataframe This is a data frame with 2 columns BF(Balls Faced) and Mins(Minutes) Details More details can be found in my short video tutorial in Youtube https://www.youtube.com/watch?v=q9uMPFVsXsI Value Returns a data frame with the predicted runs for the Balls Faced and Minutes at crease Note Maintainer: <NAME> <<EMAIL>> Author(s) <NAME> References http://www.espncricinfo.com/ci/content/stats/index.html https://gigadom.wordpress.com/ See Also batsmanMovingAverage battingPerf3d batsmanContributionWonLost Examples # Get or use the <batsman>.csv obtained with getPlayerData() # tendulkar <- getPlayerData(35320,file="tendulkar.csv",type="batting", # homeOrAway=c(1,2), result=c(1,2,4)) # Use a single value for BF and Mins BF= 30 Mins= 20 # retrieve the file path of a data file installed with cricketr pathToFile <- system.file("data", "tendulkar.csv", package = "cricketr") batsmanRunsPredict(pathToFile,"<NAME>",newdataframe=data.frame(BF,Mins)) #or give a data frame BF = np.linspace( 10, 400,15) Mins = np.linspace(30,220,15) newDF= pd.DataFrame({'BF':BF,'Mins':Mins} #values <- batsmanRunsPredict("../cricketr/data/tendulkar.csv","<NAME>", #print(values) ''' batsman = clean(file) df=batsman[['BF','Mins','Runs']] df['BF']=pd.to_numeric(df['BF']) df['Runs']=pd.to_numeric(df['Runs']) xtrain=df.iloc[:,0:2] ytrain=df.iloc[:,2] linreg = LinearRegression().fit(xtrain, ytrain) newDF['Runs']=linreg.predict(newDF) return(newDF) import matplotlib.pyplot as plt from pylab import rcParams ########################################################################################## # Designed and developed by <NAME> # Date : 13 Oct 2018 # Function: batsmanRunsRanges # This plots the percentage runs in different run ranges # ########################################################################################### def batsmanRunsRanges(file, name= "A Hookshot") : ''' Compute and plot a histogram of the runs scored in ranges of 10 Description Compute and plot a histogram of the runs scored in ranges of 10 Usage batsmanRunsRanges(file, name="A Hookshot") Arguments file This is the <batsman>.csv file obtained with an initial getPlayerData() name Name of the batsman Details More details can be found in my short video tutorial in Youtube https://www.youtube.com/watch?v=q9uMPFVsXsI Value None Note Maintainer: <NAME> <<EMAIL>> Author(s) <NAME> References http://www.espncricinfo.com/ci/content/stats/index.html https://gigadom.wordpress.com/ See Also batsmanDismissals, batsmanMovingAverage, batsmanPerfBoxHist Examples # Get or use the <batsman>.csv obtained with getPlayerData() #tendulkar= getPlayerData(35320,file="tendulkar.csv",type="batting", homeOrAway=c(1,2),result=c(1,2,4)) batsmanRunsRanges(pathToFile,"<NAME>") ''' # Clean file batsman = clean(file) runs= pd.to_numeric(batsman['Runs']) hist, bins = np.histogram(runs, bins = 20) midBin=[] # Loop through for i in range(1,len(bins)): # Find the mean of the bins (Runs) midBin.append(np.mean([bins[i-1],bins[i]])) # Compute binWidth. Subtract '2' to separate the bars binWidth=bins[1]-bins[0]-2 # Plot a barplot plt.bar(midBin, hist, bins[1]-bins[0]-2, color="blue") plt.xlabel('Run ranges') plt.ylabel('Frequency') # Add a title atitle= name + '-' + "Runs % vs Run frequencies" plt.title(atitle) plt.text(180, 70,'Data source-Courtesy:ESPN Cricinfo', horizontalalignment='center', verticalalignment='center', ) plt.show() plt.gcf().clear() return import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from sklearn.linear_model import LinearRegression import numpy as np from pylab import rcParams ########################################################################################## # Designed and developed by <NAME> # Date : 20 Oct 2018 # Function: battingPerf3d # This function creates a 3D scatter plot of Runs scored vs Balls Faced and Minutes in crease. # A regression plane is fitted to this. # ########################################################################################### def battingPerf3d(file, name="A Hookshot") : ''' Make a 3D scatter plot of the Runs scored versus the Balls Faced and Minutes at Crease. Description Make a 3D plot of the Runs scored by batsman vs Minutes in crease and Balls faced. Fit a linear regression plane Usage battingPerf3d(file, name="A Hookshot") Arguments file This is the <batsman>.csv file obtained with an initial getPlayerData() name Name of the batsman Details More details can be found in my short video tutorial in Youtube https://www.youtube.com/watch?v=q9uMPFVsXsI Value None Note Maintainer: <NAME> <<EMAIL>> Author(s) <NAME> References http://www.espncricinfo.com/ci/content/stats/index.html https://gigadom.wordpress.com/ See Also batsmanDismissals, batsmanMeanStrikeRate, batsmanMovingAverage, batsmanPerfBoxHist Examples # Get or use the <batsman>.csv obtained with getPlayerData() # tendulkar<- getPlayerData(35320,file="tendulkar.csv",type="batting", #homeOrAway=[1,2],result=[1,2,4]) battingPerf3d(pathToFile,"Sachin Tendulkar") ''' # Set figure size rcParams['figure.figsize'] = 10,6 # Clean the batsman file and create a complete data frame batsman = clean(file) # Make a 3 D plot and fit a regression plane atitle = name + "- Runs vs BallsFaced & Minutes" df2=batsman[['BF','Mins','Runs']] df2['BF']=pd.to_numeric(df2['BF']) df2['Mins']=pd.to_numeric(df2['Mins']) df2['Runs']=pd.to_numeric(df2['Runs']) X=df2.iloc[:,0:2] Y=df2.iloc[:,2] # Fit a Regression place linreg = LinearRegression().fit(X,Y) bf= np.linspace(0,400,20) mins=np.linspace(0,620,20) xx, yy = np.meshgrid(bf,mins) xx1=xx.reshape(-1) yy1=yy.reshape(-1) test=pd.DataFrame({"BallsFaced": xx1, "Minutes":yy1}) predictedRuns=linreg.predict(test).reshape(20,20) plt3d = plt.figure().gca(projection='3d') plt3d.scatter(df2['BF'],df2['Mins'],df2['Runs']) plt3d.plot_surface(xx.reshape(20,20),yy,predictedRuns, alpha=0.2) plt3d.set_xlabel('BallsFaced') plt3d.set_ylabel('Minutes') plt3d.set_zlabel('Runs'); plt.title(atitle) plt.show() plt.gcf().clear() return import matplotlib.pyplot as plt from pylab import rcParams ########################################################################################## # Designed and developed by <NAME> # Date : 19 Oct 2018 # Function: bowlerAvgWktsGround # This function plots the average runs scored by batsman at the ground. The xlabels indicate # the number of innings at ground # To do - Append number of matches to Ground ########################################################################################### def bowlerAvgWktsGround(file, name="A Chinaman"): ''' This function computes and plot the average wickets in different ground Description This function computes the average wickets taken against different grounds by the bowler. It also shows the number innings at each venue Usage bowlerAvgWktsGround(file, name = "A Chinaman") Arguments file This is the <bowler>.csv file obtained with an initial getPlayerData() name Name of the bowler Details More details can be found in my short video tutorial in Youtube https://www.youtube.com/watch?v=q9uMPFVsXsI Value None Note Maintainer: <NAME> <<EMAIL>> Author(s) <NAME> References http://www.espncricinfo.com/ci/content/stats/index.html https://gigadom.wordpress.com/ See Also bowlerWktsFreqPercent relativeBowlingER relativeBowlingPerf Examples # Get or use the <bowler>.csv obtained with getPlayerData() # a <- getPlayerData(30176,file="kumble.csv",type="batting", homeOrAway=c(1,2),result=c(1,2,4)) bowlerAvgWktsGround(pathToFile,"<NAME>") ''' bowler = cleanBowlerData(file) # Set figure size rcParams['figure.figsize'] = 10,6 bowler['Wkts']=pd.to_numeric(bowler['Wkts']) # Aggregate as sum, mean and count df=bowler[['Wkts','Ground']].groupby('Ground').agg(['sum','mean','count']) #Flatten multi-levels to column names df.columns= ['_'.join(col).strip() for col in df.columns.values] # Reset index df1=df.reset_index(inplace=False) atitle = name + "-" + "'s Average Wickets at Ground" plt.xticks(rotation='vertical') plt.axhline(y=4, color='r', linestyle=':') plt.title(atitle) ax=sns.barplot(x='Ground', y="Wkts_mean", data=df1) #plt.bar(df1['Ground'],df1['Wkts_mean']) plt.text(15, 4,'Data source-Courtesy:ESPN Cricinfo', horizontalalignment='center', verticalalignment='center', ) plt.show() plt.gcf().clear() return import matplotlib.pyplot as plt from pylab import rcParams ########################################################################################## # Designed and developed by <NAME> # Date : 19 Oct 2018 # Function: bowlerAvgWktsOpposition # This function plots the average runs scored by batsman at the ground. The xlabels indicate # the number of innings at ground # To do - Append no of matches in Opposition ########################################################################################### def bowlerAvgWktsOpposition(file, name="A Chinaman"): ''' This function computes and plot the average wickets against different oppositon Description This function computes the average wickets taken against different opposition by the bowler. It also shows the number innings against each opposition Usage bowlerAvgWktsOpposition(file, name = "A Chinaman") Arguments file This is the <bowler>.csv file obtained with an initial getPlayerData() name Name of the bowler Details More details can be found in my short video tutorial in Youtube https://www.youtube.com/watch?v=q9uMPFVsXsI Value None Note Maintainer: <NAME> <<EMAIL>> Author(s) <NAME> References http://www.espncricinfo.com/ci/content/stats/index.html https://gigadom.wordpress.com/ See Also bowlerWktsFreqPercent relativeBowlingER relativeBowlingPerf bowlerAvgWktsGround Examples # Get or use the <bowler>.csv obtained with getPlayerData() # a <- getPlayerData(30176,file="kumble.csv",type="batting", homeOrAway=c(1,2),result=c(1,2,4)) bowlerAvgWktsOpposition(pathToFile,"<NAME>") ''' bowler = cleanBowlerData(file) # Set figure size rcParams['figure.figsize'] = 10,6 bowler['Wkts']=pd.to_numeric(bowler['Wkts']) # Aggregate as sum, mean and count df=bowler[['Opposition','Wkts']].groupby('Opposition').agg(['sum','mean','count']) #Flatten multi-levels to column names df.columns= ['_'.join(col).strip() for col in df.columns.values] # Reset index df1=df.reset_index(inplace=False) atitle = name + "-" + "'s Average Wickets vs Opposition" plt.xticks(rotation='vertical') plt.axhline(y=3, color='r', linestyle=':') ax=sns.barplot(x='Opposition', y="Wkts_mean", data=df1) plt.title(atitle) plt.text(2, 3,'Data source-Courtesy:ESPN Cricinfo', horizontalalignment='center', verticalalignment='center', ) plt.show() plt.gcf().clear() return import matplotlib.pyplot as plt from pylab import rcParams ########################################################################################## # Designed and developed by <NAME> # Date : 19 Oct 2018 # Function: bowlerContributionWonLost # This plots the bowler's contribution to won and lost matches # ########################################################################################### def bowlerContributionWonLost(file,name="A Doosra"): ''' Display the bowler's contribution in matches that were won and those that were lost Description Plot the comparative contribution of the bowler in matches that were won and lost as box plots Usage bowlerContributionWonLost(file, name = "A Doosra") Arguments file CSV file of bowler from ESPN Cricinfo obtained with getPlayerDataSp() name Name of the bowler Details More details can be found in my short video tutorial in Youtube https://www.youtube.com/watch?v=q9uMPFVsXsI Value None Note Maintainer: <NAME> <<EMAIL>> Author(s) <NAME> References http://www.espncricinfo.com/ci/content/stats/index.html https://gigadom.wordpress.com/ See Also bowlerMovingAverage bowlerPerfForecast checkBowlerInForm Examples # Get or use the <bowler>.csv obtained with getPlayerDataSp() #kumbleSp <-getPlayerDataSp(30176,".","kumblesp.csv","bowling") bowlerContributionWonLost(pathToFile,"<NAME>") ''' playersp = cleanBowlerData(file) # Set figure size rcParams['figure.figsize'] = 10,6 # Create DFs for won and lost/drawn won = playersp[playersp['result'] == 1] lost = playersp[(playersp['result']==2) | (playersp['result']==4)] won['status']="won" lost['status']="lost" # Stack DFs df= pd.concat([won,lost]) df['Wkts']= pd.to_numeric(df['Wkts']) ax = sns.boxplot(x='status',y='Wkts',data=df) atitle = name + "-" + "- Wickets in games won/lost-drawn" plt.xlabel('Status') plt.ylabel('Wickets') plt.title(atitle) plt.text(0.5, 200,'Data source-Courtesy:ESPN Cricinfo', horizontalalignment='center', verticalalignment='center', ) plt.show() plt.gcf().clear() return import matplotlib.pyplot as plt from pylab import rcParams ########################################################################################## # Designed and developed by <NAME> # Date : 19 Oct 2018 # Function: bowlerCumulativeAvgEconRate # This function computes and plots the cumulative average economy rate of a bowler # ########################################################################################### def bowlerCumulativeAvgEconRate(file,name="A Googly"): ''' Bowler's cumulative average economy rate Description This function computes and plots the cumulative average economy rate of a bowler Usage bowlerCumulativeAvgEconRate(file,name) Arguments file Data frame name Name of batsman Value None Note Maintainer: <NAME> <EMAIL> Author(s) <NAME> References http://www.espncricinfo.com/ci/content/stats/index.html https://gigadom.wordpress.com/ See Also batsmanCumulativeAverageRuns bowlerCumulativeAvgWickets batsmanCumulativeStrikeRate Examples bowlerCumulativeAvgEconRate(pathToFile,"<NAME>") ''' bowler=cleanBowlerData(file) # Set figure size rcParams['figure.figsize'] = 10,6 economyRate=pd.to_numeric(bowler['Econ']) cumEconomyRate = economyRate.cumsum()/pd.Series(np.arange(1, len(economyRate)+1), economyRate.index) atitle = name + "- Cumulative Economy Rate vs No of innings" plt.xlabel('Innings') plt.ylabel('Cumulative Economy Rate') plt.title(atitle) plt.plot(cumEconomyRate) plt.text(150,3,'Data source-Courtesy:ESPN Cricinfo', horizontalalignment='center', verticalalignment='center', ) plt.show() plt.gcf().clear() return import matplotlib.pyplot as plt from pylab import rcParams ########################################################################################## # Designed and developed by <NAME> # Date : 19 Oct 2018 # Function: bowlerCumulativeAvgWickets # This function computes and plots the cumulative average wickets of a bowler # ########################################################################################### def bowlerCumulativeAvgWickets(file,name="A Googly"): ''' Bowler's cumulative average wickets Description This function computes and plots the cumulative average wickets of a bowler Usage bowlerCumulativeAvgWickets(file,name) Arguments file Data frame name Name of batsman Value None Note Maintainer: <NAME> <EMAIL> Author(s) <NAME> References http://www.espncricinfo.com/ci/content/stats/index.html https://gigadom.wordpress.com/ See Also batsmanCumulativeAverageRuns bowlerCumulativeAvgEconRate batsmanCumulativeStrikeRate Examples bowlerCumulativeAvgWickets(pathToFile,"<NAME>") ## End(Not run) ''' bowler=cleanBowlerData(file) # Set figure size rcParams['figure.figsize'] = 10,6 wktRate=pd.to_numeric(bowler['Wkts']) cumWktRate = wktRate.cumsum()/pd.Series(np.arange(1, len(wktRate)+1), wktRate.index) atitle = name + "- Cumulative Mean Wicket Rate vs No of innings" plt.xlabel('Innings') plt.ylabel('Cumulative Mean Wickets') plt.title(atitle) plt.plot(cumWktRate) plt.text(150,3,'Data source-Courtesy:ESPN Cricinfo', horizontalalignment='center', verticalalignment='center', ) plt.show() plt.gcf().clear() return import matplotlib.pyplot as plt from pylab import rcParams ########################################################################################## # Designed and developed by <NAME> # Date : 19 Oct 2018 # Function: bowlerEconRate # This function plots the Frequency percentage of wickets taken for the bowler # ########################################################################################### def bowlerEconRate(file, name="A Bowler") : ''' Compute and plot the Mean Economy Rate versus wickets taken Description This function computes the mean economy rate for the wickets taken and plot this Usage bowlerEconRate(file, name = "A Bowler") Arguments file This is the <bowler>.csv file obtained with an initial getPlayerData() name Name of the bowler Details More details can be found in my short video tutorial in Youtube https://www.youtube.com/watch?v=q9uMPFVsXsI Value None Note Maintainer: <NAME> <<EMAIL>> Author(s) <NAME> References http://www.espncricinfo.com/ci/content/stats/index.html https://gigadom.wordpress.com/ See Also bowlerWktsFreqPercent relativeBowlingER relativeBowlingPerf Examples # Get or use the <bowler>.csv obtained with getPlayerData() # kumble <- getPlayerData(30176,dir=".", file="kumble.csv",type="batting", # homeOrAway=[1,2],result=[1,2,4]) bowlerEconRate(pathToFile,"<NAME>") ''' bowler = cleanBowlerData(file) # Set figure size rcParams['figure.figsize'] = 10,6 bowler['Wkts']=pd.to_numeric(bowler['Wkts']) bowler['Econ']=pd.to_numeric(bowler['Econ']) atitle = name + "-" + "- Mean economy rate vs Wkts" df=bowler[['Wkts','Econ']].groupby('Wkts').mean() df = df.reset_index(inplace=False) ax=plt.plot('Wkts','Econ',data=df) plt.xlabel('Wickets') plt.ylabel('Economy Rate') plt.title(atitle) plt.text(6, 3,'Data source-Courtesy:ESPN Cricinfo', horizontalalignment='center', verticalalignment='center', ) plt.show() plt.gcf().clear() return import pandas as pd import matplotlib.pyplot as plt import numpy as np from pylab import rcParams ########################################################################################## # Designed and developed by <NAME> # Date : 19 Oct 2018 # Function: bowlerMovingAverage # This function computes and plots the Moving Average of the Wickets taken for a bowler # across his career # ########################################################################################### # Compute a moving average def movingaverage(interval, window_size): window= np.ones(int(window_size))/float(window_size) return np.convolve(interval, window, 'same') def bowlerMovingAverage(file,name="A Doosra") : ''' Compute and plot the moving average of the wickets taken for a bowler Description This function plots the wickets taken by a bowler as a time series and plots the moving average over the career Usage bowlerMovingAverage(file, name = "A Doosra") Arguments file This is the <bowler>.csv file obtained with an initial getPlayerData() name Name of the bowler Details More details can be found in my short video tutorial in Youtube https://www.youtube.com/watch?v=q9uMPFVsXsI Value None Note Maintainer: <NAME> <<EMAIL>> Author(s) <NAME> References http://www.espncricinfo.com/ci/content/stats/index.html https://gigadom.wordpress.com/ See Also bowlerWktsFreqPercent relativeBowlingER relativeBowlingPerf Examples # Get or use the <bowler>.csv obtained with getPlayerData() # a <- getPlayerData(30176,file="kumble.csv",type="batting", homeOrAway=c(1,2),result=c(1,2,4)) bowlerMovingAverage(pathToFile,"<NAME>") ''' bowler = cleanBowlerData(file) # Set figure size rcParams['figure.figsize'] = 10,6 wkts=pd.to_numeric(bowler['Wkts']) date= pd.to_datetime(bowler['Start Date']) atitle = name + "'s Moving average (Runs)" # Plot the runs in grey colo plt.plot(date,wkts,"-",color = '0.75') y_av = movingaverage(wkts, 50) plt.xlabel('Date') plt.ylabel('Wickets') plt.plot(date, y_av,"b") plt.title(atitle) plt.text('2002-01-03',150,'Data source-Courtesy:ESPN Cricinfo', horizontalalignment='center', verticalalignment='center', ) plt.show() plt.gcf().clear() return import pandas as pd import matplotlib.pyplot as plt from statsmodels.tsa.arima_model import ARIMA from pylab import rcParams ########################################################################################## # Designed and developed by <NAME> # Date : 20 Oct 2018 # Function: bowlerPerfForecast # This function forecasts the bowler's performance based on past performance # ########################################################################################### def bowlerPerfForecast(file, name="A Googly"): ''' # To do- Currently based on ARIMA Forecast the bowler performance based on past performances using Holt-Winters forecasting Description This function forecasts the performance of the bowler based on past performances using HoltWinters forecasting model Usage bowlerPerfForecast(file, name = "A Googly") Arguments file This is the <bowler>.csv file obtained with an initial getPlayerData() name Name of the bowler Details More details can be found in my short video tutorial in Youtube https://www.youtube.com/watch?v=q9uMPFVsXsI Value None Note Maintainer: <NAME> <<EMAIL>> Author(s) <NAME> References http://www.espncricinfo.com/ci/content/stats/index.html https://gigadom.wordpress.com/ See Also bowlerEconRate, bowlerMovingAverage, bowlerContributionWonLost Examples # Get or use the <bowler>.csv obtained with getPlayerData() # a <- getPlayerData(30176,file="kumble.csv",type="batting", homeOrAway=c(1,2),result=c(1,2,4)) bowlerPerfForecast(pathToFile,"Anil Kumble") ''' bowler= cleanBowlerData(file) # Set figure size rcParams['figure.figsize'] = 10,6 wkts=bowler['Wkts'].astype('float') date= pd.to_datetime(bowler['Start Date']) df=pd.DataFrame({'date':date,'Wickets':wkts}) df1=df.set_index('date') model = ARIMA(df1, order=(5,1,0)) model_fit = model.fit(disp=0) print(model_fit.summary()) # plot residual errors residuals = pd.DataFrame(model_fit.resid) residuals.plot() atitle=name+"-ARIMA plot" plt.title(atitle) plt.show() residuals.plot(kind='kde') atitle=name+"-ARIMA plot" plt.title(atitle) plt.show() plt.gcf().clear() print(residuals.describe()) import pandas as pd import matplotlib.pyplot as plt import numpy as np from pylab import rcParams ########################################################################################## # Designed and developed by <NAME> # Date : 19 Oct 2018 # Function: bowlerPerfHomeAway # This plots the bowler's performance home and abroad # ########################################################################################### def bowlerPerfHomeAway(file,name="A Googly") : ''' This function analyses the performance of the bowler at home and overseas Description This function plots the Wickets taken by the batsman at home and overseas Usage bowlerPerfHomeAway(file, name = "A Googly") Arguments file CSV file of the bowler from ESPN Cricinfo (for e.g. Kumble's profile no:30176) name Name of bowler Details More details can be found in my short video tutorial in Youtube https://www.youtube.com/watch?v=q9uMPFVsXsI Value None Note Maintainer: <NAME> <<EMAIL>> Author(s) <NAME> References http://www.espncricinfo.com/ci/content/stats/index.html https://gigadom.wordpress.com/ See Also bowlerMovingAverage bowlerPerfForecast checkBowlerInForm bowlerContributionWonLost Examples # Get or use the <bowler>.csv obtained with getPlayerDataSp() #kumbleSp <-getPlayerDataSp(30176,".","kumblesp.csv","bowling") bowlerPerfHomeAway(path,"<NAME>") ''' playersp = cleanBowlerData(file) # Set figure size rcParams['figure.figsize'] = 10,6 # home = playersp[playersp['ha'] == 1] away = playersp[playersp['ha']==2] home['venue']="Home" away['venue']="Overseas" df= pd.concat([home,away]) df['Wkts']= pd.to_numeric(df['Wkts']) atitle = name + "-" + "- - Wickets-Home & overseas" ax = sns.boxplot(x='venue',y='Wkts',data=df) plt.xlabel('Venue') plt.ylabel('Wickets') plt.title(atitle) plt.text(0.5, 200,'Data source-Courtesy:ESPN Cricinfo', horizontalalignment='center', verticalalignment='center', ) plt.show() plt.gcf().clear() return import pandas as pd import matplotlib.pyplot as plt import numpy as np from pylab import rcParams ########################################################################################## # Designed and developed by <NAME> # Date : 19 Oct 2018 # Function: bowlerWktsFreqPercent # This function plots the Frequency percentage of wickets taken for the bowler # ########################################################################################### def bowlerWktsFreqPercent(file, name="A Bowler"): ''' Plot the Wickets Frequency as a percentage against wickets taken Description This function calculates the Wickets frequency as a percentage of total wickets taken and plots this agains the wickets taken. Usage bowlerWktsFreqPercent(file, name="A Bowler") Arguments file This is the <bowler>.csv file obtained with an initial getPlayerData() name Name of the bowler Details More details can be found in my short video tutorial in Youtube https://www.youtube.com/watch?v=q9uMPFVsXsI Value None Note Maintainer: <NAME> <<EMAIL>> Author(s) <NAME> References http://www.espncricinfo.com/ci/content/stats/index.html https://gigadom.wordpress.com/ See Also bowlerWktsFreqPercent relativeBowlingER