prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
import argparse import os import pandas as pd from af_dataset_builder import AFDatasetBuilder import plots import utils CLASS_NAMES = ['normal', 'af', 'other', 'noise'] SEED = 3 def summarize_metrics(models_path, test_set_path, target_record_len, batch_size, model_name=None, output_path=None): all_metrics =
pd.DataFrame()
pandas.DataFrame
import bs4 as bs import urllib.request import pandas as pd import random import pathlib import progressbar import numpy as np def schedule(names): schedule = [['YourScore', "OppScore","FGA","FGP","3PA","3PP","FTA","FTP","TRB","STL","BLK","TOV","OppFGA","OppFGP","Opp3PA","Opp3PP","OppFTA","OppFTP","OppTRB","OppSTL","OppBLK","OppTOV"]] count = 1 bar = progressbar.ProgressBar(max_value=progressbar.UnknownLength) for name in names: bar.update(count) try: url = 'https://www.sports-reference.com/cbb/schools/'+name+'/2020-gamelogs.html' source = urllib.request.urlopen(url).read() soup = bs.BeautifulSoup(source,'lxml') content = soup.find("div", {"id":"content"}) all_sgl = content.find("div", {"id":"all_sgl-basic"}) table_container_outer = all_sgl.find("div", {"class":"table_outer_container"}) table_container = table_container_outer.find("div", {"id":"div_sgl-basic"}) table = table_container.find("table", {"id":"sgl-basic"}) tbody = table.find("tbody") trs = tbody.find_all("tr") count = count + 1 for tr in trs: tds = tr.find_all("td") k = random.randint(0, 1) otherName = tds[2].text otherName = otherName.replace("&", "") otherName = otherName.replace(" ", "-", 5) otherName = otherName.replace(".", "") # decide on k once if k == 1: if tds[1].text == "": schedule.append([name, tds[4].text,otherName,tds[5].text,tds[7].text,tds[8].text,tds[10].text,tds[11].text,tds[13].text,tds[14].text,tds[16].text,tds[18].text,tds[19].text,tds[20].text, 1, tds[24].text,tds[25].text,tds[27].text,tds[28].text,tds[30].text,tds[31].text,tds[33].text,tds[35].text,tds[36].text,tds[37].text, 0]) else: schedule.append([name,tds[4].text,otherName,tds[5].text,tds[7].text,tds[8].text,tds[10].text,tds[11].text,tds[13].text,tds[14].text,tds[16].text,tds[18].text,tds[19].text,tds[20].text, 0 ,tds[24].text,tds[25].text,tds[27].text,tds[28].text,tds[30].text,tds[31].text,tds[33].text,tds[35].text,tds[36].text,tds[37].text, 1]) else: if tds[1].text == "": schedule.append([otherName,tds[5].text,name,tds[4].text,tds[24].text,tds[25].text,tds[27].text,tds[28].text,tds[30].text,tds[31].text,tds[33].text,tds[35].text,tds[36].text,tds[37].text, 0 ,tds[7].text,tds[8].text,tds[10].text,tds[11].text,tds[13].text,tds[14].text,tds[16].text,tds[18].text,tds[19].text,tds[20].text, 1]) else: schedule.append([otherName,tds[5].text,name,tds[4].text,tds[24].text,tds[25].text,tds[27].text,tds[28].text,tds[30].text,tds[31].text,tds[33].text,tds[35].text,tds[36].text,tds[37].text, 1,tds[7].text,tds[8].text,tds[10].text,tds[11].text,tds[13].text,tds[14].text,tds[16].text,tds[18].text,tds[19].text,tds[20].text, 0]) except AttributeError as e: #print(e) count = count + 1 except IndexError as i: #print(i) count = count + 1 return schedule def scheduleStart(path): url = str(path) + '/csv/test.csv' names = ["teamName","GP","FGA","FGP","3PA","3PP","FTA","FTP","TRB","STL","BLK","TOV","Home",'Away'] data =
pd.read_csv(url, names=names,encoding='utf-8')
pandas.read_csv
import argparse import pandas as pd import os from random import shuffle def parse_args(): parser = argparse.ArgumentParser(description="Takes the meta_data, l4, and l4_no_pca files for the train, val and test sets " "of students and returns them in libsvc format.") parser.add_argument("--in_path", dest="in_path", help="Path to folder with meta_data, l4 and l4_no_pca", type=str, required=True) parser.add_argument("--test", dest="test", help="Id of VP for test", type=int, required=True) parser.add_argument("--train", dest="train", help="String of train vp ids, comma separated: 1,12,15,9,2", type=str, required=True) parser.add_argument("--val", dest="val", help="String of val vp ids, comma separated: 1,12,15,9,2", type=str, required=True) parser.add_argument("--out_path", dest="out_path", help="Path for outputting the formatted files.", type=str, required=True) return parser.parse_args() def to_libsvm_format(df: pd.DataFrame, labels: pd.DataFrame): out = "" for idx, row in df.iterrows(): out += "{} ".format(int(labels.iloc[idx].values[0])) row_list = row.values.tolist() for i in range(len(row_list)): out += "{}:{} ".format(i+1, row_list[i]) out += "\n" return out # args = parse_args() # test = "{}.csv".format(args.test) # vals = args.val.split(",") # val = ["{}.csv".format(x) for x in vals] # trains = args.train.split(",") # train = ["{}.csv".format(x) for x in trains] in_path = "../../source/train_val_test_sets/" # args.in_path out_path = "../../source/libsvm_train_test_val/" # args.out_path out_df = pd.DataFrame([], columns=["test", "val", "train"]) files = os.listdir(in_path + "meta_data/") count = 1 for file in files: print("{} {}/{}".format(file, count, len(files))) count += 1 test = file copy = files.copy() copy.remove(test) shuffle(copy) train = copy[:9] val = copy[9:] out_df = out_df.append(pd.DataFrame([[test[:-4], str([x[:-4] for x in val])[1:-1], str([x[:-4] for x in train])[1:-1]]], columns=out_df.columns)) test_label_df = pd.read_csv("{}labels/{}".format(in_path, test)) test_hp_df = pd.read_csv("{}hp/{}".format(in_path, test)) test_l4_df = pd.read_csv("{}l4/{}".format(in_path, test)) test_l4_no_pca_df = pd.read_csv("{}l4_no_pca/{}".format(in_path, test)) val_label_df = pd.DataFrame([]) val_hp_df = pd.DataFrame([]) val_l4_df = pd.DataFrame([]) val_l4_no_pca_df = pd.DataFrame([]) for vvp in val: val_label_df = val_label_df.append(pd.read_csv("{}labels/{}".format(in_path, vvp))) val_hp_df = val_hp_df.append(pd.read_csv("{}hp/{}".format(in_path, vvp))) val_l4_df = val_l4_df.append(pd.read_csv("{}l4/{}".format(in_path, vvp))) val_l4_no_pca_df = val_l4_no_pca_df.append(pd.read_csv("{}l4_no_pca/{}".format(in_path, vvp))) train_label_df =
pd.DataFrame([])
pandas.DataFrame
import climetlab as cml from . import DATA_VERSION, PATTERN_GRIB, PATTERN_NCDF class Info: def __init__(self, dataset): import os import yaml self.dataset = dataset filename = self.dataset.replace("-", "_") + ".yaml" path = os.path.join(os.path.dirname(os.path.abspath(__file__)), filename) with open(path) as f: self.config = yaml.unsafe_load(f.read()) def _get_cf_name(self, param): return cml.utils.conventions.normalise_string(param, convention="cf") # TODO add _ def get_category_param(self, param): if param in "2t/sst/sm20/sm100/st20/st100/ci/rsn/tcc/tcw".split("/"): return "daily_average" if param in "sp/msl/ttr/tp".split("/"): return "instantaneous" if param in "lsm".split("/"): return "instantaneous_only_control" if param in "u/v/gh/t".split("/"): return "3d" if param in "q".split("/"): return "3dbis" raise NotImplementedError(param) def _get_config_keys(self): return self.config.keys() def _get_s3path_grib( self, origin, fctype, parameter, date, url="s3://", version=DATA_VERSION ): return PATTERN_GRIB.format( url=url, data="s2s-ai-challenge/data", dataset=self.dataset, fctype=fctype, origin=origin, version=version, parameter=parameter, date=date, ) def _get_s3path_netcdf( self, origin, fctype, parameter, date, url="s3://", version=DATA_VERSION ): return PATTERN_NCDF.format( url=url, data="s2s-ai-challenge/data", dataset=self.dataset, fctype=fctype, origin=origin, version=version, parameter=parameter, date=date, ) def _get_config(self, key, origin, fctype, date=None, param=None): origin_fctype = f"{origin}-{fctype}" import pandas as pd if key == "hdate": if origin == "ncep" and fctype == "hindcast": return pd.date_range(end=date, periods=12, freq=pd.DateOffset(years=1)) if key == "marsdate": if origin == "ncep" and fctype == "hindcast": only_one_date = "2011-03-01" return
pd.to_datetime(only_one_date)
pandas.to_datetime
import pandas as pd import numpy as np import math from openpyxl import load_workbook # Dictionary of expiry dates hard coded as historical expiry dates are not readily available expdct = {'10APR20': 1586505600000, '17APR20': 1587110400000, '24APR20': 1587715200000 } # Arbitrary start time rando_start = 1586433719209 path = ("path to formatted data using groupbyexp") data_destination = ("data destination") columnsToDrop = ['underlying_price', 'timestamp', 'state', 'settlement_price', 'open_interest', 'min_price', 'max_price', 'mark_price', 'mark_iv', 'last_price', 'interest_rate', 'instrument_name', 'index_price', 'change_id', 'bids', 'bid_iv', 'best_bid_amount', 'best_ask_amount', 'asks', 'ask_iv', '24h_high', '24h_low', '24h_vol', 'theta', 'delta', 'rho', 'gamma', 'vega'] def getSigma(df, timeStamp, optionExpDate, columnsToDrop): # get the time to expiration in minutes expTime = expdct[optionExpDate] N = (expTime - timeStamp)/(1000 * 60) T = N/525600 # formatting CP = df['instrument_name'].str df['CP'] = CP[-1:] df['strike'] = CP.extract('([0-9][0-9][0-9]+)').astype(int) df = df.drop(columns=columnsToDrop) df = df.sort_values(['CP', 'strike']).reset_index() df['mid'] = (df['best_bid_price'] + df['best_ask_price']) / 2 dfTemp = df.copy() # calculating F and K dfTemp.set_index(['CP', 'strike'], inplace=True) dfTemp = dfTemp[dfTemp['best_bid_price'] > 0]['mid'].unstack('CP') dfTemp['diff'] = np.absolute(np.array(dfTemp['C']) - np.array((dfTemp['P']))) # Might potentially get IndexError on the next line. I think its when there is no minimum. ToDo strike = dfTemp.index[np.where(dfTemp['diff'] == np.amin(dfTemp['diff']))[0][0]] # Have to check if this multiplier is needed eRT = math.exp(N * 0.001) F = strike + (eRT * np.amin(dfTemp['diff'])) dfTemp = dfTemp[dfTemp.index < F] K = dfTemp.index[dfTemp.shape[0] - 1] # selecting out of money option P = df[df['CP'] == 'P'] strike_index = int(np.where((P['strike'] == K) == True)[0]) oomPut = (P['best_bid_price'] != P['best_bid_price']).tolist() putCutoff = 0 for i in range(strike_index): if(oomPut[i] == oomPut[i+1] and oomPut[i] == True): putCutoff = i+1 continue P = P.iloc[putCutoff+1:] keep = np.array(P['strike'] > K-1) + np.array(P['best_bid_price'] != 0) P = P[keep].reset_index() C = df[df['CP'] == 'C'] oomCall = (C['best_bid_price'] != C['best_bid_price']).tolist() callCutOff = C.shape[0] for i in range((len(oomCall)-1),strike_index,-1): if(oomCall[i] == oomCall[i-1] and oomPut[i] == True): callCutOff = i-1 continue C = C.iloc[:callCutOff] keep = np.array(C['strike'] < K) + np.array(C['best_bid_price'] != 0) C = C[keep].reset_index() P_put = int(np.where((P['strike'] == K) == True)[0]) # TypeError: only size-1 arrays can be converted to Python scalars. Not sure why ToDo C_call = int(np.where((C['strike'] == K) == True)[0]) mid = P['mid'][:P_put].tolist() + [(P['mid'][P_put] + C['mid'][C_call])/2] + C['mid'][C_call+1:].tolist() df_mid = pd.merge(P, C, on='strike', how='inner') # step 2 formula part strike = df_mid['strike'].tolist() sum = 0 for i in range(len(strike)): if i == 0: delta_strike = strike[i+1] - strike[i] elif i == len(strike)-1: delta_strike = strike[i] - strike[i-1] else: delta_strike = (strike[i-1] + strike[i+1])/2 sum += (delta_strike) * eRT * mid[i] sigma = (2 * sum - ((F/K) - 1)**2) / (T * (F**2)) return N, sigma def calculateVix(N1, sum1, N2, sum2): try: intermediate = ((N1 * sum1 * ((N2 - 10080)/(N2 - N1))) + (N2 * sum2 * ((10080 - N1)/(N2 - N1)))) * (1/10080) return 100 * math.sqrt(intermediate) except ZeroDivisionError: return 0 def closest(timestamp, path, nextDate, i): #Finding the timestamp that is closest to the 15 minute interval we use smallestDiff = math.inf while True: t = int(mean(list(pd.read_csv(path + "//" + str(nextDate) + "_" + str(i) + ".csv")['timestamp']))) diff = abs(timestamp - t) if diff > smallestDiff: return i - 1 else: smallestDiff = diff i += 1 def mean(lst): # Find the mean of a list. Needed to create my own implementation as there is a stray string in one of the options # that needs to be handled acc = 0 lgth = len(lst) for num in lst: try: acc += int(num) except ValueError: lgth -= 1 return acc/len(lst) dates = list(expdct.keys()) dateIndex = 0 counter1 = closest(rando_start, path, dates[0],0) counter2 = closest(rando_start, path, dates[1],0) time = rando_start lst = [] timelst = [] while True: try: option1 = path + "//" + str(dates[dateIndex]) + "_" + str(counter1) + ".csv" option2 = path + "//" + str(dates[dateIndex+1]) + "_" + str(counter2) + ".csv" df1 = pd.read_csv(option1).replace(0, np.nan) N1, sum1 = getSigma(df1, time, dates[dateIndex], columnsToDrop) df2 = pd.read_csv(option2).replace(0, np.nan) N2, sum2 = getSigma(df2, time, dates[dateIndex+1], columnsToDrop) y = calculateVix(N1, sum1, N2, sum2) # IndexError from line 48, TypeError from line 79 except (IndexError, TypeError): y = np.nan lst += [y] timelst += [time] time += 900000 try: counter1 = closest(time, path, dates[dateIndex], counter1+1) counter2 = closest(time, path, dates[dateIndex+1], counter2+1) except FileNotFoundError: # FileNotFoundError is thrown when an option expires and we overshoot the index range. # Thus we change the expiry dates counter1 = counter2 option1 = option2 if dateIndex + 2 >= len(dates): break else: counter2 = closest(time, path, dates[dateIndex+2], 0) dateIndex += 1 # writing as xlsx file data = pd.DataFrame({'timeStamp':timelst, 'Vix': lst}) book = load_workbook(data_destination) writer =
pd.ExcelWriter(data_destination, engine="openpyxl", mode="a")
pandas.ExcelWriter
""" This script aggregates zugdata on a daily basis and uploads it in /live/aggdata """ import os import re import pandas as pd from datetime import datetime, date, timedelta # compatibility with ipython #os.chdir(os.path.dirname(__file__)) import json import boto3 from pathlib import Path from coords_to_kreis import coords_convert date = date.today() - timedelta(days = 4) # connect to aws date.weekday() client_s3 = boto3.client("s3") s3 = boto3.resource('s3') content_object = s3.Object("sdd-s3-basebucket", "zugdaten/{}/{}/{}/zugdaten.json".format(str(date.year).zfill(4), str(date.month).zfill(2), str(date.day).zfill(2))) file_content = content_object.get()['Body'].read().decode('utf-8') json_content = json.loads(file_content) df =
pd.DataFrame(json_content)
pandas.DataFrame
from functools import lru_cache import datetime from typing import Tuple, List, Callable, NamedTuple from collections import namedtuple import sqlalchemy import pandas as pd def get_securities(): return pd.read_sql('securities', con=sqlalchemy.create_engine('sqlite:///../data/jq.db')) @lru_cache(maxsize=1) def get_profit_forecast(today: str): assert today is not None # 这个参数是为了cache需要,只要在一个日子中,就不需要重复从数据库拿数据 df = pd.read_sql('profit_forecast', con=sqlalchemy.create_engine('sqlite:///../data/em1.db'))\ .set_index('code')\ .drop('index', axis=1) return df[['eps_2019', 'eps_2020', 'eps_2021']].apply(pd.to_numeric, errors='coerce', downcast='float') @lru_cache(maxsize=1) def get_indicator(year: str = '2018'): assert year == '2018' indicator: pd.DataFrame = pd.read_sql('indicator2018', con=sqlalchemy.create_engine('sqlite:///../data/ts.db')) indicator['ts_code'] = indicator['ts_code'].map(lambda x: x[:6]) return indicator.set_index('ts_code')\ .drop('index', axis=1) def _today() -> str: return datetime.datetime.now().strftime("%Y-%m-%d") @lru_cache(maxsize=1) def get_financial_indicator(today: str = _today()) -> pd.DataFrame: """ get the tushare financial indicator from ts.db That is a table with ts_code, end_date and grossprofit_margin column Parameters ---------- today : str today这个参数是为了cache需要,只要在一个日子中,就不需要重复从数据库拿数据 Returns ------- table : DataFrame 剔除了毛利率异常的数据(grossprofit_margin<=0 or grossprofit_margin>=100) 按ts_code、end_date字典序排序 """ return pd.read_sql('SELECT ts_code, end_date, grossprofit_margin FROM financial_indicator \ WHERE 0 <= grossprofit_margin and grossprofit_margin <= 100\ ORDER BY ts_code, end_date', con=sqlalchemy.create_engine('sqlite:///../../data/ts.db'))\ .set_index(['ts_code', 'end_date']) @lru_cache(maxsize=1) def get_ts_statement(name: str, today: str = _today()) -> pd.DataFrame: """ get the statement from ts.db Parameters ---------- name: str statement name, for example, 'balancesheet' today : str today这个参数是为了cache需要,只要在一个日子中,就不需要重复从数据库拿数据 Returns ------- table : DataFrame """ return pd.read_sql(f'SELECT * FROM {name}', con=sqlalchemy.create_engine('sqlite:///../../data/ts.db'))\ .set_index(['ts_code', 'end_date']) def get_financial_indicator_by_code(code: str) -> pd.DataFrame: """ 获取某个公司最近数年的财务指标 输入假设: code 符合tushare要求的上市公司代码 输出规定: 列名同tushare的财务指标表格,包含了code的所有数据 """ return get_financial_indicator().loc[code] def save_profitability_index_to_db(data: List[Tuple[str, float, int, float, int]]) -> None: """ 把各个公司代码、盈利增长指标、盈利增长百分位、盈利稳定指标、盈利稳定百分位等信息保存到数据库 :param data: list of tuple 元组中第一项为公司代码,以后依次为ms, ms rank,mg,mg rank :return: None """ p =
pd.DataFrame(data, columns=['ts_code', 'mg', 'mg_rank', 'ms', 'ms_rank'])
pandas.DataFrame
# %% import os import pandas as pd import numpy as np import threading import time base_dir = os.getcwd() # %% # 初始化表头 header = ['user', 'n_op', 'n_trans', 'op_type_0', 'op_type_1', 'op_type_2', 'op_type_3', 'op_type_4', 'op_type_5', 'op_type_6', 'op_type_7', 'op_type_8', 'op_type_9', 'op_type_perc', 'op_type_std', 'op_type_n', 'op_mode_0', 'op_mode_1', 'op_mode_2', 'op_mode_3', 'op_mode_4', 'op_mode_5', 'op_mode_6', 'op_mode_7', 'op_mode_8', 'op_mode_9', 'op_mode_perc', 'op_mode_std', 'op_mode_n', 'op_device_perc', 'op_device_std', 'op_device_nan_perc', 'op_device_n', 'op_ip_perc', 'op_ip_std', 'op_ip_nan_perc', 'op_ip_n', 'op_net_type_0', 'op_net_type_1', 'op_net_type_2', 'op_net_type_3', 'op_net_type_perc', 'op_net_type_std', 'op_net_type_nan_perc', 'op_channel_0', 'op_channel_1', 'op_channel_2', 'op_channel_3', 'op_channel_4', 'op_channel_perc', 'op_channel_std', 'op_channel_n', 'op_ip_3_perc', 'op_ip_3_std', 'op_ip_3_nan_perc', 'op_ip_3_n', 'op_ip_3_ch_freq', 'op_ip_48h_n', 'op_device_48h_n', 'op_48h_n', 'trans_platform_0', 'trans_platform_1', 'trans_platform_2', 'trans_platform_3', 'trans_platform_4', 'trans_platform_5', 'trans_platform_perc', 'trans_platform_std', 'trans_platform_n', 'trans_tunnel_in_0', 'trans_tunnel_in_1', 'trans_tunnel_in_2', 'trans_tunnel_in_3', 'trans_tunnel_in_4', 'trans_tunnel_in_5', 'trans_tunnel_in_perc', 'trans_tunnel_in_std', 'trans_tunnel_in_n', 'trans_tunnel_in_nan_perc', 'trans_tunnel_out_0', 'trans_tunnel_out_1', 'trans_tunnel_out_2', 'trans_tunnel_out_3', 'trans_tunnel_out_perc', 'trans_tunnel_out_std', 'trans_tunnel_n', 'trans_amount_max', 'trans_amount_avg', 'trans_amount_std', 'trans_type1_0', 'trans_type1_1', 'trans_type1_2', 'trans_type1_3', 'trans_type1_4', 'trans_type1_perc', 'trans_type1_std', 'trans_ip_perc', 'trans_ip_std', 'trans_ip_nan_perc', 'trans_ip_n', 'trans_type2_0', 'trans_type2_1', 'trans_type2_2', 'trans_type2_3', 'trans_type2_4', 'trans_type2_perc', 'trans_type2_std', 'trans_ip_3_perc', 'trans_ip_3_std', 'trans_ip_3_nan_perc', 'trans_ip_3_n', 'trans_ip_3_ch_freq', 'trans_amount_48h_n', 'trans_48h_n', 'trans_platform_48h_n', 'trans_ip_48h_n'] print(len(header)) # %% feature_train = pd.DataFrame(columns=header) feature_test_a = pd.DataFrame(columns=header) feature_test_b = pd.DataFrame(columns=header) train_base_df = pd.read_csv(base_dir + '/dataset/dataset2/trainset/train_base.csv') train_op_df = pd.read_csv(base_dir + '/dataset/dataset2/trainset/train_op.csv') train_trans_df = pd.read_csv(base_dir + '/dataset/dataset2/trainset/train_trans.csv') test_a_base_df = pd.read_csv(base_dir + '/dataset/dataset2/testset/test_a_base.csv') test_a_op_df = pd.read_csv(base_dir + '/dataset/dataset2/testset/test_a_op.csv') test_a_trans_df = pd.read_csv(base_dir + '/dataset/dataset2/testset/test_a_trans.csv') test_b_base_df = pd.read_csv(base_dir + '/dataset/dataset2/testset/test_b_base.csv') test_b_op_df = pd.read_csv(base_dir + '/dataset/dataset2/testset/test_b_op.csv') test_b_trans_df = pd.read_csv(base_dir + '/dataset/dataset2/testset/test_b_trans.csv') n_train = len(train_base_df) n_test_a = len(test_a_base_df) n_test_b = len(test_b_base_df) # %% # load encoder op_type = pd.read_csv(base_dir + '/dataset/dataset2/encoders/enc_op_type.csv') mp_op_type = {} for col in op_type.columns.values: mp_op_type[col] = op_type[col].values op_mode = pd.read_csv(base_dir + '/dataset/dataset2/encoders/enc_op_mode.csv') mp_op_mode = {} for col in op_mode.columns.values: mp_op_mode[col] = op_mode[col].values net_type = pd.read_csv(base_dir + '/dataset/dataset2/encoders/enc_op_net_type.csv') mp_net_type = {} for col in net_type.columns.values: mp_net_type[col] = net_type[col].values channel = pd.read_csv(base_dir + '/dataset/dataset2/encoders/enc_op_channel.csv') mp_channel = {} for col in channel.columns.values: mp_channel[col] = channel[col].values platform = pd.read_csv(base_dir + '/dataset/dataset2/encoders/enc_trans_platform.csv') mp_platform = {} for col in platform.columns.values: mp_platform[col] = platform[col].values tunnel_in = pd.read_csv(base_dir + '/dataset/dataset2/encoders/enc_trans_tunnel_in.csv') mp_tunnel_in = {} for col in tunnel_in.columns.values: mp_tunnel_in[col] = tunnel_in[col].values tunnel_out = pd.read_csv(base_dir + '/dataset/dataset2/encoders/enc_trans_tunnel_out.csv') mp_tunnel_out = {} for col in tunnel_out.columns.values: mp_tunnel_out[col] = tunnel_out[col].values type1 = pd.read_csv(base_dir + '/dataset/dataset2/encoders/enc_trans_type1.csv') mp_type1 = {} for col in type1.columns.values: mp_type1[col] = type1[col].values type2 = pd.read_csv(base_dir + '/dataset/dataset2/encoders/enc_trans_type2.csv') mp_type2 = {} for col in type2.columns.values: mp_type2[col] = type2[col].values # %% def process(n, isTrain=True, isA=False): for i in range(n): if i % 1000 == 0: print("train - " if isTrain else "test_a - " if isA else "test_b - ", end='') print(i) if isTrain: cur_user = train_base_df['user'].loc[i] tr_trans_user = train_trans_df[train_trans_df['user'] == cur_user] # 该用户的trans记录 tr_op_user = train_op_df[train_op_df['user'] == cur_user] # 该用户的op记录 elif isA: cur_user = test_a_base_df['user'].loc[i] tr_trans_user = test_a_trans_df[test_a_trans_df['user'] == cur_user] # 该用户的trans记录 tr_op_user = test_a_op_df[test_a_op_df['user'] == cur_user] # 该用户的op记录 else: cur_user = test_b_base_df['user'].loc[i] tr_trans_user = test_b_trans_df[test_b_trans_df['user'] == cur_user] # 该用户的trans记录 tr_op_user = test_b_op_df[test_b_op_df['user'] == cur_user] # 该用户的op记录 n_tr_trans_user = len(tr_trans_user) # 该用户的trans记录条数 n_tr_op_user = len(tr_op_user) # 该用户的op记录条数 line = [cur_user, n_tr_op_user, n_tr_trans_user] # 一行,即当前用户的所有二次特征 if n_tr_op_user > 0: ### op_type mode_op_type = tr_op_user['op_type'].mode()[0] code = mp_op_type[mode_op_type] line.extend(code) line.append(sum(tr_op_user['op_type'].apply(lambda x: 1 if x == mode_op_type else 0)) / n_tr_op_user) s = tr_op_user['op_type'].value_counts() line.append(np.std(s.values)) line.append(len(s)) ### op_mode mode_op_mode = tr_op_user['op_mode'].mode()[0] code = mp_op_mode[mode_op_mode] line.extend(code) line.append(sum(tr_op_user['op_mode'].apply(lambda x: 1 if x == mode_op_mode else 0)) / n_tr_op_user) s = tr_op_user['op_mode'].value_counts() line.append(np.std(s.values)) line.append(len(s)) ### op_device mode_op_device = tr_op_user['op_device'].mode()[0] line.append(sum(tr_op_user['op_device'].apply(lambda x: 1 if x == mode_op_device else 0)) / n_tr_op_user) s = tr_op_user['op_device'].value_counts() line.append(np.std(s.values)) # line.append(tr_op_user['op_device'].isnull().sum() / n_tr_op_user) line.append(sum(tr_op_user['op_device'].apply(lambda x: 1 if x == 'op_device_nan' else 0)) / n_tr_op_user) line.append(len(s)) ### op_ip mode_op_ip = tr_op_user['ip'].mode()[0] line.append(sum(tr_op_user['ip'].apply(lambda x: 1 if x == mode_op_ip else 0)) / n_tr_op_user) s = tr_op_user['ip'].value_counts() line.append(np.std(s.values)) # line.append(tr_op_user['ip'].isnull().sum() / n_tr_op_user) line.append(sum(tr_op_user['ip'].apply(lambda x: 1 if x == 'ip_nan' else 0)) / n_tr_op_user) line.append(len(s)) ### op_net_type mode_op_net_type = tr_op_user['net_type'].mode()[0] code = mp_net_type[mode_op_net_type] line.extend(code) line.append(sum(tr_op_user['net_type'].apply(lambda x: 1 if x == mode_op_net_type else 0)) / n_tr_op_user) s = tr_op_user['net_type'].value_counts() line.append(np.std(s.values)) # line.append(tr_op_user['net_type'].isnull().sum() / n_tr_op_user) line.append(sum(tr_op_user['net_type'].apply(lambda x: 1 if x == 'net_type_nan' else 0)) / n_tr_op_user) ### channel mode_op_channel = tr_op_user['channel'].mode()[0] code = mp_channel[mode_op_channel] line.extend(code) line.append(sum(tr_op_user['channel'].apply(lambda x: 1 if x == mode_op_channel else 0)) / n_tr_op_user) s = tr_op_user['channel'].value_counts() line.append(np.std(s.values)) line.append(len(s)) ### ip_3 mode_op_ip_3 = tr_op_user['ip_3'].mode()[0] line.append(sum(tr_op_user['ip_3'].apply(lambda x: 1 if x == mode_op_ip_3 else 0)) / n_tr_op_user) s = tr_op_user['ip_3'].value_counts() line.append(np.std(s.values)) # line.append(tr_op_user['ip_3'].isnull().sum() / n_tr_op_user) line.append(sum(tr_op_user['ip_3'].apply(lambda x: 1 if x == 'ip_3_nan' else 0)) / n_tr_op_user) line.append(len(s)) ### 对tm_diff排序 tr_op_user.sort_values('tm_diff', inplace=True) cnt = 0 l = tr_op_user['ip_3'].values pre = l[0] for j in range(1, n_tr_op_user): if l[j] != pre: pre = l[j] cnt += 1 line.append(cnt) ### 48h最高ip种类数量、最高的op_device种类数量、最高的op记录次数 tr_op_tm_max = tr_op_user['tm_diff'].values.max() tr_op_tm_min = tr_op_user['tm_diff'].values.min() gap = 48 * 3600 start = tr_op_tm_min end = start + gap max_48h_ip_n = 0 max_48h_op_device_n = 0 max_48h_op_n = 0 while start <= tr_op_tm_max: gap_df = tr_op_user[(start <= tr_op_user['tm_diff']) & (tr_op_user['tm_diff'] < end)] max_48h_ip_n = max(max_48h_ip_n, gap_df['ip'].nunique()) max_48h_op_device_n = max(max_48h_op_device_n, gap_df['op_device'].nunique()) max_48h_op_n = max(max_48h_op_n, len(gap_df)) start = end end += gap line.extend([max_48h_ip_n, max_48h_op_device_n, max_48h_op_n]) else: line.extend([-1] * 57) if n_tr_trans_user > 0: ### platform mode_trans_platform = tr_trans_user['platform'].mode()[0] code = mp_platform[mode_trans_platform] line.extend(code) line.append( sum(tr_trans_user['platform'].apply(lambda x: 1 if x == mode_trans_platform else 0)) / n_tr_trans_user) s = tr_trans_user['platform'].value_counts() line.append(np.std(s.values)) line.append(len(s)) ### tunnel_in mode_trans_tunnel_in = tr_trans_user['tunnel_in'].mode()[0] code = mp_tunnel_in[mode_trans_tunnel_in] line.extend(code) line.append(sum( tr_trans_user['tunnel_in'].apply(lambda x: 1 if x == mode_trans_tunnel_in else 0)) / n_tr_trans_user) s = tr_trans_user['tunnel_in'].value_counts() line.append(np.std(s.values)) line.append(len(s)) # line.append(tr_trans_user['tunnel_in'].isnull().sum() / n_tr_trans_user) line.append( sum(tr_trans_user['tunnel_in'].apply(lambda x: 1 if x == 'tunnel_in_nan' else 0)) / n_tr_trans_user) ### tunnel_out mode_trans_tunnel_out = tr_trans_user['tunnel_out'].mode()[0] code = mp_tunnel_out[mode_trans_tunnel_out] line.extend(code) line.append(sum( tr_trans_user['tunnel_out'].apply(lambda x: 1 if x == mode_trans_tunnel_out else 0)) / n_tr_trans_user) s = tr_trans_user['tunnel_out'].value_counts() line.append(np.std(s.values)) line.append(len(s)) ### amount s = tr_trans_user['amount'] line.append(s.values.max()) line.append(s.values.mean()) line.append(s.values.std()) ### type1 mode_trans_type1 = tr_trans_user['type1'].mode()[0] code = mp_type1[mode_trans_type1] line.extend(code) line.append( sum(tr_trans_user['type1'].apply(lambda x: 1 if x == mode_trans_type1 else 0)) / n_tr_trans_user) s = tr_trans_user['type1'].value_counts() line.append(np.std(s.values)) ### trans_ip mode_trans_ip = tr_trans_user['ip'].mode()[0] line.append(sum(tr_trans_user['ip'].apply(lambda x: 1 if x == mode_trans_ip else 0)) / n_tr_trans_user) s = tr_trans_user['ip'].value_counts() line.append(np.std(s.values)) # line.append(tr_trans_user['ip'].isnull().sum() / n_tr_trans_user) line.append(sum(tr_trans_user['ip'].apply(lambda x: 1 if x == 'ip_nan' else 0)) / n_tr_trans_user) line.append(len(s)) ### type2 mode_trans_type2 = tr_trans_user['type2'].mode()[0] code = mp_type2[mode_trans_type2] line.extend(code) line.append( sum(tr_trans_user['type2'].apply(lambda x: 1 if x == mode_trans_type2 else 0)) / n_tr_trans_user) s = tr_trans_user['type2'].value_counts() line.append(np.std(s.values)) ### trans_ip_3 mode_trans_ip_3 = tr_trans_user['ip_3'].mode()[0] line.append(sum(tr_trans_user['ip_3'].apply(lambda x: 1 if x == mode_trans_ip_3 else 0)) / n_tr_trans_user) s = tr_trans_user['ip'].value_counts() line.append(np.std(s.values)) line.append(sum(tr_trans_user['ip_3'].apply(lambda x: 1 if x == 'ip_3_nan' else 0)) / n_tr_trans_user) line.append(len(s)) ### 对tm_diff排序 tr_trans_user.sort_values('tm_diff', inplace=True) cnt = 0 l = tr_trans_user['ip_3'].values pre = l[0] for j in range(1, n_tr_trans_user): if l[j] != pre: pre = l[j] cnt += 1 line.append(cnt) ### 48h最高amount总量、最高的trans数量、最高的platform种类数量、最高的ip种类数量 tr_trans_tm_max = tr_trans_user['tm_diff'].values.max() tr_trans_tm_min = tr_trans_user['tm_diff'].values.min() gap = 48 * 3600 start = tr_trans_tm_min end = start + gap max_48h_sum_amount = 0 max_48h_trans_n = 0 max_48h_platform_n = 0 max_48h_ip_n = 0 while start <= tr_trans_tm_max: gap_df = tr_trans_user[(start <= tr_trans_user['tm_diff']) & (tr_trans_user['tm_diff'] < end)] max_48h_sum_amount = max(max_48h_sum_amount, gap_df['amount'].values.sum()) max_48h_trans_n = max(max_48h_trans_n, len(gap_df)) max_48h_platform_n = max(max_48h_platform_n, gap_df['platform'].nunique()) max_48h_ip_n = max(max_48h_ip_n, gap_df['ip'].nunique()) start = end end += gap line.extend([max_48h_sum_amount, max_48h_trans_n, max_48h_platform_n, max_48h_ip_n]) else: line.extend([-1] * 56) # print(len(line)) ### 填入feature矩阵 if isTrain: feature_train.loc[len(feature_train)] = line elif isA: feature_test_a.loc[len(feature_test_a)] = line else: feature_test_b.loc[len(feature_test_b)] = line # 存 if isTrain: feature_train.to_csv(base_dir + '/dataset/dataset2/trainset/feature_train.csv', index=False) elif isA: feature_test_a.to_csv(base_dir + '/dataset/dataset2/testset/feature_test_a.csv', index=False) else: feature_test_b.to_csv(base_dir + '/dataset/dataset2/testset/feature_test_b.csv', index=False) # %% process(n_train, isTrain=True) process(n_test_a, isTrain=False, isA=True) process(n_test_b, isTrain=False, isA=False) # %% # 多线程 def process_threaded(n_train, n_test_a, n_test_b): def process1(): process(n_train, isTrain=True) def process2(): process(n_test_a, isTrain=False, isA=True) def process3(): process(n_test_b, isTrain=False, isA=False) t1 = threading.Thread(target=process1) t1.start() t2 = threading.Thread(target=process2) t2.start() t3 = threading.Thread(target=process3) t3.start() # %% process_threaded(n_train, n_test_a, n_test_b) # %% # 并入主矩阵 ### 以下l六行可以不跑 feature_train = pd.read_csv(base_dir + '/dataset/dataset2/trainset/feature_train.csv') feature_test_a = pd.read_csv(base_dir + '/dataset/dataset2/testset/feature_test_a.csv') feature_test_b = pd.read_csv(base_dir + '/dataset/dataset2/testset/feature_test_b.csv') train_base_df = pd.read_csv(base_dir + '/dataset/dataset2/trainset/train_base.csv') test_a_base_df = pd.read_csv(base_dir + '/dataset/dataset2/testset/test_a_base.csv') test_b_base_df = pd.read_csv(base_dir + '/dataset/dataset2/testset/test_b_base.csv') feature_train = feature_train.drop(labels='user', axis=1) feature_test_a = feature_test_a.drop(labels='user', axis=1) feature_test_b = feature_test_b.drop(labels='user', axis=1) train_base_df = train_base_df.join(feature_train) test_a_base_df = test_a_base_df.join(feature_test_a) test_b_base_df = test_b_base_df.join(feature_test_b) train_base_df.to_csv(base_dir + '/dataset/dataset2/trainset/train_main.csv', index=False) test_a_base_df.to_csv(base_dir + '/dataset/dataset2/testset/test_a_main.csv', index=False) test_b_base_df.to_csv(base_dir + '/dataset/dataset2/testset/test_b_main.csv', index=False) # %% # #######################以下为试水专用########################### # feature_train = pd.read_csv(base_dir + '/dataset/dataset2/trainset/feature_train.csv') feature_test = pd.read_csv(base_dir + '/dataset/dataset2/testset/feature_test.csv') feature_train = feature_train.drop(labels=['op_freq', 'op_ip_freq', 'op_ip_3_freq', 'trans_freq', 'trans_amount_freq', 'trans_ip_freq', 'trans_ip_3_freq'], axis=1) feature_test = feature_test.drop(labels=['op_freq', 'op_ip_freq', 'op_ip_3_freq', 'trans_freq', 'trans_amount_freq', 'trans_ip_freq', 'trans_ip_3_freq'], axis=1) feature_train.to_csv(base_dir + '/dataset/dataset2/trainset/feature_train.csv', index=False) feature_test.to_csv(base_dir + '/dataset/dataset2/testset/feature_test.csv', index=False) # %% feature_train = pd.read_csv(base_dir + '/dataset/dataset2/trainset/feature_train.csv') feature_test = pd.read_csv(base_dir + '/dataset/dataset2/testset/feature_test.csv') train_base_df = pd.read_csv(base_dir + '/dataset/dataset2/trainset/train_base.csv') train_op_df = pd.read_csv(base_dir + '/dataset/dataset2/trainset/train_op.csv') train_trans_df = pd.read_csv(base_dir + '/dataset/dataset2/trainset/train_trans.csv') test_base_df = pd.read_csv(base_dir + '/dataset/dataset2/testset/test_a_base.csv') test_op_df =
pd.read_csv(base_dir + '/dataset/dataset2/testset/test_a_op.csv')
pandas.read_csv
import os import multiprocessing as mp import numpy as np import matplotlib.pyplot as plt import pandas as pd import tqdm import cv2 # Specify HSV color range for detection lower = (25, 40, 200) upper = (30, 100, 255) data_dir = 'data/pufferfish-struggle' num_images = len([name for name in os.listdir(data_dir) if os.path.isfile(os.path.join(data_dir, name))]) progress = np.zeros(num_images) print(f'Total number of frames: {num_images:d}') output_file = 'output.csv' # Counts number of pixels in a given image that fall within specified HSV range # Input images must match the filename format 'frameXXXX.png' with XXXX being contiguous values from 0000 to 9999 def count_pixels(idx): filename = f'frame{idx:04d}.png' path = os.path.join(data_dir, filename) im_orig = cv2.imread(path) im_orig = cv2.cvtColor(im_orig, cv2.COLOR_BGR2RGB) im = im_orig[275:395, 1860:1980] # Convert to HSV space hsv_im = cv2.cvtColor(im, cv2.COLOR_RGB2HSV) mask = cv2.inRange(hsv_im, lower, upper) count = mask.sum() / 255. return count # Parallel process to count pixels in indexed images with mp.Pool(mp.cpu_count()) as pool: progress = list(tqdm.tqdm(pool.imap(count_pixels, range(num_images)), total=num_images)) # Save data df =
pd.DataFrame(progress)
pandas.DataFrame
import nose import os import string from distutils.version import LooseVersion from datetime import datetime, date, timedelta from pandas import Series, DataFrame, MultiIndex, PeriodIndex, date_range from pandas.compat import range, lrange, StringIO, lmap, lzip, u, zip import pandas.util.testing as tm from pandas.util.testing import ensure_clean from pandas.core.config import set_option import numpy as np from numpy import random from numpy.random import randn from numpy.testing import assert_array_equal from numpy.testing.decorators import slow import pandas.tools.plotting as plotting def _skip_if_no_scipy(): try: import scipy except ImportError: raise nose.SkipTest("no scipy") @tm.mplskip class TestSeriesPlots(tm.TestCase): def setUp(self): import matplotlib as mpl self.mpl_le_1_2_1 = str(mpl.__version__) <= LooseVersion('1.2.1') self.ts = tm.makeTimeSeries() self.ts.name = 'ts' self.series = tm.makeStringSeries() self.series.name = 'series' self.iseries = tm.makePeriodSeries() self.iseries.name = 'iseries' def tearDown(self): tm.close() @slow def test_plot(self): _check_plot_works(self.ts.plot, label='foo') _check_plot_works(self.ts.plot, use_index=False) _check_plot_works(self.ts.plot, rot=0) _check_plot_works(self.ts.plot, style='.', logy=True) _check_plot_works(self.ts.plot, style='.', logx=True) _check_plot_works(self.ts.plot, style='.', loglog=True) _check_plot_works(self.ts[:10].plot, kind='bar') _check_plot_works(self.iseries.plot) _check_plot_works(self.series[:5].plot, kind='bar') _check_plot_works(self.series[:5].plot, kind='line') _check_plot_works(self.series[:5].plot, kind='barh') _check_plot_works(self.series[:10].plot, kind='barh') _check_plot_works(Series(randn(10)).plot, kind='bar', color='black') @slow def test_plot_figsize_and_title(self): # figsize and title import matplotlib.pyplot as plt ax = self.series.plot(title='Test', figsize=(16, 8)) self.assertEqual(ax.title.get_text(), 'Test') assert_array_equal(np.round(ax.figure.get_size_inches()), np.array((16., 8.))) @slow def test_bar_colors(self): import matplotlib.pyplot as plt import matplotlib.colors as colors default_colors = plt.rcParams.get('axes.color_cycle') custom_colors = 'rgcby' df = DataFrame(randn(5, 5)) ax = df.plot(kind='bar') rects = ax.patches conv = colors.colorConverter for i, rect in enumerate(rects[::5]): xp = conv.to_rgba(default_colors[i % len(default_colors)]) rs = rect.get_facecolor() self.assertEqual(xp, rs) tm.close() ax = df.plot(kind='bar', color=custom_colors) rects = ax.patches conv = colors.colorConverter for i, rect in enumerate(rects[::5]): xp = conv.to_rgba(custom_colors[i]) rs = rect.get_facecolor() self.assertEqual(xp, rs) tm.close() from matplotlib import cm # Test str -> colormap functionality ax = df.plot(kind='bar', colormap='jet') rects = ax.patches rgba_colors = lmap(cm.jet, np.linspace(0, 1, 5)) for i, rect in enumerate(rects[::5]): xp = rgba_colors[i] rs = rect.get_facecolor() self.assertEqual(xp, rs) tm.close() # Test colormap functionality ax = df.plot(kind='bar', colormap=cm.jet) rects = ax.patches rgba_colors = lmap(cm.jet, np.linspace(0, 1, 5)) for i, rect in enumerate(rects[::5]): xp = rgba_colors[i] rs = rect.get_facecolor() self.assertEqual(xp, rs) tm.close() df.ix[:, [0]].plot(kind='bar', color='DodgerBlue') @slow def test_bar_linewidth(self): df = DataFrame(randn(5, 5)) # regular ax = df.plot(kind='bar', linewidth=2) for r in ax.patches: self.assertEqual(r.get_linewidth(), 2) # stacked ax = df.plot(kind='bar', stacked=True, linewidth=2) for r in ax.patches: self.assertEqual(r.get_linewidth(), 2) # subplots axes = df.plot(kind='bar', linewidth=2, subplots=True) for ax in axes: for r in ax.patches: self.assertEqual(r.get_linewidth(), 2) @slow def test_bar_log(self): expected = np.array([1., 10., 100., 1000.]) if not self.mpl_le_1_2_1: expected = np.hstack((.1, expected, 1e4)) ax = Series([200, 500]).plot(log=True, kind='bar') assert_array_equal(ax.yaxis.get_ticklocs(), expected) def test_rotation(self): df = DataFrame(randn(5, 5)) ax = df.plot(rot=30) for l in ax.get_xticklabels(): self.assertEqual(l.get_rotation(), 30) def test_irregular_datetime(self): rng = date_range('1/1/2000', '3/1/2000') rng = rng[[0, 1, 2, 3, 5, 9, 10, 11, 12]] ser = Series(randn(len(rng)), rng) ax = ser.plot() xp = datetime(1999, 1, 1).toordinal() ax.set_xlim('1/1/1999', '1/1/2001') self.assertEqual(xp, ax.get_xlim()[0]) @slow def test_hist(self): _check_plot_works(self.ts.hist) _check_plot_works(self.ts.hist, grid=False) _check_plot_works(self.ts.hist, figsize=(8, 10)) _check_plot_works(self.ts.hist, by=self.ts.index.month) import matplotlib.pyplot as plt fig, ax = plt.subplots(1, 1) _check_plot_works(self.ts.hist, ax=ax) _check_plot_works(self.ts.hist, ax=ax, figure=fig) _check_plot_works(self.ts.hist, figure=fig) tm.close() fig, (ax1, ax2) = plt.subplots(1, 2) _check_plot_works(self.ts.hist, figure=fig, ax=ax1) _check_plot_works(self.ts.hist, figure=fig, ax=ax2) with tm.assertRaises(ValueError): self.ts.hist(by=self.ts.index, figure=fig) @slow def test_hist_layout(self): n = 10 gender = tm.choice(['Male', 'Female'], size=n) df = DataFrame({'gender': gender, 'height': random.normal(66, 4, size=n), 'weight': random.normal(161, 32, size=n)}) with tm.assertRaises(ValueError): df.height.hist(layout=(1, 1)) with tm.assertRaises(ValueError): df.height.hist(layout=[1, 1]) @slow def test_hist_layout_with_by(self): import matplotlib.pyplot as plt n = 10 gender = tm.choice(['Male', 'Female'], size=n) df = DataFrame({'gender': gender, 'height': random.normal(66, 4, size=n), 'weight': random.normal(161, 32, size=n), 'category': random.randint(4, size=n)}) _check_plot_works(df.height.hist, by=df.gender, layout=(2, 1)) tm.close() _check_plot_works(df.height.hist, by=df.gender, layout=(1, 2)) tm.close() _check_plot_works(df.weight.hist, by=df.category, layout=(1, 4)) tm.close() _check_plot_works(df.weight.hist, by=df.category, layout=(4, 1)) tm.close() @slow def test_hist_no_overlap(self): from matplotlib.pyplot import subplot, gcf, close x = Series(randn(2)) y = Series(randn(2)) subplot(121) x.hist() subplot(122) y.hist() fig = gcf() axes = fig.get_axes() self.assertEqual(len(axes), 2) @slow def test_plot_fails_with_dupe_color_and_style(self): x = Series(randn(2)) with tm.assertRaises(ValueError): x.plot(style='k--', color='k') @slow def test_hist_by_no_extra_plots(self): import matplotlib.pyplot as plt n = 10 df = DataFrame({'gender': tm.choice(['Male', 'Female'], size=n), 'height': random.normal(66, 4, size=n)}) axes = df.height.hist(by=df.gender) self.assertEqual(len(plt.get_fignums()), 1) def test_plot_fails_when_ax_differs_from_figure(self): from pylab import figure, close fig1 = figure() fig2 = figure() ax1 = fig1.add_subplot(111) with tm.assertRaises(AssertionError): self.ts.hist(ax=ax1, figure=fig2) @slow def test_kde(self): _skip_if_no_scipy() _check_plot_works(self.ts.plot, kind='kde') _check_plot_works(self.ts.plot, kind='density') ax = self.ts.plot(kind='kde', logy=True) self.assertEqual(ax.get_yscale(), 'log') @slow def test_kde_kwargs(self): _skip_if_no_scipy() from numpy import linspace _check_plot_works(self.ts.plot, kind='kde', bw_method=.5, ind=linspace(-100,100,20)) _check_plot_works(self.ts.plot, kind='density', bw_method=.5, ind=linspace(-100,100,20)) ax = self.ts.plot(kind='kde', logy=True, bw_method=.5, ind=linspace(-100,100,20)) self.assertEqual(ax.get_yscale(), 'log') @slow def test_kde_color(self): _skip_if_no_scipy() ax = self.ts.plot(kind='kde', logy=True, color='r') lines = ax.get_lines() self.assertEqual(len(lines), 1) self.assertEqual(lines[0].get_color(), 'r') @slow def test_autocorrelation_plot(self): from pandas.tools.plotting import autocorrelation_plot _check_plot_works(autocorrelation_plot, self.ts) _check_plot_works(autocorrelation_plot, self.ts.values) @slow def test_lag_plot(self): from pandas.tools.plotting import lag_plot _check_plot_works(lag_plot, self.ts) _check_plot_works(lag_plot, self.ts, lag=5) @slow def test_bootstrap_plot(self): from pandas.tools.plotting import bootstrap_plot _check_plot_works(bootstrap_plot, self.ts, size=10) def test_invalid_plot_data(self): s = Series(list('abcd')) kinds = 'line', 'bar', 'barh', 'kde', 'density' for kind in kinds: with tm.assertRaises(TypeError): s.plot(kind=kind) @slow def test_valid_object_plot(self): s = Series(lrange(10), dtype=object) kinds = 'line', 'bar', 'barh', 'kde', 'density' for kind in kinds: _check_plot_works(s.plot, kind=kind) def test_partially_invalid_plot_data(self): s = Series(['a', 'b', 1.0, 2]) kinds = 'line', 'bar', 'barh', 'kde', 'density' for kind in kinds: with tm.assertRaises(TypeError): s.plot(kind=kind) def test_invalid_kind(self): s = Series([1, 2]) with tm.assertRaises(ValueError): s.plot(kind='aasdf') @slow def test_dup_datetime_index_plot(self): dr1 = date_range('1/1/2009', periods=4) dr2 = date_range('1/2/2009', periods=4) index = dr1.append(dr2) values = randn(index.size) s = Series(values, index=index) _check_plot_works(s.plot) @tm.mplskip class TestDataFramePlots(tm.TestCase): def setUp(self): import matplotlib as mpl self.mpl_le_1_2_1 = str(mpl.