relativeBowlingPerf Examples # Get or use the <bowler>.csv obtained with getPlayerData() # a <- getPlayerData(30176,file="kumble.csv",type="batting", homeOrAway=c(1,2),result=c(1,2,4)) bowlerWktsFreqPercent(pathToFile,"Anil Kumble") ''' bowler = cleanBowlerData(file) # Set figure size rcParams['figure.figsize'] = 10,6 # Create a table of wickets wkts = pd.to_numeric(bowler['Wkts']) wkts.plot.hist(grid=True, bins=20, rwidth=0.9, color='#607c8e') atitle = name + "'s" + " Wickets histogram" plt.title(atitle) plt.xlabel('Wickets') plt.grid(axis='y', alpha=0.75) plt.text(5,10,'Data source-Courtesy:ESPN Cricinfo', horizontalalignment='center', verticalalignment='center', ) plt.show() plt.gcf().clear() return import seaborn as sns from pylab import rcParams ########################################################################################## # Designed and developed by <NAME> # Date : 19 Oct 2018 # Function: bowlerWktsRunsPlot # This function makes boxplot of Wickets versus Runs concded ########################################################################################### def bowlerWktsRunsPlot(file, name="A Googly"): ''' Compute and plot the runs conceded versus the wickets taken Description This function creates boxplots on the runs conceded for wickets taken for the bowler Usage bowlerWktsRunsPlot(file, name = "A Googly") Arguments file This is the <bowler>.csv file obtained with an initial getPlayerData() name Name of the bowler Details More details can be found in my short video tutorial in Youtube https://www.youtube.com/watch?v=q9uMPFVsXsI Value None Note Maintainer: <NAME> <<EMAIL>> Author(s) <NAME> References http://www.espncricinfo.com/ci/content/stats/index.html https://gigadom.wordpress.com/ See Also bowlerWktsFreqPercent relativeBowlingER relativeBowlingPerf bowlerHistWickets Examples # Get or use the <bowler>.csv obtained with getPlayerData() # a <- getPlayerData(30176,file="kumble.csv",type="batting", homeOrAway=c(1,2),result=c(1,2,4)) bowlerWktsRunsPlot(pathToFile,"Anil Kumble") ''' bowler = cleanBowlerData(file) # Set figure size rcParams['figure.figsize'] = 10,6 atitle = name + "- Wickets vs Runs conceded" ax = sns.boxplot(x='Wkts', y='Runs', data=bowler) plt.title(atitle) plt.xlabel('Wickets') plt.show() plt.gcf().clear() return import pandas as pd ########################################################################################## # Designed and developed by <NAME> # Date : 11 Oct 2018 # Function : clean # This function cleans the batsman's data file and returns the cleaned data frame for use in # other functions ########################################################################################## def clean(batsmanCSV): ''' Create a batsman data frame given the batsman's CSV file Description The function removes rows from the batsman dataframe where the batsman did not bat (DNB) or the team did not bat (TDNB). COnverts not outs '*' (97*, 128*) to 97,128 by stripping the '*' character. It picks all the complete cases and returns the data frame Usage clean(file) Arguments file CSV file with the batsman data obtained with getPlayerData Details More details can be found in my short video tutorial in Youtube https://www.youtube.com/watch?v=q9uMPFVsXsI Value Returns the cleaned batsman dataframe Note Maintainer: <NAME> <<EMAIL>> Author(s) <NAME> References http://www.espncricinfo.com/ci/content/stats/index.html https://gigadom.wordpress.com/ See Also cleanBowlerData getPlayerData batsman4s batsmanMovingAverage Examples # Get or use the <batsman>.csv obtained with getPlayerData() #tendulkar <- getPlayerData(35320,file="tendulkar.csv",type="batting", homeOrAway=c(1,2),result=c(1,2,4)) clean(pathToFile) ''' df = pd.read_csv(batsmanCSV,na_values=['-']) a = df['Runs'] != "DNB" batsman = df[a] # Remove rows with 'TDNB' c =batsman['Runs'] != "TDNB" batsman = batsman[c] # Remove rows with absent d = batsman['Runs'] != "absent" batsman = batsman[d] # Remove the "* indicating not out batsman['Runs']= batsman['Runs'].str.replace(r"[*]","") # Drop rows which have NA batsman = batsman.dropna() #Return the data frame return(batsman) ########################################################################################## # Designed and developed by <NAME> # Date : 19 Oct 2018 # Function : cleanBowlerData # This function cleans the bowler's data file and returns the cleaned data frame for use in # other functions ########################################################################################## def cleanBowlerData(file): ''' Clean the bowlers data frame Description Clean the bowler's CSV fileand remove rows DNB(Did not bowl) & TDNB (Team did not bowl). Also normalize all 8 ball over to a 6 ball over for earlier bowlers Usage cleanBowlerData(file) Arguments file The <bowler>.csv file Details More details can be found in my short video tutorial in Youtube https://www.youtube.com/watch?v=q9uMPFVsXsI Value A cleaned bowler data frame with complete cases Note Maintainer: <NAME> <<EMAIL>> Author(s) <NAME> References http://www.espncricinfo.com/ci/content/stats/index.html https://gigadom.wordpress.com/ See Also clean Examples # Get bowling data and store in file for future # kumble <- getPlayerData(30176,dir="./mytest", file="kumble.csv",type="bowling", # homeOrAway=[1],result=[1,2]) cleanBowlerData(pathToFile) ''' # Read the <bowler>.csv file df = pd.read_csv(file,na_values=['-']) # Remove rows with did not bowl a = df['Overs']!= "DNB" df = df[a] # Remove rows with 'TDNB' - team did not bowl c =df['Overs'] != "TDNB" df = df[c] # Get all complete cases bowlerComplete = df.dropna(axis=1) # Normalize overs which had 8 balls per over to the number of overs if there 8 balls per over if bowlerComplete.columns[2] =="BPO": bowlerComplete['Overs'] = pd.to_numeric(bowlerComplete['Overs']) *8/6 return(bowlerComplete) import pandas as pd import os ########################################################################################## # Designed and developed by <NAME> # Date : 11 Oct 2018 # Function : getPlayerData # This function gets the data of batsman/bowler and returns the data frame. This data frame can # stored for use in other functions ########################################################################################## def getPlayerData(profile,opposition="",host="",dir="./data",file="player001.csv",type="batting", homeOrAway=[1,2],result=[1,2,4],create=True) : ''' Get the player data from ESPN Cricinfo based on specific inputs and store in a file in a given directory Description Get the player data given the profile of the batsman. The allowed inputs are home,away or both and won,lost or draw of matches. The data is stored in a <player>.csv file in a directory specified. This function also returns a data frame of the player Usage getPlayerData(profile,opposition="",host="",dir="./data",file="player001.csv", type="batting", homeOrAway=c(1,2),result=c(1,2,4)) Arguments profile This is the profile number of the player to get data. This can be obtained from http://www.espncricinfo.com/ci/content/player/index.html. Type the name of the player and click search. This will display the details of the player. Make a note of the profile ID. For e.g For Sachin Tendulkar this turns out to be http://www.espncricinfo.com/india/content/player/35320.html. Hence the profile for Sachin is 35320 opposition The numerical value of the opposition country e.g.Australia,India, England etc. The values are Australia:2,Bangladesh:25,England:1,India:6,New Zealand:5,Pakistan:7,South Africa:3,Sri Lanka:8, West Indies:4, Zimbabwe:9 host The numerical value of the host country e.g.Australia,India, England etc. The values are Australia:2,Bangladesh:25,England:1,India:6,New Zealand:5,Pakistan:7,South Africa:3,Sri Lanka:8, West Indies:4, Zimbabwe:9 dir Name of the directory to store the player data into. If not specified the data is stored in a default directory "./data". Default="./data" file Name of the file to store the data into for e.g. tendulkar.csv. This can be used for subsequent functions. Default="player001.csv" type type of data required. This can be "batting" or "bowling" homeOrAway This is vector with either 1,2 or both. 1 is for home 2 is for away result This is a vector that can take values 1,2,4. 1 - won match 2- lost match 4- draw Details More details can be found in my short video tutorial in Youtube https://www.youtube.com/watch?v=q9uMPFVsXsI Value Returns the player's dataframe Note Maintainer: <NAME> <<EMAIL>> Author(s) <NAME> References http://www.espncricinfo.com/ci/content/stats/index.html https://gigadom.wordpress.com/ See Also getPlayerDataSp Examples ## Not run: # Both home and away. Result = won,lost and drawn tendulkar <-getPlayerData(35320,dir="../cricketr/data", file="tendulkar1.csv", type="batting", homeOrAway=c(1,2),result=c(1,2,4)) # Only away. Get data only for won and lost innings tendulkar <-getPlayerData(35320,dir="../cricketr/data", file="tendulkar2.csv", type="batting",homeOrAway=c(2),result=c(1,2)) # Get bowling data and store in file for future kumble <- getPlayerData(30176,dir="../cricketr/data",file="kumble1.csv", type="bowling",homeOrAway=c(1),result=c(1,2)) #Get the Tendulkar's Performance against Australia in Australia tendulkar <-getPlayerData(35320, opposition = 2,host=2,dir=".", file="tendulkarVsAusInAus.csv",type="batting") ''' # Initial url to "" url ="" suburl1 = "http://stats.espncricinfo.com/ci/engine/player/" suburl2 ="?class=1;" suburl3 = "template=results;" suburl4 = "view=innings" #Set opposition theOpposition = "opposition=" + opposition + ";" # Set host country hostCountry = "host=" + host + ";" # Create a profile.html with the profile number player = str(profile) + ".html" # Set the home or away str1=str2="" #print(len(homeOrAway)) for i in homeOrAway: if i == 1: str1 = str1 + "home_or_away=1;" elif i == 2: str1 = str1 + "home_or_away=2;" HA= str1 # Set the type batting or bowling t = "type=" + type + ";" # Set the result based on input str2="" for i in result: if i == 1: str2 = str2+ "result=1;" elif i == 2: str2 = str2 + "result=2;" elif i == 4: str2 = str2 + "result=4;" result = str2 # Create composite URL url = suburl1 + player + suburl2 + hostCountry + theOpposition + HA + result + suburl3 + t + suburl4 #print(url) # Read the data from ESPN Cricinfo dfList= pd.read_html(url) # Choose appropriate table from list of returned tables df=dfList[3] colnames= df.columns # Select coiumns based on batting or bowling if type=="batting" : # Select columns [1:9,11,12,13] cols = list(range(0,9)) cols.extend([10,11,12]) elif type=="bowling": # Check if there are the older version of 8 balls per over (BPO) column # [1:8,10,11,12] # Select BPO column for older bowlers if colnames[1] =="BPO": # [1:8,10,11,12] cols = list(range(0,9)) cols.extend([10,11,12]) else: # Select columns [1:7,9,10,11] cols = list(range(0,8)) cols.extend([8,9,10]) #Subset the necessary columns df1 = df.iloc[:, cols] if not os.path.exists(dir): os.mkdir(dir) #print("Directory " , dir , " Created ") else: pass #print("Directory " , dir , " already exists, writing to this folder") # Create path path= os.path.join(dir,file) if create: # Write to file df1.to_csv(path) # Return the data frame return(df1) ########################################################################################## # Designed and developed by <NAME> # Date : 19 Oct 2018 # Function: getPlayerDataSp # This function is a specialized version of getPlayer Data. This function gets the players data # along with details on matches' venue( home/abroad) and the result (won,lost,drawn) as # 2 separate columns # ########################################################################################### def getPlayerDataSp(profileNo,tdir="./data",tfile="player001.csv",ttype="batting"): ''' Get the player data along with venue and result status Description This function is a specialized version of getPlayer Data. This function gets the players data along with details on matches' venue (home/abroad) and the result of match(won,lost,drawn) as 2 separate columns (ha & result). The column ha has 1:home and 2: overseas. The column result has values 1:won , 2;lost and :drawn match Usage getPlayerDataSp(profileNo, tdir = "./data", tfile = "player001.csv", ttype = "batting") Arguments profileNo This is the profile number of the player to get data. This can be obtained from http://www.espncricinfo.com/ci/content/player/index.html. Type the name of the player and click search. This will display the details of the player. Make a note of the profile ID. For e.g For Sachin Tendulkar this turns out to be http://www.espncricinfo.com/india/content/player/35320.html. Hence the profile for Sachin is 35320 tdir Name of the directory to store the player data into. If not specified the data is stored in a default directory "./data". Default="./tdata" tfile Name of the file to store the data into for e.g. tendulkar.csv. This can be used for subsequent functions. Default="player001.csv" ttype type of data required. This can be "batting" or "bowling" Details More details can be found in my short video tutorial in Youtube https://www.youtube.com/watch?v=q9uMPFVsXsI Value Returns the player's dataframe along with the homeAway and the result columns Note Maintainer: <NAME> <<EMAIL>> Author(s) <NAME> References http://www.espncricinfo.com/ci/content/stats/index.html https://gigadom.wordpress.com/ See Also getPlayerData Examples ## Not run: # Only away. Get data only for won and lost innings tendulkar <-getPlayerDataSp(35320,tdir="../cricketr/data", tfile="tendulkarsp.csv",ttype="batting") # Get bowling data and store in file for future kumble <- getPlayerDataSp(30176,tdir="../cricketr/data",tfile="kumblesp.csv",ttype="bowling") ## End(Not run) ''' # Get the data for the player i # Home & won hw = getPlayerData(profile=profileNo,dir=tdir,file=tfile,homeOrAway=[1],result=[1],type=ttype,create=False) # Home & lost hl = getPlayerData(profile=profileNo,dir=tdir,file=tfile,homeOrAway=[1],result=[2],type=ttype,create=False) # Home & drawn hd = getPlayerData(profile=profileNo,dir=tdir,file=tfile,homeOrAway=[1],result=[4],type=ttype,create=False) # Away and won aw = getPlayerData(profile=profileNo,dir=tdir,file=tfile,homeOrAway=[2],result=[1],type=ttype,create=False) #Away and lost al = getPlayerData(profile=profileNo,dir=tdir,file=tfile,homeOrAway=[2],result=[2],type=ttype,create=False) # Away and drawn ad = getPlayerData(profile=profileNo,dir=tdir,file=tfile,homeOrAway=[2],result=[4],type=ttype,create=False) # Set the values as follows # ha := home = 1, away =2 # result= won = 1, lost = 2, drawn=4 hw['ha'] = 1 hw['result'] = 1 hl['ha'] = 1 hl['result'] = 2 hd['ha'] = 1 hd['result'] = 4 aw['ha'] = 2 aw['result'] = 1 al['ha'] = 2 al['result'] = 2 ad['ha'] = 2 ad['result'] = 4 if not os.path.exists(tdir): os.mkdir(dir) #print("Directory " , dir , " Created ") else: pass #print("Directory " , dir , " already exists, writing to this folder") # Create path path= os.path.join(tdir,tfile) df= pd.concat([hw,hl,hd,aw,al,ad]) # Write to file df.to_csv(path,index=False) return(df) import pandas as pd import matplotlib.pyplot as plt import numpy as np from pylab import rcParams ########################################################################################## # Designed and developed by <NAME> # Date : 19 Oct 2018 # Function: relativeBatsmanCumulativeAvgRuns # This function computes and plots the relative cumulative average runs of batsmen # ########################################################################################### def relativeBatsmanCumulativeAvgRuns(filelist, names): ''' Relative batsman's cumulative average runs Description This function computes and plots the relative cumulative average runs of batsmen Usage relativeBatsmanCumulativeAvgRuns(frames, names) Arguments frames This is a list of <batsman>.csv files obtained with an initial getPlayerData() names A list of batsmen names who need to be compared Value None Note Maintainer: <NAME> <EMAIL> Author(s) <NAME> References http://www.espncricinfo.com/ci/content/stats/index.html https://gigadom.wordpress.com/ See Also relativeBatsmanCumulativeStrikeRate relativeBowlerCumulativeAvgEconRate relativeBowlerCumulativeAvgWickets Examples batsmen=["tendulkar.csv","dravid.csv","ganguly.csv"] names = ["Tendulkar","Dravid","Ganguly"] relativeBatsmanCumulativeAvgRuns(batsmen,names) ''' df1=pd.DataFrame() # Set figure size rcParams['figure.figsize'] = 10,6 for idx,file in enumerate(filelist): df=clean(file) runs=pd.to_numeric(df['Runs']) df1[names[idx]] = runs.cumsum()/pd.Series(np.arange(1, len(runs)+1), runs.index) df1.plot() plt.xlabel('Innings') plt.ylabel('Cumulative Average Runs') plt.title('Relative batsmen cumulative average runs') plt.text(180, 50,'Data source-Courtesy:ESPN Cricinfo', horizontalalignment='center', verticalalignment='center', ) plt.show() plt.gcf().clear() return import pandas as pd import matplotlib.pyplot as plt import numpy as np from pylab import rcParams ########################################################################################## # Designed and developed by <NAME> # Date : 19 Oct 2018 # Function: relativeBatsmanCumulativeAvgRuns # This function computes and plots the relative cumulative average runs of batsmen # ########################################################################################### def relativeBatsmanCumulativeStrikeRate (filelist, names): ''' Relative batsmen cumulative average strike rate Description This function computes and plots the cumulative average strike rate of batsmen Usage relativeBatsmanCumulativeStrikeRate(frames, names) Arguments frames This is a list of <batsman>.csv files obtained with an initial getPlayerData() names A list of batsmen names who need to be compared Value None Note Maintainer: <NAME> <EMAIL> Author(s) <NAME> References http://www.espncricinfo.com/ci/content/stats/index.html https://gigadom.wordpress.com/ See Also relativeBatsmanCumulativeAvgRuns relativeBowlerCumulativeAvgEconRate relativeBowlerCumulativeAvgWickets Examples batsmen=["tendulkar.csv","dravid.csv","ganguly.csv"] names = ["Tendulkar","Dravid","Ganguly"] relativeBatsmanCumulativeAvgRuns(batsmen,names) ''' df1=pd.DataFrame() # Set figure size rcParams['figure.figsize'] = 10,6 for idx,file in enumerate(filelist): df=clean(file) strikeRate=pd.to_numeric(df['SR']) df1[names[idx]] = strikeRate.cumsum()/pd.Series(np.arange(1, len(strikeRate)+1), strikeRate.index) df1.plot() plt.xlabel('Innings') plt.ylabel('Cumulative Strike Rate') plt.title('Relative batsmen cumulative strike rate') plt.text(180, 50,'Data source-Courtesy:ESPN Cricinfo', horizontalalignment='center', verticalalignment='center', ) plt.show() plt.gcf().clear() return import pandas as pd import matplotlib.pyplot as plt import numpy as np from pylab import rcParams ########################################################################################## # Designed and developed by <NAME> # Date : 19 Oct 2018 # Function: relativeBowlerCumulativeAvgEconRate # This function computes and plots the relativecumulative average economy rates bowlers # ########################################################################################### def relativeBowlerCumulativeAvgEconRate(filelist, names): ''' Relative Bowler's cumulative average economy rate Description This function computes and plots the relative cumulative average economy rate of bowlers Usage relativeBowlerCumulativeAvgEconRate(frames, names) Arguments frames This is a list of <bowler>.csv files obtained with an initial getPlayerData() names A list of Twenty20 bowlers names who need to be compared Value None Note Maintainer: <NAME> <EMAIL> Author(s) Tinni<NAME> References http://www.espncricinfo.com/ci/content/stats/index.html https://gigadom.wordpress.com/ See Also relativeBatsmanCumulativeAvgRuns relativeBowlerCumulativeAvgWickets relativeBatsmanCumulativeStrikeRate Examples frames = ["kumble.csv","warne.csv","murali.csv"] names = ["Kumble","Warne","Murali"] relativeBowlerCumulativeAvgEconRate(frames,names) ''' df1=pd.DataFrame() # Set figure size rcParams['figure.figsize'] = 10,6 for idx,file in enumerate(filelist): #print(idx) #print(file) bowler = cleanBowlerData(file) economyRate=pd.to_numeric(bowler['Econ']) df1[names[idx]]= economyRate.cumsum()/pd.Series(np.arange(1, len(economyRate)+1), economyRate.index) df1.plot() plt.xlabel('Innings') plt.ylabel('Cumulative Average Econmy Rate') plt.title('Relative Cumulative Average Economy Rate') plt.text(150, 3,'Data source-Courtesy:ESPN Cricinfo', horizontalalignment='center', verticalalignment='center', ) plt.show() plt.gcf().clear() return import pandas as pd import matplotlib.pyplot as plt import numpy as np from pylab import rcParams ########################################################################################## # Designed and developed by <NAME> # Date : 19 Oct 2018 # Function: relativeBowlerCumulativeAvgWickets # This function computes and plots the relative cumulative average wickets of bowlers # ########################################################################################### def relativeBowlerCumulativeAvgWickets(filelist, names): ''' Relative bowlers cumulative average wickets Description This function computes and plots the relative cumulative average wickets of a bowler Usage relativeBowlerCumulativeAvgWickets(frames, names) Arguments frames This is a list of <bowler>.csv files obtained with an initial getPlayerData() names A list of Twenty20 bowlers names who need to be compared Value None Note Maintainer: <NAME> <EMAIL> Author(s) <NAME> References http://www.espncricinfo.com/ci/content/stats/index.html https://gigadom.wordpress.com/ See Also relativeBatsmanCumulativeAvgRuns relativeBowlerCumulativeAvgEconRate relativeBatsmanCumulativeStrikeRate Examples ## Not run: ) # Retrieve the file path of a data file installed with cricketr frames = ["kumble.csv","warne.csv","murali.csv"] names = ["Kumble","Warne","Murali"] relativeBowlerCumulativeAvgEconRate(frames,names) ''' df1=
pd.DataFrame()
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue May 26 17:19:41 2020 @author: <NAME> """ import pandas as pd def int_br(x): return int(x.replace('.','')) def float_br(x): return float(x.replace('.', '').replace(',','.')) dia = '2805' file_HU = '~/ownCloud/sesab/exporta_boletim_epidemiologico_csv_{}.csv'.format(dia) datahu = pd.read_csv(file_HU, sep=';', decimal=',', converters={'CASOS CONFIRMADOS': int_br}) rday = 'DATA DO BOLETIM' datahu[rday] = pd.to_datetime(datahu[rday], dayfirst=True) datahu['DayNum'] = datahu[rday].dt.dayofyear ref = pd.Timestamp(year=2020, month=2, day=27).dayofyear datahu['ts0'] = datahu['DayNum'] - ref colsutils = ['DATA DO BOLETIM', 'ts0', 'CASOS CONFIRMADOS', 'CASOS ENFERMARIA', 'CASOS UTI','TOTAL OBITOS'] dfi = datahu[colsutils] dff =
pd.DataFrame(columns=colsutils)
pandas.DataFrame
import pandas as pd import numpy as np from multiprocessing import cpu_count from functools import partial from scipy.optimize import minimize from trading.accountcurve import accountCurve from core.utility import draw_sample, weight_forecast from multiprocessing_on_dill import Pool from contextlib import closing """ Bootstrap.py - find the best weights for forecasts on a single instrument. """ def optimize_weights(instrument, sample): """Optimize the weights on a particular sample""" guess = [1.0] * sample.shape[1] bounds = [(0.0,5.0)] * sample.shape[1] def function(w, instrument, sample): """This is the function that is minimized iteratively using scipy.optimize.minimize to find the best weights (w)""" wf = weight_forecast(sample, w) # We introduce a capital term, as certain currencies like HKD are very 'numerate', which means we need millions of HKD to get a # significant position position = instrument.position(forecasts = wf, nofx=True, capital=10E7).rename(instrument.name).to_frame().dropna() # position = instrument.position(forecasts = wf, nofx=True).rename(instrument.name).to_frame().dropna() l = accountCurve([instrument], positions = position, panama_prices=instrument.panama_prices().dropna(), nofx=True) s = l.sortino() try: assert np.isnan(s) == False except: print(sample, position) raise return -s result = minimize(function, guess, (instrument, sample),\ method = 'SLSQP',\ bounds = bounds,\ tol = 0.01,\ constraints = {'type': 'eq', 'fun': lambda x: sample.shape[1] - sum(x)},\ options = {'eps': .1}, ) return result.x def mp_optimize_weights(samples, instrument, **kw): """Calls the Optimize function, on different CPU cores""" with closing(Pool()) as pool: return pool.map(partial(optimize_weights, instrument), samples) def bootstrap(instrument, n=(cpu_count() * 4), **kw): """Use bootstrapping to optimize the weights for forecasts on a particular instrument. Sets up the samples and gets it going.""" forecasts = instrument.forecasts(**kw).dropna() weights_buffer =
pd.DataFrame()
pandas.DataFrame
import numpy as np import pandas as pd def get_market_list(client, *args): marketList = pd.DataFrame(client.get_products()['data']) if len(args)>0: quoteBase = args[0] marketList = marketList[marketList['quoteAsset']==quoteBase] marketList['volume_24h'] = marketList['tradedMoney'] marketList = marketList[['symbol', 'volume_24h']] tickers = pd.DataFrame(client.get_ticker()) tickers['priceChangePercent'] = pd.to_numeric(tickers['priceChangePercent']) tickerList = pd.DataFrame() tickerList['symbol'] = tickers['symbol'] tickerList['change_24h'] = tickers['priceChangePercent'] marketList = pd.merge(marketList, tickerList, on='symbol') return marketList def market_classify(client): marketList = pd.DataFrame(client.get_products()['data']) btcMarketList = marketList[marketList['quoteAsset']=='BTC'] usdtMarketList = marketList[marketList['quoteAsset']=='USDT'] tmp = btcMarketList.merge(usdtMarketList, on="baseAsset", how="left", indicator=True) btcOnlyMarketList = list(tmp[tmp["_merge"] == "left_only"].drop(columns=["_merge"])['symbol_x']) tmp = usdtMarketList.merge(btcMarketList, on="baseAsset", how="left", indicator=True) usdtOnlyMarketList = list(tmp[tmp["_merge"] == "left_only"].drop(columns=["_merge"])['symbol_x']) return btcOnlyMarketList, usdtOnlyMarketList def get_trades(client, market, timeDuration, timeFrame): klines = client.get_historical_klines(symbol=market, interval=timeFrame, start_str=timeDuration) n_transactions = sum([item[8] for item in klines]) toId = client.get_historical_trades(symbol=market, limit=1)[0]['id'] listId = np.arange(toId-n_transactions+1, toId-10,500) trades = [] for fromId in listId: trades = trades+client.get_historical_trades(symbol=market, fromId=str(fromId)) trades = pd.DataFrame(trades) trades['price'] = pd.to_numeric(trades['price']) trades['qty'] = pd.to_numeric(trades['qty']) trades['time'] = pd.to_datetime(trades['time'], unit='ms') return trades def get_candles(client, market, timeFrame, timeDuration): klines = client.get_historical_klines(symbol=market, interval=timeFrame, start_str=timeDuration) klines = pd.DataFrame(klines) candles = pd.DataFrame() candles['open_time'] = klines[0] candles['close_time'] = klines[6] candles['n_trades'] = klines[8] candles['open'] = pd.to_numeric(klines[1]) candles['high'] = pd.to_numeric(klines[2]) candles['low'] = pd.to_numeric(klines[3]) candles['close'] = pd.to_numeric(klines[4]) candles['assetVolume'] = pd.to_numeric(klines[5]) candles['buyAssetVolume'] = pd.to_numeric(klines[9]) candles['sellAssetVolume'] = candles['assetVolume']-candles['buyAssetVolume'] candles['quoteVolume'] = pd.to_numeric(klines[7]) candles['buyQuoteVolume'] =
pd.to_numeric(klines[10])
pandas.to_numeric
import pymorphy2 import re import string import os import time import collections as cl import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt import seaborn as sns import pandas as pd from collections import defaultdict from matplotlib.backends.backend_pdf import PdfPages def numnum(y): return sum([i[1] for i in y]) def remove_border(axes=None, top=False, right=False, left=True, bottom=True): ax = axes or plt.gca() ax.spines['top'].set_visible(top) ax.spines['right'].set_visible(right) ax.spines['left'].set_visible(left) ax.spines['bottom'].set_visible(bottom) ax.yaxis.set_ticks_position('none') ax.xaxis.set_ticks_position('none') if top: ax.xaxis.tick_top() if bottom: ax.xaxis.tick_bottom() if left: ax.yaxis.tick_left() if right: ax.yaxis.tick_right() def hihi(l, cc, s, mc=None, kost=None): labels, values = zip(*l) indexes = np.arange(len(labels)) plt.plot(indexes, values, cc) plt.grid(axis = 'x', color = 'k', linestyle=':') plt.grid(axis = 'y', color ='k', linestyle=':') plt.title(s, fontsize = 16, loc = 'left', fontweight='light') if not mc: plt.ylabel('количество употреблений') plt.xlabel('количество слов') else: plt.ylabel('количество употреблений') plt.xticks(indexes, labels, fontsize=10) def pipi(w, k, s): y = cl.Counter(w[k]).most_common() z1, v1 = zip(*y) plt.pie(v1, labels=z1, autopct='%1.1f%%', startangle=90, colors=['#df2020', 'orange', 'w']) plt.title(s, fontsize = 16, loc = 'left', fontweight='light') def fifi(ww, s, cc, k=None): if k: NounWerte = cl.Counter(ww[k]).most_common() NN = numnum(NounWerte) else: l = [] for ke in ww: n = [ke for i in range(len(ww[ke]))] l.extend(n) NounWerte = cl.Counter(l).most_common() NN = numnum(NounWerte) Etiketten, Werte = zip(*NounWerte) pos = np.arange(len(Werte)) plt.barh(pos, Werte, color = cc) for p, W in zip(pos, Werte): plt.annotate(str(W)+' – '+str(nn(NN, W)), xy=(W + 1, p), fontsize = 10, va='center') plt.yticks(pos, Etiketten, fontsize = 10) xt = plt.xticks()[0] plt.xticks(xt, [' '] * len(xt)) remove_border(left=False, bottom=False) plt.grid(axis = 'x', color ='w', linestyle=':') plt.gca().invert_yaxis() plt.title(s, fontsize = 16, loc = 'left', fontweight='light') def tete(s=None, n=None, ss=None): if type(n) == int: if n < 99999: plt.text(0,.4,str(n), fontsize=85, fontweight='light') else: plt.text(0,.4,'>'+str(int(n/1000))+'k', fontsize=85, fontweight='light') if ss: ss2 = ss ss = str(n) ss = ss + '\n' + '**' + ss2 else: ss = str(n) + '\n' else: plt.text(0,.4,str(n), fontsize=85, fontweight='light') plt.text(0,.7,s, fontsize=18, fontweight='light', ) if ss: plt.text(0,.2,'*'+ss, fontsize=18, fontweight='light', color='#df2020') plt.xticks([]) plt.yticks([]) remove_border(left=False, bottom=False) Interpunktion = (string.punctuation+'\u2014\u2013\u2012\u2010\u2212'+ '«»‹›‘’“”„`…–') Wort_Tokenize = re.compile(r"([^\w_\u2019\u2010\u002F-]|[+])") def Word_Tokenizer(text): return [t.lower() for t in Wort_Tokenize.split(text) if t and not t.isspace() and not t in Interpunktion and not any(map(str.isdigit, t))] def Satz(n): S = set() [S.update(set(i)) for i in n.values()] return S nn = lambda x, y: '%.1f%%' %((100/x)*y) def main(): while True: ms = {'s':'Small text', 'b':'Big text'} print('Choose mode.\n\ns - for ' + ms['s'] + '\n\nb - for ' + ms['b']) Mode = input() if Mode in ms: print('\n\n***SchoenTextStat is in ' + ms[Mode] + ' mode***\n\n') break else: print('\nThere is no such mode') Pfad = input('Path to the file: ') RName = os.path.basename(Pfad) if not os.path.isfile(Pfad): print("\n~~~~~~~~~~~~~~~~~~~~~~File doesn't exist.~~~~~~~~~~~~~~~~~~~~~~\n\n\n", "I see my path, but I don't know where it leads.\n", "Not knowing where I'm going is what inspires me to travel it.", "\n\n\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n") pass Starten = time.time() with open(Pfad, 'r', encoding='utf-8') as f: Gross_Liste = Word_Tokenizer(f.read()) Morph = pymorphy2.MorphAnalyzer() Wordforms = set(Gross_Liste) Gefaelschtes = [] OMO = [] Lemmas_Woerterbuch = defaultdict(set) Wordforms_Woerterbuch = defaultdict(list) Faelle_Woerterbuch = defaultdict(list) Verben_Woerterbuch = defaultdict(list) for Wort in Wordforms: if 'ё' in Wort: Wort = Wort.replace('ё','е') MP_W = Morph.parse(Wort) Informationen = MP_W[0] IT = Informationen.tag Wortart = IT.POS if Wortart: if len(MP_W) > 1: o = [Wort, len(MP_W)] OMO.append(o) Lemma = Informationen.normal_form if str(Informationen.methods_stack[0][0]) == '<FakeDictionary>': m = [Wort, IT.cyr_repr, Informationen.normal_form, round(Informationen.score, 2)] Gefaelschtes.append(m) Wordforms_Woerterbuch[Morph.lat2cyr(Wortart)].append(Wort) Lemmas_Woerterbuch[Morph.lat2cyr(Wortart)].add(Lemma) if Wortart == 'NOUN' or Wortart == 'ADJF': Case = IT.case Faelle_Woerterbuch[Morph.lat2cyr(Wortart)].append(Morph.lat2cyr(Case)) if Wortart == 'VERB': Nummer, Zeit, Person = IT.number, IT.tense, IT.person if Nummer: Verben_Woerterbuch['Число'].append(Morph.lat2cyr(Nummer)) if Zeit: Verben_Woerterbuch['Время'].append(Morph.lat2cyr(Zeit)) if Person: Verben_Woerterbuch['Лицо'].append(Morph.lat2cyr(Person)) Gross_Nummer = len(Gross_Liste) #Словоупотреблений Wordforms_Nummer = len(Wordforms) #Словоформ (с проблемными) Lemmas_Nummer = len(Satz(Lemmas_Woerterbuch)) #Лемм по множеству Prozentsatz_dem_Lemmas = nn(Wordforms_Nummer, Lemmas_Nummer) Index_des_Reichtums = round((Lemmas_Nummer/Wordforms_Nummer), 2) with open('stop_words.txt', 'r', encoding='utf-8') as f: Stop = f.read().split() Nein_Stop = [] for i in cl.Counter(Gross_Liste).most_common(): if not i[0] in Stop: Nein_Stop.append(i) GL_C = cl.Counter(Gross_Liste).most_common() if len(GL_C) > 10: gl = [] for i in GL_C: gl.append(i) if i[1] == 1: GL_C = gl break if not os.path.isdir('./result'): os.mkdir('./result') pp = PdfPages('./result/result_'+RName+'.pdf') fig = plt.figure(figsize=(16,6)) tete('', 'Результат\nанализа текста', RName) pp.savefig(fig) plt.close() fig = plt.figure(figsize=(16,4.65)) plt.subplot(1,3,1) tete('Количество\nсловоупотреблений', Gross_Nummer) plt.subplot(1,3,2) tete('Количество\nсловоформ', Wordforms_Nummer) plt.subplot(1,3,3) tete('Количество\nлемм', Lemmas_Nummer, Prozentsatz_dem_Lemmas+ ' от числа\nсловоформ') pp.savefig(fig) plt.close() if Mode == 'b': fig = plt.figure(figsize=(16,6)) plt.subplot(1,2,1) hihi(GL_C, '#df2020', 'Характер распределения\nслов в тексте (max, min)', kost=True) plt.subplot(1,2,2) hihi(GL_C[:10], '#df2020', 'Распределение '+str(len(GL_C[:10]))+ ' наиболее частых\nслов в тексте', mc=True, kost=True) top10 = GL_C[:10] yy = .75*top10[0][1] top10N = sum([i[1] for i in top10]) plt.text(4, yy, '*'+str(nn(Gross_Nummer, top10N))+ '\nот общего\nколичества слов', fontsize=25, color='black', fontweight='light') pp.savefig(fig) plt.close() if Mode == 's': fig = plt.figure(figsize=(16,6)) hihi(GL_C, '#df2020', 'Характер распределения\nслов в тексте (max, min)', kost=True) pp.savefig(fig) plt.close() fig = plt.figure(figsize=(16,6)) hihi(GL_C[:10], '#df2020', 'Распределение '+str(len(GL_C[:10]))+ ' наиболее частых\nслов в тексте', mc=True, kost=True) top10 = GL_C[:10] yy = .75*top10[0][1] top10N = sum([i[1] for i in top10]) plt.text(4, yy, '*'+str(nn(Gross_Nummer, top10N))+ '\nот общего\nколичества слов', fontsize=25, color='black', fontweight='light') pp.savefig(fig) plt.close() LNS = len(Nein_Stop) targ = 10 if LNS > 0: if LNS < 10: targ = LNS fig = plt.figure(figsize=(16,6)) hihi(Nein_Stop[:targ], '#df2020', 'Распределение '+str(targ)+ ' наиболее частых\nслов в тексте (без стоп-слов)', mc=True, kost=True) yy2 = .75*Nein_Stop[0][1] Nein_GN = sum([i[1] for i in Nein_Stop]) Nein_StopN = sum([i[1] for i in Nein_Stop[:targ]]) plt.text(7, yy2, '*'+str(nn(Gross_Nummer, Nein_GN))+ '\nот общего\nколичества', fontsize=25, color='black', fontweight='light') pp.savefig(fig) plt.close() fig = plt.figure(figsize=(16,6)) fifi(Wordforms_Woerterbuch, 'Распределение cловоформ\nпо частям речи', '#df2020') pp.savefig(fig) plt.close() fig = plt.figure(figsize=(16,6)) fifi(Lemmas_Woerterbuch, 'Распределение лемм\nпо частям речи', 'orange') pp.savefig(fig) plt.close() fig = plt.figure(figsize=(16,4.65)) plt.subplot(1,2,1) tete(u"Коэффициент\nлексического богатства текста", Index_des_Reichtums, 'отношение числа различных\nлемм к общему числу словоформ') plt.subplot(1,2,2) tete(u"Процент\nомонимичных словоформ", nn(Wordforms_Nummer, len(OMO))) pp.savefig(fig) plt.close() fig, ax = plt.subplots(figsize=(16,6)) Ue = [] for k, v in Faelle_Woerterbuch.items(): for kk, vv in cl.Counter(v).items(): lll = [vv, kk, k] Ue.append(lll) NNz1 = max([numnum(cl.Counter(Faelle_Woerterbuch['СУЩ']).most_common()), numnum(cl.Counter(Faelle_Woerterbuch['ПРИЛ']).most_common())]) NNz2 = min([numnum(cl.Counter(Faelle_Woerterbuch['СУЩ']).most_common()), numnum(cl.Counter(Faelle_Woerterbuch['ПРИЛ']).most_common())]) Ue.sort(reverse=True) df =
pd.DataFrame(Ue, columns=['кол', 'п', 'чр'])
pandas.DataFrame
# # Copyright (c) 2018 <NAME> <<EMAIL>> # # See the file LICENSE for your rights. # """ Methods for processing VERIFICATION data. """ import os import re import numpy as np import pandas as pd from datetime import datetime, timedelta import pickle import requests from collections import OrderedDict from mosx.MesoPy import Meso from mosx.obs.methods import get_obs_hourly, reindex_hourly from mosx.util import generate_dates, get_array, get_ghcn_stid def get_cf6_files(config, station_id, num_files=1): """ After code by <NAME> Retrieves CF6 climate verification data released by the NWS. Parameter num_files determines how many recent files are downloaded. :param station_id: station ID to obtain cf6 files for """ # Create directory if it does not exist site_directory = config['SITE_ROOT'] # Construct the web url address. Check if a special 3-letter station ID is provided. nws_url = 'http://forecast.weather.gov/product.php?site=NWS&issuedby=%s&product=CF6&format=TXT' stid3 = station_id[1:].upper() nws_url = nws_url % stid3 # Determine how many files (iterations of product) we want to fetch if num_files == 1: if config['verbose']: print('get_cf6_files: retrieving latest CF6 file for %s' % station_id) else: if config['verbose']: print('get_cf6_files: retrieving %s archived CF6 files for %s' % (num_files, station_id)) # Fetch files for r in range(1, num_files + 1): # Format the web address: goes through 'versions' on NWS site which correspond to increasingly older files version = 'version=%d&glossary=0' % r nws_site = '&'.join((nws_url, version)) response = requests.get(nws_site) cf6_data = response.text # Remove the header try: body_and_footer = cf6_data.split('CXUS')[1] # Mainland US except IndexError: try: body_and_footer = cf6_data.split('CXHW')[1] # Hawaii except IndexError: body_and_footer = cf6_data.split('CXAK')[1] # Alaska body_and_footer_lines = body_and_footer.splitlines() if len(body_and_footer_lines) <= 2: body_and_footer = cf6_data.split('000')[2] # Remove the footer body = body_and_footer.split('[REMARKS]')[0] # Find the month and year of the file current_year = re.search('YEAR: *(\d{4})', body).groups()[0] try: current_month = re.search('MONTH: *(\D{3,9})', body).groups()[0] current_month = current_month.strip() # Gets rid of newlines and whitespace datestr = '%s %s' % (current_month, current_year) file_date = datetime.strptime(datestr, '%B %Y') except: # Some files have a different formatting, although this may be fixed now. current_month = re.search('MONTH: *(\d{2})', body).groups()[0] current_month = current_month.strip() datestr = '%s %s' % (current_month, current_year) file_date = datetime.strptime(datestr, '%m %Y') # Write to a temporary file, check if output file exists, and if so, make sure the new one has more data datestr = file_date.strftime('%Y%m') filename = '%s/%s_%s.cli' % (site_directory, station_id.upper(), datestr) temp_file = '%s/temp.cli' % site_directory with open(temp_file, 'w') as out: out.write(body) def file_len(file_name): with open(file_name) as f: for i, l in enumerate(f): pass return i + 1 if os.path.isfile(filename): old_file_len = file_len(filename) new_file_len = file_len(temp_file) if old_file_len < new_file_len: if config['verbose']: print('get_cf6_files: overwriting %s' % filename) os.remove(filename) os.rename(temp_file, filename) else: if config['verbose']: print('get_cf6_files: %s already exists' % filename) else: if config['verbose']: print('get_cf6_files: writing %s' % filename) os.rename(temp_file, filename) def _cf6(config, station_id): """ After code by <NAME> This function is used internally only. Generates verification values from climate CF6 files stored in SITE_ROOT. These files can be generated externally by get_cf6_files.py. This function is not necessary if climo data from _climo is found, except for recent values which may not be in the NCDC database yet. :param config: :param station_id: station ID to obtain cf6 files for :return: dict: wind values from CF6 files """ if config['verbose']: print('_cf6: searching for CF6 files in %s' % config['SITE_ROOT']) allfiles = os.listdir(config['SITE_ROOT']) filelist = [f for f in allfiles if f.startswith(station_id.upper()) and f.endswith('.cli')] filelist.sort() if len(filelist) == 0: raise IOError('No CF6 files found.') if config['verbose']: print('_cf6: found %d CF6 files.' % len(filelist)) # Interpret CF6 files if config['verbose']: print('_cf6: reading CF6 files') cf6_values = {} for file in filelist: year, month = re.search('(\d{4})(\d{2})', file).groups() infile = open('%s/%s' % (config['SITE_ROOT'], file), 'r') for line in infile: matcher = re.compile( '( \d|\d{2}) ( \d{2}|-\d{2}| \d| -\d|\d{3})') if matcher.match(line): # We've found an ob line! lsp = line.split() day = int(lsp[0]) curdt = datetime(int(year), int(month), day) cf6_values[curdt] = {} # Max temp if lsp[1] == 'M': cf6_values[curdt]['max_temp'] = -999.0 else: cf6_values[curdt]['max_temp'] = float(lsp[1]) # Min temp if lsp[2] == 'M': cf6_values[curdt]['min_temp'] = 999.0 else: cf6_values[curdt]['min_temp'] = float(lsp[2]) # Precipitation if lsp[7] == 'M': cf6_values[curdt]['precip'] = -999.0 elif lsp[7] == 'T': cf6_values[curdt]['precip'] = 0 else: cf6_values[curdt]['precip'] = float(lsp[7]) # Wind if lsp[11] == 'M': cf6_values[curdt]['wind'] = 0.0 else: cf6_values[curdt]['wind'] = float(lsp[11]) * 0.868976 return cf6_values def _climo(config, station_id, dates=None): """ Fetches climo data using ulmo package to retrieve NCDC archives. :param config: :param station_id: station ID to obtain cf6 files for :param dates: list of datetime objects :return: dict of high temp, low temp, max wind, and precipitation values """ import ulmo if config['verbose']: print('_climo: fetching data from NCDC (may take a while)...') climo_dict = {} ghcn_stid = get_ghcn_stid(config, station_id) try: D = ulmo.ncdc.ghcn_daily.get_data(ghcn_stid, as_dataframe=True, elements=['TMAX','TMIN','WSF2','PRCP']) wind = D['WSF2'] use_wind = True except KeyError: #no maximum wind data, perhaps because station is outside U.S. D = ulmo.ncdc.ghcn_daily.get_data(ghcn_stid, as_dataframe=True, elements=['TMAX','TMIN','PRCP']) use_wind = False if dates is None: dates = list(D['TMAX'].index.to_timestamp().to_pydatetime()) for date in dates: try: a = D['TMAX'].loc[date] climo_dict[date] = {} climo_dict[date]['max_temp'] = D['TMAX'].loc[date]['value']*0.18+32.0 climo_dict[date]['min_temp'] = D['TMIN'].loc[date]['value']*0.18+32.0 if use_wind: climo_dict[date]['wind'] = D['WSF2'].loc[date]['value'] / 10. * 1.94384 climo_dict[date]['precip'] = D['PRCP'].loc[date]['value'] / 254.0 except KeyError: #missing data if config['verbose']: print('_climo: climo data missing for %s',date) return climo_dict def pop_rain(series): """ Converts a series of rain values into 0 or 1 depending on whether there is measurable rain :param series: :return: """ new_series = series.copy() new_series[series >= 0.01] = 1. new_series[series < 0.01] = 0. return new_series def categorical_rain(series): """ Converts a series of rain values into categorical precipitation quantities a la MOS. :param series: :return: """ new_series = series.copy() for j in range(len(series)): if series.iloc[j] < 0.01: new_series.iloc[j] = 0. elif series.iloc[j] < 0.10: new_series.iloc[j] = 1. elif series.iloc[j] < 0.25: new_series.iloc[j] = 2. elif series.iloc[j] < 0.50: new_series.iloc[j] = 3. elif series.iloc[j] < 1.00: new_series.iloc[j] = 4. elif series.iloc[j] < 2.00: new_series.iloc[j] = 5. elif series.iloc[j] >= 2.00: new_series.iloc[j] = 6. else: # missing, or something else that's strange new_series.iloc[j] = 0. return new_series def verification(config, output_files=None, csv_files=None, use_cf6=True, use_climo=True, force_rain_quantity=False): """ Generates verification data from MesoWest and saves to a file, which is used to train the model and check test results. :param config: :param output_files: str: output file path if just one station, or list of output file paths if multiple stations :param csv_files: str: path to csv file containing observations if just one station, or list of paths to csv files if multiple stations :param use_cf6: bool: if True, uses data from CF6 files (only for U.S. stations) :param use_climo: bool: if True, uses data from NCDC climatology :param force_rain_quantity: if True, returns the actual quantity of rain (rather than POP); useful for validation files :return: """ if config['multi_stations']: #Train on multiple stations station_ids = config['station_id'] if len(station_ids) != len(output_files): #There has to be the same number of output files as station IDs, so raise error if not raise ValueError("There must be the same number of output files as station IDs") if len(station_ids) != len(csv_files): #There has to be the same number of output files as station IDs, so raise error if not raise ValueError("There must be the same number of csv files as station IDs") else: station_ids = [config['station_id']] if output_files is not None: output_files = [output_files] if csv_files is not None: csv_files = [csv_files] for i in range(len(station_ids)): station_id = station_ids[i] if output_files is None: output_file = '%s/%s_verif.pkl' % (config['SITE_ROOT'], station_id) else: output_file = output_files[i] if csv_files is None: csv_file = '%s/%s_verif.csv' % (config['SITE_ROOT'], station_id) else: csv_file = csv_files[i] dates = generate_dates(config) api_dates = generate_dates(config, api=True, api_add_hour=config['forecast_hour_start'] + 24) datename = 'date_time_minus_%d' % config['forecast_hour_start'] if config['verbose']: print('verification: obtaining observations from csv file') all_obspd = pd.read_csv(csv_file) vars_request=['air_temp','precip_accum_one_hour', 'wind_speed', 'air_temp_low_6_hour', 'air_temp_high_6_hour','precip_accum_six_hour'] for var in vars_request[:]: #see if variable is available, and remove from vars_request list if not try: obspd = all_obspd[var] if var == 'precip_accum_one_hour' and (sum(all_obspd['precip_accum_one_hour']) == 0 or np.isnan(sum(all_obspd['precip_accum_one_hour']))): #sometimes precip_accum_one_hour column exists even if there is no real data vars_request.remove('precip_accum_one_hour') except KeyError: #no such variable, so remove from vars_request list vars_request.remove(var) obspd = all_obspd[['date_time']+vars_request] #subset of data used as verification obspd['date_time']=np.array([datetime.strptime(date, '%Y-%m-%d %H:%M:%S') for date in obspd['date_time'].values],dtype='datetime64[s]') if config['verbose']: print('verification: setting time back %d hours for daily statistics' % config['forecast_hour_start']) dateobj = pd.to_datetime(obspd['date_time']) - timedelta(hours=config['forecast_hour_start']) obspd['date_time'] = dateobj obspd = obspd.rename(columns={'date_time': datename}) # Reformat data into hourly and daily # Hourly def hour(dates): date = dates.iloc[0] if type(date) == str: #if data is from csv file, date will be a string instead of a datetime object #depending on which version of NumPy or pandas you use, the first or second statement will work try: date = datetime.strptime(date, '%Y-%m-%d %H:%M:%S') except: date = datetime.strptime(date, '%Y-%m-%d %H:%M:%S+00:00') return datetime(date.year, date.month, date.day, date.hour) def last(values): return values.iloc[-1] aggregate = {datename: hour} if 'air_temp_high_6_hour' in vars_request and 'air_temp_low_6_hour' in vars_request: aggregate['air_temp_high_6_hour'] = np.max aggregate['air_temp_low_6_hour'] = np.min aggregate['air_temp'] = {'air_temp_max': np.max, 'air_temp_min': np.min} if 'precip_accum_six_hour' in vars_request: aggregate['precip_accum_six_hour'] = np.max aggregate['wind_speed'] = np.max if 'precip_accum_one_hour' in vars_request: aggregate['precip_accum_one_hour'] = np.max if config['verbose']: print('verification: grouping data by hour for hourly observations') # Note that obs in hour H are reported at hour H, not H+1 obs_hourly = obspd.groupby([pd.DatetimeIndex(obspd[datename]).year, pd.DatetimeIndex(obspd[datename]).month, pd.DatetimeIndex(obspd[datename]).day, pd.DatetimeIndex(obspd[datename]).hour]).agg(aggregate) # Rename columns col_names = obs_hourly.columns.values col_names_new = [] for c in range(len(col_names)): if col_names[c][0] == 'air_temp': col_names_new.append(col_names[c][1]) else: col_names_new.append(col_names[c][0]) obs_hourly.columns = col_names_new # Daily def day(dates): date = dates.iloc[0] if type(date) == str: #if data is from csv file, date will be a string instead of a datetime object #depending on which version of NumPy or pandas you use, the first or second statement will work try: date = datetime.strptime(date, '%Y-%m-%d %H:%M:%S') except: date = datetime.strptime(date, '%Y-%m-%d %H:%M:%S+00:00') return datetime(date.year, date.month, date.day) def min_or_nan(a): ''' Returns the minimum of a 1D array if there are at least 4 non-NaN values, and returns NaN otherwise. This is to ensure having NaNs on days with incomplete data when grouping into daily data rather than incorrect data. ''' if np.count_nonzero(~np.isnan(a)) < 4: #incomplete data return np.nan else: return np.min(a) def max_or_nan(a): ''' Returns the maximum of a 1D array