__version__) <= LooseVersion('1.2.1') def tearDown(self): tm.close() @slow def test_plot(self): df = tm.makeTimeDataFrame() _check_plot_works(df.plot, grid=False) _check_plot_works(df.plot, subplots=True) _check_plot_works(df.plot, subplots=True, use_index=False) df = DataFrame({'x': [1, 2], 'y': [3, 4]}) self._check_plot_fails(df.plot, kind='line', blarg=True) df = DataFrame(np.random.rand(10, 3), index=list(string.ascii_letters[:10])) _check_plot_works(df.plot, use_index=True) _check_plot_works(df.plot, sort_columns=False) _check_plot_works(df.plot, yticks=[1, 5, 10]) _check_plot_works(df.plot, xticks=[1, 5, 10]) _check_plot_works(df.plot, ylim=(-100, 100), xlim=(-100, 100)) _check_plot_works(df.plot, subplots=True, title='blah') _check_plot_works(df.plot, title='blah') tuples = lzip(string.ascii_letters[:10], range(10)) df = DataFrame(np.random.rand(10, 3), index=MultiIndex.from_tuples(tuples)) _check_plot_works(df.plot, use_index=True) # unicode index = MultiIndex.from_tuples([(u('\u03b1'), 0), (u('\u03b1'), 1), (u('\u03b2'), 2), (u('\u03b2'), 3), (u('\u03b3'), 4), (u('\u03b3'), 5), (u('\u03b4'), 6), (u('\u03b4'), 7)], names=['i0', 'i1']) columns = MultiIndex.from_tuples([('bar', u('\u0394')), ('bar', u('\u0395'))], names=['c0', 'c1']) df = DataFrame(np.random.randint(0, 10, (8, 2)), columns=columns, index=index) _check_plot_works(df.plot, title=u('\u03A3')) def test_nonnumeric_exclude(self): import matplotlib.pyplot as plt df = DataFrame({'A': ["x", "y", "z"], 'B': [1, 2, 3]}) ax = df.plot() self.assertEqual(len(ax.get_lines()), 1) # B was plotted @slow def test_implicit_label(self): df = DataFrame(randn(10, 3), columns=['a', 'b', 'c']) ax = df.plot(x='a', y='b') self.assertEqual(ax.xaxis.get_label().get_text(), 'a') @slow def test_explicit_label(self): df = DataFrame(randn(10, 3), columns=['a', 'b', 'c']) ax = df.plot(x='a', y='b', label='LABEL') self.assertEqual(ax.xaxis.get_label().get_text(), 'LABEL') @slow def test_plot_xy(self): import matplotlib.pyplot as plt # columns.inferred_type == 'string' df = tm.makeTimeDataFrame() self._check_data(df.plot(x=0, y=1), df.set_index('A')['B'].plot()) self._check_data(df.plot(x=0), df.set_index('A').plot()) self._check_data(df.plot(y=0), df.B.plot()) self._check_data(df.plot(x='A', y='B'), df.set_index('A').B.plot()) self._check_data(df.plot(x='A'), df.set_index('A').plot()) self._check_data(df.plot(y='B'), df.B.plot()) # columns.inferred_type == 'integer' df.columns = lrange(1, len(df.columns) + 1) self._check_data(df.plot(x=1, y=2), df.set_index(1)[2].plot()) self._check_data(df.plot(x=1), df.set_index(1).plot()) self._check_data(df.plot(y=1), df[1].plot()) # figsize and title ax = df.plot(x=1, y=2, title='Test', figsize=(16, 8)) self.assertEqual(ax.title.get_text(), 'Test') assert_array_equal(np.round(ax.figure.get_size_inches()), np.array((16., 8.))) # columns.inferred_type == 'mixed' # TODO add MultiIndex test @slow def test_xcompat(self): import pandas as pd import matplotlib.pyplot as plt df = tm.makeTimeDataFrame() ax = df.plot(x_compat=True) lines = ax.get_lines() self.assert_(not isinstance(lines[0].get_xdata(), PeriodIndex)) tm.close() pd.plot_params['xaxis.compat'] = True ax = df.plot() lines = ax.get_lines() self.assert_(not isinstance(lines[0].get_xdata(), PeriodIndex)) tm.close() pd.plot_params['x_compat'] = False ax = df.plot() lines = ax.get_lines() tm.assert_isinstance(lines[0].get_xdata(), PeriodIndex) tm.close() # useful if you're plotting a bunch together with pd.plot_params.use('x_compat', True): ax = df.plot() lines = ax.get_lines() self.assert_(not isinstance(lines[0].get_xdata(), PeriodIndex)) tm.close() ax = df.plot() lines = ax.get_lines() tm.assert_isinstance(lines[0].get_xdata(), PeriodIndex) def test_unsorted_index(self): df = DataFrame({'y': np.arange(100)}, index=np.arange(99, -1, -1), dtype=np.int64) ax = df.plot() l = ax.get_lines()[0] rs = l.get_xydata() rs = Series(rs[:, 1], rs[:, 0], dtype=np.int64) tm.assert_series_equal(rs, df.y) def _check_data(self, xp, rs): xp_lines = xp.get_lines() rs_lines = rs.get_lines() def check_line(xpl, rsl): xpdata = xpl.get_xydata() rsdata = rsl.get_xydata() assert_array_equal(xpdata, rsdata) [check_line(xpl, rsl) for xpl, rsl in zip(xp_lines, rs_lines)] tm.close() @slow def test_subplots(self): df = DataFrame(np.random.rand(10, 3), index=list(string.ascii_letters[:10])) axes = df.plot(subplots=True, sharex=True, legend=True) for ax in axes: self.assert_(ax.get_legend() is not None) axes = df.plot(subplots=True, sharex=True) for ax in axes[:-2]: [self.assert_(not label.get_visible()) for label in ax.get_xticklabels()] [self.assert_(label.get_visible()) for label in ax.get_yticklabels()] [self.assert_(label.get_visible()) for label in axes[-1].get_xticklabels()] [self.assert_(label.get_visible()) for label in axes[-1].get_yticklabels()] axes = df.plot(subplots=True, sharex=False) for ax in axes: [self.assert_(label.get_visible()) for label in ax.get_xticklabels()] [self.assert_(label.get_visible()) for label in ax.get_yticklabels()] @slow def test_plot_scatter(self): from matplotlib.pylab import close df = DataFrame(randn(6, 4), index=list(string.ascii_letters[:6]), columns=['x', 'y', 'z', 'four']) _check_plot_works(df.plot, x='x', y='y', kind='scatter') _check_plot_works(df.plot, x=1, y=2, kind='scatter') with tm.assertRaises(ValueError): df.plot(x='x', kind='scatter') with tm.assertRaises(ValueError): df.plot(y='y', kind='scatter') @slow def test_plot_bar(self): from matplotlib.pylab import close df = DataFrame(randn(6, 4), index=list(string.ascii_letters[:6]), columns=['one', 'two', 'three', 'four']) _check_plot_works(df.plot, kind='bar') _check_plot_works(df.plot, kind='bar', legend=False) _check_plot_works(df.plot, kind='bar', subplots=True) _check_plot_works(df.plot, kind='bar', stacked=True) df = DataFrame(randn(10, 15), index=list(string.ascii_letters[:10]), columns=lrange(15)) _check_plot_works(df.plot, kind='bar') df = DataFrame({'a': [0, 1], 'b': [1, 0]}) _check_plot_works(df.plot, kind='bar') def test_bar_stacked_center(self): # GH2157 df = DataFrame({'A': [3] * 5, 'B': lrange(5)}, index=lrange(5)) ax = df.plot(kind='bar', stacked='True', grid=True) self.assertEqual(ax.xaxis.get_ticklocs()[0], ax.patches[0].get_x() + ax.patches[0].get_width() / 2) def test_bar_center(self): df = DataFrame({'A': [3] * 5, 'B': lrange(5)}, index=lrange(5)) ax = df.plot(kind='bar', grid=True) self.assertEqual(ax.xaxis.get_ticklocs()[0], ax.patches[0].get_x() + ax.patches[0].get_width()) @slow def test_bar_log_no_subplots(self): # GH3254, GH3298 matplotlib/matplotlib#1882, #1892 # regressions in 1.2.1 expected = np.array([1., 10.]) if not self.mpl_le_1_2_1: expected = np.hstack((.1, expected, 100)) # no subplots df = DataFrame({'A': [3] * 5, 'B': lrange(1, 6)}, index=lrange(5)) ax = df.plot(kind='bar', grid=True, log=True) assert_array_equal(ax.yaxis.get_ticklocs(), expected) @slow def test_bar_log_subplots(self): expected = np.array([1., 10., 100., 1000.]) if not self.mpl_le_1_2_1: expected = np.hstack((.1, expected, 1e4)) ax = DataFrame([Series([200, 300]), Series([300, 500])]).plot(log=True, kind='bar', subplots=True) assert_array_equal(ax[0].yaxis.get_ticklocs(), expected) assert_array_equal(ax[1].yaxis.get_ticklocs(), expected) @slow def test_boxplot(self): df = DataFrame(randn(6, 4), index=list(string.ascii_letters[:6]), columns=['one', 'two', 'three', 'four']) df['indic'] = ['foo', 'bar'] * 3 df['indic2'] = ['foo', 'bar', 'foo'] * 2 _check_plot_works(df.boxplot) _check_plot_works(df.boxplot, column=['one', 'two']) _check_plot_works(df.boxplot, column=['one', 'two'], by='indic') _check_plot_works(df.boxplot, column='one', by=['indic', 'indic2']) _check_plot_works(df.boxplot, by='indic') _check_plot_works(df.boxplot, by=['indic', 'indic2']) _check_plot_works(plotting.boxplot, df['one']) _check_plot_works(df.boxplot, notch=1) _check_plot_works(df.boxplot, by='indic', notch=1) df = DataFrame(np.random.rand(10, 2), columns=['Col1', 'Col2']) df['X'] = Series(['A', 'A', 'A', 'A', 'A', 'B', 'B', 'B', 'B', 'B']) _check_plot_works(df.boxplot, by='X') @slow def test_kde(self): _skip_if_no_scipy() df = DataFrame(randn(100, 4)) _check_plot_works(df.plot, kind='kde') _check_plot_works(df.plot, kind='kde', subplots=True) ax = df.plot(kind='kde') self.assert_(ax.get_legend() is not None) axes = df.plot(kind='kde', logy=True, subplots=True) for ax in axes: self.assertEqual(ax.get_yscale(), 'log') @slow def test_hist(self): import matplotlib.pyplot as plt df = DataFrame(randn(100, 4)) _check_plot_works(df.hist) _check_plot_works(df.hist, grid=False) # make sure layout is handled df = DataFrame(randn(100, 3)) _check_plot_works(df.hist) axes = df.hist(grid=False) self.assert_(not axes[1, 1].get_visible()) df = DataFrame(randn(100, 1)) _check_plot_works(df.hist) # make sure layout is handled df = DataFrame(randn(100, 6)) _check_plot_works(df.hist) # make sure sharex, sharey is handled _check_plot_works(df.hist, sharex=True, sharey=True) # handle figsize arg _check_plot_works(df.hist, figsize=(8, 10)) # make sure xlabelsize and xrot are handled ser = df[0] xf, yf = 20, 20 xrot, yrot = 30, 30 ax = ser.hist(xlabelsize=xf, xrot=30, ylabelsize=yf, yrot=30) ytick = ax.get_yticklabels()[0] xtick = ax.get_xticklabels()[0] self.assertAlmostEqual(ytick.get_fontsize(), yf) self.assertAlmostEqual(ytick.get_rotation(), yrot) self.assertAlmostEqual(xtick.get_fontsize(), xf) self.assertAlmostEqual(xtick.get_rotation(), xrot) xf, yf = 20, 20 xrot, yrot = 30, 30 axes = df.hist(xlabelsize=xf, xrot=30, ylabelsize=yf, yrot=30) for i, ax in enumerate(axes.ravel()): if i < len(df.columns): ytick = ax.get_yticklabels()[0] xtick = ax.get_xticklabels()[0] self.assertAlmostEqual(ytick.get_fontsize(), yf) self.assertAlmostEqual(ytick.get_rotation(), yrot) self.assertAlmostEqual(xtick.get_fontsize(), xf) self.assertAlmostEqual(xtick.get_rotation(), xrot) tm.close() # make sure kwargs to hist are handled ax = ser.hist(normed=True, cumulative=True, bins=4) # height of last bin (index 5) must be 1.0 self.assertAlmostEqual(ax.get_children()[5].get_height(), 1.0) tm.close() ax = ser.hist(log=True) # scale of y must be 'log' self.assertEqual(ax.get_yscale(), 'log') tm.close() # propagate attr exception from matplotlib.Axes.hist with tm.assertRaises(AttributeError): ser.hist(foo='bar') @slow def test_hist_layout(self): import matplotlib.pyplot as plt df = DataFrame(randn(100, 4)) layout_to_expected_size = ( {'layout': None, 'expected_size': (2, 2)}, # default is 2x2 {'layout': (2, 2), 'expected_size': (2, 2)}, {'layout': (4, 1), 'expected_size': (4, 1)}, {'layout': (1, 4), 'expected_size': (1, 4)}, {'layout': (3, 3), 'expected_size': (3, 3)}, ) for layout_test in layout_to_expected_size: ax = df.hist(layout=layout_test['layout']) self.assertEqual(len(ax), layout_test['expected_size'][0]) self.assertEqual(len(ax[0]), layout_test['expected_size'][1]) # layout too small for all 4 plots with tm.assertRaises(ValueError): df.hist(layout=(1, 1)) # invalid format for layout with tm.assertRaises(ValueError): df.hist(layout=(1,)) @slow def test_scatter(self): _skip_if_no_scipy() df = DataFrame(randn(100, 2)) import pandas.tools.plotting as plt def scat(**kwds): return plt.scatter_matrix(df, **kwds) _check_plot_works(scat) _check_plot_works(scat, marker='+') _check_plot_works(scat, vmin=0) _check_plot_works(scat, diagonal='kde') _check_plot_works(scat, diagonal='density') _check_plot_works(scat, diagonal='hist') def scat2(x, y, by=None, ax=None, figsize=None): return plt.scatter_plot(df, x, y, by, ax, figsize=None) _check_plot_works(scat2, 0, 1) grouper = Series(np.repeat([1, 2, 3, 4, 5], 20), df.index) _check_plot_works(scat2, 0, 1, by=grouper) @slow def test_andrews_curves(self): from pandas import read_csv from pandas.tools.plotting import andrews_curves path = os.path.join(curpath(), 'data', 'iris.csv') df = read_csv(path) _check_plot_works(andrews_curves, df, 'Name') @slow def test_parallel_coordinates(self): from pandas import read_csv from pandas.tools.plotting import parallel_coordinates from matplotlib import cm path = os.path.join(curpath(), 'data', 'iris.csv') df = read_csv(path) _check_plot_works(parallel_coordinates, df, 'Name') _check_plot_works(parallel_coordinates, df, 'Name', colors=('#556270', '#4ECDC4', '#C7F464')) _check_plot_works(parallel_coordinates, df, 'Name', colors=['dodgerblue', 'aquamarine', 'seagreen']) _check_plot_works(parallel_coordinates, df, 'Name', colors=('#556270', '#4ECDC4', '#C7F464')) _check_plot_works(parallel_coordinates, df, 'Name', colors=['dodgerblue', 'aquamarine', 'seagreen']) _check_plot_works(parallel_coordinates, df, 'Name', colormap=cm.jet) df = read_csv(path, header=None, skiprows=1, names=[1, 2, 4, 8, 'Name']) _check_plot_works(parallel_coordinates, df, 'Name', use_columns=True) _check_plot_works(parallel_coordinates, df, 'Name', xticks=[1, 5, 25, 125]) @slow def test_radviz(self): from pandas import read_csv from pandas.tools.plotting import radviz from matplotlib import cm path = os.path.join(curpath(), 'data', 'iris.csv') df = read_csv(path) _check_plot_works(radviz, df, 'Name') _check_plot_works(radviz, df, 'Name', colormap=cm.jet) @slow def test_plot_int_columns(self): df = DataFrame(randn(100, 4)).cumsum() _check_plot_works(df.plot, legend=True) def test_legend_name(self): multi = DataFrame(randn(4, 4), columns=[np.array(['a', 'a', 'b', 'b']), np.array(['x', 'y', 'x', 'y'])]) multi.columns.names = ['group', 'individual'] ax = multi.plot() leg_title = ax.legend_.get_title() self.assertEqual(leg_title.get_text(), 'group,individual') def _check_plot_fails(self, f, *args, **kwargs): with tm.assertRaises(Exception): f(*args, **kwargs) @slow def test_style_by_column(self): import matplotlib.pyplot as plt fig = plt.gcf() df = DataFrame(randn(100, 3)) for markers in [{0: '^', 1: '+', 2: 'o'}, {0: '^', 1: '+'}, ['^', '+', 'o'], ['^', '+']]: fig.clf() fig.add_subplot(111) ax = df.plot(style=markers) for i, l in enumerate(ax.get_lines()[:len(markers)]): self.assertEqual(l.get_marker(), markers[i]) @slow def test_line_colors(self): import matplotlib.pyplot as plt import sys from matplotlib import cm custom_colors = 'rgcby' df = DataFrame(randn(5, 5)) ax = df.plot(color=custom_colors) lines = ax.get_lines() for i, l in enumerate(lines): xp = custom_colors[i] rs = l.get_color() self.assertEqual(xp, rs) tmp = sys.stderr sys.stderr = StringIO() try: tm.close() ax2 = df.plot(colors=custom_colors) lines2 = ax2.get_lines() for l1, l2 in zip(lines, lines2): self.assertEqual(l1.get_color(), l2.get_color()) finally: sys.stderr = tmp tm.close() ax = df.plot(colormap='jet') rgba_colors = lmap(cm.jet, np.linspace(0, 1, len(df))) lines = ax.get_lines() for i, l in enumerate(lines): xp = rgba_colors[i] rs = l.get_color() self.assertEqual(xp, rs)
tm.close()
pandas.util.testing.close
# -*- coding: utf-8 -*- import argparse import json import os import re from io import StringIO from pathlib import Path import dotenv import pandas as pd import requests from utils import get_gene_id2length DOTENV_KEY2VAL = dotenv.dotenv_values() def make_tissue2subtissue2sample_id(rawdir: str) -> pd.DataFrame: """Construct multi-indexed pd.Series that maps each tissue-subtissue combination to the corresponding column names""" sample_id_df = pd.read_csv( Path(rawdir) / "GTEx_Analysis_v8_Annotations_SampleAttributesDS.txt", sep="\t", ) # SMTS refers to main tissue type, SMTSD refers to subtissue type sample_id2tissue_type_subtype_df = pd.DataFrame( index=sample_id_df["SAMPID"].values, data=sample_id_df[["SMTS", "SMTSD"]].values, columns=["tissue", "subtissue"], ) # Now invert to go from tissue-subtissue to sample_id tissue2subtissue2sample_id = pd.Series( index=
pd.MultiIndex.from_frame(sample_id2tissue_type_subtype_df)
pandas.MultiIndex.from_frame
import unittest import pandas as pd import numpy as np from autopandas_v2.ml.featurization.featurizer import RelationGraph from autopandas_v2.ml.featurization.graph import GraphEdge, GraphEdgeType, GraphNodeType, GraphNode from autopandas_v2.ml.featurization.options import GraphOptions get_node_type = GraphNodeType.get_node_type class TestRelationGraphFeaturizer(unittest.TestCase): def test_basic_max(self): input_df = pd.DataFrame([[1, 2], [2, 3], [2, 0]]) input_00 = GraphNode("I0", '[0,0]', get_node_type(input_df.iat[0, 0])) input_01 = GraphNode("I0", '[0,1]', get_node_type(input_df.iat[0, 1])) input_10 = GraphNode("I0", '[1,0]', get_node_type(input_df.iat[1, 0])) input_11 = GraphNode("I0", '[1,1]', get_node_type(input_df.iat[1, 1])) input_20 = GraphNode("I0", '[2,0]', get_node_type(input_df.iat[2, 0])) input_21 = GraphNode("I0", '[2,1]', get_node_type(input_df.iat[2, 1])) output_df = pd.DataFrame([[2, 3]]) output_00 = GraphNode("O0", '[0,0]', get_node_type(output_df.iat[0, 0])) output_01 = GraphNode("O0", '[0,1]', get_node_type(output_df.iat[0, 1])) options = GraphOptions() options.NODE_TYPES = True rel_graph: RelationGraph = RelationGraph(options) rel_graph.from_input_output([input_df], output_df) rel_graph_edges = rel_graph.edges # positional edges positional_edges = [ GraphEdge(input_00, input_01, GraphEdgeType.ADJACENCY), GraphEdge(input_00, input_10, GraphEdgeType.ADJACENCY), GraphEdge(input_10, input_11, GraphEdgeType.ADJACENCY), GraphEdge(input_10, input_20, GraphEdgeType.ADJACENCY), GraphEdge(input_20, input_21, GraphEdgeType.ADJACENCY), GraphEdge(input_01, input_11, GraphEdgeType.ADJACENCY), GraphEdge(input_11, input_21, GraphEdgeType.ADJACENCY), GraphEdge(output_00, output_01, GraphEdgeType.ADJACENCY) ] for edge in positional_edges: self.assertTrue(edge in rel_graph_edges, "Could not find edge %s in set of edges:\n%s" % (edge, rel_graph_edges)) # equality edges equality_edges = [ GraphEdge(input_10, output_00, GraphEdgeType.EQUALITY), GraphEdge(input_20, output_00, GraphEdgeType.EQUALITY), GraphEdge(input_01, output_00, GraphEdgeType.EQUALITY), # redundant GraphEdge(input_11, output_01, GraphEdgeType.EQUALITY) ] for edge in equality_edges: self.assertTrue(edge in rel_graph_edges, "Could not find edge %s in set of edges:\n%s" % (edge, rel_graph_edges)) def test_max_series(self): input_df = pd.DataFrame([[1, 2], [2, 3], [2, 0]]) input_00 = GraphNode("I0", '[0,0]', get_node_type(input_df.iat[0, 0])) input_01 = GraphNode("I0", '[0,1]', get_node_type(input_df.iat[0, 1])) input_10 = GraphNode("I0", '[1,0]', get_node_type(input_df.iat[1, 0])) input_11 = GraphNode("I0", '[1,1]', get_node_type(input_df.iat[1, 1])) input_20 = GraphNode("I0", '[2,0]', get_node_type(input_df.iat[2, 0])) input_21 = GraphNode("I0", '[2,1]', get_node_type(input_df.iat[2, 1])) output = pd.DataFrame.max(input_df) output_00 = GraphNode("O0", '[0,0]', get_node_type(output.iat[0])) output_10 = GraphNode("O0", '[1,0]', get_node_type(output.iat[1])) options = GraphOptions() options.NODE_TYPES = True rel_graph: RelationGraph = RelationGraph(options) rel_graph.from_input_output([input_df], output) rel_graph_edges = rel_graph.edges # positional edges positional_edges = [ GraphEdge(input_00, input_01, GraphEdgeType.ADJACENCY), GraphEdge(input_00, input_10, GraphEdgeType.ADJACENCY), GraphEdge(input_10, input_11, GraphEdgeType.ADJACENCY), GraphEdge(input_10, input_20, GraphEdgeType.ADJACENCY), GraphEdge(input_20, input_21, GraphEdgeType.ADJACENCY), GraphEdge(input_01, input_11, GraphEdgeType.ADJACENCY), GraphEdge(input_11, input_21, GraphEdgeType.ADJACENCY), GraphEdge(output_00, output_10, GraphEdgeType.ADJACENCY) ] for edge in positional_edges: self.assertTrue(edge in rel_graph_edges, "Could not find edge %s in set of edges:\n%s" % (edge, rel_graph_edges)) # equality edges equality_edges = [ GraphEdge(input_10, output_00, GraphEdgeType.EQUALITY), GraphEdge(input_20, output_00, GraphEdgeType.EQUALITY), GraphEdge(input_01, output_00, GraphEdgeType.EQUALITY), # redundant GraphEdge(input_11, output_10, GraphEdgeType.EQUALITY) ] for edge in equality_edges: self.assertTrue(edge in rel_graph_edges, "Could not find edge %s in set of edges:\n%s" % (edge, rel_graph_edges)) def test_values(self): input_df = pd.DataFrame([[1, 2], [3, 4]]) input_00 = GraphNode("I0", '[0,0]', get_node_type(input_df.iat[0, 0])) input_01 = GraphNode("I0", '[0,1]', get_node_type(input_df.iat[0, 1])) input_10 = GraphNode("I0", '[1,0]', get_node_type(input_df.iat[1, 0])) input_11 = GraphNode("I0", '[1,1]', get_node_type(input_df.iat[1, 1])) output = input_df.values output_00 = GraphNode("O0", '[0,0]', get_node_type(output[0, 0])) output_01 = GraphNode("O0", '[0,1]', get_node_type(output[0, 1])) output_10 = GraphNode("O0", '[1,0]', get_node_type(output[1, 0])) output_11 = GraphNode("O0", '[1,1]', get_node_type(output[1, 1])) options = GraphOptions() options.NODE_TYPES = True rel_graph: RelationGraph = RelationGraph(options) rel_graph.from_input_output([input_df], output) rel_graph_edges = rel_graph.edges # positional edges positional_edges = [ GraphEdge(input_00, input_01, GraphEdgeType.ADJACENCY), GraphEdge(input_00, input_10, GraphEdgeType.ADJACENCY), GraphEdge(input_10, input_11, GraphEdgeType.ADJACENCY), GraphEdge(input_01, input_11, GraphEdgeType.ADJACENCY), GraphEdge(output_00, output_01, GraphEdgeType.ADJACENCY), GraphEdge(output_00, output_10, GraphEdgeType.ADJACENCY), GraphEdge(output_10, output_11, GraphEdgeType.ADJACENCY), GraphEdge(output_01, output_11, GraphEdgeType.ADJACENCY) ] for edge in positional_edges: self.assertTrue(edge in rel_graph_edges, "Could not find edge %s in set of edges:\n%s" % (edge, rel_graph_edges)) equality_edges = [ GraphEdge(input_00, output_00, GraphEdgeType.EQUALITY), GraphEdge(input_10, output_10, GraphEdgeType.EQUALITY), GraphEdge(input_01, output_01, GraphEdgeType.EQUALITY), GraphEdge(input_11, output_11, GraphEdgeType.EQUALITY) ] for edge in equality_edges: self.assertTrue(edge in rel_graph_edges, "Could not find edge %s in set of edges:\n%s" % (edge, rel_graph_edges)) def test_dict(self): input_df = pd.DataFrame([[1, 2], [3, 4]]) input_00 = GraphNode("I0", '[0,0]', get_node_type(input_df.iat[0, 0])) input_01 = GraphNode("I0", '[0,1]', get_node_type(input_df.iat[0, 1])) input_10 = GraphNode("I0", '[1,0]', get_node_type(input_df.iat[1, 0])) input_11 = GraphNode("I0", '[1,1]', get_node_type(input_df.iat[1, 1])) output = {"A": [1, 3], "B": [2, 4]} output_00 = GraphNode("O0", '[0,0]', get_node_type(output['A'][0])) output_01 = GraphNode("O0", '[0,1]', get_node_type(output['B'][0])) output_10 = GraphNode("O0", '[1,0]', get_node_type(output['A'][1])) output_11 = GraphNode("O0", '[1,1]', get_node_type(output['B'][1])) options = GraphOptions() options.NODE_TYPES = True rel_graph: RelationGraph = RelationGraph(options) rel_graph.from_input_output([input_df], output) rel_graph_edges = rel_graph.edges positional_edges = [ GraphEdge(input_00, input_01, GraphEdgeType.ADJACENCY), GraphEdge(input_00, input_10, GraphEdgeType.ADJACENCY), GraphEdge(input_10, input_11, GraphEdgeType.ADJACENCY), GraphEdge(input_01, input_11, GraphEdgeType.ADJACENCY), GraphEdge(output_00, output_01, GraphEdgeType.ADJACENCY), GraphEdge(output_00, output_10, GraphEdgeType.ADJACENCY), GraphEdge(output_10, output_11, GraphEdgeType.ADJACENCY), GraphEdge(output_01, output_11, GraphEdgeType.ADJACENCY) ] for edge in positional_edges: self.assertTrue(edge in rel_graph_edges, "Could not find edge %s in set of edges:\n%s" % (edge, rel_graph_edges)) equality_edges = [ GraphEdge(input_00, output_00, GraphEdgeType.EQUALITY), GraphEdge(input_10, output_10, GraphEdgeType.EQUALITY), GraphEdge(input_01, output_01, GraphEdgeType.EQUALITY), GraphEdge(input_11, output_11, GraphEdgeType.EQUALITY) ] for edge in equality_edges: self.assertTrue(edge in rel_graph_edges, "Could not find edge %s in set of edges:\n%s" % (edge, rel_graph_edges)) def test_groupby_output(self): input_df = pd.DataFrame({ "Name": ["Alice", "Bob", "Mallory", "Mallory", "Bob", "Mallory"], "City": ["Seattle", "Seattle", "Portland", "Seattle", "Seattle", "Portland"]}) output = input_df.groupby("Name") options = GraphOptions() options.NODE_TYPES = True options.ADJACENCY_EDGES = False rel_graph: RelationGraph = RelationGraph(options) rel_graph.from_input_output([input_df], output) rel_graph_edges = rel_graph.edges alice_nodes_in = [ GraphNode("I0", '[0,0]', GraphNodeType.STR) ] alice_nodes_out = [ GraphNode("O0_0", '[0,0]', GraphNodeType.STR) ] bob_nodes_in = [ GraphNode("I0", '[1,0]', GraphNodeType.STR), GraphNode("I0", '[4,0]', GraphNodeType.STR) ] bob_nodes_out = [ GraphNode("O0_1", '[0,0]', GraphNodeType.STR), GraphNode("O0_1", '[1,0]', GraphNodeType.STR) ] mallory_nodes_in = [ GraphNode("I0", '[2,0]', GraphNodeType.STR), GraphNode("I0", '[3,0]', GraphNodeType.STR), GraphNode("I0", '[5,0]', GraphNodeType.STR) ] mallory_nodes_out = [ GraphNode("O0_2", '[0,0]', GraphNodeType.STR), GraphNode("O0_2", '[1,0]', GraphNodeType.STR), GraphNode("O0_2", '[2,0]', GraphNodeType.STR) ] seattle_nodes_in = [ GraphNode("I0", '[0,1]', GraphNodeType.STR), GraphNode("I0", '[1,1]', GraphNodeType.STR), GraphNode("I0", '[3,1]', GraphNodeType.STR), GraphNode("I0", '[4,1]', GraphNodeType.STR), ] seattle_nodes_out = [ GraphNode("O0_0", '[0,1]', GraphNodeType.STR), GraphNode("O0_1", '[0,1]', GraphNodeType.STR), GraphNode("O0_2", '[1,1]', GraphNodeType.STR) ] portland_nodes_in = [ GraphNode("I0", '[2,1]', GraphNodeType.STR), GraphNode("I0", '[5,1]', GraphNodeType.STR) ] portland_nodes_out = [ GraphNode("O0_2", '[0,1]', GraphNodeType.STR), GraphNode("O0_2", '[2,1]', GraphNodeType.STR) ] def check_edges(in_nodes, out_nodes): for in_node in in_nodes: for out_node in out_nodes: edge = GraphEdge(in_node, out_node, GraphEdgeType.EQUALITY) self.assertTrue(edge in rel_graph_edges, "Could not find edge %s in set of edges:\n%s" % (edge, rel_graph_edges)) check_edges(alice_nodes_in, alice_nodes_out) check_edges(bob_nodes_in, bob_nodes_out) check_edges(mallory_nodes_in, mallory_nodes_out) check_edges(portland_nodes_in, portland_nodes_out) check_edges(seattle_nodes_in, seattle_nodes_out) def test_groupby_input(self): df = pd.DataFrame({ "Name": ["Alice", "Bob", "Mallory", "Mallory", "Bob", "Mallory"], "City": ["Seattle", "Seattle", "Portland", "Seattle", "Seattle", "Portland"]}) input_ = df.groupby("Name") output = input_.count().reset_index() options = GraphOptions() options.NODE_TYPES = True options.ADJACENCY_EDGES = False rel_graph: RelationGraph = RelationGraph(options) rel_graph.from_input_output([input_], output) rel_graph_edges = rel_graph.edges alice_nodes_in = [ GraphNode("I0_0", '[0,0]', GraphNodeType.STR) ] alice_nodes_out = [ GraphNode("O0", '[0,0]', GraphNodeType.STR) ] bob_nodes_in = [ GraphNode("I0_1", '[0,0]', GraphNodeType.STR), GraphNode("I0_1", '[1,0]', GraphNodeType.STR) ] bob_nodes_out = [ GraphNode("O0", '[1,0]', GraphNodeType.STR) ] mallory_nodes_in = [ GraphNode("I0_2", '[0,0]', GraphNodeType.STR), GraphNode("I0_2", '[1,0]', GraphNodeType.STR), GraphNode("I0_2", '[2,0]', GraphNodeType.STR) ] mallory_nodes_out = [ GraphNode("O0", '[2,0]', GraphNodeType.STR) ] def check_edges(in_nodes, out_nodes): for in_node in in_nodes: for out_node in out_nodes: edge = GraphEdge(in_node, out_node, GraphEdgeType.EQUALITY) self.assertTrue(edge in rel_graph_edges, "Could not find edge %s in set of edges:\n%s" % (edge, rel_graph_edges)) check_edges(alice_nodes_in, alice_nodes_out) check_edges(bob_nodes_in, bob_nodes_out) check_edges(mallory_nodes_in, mallory_nodes_out) def test_idx_multi(self): tuples = [("bar", "one"), ("bar", "two")] index =
pd.MultiIndex.from_tuples(tuples)
pandas.MultiIndex.from_tuples
# coding: utf-8 # CS FutureMobility Tool # See full license in LICENSE.txt. import numpy as np import pandas as pd #import openmatrix as omx from IPython.display import display from openpyxl import load_workbook,Workbook from time import strftime import os.path import mode_choice.model_defs as md import mode_choice.matrix_utils as mtx import config ''' Utilities to summarize the outputs of Mode Choice ''' def display_mode_share(mc_obj): ''' This displays a mode share summary by market segment (with / without vehicle, peak / off-peak) on the IPython notebook. :param mc_obj: mode choice module object as defined in the IPython notebook ''' # display mode share tables avg_trips_by_mode = pd.DataFrame(None) for purpose in ['HBW','HBO', 'NHB', 'HBSc1', 'HBSc2', 'HBSc3']: avg_trips_by_mode = avg_trips_by_mode.add(pd.DataFrame({pv:{mode:(mc_obj.table_container.get_table(purpose)[pv][mode].sum()) for mode in mc_obj.table_container.get_table(purpose)[pv]} for pv in ['0_PK','1_PK','0_OP','1_OP']}).T, fill_value = 0) avg_mode_share = avg_trips_by_mode.divide(avg_trips_by_mode.sum(1),axis = 0) display(avg_mode_share.style.format("{:.2%}")) def write_boston_neighbortown_mode_share_to_excel(mc_obj): ''' Writes mode share summary by purpose and market segment to an Excel workbook. Applies only to trips to/from Boston :param mc_obj: mode choice module object as defined in the IPython notebook :param out_excel_fn: output Excel filename, by default in the output path defined in config.py ''' out_excel_fn = mc_obj.config.out_path + "mode_share_bosNB_{0}.xlsx".format(strftime("%Y%m%d")) # check if file exists. if os.path.isfile(out_excel_fn): book = load_workbook(out_excel_fn) else: book = Workbook() book.save(out_excel_fn) writer = pd.ExcelWriter(out_excel_fn,engine = 'openpyxl') writer.book = book for purp in md.purposes: mode_share = pd.DataFrame(columns = md.peak_veh) trip_table = mc_obj.table_container.get_table(purp) for pv in md.peak_veh: for mode in trip_table[pv].keys(): #study area zones might not start at zone 0 and could have discontinous TAZ IDs trip_table_o = mtx.OD_slice(trip_table[pv][mode], O_slice = md.taz['BOSTON'], D_slice = md.taz['BOS_AND_NEI']) trip_table_d = mtx.OD_slice(trip_table[pv][mode], O_slice = md.taz['BOS_AND_NEI'], D_slice = md.taz['BOSTON']) trip_table_b = mtx.OD_slice(trip_table[pv][mode], O_slice = md.taz['BOSTON'], D_slice = md.taz['BOSTON']) trip_table_bos = trip_table_o + trip_table_d - trip_table_b mode_share.loc[mode,pv] = trip_table_bos.sum() mode_share['Total'] = mode_share.sum(1) mode_share['Share'] = mode_share['Total'] / mode_share['Total'].sum() if purp in book.sheetnames: # if sheetname exists, delete book.remove(book[purp]) writer.save() mode_share.to_excel(writer, sheet_name = purp) writer.save() def write_study_area_mode_share_to_excel(mc_obj, out_excel_fn = None): ''' Writes mode share summary by purpose and market segment to an Excel workbook. Applies only to trips to/from study area :param mc_obj: mode choice module object as defined in the IPython notebook :param out_excel_fn: output Excel filename, by default in the output path defined in config.py ''' if out_excel_fn is None: out_excel_fn = mc_obj.config.out_path + "mode_share_study_area_{0}.xlsx".format(strftime("%Y%m%d")) # check if file exists. if os.path.isfile(out_excel_fn): book = load_workbook(out_excel_fn) else: book = Workbook() book.save(out_excel_fn) writer = pd.ExcelWriter(out_excel_fn,engine = 'openpyxl') writer.book = book for purp in md.purposes: mode_share = pd.DataFrame(columns = md.peak_veh) trip_table = mc_obj.table_container.get_table(purp) for pv in md.peak_veh: for mode in trip_table[pv].keys(): trip_table_o = mtx.OD_slice(trip_table[pv][mode], O_slice = md.study_area) trip_table_d = mtx.OD_slice(trip_table[pv][mode], D_slice = md.study_area) trip_table_ii = mtx.OD_slice(trip_table[pv][mode], O_slice = md.study_area, D_slice = md.study_area) trip_table_sa = trip_table_o + trip_table_d - trip_table_ii mode_share.loc[mode,pv] = trip_table_sa.sum() mode_share['Total'] = mode_share.sum(1) mode_share['Share'] = mode_share['Total'] / mode_share['Total'].sum() if purp in book.sheetnames: # if sheetname exists, delete book.remove(book[purp]) writer.save() mode_share.to_excel(writer, sheet_name = purp) writer.save() def write_mode_share_to_excel(mc_obj,purpose, out_excel_fn = None): ''' Writes mode share summary by purpose and market segment to an Excel workbook. :param mc_obj: mode choice module object as defined in the IPython notebook :param purpose: can be a single purpose or 'all', in which case the Excel workbook has six sheets, one for each purpose. :param out_excel_fn: output Excel filename, by default in the output path defined in config.py ''' if out_excel_fn is None: out_excel_fn = mc_obj.config.out_path + "MC_mode_share_{0}_{1}.xlsx".format(purpose, strftime("%Y%m%d")) if purpose == 'all': # check if file exists. if os.path.isfile(out_excel_fn): book = load_workbook(out_excel_fn) else: book = Workbook() book.save(out_excel_fn) writer = pd.ExcelWriter(out_excel_fn,engine = 'openpyxl') writer.book = book for purp in md.purposes: trip_table = mc_obj.table_container.get_table(purp) mode_share = pd.DataFrame(columns = md.peak_veh) for pv in md.peak_veh: for mode in trip_table[pv].keys(): mode_share.loc[mode,pv] = trip_table[pv][mode].sum() mode_share['Total'] = mode_share.sum(1) mode_share['Share'] = mode_share['Total'] / mode_share['Total'].sum() if purp in book.sheetnames: # if sheetname exists, delete book.remove(book[purp]) writer.save() mode_share.to_excel(writer, sheet_name = purp) writer.save() elif purpose in md.purposes: # check if file exists. if os.path.isfile(out_excel_fn): book = load_workbook(out_excel_fn) else: book = Workbook() book.save(out_excel_fn) writer = pd.ExcelWriter(out_excel_fn,engine = 'openpyxl') writer.book = book mode_share = pd.DataFrame(columns = md.peak_veh) for pv in md.peak_veh: for mode in mc_obj.trips_by_mode[pv].keys(): mode_share.loc[mode,pv] = mc_obj.trips_by_mode[pv][mode].sum() mode_share['Total'] = mode_share.sum(1) mode_share['Share'] = mode_share['Total'] / mode_share['Total'].sum() if purpose in book.sheetnames: # if sheetname exists, delete book.remove(book[purpose]) writer.save() mode_share.to_excel(writer, sheet_name = purpose) writer.save() def __mt_prod_attr_nhood(mc_obj, trip_table, skim): # miles traveled. For VMT and PMT, by neighborhood # sum prodct of trip_table - skims mt_total = trip_table * skim['Length (Skim)'] # calculate marginals prod = pd.DataFrame(np.sum(mt_total,axis = 1)/2, columns = ['Production']) attr = pd.DataFrame(np.sum(mt_total,axis = 0) / 2, columns = ['Attraction']) towns = mc_obj.taz.sort_values(md.taz_ID_field).iloc[0:md.max_zone] mt_taz = pd.concat([towns[[md.taz_ID_field,'BOSTON_NB']],prod,attr],axis = 1,join = 'inner') mt_taz.index.names=['Boston Neighborhood'] return mt_taz.groupby(['BOSTON_NB']).sum()[['Production','Attraction']].reset_index() def __trip_prod_attr_nhood(mc_obj, trip_table): mt_total = trip_table # calculate marginals prod = pd.DataFrame(np.sum(mt_total,axis = 1), columns = ['Production']) attr = pd.DataFrame(np.sum(mt_total,axis = 0), columns = ['Attraction']) towns = mc_obj.taz.sort_values(md.taz_ID_field).iloc[0:md.max_zone] mt_taz = pd.concat([towns[[md.taz_ID_field,'BOSTON_NB']],prod,attr],axis = 1,join = 'inner') mt_taz.index.names=['Boston Neighborhood'] return mt_taz.groupby(['BOSTON_NB']).sum()[['Production','Attraction']].reset_index() def sm_vmt_by_neighborhood(mc_obj, out_fn = None, by = None, sm_mode = 'SM_RA'): ''' Summarizes VMT production and attraction by the 26 Boston neighborhoods for Shared Mobility Modes. :param mc_obj: mode choice module object as defined in the IPython notebook :param out_fn: output csv filename; if None specified, in the output path defined in config.py :param by: grouping used for the summary; if None specified, only aggregate production and attraction will be provided. ''' if out_fn is None and by is None: out_fn = mc_obj.config.out_path + sm_mode + f'_vmt_by_neighborhood.csv' elif out_fn is None and by: out_fn = mc_obj.config.out_path + sm_mode + f'_vmt_by_neighborhood_by_{by}.csv' skim_dict = {'PK': mc_obj.drive_skim_PK,'OP':mc_obj.drive_skim_OP} if by in ['peak','veh_own','purpose'] == False: print('Only supports VMT by neighborhood, peak / vehicle ownership, purpose.') return else: vmt_master_table = pd.DataFrame(columns = ['Production','Attraction','peak','veh_own','purpose']) for purpose in md.purposes: for peak in ['PK','OP']: for veh_own in ['0','1']: if mc_obj.table_container.get_table(purpose): auto_trip_table = mc_obj.table_container.get_table(purpose)[f'{veh_own}_{peak}'][sm_mode] / md.AO_dict[sm_mode] vmt_table = __mt_prod_attr_nhood(mc_obj,auto_trip_table,skim_dict[peak]) vmt_table['peak'] = peak vmt_table['veh_own'] = veh_own vmt_table['purpose'] = purpose vmt_master_table = vmt_master_table.append(vmt_table, sort = True) if by == None: vmt_summary = vmt_master_table.groupby('BOSTON_NB').sum() elif by == 'peak': vmt_summary = pd.concat([ vmt_master_table.groupby(['peak','BOSTON_NB']).sum().loc[peak] for peak in ['PK','OP']], axis = 1, keys = ['PK','OP']) elif by == 'veh_own': vmt_summary = pd.concat([ vmt_master_table.groupby(['veh_own','BOSTON_NB']).sum().loc[veh_own] for veh_own in ['0','1']], axis = 1, keys = ['No car', 'With car'] ) elif by == 'purpose': vmt_summary = pd.concat([ vmt_master_table.groupby(['purpose','BOSTON_NB']).sum().loc[purpose] for purpose in vmt_master_table.purpose.unique()],axis = 1, keys= vmt_master_table.purpose.unique()) vmt_summary.to_csv(out_fn) def vmt_by_neighborhood(mc_obj, out_fn = None, by = None): ''' Summarizes VMT production and attraction by the 26 Boston neighborhoods. :param mc_obj: mode choice module object as defined in the IPython notebook :param out_fn: output csv filename; if None specified, in the output path defined in config.py :param by: grouping used for the summary; if None specified, only aggregate production and attraction will be provided. ''' if out_fn is None and by is None: out_fn = mc_obj.config.out_path + f'vmt_by_neighborhood.csv' elif out_fn is None and by: out_fn = mc_obj.config.out_path + f'vmt_by_neighborhood_by_{by}.csv' skim_dict = {'PK': mc_obj.drive_skim_PK,'OP':mc_obj.drive_skim_OP} if by in ['peak','veh_own','purpose'] == False: print('Only supports VMT by neighborhood, peak / vehicle ownership, purpose.') return else: vmt_master_table = pd.DataFrame(columns = ['Production','Attraction','peak','veh_own','purpose']) for purpose in md.purposes: for peak in ['PK','OP']: for veh_own in ['0','1']: if mc_obj.table_container.get_table(purpose): drive_modes = mc_obj.table_container.get_table(purpose)[f'{veh_own}_{peak}'].keys() auto_trip_table = sum([ mc_obj.table_container.get_table(purpose)[f'{veh_own}_{peak}'][mode] / md.AO_dict[mode] for mode in ['DA','SR2','SR3+','SM_RA','SM_SH'] if mode in drive_modes]) vmt_table = __mt_prod_attr_nhood(mc_obj,auto_trip_table,skim_dict[peak]) vmt_table['peak'] = peak vmt_table['veh_own'] = veh_own vmt_table['purpose'] = purpose vmt_master_table = vmt_master_table.append(vmt_table, sort = True) if by == None: vmt_summary = vmt_master_table.groupby('BOSTON_NB').sum() elif by == 'peak': vmt_summary = pd.concat([ vmt_master_table.groupby(['peak','BOSTON_NB']).sum().loc[peak] for peak in ['PK','OP']], axis = 1, keys = ['PK','OP']) elif by == 'veh_own': vmt_summary = pd.concat([ vmt_master_table.groupby(['veh_own','BOSTON_NB']).sum().loc[veh_own] for veh_own in ['0','1']], axis = 1, keys = ['No car', 'With car'] ) elif by == 'purpose': vmt_summary = pd.concat([ vmt_master_table.groupby(['purpose','BOSTON_NB']).sum().loc[purpose] for purpose in vmt_master_table.purpose.unique()],axis = 1, keys= vmt_master_table.purpose.unique()) vmt_summary.to_csv(out_fn) def pmt_by_neighborhood(mc_obj, out_fn = None, by = None): ''' Summarizes PMT production and attraction by the 26 Boston neighborhoods. :param mc_obj: mode choice module object as defined in the IPython notebook :param out_fn: output csv filename; if None specified, in the output path defined in config.py :param by: grouping used for the summary; if None specified, only aggregate production and attraction will be provided. ''' if out_fn is None and by is None: out_fn = mc_obj.config.out_path + f'pmt_by_neighborhood.csv' elif out_fn is None and by: out_fn = mc_obj.config.out_path + f'pmt_by_neighborhood_by_{by}.csv' skim_dict = {'PK': mc_obj.drive_skim_PK,'OP':mc_obj.drive_skim_OP} if by in ['peak','veh_own','purpose'] == False: print('Only supports PMT by neighborhood, peak / vehicle ownership, purpose.') return else: pmt_master_table = pd.DataFrame(columns = ['Production','Attraction','peak','veh_own','purpose']) for purpose in md.purposes: for peak in ['PK','OP']: for veh_own in ['0','1']: if mc_obj.table_container.get_table(purpose): drive_modes = mc_obj.table_container.get_table(purpose)[f'{veh_own}_{peak}'].keys() person_trip_table = sum([mc_obj.table_container.get_table(purpose)[f'{veh_own}_{peak}'][mode] for mode in md.modes if mode in drive_modes]) pmt_table = __mt_prod_attr_nhood(mc_obj,person_trip_table,skim_dict[peak]) pmt_table['peak'] = peak pmt_table['veh_own'] = veh_own pmt_table['purpose'] = purpose pmt_master_table = pmt_master_table.append(pmt_table, sort = True) if by == None: pmt_summary = pmt_master_table.groupby('BOSTON_NB').sum() elif by == 'peak': pmt_summary = pd.concat([ pmt_master_table.groupby(['peak','BOSTON_NB']).sum().loc[peak] for peak in ['PK','OP']], axis = 1, keys = ['PK','OP']) elif by == 'veh_own': pmt_summary = pd.concat([ pmt_master_table.groupby(['veh_own','BOSTON_NB']).sum().loc[veh_own] for veh_own in ['0','1']], axis = 1, keys = ['No car', 'With car'] ) elif by == 'purpose': pmt_summary = pd.concat([ pmt_master_table.groupby(['purpose','BOSTON_NB']).sum().loc[purpose] for purpose in pmt_master_table.purpose.unique()],axis = 1, keys= pmt_master_table.purpose.unique()) pmt_summary.to_csv(out_fn) def act_pmt_by_neighborhood(mc_obj, out_fn = None, by = None): ''' Summarizes PMT production and attraction by the 26 Boston neighborhoods for active modes. :param mc_obj: mode choice module object as defined in the IPython notebook :param out_fn: output csv filename; if None specified, in the output path defined in config.py :param by: grouping used for the summary; if None specified, only aggregate production and attraction will be provided. ''' if out_fn is None and by is None: out_fn = mc_obj.config.out_path + f'act_pmt_by_neighborhood.csv' elif out_fn is None and by: out_fn = mc_obj.config.out_path + f'act_pmt_by_neighborhood_by_{by}.csv' skim_dict = {'PK': mc_obj.drive_skim_PK,'OP':mc_obj.drive_skim_OP} if by in ['peak','veh_own','purpose'] == False: print('Only supports PMT by neighborhood, peak / vehicle ownership, purpose.') return else: pmt_master_table = pd.DataFrame(columns = ['Production','Attraction','peak','veh_own','purpose']) for purpose in md.purposes: for peak in ['PK','OP']: for veh_own in ['0','1']: if mc_obj.table_container.get_table(purpose): drive_modes = mc_obj.table_container.get_table(purpose)[f'{veh_own}_{peak}'].keys() person_trip_table = sum([mc_obj.table_container.get_table(purpose)[f'{veh_own}_{peak}'][mode] for mode in ['Walk','Bike'] if mode in drive_modes]) pmt_table = __mt_prod_attr_nhood(mc_obj,person_trip_table,skim_dict[peak]) pmt_table['peak'] = peak pmt_table['veh_own'] = veh_own pmt_table['purpose'] = purpose pmt_master_table = pmt_master_table.append(pmt_table, sort = True) if by == None: pmt_summary = pmt_master_table.groupby('BOSTON_NB').sum() elif by == 'peak': pmt_summary = pd.concat([ pmt_master_table.groupby(['peak','BOSTON_NB']).sum().loc[peak] for peak in ['PK','OP']], axis = 1, keys = ['PK','OP']) elif by == 'veh_own': pmt_summary = pd.concat([ pmt_master_table.groupby(['veh_own','BOSTON_NB']).sum().loc[veh_own] for veh_own in ['0','1']], axis = 1, keys = ['No car', 'With car'] ) elif by == 'purpose': pmt_summary = pd.concat([ pmt_master_table.groupby(['purpose','BOSTON_NB']).sum().loc[purpose] for purpose in pmt_master_table.purpose.unique()],axis = 1, keys= pmt_master_table.purpose.unique()) pmt_summary.to_csv(out_fn) def sm_trips_by_neighborhood(mc_obj, out_fn = None, by = None, sm_mode = 'SM_RA'): ''' Summarizes PMT production and attraction by the 26 Boston neighborhoods for Shared Mobility Modes. :param mc_obj: mode choice module object as defined in the IPython notebook :param out_fn: output csv filename; if None specified, in the output path defined in config.py :param by: grouping used for the summary; if None specified, only aggregate production and attraction will be provided. :param sm_mode: Smart Mobility Mode name ''' if out_fn is None and by is None: out_fn = mc_obj.config.out_path + sm_mode + f'_trips_by_neighborhood.csv' elif out_fn is None and by: out_fn = mc_obj.config.out_path + sm_mode + f'_trips_by_neighborhood_by_{by}.csv' if by in ['peak','veh_own','purpose'] == False: print('Only supports Trips by neighborhood, peak / vehicle ownership, purpose.') return else: trp_master_table = pd.DataFrame(columns = ['Production','Attraction','peak','veh_own','purpose']) for purpose in md.purposes: for peak in ['PK','OP']: for veh_own in ['0','1']: if mc_obj.table_container.get_table(purpose): person_trip_table = mc_obj.table_container.get_table(purpose)[f'{veh_own}_{peak}'][sm_mode] trp_table = __trip_prod_attr_nhood(mc_obj,person_trip_table) trp_table['peak'] = peak trp_table['veh_own'] = veh_own trp_table['purpose'] = purpose trp_master_table = trp_master_table.append(trp_table, sort = True) if by == None: trp_summary = trp_master_table.groupby('BOSTON_NB').sum() elif by == 'peak': trp_summary = pd.concat([ trp_master_table.groupby(['peak','BOSTON_NB']).sum().loc[peak] for peak in ['PK','OP']], axis = 1, keys = ['PK','OP']) elif by == 'veh_own': trp_summary = pd.concat([ trp_master_table.groupby(['veh_own','BOSTON_NB']).sum().loc[veh_own] for veh_own in ['0','1']], axis = 1, keys = ['No car', 'With car'] ) elif by == 'purpose': trp_summary = pd.concat([ trp_master_table.groupby(['purpose','BOSTON_NB']).sum().loc[purpose] for purpose in trp_master_table.purpose.unique()],axis = 1, keys= trp_master_table.purpose.unique()) trp_summary.to_csv(out_fn) def trips_by_neighborhood(mc_obj, out_fn = None, by = None): ''' Summarizes PMT production and attraction by the 26 Boston neighborhoods. :param mc_obj: mode choice module object as defined in the IPython notebook :param out_fn: output csv filename; if None specified, in the output path defined in config.py :param by: grouping used for the summary; if None specified, only aggregate production and attraction will be provided. ''' if out_fn is None and by is None: out_fn = mc_obj.config.out_path + f'trips_by_neighborhood.csv' elif out_fn is None and by: out_fn = mc_obj.config.out_path + f'trips_by_neighborhood_by_{by}.csv' if by in ['peak','veh_own','purpose'] == False: print('Only supports Trips by neighborhood, peak / vehicle ownership, purpose.') return else: trp_master_table = pd.DataFrame(columns = ['Production','Attraction','peak','veh_own','purpose']) for purpose in md.purposes: for peak in ['PK','OP']: for veh_own in ['0','1']: if mc_obj.table_container.get_table(purpose): drive_modes = mc_obj.table_container.get_table(purpose)[f'{veh_own}_{peak}'].keys() person_trip_table = sum([mc_obj.table_container.get_table(purpose)[f'{veh_own}_{peak}'][mode] for mode in md.modes if mode in drive_modes]) trp_table = __trip_prod_attr_nhood(mc_obj,person_trip_table) trp_table['peak'] = peak trp_table['veh_own'] = veh_own trp_table['purpose'] = purpose trp_master_table = trp_master_table.append(trp_table, sort = True) if by == None: trp_summary = trp_master_table.groupby('BOSTON_NB').sum() elif by == 'peak': trp_summary = pd.concat([ trp_master_table.groupby(['peak','BOSTON_NB']).sum().loc[peak] for peak in ['PK','OP']], axis = 1, keys = ['PK','OP']) elif by == 'veh_own': trp_summary = pd.concat([ trp_master_table.groupby(['veh_own','BOSTON_NB']).sum().loc[veh_own] for veh_own in ['0','1']], axis = 1, keys = ['No car', 'With car'] ) elif by == 'purpose': trp_summary = pd.concat([ trp_master_table.groupby(['purpose','BOSTON_NB']).sum().loc[purpose] for purpose in trp_master_table.purpose.unique()],axis = 1, keys= trp_master_table.purpose.unique()) trp_summary.to_csv(out_fn) def mode_share_by_neighborhood(mc_obj, out_fn = None, by = None): ''' Summarizes mode share as the average of trips to/from the 26 Boston neighborhoods, in three categories - drive, non-motorized and transit. :param mc_obj: mode choice module object as defined in the IPython notebook :param out_fn: output csv filename; if None specified, in the output path defined in config.py :param by: grouping used for the summary ''' if out_fn is None and by is None: out_fn = mc_obj.config.out_path + f'mode_share_by_neighborhood.csv' elif out_fn is None and by: out_fn = mc_obj.config.out_path + f'mode_share_by_neighborhood_by_{by}.csv' if by in ['peak','veh_own','purpose'] == False: print('Only supports mode share by neighborhood, peak / vehicle ownership, purpose.') return else: share_master_table = pd.DataFrame(columns = ['drive','non-motorized','transit','peak','veh_own','purpose']) for purpose in md.purposes: for peak in ['PK','OP']: for veh_own in ['0','1']: if mc_obj.table_container.get_table(purpose): share_table = pd.DataFrame(index = range(0,md.max_zone),columns = ['drive','non-motorized','transit','smart mobility']).fillna(0) for mode in mc_obj.table_container.get_table(purpose)[f'{veh_own}_{peak}']: trip_table = mc_obj.table_container.get_table(purpose)[f'{veh_own}_{peak}'][mode] category = md.mode_categories[mode] share_table[category] += (trip_table.sum(axis = 1)+trip_table.sum(axis = 0))/2 towns = mc_obj.taz.sort_values(md.taz_ID_field).iloc[0:md.max_zone] trips = pd.concat([towns[[md.taz_ID_field,'BOSTON_NB']],share_table],axis = 1,join = 'inner').groupby(['BOSTON_NB']).sum().drop([md.taz_ID_field],axis = 1) trips['peak'] = peak trips['veh_own'] = veh_own trips['purpose'] = purpose share_master_table = share_master_table.append(trips.reset_index(), sort = True) if by == None: trip_summary = share_master_table.groupby('BOSTON_NB').sum() share_summary = trip_summary.divide(trip_summary.sum(axis = 1),axis = 0) elif by == 'peak': share_summary = pd.concat([ share_master_table.groupby(['peak','BOSTON_NB']).sum().loc[peak].divide( share_master_table.groupby(['peak','BOSTON_NB']).sum().loc[peak].sum(axis=1),axis = 0) for peak in ['PK','OP'] ], axis = 1, keys = ['PK','OP']) elif by == 'veh_own': share_summary = pd.concat([ share_master_table.groupby(['veh_own','BOSTON_NB']).sum().loc[veh_own].divide( share_master_table.groupby(['veh_own','BOSTON_NB']).sum().loc[veh_own].sum(axis=1),axis = 0) for veh_own in ['0','1'] ], axis = 1, keys = ['No car', 'With car']) elif by == 'purpose': share_summary = pd.concat([ share_master_table.groupby(['purpose','BOSTON_NB']).sum().loc[purpose].divide( share_master_table.groupby(['purpose','BOSTON_NB']).sum().loc[purpose].sum(axis=1),axis = 0) for purpose in share_master_table.purpose.unique() ],axis = 1, keys= share_master_table.purpose.unique()) share_summary.to_csv(out_fn) # Seaport method def mode_share_by_subarea(mc_obj, out_fn = None, by = None): ''' Summarizes mode share as the average of trips to/from the 7 Seaport sub-areas, in three categories - drive, non-motorized and transit. :param mc_obj: mode choice module object as defined in the IPython notebook :param out_fn: output csv filename; if None specified, in the output path defined in config.py :param by: grouping used for the summary ''' if out_fn is None and by is None: out_fn = mc_obj.config.out_path + f'mode_share_by_subarea.csv' elif out_fn is None and by: out_fn = mc_obj.config.out_path + f'mode_share_by_subarea_by_{by}.csv' if by in ['peak','veh_own','purpose'] == False: print('Only supports mode share by subarea, peak / vehicle ownership, purpose.') return else: share_master_table = pd.DataFrame(columns = ['drive','non-motorized','transit','peak','veh_own','purpose']) for purpose in md.purposes: for peak in ['PK','OP']: for veh_own in ['0','1']: if mc_obj.table_container.get_table(purpose): share_table = pd.DataFrame(index = range(0,md.max_zone),columns = ['drive','non-motorized','transit','smart mobility']).fillna(0) for mode in mc_obj.table_container.get_table(purpose)[f'{veh_own}_{peak}']: trip_table = mc_obj.table_container.get_table(purpose)[f'{veh_own}_{peak}'][mode] category = md.mode_categories[mode] share_table[category] += (trip_table.sum(axis = 1)+trip_table.sum(axis = 0))/2 towns = mc_obj.taz.sort_values(md.taz_ID_field).iloc[0:md.max_zone] towns['REPORT_AREA'] = towns['REPORT_AREA'][towns['REPORT_AREA'].isin(['South Station', 'Seaport Blvd', 'Design Center', 'Southeast Seaport', 'BCEC', 'Fort Point', 'Broadway'])] trips = pd.concat([towns[[md.taz_ID_field,'REPORT_AREA']],share_table],axis = 1,join = 'inner').groupby(['REPORT_AREA']).sum().drop([md.taz_ID_field],axis = 1) trips['peak'] = peak trips['veh_own'] = veh_own trips['purpose'] = purpose share_master_table = share_master_table.append(trips.reset_index(), sort = True) if by == None: trip_summary = share_master_table.groupby('REPORT_AREA').sum() share_summary = trip_summary.divide(trip_summary.sum(axis = 1),axis = 0) elif by == 'peak': share_summary = pd.concat([ share_master_table.groupby(['peak','REPORT_AREA']).sum().loc[peak].divide( share_master_table.groupby(['peak','REPORT_AREA']).sum().loc[peak].sum(axis=1),axis = 0) for peak in ['PK','OP'] ], axis = 1, keys = ['PK','OP']) elif by == 'veh_own': share_summary = pd.concat([ share_master_table.groupby(['veh_own','REPORT_AREA']).sum().loc[veh_own].divide( share_master_table.groupby(['veh_own','REPORT_AREA']).sum().loc[veh_own].sum(axis=1),axis = 0) for veh_own in ['0','1'] ], axis = 1, keys = ['No car', 'With car']) elif by == 'purpose': share_summary = pd.concat([ share_master_table.groupby(['purpose','REPORT_AREA']).sum().loc[purpose].divide( share_master_table.groupby(['purpose','REPORT_AREA']).sum().loc[purpose].sum(axis=1),axis = 0) for purpose in share_master_table.purpose.unique() ],axis = 1, keys= share_master_table.purpose.unique()) share_summary.to_csv(out_fn) def __sm_compute_summary_by_subregion(mc_obj,metric = 'VMT',subregion = 'neighboring', sm_mode='SM_RA'): ''' Computing function used by write_summary_by_subregion(), does not produce outputs''' if metric.lower() not in ('vmt','pmt','mode share','trip', 'pmt_act'): print('Only supports trip, VMT, PMT and mode share calculations.') return if subregion.lower() not in ('boston','neighboring','i93','i495','region'): print('Only supports within boston, "neighboring" for towns neighboring Boston, I93, I495 or Region.') return subregion_dict = {'boston':'BOSTON','neighboring':'BOS_AND_NEI','i93':'in_i95i93','i495':'in_i495'} if metric.lower() == 'vmt': skim_dict = {'PK': mc_obj.drive_skim_PK,'OP':mc_obj.drive_skim_OP} vmt_table = np.zeros((md.max_zone,md.max_zone)) for purpose in md.purposes: for peak in ['PK','OP']: for veh_own in ['0','1']: if mc_obj.table_container.get_table(purpose): trip_table = mc_obj.table_container.get_table(purpose)[f'{veh_own}_{peak}'][sm_mode] / md.AO_dict[sm_mode] vmt_table += trip_table * skim_dict[peak]['Length (Skim)'] if subregion.lower() in subregion_dict: field = subregion_dict[subregion.lower()] boston_o_auto_vmt = mtx.OD_slice(vmt_table,O_slice = md.taz['BOSTON'], D_slice = md.taz[field]== True) boston_d_auto_vmt = mtx.OD_slice(vmt_table,md.taz[field]== True,D_slice = md.taz['BOSTON']) #boston_o_auto_vmt = vmt_table[md.taz['BOSTON'],:][:, md.taz[field]== True] #boston_d_auto_vmt = vmt_table[md.taz[field]== True,:][:,md.taz['BOSTON']] town_definition = md.taz[md.taz[field]== True] elif subregion.lower() == 'region': boston_o_auto_vmt = mtx.OD_slice(vmt_table,O_slice = md.taz['BOSTON']) boston_d_auto_vmt = mtx.OD_slice(vmt_table,D_slice = md.taz['BOSTON']) #boston_o_auto_vmt = vmt_table[md.taz['BOSTON'],:] #boston_d_auto_vmt = vmt_table[:][:,md.taz['BOSTON']] town_definition = md.taz zone_vmt_daily_o = pd.DataFrame(np.sum(boston_o_auto_vmt,axis=1)/2 ,columns=["VMT"]) zone_vmt_daily_d = pd.DataFrame(np.sum(boston_d_auto_vmt,axis=0)/2 ,columns=["VMT"]) town_vmt_o=pd.concat([town_definition,zone_vmt_daily_o],axis=1,join='inner') town_vmt_d=pd.concat([town_definition,zone_vmt_daily_d],axis=1,join='inner') vmt_sum_o = town_vmt_o[town_vmt_o['TOWN']=='BOSTON,MA'].groupby(['TOWN']).sum()['VMT'] vmt_sum_d = town_vmt_d[town_vmt_d['TOWN']=='BOSTON,MA'].groupby(['TOWN']).sum()['VMT'] subregion_vmt = (vmt_sum_o + vmt_sum_d).values[0] return subregion_vmt elif metric.lower() == 'trip': skim_dict = {'PK': mc_obj.drive_skim_PK,'OP':mc_obj.drive_skim_OP} tripsum_table = np.zeros((md.max_zone,md.max_zone)) for purpose in md.purposes: for peak in ['PK','OP']: for veh_own in ['0','1']: if mc_obj.table_container.get_table(purpose): trip_table = mc_obj.table_container.get_table(purpose)[f'{veh_own}_{peak}'][sm_mode] tripsum_table += trip_table if subregion.lower() in subregion_dict: field = subregion_dict[subregion.lower()] boston_o_trip = mtx.OD_slice(tripsum_table, O_slice = md.taz['BOSTON'],D_slice = md.taz[field]== True) boston_d_trip = mtx.OD_slice(tripsum_table, O_slice = md.taz[field]== True, D_slice = md.taz['BOSTON']) #boston_o_trip = tripsum_table[md.taz['BOSTON'],:][:, md.taz[field]== True] #boston_d_trip = tripsum_table[md.taz[field]== True,:][:,md.taz['BOSTON']] town_definition = md.taz[md.taz[field]== True] elif subregion.lower() == 'region': boston_o_trip = mtx.OD_slice(tripsum_table, O_slice = md.taz['BOSTON']) boston_d_trip = mtx.OD_slice(tripsum_table, D_slice = md.taz['BOSTON']) #boston_o_trip = tripsum_table[md.taz['BOSTON'],:] #boston_d_trip = tripsum_table[:][:,md.taz['BOSTON']] town_definition = md.taz zone_daily_o = pd.DataFrame(np.sum(boston_o_trip,axis=1) ,columns=["trips"]) zone_daily_d = pd.DataFrame(np.sum(boston_d_trip,axis=0) ,columns=["trips"]) town_o=pd.concat([town_definition,zone_daily_o],axis=1,join='inner') town_d=pd.concat([town_definition,zone_daily_d],axis=1,join='inner') sum_o = town_o[town_o['TOWN']=='BOSTON,MA'].groupby(['TOWN']).sum()['trips'] sum_d = town_d[town_d['TOWN']=='BOSTON,MA'].groupby(['TOWN']).sum()['trips'] subregion_trip = (sum_o + sum_d).values[0] return subregion_trip def __compute_metric_by_zone(mc_obj,metric = 'VMT'): ''' Computing function used by write_summary_by_subregion(), does not produce outputs''' if metric.lower() == 'vmt': skim_dict = {'PK': mc_obj.drive_skim_PK,'OP':mc_obj.drive_skim_OP} vmt_table = np.zeros((md.max_zone,md.max_zone)) for purpose in md.purposes: for peak in ['PK','OP']: for veh_own in ['0','1']: if mc_obj.table_container.get_table(purpose): drive_modes = mc_obj.table_container.get_table(purpose)[f'{veh_own}_{peak}'].keys() trip_table = sum([mc_obj.table_container.get_table(purpose)[f'{veh_own}_{peak}'][mode] / md.AO_dict[mode] for mode in md.auto_modes if mode in drive_modes]) vmt_table += trip_table * skim_dict[peak]['Length (Skim)'] boston_o_auto_vmt = mtx.OD_slice(vmt_table, O_slice = md.taz['BOSTON']) boston_d_auto_vmt = mtx.OD_slice(vmt_table,D_slice = md.taz['BOSTON']) #boston_o_auto_vmt = vmt_table[md.taz['BOSTON'],:] #boston_d_auto_vmt = vmt_table[:][:,md.taz['BOSTON']] town_definition = md.taz zone_vmt_daily_o = pd.DataFrame(np.sum(boston_o_auto_vmt,axis=0)/2 ,columns=["VMT"]) zone_vmt_daily_d = pd.DataFrame(np.sum(boston_d_auto_vmt,axis=1)/2 ,columns=["VMT"]) town_vmt_o=pd.concat([town_definition,zone_vmt_daily_o],axis=1,join='inner') town_vmt_d=pd.concat([town_definition,zone_vmt_daily_d],axis=1,join='inner') town_vmt = town_vmt_o.groupby(['TOWN']).sum()['VMT'] + town_vmt_d.groupby(['TOWN']).sum()['VMT'] return town_vmt elif metric.lower() == 'pmt': skim_dict = {'PK': mc_obj.drive_skim_PK,'OP':mc_obj.drive_skim_OP} pmt_table = np.zeros((md.max_zone,md.max_zone)) for purpose in md.purposes: for peak in ['PK','OP']: for veh_own in ['0','1']: if mc_obj.table_container.get_table(purpose): drive_modes = mc_obj.table_container.get_table(purpose)[f'{veh_own}_{peak}'].keys() trip_table = sum([mc_obj.table_container.get_table(purpose)[f'{veh_own}_{peak}'][mode] for mode in md.modes if mode in drive_modes]) pmt_table += trip_table * skim_dict[peak]['Length (Skim)'] boston_o_auto_pmt = mtx.OD_slice(pmt_table, O_slice = md.taz['BOSTON']) boston_d_auto_pmt = mtx.OD_slice(pmt_table, D_slice = md.taz['BOSTON']) #boston_o_auto_pmt = pmt_table[md.taz['BOSTON'],:] #boston_d_auto_pmt = pmt_table[:][:,md.taz['BOSTON']] town_definition = md.taz zone_pmt_daily_o = pd.DataFrame(np.sum(boston_o_auto_pmt,axis=0)/2 ,columns=["VMT"]) zone_pmt_daily_d = pd.DataFrame(np.sum(boston_d_auto_pmt,axis=1)/2 ,columns=["VMT"]) town_pmt_o=pd.concat([town_definition,zone_pmt_daily_o],axis=1,join='inner') town_pmt_d=pd.concat([town_definition,zone_pmt_daily_d],axis=1,join='inner') town_pmt = town_pmt_o.groupby(['TOWN']).sum()['VMT'] + town_pmt_d.groupby(['TOWN']).sum()['VMT'] return town_pmt elif metric.lower() == 'pmt_act': skim_dict = {'PK': mc_obj.drive_skim_PK,'OP':mc_obj.drive_skim_OP} pmt_table = np.zeros((md.max_zone,md.max_zone)) for purpose in md.purposes: for peak in ['PK','OP']: for veh_own in ['0','1']: if mc_obj.table_container.get_table(purpose): drive_modes = mc_obj.table_container.get_table(purpose)[f'{veh_own}_{peak}'].keys() trip_table = sum([mc_obj.table_container.get_table(purpose)[f'{veh_own}_{peak}'][mode] for mode in ['Walk','Bike'] if mode in drive_modes]) pmt_table += trip_table * skim_dict[peak]['Length (Skim)'] boston_o_auto_pmt = mtx.OD_slice(pmt_table, O_slice = md.taz['BOSTON']) boston_d_auto_pmt = mtx.OD_slice(pmt_table, D_slice = md.taz['BOSTON']) #boston_o_auto_pmt = pmt_table[taz['BOSTON'],:] #boston_d_auto_pmt = pmt_table[:][:,taz['BOSTON']] town_definition = md.taz zone_pmt_daily_o = pd.DataFrame(np.sum(boston_o_auto_pmt,axis=0)/2 ,columns=["VMT"]) zone_pmt_daily_d = pd.DataFrame(np.sum(boston_d_auto_pmt,axis=1)/2 ,columns=["VMT"]) town_pmt_o=pd.concat([town_definition,zone_pmt_daily_o],axis=1,join='inner') town_pmt_d=pd.concat([town_definition,zone_pmt_daily_d],axis=1,join='inner') town_pmt = town_pmt_o.groupby(['TOWN']).sum()['VMT'] + town_pmt_d.groupby(['TOWN']).sum()['VMT'] return town_pmt def __compute_summary_by_subregion(mc_obj,metric = 'VMT',subregion = 'neighboring'): ''' Computing function used by write_summary_by_subregion(), does not produce outputs''' if metric.lower() not in ('vmt','pmt','mode share','trip', 'pmt_act'): print('Only supports trip, VMT, PMT and mode share calculations.') return if subregion.lower() not in ('boston','neighboring','i93','i495','region'): print('Only supports within boston, "neighboring" for towns neighboring Boston, I93, I495 or Region.') return subregion_dict = {'boston':'BOSTON','neighboring':'BOS_AND_NEI','i93':'in_i95i93','i495':'in_i495'} if metric.lower() == 'vmt': skim_dict = {'PK': mc_obj.drive_skim_PK,'OP':mc_obj.drive_skim_OP} vmt_table = np.zeros((md.max_zone,md.max_zone)) for purpose in md.purposes: for peak in ['PK','OP']: for veh_own in ['0','1']: if mc_obj.table_container.get_table(purpose): modes = mc_obj.table_container.get_table(purpose)[f'{veh_own}_{peak}'].keys() trip_table = sum([mc_obj.table_container.get_table(purpose)[f'{veh_own}_{peak}'][mode] / md.AO_dict[mode] for mode in md.auto_modes if mode in modes]) vmt_table += trip_table * skim_dict[peak]['Length (Skim)'] if subregion.lower() in subregion_dict: field = subregion_dict[subregion.lower()] #boston_o_auto_vmt = vmt_table[md.taz['BOSTON'],:][:, md.taz[field]== True] #boston_d_auto_vmt = vmt_table[md.taz[field]== True,:][:,md.taz['BOSTON']] boston_o_auto_vmt = mtx.OD_slice(vmt_table, O_slice = md.taz['BOSTON'], D_slice = md.taz[field]== True) boston_d_auto_vmt = mtx.OD_slice(vmt_table, O_slice = md.taz[field]== True, D_slice = md.taz['BOSTON']) town_definition = md.taz[md.taz[field]== True] elif subregion.lower() == 'region': # boston_o_auto_vmt = vmt_table[md.taz['BOSTON'],:] # boston_d_auto_vmt = vmt_table[:][:,md.taz['BOSTON']] boston_o_auto_vmt = mtx.OD_slice(vmt_table, O_slice = md.taz['BOSTON']) boston_d_auto_vmt = mtx.OD_slice(vmt_table, D_slice = md.taz['BOSTON']) town_definition = md.taz zone_vmt_daily_o = pd.DataFrame(np.sum(boston_o_auto_vmt,axis=1)/2 ,columns=["VMT"]) zone_vmt_daily_d = pd.DataFrame(np.sum(boston_d_auto_vmt,axis=0)/2 ,columns=["VMT"]) town_vmt_o=
pd.concat([town_definition,zone_vmt_daily_o],axis=1,join='inner')
pandas.concat
#!/usr/bin/env python # -*- coding:utf-8 -*- """ Date: 2022/5/11 17:52 Desc: 加密货币 https://cn.investing.com/crypto/currencies 高频数据 https://bitcoincharts.com/about/markets-api/ """ import math import pandas as pd import requests from tqdm import tqdm from akshare.datasets import get_crypto_info_csv def crypto_name_url_table(symbol: str = "web") -> pd.DataFrame: """ 加密货币名称、代码和 ID,每次更新较慢 https://cn.investing.com/crypto/ethereum/historical-data :param symbol: choice of {"web", "local"}; web 表示从网页获取最新,local 表示利用本地本文件 :type symbol: str :return: 加密货币名称、代码和 ID :rtype: pandas.DataFrame """ if symbol == "web": headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/86.0.4240.111 Safari/537.36", "X-Requested-With": "XMLHttpRequest", } url = "https://cn.investing.com/crypto/Service/LoadCryptoCurrencies" payload = { 'draw': '14', 'columns[0][data]': 'currencies_order', 'columns[0][name]': 'currencies_order', 'columns[0][searchable]': 'true', 'columns[0][orderable]': 'true', 'columns[0][search][value]': '', 'columns[0][search][regex]': 'false', 'columns[1][data]': 'function', 'columns[1][name]': 'crypto_id', 'columns[1][searchable]': 'true', 'columns[1][orderable]': 'false', 'columns[1][search][value]': '', 'columns[1][search][regex]': 'false', 'columns[2][data]': 'function', 'columns[2][name]': 'name', 'columns[2][searchable]': 'true', 'columns[2][orderable]': 'true', 'columns[2][search][value]': '', 'columns[2][search][regex]': 'false', 'columns[3][data]': 'symbol', 'columns[3][name]': 'symbol', 'columns[3][searchable]': 'true', 'columns[3][orderable]': 'true', 'columns[3][search][value]': '', 'columns[3][search][regex]': 'false', 'columns[4][data]': 'function', 'columns[4][name]': 'price_usd', 'columns[4][searchable]': 'true', 'columns[4][orderable]': 'true', 'columns[4][search][value]': '', 'columns[4][search][regex]': 'false', 'columns[5][data]': 'market_cap_formatted', 'columns[5][name]': 'market_cap_usd', 'columns[5][searchable]': 'true', 'columns[5][orderable]': 'true', 'columns[5][search][value]': '', 'columns[5][search][regex]': 'false', 'columns[6][data]': '24h_volume_formatted', 'columns[6][name]': '24h_volume_usd', 'columns[6][searchable]': 'true', 'columns[6][orderable]': 'true', 'columns[6][search][value]': '', 'columns[6][search][regex]': 'false', 'columns[7][data]': 'total_volume', 'columns[7][name]': 'total_volume', 'columns[7][searchable]': 'true', 'columns[7][orderable]': 'true', 'columns[7][search][value]': '', 'columns[7][search][regex]': 'false', 'columns[8][data]': 'change_percent_formatted', 'columns[8][name]': 'change_percent', 'columns[8][searchable]': 'true', 'columns[8][orderable]': 'true', 'columns[8][search][value]': '', 'columns[8][search][regex]': 'false', 'columns[9][data]': 'percent_change_7d_formatted', 'columns[9][name]': 'percent_change_7d', 'columns[9][searchable]': 'true', 'columns[9][orderable]': 'true', 'columns[9][search][value]': '', 'columns[9][search][regex]': 'false', 'order[0][column]': 'currencies_order', 'order[0][dir]': 'asc', 'start': '0', 'length': '100', 'search[value]': '', 'search[regex]': 'false', 'currencyId': '12', } r = requests.post(url, data=payload, headers=headers) data_json = r.json() total_page = math.ceil(int(data_json['recordsTotal']) / 100) big_df =
pd.DataFrame()
pandas.DataFrame
import inspect from datetime import datetime from tralo.utils import filter_args, sha1_hash_object, valid_run, AttributeDict, get_attribute import yaml import os import json import re import torch from os.path import join, isfile, expanduser, realpath from tralo.log import log def load_model(checkpoint_id, weights_file=None, strict=True, model_args='from_config', with_config=False): config = json.load(open(join('logs', checkpoint_id, 'config.json'))) if model_args != 'from_config' and type(model_args) != dict: raise ValueError('model_args must either be "from_config" or a dictionary of values') model_cls = get_attribute(config['model']) # load model if model_args == 'from_config': _, model_args, _ = filter_args(config, inspect.signature(model_cls).parameters) print(model_args) model = model_cls(**model_args) if weights_file is None: weights_file = realpath(join('logs', checkpoint_id, 'weights.pth')) else: weights_file = realpath(join('logs', checkpoint_id, weights_file)) if isfile(weights_file): weights = torch.load(weights_file) for _, w in weights.items(): assert not torch.any(torch.isnan(w)), 'weights contain NaNs' model.load_state_dict(weights, strict=strict) else: raise FileNotFoundError(f'model checkpoint {weights_file} was not found') if with_config: return model, config return model class Results(dict): """ results representation allowing html or print output """ def _repr_html_(self): table, cols, diff_cols = self.table() # table to string, needed because of fixed column width table = [{k: self.to_str(v) for k, v in row.items()} for row in table] tab = '<table>' tab += '<thead>' + ''.join(f'<td>{k}</td>' for k in diff_cols) + '</thead>' tab += ''.join('<tr>' + ''.join(f'<td>{row[k]}</td>' for k in diff_cols) + '</tr>' for row in table) tab += '</table>' return tab def table(self): # scores_flat = [{f'{kk}': val for kk, val in s} for s in self['scores']] # import ipdb # ipdb.set_trace() def name(k, kk): return f'{k}_{kk}' if len(k) > 0 else kk scores_flat = [dict((name(k, kk), val) for k, sc in config_scores for kk, val in sc) for config_scores in self['scores']] # scores_flat = [{f'{k}_{kk}': val for k in s for kk, val in s[k]} for s in self['scores']] table = [{**a, **b, **c} for a, b,c in zip(self['configurations'], scores_flat, self['stats'])] cols = list() [cols.append(k) if k not in cols else None for row in table for k in row.keys()] # re-order the columns first_col_order = ['name'] cols = sorted(cols, key=lambda k: first_col_order.index(k) - 10000 if k in first_col_order else cols.index(k)) print() # make sure all cols have values table = [{k: row[k] if k in row else None for k in cols} for row in table] # identify columns that have different values, use str to be compatible with list/tuples different_cols = [c for c in cols if len(set(str(tab[c]) if c in tab else None for tab in table)) > 1] return table, cols, different_cols def dataframe(self): from pandas import DataFrame table, _, _ = self.table() return
DataFrame(table)
pandas.DataFrame
# -*- coding: utf-8 -*- from unittest import TestCase from parameterized import parameterized import pandas as pd import numpy as np from numpy.testing.utils import assert_array_equal from pandas import (MultiIndex, Index) from pandas.util.testing import assert_frame_equal, assert_series_equal from alphaware.enums import OutputDataFormat, FreqType from alphaware.const import INDEX_FACTOR from alphaware.utils import (convert_df_format, top, group_by_freq, fwd_return, weighted_rank) from datetime import datetime as dt class TestPandasUtils(TestCase): @parameterized.expand([(
pd.DataFrame({'001': [1, 2, 3], '002': [2, 3, 4]}, index=['2014', '2015', '2016'])
pandas.DataFrame
import torch from torch.utils.data import Dataset import pandas as pd import numpy as np class DeepInflammationDataset(Dataset): def __init__(self, c1_data, c2_data): """ - c1_data: pandas dataframe of the cell 1 data - c2_data: pandas dataframe of the cell 2 data """ super().__init__() self.c1_data = c1_data self.c2_data = c2_data def __len__(self): """Return the number of samples.""" return self.c1_data.shape[0] + self.c2_data.shape[0] def __getitem__(self, idx): """ Input: - idx: index of sample to retrieve Return: - sample: the idx'th sample - label: the label for the sample """ c =
pd.concat([self.c1_data['expr'], self.c2_data['expr']], axis=0, ignore_index=True)
pandas.concat
import textattack import textattack.datasets as datasets import random import pandas as pd from textattack.transformations.word_swap_embedding import WordSwapEmbedding as WordSwapEmbedding from textattack.constraints.semantics.word_embedding_distance import WordEmbeddingDistance as WordEmbeddingDistance NUM_NEAREST = 5 NUM_SYMS = 1000 def main(): datasets_names = [datasets.classification.AGNews, datasets.classification.IMDBSentiment, datasets.classification.MovieReviewSentiment, datasets.classification.YelpSentiment] cand_words = list() swap = WordSwapEmbedding(max_candidates=NUM_NEAREST) for name in datasets_names: data = name() for label, text in data: words = textattack.tokenized_text.raw_words(text) for word in words: if word.lower() in swap.stopwords: continue cand_words.append(word) random.shuffle(cand_words) df =
pd.DataFrame()
pandas.DataFrame
#!/usr/local/bin/python import argparse import os import sys import pandas as pd import numpy as np import time pd.options.mode.chained_assignment = None parser = argparse.ArgumentParser(prog='snvScore') parser.add_argument('SampleBED',type=str,help='Path to the mosdepth per-base BED output') parser.add_argument('SNVGermlineTXT',type=str,help='Path to Clivar-generated table with pathogenic germline SNVs') parser.add_argument('SNVSomaticTXT',type=str,help='Path to Clivar-generated table with pathogenic somatic SNVs') parser.add_argument('Threshold',type=int,nargs='?',help='SNV coverage quality threshold (optional, positive)',default=0) args = parser.parse_args() sample_name = args.SampleBED while sample_name.find('/')!=-1: sample_name = sample_name[sample_name.find('/')+1:] def snv_coverage(snv,chrom_cover): snv = snv.dropna() snv['coverage']=0.0 snv=snv.drop_duplicates() snv = snv.reset_index(drop=True) cover_reg = chrom_cover[(chrom_cover.end>snv.position.iloc[0]) & (chrom_cover.start<=snv.position.iloc[-1])] cover_reg = cover_reg.reset_index(drop=True) for ind in snv.index: buf = cover_reg[(cover_reg.end>snv.position[ind]) & (cover_reg.start<=snv.position[ind])] snv.coverage[ind] = buf.coverage return snv def CatchChromoRegs(BED_fname,chrom_names): BED = open(BED_fname, 'rt') # chrom_names = ['chr1', 'chr2', 'chr3', 'chr4', 'chr5', 'chr6', 'chr7', 'chr8', # 'chr9', 'chr10', 'chr11', 'chr12', 'chr13', 'chr14', 'chr15', # 'chr16', 'chr17', 'chr18', 'chr19', 'chr20', 'chr21', 'chr22', # 'chrX', 'chrY','chrM'] chrom_start_pos = np.zeros(len(chrom_names)+1,dtype='int32') line_num = 0 for chrom,i in zip(chrom_names,np.arange(len(chrom_names))): pos_catched = False while not pos_catched: line = BED.readline() line = line[:line.find('\t')] if line == chrom: pos_catched = True chrom_start_pos[i] = line_num line_num+=1 while line =='chrM': line = BED.readline() line = line[:line.find('\t')] line_num+=1 chrom_start_pos[-1]=line_num-1 return chrom_start_pos def ExecuteClinicalCoverageDepthCalc(chrom_names,SNVG,SNVS,SampleBED): snv_cov = pd.DataFrame(columns=['chr','position','coverage','type']) all_cov = np.array([]) # start = time.time() res = CatchChromoRegs(SampleBED,chrom_names) rows = ['' for i in range(24)] for chrom,chr_num in zip(chrom_names[:-1],np.arange(24)): # for chrom,chr_num in zip(chrom_names[:3],np.arange(3)): chrom_cover = pd.read_csv(SampleBED,delimiter='\t',header=None,names=['chr','start','end','coverage'],skiprows=res[chr_num],nrows=res[chr_num+1]-res[chr_num]) all_cov = np.append(all_cov,chrom_cover.coverage.values,axis=0) snvg_part = SNVG[SNVG.chr==chrom] snvs_part = SNVS[SNVS.chr==chrom] if snvg_part.size>0: snvg_part = snv_coverage(snvg_part,chrom_cover) snvg_part['type'] = 'germline' snv_cov=pd.concat([snv_cov,snvg_part]) germ_row = '%8.0f %10.0f %6.0f %6.0f %6.0f '%(len(snvg_part), np.median(snvg_part.coverage), np.std(snvg_part.coverage), np.min(snvg_part.coverage), np.max(snvg_part.coverage)) else: germ_row = '%8.0f %10.0f %6.0f %6.0f %6.0f '%(0,0,0,0,0) if snvs_part.size>0: snvs_part=snv_coverage(snvs_part,chrom_cover) snvs_part['type'] = 'somatic' snv_cov=pd.concat([snv_cov,snvs_part]) soma_row = '%8.0f %10.0f %6.0f %6.0f %6.0f'%(len(snvs_part), np.median(snvs_part.coverage), np.std(snvs_part.coverage), np.min(snvs_part.coverage), np.max(snvs_part.coverage)) else: soma_row = '%8.0f %10.0f %6.0f %6.0f %6.0f'%(0,0,0,0,0) rows[chr_num] = '%6s'%(chrom)+' '+germ_row+soma_row # end=time.time() germ_cov = snv_cov[snv_cov.type=='germline'] soma_cov = snv_cov[snv_cov.type=='somatic'] above_thres = [np.sum(germ_cov.coverage>=args.Threshold),np.sum(soma_cov.coverage>=args.Threshold)] out_table = open('output/'+sample_name+'.snvScore.txt','w') out_table.write('SNV coverage report - %s\n\n'%(sample_name)) if args.Threshold>0: out_table.write('%2.0f%% of all pathogenic germline SNVs and %2.0f%% of all pathogenic somatic SNVs are covered above threshold (%2.0f)\n\n'%(above_thres[0]/len(germ_cov)*100,above_thres[1]/len(soma_cov)*100,args.Threshold)) print('%2.0f%% of all pathogenic germline SNVs and %2.0f%% of all pathogenic somatic SNVs are covered above threshold (%2.0f)\n\n'%(above_thres[0]/len(germ_cov)*100,above_thres[1]/len(soma_cov)*100,args.Threshold)) out_table.write('Whole genome coverage:\n') out_table.write('%6s %4s %4s %12s %12s %4s %7s\n'%('median', 'mean', 'std', '1st quartile', '3rd quartile', 'min', 'max')) out_table.write('%6.0f %4.0f %4.0f %12.0f %12.0f %4.0f %7.0f\n\n'%(np.median(all_cov), np.mean(all_cov), np.std(all_cov), np.quantile(all_cov,0.25), np.quantile(all_cov,0.75), np.min(all_cov), np.max(all_cov))) out_table.write('Pathogenic (G - germline, S - somatic) SNV coverage:\n') out_table.write('(\'count\' is the number of variants in a given region)\n\n') out_table.write('%6s %8s %10s %6s %6s %6s %8s %10s %6s %6s %6s\n'%('region','count(G)','median(G)','std(G)','min(G)','max(G)','count(S)','median(S)','std(S)','min(S)','max(S)')) out_table.write('----------------------------------------------------------------------------------------\n') out_table.write('%6s %8.0f %10.0f %6.0f %6.0f %6.0f %8.0f %10.0f %6.0f %6.0f %6.0f\n'%('ALL',len(germ_cov),np.median(germ_cov.coverage),np.std(germ_cov.coverage),np.min(germ_cov.coverage),np.max(germ_cov.coverage),len(soma_cov),np.median(soma_cov.coverage),np.std(soma_cov.coverage),np.min(soma_cov.coverage),np.max(soma_cov.coverage))) out_table.write('----------------------------------------------------------------------------------------\n') for row in rows: out_table.write(row+'\n') out_table.write('----------------------------------------------------------------------------------------\n') out_table.close() # print('Elased time is %3.2f sec.'%(end-start)) chrom_names = ['chr1','chr2','chr3','chr4','chr5', 'chr6','chr7','chr8','chr9','chr10', 'chr11','chr12','chr13','chr14','chr15', 'chr16','chr17','chr18','chr19','chr20', 'chr21','chr22','chrX','chrY','chrM'] SNVG =
pd.read_csv(args.SNVGermlineTXT,sep='\t')
pandas.read_csv
#!/usr/bin/python3 #By <NAME> import os import re import argparse import time import timeit import numpy as np import pandas as pd import pipeline_base def merge_window(intervals,vcf,ref_sequence,log_file=False,fullcheck=True,ignored=True,info_just_indel=False,drop_info=False,intervals_alignment_bool=False,intervals_alignment=None): '''Function that joins a given window in a vcf file by position''' global vcf_slice intervals_used = [] for contig,pos_start,pos_end in intervals: flag_ignored = False if any([(pos_start_used <= pos_start <= pos_end_used) and contig==contig_used for contig_used,pos_start_used,pos_end_used in intervals_used]): print('Warning this interval used, interval ignored',[contig,pos_start,pos_end]) if log_file: log_file.write('Warning this interval used, interval ignored ' + str([contig,pos_start,pos_end])+'\n') continue #contig = vcf.loc[pos_start,'#CHROM'] #print(contig,pos_start,pos_end) vcf_slice = vcf[(pos_start <= vcf['POS']) & (vcf['POS'] <= pos_end) & (vcf['#CHROM']==contig)] #print(vcf_slice) if vcf_slice.shape[0] <= 1: print('Warning vcf_slice <= 1',contig,pos_start,pos_end) if log_file: log_file.write('Warning vcf_slice <= 1' +'\n') continue if drop_info: if len(set(vcf_slice['INFO'].values) - set(drop_info)) == 0: print('Warning vcf slice contain only', *drop_info,set(vcf_slice['INFO'].values),contig,pos_start,pos_end) #print('Warning vcf slice contain only',str([contig,pos_start,pos_end])) if log_file: log_file.write('Warning vcf slice contain only' + str([contig,pos_start,pos_end])+'\n') continue #sample_bin_dict = {i:None for i in vcf_slice.iloc[:,9:]}#!!!maybe need sample_bin_dict = dict() position_first = int(vcf_slice.iloc[0]['POS']) index_first = vcf_slice.index[0] position_start = int(vcf_slice.iloc[0]['POS']) max_over = max([len(ref) + pos - 1 for ref,pos in zip(vcf_slice['REF'],vcf_slice['POS'])]) sample_dict = {i:list(ref_sequence[position_first-1:max_over]) for i in vcf_slice.iloc[:,9:]} sample_dict_info = {i:'' for i in vcf_slice.iloc[:,9:]} sample_dict_mem = {i:position_first for i in vcf_slice.iloc[:,9:]} ref_mod = ref_sequence[position_first-1:max_over] sample_will_deleted = set() #check for if overlay out interval if fullcheck: ''' vcf_slice_end = vcf[(vcf['POS'] > pos_end) & (vcf['#CHROM']==contig)] if not vcf_slice_end.empty: position_outside = int(vcf_slice_end.iloc[0]['POS']) for position_row in vcf_slice.index[:-1]: if position_row + len(vcf_slice.loc[position_row]['REF']) - position_outside > 0: print('Warning overlay window','interval',[pos_start,pos_end]) log_file.write('Warning overlay window, interval '+str([pos_start,pos_end])+'\n') ''' flag = False if any((vcf_slice.iloc[:,9:].isna().any()) & (~(vcf_slice.iloc[:,9:].isna().all()))): print('Warning indeterminate genotype of the sample1 interval ignored',[pos_start,pos_end]) if log_file: log_file.write('Warning indeterminate genotype of the sample1 interval ignored ' + str([pos_start,pos_end])+'\n') for sample in sample_dict: if not all(vcf_slice[sample].isna()) and not all(~vcf_slice[sample].isna()):#! #print('Warning indeterminate genotype of the sample') #assert False, "'Warning indeterminate genotype of the sample'" flag = True if flag: #print('Warning2 