if there are at least 4 non-NaN values, and returns NaN otherwise. This is to ensure having NaNs on days with incomplete data when grouping into daily data rather than incorrect data. ''' if np.count_nonzero(~np.isnan(a)) < 4: #incomplete data return np.nan else: return np.max(a) aggregate[datename] = day aggregate['air_temp_min'] = np.min aggregate['air_temp_max'] = np.max if 'air_temp_high_6_hour' in vars_request and 'air_temp_low_6_hour' in vars_request: aggregate['air_temp_low_6_hour'] = min_or_nan aggregate['air_temp_high_6_hour'] = max_or_nan aggregate['wind_speed'] = np.max if 'precip_accum_one_hour' in vars_request: aggregate['precip_accum_one_hour'] = np.sum if 'precip_accum_six_hour' in vars_request: aggregate['precip_accum_six_hour'] = np.sum try: aggregate.pop('air_temp') except: pass if config['verbose']: print('verification: grouping data by day for daily verifications') obs_daily = obs_hourly.groupby([pd.DatetimeIndex(obs_hourly[datename]).year, pd.DatetimeIndex(obs_hourly[datename]).month, pd.DatetimeIndex(obs_hourly[datename]).day]).agg(aggregate) obs_hourly_copy = obs_hourly.copy() obs_hourly_copy.set_index(datename,inplace=True) if config['verbose']: print('verification: checking matching dates for daily obs and CF6') if use_climo: try: climo_values = _climo(config, station_id, dates) except BaseException as e: if config['verbose']: print("verification: warning: '%s' while reading climo data" % str(e)) climo_values = {} else: if config['verbose']: print('verification: not using climo.') climo_values = {} if use_cf6: num_months = min((datetime.utcnow() - dates[0]).days / 30, 24) try: get_cf6_files(config, station_id, num_months) except BaseException as e: if config['verbose']: print("verification: warning: '%s' while getting CF6 files" % str(e)) try: cf6_values = _cf6(config, station_id) except BaseException as e: if config['verbose']: print("verification: warning: '%s' while reading CF6 files" % str(e)) cf6_values = {} else: if config['verbose']: print('verification: not using CF6.') cf6_values = {} climo_values.update(cf6_values) # CF6 has precedence count_rows = 0 for index, row in obs_daily.iterrows(): date = row[datename] use_cf6_precip = False if 'air_temp_high_6_hour' in vars_request: max_temp_var = 'air_temp_high_6_hour' else: max_temp_var = 'air_temp_max' if 'air_temp_low_6_hour' in vars_request: min_temp_var = 'air_temp_low_6_hour' else: min_temp_var = 'air_temp_min' if 'precip_accum_six_hour' in vars_request: precip_var = 'precip_accum_six_hour' obs_precip = round(row[precip_var],2) elif 'precip_accum_one_hour' in vars_request: precip_var = 'precip_accum_one_hour' obs_precip = round(row[precip_var],2) else: precip_var = 'precip_accum_six_hour' obs_precip = np.nan use_cf6_precip = True #no precip data in METARs obs_max_temp = row[max_temp_var] obs_min_temp = row[min_temp_var] obs_wind = row['wind_speed'] obs_daily.loc[index, 'wind_speed'] = obs_wind if np.isnan(obs_max_temp) and np.isnan(obs_min_temp): #if high or low temperature is missing, chances are some precipitation data is missing too use_cf6_precip = True # Check for missing or incorrect 6-hour precipitation amounts. If there are any, use sum of 1-hour precipitation amounts if none are missing. if 'precip_accum_six_hour' in vars_request: #6-hour precipitation amounts were used daily_precip = 0.0 for hour in [5,11,17,23]: #check the 4 times which should have 6-hour precipitation amounts try: obs_6hr_precip = round(obs_hourly_copy['precip_accum_six_hour'][pd.Timestamp(date.year,date.month,date.day,hour)],2) except KeyError: #incomplete data for date use_cf6_precip = True break if np.isnan(obs_6hr_precip): obs_6hr_precip = 0.0 sum_hourly_precip = 0.0 for hour2 in range(hour-5,hour+1): #check and sum 1-hour precipitation amounts obs_hourly_precip = obs_hourly_copy['precip_accum_one_hour'][
pd.Timestamp(date.year,date.month,date.day,hour2)
pandas.Timestamp
# Core functions # # this file contains reusable core functions like filtering on university # and adding year and month name info # these are functions which are generally used in every product # roadmap: I want to push all functions from loose function # to functions combined in classgroups from nlp_functions import remove_punctuation from nlp_functions import get_abstract_if_any from nlp_functions import comma_space_fix #from static import PATH_START, PATH_START_PERSONAL #from static import PATH_START_SERVER , PATH_START_PERSONAL_SERVER #from static import UNPAYWALL_EMAIL #from static import PATH_STATIC_RESPONSES #from static import PATH_STATIC_RESPONSES_ALTMETRIC #from static import PATH_STATIC_RESPONSES_SCOPUS_ABS #from static import MAX_NUM_WORKERS # not used everywhere so care import pandas as pd import calendar import numpy as np import requests from pybliometrics.scopus import ScopusSearch from pybliometrics.scopus import AbstractRetrieval from concurrent.futures import ThreadPoolExecutor from concurrent.futures import ProcessPoolExecutor from functools import partial ### from functools import wraps import time from datetime import datetime # new from datetime import timedelta import re import mysql.connector from mysql.connector import Error from altmetric import Altmetric import pickle import functools from unittest.mock import Mock from requests.models import Response #import sys from nlp_functions import faculty_finder from pybliometrics.scopus import config from pybliometrics.scopus.exception import Scopus429Error import static def overloaded_abstract_retrieval(identifier, view='FULL', refresh=True, id_type='eid'): """ The only thing this extra layer does is swap api-keys on error 429 Any multi-threading etc is done elsewhere (and may need its own testing as always) """ try: res = AbstractRetrieval(identifier=identifier, view=view, refresh=refresh, id_type=id_type) time.sleep(0.05) except Scopus429Error: # Use the last item of _keys, drop it and assign it as # current API key # update: keep swapping until it works still_error = True while still_error: if len(static.SCOPUS_KEYS) > 0: config["Authentication"]["APIKey"] = static.SCOPUS_KEYS.pop() try: time.sleep(1) # only when key has changed so 1s is fine res = AbstractRetrieval(identifier=identifier, view=view, refresh=refresh, id_type=id_type) still_error = False except Scopus429Error: # NO! only for 429 print('error, key pop will happen at top of while top') except: print('non429 error') still_error = False res = None # ? else: still_error = False res = None # ? return res def make_doi_list_from_csv(source_path, output_path, do_return=True): # this function returns a list of DOIs from a source scopus frontend file # in: source_path: a full path ending with .csv which contains a csv which has a column 'DOI' # output_path: a full path ending with .csv which will be where the result is returned as csv # out: a csv is generated and saved, and is returned as dataframe as well # df = pd.read_csv(source_path) df[~df.DOI.isnull()].DOI.to_csv(output_path, header=False) if do_return: return df[~df.DOI.isnull()].DOI else: return None def filter_on_uni(df_in, affiliation_column, cur_uni, affiliation_dict_basic): """" returns the dataframe filtered on the chosen university in: df with column 'Scopus affiliation IDs' with list of affiliation ids in scopus style cur_uni: a university name appearing in the dictionary affiliation_dict_basic affiliation_dict_basic: a dictionary with keys unis and values affiliation ids out: df filtered over rows """ # now the return has all info per university # ! scival may change their delimiters here, so please check once a while if it works as intended # put an extra check here to be safe return df_in[df_in.apply(lambda x: not (set(x[affiliation_column].split('| ')) .isdisjoint(set(affiliation_dict_basic[cur_uni]))), axis=1)] def add_year_and_month_old(df_in, date_col): """" adds two columns to a dataframe: a year and a month in: df_in: dataframe with special column (read below) date_col: name of column which has data information, formatted as [start]YYYY[any 1 char]MM[anything][end] column must not have Nones or nans for example out: dataframe with extra columns for year and month """ df_in['year'] = df_in[date_col].apply(lambda x: x[0:4]) df_in['month'] = df_in[date_col].apply(lambda x: x[5:7]) df_in['month_since_2018'] = df_in.month.astype('int') + (df_in.year.astype('int')-2018)*12 df_in['month_name'] = df_in.month.astype('int').apply(lambda x: calendar.month_name[x]) return df_in def add_year_and_month(df_in, date_col): """" adds two columns to a dataframe: a year and a month in: df_in: dataframe with special column (read below) date_col: name of column which has data information, formatted as [start]YYYY[any 1 char]MM[anything][end] column must not have Nones or nans for example out: dataframe with extra columns for year and month """ df_in['year'] = df_in[date_col].apply(lambda x: None if x is None else x[0:4]) df_in['month'] = df_in[date_col].apply(lambda x: None if x is None else x[5:7]) df_in['month_since_2018'] = df_in.apply(lambda x: None if x.month is None else int(x.month) + (int(x.year)-2018)*12, axis=1) #df_in.month.astype('int') + (df_in.year.astype('int')-2018)*12 df_in['month_name'] = df_in.month.apply(lambda x: None if x is None else calendar.month_name[int(x)]) return df_in def add_pure_year(df_in, date_col='Current publication status > Date'): """" adds one columns to a dataframe: a 'pure_year' based on pure info. The input must fit the PURE form as 'Anything+YY' We assume the year is after 2000! there are no checks for this in: df_in: dataframe with special column (read below) date_col: name of column which has data information, formatted as [start][anything]YYYY[end] column must not have Nones or nans for example out: dataframe with extra columns for year and month """ if date_col is None: df_in['pure_year'] = np.nan else: df_in['pure_year'] = df_in[date_col].apply(lambda x: float('20' + x[-2:])) return df_in def get_scopus_abstract_info(paper_eid): """ Returns the users df_in with extra columns with scopus abstract info per row or with diagnostics :param df_in: must have doi and eid :return: """ # init no_author_group = True # we want this too error = False ab = None error_message = 'no error' if paper_eid == None: # paper_without eid error_message = 'paper eid is none' error = True else: try: ab = overloaded_abstract_retrieval(identifier=paper_eid, view='FULL', refresh=True, id_type='eid') except: error = True error_message = 'abstract api error' if not(error): # chk if API errors out on authorgroup call and log it try: ab.authorgroup no_author_group = False except: no_author_group = True ##### this belongs in another function, with its own diagnostics + only run ff if this succeeds in topfn ####if not(no_author_group): #### (bool_got_vu_author, a, b) = find_first_vu_author() # yet to make this # also if no error, save the result for returns return {'abstract_object': ab, 'no_author_group_warning': no_author_group, 'abstract_error': error, 'abstract_error_message': error_message} def split_scopus_subquery_affils(subquery_affils, number_of_splits=4, subquery_time = ''): """ ! This function needs testing This function takes in subquery_affils from make_affiliation_dicts_afids() and translates it into a list of subqueries to avoid query length limits in: subquery_affils from make_affiliation_dicts_afids() number_of_splits: an integer between 2 and 10 subquery_time: an optional query to paste after every subquery out: a list of subqueries to constrain scopussearch to a subset of affils during stacking be sure to de-duplicate (recommended on EID) """ if (number_of_splits <= 10) & (number_of_splits > 1) & (number_of_splits % 1 == 0): pass # valid number_of_splits # you do not have to worry about number_of_splits < #afids because # in python asking indices range outside indices range yields empty lists # s.t. stacking them here does nothing # needs checking though else: print('invalid number_of_splits, replacing with 4') number_of_splits = 4 affil_count = len(subquery_affils.split('OR')) # number of affiliation ids if affil_count <= 12: # to avoid weird situations print('affil_count is small, returning single subquery') my_query_set = subquery_affils + subquery_time else: # do it my_query_set = [] step_size = int(np.floor(affil_count / number_of_splits)+1) counter = 0 for cur_step in np.arange(0,number_of_splits): if counter == 0: cur_subquery = 'OR'.join(subquery_affils.split('OR')[0:step_size]) + ' ) ' elif counter == number_of_splits-1: # this is the last one cur_subquery = ' ( ' + 'OR'.join(subquery_affils.split('OR')[step_size*cur_step:step_size*(cur_step+1)]) # + ' ) ) ' else: cur_subquery = ' ( ' + 'OR'.join(subquery_affils.split('OR')[step_size*cur_step:step_size*(cur_step+1)]) + ' ) ' # stack results in a list, check if we need extra [] or not ! cur_subquery = cur_subquery + subquery_time my_query_set.append(cur_subquery) counter = counter + 1 # useless but OK #print('-----') #print(my_query_set) #print('-----') return my_query_set def get_first_chosen_affiliation_author(ab, chosen_affid): """ :param ab: :return: """ # init first_vu_author = None cur_org = None has_error = False first_vu_author_position = None # care reverse!!! you need a length here or extra unreverse try: # loop over the authors in the author group, back to front, s.t. the 'first' vu author overwrites everything # this is not ideal, # because we would also want to check the second vu-author if first one can't be traced back to a faculty for cntr, author in enumerate(ab.authorgroup[::-1]): # ensures the final vu_author result is the leading vu author if author.affiliation_id == None: # then we can't match as vu author (yet), so we just skip as we do non-vu authors 1 else: if not (set(author.affiliation_id.split(', ')).isdisjoint(set(chosen_affid))): cur_org = author.organization if author.given_name == None: author_given_name = '?' else: author_given_name = author.given_name if author.surname == None: author_surname = '?' else: author_surname = author.surname first_vu_author = author_given_name + ' ' + author_surname except: has_error = True return {'first_affil_author': first_vu_author, 'first_affil_author_org': cur_org, 'first_affil_author_has_error': has_error} def get_count_of_chosen_affiliation_authors(ab, chosen_affid): """ :param ab: :return: """ # init author_count_valid = False author_count = 0 has_error = False try: # loop over the authors in the author group, back to front, s.t. the 'first' vu author overwrites everything # this is not ideal, # because we would also want to check the second vu-author if first one can't be traced back to a faculty for cntr, author in enumerate(ab.authorgroup[::-1]): # ensures the final vu_author result is the leading vu author if author.affiliation_id == None: # then we can't match as vu author (yet), so we just skip as we do non-vu authors 1 else: if not (set(author.affiliation_id.split(', ')).isdisjoint(set(chosen_affid))): # then we have a vu-author. Count and continue # notice there is no safety net if an author appears multiple times for some reason author_count = author_count + 1 author_count_valid = True except: has_error = True # then the author_count_valid remains False return {'affil_author_count': author_count, 'affil_author_count_valid': author_count_valid, 'affil_author_count_has_error': has_error} # upw start ## 1st at bottom ## 2nd # remember, these are not for general purpose, but specific decorators for api-harvester-type functions crystal_() def check_id_validity(func): # first layer is a pass right now and that is OK def decorator_check_id_validity(func): @functools.wraps(func) def wrapper_check_id_validity(cur_id, my_requests): # # pre-process valid_doi_probably = False if cur_id is not None: if pd.notnull(cur_id): if cur_id != 'nan': try: cur_id = cur_id.lower() valid_doi_probably = True except: try: cur_id = str(cur_id).lower() # not sure but OK valid_doi_probably = True # stay on safe side then and loose tiny bit of performance except: # then give up print('warning: failed to str(cur_doi).lower()') if not valid_doi_probably: # chance cur_id s.t. the crystal function can skip the checks and directly insert invalid-id-result cur_id = 'invalid' # the only change # end of pre-process # # run the core function r, relevant_keys, cur_id_lower, prepend, id_type = func(cur_id, my_requests) # # no post-process # return r, relevant_keys, cur_id_lower, prepend, id_type return wrapper_check_id_validity return decorator_check_id_validity(func) #############################################add_deal_info ## 3rd def check_errors_and_parse_outputs(func): # first layer is a pass right now and that is OK def decorator_check_errors_and_parse_outputs(func): @functools.wraps(func) def wrapper_check_errors_and_parse_outputs(cur_id, my_requests=requests): # !!!! # # pre-processing # # r, relevant_keys, cur_id_lower, prepend, id_type = func(cur_id, my_requests) # # post-processing # # init a dict and fill with right keys and zeros dict_init = {} # values are filled with None as starting point for key in relevant_keys: dict_init[prepend + key] = None # really init empty and stays empty if error dict_init[prepend + id_type] = None # can only be data['doi'] (!) # legacy dict_init[prepend + id_type + '_lowercase'] = cur_id_lower dict_init['own_' + id_type + '_lowercase'] = cur_id_lower dict_init['orig_' + id_type] = cur_id # legacy # dict_to_add = dict_init # ! somehow need to recognize doi_lowercase too... # try: if 'error' in r.json().keys(): # the following code has been checked to work as intended has_error = True error_message = r.json()['message'] dict_to_add[prepend + 'error'] = has_error dict_to_add[prepend + 'error_message'] = error_message # else: # case: no error #print(r) #print(r.json()) has_error = False error_message = 'no error' dict_to_add[prepend + 'error'] = has_error dict_to_add[prepend + 'error_message'] = error_message # # get data try: data = r.json()['results'][0] except: data = r.json() # overwrite dict_to_add with data for key in relevant_keys: try: dict_to_add[prepend + key] = data[key] # even upw_doi goes automatically : ) except KeyError: dict_to_add[prepend + key] = None # if the key is not there, the result is None dict_to_add[prepend + id_type] = cur_id # fix except: has_error = True error_message = "error in r.json() or deeper" dict_to_add[prepend + 'error'] = has_error dict_to_add[prepend + 'error_message'] = error_message # return pd.Series(dict_to_add) # r, relevant_keys # different output # output has been changed return wrapper_check_errors_and_parse_outputs return decorator_check_errors_and_parse_outputs(func) ############################################# ## 4th def faster(func): # makes stuff for lists of ids and enables multi-threading and persistent sessions : ) amazing # first layer is a pass right now and that is OK def decorator_iterate_list(func): @functools.wraps(func) def wrapper_iterate_list(doi_list, silent=True, multi_thread=True, my_requests=None, allow_session_creation=True): """ returns unpaywall info for a given doi list, includes result success/failure and diagnostics :param doi_list: doi list as a list of strings, re-computes if doi are duplicate does not de-dupe or dropna for generality, but you can do doi_list = df_in.doi.dropna().unique() if you so desire silent: whether you want silent behaviour or not, defaults to printing nothing multi_thread: whether you want to multi_thread unpaywall (code has been tested), on by default you do not have to worry about worker counts, a default law is integrated for that my_requests: by default None, but can be exchanged for a requests-session on demand with default, called functions will themselves enter 'requests' to reduce communication costs allow_session_creation: if my_requests=None, this allows the fn to make its own session :return: subset of unpaywall columns info + diagnostics as a pandas DataFrame, vertically doi's in lowercase-form. duplicate doi's in the list are ignored, and the output has 1 row per unique DOI Notice: this should be the only function to call fn_get_upw_info for more than 1 DOI (for developers) , s.t. the multi-threading code can be here without duplicate code """ # all processing # empty dataframe df_unpaywall = pd.DataFrame() if multi_thread: # valid across session used or not max_num_workers = static.MAX_NUM_WORKERS num_workers = np.max( [1, int(np.floor(np.min([max_num_workers, np.floor(float(len(doi_list)) / 4.0)])))]) if (my_requests is None) & (allow_session_creation is True) & (len(doi_list) >= 20): # then optionally make your own session # + avoid overhead for small jobs # perform with a session with requests.Session() as sessionA: if multi_thread: fn_get_upw_info_partial = partial(func, my_requests=sessionA) # avoid communication costs multi_result = multithreading(fn_get_upw_info_partial, doi_list, num_workers) for cur_series in multi_result: df_unpaywall = df_unpaywall.append(cur_series, ignore_index=True) else: # single thread for (counter, cur_doi) in enumerate(doi_list): if silent == False: print( 'unpaywall busy with number ' + str(counter + 1) + ' out of ' + str(len(doi_list))) cur_res = func(cur_doi, my_requests=sessionA) df_unpaywall = df_unpaywall.append(cur_res, ignore_index=True) else: # perform without a session if multi_thread: fn_get_upw_info_partial = partial(func, my_requests=my_requests) # avoid communication costs multi_result = multithreading(fn_get_upw_info_partial, doi_list, num_workers) for cur_series in multi_result: df_unpaywall = df_unpaywall.append(cur_series, ignore_index=True) else: # single thread for (counter, cur_doi) in enumerate(doi_list): if silent == False: print('unpaywall busy with number ' + str(counter + 1) + ' out of ' + str(len(doi_list))) cur_res = func(cur_doi, my_requests=my_requests) df_unpaywall = df_unpaywall.append(cur_res, ignore_index=True) # either way, return the result return df_unpaywall return wrapper_iterate_list return decorator_iterate_list(func) ## 5th def appender(func, cur_id_name='doi'): """ Returns the given dataframe with extra columns with unpaywall info and result success/failure and diagnostics Merging is done with lower-cased DOI's to avoid duplicate issues. The DOI name is case-insensitive :param df_in: df_in as a pandas dataframe, must have a column named 'doi' with doi's as string :return: pandas dataframe with extra columns with subset of unpaywall info and result success/failure and diagnostic all new doi info is lowercase """ def decorator_appender(func): @functools.wraps(func) def wrapper_appender(df_in, silent=True, cut_dupes=False, avoid_double_work=True, multi_thread=True, my_requests=None, allow_session_creation=True): if cur_id_name == 'eid': print('warning: scopus abstract accelerator has not been validated yet !') # make doi_list if avoid_double_work: doi_list = df_in.drop_duplicates(cur_id_name)[cur_id_name].to_list() # notice no dropna to keep functionality the same # also no lower-dropna for simplicity else: doi_list = df_in[cur_id_name].to_list() if cut_dupes: print('deprecated code running') # I think it should yield exactly the same result, but needs testing that is all # overwrites doi_list = df_in[cur_id_name].dropna().unique() # get unpaywall info df_unpaywall = func(doi_list, silent, multi_thread, my_requests, allow_session_creation) # merge to add columns # prepare doi_lower df_in.loc[:, 'id_lowercase'] = df_in[cur_id_name].str.lower() df_merged = df_in.merge(df_unpaywall.drop_duplicates('own_' + cur_id_name + '_lowercase'), left_on='id_lowercase', right_on='own_' + cur_id_name + '_lowercase', how='left') # drop duplicates in df_unpaywall to avoid having duplicates in the result due repeating DOI's or Nones # assumption: all none returns are the exact same if not silent: print('done with add_unpaywall_columns') return df_merged return wrapper_appender return decorator_appender(func) @appender @faster @check_errors_and_parse_outputs @check_id_validity def crystal_unpaywall(cur_id, my_requests): # always use cur_id, my_requests for in and r, relevant_keys for out # id is either cur_doi or 'invalid' if invalid prepend = 'upw_' id_type = 'doi' cur_id_lower = cur_id.lower() if my_requests is None: my_requests = requests # avoids passing requests around everytime relevant_keys = ['free_fulltext_url', 'is_boai_license', 'is_free_to_read', 'is_subscription_journal', 'license', 'oa_color'] # , 'doi', 'doi_lowercase' : you get these from callers if cur_id == 'invalid': # get the invalid-doi-response directly from disk to save time, you can run update_api_statics to update it in_file = open(static.PATH_STATIC_RESPONSES, 'rb') r = pickle.load(in_file) in_file.close() else: r = my_requests.get("https://api.unpaywall.org/" + str(cur_id) + "?email=" + static.UNPAYWALL_EMAIL) # force string # keep multi_thread to 16 to avoid issues with local computer and in rare occasions the api returns # this try making the code 10x slower """ try: r = my_requests.get("https://api.unpaywall.org/" + str(cur_id) + "?email=" + UNPAYWALL_EMAIL) # force string except: print('request failed hard for unpaywall, filling blank') in_file = open(PATH_STATIC_RESPONSES, 'rb') r = pickle.load(in_file) in_file.close() """ return r, relevant_keys, cur_id_lower, prepend, id_type add_unpaywall_columns = crystal_unpaywall # the final function goes through the new pipe # recreate the legacy unpaywall functions for now # def legacy_crystal_unpaywall(cur_id, my_requests): # always use cur_id, my_requests for in and r, relevant_keys for out # id is either cur_doi or 'invalid' if invalid prepend = 'upw_' id_type = 'doi' cur_id_lower = cur_id.lower() if my_requests is None: my_requests = requests # avoids passing requests around everytime relevant_keys = ['free_fulltext_url', 'is_boai_license', 'is_free_to_read', 'is_subscription_journal', 'license', 'oa_color'] # , 'doi', 'doi_lowercase' : you get these from callers if cur_id == 'invalid': # get the invalid-doi-response directly from disk to save time, you can run update_api_statics to update it in_file = open(static.PATH_STATIC_RESPONSES, 'rb') r = pickle.load(in_file) in_file.close() else: r = my_requests.get("https://api.unpaywall.org/" + str(cur_id) + "?email=" + static.UNPAYWALL_EMAIL) # force string # keep multi_thread to 16 to avoid issues with local computer and in rare occasions the api returns # this try making the code 10x slower """ try: r = my_requests.get("https://api.unpaywall.org/" + str(cur_id) + "?email=" + UNPAYWALL_EMAIL) # force string except: print('request failed hard for unpaywall, filling blank') in_file = open(PATH_STATIC_RESPONSES, 'rb') r = pickle.load(in_file) in_file.close() """ return r, relevant_keys, cur_id_lower, prepend, id_type fn_get_upw_info = check_errors_and_parse_outputs(check_id_validity(legacy_crystal_unpaywall)) # avoid, legacy fn_get_all_upw_info = faster(fn_get_upw_info) # these are only for legacy and should be avoided ###add_unpaywall_columns = appender(fn_get_all_upw_info) # the final function goes through the new pipe # # I do not like this kind of handling as it breaks some functools functionality # I will refactor legacy code later some time @appender @faster @check_errors_and_parse_outputs @check_id_validity def crystal_altmetric(cur_id, my_requests): """ This is a bit annoying because this returns either None or a dictionary, and not a request object... So I will just send requests without the package """ prepend = 'altmetric_' id_type = 'doi' cur_id_lower = cur_id.lower() if my_requests is None: my_requests = requests # avoids passing requests around everytime # some settings api_ver = 'v1' # may change in future, so here it is. For api-key re-edit with altmetric package api_url = "http://api.altmetric.com/%s/" % api_ver url = api_url + 'doi' + "/" + cur_id relevant_keys = ['title', 'cited_by_policies_count', 'score'] # OK for now, care some may miss, patch for that ! # , 'doi', 'doi_lowercase' : you get these from callers if cur_id == 'invalid': # get the invalid-doi-response directly from disk to save time, you can run update_api_statics to update it in_file = open(static.PATH_STATIC_RESPONSES_ALTMETRIC, 'rb') r = pickle.load(in_file) in_file.close() else: # r = my_requests.get("https://api.unpaywall.org/" + str(cur_id) + "?email=" + UNPAYWALL_EMAIL) # force string r = my_requests.get(url, params={}, headers={}) return r, relevant_keys, cur_id_lower, prepend, id_type add_altmetric_columns = crystal_altmetric ###@appender(cur_id_name='eid') @faster @check_errors_and_parse_outputs @check_id_validity def crystal_scopus_abstract(cur_id, my_requests): """ This is a bit annoying because this returns either None or a dictionary, and not a request object... So I will just send requests without the package """ prepend = 'scopus_abstract_' id_type = 'eid' cur_id_lower = cur_id.lower() # irrelevant but OK ### not used ###if my_requests is None: #### my_requests = requests # avoids passing requests around everytime # some settings # None # the issue is that ab is not a requests-type # but we need requests-type # also, I do not want to use homebrew request code for it because scopus apis are an outsourced mess # instead we will use a mock relevant_keys = ['obje', 'retries'] # all in one, care integration # , 'doi', 'doi_lowercase' : you get these from callers if cur_id == 'invalid': # get the invalid-doi-response directly from disk to save time, you can run update_api_statics to update it in_file = open(static.PATH_STATIC_RESPONSES_SCOPUS_ABS, 'rb') r = pickle.load(in_file) in_file.close() else: # r = my_requests.get("https://api.unpaywall.org/" + str(cur_id) + "?email=" + UNPAYWALL_EMAIL) # force string # r = my_requests.get(url, params={}, headers={}) # # scopus api is not friendly so I need a try/except here # # wait-and-retry one_shot = False if one_shot: retries = 0 try: ab = overloaded_abstract_retrieval(identifier=cur_id, view='FULL', refresh=True, id_type='eid') r = Mock(spec=Response) r.json.return_value = {'obje': pickle.dumps(ab), 'message': 'hi', 'retries':retries} r.status_code = 999 # requirements: # r.json().keys # r.json()['message'] # r.json()['results'] # if not present, will not unpack and use json().keys() except: # if so, fall back to invalid routine # # get the invalid-doi-response directly from disk to save time, you can run update_api_statics to update it in_file = open(static.PATH_STATIC_RESPONSES_SCOPUS_ABS, 'rb') r = pickle.load(in_file) in_file.close() else: # print(one_shot) retry = True retries = -1 while retry: #retry = False # removes retries retries = retries + 1 try: ab = overloaded_abstract_retrieval(identifier=cur_id, view='FULL', refresh=True, id_type='eid') qq = ab.title qqx = qq + 'x' # # if api does not error, and wepuyc have an title, then the call is correct and we got info back successfully # # then do rest of actions r = Mock(spec=Response) r.json.return_value = {'obje': pickle.dumps(ab), 'message': 'hi', 'retries': retries} r.status_code = 999 retry = False except: # we had an api error or a return with empty information # either way, just fillna and continue if retries < 30: retry = True time.sleep(1) if retries > 2: print('retrying ' + str(retries)) ### some returns are caught here as well sadly... else: retry = False # prepare for exit in_file = open(static.PATH_STATIC_RESPONSES_SCOPUS_ABS, 'rb') r = pickle.load(in_file) in_file.close() # you have to validate this code because scopus has weird features going in which mess up data when overloading return r, relevant_keys, cur_id_lower, prepend, id_type crystal_scopus_abstract = appender(func=crystal_scopus_abstract, cur_id_name='eid') ###@appender(cur_id_name='eid') @faster @check_errors_and_parse_outputs @check_id_validity def crystal_scopus_abstract2(cur_id, my_requests): """ This is a bit annoying because this returns either None or a dictionary, and not a request object... So I will just send requests without the package 2 only gives abstract_text """ prepend = 'scopus_abstract_' id_type = 'eid' cur_id_lower = cur_id.lower() # irrelevant but OK ### not used ###if my_requests is None: #### my_requests = requests # avoids passing requests around everytime # some settings # None # the issue is that ab is not a requests-type # but we need requests-type # also, I do not want to use homebrew request code for it because scopus apis are an outsourced mess # instead we will use a mock relevant_keys = ['text', 'retries'] # all in one, care integration # , 'doi', 'doi_lowercase' : you get these from callers if cur_id == 'invalid': # get the invalid-doi-response directly from disk to save time, you can run update_api_statics to update it in_file = open(static.PATH_STATIC_RESPONSES_SCOPUS_ABS, 'rb') r = pickle.load(in_file) in_file.close() else: # r = my_requests.get("https://api.unpaywall.org/" + str(cur_id) + "?email=" + UNPAYWALL_EMAIL) # force string # r = my_requests.get(url, params={}, headers={}) # # scopus api is not friendly so I need a try/except here # # wait-and-retry one_shot = False if one_shot: retries = 0 try: ab = overloaded_abstract_retrieval(identifier=cur_id, view='FULL', refresh=True, id_type='eid') r = Mock(spec=Response) try: ab_abstract = ab.abstract except: # error in getting abstract out (outside API ab_abstract = np.nan r.json.return_value = {'text': ab_abstract, 'message': 'hi', 'retries':retries} r.status_code = 999 # requirements: # r.json().keys # r.json()['message'] # r.json()['results'] # if not present, will not unpack and use json().keys() except: # if so, fall back to invalid routine # # get the invalid-doi-response directly from disk to save time, you can run update_api_statics to update it in_file = open(static.PATH_STATIC_RESPONSES_SCOPUS_ABS, 'rb') r = pickle.load(in_file) in_file.close() else: # print(one_shot) retry = True retries = -1 while retry: #retry = False # removes retries retries = retries + 1 try: ab = overloaded_abstract_retrieval(identifier=cur_id, view='FULL', refresh=True, id_type='eid') qq = ab.title qqx = qq + 'x' # # if api does not error, and wepuyc have an title, then the call is correct and we got info back successfully # # then do rest of actions r = Mock(spec=Response) try: ab_abstract = ab.abstract except: # error in getting abstract out (outside API ab_abstract = np.nan r.json.return_value = {'text': ab_abstract, 'message': 'hi', 'retries': retries} r.status_code = 999 retry = False except: # we had an api error or a return with empty information # either way, just fillna and continue if retries < 30: retry = True time.sleep(1) if retries > 2: print('retrying ' + str(retries)) else: retry = False # prepare for exit in_file = open(static.PATH_STATIC_RESPONSES_SCOPUS_ABS, 'rb') r = pickle.load(in_file) in_file.close() # you have to validate this code because scopus has weird features going in which mess up data when overloading return r, relevant_keys, cur_id_lower, prepend, id_type crystal_scopus_abstract2 = appender(func=crystal_scopus_abstract2, cur_id_name='eid') class api_extractor: """ DEPRECATED: please stop using this... I will make a new one later, for now updates and patches are stopped This class is an api extractor: it extracts info across api's. Has multi-threading :) Is not an eager operator so ScopusSearch query is only executed when needed and not on initialization source_list: which sources to use, like unpaywall query: query to put in scopussearch Under construction: only does unpaywall data right now to test multi-threading Also, I need an extra step for scopussearch datacleaning split-off Dubbel-check ff of je de juiste funccorresponding_author_functionsties hebt, bv voor unpaywall drop_dupe stap bij merge Plan nu: ff scopussearch-bypass erin, daarmee ff doortesten speedgain op grotere volumes """ def __init__(self, query='TITLE(DATA SCIENCE) AND PUBDATETXT(February 2018)', source_list=['all'], max_num_workers=32): self.source_list = source_list self.query = query self.scopus_search_info = None self.scopus_search_info_ready = False self.max_num_workers = max_num_workers def get_scopus_search_info(self, cur_query): """ Gets the scopus search info and return it as dataframe of obj.results Not yet handling errors of API... """ use_sleep_and_retry = True if use_sleep_and_retry: no_res = True cntr=0 while no_res: try: res = pd.DataFrame(ScopusSearch(cur_query, refresh=True).results) no_res = False except: cntr = cntr + 1 print(str(cntr) + ' ' + cur_query) time.sleep(1) else: res = pd.DataFrame(ScopusSearch(cur_query, refresh=True).results) return res def feed_scopus_search_info(self, df_in, do_return=False, do_overwrite=False): """ This methods allows you to directly feed in a dataframe with scopussearch info, of the form pandas.DataFrame(ScopusSearch().results) """ if (self.scopus_search_info_ready is False) | do_overwrite is True: self.scopus_search_info = df_in self.scopus_search_info_ready = True if do_return: return self.scopus_search_info else: print('scopus search info not updated because info was already entered and do_overwrite was provided False') def extract(self, use_multi_thread=True, skip_scopus_search=False, skip_unpaywall=False, use_parallel_apis=False): """ extract all chosen info """ # the functions like get_scopus_search_info and fn_get_upw_info, # should always be single-thread in themselves, # and we make them multi-thread outside of their own functions # # !!! we can further speed up by requesting from api providers in parallel # that way we can further avoid api rate limits # for this we need advanced functionality # after writing the code, turn the default use_parallel_apis to True # # # always redo scopus-search unless explicitly asked skip_scopus_search # init if not(self.scopus_search_info is None): df_temp = self.scopus_search_info.copy() doi_list = df_temp[~df_temp.DOI.isnull()].DOI.drop_duplicates().to_list() # # doi list issue happens here and in getupwdata line 161: search to_list, and doi/DOI difference # here: add fn (read jupyter) df_upw = pd.DataFrame() df_ss = pd.DataFrame() if use_multi_thread: #ss if skip_scopus_search is False: # !!! please thoroughly test this print('untested functionality called: multithread scopus search: careful!') # see fast_scopus_search_test.py for dev! my_query = self.query # use own query mini_queries = split_query_to_months(my_query) count_queries = len(mini_queries) # num_workers law: PLEASE TEST IT for optimum point or not num_workers = np.max([1, int(np.floor(np.min([self.max_num_workers, np.floor(float(count_queries)/4.0)])))]) # multi_result = multithreading(self.get_scopus_search_info, mini_queries, num_workers) for cur_series in multi_result: # we are appending dataframes, not series df_ss = df_ss.append(cur_series, ignore_index=True) ###doi_list = df_ss.doi # check this ! ## This is the point where parallel-api functionality should start(!) if use_parallel_apis: 1 # please first make the apis work in single_thread # then in regular multi-thread # and finally in parallel_apis_multi_thread. # 1. set sources using the skip_ arguments # 2. choose max_workers using not on #dois but #dois*doi-apis + #eids*eid-apis # 3. make a list with 1 element per job, including all details like # [ [doi_1,'unpaywall'], [doi_1,'unpaywall'], [eid_1,'scival']. ...] # 4. push that into multi-threading, but use a different function # use the function I started below named get_parallel_api_info() # this function picks up the source in element2 in a list element and # directs to the right api function # this makes the code superclean to support all forms of threading # while keeping full functionality # also, it needs to add a column with 'source' for differentiation # 5. follow the unpaywall code below and append and done # 6. for proper testing, split by source column back into df_upw/etc/etc # and give the serial_api routine also a combined df for comparability # 7. do extensive testing # 8. do timing: how large is the speed gain quantitatively? # this is probably best to test on high-end of very-high-end machines # because we need to hit the api rate limits with serial_apis to see an effect else: #upw if skip_unpaywall is False: num_workers = np.max([1, int(np.floor(np.min([self.max_num_workers, np.floor(float(len(doi_list))/4.0)])))]) multi_result = multithreading(fn_get_upw_info, doi_list, num_workers) for cur_series in multi_result: df_upw = df_upw.append(cur_series, ignore_index=True) #if ~skip_scival: # 1 else: # single-thread # ss if skip_scopus_search is False: # query fed separately btw # 2 lines for clarity for now scopus_search_results = self.get_scopus_search_info(self.query) # care self.feed_scopus_search_info(scopus_search_results) # store in properties df_ss = scopus_search_results # combining results is trivial for single-thread ###doi_list = df_ss.doi # check this ! # upw if skip_unpaywall is False: for cur_doi in doi_list: series_to_add = fn_get_upw_info(cur_doi) df_upw = df_upw.append(series_to_add, ignore_index=True) # scopussearch: the save and .self are issue for multithread, incl # overwrite of results properties # you need to fix that # also, the num_workers law: you need to decide that differently too # you prolly have 1 - 120 months, and 1 workers does 1 month a time # so you need like #months/3 or a comparable version of the law below return df_upw, df_ss # ! merge or combine or store properly later def get_parallel_api_info(self, cur_id, source): # please check if the multi-threader unpacks list elements, if so use 1 argument # and unpack within the function to id/source # to distinguish later, add the source as a column (is per DOI/EID) source_dict = {'api_source' : source } if source == 'unpaywall': series_to_add = fn_get_upw_info(cur_id) # cur_id:cur_doi here if source == 'scival': 1 series_to_add = series_to_add.append(pd.Series(source_dict)) return series_to_add def change_max_num_workers(self, max_num_workers): self.max_num_workers = max_num_workers def split_query_to_months(query, silent=False): """ warning: did not pass testing, some data records may not be retrieved This function splits a ScopusSearch query into multiple ones It takes a query with year indication, and plits it to 1 query per month This in turn allows the multi-threading functions of this import framework to reduce the computation time Otherwise, you will wait a very long serverside wait time and then get a lot of data at once with massive download times and possibly more failures input: a valid ScopusSearch query string which ends with exactly: PUBYEAR > XXXX AND PUBYEAR < YYYY with no other appearance of PUBYEAR text and there is at least one valid year Also, there should not be any month specification, only complete years And incomplete years are not allowed (current year at time of call) Also, the pubyear clauses should be extra clauses with ands at top level please respect this format as the regex functionality is not perfect advanced: the month january is also split up, because it generally is twice as large as the other months """ # this code can be improved with regex # extract years final_year = str(int(query.split('PUBYEAR < ')[1]) - 1) first_year = str(int(query.split('PUBYEAR > ')[1][0:4]) + 1) rest_of_query = query.split('PUBYEAR > ')[0] # probably ending with ' AND' # make year list years = np.arange(int(first_year), int(final_year)+1) # define month abbreviations (can split out later) #calendar.month_name[ value between 1 and 12] # example: PUBDATETXT(February 2018) query_parts = [] for year in years: for month_number in np.arange(1,12+1): if month_number == 1: # january is split again in two by open access y/n query_parts.append(rest_of_query + 'PUBDATETXT(' + calendar.month_name[month_number] + ' ' + str(year) + ')' + ' AND OPENACCESS(1)') query_parts.append(rest_of_query + 'PUBDATETXT(' + calendar.month_name[month_number] + ' ' + str(year) + ')' + ' AND OPENACCESS(0)') else: query_parts.append(rest_of_query + 'PUBDATETXT(' + calendar.month_name[month_number] + ' ' + str(year) + ')') # careful with using ints and strs together if ~silent: print('query has been split up in ' + str(len(query_parts)) + ' queries for multi-threading') return query_parts def multithreading(func, args, workers): with ThreadPoolExecutor(workers) as ex: res = ex.map(func, args) return list(res) def multithreading_starmap(func, args, workers): with ThreadPoolExecutor(workers) as ex: res = ex.starmap(func, args) return list(res) def multiprocessing(func, args, workers): with ProcessPoolExecutor(workers) as ex: res = ex.map(func, args) return list(res) def my_timestamp(): # return a sring with current time info now = datetime.now() return '_'.join(['', str(now.year), str(now.month), str(now.day), str(now.hour), str(now.minute), str(now.second)]) def add_deal_info(path_deals, path_isn, df_b): """ This function adds columns with deal information to your dataframe :param path_deals: path to csv with deals, must have columns: 'ISN':'deal_ISN', 'Titel':'deal_journal_title', 'Deal naam':'deal_name', 'Deal korting':'deal_discount', 'Deal type':'deal_owner', 'Deal bijgewerkt':'deal_modified', 'ISSN':'deal_ISSN' :param path_isn: path to csv with table from isn to issn numbers, must have columns ISN and ISSN as translation, :param df_b: dataframe with at lesat the columns: issn, eIssn, upw_oa_color The parameters should not have any columns matching the names of columns the function is trying to add :return: your input dataframe df_b with extra columns """ # load in data from apc deals and isn-issn translation table # apc deals df_d_base =
pd.read_csv(path_deals)
pandas.read_csv
#!/usr/bin/env python # -*- coding: utf-8 -*- # ======================================================================== # the metircs for docking power(AUC, Rp, success rate) just for ML-based models # ======================================================================== from warnings import simplefilter simplefilter(action='ignore', category=FutureWarning) import os, sys, csv import argparse import numpy as np import pandas as pd from sklearn.metrics import roc_curve, auc import multiprocessing from multiprocessing import Manager from sklearn.utils import resample def get_auc(y_test, y_pred, pos_label=1): ##if the prediction_value is + , pos_label=1; else, pos_label=0 if np.all(y_test == 1) or np.all(y_test == 0): return np.nan else: fpr, tpr, thresholds = roc_curve(y_test, y_pred, pos_label) myauc = auc(fpr, tpr) return myauc def calc_success_rate2(df_groupby, score_name, pos_label, rmsd_cut=2.0, topn=1): '''calculate the success rate''' total_mol = len(df_groupby) if pos_label == 0: success_mol = df_groupby.apply(lambda x: 1 if x.rmsd.loc[x.nsmallest(topn,score_name).index].min() <= rmsd_cut else 0).sum() else: success_mol = df_groupby.apply(lambda x: 1 if x.rmsd.loc[x.nlargest(topn,score_name).index].min() <= rmsd_cut else 0).sum() return success_mol/total_mol def obtain_metircs(df_test, i, return_dict, myresample=True, score_name='pred_value', pos_label=1): if myresample: df_test = resample(df_test, random_state=i, replace=True) inter_auc = get_auc(df_test.label, df_test[score_name], pos_label) if pos_label ==0: inter_rank_score = df_test[[score_name, 'rmsd']].corr('spearman').iloc[0,1] else: inter_rank_score = -df_test[[score_name, 'rmsd']].corr('spearman').iloc[0,1] df_out = pd.DataFrame(df_test.pdb_id.drop_duplicates(keep='first')) df_out.index = df_out.pdb_id df_groupby = df_test.groupby(by='pdb_id') df_out['intra_auc'] = df_groupby.apply(lambda x: get_auc(x.label, x[score_name], pos_label)) df_out['intra_rank_score'] = df_groupby.apply(lambda x: x[[score_name, 'rmsd']].corr('spearman').iloc[0,1]) if pos_label == 1: df_out['intra_rank_score'] = -df_out['intra_rank_score'] del df_out['pdb_id'] #df_out.to_csv('%s_intra_target_%s.csv'%(score_name, i)) intra_auc = df_out.intra_auc.mean() intra_rank_score = df_out.intra_rank_score.mean() sr_20_top1 = calc_success_rate2(df_groupby, score_name, pos_label, rmsd_cut=2.0, topn=1) sr_20_top3 = calc_success_rate2(df_groupby, score_name, pos_label, rmsd_cut=2.0, topn=3) sr_20_top5 = calc_success_rate2(df_groupby, score_name, pos_label, rmsd_cut=2.0, topn=5) sr_20_top20 = calc_success_rate2(df_groupby, score_name, pos_label, rmsd_cut=2.0, topn=20) sr_10_top1 = calc_success_rate2(df_groupby, score_name, pos_label, rmsd_cut=1.0, topn=1) sr_10_top3 = calc_success_rate2(df_groupby, score_name, pos_label, rmsd_cut=1.0, topn=3) sr_10_top5 = calc_success_rate2(df_groupby, score_name, pos_label, rmsd_cut=1.0, topn=5) sr_10_top20 = calc_success_rate2(df_groupby, score_name, pos_label, rmsd_cut=1.0, topn=20) sr_05_top1 = calc_success_rate2(df_groupby, score_name, pos_label, rmsd_cut=0.5, topn=1) sr_05_top3 = calc_success_rate2(df_groupby, score_name, pos_label, rmsd_cut=0.5, topn=3) sr_05_top5 = calc_success_rate2(df_groupby, score_name, pos_label, rmsd_cut=0.5, topn=5) sr_05_top20 = calc_success_rate2(df_groupby, score_name, pos_label, rmsd_cut=0.5, topn=20) return_dict[i] = [i, inter_auc, inter_rank_score, intra_auc, intra_rank_score, sr_20_top1, sr_20_top3, sr_20_top5, sr_20_top20, sr_10_top1, sr_10_top3, sr_10_top5, sr_10_top20, sr_05_top1, sr_05_top3, sr_05_top5, sr_05_top20] def main(): parser = argparse.ArgumentParser() parser.add_argument('-input_file','--input_file', required=True, ##xgb_out.csv help='Input data file (.csv), (.bz2 or .zip are supported).') parser.add_argument('-ref_file','--ref_file', default='/home/shenchao/AI_pose_filter/cross-dock_refined/resample/features/features2/rmsd_statistics.csv', help='Input reference data file (.csv), (.bz2 or .zip are supported).') parser.add_argument('-core_file','--core_file', default=None) ##'/home/shenchao/AI_pose_filter/cross-dock_refined/resample/features/features2/core_pdbid.txt' #parser.add_argument('-bad_file','--bad_file', default=None) ##/home/shenchao/AI_pose_filter/cross-dock_refined/resample/CASF/casf_crossdock/bad_combinations.txt parser.add_argument('-o', '--out_file', default='statistics_resample.csv', help='the output file. (default: statistics_resample.csv)') parser.add_argument('-remain_crystalposes', '--remain_crystalposes', action='store_true', default=False, help='whether to remain the crystalized poses.') parser.add_argument('-t', '--type', default='core', choices=['core','casf','crosscore-all','crosscore-redock','crosscore-cross'], help='the type. (default: core)') parser.add_argument('-d', '--data_name', default='nnscore', choices = ['nnscore','nnscore-vina','vina','nnscore+rank','e3fp','elem','ecif','ecif+vina','ecif+vina+rank'], help='the name of the data utilized. (default: NNscore)') parser.add_argument('-resample', '--resample', action='store_true', default=False, help='whether to conduct the resampling.') parser.add_argument('-i', '--i', default=10000, type=int, help='The reample times.') args = parser.parse_args() i_list = [int(x) for x in np.linspace(0,100000,args.i)] if not args.resample: i_list = [0] df_ref = pd.read_csv(args.ref_file, header=0, index_col=0) df = pd.read_csv(args.input_file, header=0, index_col=0) df =