indeterminate genotype of the sample, interval ignored',[pos_start,pos_end]) #log_file.write('Warning2 indeterminate genotype of the sample, interval ignored ' + str([pos_start,pos_end])+'\n') if ignored: print('Warning2 indeterminate genotype of the sample, interval ignored',[pos_start,pos_end]) if log_file: log_file.write('Warning2 indeterminate genotype of the sample, interval ignored ' + str([pos_start,pos_end])+'\n') continue if not (vcf_slice.iloc[:,9:]).isna().any().any():#!req to change intervals_slice_contain = intervals_alignment[( pos_end >= intervals_alignment[ref_assemble_name + '_start']) & (pos_start <= intervals_alignment[ref_assemble_name + '_end'])] if intervals_slice_contain.isin([0]).any().any(): if ignored: print('Warning gap between defined variant, interval ignored',[pos_start,pos_end]) if log_file: log_file.write('Warning gap between defined variant, interval ignored ' + str([pos_start,pos_end])+'\n') continue if intervals_alignment_bool: intervals_alignment_slice = intervals_alignment[(intervals_alignment['#contig'] == contig ) & #(intervals_alignment['name'] == sample ) & ((intervals_alignment['start_position_ref'] <= pos_start) & (intervals_alignment['end_position_ref'] >= pos_start))| ((intervals_alignment['start_position_ref'] <= pos_end)& (intervals_alignment['end_position_ref'] >= pos_end))] sample_tmp_storage = [] #print(pos_start,pos_end) for sample in sample_dict: #intervals_alignment['#contig'] == contig #print(sample,pos_start,pos_end) #print(intervals_alignment_slice[intervals_alignment_slice['name'] == sample]) if intervals_alignment_slice[intervals_alignment_slice['name'] == sample].shape[0] >= 2: sample_will_deleted.add(sample) sample_tmp_storage.append(sample) #print(intervals_alignment_slice[intervals_alignment_slice['name'] == sample]) #print('\n\n\n') if sample_tmp_storage: print('Warning merge different contig',contig,pos_start,pos_end,sample_tmp_storage) if log_file: log_file.write('Warning merge different contig ' + str([contig,pos_start,pos_end,sample_tmp_storage])+'\n') variant = [] flag_break = False for row_index in vcf_slice.index: if flag_break: break #position_row #print(row_index) variant = [vcf_slice.loc[row_index]['REF']] + vcf_slice.loc[row_index]['ALT'].split(',') position_inter = int(vcf_slice.loc[row_index]['POS']) #vcf.loc[position_row,'REF'] = ref_mod #maybe need for sample in sample_dict: #if vcf_slice.loc[row_index][sample] == '.': if np.isclose(vcf_slice.loc[row_index][sample],np.nan,equal_nan=True): #sample_dict[sample] sample_will_deleted.add(sample) else: if vcf_slice.loc[row_index][sample] != 0: position_row_shift = int(vcf_slice.loc[row_index]['POS']) - position_first var_len = len(variant[int(vcf_slice.loc[row_index][sample])]) ref_len = len(vcf_slice.loc[row_index]['REF']) #print(sample) #print(sample_dict,file=log_file) if any([i=='' or type(i)==list for i in sample_dict[sample][position_row_shift:position_row_shift+ref_len]]): print(row_index,sample,'Error, position was used for variant, maybe wrong output,interval ignored',[pos_start,pos_end]) print('\n',position_row_shift,position_row_shift+ref_len,sample_dict,file=log_file) if log_file: log_file.write('Error, position was used for variant, maybe wrong output,interval ignored ' + str([pos_start,pos_end])+'\n') flag_ignored = True flag_break=True break #for cut end ref_sequence maybe ref_var = vcf_slice.loc[row_index]['REF'] alt_var = variant[int(vcf_slice.loc[row_index][sample])] #if len(ref_var)>1 or len(alt_var)>1: alt_cut = 0 ''' for sym_ref, sym_alt in zip(ref_var[::-1],alt_var[::-1]): if sym_ref == sym_alt: pass #ref_len -= 1 #alt_cut -= 1 #alt_var = alt_var[:-1] else: break ''' alt_cut = None if alt_cut==0 else alt_cut if len(variant[int(vcf_slice.loc[row_index][sample])]) == ref_len:#! sample_dict[sample][position_row_shift:position_row_shift+ref_len] = ([list(variant[int(vcf_slice.loc[row_index][sample])])])[:alt_cut] #sample_dict_info[sample] = sample_dict_info[sample]+vcf_slice.loc[row_index]['INFO'] + '_' elif len(variant[int(vcf_slice.loc[row_index][sample])]) != ref_len: sample_dict[sample][position_row_shift:position_row_shift+ref_len] = ([list(variant[int(vcf_slice.loc[row_index][sample])])])[:alt_cut] + [''] * (ref_len - 1) #(len(sample_dict[sample][position_row_shift:position_row_shift+ref_len]) - 1) sample_dict_info[sample] = sample_dict_info[sample]+vcf_slice.loc[row_index]['INFO'] + '+' sample_dict_mem[sample] += len(vcf_slice.loc[row_index]['REF']) else: continue position_start = position_inter if flag_ignored: continue intervals_used.append([contig,pos_start,pos_end]) #for redefine bin in sample bin_value = 1 used = [] used_bin = [] flag = False sample_lst = [] for sample in sample_will_deleted: del sample_dict[sample] sample_bin_dict[sample] = np.nan for sample in sample_dict: sample_dict[sample] = [i if type(i) == str else ''.join(i) for i in sample_dict[sample]] sample_dict = {i:''.join(j) for i,j in sample_dict.items()} sample_dict_info = {i:j[:-1] for i,j in sample_dict_info.items()} ref_mod #sample_bin_dict = dict() sample_seq_set = set() sample_uniq_dict = dict() info_lst = [] sample_uniq_dict[ref_mod] = 0 sample_seq_set.add(ref_mod) bin_value = 1 for sample,sample_seq_uniq in sample_dict.items(): if sample_seq_uniq not in sample_seq_set: sample_seq_set.add(sample_seq_uniq) sample_lst.append(sample_seq_uniq) info_lst.append(sample_dict_info[sample]) sample_uniq_dict[sample_seq_uniq] = bin_value bin_value+=1 for sample in sample_dict: sample_bin_dict[sample] = sample_uniq_dict[sample_dict[sample]] info = '&'.join(info_lst) #print('sample_bin_dict =',sample_dict) ''' for sample in sample_dict: if all(vcf_slice[sample].astype(int) == 0): #!need check . values sample_bin_dict[sample] = 0 else: if sample not in used: for sample_compared in sample_dict: if (vcf_slice.iloc[:,9:][sample_compared].astype(int)).equals(vcf_slice.iloc[:,9:][sample].astype(int)) and sample_compared not in used:# and list(vcf_slice.iloc[:,9:][sample_compared].values) not in used_bin:# and sample_compared != sample: sample_bin_dict[sample_compared] = bin_value used += [sample_compared] used_bin.append(list(vcf_slice.iloc[:,9:][sample_compared].values)) flag = True if flag == True: sample_lst += [sample_dict[sample]] bin_value += 1 flag = False ''' alt = ','.join(sample_lst) #print(vcf_slice['INFO'].values) if info_just_indel: info = 'INDEL' print('Add compressed interval to vcf',pos_start,pos_end,str(pos_end-pos_start)) if log_file: log_file.write('Add compressed interval to vcf ' + str([pos_start,pos_end])+ str(pos_end-pos_start) + '\n') vcf_variant_dict = {'#CHROM':contig,'POS':position_first,'ID':'.','REF':ref_mod, 'ALT':alt,'QUAL':40,'FILTER':'PASS','INFO':info,'FORMAT':'GT'} vcf_variant_dict.update(sample_bin_dict) for_merged = pd.Series(vcf_variant_dict,name=index_first) vcf.drop(vcf_slice.index,inplace=True) vcf = vcf.append(for_merged,ignore_index=False)#!True vcf.sort_values(by=['#CHROM','POS'],ascending=[False,True],inplace=True) return vcf def definer_overlap_window(vcf,overlap_extra=0,type_merge='hard',log_file=False): over = 0 interval_noexact = [] interval_exact = [] pos = vcf.iloc[0]["POS"] #for num,position_row in enumerate(vcf.loc[pos:].index): for num,position_row in enumerate(vcf.index): contig = vcf.iloc[num]['#CHROM'] interval = [] interval_dict = {} interval2 = [] window_sum = vcf.loc[position_row]['POS'] + len(vcf.loc[position_row]['REF'])-1 + overlap_extra #print(position_row,window_sum) for position_row2 in vcf.index[num+1:]: if vcf.loc[position_row2]['POS'] <= window_sum: if vcf.loc[position_row2]['#CHROM'] != contig: print('Warning different contig',vcf.loc[position_row2]['#CHROM'], contig,position_row,position_row2) break over = vcf.loc[position_row2]['POS']+len(vcf.loc[position_row2]['REF'])-1 + overlap_extra #print('minus=',window_sum,over,window_sum - over) if over > window_sum: #or window_sum = over if window_sum - vcf.loc[position_row]['POS']>1000: print('Warning interval contain large indel','interval ignored',[position_row,position_row2],'Indel lenght =',window_sum-vcf.loc[position_row]['POS'])#for filter large variant if log_file: log_file.write('Warning interval contain large indel, interval ignored ' + str([position_row,position_row2])+' Indel lenght = ' + str(window_sum-vcf.loc[position_row]['POS']) +'\n') break #vcf_slice = vcf[(vcf.loc[position_row]['POS'] <= vcf['POS']) & (vcf['POS'] <= vcf.loc[position_row2]['POS']) & (vcf['#CHROM']==contig)]#!window_sum if type_merge == 'soft': vcf_slice = vcf[(vcf.loc[position_row]['POS'] <= vcf['POS']) & (vcf['POS'] <= vcf.loc[position_row2]['POS']) & (vcf['#CHROM']==contig)]#!window_sum #print(vcf_slice) if any((vcf_slice.iloc[:,9:].isna().any()) & (~(vcf_slice.iloc[:,9:].isna().all()))): print('Warning interval contain indeterminate variant,interval ignored',[position_row,position_row2]) if log_file: log_file.write('Warning interval contain indeterminate variant,interval ignored ' + str([position_row,position_row2])+'\n') break interval = [vcf.loc[position_row]['POS'],window_sum] #interval2 = [vcf.loc[position_row]['POS'],vcf.loc[position_row2]['POS']] interval2 = [contig,vcf.loc[position_row]['POS'],vcf.loc[position_row2]['POS']] interval_dict[contig] = [vcf.loc[position_row]['POS'],vcf.loc[position_row2]['POS']] else: break if interval: interval_noexact.append(interval) if interval2: #interval_exact.append(interval2) interval_exact.append(interval2) return interval_exact,interval_noexact def intervals_concat(intervals_path): '''intervals_path = list of path file interval''' intervals = [] for interval in intervals_path: if test: intervals.append(
pd.read_csv(interval,sep='\t')
pandas.read_csv
from __future__ import annotations import os import pandas as pd import streamlit as st st.set_page_config(layout="wide") class Pager: """Generates cycled stepper indices.""" def __init__(self, count) -> None: self.count = count self.current = 0 @property def next(self) -> int: """Fetches next index.""" n = self.current + 1 # Cycles to beginning. if n > self.count-1: n -= self.count return n @property def prev(self) -> int: """Fetches previous index.""" n = self.current - 1 # Cycles to end. if n < 0 : n += self.count return n def set_current(self, current) -> None: """Sets current index.""" self.current = current class Indices: """Collects all index strings from data dir.""" def __init__(self) -> None: self.values = self._get_indices() self.count = len(self.values) @staticmethod def _get_contents() -> list: """Fetches lits of all files.""" return os.listdir(datapath) def _get_gifs(self) -> list: """Fetches list of all gif file names.""" contents = self._get_contents() return [file for file in contents if file.endswith('.gif')] def _get_indices(self) -> list: """Fetches list of all string indices.""" gifs = self._get_gifs() return [name.split('.')[0].split('_')[-1] for name in gifs] def index_of(self, index_str: str) -> int: """Fetches base index of string index.""" return self.values.index(index_str) def session_next_set(): """Updates session to next page index.""" pager.set_current(st.session_state['page']) st.session_state['page'] = pager.next def session_prev_set(): """Updates session to previous page index.""" pager.set_current(st.session_state['page']) st.session_state['page'] = pager.prev def update_df(idx: int, eval_val: str, comment_val: str) -> None: """Updates dataframe with inputs and opens next set.""" df.at[idx, 'eval'] = eval_val df.at[idx, 'comment'] = comment_val session_next_set() def save_df() -> None: """Saves dataframe at current session.""" df.to_csv('viewer.csv', index=False) with st.sidebar: st.info('df saved to viewer.csv') def populate(index_frame: str) -> tuple: """Populates image data and stores eval input.""" idx = indices.index_of(index_frame) with col_raw: st.subheader("Raw") st.image(f'{datapath}/raw_{index_frame}.png') eval_val = col_raw.radio('Eval:', eval_choices) with col_ann: st.subheader("Annotated") st.image(f'{datapath}/annotated_{index_frame}.png') val = df.loc[df["index"] == index_frame, "eval"].iloc[0] st.text(f'Stored Eval: {val}') with col_gif: st.subheader("GIF") st.image(f'{datapath}/anim_{index_frame}.gif') comment_val = df.loc[df["index"] == index_frame, "comment"].iloc[0] comment_val = col_gif.text_input('Comments: ', value = comment_val) st.button( 'SUBMIT', on_click=update_df, args=(idx, eval_val, comment_val) ) # Sets evaluation choices. eval_choices = ['Good', 'Bad'] # Sets datapath. with st.sidebar: datapath = st.text_input( 'Path to data:', f'{os.getcwd()}/data' ) indices = Indices() pager = Pager(indices.count) @st.cache(allow_output_mutation=True) def make_df(): # Creates base dataframe to store inputs. default_eval = [''] * indices.count default_comment = [''] * indices.count data = { 'index': indices.values, 'eval': default_eval, 'comment': default_comment } return
pd.DataFrame(data)
pandas.DataFrame
#################################################### ## TO TRAIN AND TEST CLASSIFIER ## train : to train classifier with train dataset ## test : to predict labels of validation dataset ## submit: to predict labels of test dataset #################################################### import time import numpy as np import pandas as pd from copy import deepcopy import torch import csv from utils import eval_metrics, pred_to_label def train(model, n_epochs, trainloader,valloader, criterion, optimizer, scheduler,tri ,device): best_model = deepcopy(model) best_f1 = -np.inf for epoch in range(n_epochs): model.train() start_perf_counter = time.perf_counter() start_process_time = time.process_time() print(f'n_epoch:{epoch}, lr:{scheduler.get_last_lr()}') running_loss = 0.0 running_f1 = 0.0 train_loss = 0.0 train_f1 = 0.0 for i,data in enumerate(trainloader, 0): inputs, labels = data['image'], data['label'] inputs = inputs.to(device) labels = labels.to(device) optimizer.zero_grad() outputs = model.forward(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() proba = torch.nn.Softmax(dim=1)(outputs) running_loss += loss.item() running_f1 += eval_metrics(np.array(proba.detach().cpu()),np.array(labels.detach().cpu())) train_loss += loss.item() train_f1 += eval_metrics(np.array(proba.detach().cpu()), np.array(labels.detach().cpu())) if i%100 == 99: print(f'[epoch_{epoch+1}, batch_{i+1}] loss: {running_loss/100}, f1; {running_f1/100}') running_loss = 0.0 running_f1 = 0.0 end_perf_counter = time.perf_counter()-start_perf_counter end_process_time = time.process_time()-start_process_time print('train_loss:',train_loss/len(trainloader), 'train_f1:',train_f1/len(trainloader)) print(f'perf_counter : {end_perf_counter}') print(f'process_time : {end_process_time}') test_loss, test_f1 = test(model, valloader, criterion, device) print('test_loss:',test_loss, 'test_f1:',test_f1) torch.save(model.state_dict(), './model/'+tri+'_epoch'+str(epoch)+'.pth') scheduler.step() if test_f1 > best_f1: best_model = deepcopy(model) torch.save(model.state_dict(), './model/'+tri+'_best_epoch'+str(epoch)+'_'+time.strftime('%H:%M:%S')+'.pth') return best_model def test(model, data_loader, criterion, device): model.eval() total_loss=0 total_f1=0 with torch.no_grad(): for i,data in enumerate(data_loader, 0): inputs, labels = data['image'], data['label'] inputs = inputs.to(device) labels = labels.to(device) outputs = model.forward(inputs) loss = criterion(outputs, labels) total_loss += loss.item() proba = torch.nn.Softmax(dim=1)(outputs) total_f1 += eval_metrics(np.array(proba.cpu()),np.array( labels.cpu())) '''for idx,_ in enumerate(labels): print('predicted_labels:', torch.max(outputs.data, dim=1).indices[idx], 'label:', labels[idx].cpu())''' return total_loss/len(data_loader), total_f1/len(data_loader) def submit(model, file_name, data_loader, device): model.eval() results_df = pd.DataFrame() with torch.no_grad(): for i,data in enumerate(data_loader, 0): inputs = data['image'] code,num = data['code'], data['num'] inputs = inputs.to(device) outputs = model.forward(inputs) proba = torch.nn.Softmax(dim=1)(outputs) pred = np.argmax(np.array(proba.cpu()),1) label = pred_to_label(pred) for idx,_ in enumerate(inputs): row = [label[idx]] row_df = pd.DataFrame([row]) results_df =
pd.concat([results_df, row_df])
pandas.concat
from flask import Flask, render_template, request, redirect, url_for, session import pandas as pd import pymysql import os import io #from werkzeug.utils import secure_filename from pulp import * import numpy as np import pymysql import pymysql.cursors from pandas.io import sql #from sqlalchemy import create_engine import pandas as pd import numpy as np #import io import statsmodels.formula.api as smf import statsmodels.api as sm import scipy.optimize as optimize import matplotlib.mlab as mlab import matplotlib.pyplot as plt #from flask import Flask, render_template, request, redirect, url_for, session, g from sklearn.linear_model import LogisticRegression from math import sin, cos, sqrt, atan2, radians from statsmodels.tsa.arima_model import ARIMA #from sqlalchemy import create_engine from collections import defaultdict from sklearn import linear_model import statsmodels.api as sm import scipy.stats as st import pandas as pd import numpy as np from pulp import * import pymysql import math app = Flask(__name__) app.secret_key = os.urandom(24) localaddress="D:\\home\\site\\wwwroot" localpath=localaddress os.chdir(localaddress) @app.route('/') def index(): return redirect(url_for('home')) @app.route('/home') def home(): return render_template('home.html') @app.route('/demandplanning') def demandplanning(): return render_template("Demand_Planning.html") @app.route("/elasticopt",methods = ['GET','POST']) def elasticopt(): if request.method== 'POST': start_date =request.form['from'] end_date=request.form['to'] prdct_name=request.form['typedf'] # connection = pymysql.connect(host='localhost', # user='user', # password='', # db='test', # charset='utf8mb4', # cursorclass=pymysql.cursors.DictCursor) # # x=connection.cursor() # x.execute("select * from `transcdata`") # connection.commit() # datass=pd.DataFrame(x.fetchall()) datass = pd.read_csv("C:\\Users\\1026819\\Downloads\\optimizdata.csv") # datas = datass[(datass['Week']>=start_date) & (datass['Week']<=end_date )] datas=datass df = datas[datas['Product'] == prdct_name] df=datass changeData=pd.concat([df['Product_Price'],df['Product_Qty']],axis=1) changep=[] changed=[] for i in range(0,len(changeData)-1): changep.append(changeData['Product_Price'].iloc[i]-changeData['Product_Price'].iloc[i+1]) changed.append(changeData['Product_Qty'].iloc[1]-changeData['Product_Qty'].iloc[i+1]) cpd=pd.concat([pd.DataFrame(changep),pd.DataFrame(changed)],axis=1) cpd.columns=['Product_Price','Product_Qty'] sortedpricedata=df.sort_values(['Product_Price'], ascending=[True]) spq=pd.concat([sortedpricedata['Product_Price'],sortedpricedata['Product_Qty']],axis=1).reset_index(drop=True) pint=[] dint=[] x = spq['Product_Price'] num_bins = 5 # n, pint, patches = plt.hist(x, num_bins, facecolor='blue', alpha=0.5) y = spq['Product_Qty'] num_bins = 5 # n, dint, patches = plt.hist(y, num_bins, facecolor='blue', alpha=0.5) arr= np.zeros(shape=(len(pint),len(dint))) count=0 for i in range(0, len(pint)): lbp=pint[i] if i==len(pint)-1: ubp=pint[i]+1 else: ubp=pint[i+1] for j in range(0, len(dint)): lbd=dint[j] if j==len(dint)-1: ubd=dint[j]+1 else: ubd=dint[j+1] print(lbd,ubd) for k in range(0, len(spq)): if (spq['Product_Price'].iloc[k]>=lbp\ and spq['Product_Price'].iloc[k]<ubp): if(spq['Product_Qty'].iloc[k]>=lbd\ and spq['Product_Qty'].iloc[k]<ubd): count+=1 arr[i][j]+=1 price_range=np.zeros(shape=(len(pint),2)) for j in range(0,len(pint)): lbp=pint[j] price_range[j][0]=lbp if j==len(pint)-1: ubp=pint[j]+1 price_range[j][1]=ubp else: ubp=pint[j+1] price_range[j][1]=ubp demand_range=np.zeros(shape=(len(dint),2)) for j in range(0,len(dint)): lbd=dint[j] demand_range[j][0]=lbd if j==len(dint)-1: ubd=dint[j]+1 demand_range[j][1]=ubd else: ubd=dint[j+1] demand_range[j][1]=ubd pr=pd.DataFrame(price_range) pr.columns=['Price','Demand'] dr=pd.DataFrame(demand_range) dr.columns=['Price','Demand'] priceranges=pr.Price.astype(str).str.cat(pr.Demand.astype(str), sep='-') demandranges=dr.Price.astype(str).str.cat(dr.Demand.astype(str), sep='-') price=pd.DataFrame(arr) price.columns=demandranges price.index=priceranges pp=price.reset_index() global data data=pd.concat([df['Week'],df['Product_Qty'],df['Product_Price'],df['Comp_Prod_Price'],df['Promo1'],df['Promo2'],df['overallsale']],axis=1) return render_template('dataview.html',cpd=cpd.values,pp=pp.to_html(index=False),data=data.to_html(index=False),graphdata=data.values,ss=1) return render_template('dataview.html') @app.route('/priceelasticity',methods = ['GET','POST']) def priceelasticity(): return render_template('Optimisation_heatmap_revenue.html') @app.route("/elasticity",methods = ['GET','POST']) def elasticity(): if request.method== 'POST': Price=0 Average_Price=0 