pd.concat([df, df_ref.loc[df.index][['rmsd']]], axis=1)
pandas.concat
# Copyright (c) 2021-2022, NVIDIA CORPORATION. import numpy as np import pandas as pd import pytest import cudf from cudf.testing._utils import NUMERIC_TYPES, assert_eq from cudf.utils.dtypes import np_dtypes_to_pandas_dtypes def test_can_cast_safely_same_kind(): # 'i' -> 'i' data = cudf.Series([1, 2, 3], dtype="int32")._column to_dtype = np.dtype("int64") assert data.can_cast_safely(to_dtype) data = cudf.Series([1, 2, 3], dtype="int64")._column to_dtype = np.dtype("int32") assert data.can_cast_safely(to_dtype) data = cudf.Series([1, 2, 2**31], dtype="int64")._column assert not data.can_cast_safely(to_dtype) # 'u' -> 'u' data = cudf.Series([1, 2, 3], dtype="uint32")._column to_dtype = np.dtype("uint64") assert data.can_cast_safely(to_dtype) data = cudf.Series([1, 2, 3], dtype="uint64")._column to_dtype = np.dtype("uint32") assert data.can_cast_safely(to_dtype) data = cudf.Series([1, 2, 2**33], dtype="uint64")._column assert not data.can_cast_safely(to_dtype) # 'f' -> 'f' data = cudf.Series([np.inf, 1.0], dtype="float64")._column to_dtype = np.dtype("float32") assert data.can_cast_safely(to_dtype) data = cudf.Series( [np.finfo("float32").max * 2, 1.0], dtype="float64" )._column to_dtype = np.dtype("float32") assert not data.can_cast_safely(to_dtype) def test_can_cast_safely_mixed_kind(): data = cudf.Series([1, 2, 3], dtype="int32")._column to_dtype = np.dtype("float32") assert data.can_cast_safely(to_dtype) # too big to fit into f32 exactly data = cudf.Series([1, 2, 2**24 + 1], dtype="int32")._column assert not data.can_cast_safely(to_dtype) data = cudf.Series([1, 2, 3], dtype="uint32")._column to_dtype = np.dtype("float32") assert data.can_cast_safely(to_dtype) # too big to fit into f32 exactly data = cudf.Series([1, 2, 2**24 + 1], dtype="uint32")._column assert not data.can_cast_safely(to_dtype) to_dtype = np.dtype("float64") assert data.can_cast_safely(to_dtype) data = cudf.Series([1.0, 2.0, 3.0], dtype="float32")._column to_dtype = np.dtype("int32") assert data.can_cast_safely(to_dtype) # not integer float data = cudf.Series([1.0, 2.0, 3.5], dtype="float32")._column assert not data.can_cast_safely(to_dtype) data = cudf.Series([10.0, 11.0, 2000.0], dtype="float64")._column assert data.can_cast_safely(to_dtype) # float out of int range data = cudf.Series([1.0, 2.0, 1.0 * (2**31)], dtype="float32")._column assert not data.can_cast_safely(to_dtype) # negative signed integers casting to unsigned integers data = cudf.Series([-1, 0, 1], dtype="int32")._column to_dtype = np.dtype("uint32") assert not data.can_cast_safely(to_dtype) def test_to_pandas_nullable_integer(): gsr_not_null = cudf.Series([1, 2, 3]) gsr_has_null = cudf.Series([1, 2, None]) psr_not_null = pd.Series([1, 2, 3], dtype="int64") psr_has_null = pd.Series([1, 2, None], dtype="Int64") assert_eq(gsr_not_null.to_pandas(), psr_not_null) assert_eq(gsr_has_null.to_pandas(nullable=True), psr_has_null) def test_to_pandas_nullable_bool(): gsr_not_null = cudf.Series([True, False, True]) gsr_has_null = cudf.Series([True, False, None]) psr_not_null = pd.Series([True, False, True], dtype="bool") psr_has_null = pd.Series([True, False, None], dtype="boolean") assert_eq(gsr_not_null.to_pandas(), psr_not_null) assert_eq(gsr_has_null.to_pandas(nullable=True), psr_has_null) def test_can_cast_safely_has_nulls(): data = cudf.Series([1, 2, 3, None], dtype="float32")._column to_dtype = np.dtype("int64") assert data.can_cast_safely(to_dtype) data = cudf.Series([1, 2, 3.1, None], dtype="float32")._column assert not data.can_cast_safely(to_dtype) @pytest.mark.parametrize( "data", [ [1, 2, 3], (1.0, 2.0, 3.0), [float("nan"), None], np.array([1, 2.0, -3, float("nan")]), pd.Series(["123", "2.0"]), pd.Series(["1.0", "2.", "-.3", "1e6"]), pd.Series( ["1", "2", "3"], dtype=pd.CategoricalDtype(categories=["1", "2", "3"]), ), pd.Series( ["1.0", "2.0", "3.0"], dtype=pd.CategoricalDtype(categories=["1.0", "2.0", "3.0"]), ), # Categories with nulls pd.Series([1, 2, 3], dtype=pd.CategoricalDtype(categories=[1, 2])), pd.Series( [5.0, 6.0], dtype=pd.CategoricalDtype(categories=[5.0, 6.0]) ), pd.Series( ["2020-08-01 08:00:00", "1960-08-01 08:00:00"], dtype=np.dtype("<M8[ns]"), ), pd.Series( [pd.Timedelta(days=1, seconds=1), pd.Timedelta("-3 seconds 4ms")], dtype=np.dtype("<m8[ns]"), ), [ "inf", "-inf", "+inf", "infinity", "-infinity", "+infinity", "inFInity", ], ], ) def test_to_numeric_basic_1d(data): expected = pd.to_numeric(data) got = cudf.to_numeric(data) assert_eq(expected, got) @pytest.mark.parametrize( "data", [ [1, 2**11], [1, 2**33], [1, 2**63], [np.iinfo(np.int64).max, np.iinfo(np.int64).min], ], ) @pytest.mark.parametrize( "downcast", ["integer", "signed", "unsigned", "float"] ) def test_to_numeric_downcast_int(data, downcast): ps = pd.Series(data) gs = cudf.from_pandas(ps) expected = pd.to_numeric(ps, downcast=downcast) got = cudf.to_numeric(gs, downcast=downcast) assert_eq(expected, got) @pytest.mark.parametrize( "data", [ [1.0, 2.0**11], [-1.0, -(2.0**11)], [1.0, 2.0**33], [-1.0, -(2.0**33)], [1.0, 2.0**65], [-1.0, -(2.0**65)], [1.0, float("inf")], [1.0, float("-inf")], [1.0, float("nan")], [1.0, 2.0, 3.0, 4.0], [1.0, 1.5, 2.6, 3.4], ], ) @pytest.mark.parametrize( "downcast", ["signed", "integer", "unsigned", "float"] ) def test_to_numeric_downcast_float(data, downcast): ps = pd.Series(data) gs = cudf.from_pandas(ps) expected = pd.to_numeric(ps, downcast=downcast) got = cudf.to_numeric(gs, downcast=downcast) assert_eq(expected, got) @pytest.mark.parametrize( "data", [ [1.0, 2.0**129], [1.0, 2.0**257], [1.0, 1.79e308], [-1.0, -(2.0**129)], [-1.0, -(2.0**257)], [-1.0, -1.79e308], ], ) @pytest.mark.parametrize("downcast", ["signed", "integer", "unsigned"]) def test_to_numeric_downcast_large_float(data, downcast): ps = pd.Series(data) gs = cudf.from_pandas(ps) expected = pd.to_numeric(ps, downcast=downcast) got = cudf.to_numeric(gs, downcast=downcast) assert_eq(expected, got) @pytest.mark.parametrize( "data", [ [1.0, 2.0**129], [1.0, 2.0**257], [1.0, 1.79e308], [-1.0, -(2.0**129)], [-1.0, -(2.0**257)], [-1.0, -1.79e308], ], ) @pytest.mark.parametrize("downcast", ["float"]) def test_to_numeric_downcast_large_float_pd_bug(data, downcast): ps = pd.Series(data) gs = cudf.from_pandas(ps) expected = pd.to_numeric(ps, downcast=downcast) got = cudf.to_numeric(gs, downcast=downcast) # Pandas bug: https://github.com/pandas-dev/pandas/issues/19729 with pytest.raises(AssertionError, match="Series are different"): assert_eq(expected, got) @pytest.mark.parametrize( "data", [ ["1", "2", "3"], [str(np.iinfo(np.int64).max), str(np.iinfo(np.int64).min)], ], ) @pytest.mark.parametrize( "downcast", ["signed", "integer", "unsigned", "float"] ) def test_to_numeric_downcast_string_int(data, downcast): ps = pd.Series(data) gs = cudf.from_pandas(ps) expected = pd.to_numeric(ps, downcast=downcast) got = cudf.to_numeric(gs, downcast=downcast) assert_eq(expected, got) @pytest.mark.parametrize( "data", [ [""], # pure empty strings ["10.0", "11.0", "2e3"], ["1.0", "2e3"], ["1", "10", "1.0", "2e3"], # int-float mixed ["1", "10", "1.0", "2e3", "2e+3", "2e-3"], ["1", "10", "1.0", "2e3", "", ""], # mixed empty strings ], ) @pytest.mark.parametrize( "downcast", ["signed", "integer", "unsigned", "float"] ) def test_to_numeric_downcast_string_float(data, downcast): ps = pd.Series(data) gs = cudf.from_pandas(ps) expected = pd.to_numeric(ps, downcast=downcast) if downcast in {"signed", "integer", "unsigned"}: with pytest.warns( UserWarning, match="Downcasting from float to int " "will be limited by float32 precision.", ): got = cudf.to_numeric(gs, downcast=downcast) else: got = cudf.to_numeric(gs, downcast=downcast) assert_eq(expected, got) @pytest.mark.parametrize( "data", [ ["2e128", "-2e128"], [ "1.79769313486231e308", "-1.79769313486231e308", ], # 2 digits relaxed from np.finfo(np.float64).min/max ], ) @pytest.mark.parametrize( "downcast", ["signed", "integer", "unsigned", "float"] ) def test_to_numeric_downcast_string_large_float(data, downcast): ps = pd.Series(data) gs = cudf.from_pandas(ps) if downcast == "float": expected = pd.to_numeric(ps, downcast=downcast) got = cudf.to_numeric(gs, downcast=downcast) # Pandas bug: https://github.com/pandas-dev/pandas/issues/19729 with pytest.raises(AssertionError, match="Series are different"): assert_eq(expected, got) else: expected = pd.Series([np.inf, -np.inf]) with pytest.warns( UserWarning, match="Downcasting from float to int " "will be limited by float32 precision.", ): got = cudf.to_numeric(gs, downcast=downcast) assert_eq(expected, got) @pytest.mark.parametrize( "data", [ pd.Series(["1", "a", "3"]), pd.Series(["1", "a", "3", ""]), # mix of unconvertible and empty str ], ) @pytest.mark.parametrize("errors", ["ignore", "raise", "coerce"]) def test_to_numeric_error(data, errors): if errors == "raise": with pytest.raises( ValueError, match="Unable to convert some strings to numerics." ): cudf.to_numeric(data, errors=errors) else: expect = pd.to_numeric(data, errors=errors) got = cudf.to_numeric(data, errors=errors) assert_eq(expect, got) @pytest.mark.parametrize("dtype", NUMERIC_TYPES) @pytest.mark.parametrize("input_obj", [[1, cudf.NA, 3]]) def test_series_construction_with_nulls(dtype, input_obj): dtype = cudf.dtype(dtype) # numpy case expect =
pd.Series(input_obj, dtype=np_dtypes_to_pandas_dtypes[dtype])
pandas.Series
import pandas as pd import glob import os import numpy as np import time import fastparquet import argparse from multiprocessing import Pool import multiprocessing as mp from os.path import isfile parser = argparse.ArgumentParser(description='Program to run google compounder for a particular file and setting') parser.add_argument('--data', type=str, help='location of the pickle file') # don't use this for now parser.add_argument('--word', action='store_true', help='Extracting context for words only?') parser.add_argument('--output', type=str, help='directory to save dataset in') args = parser.parse_args() with open('/mnt/dhr/CreateChallenge_ICC_0821/no_ner_0_50000.txt','r') as f: contexts=f.read().split("\n") contexts=contexts[:-1] def left_side_parser(df): # N N _ _ _ cur_df=df.copy() try: cur_df[['modifier','head','w1','w2','w3']]=cur_df.lemma_pos.str.split(' ',expand=True) except ValueError: compound_df=pd.DataFrame() modifier_df=pd.DataFrame() head_df=pd.DataFrame() return compound_df,modifier_df,head_df compound_df=pd.melt(cur_df,id_vars=['modifier','head','year','count'],value_vars=['w1','w2','w3'],value_name='context') compound_df=compound_df.loc[compound_df.context.isin(contexts)] modifier_df=pd.melt(cur_df,id_vars=['modifier','year','count'],value_vars=['head','w1','w2'],value_name='context') modifier_df=modifier_df.loc[modifier_df.context.isin(contexts)] head_df=pd.melt(cur_df,id_vars=['head','year','count'],value_vars=['modifier','w1','w2','w3'],value_name='context') head_df=head_df.loc[head_df.context.isin(contexts)] return compound_df,modifier_df,head_df def mid1_parser(df): # _ N N _ _ cur_df=df.copy() try: cur_df[['w1','modifier','head','w2','w3']]=cur_df.lemma_pos.str.split(' ',expand=True) except ValueError: compound_df=pd.DataFrame() modifier_df=pd.DataFrame() head_df=pd.DataFrame() return compound_df,modifier_df,head_df compound_df=pd.melt(cur_df,id_vars=['modifier','head','year','count'],value_vars=['w1','w2','w3'],value_name='context') compound_df=compound_df.loc[compound_df.context.isin(contexts)] modifier_df=pd.melt(cur_df,id_vars=['modifier','year','count'],value_vars=['head','w1','w2','w3'],value_name='context') modifier_df=modifier_df.loc[modifier_df.context.isin(contexts)] head_df=pd.melt(cur_df,id_vars=['head','year','count'],value_vars=['modifier','w1','w2','w3'],value_name='context') head_df=head_df.loc[head_df.context.isin(contexts)] return compound_df,modifier_df,head_df def mid2_parser(df): # _ _ N N _ cur_df=df.copy() try: cur_df[['w1','w2','modifier','head','w3']]=cur_df.lemma_pos.str.split(' ',expand=True) except ValueError: compound_df=pd.DataFrame() modifier_df=pd.DataFrame() head_df=pd.DataFrame() return compound_df,modifier_df,head_df compound_df=pd.melt(cur_df,id_vars=['modifier','head','year','count'],value_vars=['w1','w2','w3'],value_name='context') compound_df=compound_df.loc[compound_df.context.isin(contexts)] modifier_df=pd.melt(cur_df,id_vars=['modifier','year','count'],value_vars=['head','w1','w2','w3'],value_name='context') modifier_df=modifier_df.loc[modifier_df.context.isin(contexts)] head_df=pd.melt(cur_df,id_vars=['head','year','count'],value_vars=['modifier','w1','w2','w3'],value_name='context') head_df=head_df.loc[head_df.context.isin(contexts)] return compound_df,modifier_df,head_df def right_side_parser(df): # _ _ _ N N cur_df=df.copy() try: cur_df[['w1','w2','w3','modifier','head']]=cur_df.lemma_pos.str.split(' ',expand=True) except ValueError: compound_df=pd.DataFrame() modifier_df=pd.DataFrame() head_df=pd.DataFrame() return compound_df,modifier_df,head_df compound_df=pd.melt(cur_df,id_vars=['modifier','head','year','count'],value_vars=['w1','w2','w3'],value_name='context') compound_df=compound_df.loc[compound_df.context.isin(contexts)] modifier_df=pd.melt(cur_df,id_vars=['modifier','year','count'],value_vars=['head','w1','w2','w3'],value_name='context') modifier_df=modifier_df.loc[modifier_df.context.isin(contexts)] head_df=pd.melt(cur_df,id_vars=['head','year','count'],value_vars=['modifier','w2','w3'],value_name='context') head_df=head_df.loc[head_df.context.isin(contexts)] return compound_df,modifier_df,head_df def syntactic_reducer(df): pattern=df.iloc[0].comp_class if pattern==1: # N N _ _ N N compound_left_df,modifier_left_df,head_left_df=left_side_parser(df) compound_right_df,modifier_right_df,head_right_df=right_side_parser(df) final_compound_df=pd.concat([compound_left_df,compound_right_df],ignore_index=True) final_modifier_df=pd.concat([modifier_left_df,modifier_right_df],ignore_index=True) final_head_df=pd.concat([head_left_df,head_right_df],ignore_index=True) elif pattern==2: # N N _ _ _ final_compound_df,final_modifier_df,final_head_df=left_side_parser(df) elif pattern==3: # _ N N _ _ final_compound_df,final_modifier_df,final_head_df=mid1_parser(df) elif pattern==4: # _ _ N N _ final_compound_df,final_modifier_df,final_head_df=mid2_parser(df) elif pattern==5: # _ _ _ N N final_compound_df,final_modifier_df,final_head_df=right_side_parser(df) return final_compound_df,final_modifier_df,final_head_df def compound_extracter(df): if df.loc[df.comp_class==1].shape[0]!=0: sides_comp_df,sides_mod_df,sides_head_df=syntactic_reducer(df.loc[df.comp_class==1]) else: sides_comp_df=pd.DataFrame() sides_mod_df=pd.DataFrame() sides_head_df=pd.DataFrame() if df.loc[df.comp_class==2].shape[0]!=0: left_comp_df,left_mod_df,left_head_df=syntactic_reducer(df.loc[df.comp_class==2]) else: left_comp_df=pd.DataFrame() left_mod_df=pd.DataFrame() left_head_df=pd.DataFrame() if df.loc[df.comp_class==3].shape[0]!=0: mid1_comp_df,mid1_mod_df,mid1_head_df=syntactic_reducer(df.loc[df.comp_class==3]) else: mid1_comp_df=
pd.DataFrame()
pandas.DataFrame
from __future__ import print_function, division from warnings import warn from nilmtk.disaggregate import Disaggregator from keras.layers import Conv1D, Dense, Dropout, Reshape, Flatten import os import pickle import pandas as pd import numpy as np from collections import OrderedDict from keras.optimizers import SGD from keras.models import Sequential, load_model import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from keras.callbacks import ModelCheckpoint import keras.backend as K import random import sys import json from .util import NumpyEncoder random.seed(10) np.random.seed(10) class SequenceLengthError(Exception): pass class ApplianceNotFoundError(Exception): pass class DL_disagregator(Disaggregator): def __init__(self, params): """ Parameters to be specified for the model """ self.MODEL_NAME = " " self.models = OrderedDict() self.sequence_length = params.get('sequence_length',99) self.n_epochs = params.get('n_epochs', 50 ) self.batch_size = params.get('batch_size',1024) self.mains_mean = params.get('mains_mean',1800) self.mains_std = params.get('mains_std',600) self.appliance_params = params.get('appliance_params',{}) self.save_model_path = params.get('save-model-path', None) self.load_model_path = params.get('pretrained-model-path',None) self.models = OrderedDict() if self.load_model_path: self.load_model() if self.sequence_length%2==0: print ("Sequence length should be odd!") raise (SequenceLengthError) def partial_fit(self,train_main,train_appliances,do_preprocessing=True, **load_kwargs): # If no appliance wise parameters are provided, then copmute them using the first chunk if len(self.appliance_params) == 0: self.set_appliance_params(train_appliances) print("...............Seq2Point partial_fit running...............") # Do the pre-processing, such as windowing and normalizing if do_preprocessing: train_main, train_appliances = self.call_preprocessing( train_main, train_appliances, 'train') #480374,1 -> 480374,99, 480374,1 -> 480374,1 train_main =
pd.concat(train_main,axis=0)
pandas.concat
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright (c) 2019 <NAME> <<EMAIL>> # and the Talkowski Laboratory # Distributed under terms of the MIT license. """ Collect features per gene for an input gtf """ import pybedtools as pbt import numpy as np import pandas as pd from pysam import faidx import csv from athena.mutrate import add_local_track import argparse from sys import stdout from os import path import subprocess import gzip def process_gtf(gtf_in): """ Read gtf & filter to minimal info required """ gtfbt = pbt.BedTool(gtf_in) # Build lists of eligible gene names and ensembl IDs genes, ensg_ids, transcripts = [], [], [] ensg_to_gene, gene_to_ensg = {}, {} for f in gtfbt: if f.fields[2] == 'transcript': gname = f.attrs['gene_name'] ensg_id = f.attrs['gene_id'] tname = f.attrs['transcript_id'] if gname not in genes: genes.append(gname) if ensg_id not in ensg_ids: ensg_ids.append(ensg_id) if tname not in transcripts: transcripts.append(tname) if ensg_id not in ensg_to_gene.keys(): ensg_to_gene[ensg_id] = gname if gname not in gene_to_ensg.keys(): gene_to_ensg[gname] = ensg_id # Filter & clean records in gtf def _filter_gtf(feature): """ Restrict GTF features to desired elements """ if feature.fields[2] in 'exon transcript'.split() \ and feature.attrs['gene_name'] in genes \ and feature.attrs['transcript_id'] in transcripts: return True else: return False attrs_to_drop = 'gene_id gene_type gene_status transcript_type ' + \ 'transcript_status transcript_name protein_id ' + \ 'tag ccdsid havana_gene havana_transcript' attrs_to_drop = attrs_to_drop.split() def _clean_feature(feature): """ Clean unnecessary fields & info from GTF features """ for key in attrs_to_drop: if key in feature.attrs.keys(): feature.attrs.pop(key) return feature gtfbt = gtfbt.filter(_filter_gtf).filter(_clean_feature).saveas() # Make separate BedTools for exons and transcripts txbt = gtfbt.filter(lambda x: x.fields[2] == 'transcript').saveas() exonbt = gtfbt.filter(lambda x: x.fields[2] == 'exon').saveas() return gtfbt, txbt, exonbt, genes, ensg_ids, transcripts, ensg_to_gene, gene_to_ensg def load_cens_tels(chrom_stats_bed): """ Read BED of centromere & telomere coordinates into dictionary """ chrom_stats_bt = pbt.BedTool(chrom_stats_bed) chrom_stats = {} for x in chrom_stats_bt: chrom = x.chrom if chrom not in chrom_stats.keys(): chrom_stats[chrom] = {} ftype = x[3] fbt = pbt.BedTool('\t'.join([x.chrom, str(x.start), str(x.end)]) + '\n', from_string=True) chrom_stats[chrom][ftype] = fbt if ftype == 'centromere': chrom_stats[chrom]['p_length'] = x.start if ftype == 'q_telomere': chrom_stats[chrom]['chrom_length'] = x.end for chrom in chrom_stats.keys(): chrom_len = chrom_stats[chrom]['chrom_length'] cen_end = chrom_stats[chrom]['centromere'][0].end chrom_stats[chrom]['q_length'] = chrom_len - cen_end return chrom_stats def get_neighbor_dists(tx, txdf): """ Get absolute distances for one query transcript and all other transcripts Dev note: necessary to avoid unexplained bottlenecks on some chromosomes using pbt.absolute_distance() """ txdf_sub = txdf[(txdf['chr'] == int(tx.chrom)) & \ (txdf['end'] != tx.end) & \ (txdf['start'] != tx.start + 1)] txints = txdf_sub.iloc[:, 1:].to_numpy() def _get_dist(r1, r2): """ Calculate absolute distance between two intervals Adapted from: https://stackoverflow.com/a/16843530 """ x, y = sorted((r1, r2)) if x[0] <= x[1] < y[0] and all(y[0] <= y[1] for y in (r1, r2)): return y[0] - x[1] return 0 return [_get_dist(list(x), [tx.start + 1, tx.end]) for x in txints] def get_tx_stats(genes, txbt, max_dist=1000000): """ Collect dict of lengths & relations of transcripts """ txdf = txbt.to_dataframe().iloc[:, [0, 3, 4]] txdf.columns = ['chr', 'start', 'end'] tx_stats = {} for tx in txbt: gene_name = tx.attrs['gene_name'] txlen = tx.length txcoords = '\t'.join([tx.chrom, str(tx.start), str(tx.end)]) + '\n' txstrand = tx.strand dists = get_neighbor_dists(tx, txdf) mindist = max([np.nanmin(dists), 1]) n_nearby = len([i for i in dists if i <= max_dist]) if gene_name not in tx_stats.keys(): tx_stats[gene_name] = {'tx_coords' : txcoords, 'tx_len' : [txlen], 'tx_strand' : txstrand, 'nearest_gene' : mindist, 'genes_within_1mb' : n_nearby} else: tx_stats[gene_name]['tx_coords'] \ = tx_stats[gene_name]['tx_coords'] + txcoords tx_stats[gene_name]['tx_len'].append(txlen) tx_stats[gene_name]['tx_strand'].append(txstrand) tx_stats[gene_name]['nearest_gene'].append(mindist) tx_stats[gene_name]['genes_within_1mb'].append(n_nearby) for gene in genes: if gene in tx_stats.keys(): tx_stats[gene]['tx_coords'] = pbt.BedTool(tx_stats[gene]['tx_coords'], from_string=True) tx_stats[gene]['tx_len'] = np.nanmedian(tx_stats[gene]['tx_len']) tx_stats[gene]['nearest_gene'] = np.nanmedian(tx_stats[gene]['nearest_gene']) tx_stats[gene]['genes_within_1mb'] = np.nanmedian(tx_stats[gene]['genes_within_1mb']) else: tx_stats[gene]['tx_coords'] = pbt.BedTool('\n', from_string=True) tx_stats[gene]['tx_len'] = np.nan tx_stats[gene]['nearest_gene'] = np.nan tx_stats[gene]['genes_within_1mb'] = np.nan return tx_stats def calc_interval_stats(bedt, default=1): """ Calculate basic statistics for a BedTool of intervals """ ni = len(bedt) if ni > 0: minsize = int(np.nanmin([x.length for x in bedt])) maxsize = int(np.nanmax([x.length for x in bedt])) medsize = np.nanmedian([x.length for x in bedt]) sumsize = int(np.nansum([x.length for x in bedt.merge()])) else: minsize = default maxsize = default medsize = default sumsize = default istats = {'n' : ni, 'min_size' : minsize, 'median_size' : medsize, 'max_size' : maxsize, 'summed_size' : sumsize} return istats def get_exon_intron_stats(genes, tx_stats, exonbt, min_intron_size): """ Collect exon & intron stats """ exon_stats = {} intron_stats = {} # Get BedTool of exons per gene for ex in exonbt: gene_name = ex.attrs['gene_name'] excoords = '\t'.join([ex.chrom, str(ex.start), str(ex.end)]) + '\n' if gene_name not in exon_stats.keys(): exon_stats[gene_name] = {'exon_coords' : excoords} else: exon_stats[gene_name]['exon_coords'] \ = exon_stats[gene_name]['exon_coords'] + excoords for gene in genes: if gene in exon_stats.keys(): exon_stats[gene]['exon_coords'] = pbt.BedTool(exon_stats[gene]['exon_coords'], from_string=True) else: exon_stats[gene]['exon_coords'] = pbt.BedTool('\n', from_string=True) # Get BedTool of introns per gene # Define introns as non-exon sections of canonical transcript that start # after the first base of the first exon and end before the last base of the # last exon, and whose length is >= min_intron_size for gene in genes: tx = tx_stats[gene]['tx_coords'] exons = exon_stats[gene]['exon_coords'] ex_min = np.nanmin(exons.to_dataframe()['start']) ex_max = np.nanmax(exons.to_dataframe()['end']) introns = tx.subtract(exons)\ .filter(lambda x: x.length >= min_intron_size and \ x.start >= ex_min and \ x.end <= ex_max).saveas() intron_stats[gene] = {'intron_coords' : introns} # Compute exon & intron stats per gene for gene in genes: exon_stats[gene]['stats'] = calc_interval_stats(exon_stats[gene]['exon_coords']) intron_stats[gene]['stats'] = calc_interval_stats(intron_stats[gene]['intron_coords']) return exon_stats, intron_stats def get_chrom_pos_stats(genes, tx_stats, chrom_stats): """ Calculate position of each gene relative to centromere/telomere position and chromosome sizes """ chrom_pos_stats = {} for gene in genes: tx_bed = tx_stats[gene]['tx_coords'] chrom = tx_bed[0].chrom if tx_bed[0].end <= chrom_stats[chrom]['centromere'][0].start: arm = 'p' else: arm = 'q' arm_len = chrom_stats[chrom]['{}_length'.format(arm)] cen_dist = tx_bed.closest(chrom_stats[chrom]['centromere'], d=True)[0][-1] cen_dist = np.abs(int(cen_dist)) tel_dist = tx_bed.closest(chrom_stats[chrom]['_'.join([arm, 'telomere'])], d=True)[0][-1] tel_dist = np.abs(int(tel_dist)) chrom_pos_stats[gene] = {'cen_dist' : cen_dist, 'cen_dist_norm' : cen_dist / arm_len, 'tel_dist' : tel_dist, 'tel_dist_norm' : tel_dist / arm_len} return chrom_pos_stats def calc_gc(chrom, start, end, ref_fasta, cpg=False): """ Calculate GC content of an interval Dev note: ran into tmp file memory issues with pybedtools nucleotide_content() """ seq = faidx(ref_fasta, '{}:{}-{}'.format(chrom, str(start), str(end)))\ .replace('\n', '').upper().replace('N', '') n_gc = seq.count('G') + seq.count('G') if cpg: n_cpg = seq.count('CG') return n_gc / len(seq), n_cpg else: return n_gc / len(seq) def get_genomic_features(genes, txbt, exonbt, tx_stats, gnomad_tsv, min_intron_size=4, chrom_stats=None, ref_fasta=None, athena_tracks=None, no_scaling=False): """ Collect various genomic features per gene """ # Exon & intron stats exon_stats, intron_stats = get_exon_intron_stats(genes, tx_stats, exonbt, min_intron_size) # Compile feature headers for output file header_cols = 'gene_length nearest_gene genes_within_1mb cds_length n_exons ' + \ 'min_exon_size med_exon_size max_exon_size min_intron_size ' + \ 'med_intron_size max_intron_size' header_cols = header_cols.split() # Extract basic genomic features per gene gfeats_tmp = {} for gene in genes: # Scale features unless specified otherwise if not no_scaling: gfeats = [np.log10(int(tx_stats[gene].get('tx_len', 'NA'))), np.log10(int(tx_stats[gene].get('nearest_gene', 'NA'))), int(tx_stats[gene].get('genes_within_1mb', 'NA')), np.log10(exon_stats[gene]['stats']['summed_size']), exon_stats[gene]['stats']['n'], np.log10(exon_stats[gene]['stats']['min_size']), np.log10(exon_stats[gene]['stats']['median_size']), np.log10(exon_stats[gene]['stats']['max_size']), np.log10(intron_stats[gene]['stats']['min_size']), np.log10(intron_stats[gene]['stats']['median_size']), np.log10(intron_stats[gene]['stats']['max_size'])] else: gfeats = [int(tx_stats[gene].get('tx_len', 'NA')), tx_stats[gene].get('nearest_gene', 'NA'), tx_stats[gene].get('genes_within_1mb', 'NA'), exon_stats[gene]['stats']['summed_size'], exon_stats[gene]['stats']['n'], exon_stats[gene]['stats']['min_size'], exon_stats[gene]['stats']['median_size'], exon_stats[gene]['stats']['max_size'], intron_stats[gene]['stats']['min_size'], intron_stats[gene]['stats']['median_size'], intron_stats[gene]['stats']['max_size']] gfeats_tmp[gene] = gfeats # Add chromosome positioning stats, if optioned if chrom_stats is not None: add_header_cols = 'cen_dist cen_dist_norm tel_dist tel_dist_norm' header_cols = header_cols + add_header_cols.split() chrom_pos_stats = get_chrom_pos_stats(genes, tx_stats, chrom_stats) for gene in genes: gfeats = gfeats_tmp[gene] gfeats_tmp[gene] = gfeats + list(chrom_pos_stats[gene].values()) # Add GC content, if optioned if ref_fasta is not None: header_cols.append('gc_pct') for x in txbt: gene = x.attrs['gene_name'] gfeats_tmp[gene].append(calc_gc(x.chrom, x.start, x.end, ref_fasta)) # Add annotations from specified tracks, if optioned if athena_tracks is not None: add_header_cols = [] tx_bed_str = ['\t'.join([x.chrom, str(x.start), str(x.end), x.attrs['gene_name']]) \ for x in txbt] tx_bed = pbt.BedTool('\n'.join(tx_bed_str), from_string=True) with open(athena_tracks) as tsv: reader = csv.reader(tsv, delimiter='\t') for track, action, tname in reader: add_header_cols.append(tname) newanno = {x[3]: float(x[4]) for x in \ add_local_track(tx_bed, track, action, 8, True)} for gene, val in newanno.items(): gfeats_tmp[gene].append(val) header_cols = header_cols + add_header_cols # Parse gnomAD mutation rate stats if gnomad_tsv is not None: # Load gnomAD data gnomad = pd.read_csv(gnomad_tsv, delimiter='\t', compression='gzip') keep_gnomad_cols = 'gene mu_syn mu_mis mu_lof' gnomad = gnomad.loc[gnomad.gene.isin(genes), keep_gnomad_cols.split()] # Fill in missing genes and values with overall means gnomad_means = gnomad.iloc[:, 1:].apply(np.nanmean).to_dict() gnomad.fillna(gnomad_means, axis=0, inplace=True) for gene in genes: if not any(gnomad.gene == gene): newrow = pd.Series([gene] + list(gnomad_means.values()), index=gnomad.columns) gnomad = gnomad.append(newrow, ignore_index=True) # Add values to gfeats per gene for gene in genes: gvals = gnomad.loc[gnomad.gene == gene, :].values.tolist()[0][1:] gfeats_tmp[gene] += gvals header_cols += ['gnomad_' + x for x in list(gnomad.columns)[1:]] # Format output string of all genomic features per gene header = '\t'.join(header_cols) genomic_features = {} for gene in genes: gfeats_str = '\t'.join([str(x) for x in gfeats_tmp[gene]]) genomic_features[gene] = gfeats_str return header, genomic_features def calc_gtex_stats(gtex_matrix): """ Compute summary stats for every gene from a GTEx expression matrix """ def _summstats(vals): """ Return array of summary statistics for a single gene """ return np.array([np.nanmin(vals), np.nanquantile(vals, q=0.25), np.nanmean(vals), np.nanquantile(vals, q=0.75), np.nanmax(vals), np.nanstd(vals), ((10 ** vals) - 1 > 1).sum()]) xstats = gtex_matrix.iloc[:, 1:].apply(_summstats, axis=1) xstats_df = pd.DataFrame(np.vstack(np.array(xstats)), columns='min q1 mean q3 max sd gt0'.split()) return pd.concat([gtex_matrix.loc[:, 'gene'], xstats_df], axis=1) def load_gtex(gtex_matrix, expression_matrix=True): """ Read & clean GTEx expression matrix of gene X covariate, and (optionally) compute summary stats """ gtex = pd.read_csv(gtex_matrix, sep='\t') gtex.rename(columns={'#gene' : 'gene'}, inplace=True) if expression_matrix: # Drop tissues with NaN values for all genes nonnan_cols = gtex.iloc[:, 1:].apply(lambda vals: not all(np.isnan(vals))) gtex = gtex.loc[:, ['gene'] + gtex.columns[1:][nonnan_cols].tolist()] # Handle duplicate gene symbols dups = [g for g, c in gtex.gene.value_counts().to_dict().items() if c > 1] if len(dups) > 0: if expression_matrix: # Sum untransformed values # Note: assumes all expression values have been log10(TPM + 1) transformed # (this is done by default in preprocess_GTEx.py) for gene in dups: expr_sum = gtex.loc[gtex.gene == gene, gtex.columns[1:]].\ apply(lambda vals: np.log10(np.nansum((10 ** vals) - 1) + 1)) newrow = pd.Series([gene] + expr_sum.tolist(), index=gtex.columns) gtex = gtex.loc[gtex.gene != gene, :] gtex = gtex.append(newrow, ignore_index=True) else: # Otherwise, compute mean of values for gene in dups: gmean = gtex.loc[gtex.gene == gene, gtex.columns[1:]].\ apply(lambda vals: np.nanmean(vals)) newrow = pd.Series([gene] + gmean.tolist(), index=gtex.columns) gtex = gtex.loc[gtex.gene != gene, :] gtex = gtex.append(newrow, ignore_index=True) # Compute summary stats per gene, if necessary if expression_matrix: return calc_gtex_stats(gtex) else: return gtex def get_expression_features(genes, ensg_ids, gtex_medians, gtex_mads, gtex_pca): """ Collect various expression features per gene """ xfeats_tmp = {g : [] for g in genes} header_cols = [] # Load GTEx medians if gtex_medians is not None: xmed_df = load_gtex(gtex_medians) xmed_cols = 'n_tissues_expressed median_expression_min median_expression_q1 ' + \ 'median_expression_mean median_expression_q3 median_expression_max ' + \ 'median_expression_sd' xmed_cols = xmed_cols.split() for gene in genes: if any(xmed_df.gene == gene): for v in 'gt0 min q1 mean q3 max sd'.split(): xfeats_tmp[gene].append(xmed_df[xmed_df.gene == gene].iloc[:, 1:][v].iloc[0]) else: for col in xmed_cols: xfeats_tmp[gene].append(0) header_cols += xmed_cols # Load GTEx MADs if gtex_mads is not None: xmad_df = load_gtex(gtex_mads) xmad_cols = 'expression_mad_min expression_mad_q1 expression_mad_mean ' + \ 'expression_mad_q3 expression_mad_max expression_mad_sd' xmad_cols = xmad_cols.split() for gene in genes: if any(xmad_df.gene == gene): for v in 'min q1 mean q3 max sd'.split(): xfeats_tmp[gene].append(xmad_df[xmad_df.gene == gene].iloc[:, 1:][v].iloc[0]) else: for col in xmad_cols: xfeats_tmp[gene].append(0) header_cols += xmad_cols # Load GTEx principal components if gtex_pca is not None: pca_df = load_gtex(gtex_pca, expression_matrix=False) pca_cols = pca_df.columns.tolist()[1:] for gene in genes: if any(pca_df.gene == gene): for v in pca_cols: xfeats_tmp[gene].append(pca_df.loc[pca_df.gene == gene, v].iloc[0]) else: for col in pca_cols: xfeats_tmp[gene].append(0) header_cols += pca_cols # Format output string of all expression features per gene header = '\t'.join(header_cols) expression_features = {} for gene in genes: xfeats_str = '\t'.join([str(x) for x in xfeats_tmp[gene]]) expression_features[gene] = xfeats_str return header, expression_features def get_chromatin_features(genes, ensg_ids, roadmap_means, roadmap_sds, roadmap_pca): """ Collect various chromatin features per gene """ cfeats_tmp = {g : [] for g in genes} header_cols = [] # Load Roadmap means if roadmap_means is not None: cmeans_df = load_gtex(roadmap_means, expression_matrix=False) cmean_cols = cmeans_df.columns.tolist()[1:] for gene in genes: if any(cmeans_df.gene == gene): for v in cmean_cols: cfeats_tmp[gene].append(cmeans_df.loc[cmeans_df.gene == gene, v].iloc[0]) else: for col in cmean_cols: cfeats_tmp[gene].append(0) header_cols += ['_'.join(['chromhmm', x, 'mean']) for x in cmean_cols] # Load Roadmap standard deviations if roadmap_sds is not None: csds_df = load_gtex(roadmap_sds, expression_matrix=False) csd_cols = csds_df.columns.tolist()[1:] for gene in genes: if any(csds_df.gene == gene): for v in csd_cols: cfeats_tmp[gene].append(csds_df.loc[csds_df.gene == gene, v].iloc[0]) else: for col in csd_cols: cfeats_tmp[gene].append(0) header_cols += ['_'.join(['chromhmm', x, 'sd']) for x in csd_cols] # Load Roadmap principal components if roadmap_pca is not None: pca_df = load_gtex(roadmap_pca, expression_matrix=False) pca_cols = pca_df.columns.tolist()[1:] for gene in genes: if any(pca_df.gene == gene): for v in pca_cols: cfeats_tmp[gene].append(pca_df.loc[pca_df.gene == gene, v].iloc[0]) else: for col in pca_cols: cfeats_tmp[gene].append(0) header_cols += pca_cols # Format output string of all chromatin features per gene header = '\t'.join(header_cols) chromatin_features = {} for gene in genes: cfeats_str = '\t'.join([str(x) for x in cfeats_tmp[gene]]) chromatin_features[gene] = cfeats_str return header, chromatin_features def get_constraint_features(genes, ensg_ids, tx_stats, txbt, exonbt, gene_to_ensg, gnomad_tsv, exac_cnv_tsv, rvis_tsv, eds_tsv, hi_tsv, ref_fasta, phastcons_url, promoter_size=1000): """ Collect various evolutionary constraint features per gene """ cfeats_tmp = {g : [] for g in genes} # Compile feature headers for output file header_cols = [] # Parse gnomAD constraint stats if gnomad_tsv is not None: # Load gnomAD data gnomad = pd.read_csv(gnomad_tsv, delimiter='\t', compression='gzip') keep_gnomad_cols = 'gene pLI pNull pRec oe_mis oe_lof oe_mis_upper ' + \ 'oe_lof_upper mis_z lof_z' gnomad = gnomad.loc[gnomad.gene.isin(genes), keep_gnomad_cols.split()] # Fill in missing genes and values with overall means gnomad_means = gnomad.iloc[:, 1:].apply(np.nanmean).to_dict() gnomad.fillna(gnomad_means, axis=0, inplace=True) for gene in genes: if not any(gnomad.gene == gene): newrow = pd.Series([gene] + list(gnomad_means.values()), index=gnomad.columns) gnomad = gnomad.append(newrow, ignore_index=True) # Add values to cfeats per gene for gene in genes: gvals = gnomad.loc[gnomad.gene == gene, :].values.tolist()[0][1:] cfeats_tmp[gene] += gvals header_cols += ['gnomad_' + x for x in list(gnomad.columns)[1:]] # Add ExAC CNV Z-score if exac_cnv_tsv is not None: # Load ExAC CNV data exac =
pd.read_csv(exac_cnv_tsv, delimiter='\t')
pandas.read_csv
import os import re import sys import warnings from argparse import ArgumentParser warnings.filterwarnings('ignore', category=FutureWarning, module='rpy2.robjects.pandas2ri') import matplotlib.pyplot as plt import numpy as np import pandas as pd from pandas.api.types import is_object_dtype, is_string_dtype import rpy2.rinterface_lib.embedded as r_embedded r_embedded.set_initoptions( ('rpy2', '--quiet', '--no-save', '--max-ppsize=500000')) import rpy2.robjects as robjects from joblib import dump, load from matplotlib import ticker from rpy2.robjects import numpy2ri, pandas2ri from rpy2.robjects.packages import importr numpy2ri.activate() pandas2ri.activate() # suppress linux conda qt5 wayland warning if sys.platform.startswith('linux'): os.environ['XDG_SESSION_TYPE'] = 'x11' parser = ArgumentParser() parser.add_argument('--results-dir', type=str, default='results', help='results dir') parser.add_argument('--out-dir', type=str, default='figures/bar', help='out dir') parser.add_argument('--filter', type=str, choices=['signif', 'all'], default='signif', help='response model filter') parser.add_argument('--file-format', type=str, nargs='+', choices=['png', 'pdf', 'svg', 'tif'], default=['png'], help='save file format') args = parser.parse_args() model_results_dir = '{}/models'.format(args.results_dir) analysis_results_dir = '{}/analysis'.format(args.results_dir) os.makedirs(args.out_dir, mode=0o755, exist_ok=True) data_types = ['kraken', 'htseq', 'combo'] metrics = ['roc_auc', 'pr_auc', 'balanced_accuracy'] metric_label = {'roc_auc': 'AUROC', 'pr_auc': 'AUPRC', 'balanced_accuracy': 'BCR'} model_codes = ['rfe', 'lgr', 'edger', 'limma'] colors = ['#009E73', '#F0E442', '#0072B2', 'black'] title_fontsize = 16 x_axis_fontsize = 5 if args.filter == 'all' else 8 y_axis_fontsize = 12 legend_fontsize = 8 fig_let_fontsize = 48 fig_height = 4 fig_width = 10 if args.filter == 'all' else 6 fig_dpi = 300 bar_width = 0.8 x_tick_rotation = 60 if args.filter == 'all' else 45 y_lim = 1.25 plt.rcParams['figure.max_open_warning'] = 0 plt.rcParams['font.family'] = 'sans-serif' plt.rcParams['font.sans-serif'] = ['Nimbus Sans', 'DejaVu Sans', 'sans'] r_base = importr('base') all_stats = pd.read_csv( '{}/compared_runs.txt'.format(analysis_results_dir), sep='\t') all_stats = all_stats.apply( lambda x: x.str.lower() if is_object_dtype(x) or is_string_dtype(x) else x) all_stats = all_stats.loc[all_stats['analysis'] == 'resp'] all_stats = all_stats.sort_values(by=['cancer', 'versus', 'features', 'how']) signif_hits = pd.read_csv( '{}/goodness_hits.txt'.format(analysis_results_dir), sep='\t') signif_hits = signif_hits.apply( lambda x: x.str.lower() if
is_object_dtype(x)
pandas.api.types.is_object_dtype
import collections import dask from dask import delayed from dask.diagnostics import ProgressBar import logging import multiprocessing import pandas as pd import numpy as np import re import six import string import py_stringsimjoin as ssj from py_stringsimjoin.filter.overlap_filter import OverlapFilter from py_stringmatching.tokenizer.qgram_tokenizer import QgramTokenizer from py_stringmatching.tokenizer.whitespace_tokenizer import WhitespaceTokenizer from py_stringsimjoin.utils.missing_value_handler import get_pairs_with_missing_value import py_entitymatching.catalog.catalog_manager as cm from py_entitymatching.utils.catalog_helper import log_info, get_name_for_key, \ add_key_column from py_entitymatching.blocker.blocker import Blocker import py_entitymatching.utils.generic_helper as gh from py_entitymatching.utils.validation_helper import validate_object_type from py_entitymatching.dask.utils import validate_chunks, get_num_partitions, \ get_num_cores, wrap logger = logging.getLogger(__name__) class DaskOverlapBlocker(Blocker): def __init__(self): self.stop_words = ['a', 'an', 'and', 'are', 'as', 'at', 'be', 'by', 'for', 'from', 'has', 'he', 'in', 'is', 'it', 'its', 'on', 'that', 'the', 'to', 'was', 'were', 'will', 'with'] logger.warning( "WARNING THIS BLOCKER IS EXPERIMENTAL AND NOT TESTED. USE AT YOUR OWN " "RISK.") self.regex_punctuation = re.compile('[%s]' % re.escape(string.punctuation)) super(DaskOverlapBlocker, self).__init__() def block_tables(self, ltable, rtable, l_overlap_attr, r_overlap_attr, rem_stop_words=False, q_val=None, word_level=True, overlap_size=1, l_output_attrs=None, r_output_attrs=None, l_output_prefix='ltable_', r_output_prefix='rtable_', allow_missing=False, verbose=False, show_progress=True, n_ltable_chunks=1, n_rtable_chunks=1): """ WARNING THIS COMMAND IS EXPERIMENTAL AND NOT TESTED. USE AT YOUR OWN RISK. Blocks two tables based on the overlap of token sets of attribute values. Finds tuple pairs from left and right tables such that the overlap between (a) the set of tokens obtained by tokenizing the value of attribute l_overlap_attr of a tuple from the left table, and (b) the set of tokens obtained by tokenizing the value of attribute r_overlap_attr of a tuple from the right table, is above a certain threshold. Args: ltable (DataFrame): The left input table. rtable (DataFrame): The right input table. l_overlap_attr (string): The overlap attribute in left table. r_overlap_attr (string): The overlap attribute in right table. rem_stop_words (boolean): A flag to indicate whether stop words (e.g., a, an, the) should be removed from the token sets of the overlap attribute values (defaults to False). q_val (int): The value of q to use if the overlap attributes values are to be tokenized as qgrams (defaults to None). word_level (boolean): A flag to indicate whether the overlap attributes should be tokenized as words (i.e, using whitespace as delimiter) (defaults to True). overlap_size (int): The minimum number of tokens that must overlap (defaults to 1). l_output_attrs (list): A list of attribute names from the left table to be included in the output candidate set (defaults to None). r_output_attrs (list): A list of attribute names from the right table to be included in the output candidate set (defaults to None). l_output_prefix (string): The prefix to be used for the attribute names coming from the left table in the output candidate set (defaults to 'ltable\_'). r_output_prefix (string): The prefix to be used for the attribute names coming from the right table in the output candidate set (defaults to 'rtable\_'). allow_missing (boolean): A flag to indicate whether tuple pairs with missing value in at least one of the blocking attributes should be included in the output candidate set (defaults to False). If this flag is set to True, a tuple in ltable with missing value in the blocking attribute will be matched with every tuple in rtable and vice versa. verbose (boolean): A flag to indicate whether the debug information should be logged (defaults to False). show_progress (boolean): A flag to indicate whether progress should be displayed to the user (defaults to True). n_ltable_chunks (int): The number of partitions to split the left table ( defaults to 1). If it is set to -1, then the number of partitions is set to the number of cores in the machine. n_rtable_chunks (int): The number of partitions to split the right table ( defaults to 1). If it is set to -1, then the number of partitions is set to the number of cores in the machine. Returns: A candidate set of tuple pairs that survived blocking (DataFrame). Raises: AssertionError: If `ltable` is not of type pandas DataFrame. AssertionError: If `rtable` is not of type pandas DataFrame. AssertionError: If `l_overlap_attr` is not of type string. AssertionError: If `r_overlap_attr` is not of type string. AssertionError: If `l_output_attrs` is not of type of list. AssertionError: If `r_output_attrs` is not of type of list. AssertionError: If the values in `l_output_attrs` is not of type string. AssertionError: If the values in `r_output_attrs` is not of type string. AssertionError: If `l_output_prefix` is not of type string. AssertionError: If `r_output_prefix` is not of type string. AssertionError: If `q_val` is not of type int. AssertionError: If `word_level` is not of type boolean. AssertionError: If `overlap_size` is not of type int. AssertionError: If `verbose` is not of type boolean. AssertionError: If `allow_missing` is not of type boolean. AssertionError: If `show_progress` is not of type boolean. AssertionError: If `n_ltable_chunks` is not of type int. AssertionError: If `n_rtable_chunks` is not of type int. AssertionError: If `l_overlap_attr` is not in the ltable columns. AssertionError: If `r_block_attr` is not in the rtable columns. AssertionError: If `l_output_attrs` are not in the ltable. AssertionError: If `r_output_attrs` are not in the rtable. SyntaxError: If `q_val` is set to a valid value and `word_level` is set to True. SyntaxError: If `q_val` is set to None and `word_level` is set to False. Examples: >>> from py_entitymatching.dask.dask_overlap_blocker import DaskOverlapBlocker >>> A = em.read_csv_metadata('path_to_csv_dir/table_A.csv', key='ID') >>> B = em.read_csv_metadata('path_to_csv_dir/table_B.csv', key='ID') >>> ob = DaskOverlapBlocker() # Use all cores # # Use word-level tokenizer >>> C1 = ob.block_tables(A, B, 'address', 'address', l_output_attrs=['name'], r_output_attrs=['name'], word_level=True, overlap_size=1, n_ltable_chunks=-1, n_rtable_chunks=-1) # # Use q-gram tokenizer >>> C2 = ob.block_tables(A, B, 'address', 'address', l_output_attrs=['name'], r_output_attrs=['name'], word_level=False, q_val=2, n_ltable_chunks=-1, n_rtable_chunks=-1) # # Include all possible missing values >>> C3 = ob.block_tables(A, B, 'address', 'address', l_output_attrs=['name'], r_output_attrs=['name'], allow_missing=True, n_ltable_chunks=-1, n_rtable_chunks=-1) """ logger.warning( "WARNING THIS COMMAND IS EXPERIMENTAL AND NOT TESTED. USE AT YOUR OWN " "RISK.") # Input validations self.validate_types_params_tables(ltable, rtable, l_output_attrs, r_output_attrs, l_output_prefix, r_output_prefix, verbose, n_ltable_chunks, n_rtable_chunks) self.validate_types_other_params(l_overlap_attr, r_overlap_attr, rem_stop_words, q_val, word_level, overlap_size) self.validate_allow_missing(allow_missing) self.validate_show_progress(show_progress) self.validate_overlap_attrs(ltable, rtable, l_overlap_attr, r_overlap_attr) self.validate_output_attrs(ltable, rtable, l_output_attrs, r_output_attrs) self.validate_word_level_qval(word_level, q_val) log_info(logger, 'Required metadata: ltable key, rtable key', verbose) l_key, r_key = cm.get_keys_for_ltable_rtable(ltable, rtable, logger, verbose) # validate metadata cm._validate_metadata_for_table(ltable, l_key, 'ltable', logger, verbose) cm._validate_metadata_for_table(rtable, r_key, 'rtable', logger, verbose) # validate input table chunks validate_object_type(n_ltable_chunks, int, 'Parameter n_ltable_chunks') validate_object_type(n_rtable_chunks, int, 'Parameter n_rtable_chunks') validate_chunks(n_ltable_chunks) validate_chunks(n_rtable_chunks) if n_ltable_chunks == -1: n_ltable_chunks = multiprocessing.cpu_count() ltable_chunks = np.array_split(ltable, n_ltable_chunks) # preprocess/tokenize ltable if word_level == True: tokenizer = WhitespaceTokenizer(return_set=True) else: tokenizer = QgramTokenizer(qval=q_val, return_set=True) preprocessed_tokenized_ltbl = [] # Construct DAG for preprocessing/tokenizing ltable chunks start_row_id = 0 for i in range(len(ltable_chunks)): result = delayed(self.process_tokenize_block_attr)(ltable_chunks[i][ l_overlap_attr], start_row_id, rem_stop_words, tokenizer) preprocessed_tokenized_ltbl.append(result) start_row_id += len(ltable_chunks[i]) preprocessed_tokenized_ltbl = delayed(wrap)(preprocessed_tokenized_ltbl) # Execute the DAG if show_progress: with ProgressBar(): logger.info('Preprocessing/tokenizing ltable') preprocessed_tokenized_ltbl_vals = preprocessed_tokenized_ltbl.compute( scheduler="processes", num_workers=multiprocessing.cpu_count()) else: preprocessed_tokenized_ltbl_vals = preprocessed_tokenized_ltbl.compute( scheduler="processes", num_workers=multiprocessing.cpu_count()) ltable_processed_dict = {} for i in range(len(preprocessed_tokenized_ltbl_vals)): ltable_processed_dict.update(preprocessed_tokenized_ltbl_vals[i]) # build inverted index inverted_index = self.build_inverted_index(ltable_processed_dict) if n_rtable_chunks == -1: n_rtable_chunks = multiprocessing.cpu_count() rtable_chunks = np.array_split(rtable, n_rtable_chunks) # Construct the DAG for probing probe_result = [] start_row_id = 0 for i in range(len(rtable_chunks)): result = delayed(self.probe)(rtable_chunks[i][r_overlap_attr], inverted_index, start_row_id, rem_stop_words, tokenizer, overlap_size) probe_result.append(result) start_row_id += len(rtable_chunks[i]) probe_result = delayed(wrap)(probe_result) # Execute the DAG for probing if show_progress: with ProgressBar(): logger.info('Probing using rtable') probe_result = probe_result.compute(scheduler="processes", num_workers=multiprocessing.cpu_count()) else: probe_result = probe_result.compute(scheduler="processes", num_workers=multiprocessing.cpu_count()) # construct a minimal dataframe that can be used to add more attributes flat_list = [item for sublist in probe_result for item in sublist] tmp = pd.DataFrame(flat_list, columns=['fk_ltable_rid', 'fk_rtable_rid']) fk_ltable = ltable.iloc[tmp.fk_ltable_rid][l_key].values fk_rtable = rtable.iloc[tmp.fk_rtable_rid][r_key].values id_vals = list(range(len(flat_list))) candset = pd.DataFrame.from_dict( {'_id': id_vals, l_output_prefix+l_key: fk_ltable, r_output_prefix+r_key: fk_rtable}) # set the properties for the candidate set cm.set_key(candset, '_id') cm.set_fk_ltable(candset, 'ltable_'+l_key) cm.set_fk_rtable(candset, 'rtable_'+r_key) cm.set_ltable(candset, ltable) cm.set_rtable(candset, rtable) ret_candset = gh.add_output_attributes(candset, l_output_attrs=l_output_attrs, r_output_attrs=r_output_attrs, l_output_prefix=l_output_prefix, r_output_prefix=r_output_prefix, validate=False) # handle missing values if allow_missing: missing_value_pairs = get_pairs_with_missing_value(ltable, rtable, l_key, r_key, l_overlap_attr, r_overlap_attr, l_output_attrs, r_output_attrs, l_output_prefix, r_output_prefix, False, False) missing_value_pairs.insert(0, '_id', range(len(ret_candset), len(ret_candset)+len(missing_value_pairs))) if len(missing_value_pairs) > 0: ret_candset =
pd.concat([ret_candset, missing_value_pairs], ignore_index=True, sort=False)
pandas.concat
import sys import pandas import numpy import math import numpy as np import networkx as nx from sklearn.preprocessing import normalize def ComputeRankWeightage(row): return (1+ row['max_actor_rank'] - row['actor_movie_rank'])/(1+ row['max_actor_rank'] - row['min_actor_rank']) def ComputeTimestampWeights(row, min_timestamp, max_timestamp): return ((pandas.to_datetime(row['timestamp'])-min_timestamp).days + 1)/((max_timestamp-min_timestamp).days+1) def AddWeightages(row): return numpy.round(row['actor_rank_weightage'] + row['timestamp_weightage'], decimals=4) def ComputeTF(row): return row['tag_weightage'] / row['total_actor_weightage'] def ProcessWeightsToTF(combineddata): combineddata['all_weightages'] = combineddata.apply(AddWeightages, axis=1) combineddata['tag_weightage'] = combineddata.groupby(['actorid','tagid'])['all_weightages'].transform('sum') combineddata = combineddata[['actorid', 'tagid', 'tag_weightage']].drop_duplicates(subset=['actorid', 'tagid']) combineddata['total_actor_weightage'] = combineddata.groupby(['actorid'])['tag_weightage'].transform('sum') combineddata['tf'] = combineddata.apply(ComputeTF, axis=1) return combineddata def ComputeIDF(row, total_actors): return math.log10(total_actors / row['count_of_actors']) def ComputeTFIDF(row): return row['tf']*row['idf'] def ProcessTFandIDFtoTFIDF(tfdata, idfdata): tfidfdata = tfdata.merge(idfdata, on='tagid') tfidfdata['tfidf'] = tfidfdata.apply(ComputeTFIDF, axis=1) return tfidfdata[['actorid','tagid','tfidf']] def GenerateAllActorsTFIDF(): allactormoviesdata =
pandas.read_csv("movie-actor.csv")
pandas.read_csv
# This script gets the amount of funding gained within 9 months # of the first date import pandas as pd import numpy as np from datetime import datetime, timedelta from tqdm import tqdm # Need to merge two patreon stat CSV files df_patreon1 = pd.read_csv('files/20190714_github_patreon_stats.csv') df_patreon2 = pd.read_csv('files/20190627_patreon_stats.csv') df_patreon =
pd.concat([df_patreon1, df_patreon2], ignore_index=True)
pandas.concat
import os import numpy as np import pandas as pd from datetime import datetime from datetime import timedelta from dateutil import parser # from scipy.interpolate import NearestNDInterpolator import matplotlib.pyplot as plt # from emtracks.mapinterp import get_df_interp_func # copied interpolation here. FIXME! from mapinterp import get_df_interp_func # Note: see docdb-#6908 for geometry details # data directory scriptdir = os.path.dirname(os.path.realpath(__file__)) datadir = os.path.join(scriptdir, '..', 'data/') print(datadir) # create map interpolation functions DS_cyl = get_df_interp_func(filename=datadir+'Mu2e_DSMap_V13.p', gauss=False, mm=False, Blabels=['Br', 'Bphi', 'Bz']) DS_car = get_df_interp_func(filename=datadir+'Mu2e_DSMap_V13.p', gauss=False, mm=False, Blabels=['Bx', 'By', 'Bz']) # measurement noise for field values # sigma_Bi = 0. # sigma_NMR = 0. sigma_Bi = 1e-4 sigma_NMR = 5e-6 # solenoid current current_PS = 9200. current_TSu = 1730. current_TSd = 1730. current_DS = 6114. sigma_current = 0. # sigma_current = 1e-4 ''' - Coordinates for now: - Hall probe: with Hall element and electronics facing "out of page" - Y points to top of card - X points to the right - Z out of page ''' # Globals for DSFM locations and probe orientations # reflector radius # counter-clockwise # Phi is w.r.t. BP up (i.e. defines Phi=0) Rs_reflect_BP = 1e-3*np.array([1450./2., 700./2., 1450./2., 700./2.]) Phis_reflect_BP = np.pi*np.array([1., 1.5, 0., 0.5]) # CHECK Rs_reflect_SP = 1e-3*np.array(4*[241./2.]) # CHECK NUMBER!! Phis_reflect_SP = np.pi/4. + np.pi*np.array([1., 1.5, 0., 0.5]) # CHECK # radius on propeller, signed by which side of the propeller Rs_small = 1e-3*np.array([0., 54., -95.,]) # CHECK SIGNS!! Rs_large = 1e-3*np.array([44., -319., 488., -656., 800.]) # coordinate orientations of Hall probes # x = 0, y = 1, z = 2 -- in HP coordinates # ATTEMPT 1 # these arrays specify which HP coordinate represents Br, Bphi, Bz ''' Coords_small = np.array([[1, 0, -2], [-1, -0, -2], [1, 0, -2], ]) # CHECK SIGNS XY! Coords_large = np.array([[-1, 0, 2], [1, -0, 2], [1, -0, 2], [1, -0, 2], [1, -0, 2], ]) ''' # ATTEMPT 2 _ = np.array([{'Bx': ['Bphi', 1.], 'By': ['Br', 1.], 'Bz': ['Bz', -1.]}, {'Bx': ['Bphi', -1.], 'By': ['Br', -1.], 'Bz': ['Bz', -1.]}, {'Bx': ['Bphi', 1.], 'By': ['Br', 1.], 'Bz': ['Bz', -1.]}, ]) Coords_SP_dict = _ _ = np.array([{'Bx': ['Bphi', 1.], 'By': ['Br', -1.], 'Bz': ['Bz', 1.]}, {'Bx': ['Bphi', -1.], 'By': ['Br', 1.], 'Bz': ['Bz', 1.]}, {'Bx': ['Bphi', -1.], 'By': ['Br', 1.], 'Bz': ['Bz', 1.]}, {'Bx': ['Bphi', -1.], 'By': ['Br', 1.], 'Bz': ['Bz', 1.]}, {'Bx': ['Bphi', -1.], 'By': ['Br', 1.], 'Bz': ['Bz', 1.]}, ]) Coords_BP_dict = _ # all probes Rs = np.concatenate([Rs_small, Rs_large]) # location label & hardware ID HP_labs = np.array(['SP1', 'SP2', 'SP3', 'BP1', 'BP2', 'BP3', 'BP4', 'BP5']) HP_IDs = np.array(['4C0000000D55C93A', '8E0000000D51483A', '6A0000000D61333A', 'C50000000D5E473A', 'DF0000000D5E803A', 'C90000000D53983A', 'FA0000000D60163A', '2F0000000D5EC73A']) # using probes 1-8 # coefficients for simple voltage model: V_i = slope * B_i + off # from real measurements (NOT MATCHED TO PROBE ID!!) # to get realistic voltages HP_V_slope = np.array([2.871e6, 2.813e6, 2.940e6, 2.973e6, 2.957e6, 2.863e6, 2.875e6, 2.831e6]) HP_V_off = np.array([-6.169e4, -6.300e4, -6.546e4, -6.136e4, -6.346e4, -6.160e4, -5.939e4, -5.737e4]) # split into big an small propeller where necessary HP_labs_SP = HP_labs[0:3] HP_labs_BP = HP_labs[3:] HP_IDs_SP = HP_IDs[0:3] HP_IDs_BP = HP_IDs[3:] HP_V_slope_SP = HP_V_slope[0:3] HP_V_slope_BP = HP_V_slope[3:] HP_V_off_SP = HP_V_off[0:3] HP_V_off_BP = HP_V_off[3:] # Define steps for DSFM. Big propeller "top" along +X defines Phi=0 # Small propeller offset by +45 deg = pi/4 rad by design Phis = np.linspace(0, 2*np.pi, 17)[:-1] Phis_SP = Phis + np.pi/4. # NMR always at the same location in XY plane NMR_Phi = np.pi/2. # probe on BP at R=-319 mm, want it in -y direction NMR_R = -319. * 1e-3 # m X_NMR = NMR_R * np.cos(NMR_Phi) Y_NMR = NMR_R * np.sin(NMR_Phi) print(f'NMR Location: x = {X_NMR:0.3f} m, y = {Y_NMR:0.3f}') # RR_BP, PP_BP = np.meshgrid(Rs_large, Phis) # RR_SP, PP_SP = np.meshgrid(Rs_small, Phis_SP) # Calculating Z locations for SP, BP, NMR END_MEAS_SP = 2980. * 1e-3 START_MEAS_SP = 13685. * 1e-3 step_Z = 0.05 # 5 cm step, for now Zs_SP = np.arange(START_MEAS_SP, END_MEAS_SP, -step_Z) delta_Z_BP_SP = -1335. * 1e-3 Zs_BP = Zs_SP - delta_Z_BP_SP delta_Z_NMR_SP = -1557.87 * 1e-3 Zs_NMR = Zs_SP - delta_Z_NMR_SP # columns to write to file # Draft: # TIMESTAMP, X_NMR, Y_NMR, Z_NMR, HP_1_#, HP_1_ID, HP_1_X, HP_1_Y, HP_1_Z, ... # HP_1_Bx_Meas, HP_1_Bx_Mu2e, HP_1_By_Meas, HP_1_By_Mu2e, HP_1_Bz_Meas, HP_1_Bz_Mu2e, # HP_1_V1, HP_1_V2, HP_1_V3, ... ALL Hall probes - 7 , 8 , 9 single_reflect_cols = ['rho', 'theta', 'z'] _ = list(np.concatenate([[f'Reflect_SP_{j}_{i}' for i in single_reflect_cols] for j in ['A', 'B', 'C', 'D']])) reflect_SP_col_list = _ _ = list(np.concatenate([[f'Reflect_BP_{j}_{i}' for i in single_reflect_cols] for j in ['A', 'B', 'C', 'D']])) reflect_BP_col_list = _ # print(reflect_SP_col_list) # print(reflect_BP_col_list) single_HP_cols = ['ID', 'X', 'Y', 'Z', 'Vx', 'Vy', 'Vz', 'Temperature', 'Bx_Meas', 'By_Meas', 'Bz_Meas', 'Br', 'Bphi', 'Bz'] HP_SP_col_list = list(np.concatenate([[f'HP_SP{j}_{i}' for i in single_HP_cols] for j in [1, 2, 3]])) HP_BP_col_list = list(np.concatenate([[f'HP_BP{j}_{i}' for i in single_HP_cols] for j in [1, 2, 3, 4, 5]])) col_list = ['TIMESTAMP', 'Mapper_Angle', 'Mapper_Z', 'X_NMR', 'Y_NMR', 'Z_NMR', 'B_NMR'] + HP_SP_col_list + HP_BP_col_list \ + reflect_BP_col_list + reflect_SP_col_list # define an empty dataframe # df_EMMA = pd.DataFrame(columns=col_list) # pick a starttime t0 = parser.parse('2021-07-21 12:00:00') # define time between steps dt_Phi = timedelta(seconds=120) # assume 2 minutes per step for azimuthal move dt_Z = timedelta(seconds=240) # 4 minutes when moving z # define an insteresting temperature scalar field throughout the DS def temp_DS(pos): return 22. - 0.1 * (pos[2] - 4.) + 1. * (pos[1]) # function to return one row for the dataframe where each row is a "step" # of EMMA def return_row(time, Z_ind, Phi_ind, ): row = {} # phi Phi = Phis[Phi_ind] Phi_BP = Phi Phi_SP = Phis_SP[Phi_ind] # time row['TIMESTAMP'] = str(time) # mapper row['Mapper_Angle'] = Phi row['Mapper_Z'] = Zs_NMR[Z_ind] # NMR row['X_NMR'] = X_NMR row['Y_NMR'] = Y_NMR row['Z_NMR'] = Zs_NMR[Z_ind] B_NMR = np.linalg.norm(DS_car([X_NMR, Y_NMR, Zs_NMR[Z_ind]])) if B_NMR < 0.7: # NMR cutoff B_NMR = 0.0 if sigma_NMR > 0.: B_NMR += np.random.normal(loc=0.0, scale=sigma_NMR) row['B_NMR'] = B_NMR # Hall probes # small propeller #print('SP') for i in range(len(HP_IDs_SP)): #print(i) pre = f'HP_{HP_labs_SP[i]}' row[f'{pre}_ID'] = HP_IDs_SP[i] # coords X_ = Rs_small[i] * np.cos(Phi_SP) Y_ = Rs_small[i] * np.sin(Phi_SP) Z_ = Zs_SP[Z_ind] row[f'{pre}_X'] = X_ row[f'{pre}_Y'] = Y_ row[f'{pre}_Z'] = Z_ # field Br, Bphi, Bz = DS_cyl([X_, Y_, Z_]) if sigma_Bi > 0.: Br += np.random.normal(loc=0.0, scale=sigma_Bi) Bphi += np.random.normal(loc=0.0, scale=sigma_Bi) Bz += np.random.normal(loc=0.0, scale=sigma_Bi) B_dict = {'Br': Br, 'Bphi': Bphi, 'Bz': Bz} Bx_ = Coords_SP_dict[i]['Bx'][1] * B_dict[Coords_SP_dict[i]['Bx'][0]] By_ = Coords_SP_dict[i]['By'][1] * B_dict[Coords_SP_dict[i]['By'][0]] Bz_ = Coords_SP_dict[i]['Bz'][1] * B_dict[Coords_SP_dict[i]['Bz'][0]] # voltages Vx_ = HP_V_off_SP[i] + HP_V_slope_SP[i] * Bx_ Vy_ = HP_V_off_SP[i] + HP_V_slope_SP[i] * By_ Vz_ = HP_V_off_SP[i] + HP_V_slope_SP[i] * Bz_ # temperature Temp_ = temp_DS([X_, Y_, Z_]) # write to row row[f'{pre}_Vx'] = int(Vx_) row[f'{pre}_Vy'] = int(Vy_) row[f'{pre}_Vz'] = int(Vz_) row[f'{pre}_Temperature'] = Temp_ row[f'{pre}_Bx_Meas'] = Bx_ row[f'{pre}_By_Meas'] = By_ row[f'{pre}_Bz_Meas'] = Bz_ row[f'{pre}_Br'] = Br row[f'{pre}_Bphi'] = Bphi row[f'{pre}_Bz'] = Bz # big propeller #print('BP') for i in range(len(HP_IDs_BP)): #print(i) pre = f'HP_{HP_labs_BP[i]}' row[f'{pre}_ID'] = HP_IDs_BP[i] # coords X_ = Rs_large[i] * np.cos(Phi_BP) Y_ = Rs_large[i] * np.sin(Phi_BP) Z_ = Zs_BP[Z_ind] row[f'{pre}_X'] = X_ row[f'{pre}_Y'] = Y_ row[f'{pre}_Z'] = Z_ # field Br, Bphi, Bz = DS_cyl([X_, Y_, Z_]) if sigma_Bi > 0.: Br += np.random.normal(loc=0.0, scale=sigma_Bi) Bphi += np.random.normal(loc=0.0, scale=sigma_Bi) Bz += np.random.normal(loc=0.0, scale=sigma_Bi) B_dict = {'Br': Br, 'Bphi': Bphi, 'Bz': Bz} Bx_ = Coords_BP_dict[i]['Bx'][1] * B_dict[Coords_BP_dict[i]['Bx'][0]] By_ = Coords_BP_dict[i]['By'][1] * B_dict[Coords_BP_dict[i]['By'][0]] Bz_ = Coords_BP_dict[i]['Bz'][1] * B_dict[Coords_BP_dict[i]['Bz'][0]] # voltages Vx_ = HP_V_off_BP[i] + HP_V_slope_BP[i] * Bx_ Vy_ = HP_V_off_BP[i] + HP_V_slope_BP[i] * By_ Vz_ = HP_V_off_BP[i] + HP_V_slope_BP[i] * Bz_ # temperature Temp_ = temp_DS([X_, Y_, Z_]) # write to row row[f'{pre}_Vx'] = int(Vx_) row[f'{pre}_Vy'] = int(Vy_) row[f'{pre}_Vz'] = int(Vz_) row[f'{pre}_Temperature'] = Temp_ row[f'{pre}_Bx_Meas'] = Bx_ row[f'{pre}_By_Meas'] = By_ row[f'{pre}_Bz_Meas'] = Bz_ row[f'{pre}_Br'] = Br row[f'{pre}_Bphi'] = Bphi row[f'{pre}_Bz'] = Bz # reflectors ref_labs = ['A', 'B', 'C', 'D'] base_width = 75. # [mm], ESTIMATE!! CHECK BASE WIDTH # BP for i, lab in enumerate(ref_labs): r = Rs_reflect_BP[i]*1e3 t = Phi + Phis_reflect_BP[i] z = Zs_NMR[Z_ind]*1e3 x = r * np.cos(t) y = r * np.sin(t) if (x > -base_width/2) and (x < base_width/2) and (y < 0): r = np.nan t = np.nan z = np.nan row[f'Reflect_BP_{lab}_rho'] = r # [mm] in TDMS row[f'Reflect_BP_{lab}_theta'] = t # [rad] in TDMS row[f'Reflect_BP_{lab}_z'] = z # [mm] in TDMS # SP for i, lab in enumerate(ref_labs): r = Rs_reflect_SP[i]*1e3 t = Phi + Phis_reflect_SP[i] z = Zs_SP[Z_ind]*1e3 x = r * np.cos(t) y = r * np.sin(t) if (x > -base_width/2) and (x < base_width/2) and (y < 0): r = np.nan t = np.nan z = np.nan row[f'Reflect_SP_{lab}_rho'] = r # [mm] in TDMS row[f'Reflect_SP_{lab}_theta'] = t # [rad] in TDMS row[f'Reflect_SP_{lab}_z'] = z # [mm] in TDMS # current if sigma_current > 0.: c_PS = current_PS + np.random.normal(loc=0.0, scale=sigma_current) c_TSu = current_TSu + np.random.normal(loc=0.0, scale=sigma_current) c_TSd = current_TSd + np.random.normal(loc=0.0, scale=sigma_current) c_DS = current_DS + np.random.normal(loc=0.0, scale=sigma_current) else: c_PS = current_PS c_TSu = current_TSu c_TSd = current_TSd c_DS = current_DS row['PS_Current'] = c_PS row['TSu_Current'] = c_TSu row['TSd_Current'] = c_TSd row['DS_Current'] = c_DS return row if __name__ == '__main__': # generate dataframe looping through Z and Phi steps rows_list = [] t = t0 for Z_ind in range(len(Zs_NMR)): # t += dt_Z for Phi_ind in range(len(Phis)): row = return_row(t, Z_ind, Phi_ind) rows_list.append(row) t += dt_Phi t += dt_Z df_EMMA =
pd.DataFrame(rows_list)
pandas.DataFrame
from typing import Tuple, Sequence, Mapping, Optional, Union try: from typing import Literal except ImportError: from typing_extensions import Literal from anndata import AnnData from copy import copy import pandas as pd import ntpath import numpy as np import matplotlib.pyplot as plt import scanpy as sc import logging import seaborn as sns import warnings # output scanpy logs logging.basicConfig(level=logging.INFO) sc.settings.verbosity = 3 # don´t show this numpy warning warnings.filterwarnings("ignore", message="All-NaN slice encountered") # basic plotting settings plt.rcParams["xtick.labelsize"] = 8 plt.rcParams["ytick.labelsize"] = 8 plt.rcParams["font.size"] = 8 plt.rcParams["font.family"] = "sans-serif" plt.rcParams["font.sans-serif"] = "Arial" plt.rcParams["figure.figsize"] = 7.2, 4.45 plt.rcParams["figure.titlesize"] = 9 plt.rcParams["figure.dpi"] = 120 plt.rcParams["axes.titlesize"] = 9 plt.rcParams["axes.labelsize"] = 8 plt.rcParams["axes.axisbelow"] = True plt.rcParams["axes.linewidth"] = 0.5 plt.rcParams["lines.linewidth"] = 0.7 plt.rcParams["lines.markersize"] = 2 plt.rcParams["legend.fontsize"] = 8 plt.rcParams["boxplot.flierprops.marker"] = "." plt.rcParams["boxplot.flierprops.markerfacecolor"] = "k" plt.rcParams["boxplot.flierprops.markersize"] = 2 plt.rcParams["pdf.fonttype"] = 42 # to make pdf text available for illustrator plt.rcParams["ps.fonttype"] = 42 # to make pdf text available for illustrator figwd = 7.2 # standard figure width cellsize = 20 # size to plot cells wspace = 1 # space between scanpy plots to make room for legends hspace = 0.5 # space between scanpy plots to make room for legends def create_meta_data(input_dir: str, output_dir: str): """Create a meta data table from PD output and mapping tables. Requires the following tables in the `input_dir`: * PD Protein * PD InputFiles * file_sample_mapping * plate_layout_mapping * sort_layout * sample_layout * facs_data See the example files to understand the structure of these tables. Alternatively, create meta data on you own and use :func:`~sceptre.load_dataset` Parameters ---------- input_dir The path to the input directory. output_dir The path to the output directory. Returns ------- :obj:`None` Saves the meta table in `output_dir`. """ import os # PD tables for file in os.listdir(input_dir): if "_Proteins.txt" in file: prot = pd.read_table(input_dir + file, low_memory=False) if "_InputFiles.txt" in file: files = pd.read_table(input_dir + file) files["File Name"] = files["File Name"].apply(lambda x: ntpath.basename(x)) # mapping tables file_sample_mapping = pd.read_table("{}file_sample_mapping.txt".format(input_dir)) plate_layout_mapping = pd.read_table( "{}plate_layout_mapping.txt".format(input_dir) ).set_index("Plate") # plate data tables plate_data = {k: {} for k in plate_layout_mapping.index.unique()} for plate in plate_data.keys(): plate_data[plate]["sort_layout"] = pd.read_table( "{}{}".format(input_dir, plate_layout_mapping.loc[plate, "Sort Layout"]), index_col=0, ) plate_data[plate]["label_layout"] = pd.read_table( "{}{}".format(input_dir, plate_layout_mapping.loc[plate, "Label Layout"]), index_col=0, ).fillna("") plate_data[plate]["sample_layout"] = pd.read_table( "{}{}".format(input_dir, plate_layout_mapping.loc[plate, "Sample Layout"]), index_col=0, ) plate_data[plate]["facs_data"] = pd.read_table( "{}{}".format(input_dir, plate_layout_mapping.loc[plate, "Facs Data"]) ) plate_data[plate]["facs_data"] = plate_data[plate]["facs_data"].drop( ["Row", "Column"], axis=1 ) plate_data[plate]["facs_data"] = plate_data[plate]["facs_data"].set_index( "Well" ) # create cell metadata # add each channel from each file to the rows meta = pd.DataFrame( [ x.split(" ")[2:] for x in prot.columns[prot.columns.str.contains("Abundance")] ], columns=["File ID", "Channel"], ) # add the file name meta = meta.merge( files.set_index("File ID")["File Name"], left_on="File ID", right_index=True, validate="many_to_one", ) # add the plate and sample _ = len(meta) meta = meta.merge(file_sample_mapping, on="File Name", validate="many_to_one") if len(meta) < _: raise ValueError("Error in file_sample_mapping.txt") # add the well information via the sample_layout and label_layout for each plate for i in meta.index: p, s, c = meta.loc[i, ["Plate", "Sample", "Channel"]] p_d = plate_data[p] well = ( p_d["sample_layout"][ (p_d["sample_layout"] == s) & (p_d["label_layout"] == c) ] .stack() .index.tolist() ) if len(well) > 1: raise ValueError( "Error in plate layout data: Plate {}, Sample {}, Channel {}".format( p, s, c ) ) elif len(well) == 0: row, col, well = pd.NA, pd.NA, pd.NA else: row = well[0][0] col = well[0][1] well = "".join(well[0]) meta.loc[i, ["Row", "Column", "Well"]] = row, col, well # use the sort layout to map the sorted population and add the facs data if not pd.isna(well): meta.loc[i, "Sorted Population"] = plate_data[p]["sort_layout"].loc[ row, col ] # add the facs data # meta.loc[i] = meta.loc[i].append(plate_data[p]['facs_data'].loc[well, :]) else: meta.loc[i, "Sorted Population"] = pd.NA # add the facs data for each plate _ = [] for p in meta["Plate"].unique(): _.append( meta.loc[meta["Plate"] == p].merge( plate_data[p]["facs_data"], left_on="Well", right_index=True, how="left", ) ) meta = pd.concat(_) meta = meta.rename(columns={"Population": "Gated Population"}) meta.to_csv(output_dir + "meta.txt", sep="\t", index=False) def load_dataset(proteins: str, psms: str, msms: str, files: str, meta: str): """Load the dataset from specified paths. Parameters ---------- proteins The path to the PD protein table. psms The path to the PD PSMs table. msms The path to the PD MSMS table. files The path to the PD InputFiles table. meta The path to the Meta table. Returns ------- A dict containing all required tables. """ prot = pd.read_table(proteins, low_memory=False) # To use the Gene Symbol as index: # Set nan Gene Symbol to protein accession # and if Gene Symbol is not unique, add the protein accession to make duplicates unique. nans = prot["Gene Symbol"].isna() for i in nans.index: if nans[i]: prot.loc[i, "Gene Symbol"] = prot.loc[i, "Accession"] duplicates = prot["Gene Symbol"].duplicated(keep=False) for i in duplicates.index: if duplicates[i]: prot.loc[i, "Gene Symbol"] = ( prot.loc[i, "Gene Symbol"] + "_" + prot.loc[i, "Accession"] ) psms =
pd.read_table(psms, low_memory=False)
pandas.read_table
import collections import os import sys import joblib import numpy as np import pandas as pd import torch from sklearn.ensemble import GradientBoostingClassifier, RandomForestClassifier from sklearn.linear_model import LogisticRegression from sklearn.metrics import roc_auc_score from sklearn.model_selection import train_test_split from sklearn.naive_bayes import GaussianNB from sklearn.neural_network import MLPClassifier from sklearn.preprocessing import normalize from torch.utils.data import DataLoader, DistributedSampler sys.path.append("fltk/synthpriv/synthetic") from fltk.datasets.distributed.dataset import DistDataset from fltk.synthpriv.datasets.base import DataframeDataset from fltk.synthpriv.synthetic.models import dp_wgan, pate_gan, ron_gauss from fltk.synthpriv.synthetic.models.IMLE import imle from fltk.synthpriv.synthetic.models.Private_PGM import private_pgm # good values for Adult dataset from borealis repo # model : {epsilon : sigma} DEFAULTS = { "imle": { 2: 0.8, 5: 0.7, 8: 0.6, }, "pate-gan": { 2: 1e-4, 5: 3e-4, 8: 3e-4, }, "dp-wgan": { 2: 1.0, 5: 0.9, 8: 0.8, }, } class SyntheticDataset(DistDataset): def __init__(self, real_dataset, args, device, id, model="imle", sigma=0.6, target_epsilon=8): super().__init__(args) self.real_dataset = real_dataset cache_path = f"data/IMLE_synthetic_{real_dataset.__class__.__name__}_eps={target_epsilon}_sig={sigma}_{id}.pkl" if not os.path.exists(cache_path): try: with torch.cuda.device(device): self.fit(model, sigma, target_epsilon) except Exception as e: print(e) exit(1) joblib.dump((self.train_df, self.train_labels, self.test_df, self.test_labels), cache_path) else: self.train_df, self.train_labels, self.test_df, self.test_labels = joblib.load(cache_path) self.train_df = np.round(self.train_df) self.train_labels = np.round(self.train_labels) self.test_df = self.real_dataset.test_df self.test_labels = self.real_dataset.test_labels for col in self.real_dataset.train_df.columns: print(col) print(np.unique(self.real_dataset.train_df[col])) print(np.unique(self.train_df[col])) try: self.name = "Synthetic" + real_dataset.__class__.__name__ self.train_dataset = DataframeDataset(self.train_df, self.train_labels) self.test_dataset = DataframeDataset(self.test_df, self.test_labels) self.n_workers = 16 self.train_sampler = DistributedSampler(self.train_dataset, num_replicas=1, rank=0, shuffle=True) self.test_sampler = DistributedSampler(self.test_dataset, num_replicas=1, rank=0, shuffle=True) self.train_loader = DataLoader( self.train_dataset, batch_size=self.args.batch_size, sampler=self.train_sampler, num_workers=self.n_workers, prefetch_factor=int(self.args.batch_size / self.n_workers), pin_memory=True, ) self.test_loader = DataLoader( self.test_dataset, batch_size=self.args.batch_size, sampler=self.test_sampler, num_workers=self.n_workers, prefetch_factor=int(self.args.batch_size / self.n_workers), pin_memory=True, ) except Exception as e: print(e) exit(1) def fit(self, model_name, sigma, target_epsilon): print(f"Fitting synthetic {self.real_dataset.__class__.__name__}") cols = list(self.real_dataset.train_df.columns) + ["income"] train =
pd.DataFrame(columns=cols)
pandas.DataFrame