Promotions=0 Promotionss=0 if request.form.get('Price'): Price=1 if request.form.get('Average_Price'): Average_Price=1 if request.form.get('Promotion_1'): Promotions=1 if request.form.get('Promotion_2'): Promotionss=1 Modeldata=pd.DataFrame() Modeldata['Product_Qty']=data.Product_Qty lst=[] for row in data.index: lst.append(row+1) Modeldata['Week']=np.log(lst) if Price == 1: Modeldata['Product_Price']=data['Product_Price'] if Price == 0: Modeldata['Product_Price']=0 if Average_Price==1: Modeldata['Comp_Prod_Price']=data['Comp_Prod_Price'] if Average_Price==0: Modeldata['Comp_Prod_Price']=0 if Promotions==1: Modeldata['Promo1']=data['Promo1'] if Promotions==0: Modeldata['Promo1']=0 if Promotionss==1: Modeldata['Promo2']=data['Promo2'] if Promotionss==0: Modeldata['Promo2']=0 diffpriceprodvscomp= (Modeldata['Product_Price']-Modeldata['Comp_Prod_Price']) promo1=Modeldata.Promo1 promo2=Modeldata.Promo2 week=Modeldata.Week quantityproduct=Modeldata.Product_Qty df=pd.concat([quantityproduct,diffpriceprodvscomp,promo1,promo2,week],axis=1) df.columns=['quantityproduct','diffpriceprodvscomp','promo1','promo2','week'] Model = smf.ols(formula='df.quantityproduct ~ df.diffpriceprodvscomp + df.promo1 + df.promo2 + df.week', data=df) res = Model.fit() global intercept,diffpriceprodvscomp_param,promo1_param,promo2_param,week_param intercept=res.params[0] diffpriceprodvscomp_param=res.params[1] promo1_param=res.params[2] promo2_param=res.params[3] week_param=res.params[4] Product_Price_min=0 maxvalue_of_price=int(Modeldata['Product_Price'].max()) Product_Price_max=int(Modeldata['Product_Price'].max()) if maxvalue_of_price==0: Product_Price_max=1 maxfunction=[] pricev=[] weeks=[] dd=[] ddl=[] for vatr in range(0,len(Modeldata)): weeks.append(lst[vatr]) for Product_Price in range(Product_Price_min,Product_Price_max+1): function=0 function=(intercept+(Modeldata['Promo1'].iloc[vatr]*promo1_param)+(Modeldata['Promo2'].iloc[vatr]*promo2_param) + (diffpriceprodvscomp_param*(Product_Price-Modeldata['Comp_Prod_Price'].iloc[vatr]))+(Modeldata['Week'].iloc[vatr]*lst[vatr])) maxfunction.append(function) dd.append(Product_Price) ddl.append(vatr) for Product_Price in range(Product_Price_min,Product_Price_max+1): pricev.append(Product_Price) df1=pd.DataFrame(maxfunction) df2=pd.DataFrame(dd) df3=pd.DataFrame(ddl) dfo=pd.concat([df3,df2,df1],axis=1) dfo.columns=['weeks','prices','Demandfunctions'] demand=[] for rows in dfo.values: w=int(rows[0]) p=int(rows[1]) d=int(rows[2]) demand.append([w,p,d]) Co_eff=pd.DataFrame(res.params.values)#intercept standard_error=pd.DataFrame(res.bse.values)#standard error p_values=pd.DataFrame(res.pvalues.values) conf_lower =pd.DataFrame(res.conf_int()[0].values) conf_higher =pd.DataFrame(res.conf_int()[1].values) R_square=res.rsquared atr=['Intercept','DeltaPrice','Promo1','Promo2','Week'] atribute=pd.DataFrame(atr) SummaryTable=pd.concat([atribute,Co_eff,standard_error,p_values,conf_lower,conf_higher],axis=1) SummaryTable.columns=['Atributes','Co_eff','Standard_error','P_values','conf_lower','conf_higher'] reshapedf=df1.values.reshape(len(Modeldata),(-Product_Price_min+(Product_Price_max+1))) dataofmas=pd.DataFrame(reshapedf) maxv=dataofmas.apply( max, axis=1 ) minv=dataofmas.apply(min,axis=1) avgv=dataofmas.sum(axis=1)/(-Product_Price_min+(Product_Price_max+1)) wks=pd.DataFrame(weeks) ddofs=pd.concat([wks,minv,avgv,maxv],axis=1) dataofmas=pd.DataFrame(reshapedf) kk=pd.DataFrame() sums=0 for i in range(0,len(dataofmas.columns)): sums=sums+i vv=i*dataofmas[[i]] kk=pd.concat([kk,vv],axis=1) dfr=pd.DataFrame(kk) mrevenue=dfr.apply( max, axis=1 ) prices=dfr.idxmax(axis=1) wks=pd.DataFrame(weeks) revenuedf=pd.concat([wks,mrevenue,prices],axis=1) return render_template('Optimisation_heatmap_revenue.html',revenuedf=revenuedf.values,ddofs=ddofs.values,SummaryTable=SummaryTable.to_html(index=False),ss=1,weeks=weeks,demand=demand,pricev=pricev,R_square=R_square) @app.route('/inputtomaxm',methods=["GET","POST"]) def inputtomaxm(): return render_template("Optimize.html") @app.route("/maxm",methods=["GET","POST"]) def maxm(): if request.method=="POST": week=request.form['TimePeriod'] price_low=request.form['Price_Lower'] price_max=request.form['Price_Upper'] promofirst=request.form['Promotion_1'] promosecond=request.form['Promotion_2'] # week=24 # price_low=6 # price_max=20 # promofirst=1 # promosecond=0 # # time_period=24 # # global a # a=243.226225 # global b # b=-9.699634 # global d # d=1.671505 # global pr1 # pr1=21.866260 # global pr2 # pr2=-0.511606 # global cm # cm=-14.559594 # global s_0 # s_0= 2000 # promo1=1 # promo2=0 time_period=int(week) global a a=intercept global b b=diffpriceprodvscomp_param global d d=week_param global pr1 pr1=promo1_param global pr2 pr2=promo2_param global s_0 s_0= 2000 promo1=int(promofirst) promo2=int(promosecond) global comp comp=np.random.randint(7,15,time_period) def demand(p, a=a, b=b, d=d, promo1=promo1,promo2_param=promo2,comp=comp, t=np.linspace(1,time_period,time_period)): """ Return demand given an array of prices p for times t (see equation 5 above)""" return a+(b*(p-comp))+(d*t)+(promo1*pr1)+(promo2*pr2) def objective(p_t, a, b, d,promo1,promo2, comp, t=np.linspace(1,time_period,time_period)): return -1.0 * np.sum( p_t * demand(p_t, a, b, d,promo1,promo2, comp, t) ) def constraint_1(p_t, s_0, a, b, d, promo1,promo2, comp, t=np.linspace(1,time_period,time_period)): """ Inventory constraint. s_0 - np.sum(x_t) >= 0. This is an inequality constraint. See more below. """ return s_0 - np.sum(demand(p_t, a, b, d,promo1,promo2, comp, t)) def constraint_2(p_t): #""" Positive demand. Another inequality constraint x_t >= 0 """ return p_t t = np.linspace(1,time_period,time_period) # Starting values : b_min=int(price_low) p_start = b_min * np.ones(len(t)) # bounds on the values : bmax=int(price_max) bounds = tuple((0,bmax) for x in p_start) import scipy.optimize as optimize # Constraints : constraints = ({'type': 'ineq', 'fun': lambda x, s_0=s_0: constraint_1(x,s_0, a, b, d,promo1,promo2, comp, t=t)}, {'type': 'ineq', 'fun': lambda x: constraint_2(x)} ) opt_results = optimize.minimize(objective, p_start, args=(a, b, d,promo1,promo2, comp, t), method='SLSQP', bounds=bounds, constraints=constraints) np.sum(opt_results['x']) opt_price=opt_results['x'] opt_demand=demand(opt_results['x'], a, b, d, promo1,promo2_param, comp, t=t) weeks=[] for row in range(1,len(opt_price)+1): weeks.append(row) d=pd.DataFrame(weeks).astype(int) dd=pd.DataFrame(opt_price) optimumumprice_perweek=pd.concat([d,dd,pd.DataFrame(opt_demand).astype(int)],axis=1) optimumumprice_perweek.columns=['Week','Price','Demand'] dataval=optimumumprice_perweek diff=[] diffs=[] for i in range(0,len(opt_demand)-1): valss=opt_demand[i]-opt_demand[i+1] diff.append(valss) diffs.append(i+1) differenceofdemand_df=pd.concat([pd.DataFrame(diffs),pd.DataFrame(diff)],axis=1) MP=round(optimumumprice_perweek.loc[optimumumprice_perweek['Price'].idxmin()],1) minimumprice=pd.DataFrame(MP).T MaxP=round(optimumumprice_perweek.loc[optimumumprice_perweek['Price'].idxmax()],1) maximumprice=pd.DataFrame(MaxP).T averageprice=round((optimumumprice_perweek['Price'].sum()/len(optimumumprice_perweek)),2) MD=round(optimumumprice_perweek.loc[optimumumprice_perweek['Demand'].idxmin()],0) minimumDemand=pd.DataFrame(MD).T MaxD=round(optimumumprice_perweek.loc[optimumumprice_perweek['Demand'].idxmax()],0) maximumDemand=pd.DataFrame(MaxD).T averageDemand=round((optimumumprice_perweek['Demand'].sum()/len(optimumumprice_perweek)),0) totaldemand=round(optimumumprice_perweek['Demand'].sum(),0) return render_template("Optimize.html",totaldemand=totaldemand,averageDemand=averageDemand,maximumDemand=maximumDemand.values,minimumDemand=minimumDemand.values,averageprice=averageprice,maximumprice=maximumprice.values,minimumprice=minimumprice.values,dataval=dataval.values,differenceofdemand_df=differenceofdemand_df.values,optimumumprice_perweek=optimumumprice_perweek.to_html(index=False),ll=1) @app.route("/Inventorymanagment",methods=["GET","POST"]) def Inventorymanagment(): return render_template("Inventory_Management.html") @app.route("/DISTRIBUTION_NETWORK_OPT",methods=["GET","POST"]) def DISTRIBUTION_NETWORK_OPT(): return render_template("DISTRIBUTION_NETWORK_OPTIMIZATION.html") @app.route("/Procurement_Plan",methods=["GET","POST"]) def Procurement_Plan(): return render_template("Procurement_Planning.html") #<NAME> @app.route("/fleetallocation") def fleetallocation(): return render_template('fleetallocation.html') @app.route("/reset") def reset(): conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = conn.cursor() cur.execute("DELETE FROM `input`") cur.execute("DELETE FROM `output`") cur.execute("DELETE FROM `Scenario`") conn.commit() conn.close() open(localaddress+'\\static\\demodata.txt', 'w').close() return render_template('fleetallocation.html') @app.route("/dalink",methods = ['GET','POST']) def dalink(): sql = "INSERT INTO `input` (`Route`,`SLoc`,`Ship-to Abb`,`Primary Equipment`,`Batch`,`Prod Dt`,`SW`,`Met Held`,`Heat No`,`Delivery Qty`,`Width`,`Length`,`Test Cut`,`Customer Priority`) VALUES( %s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s)" conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = conn.cursor() if request.method == 'POST': typ = request.form.get('type') frm = request.form.get('from') to = request.form.get('to') if typ and frm and to: conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = conn.cursor() curr = conn.cursor() cur.execute("SELECT * FROM `inventory_data` WHERE `Primary Equipment` = '" + typ + "' AND `Prod Dt` BETWEEN '" + frm + "' AND '" + to + "'") res = cur.fetchall() if len(res)==0: conn.close() return render_template('fleetallocation.html',alert='No data available') sfile = pd.DataFrame(res) df1 = pd.DataFrame(sfile) df1['Prod Dt'] =df1['Prod Dt'].astype(object) for index, i in df1.iterrows(): data = (i['Route'],i['SLoc'],i['Ship-to Abb'],i['Primary Equipment'],i['Batch'],i['Prod Dt'],i['SW'],i['Met Held'],i['Heat No'],i['Delivery Qty'],i['Width'],i['Length'],i['Test Cut'],i['Customer Priority']) curr.execute(sql,data) conn.commit() conn.close() return render_template('fleetallocation.html',typ=" Equipment type: "+typ,frm="From: "+frm,to=" To:"+to,data = sfile.to_html(index=False)) else: return render_template('fleetallocation.html',alert ='All input fields are required') return render_template('fleetallocation.html') @app.route('/optimise', methods=['GET', 'POST']) def optimise(): open(localaddress+'\\static\\demodata.txt', 'w').close() conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = conn.cursor() curr = conn.cursor() cur.execute("DELETE FROM `output`") conn.commit() os.system('python optimising.py') sa=1 cur.execute("SELECT * FROM `output`") result = cur.fetchall() if len(result)==0: say=0 else: say=1 curr.execute("SELECT * FROM `input`") sfile = curr.fetchall() if len(sfile)==0: conn.close() return render_template('fleetallocation.html',say=say,sa=sa,alert='No data available') sfile = pd.DataFrame(sfile) conn.close() with open(localaddress+"\\static\\demodata.txt", "r") as f: content = f.read() return render_template('fleetallocation.html',say=say,sa=sa,data = sfile.to_html(index=False),content=content) @app.route("/scenario") def scenario(): return render_template('scenario.html') @app.route("/scenario_insert", methods=['GET','POST']) def scenario_insert(): if request.method == 'POST': scenario = request.form.getlist("scenario[]") customer_priority = request.form.getlist("customer_priority[]") oldest_sw = request.form.getlist("oldest_sw[]") production_date = request.form.getlist("production_date[]") met_held_group = request.form.getlist("met_held_group[]") test_cut_group = request.form.getlist("test_cut_group[]") sub_grouping_rules = request.form.getlist("sub_grouping_rules[]") load_lower_bounds = request.form.getlist("load_lower_bounds[]") load_upper_bounds = request.form.getlist("load_upper_bounds[]") width_bounds = request.form.getlist("width_bounds[]") length_bounds = request.form.getlist("length_bounds[]") description = request.form.getlist("description[]") conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = conn.cursor() curr = conn.cursor() lngth = len(scenario) curr.execute("DELETE FROM `scenario`") if scenario and customer_priority and oldest_sw and production_date and met_held_group and test_cut_group and sub_grouping_rules and load_lower_bounds and load_upper_bounds and width_bounds and length_bounds and description: say=0 for i in range(lngth): scenario_clean = scenario[i] customer_priority_clean = customer_priority[i] oldest_sw_clean = oldest_sw[i] production_date_clean = production_date[i] met_held_group_clean = met_held_group[i] test_cut_group_clean = test_cut_group[i] sub_grouping_rules_clean = sub_grouping_rules[i] load_lower_bounds_clean = load_lower_bounds[i] load_upper_bounds_clean = load_upper_bounds[i] width_bounds_clean = width_bounds[i] length_bounds_clean = length_bounds[i] description_clean = description[i] if scenario_clean and customer_priority_clean and oldest_sw_clean and production_date_clean and met_held_group_clean and test_cut_group_clean and sub_grouping_rules_clean and load_lower_bounds_clean and load_upper_bounds_clean and width_bounds_clean and length_bounds_clean: cur.execute("INSERT INTO `scenario`(scenario, customer_priority, oldest_sw, production_date, met_held_group, test_cut_group, sub_grouping_rules, load_lower_bounds, load_upper_bounds, width_bounds, length_bounds, description) VALUES('"+scenario_clean+"' ,'"+customer_priority_clean+"','"+oldest_sw_clean+"','"+production_date_clean+"','"+met_held_group_clean+"','"+test_cut_group_clean+"', '"+sub_grouping_rules_clean+"','"+load_lower_bounds_clean+"', '"+load_upper_bounds_clean+"','"+width_bounds_clean+"','"+length_bounds_clean+"','"+description_clean+"')") else: say = 1 conn.commit() if(say==0): alert='All Scenarios inserted' else: alert='Some scenarios were not inserted' return (alert) conn.close() return ('All fields are required!') return ('Failed!!!') @app.route("/fetch", methods=['GET','POST']) def fetch(): if request.method == 'POST': conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = conn.cursor() cur.execute("SELECT * FROM scenario") result = cur.fetchall() if len(result)==0: conn.close() return render_template('scenario.html',alert1='No scenarios Available') result1 = pd.DataFrame(result) result1 = result1.drop('Sub-grouping rules', axis=1) conn.close() return render_template('scenario.html',sdata = result1.to_html(index=False)) return ("Error") @app.route("/delete", methods=['GET','POST']) def delete(): if request.method == 'POST': conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = conn.cursor() cur.execute("DELETE FROM scenario") conn.commit() conn.close() return render_template('scenario.html',alert1="All the scenerios were dropped!") return ("Error") @app.route('/papadashboard', methods=['GET', 'POST']) def papadashboard(): sql1 = "SELECT `Scenario`, MAX(`Wagon-No`) AS 'Wagon Used', COUNT(`Batch`) AS 'Products Allocated', SUM(`Delivery Qty`) AS 'Total Product Allocated', SUM(`Delivery Qty`)/(MAX(`Wagon-No`)) AS 'Average Load Carried', SUM(`Width`)/(MAX(`Wagon-No`)) AS 'Average Width Used' FROM `output` WHERE `Wagon-No`>0 GROUP BY `Scenario`" conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) curs = conn.cursor() curs.execute("SELECT `scenario` FROM `scenario`") sdata = curs.fetchall() if len(sdata)==0: conn.close() return render_template('warning.html',alert='No data available') cur1 = conn.cursor() cur1.execute(sql1) data1 = cur1.fetchall() if len(data1)==0: conn.close() return render_template('warning.html',alert='Infeasible to due Insufficient Load') cu = conn.cursor() cu.execute("SELECT `length_bounds`,`width_bounds`,`load_lower_bounds`,`load_upper_bounds` FROM `scenario`") sdaa = cu.fetchall() sdaa = pd.DataFrame(sdaa) asa=list() for index, i in sdaa.iterrows(): hover = "Length Bound:"+str(i['length_bounds'])+", Width Bound:"+str(i['width_bounds'])+", Load Upper Bound:"+str(i['load_upper_bounds'])+", Load Lower Bound:"+str(i['load_lower_bounds']) asa.append(hover) asa=pd.DataFrame(asa) asa.columns=['Details'] data1 = pd.DataFrame(data1) data1['Average Width Used'] = data1['Average Width Used'].astype(int) data1['Total Product Allocated'] = data1['Total Product Allocated'].astype(int) data1['Average Load Carried'] = data1['Average Load Carried'].astype(float) data1['Average Load Carried'] = round(data1['Average Load Carried'],2) data1['Average Load Carried'] = data1['Average Load Carried'].astype(str) fdata = pd.DataFrame(columns=['Scenario','Wagon Used','Products Allocated','Total Product Allocated','Average Load Carried','Average Width Used','Details']) fdata[['Scenario','Wagon Used','Products Allocated','Total Product Allocated','Average Load Carried','Average Width Used']] = data1[['Scenario','Wagon Used','Products Allocated','Total Product Allocated','Average Load Carried','Average Width Used']] fdata['Details'] = asa['Details'] fdata = fdata.values sql11 = "SELECT `Scenario`, SUM(`Delivery Qty`)/(MAX(`Wagon-No`)) AS 'Average Load Carried', COUNT(`Batch`) AS 'Allocated', SUM(`Delivery Qty`) AS 'Load Allocated' FROM `output`WHERE `Wagon-No`>0 GROUP BY `Scenario`" sql21 = "SELECT COUNT(`Batch`) AS 'Total Allocated' FROM `output` GROUP BY `Scenario`" sql31 = "SELECT `load_upper_bounds` FROM `scenario`" conn1 = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur11 = conn1.cursor() cur21 = conn1.cursor() cur31 = conn1.cursor() cur11.execute(sql11) data11 = cur11.fetchall() data11 = pd.DataFrame(data11) cur21.execute(sql21) data21 = cur21.fetchall() data21 = pd.DataFrame(data21) cur31.execute(sql31) data31 = cur31.fetchall() data31 = pd.DataFrame(data31) data11['Average Load Carried']=data11['Average Load Carried'].astype(float) fdata1 = pd.DataFrame(columns=['Scenario','Utilisation Percent','Allocation Percent','Total Load Allocated']) fdata1['Utilisation Percent'] = round(100*(data11['Average Load Carried']/data31['load_upper_bounds']),2) data11['Load Allocated']=data11['Load Allocated'].astype(int) fdata1[['Scenario','Total Load Allocated']]=data11[['Scenario','Load Allocated']] data11['Allocated']=data11['Allocated'].astype(float) data21['Total Allocated']=data21['Total Allocated'].astype(float) fdata1['Allocation Percent'] = round(100*(data11['Allocated']/data21['Total Allocated']),2) fdata1['Allocation Percent'] = fdata1['Allocation Percent'].astype(str) fdat1 = fdata1.values conn1.close() if request.method == 'POST': conn2 = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = conn2.cursor() ata = request.form['name'] cur.execute("SELECT * FROM `output` WHERE `Scenario` = '"+ata+"' ") ssdata = cur.fetchall() datasss = pd.DataFrame(ssdata) data=datasss.replace("Not Allocated", 0) df=data[['Delivery Qty','Wagon-No','Width','Group-Number']] df['Wagon-No']=df['Wagon-No'].astype(int) a=df['Wagon-No'].max() ##bar1 result_array = np.array([]) for i in range (a): data_i = df[df['Wagon-No'] == i+1] del_sum_i = data_i['Delivery Qty'].sum() per_i=[((del_sum_i)/(205000)*100)] result_array = np.append(result_array, per_i) result_array1 = np.array([]) for j in range (a): data_j = df[df['Wagon-No'] == j+1] del_sum_j = data_j['Width'].sum() per_util_j=[((del_sum_j)/(370)*100)] result_array1 = np.append(result_array1, per_util_j) ##pie1 df112 = df[df['Wagon-No'] == 0] pie1 = df112 ['Width'].sum() df221 = df[df['Wagon-No'] > 0] pie11 = df221['Width'].sum() df1=data[['SW','Group-Number']] dff1 = df1[data['Wagon-No'] == 0] da1 =dff1.groupby(['SW']).count() re11 = np.array([]) res12 = np.append(re11,da1) da1['SW'] = da1.index r1 = np.array([]) r12 = np.append(r1, da1['SW']) df0=data[['Group-Number','Route','SLoc','Ship-to Abb','Wagon-No','Primary Equipment']] df1=df0.replace("Not Allocated", 0) f2 = pd.DataFrame(df1) f2['Wagon-No']=f2['Wagon-No'].astype(int) ####Not-Allocated f2['Group']=data['Group-Number'] df=f2[['Group','Wagon-No']] dee = df[df['Wagon-No'] == 0] deer =dee.groupby(['Group']).count()##Not Allocated deer['Group'] = deer.index ##Total-Data f2['Group1']=data['Group-Number'] dfc=f2[['Group1','Wagon-No']] dfa=pd.DataFrame(dfc) der = dfa[dfa['Wagon-No'] >= 0] dear =der.groupby(['Group1']).count()##Wagons >1 dear['Group1'] = dear.index dear.rename(columns={'Wagon-No': 'Allocated'}, inplace=True) result = pd.concat([deer, dear], axis=1, join_axes=[dear.index]) resu=result[['Group1','Wagon-No','Allocated']] result1=resu.fillna(00) r5 = np.array([]) r6 = np.append(r5, result1['Wagon-No']) r66=r6[0:73]###Not Allocated r7 = np.append(r5, result1['Allocated']) r77=r7[0:73]####total r8 = np.append(r5, result1['Group1']) r88=r8[0:73]###group conn2.close() return render_template('papadashboard.html',say=1,data=fdata,data1=fdat1,ata=ata,bar1=result_array,bar11=result_array1,pie11=pie1,pie111=pie11,x=r12,y=res12,xname=r88, bar7=r77,bar8=r66) conn.close() return render_template('papadashboard.html',data=fdata,data1=fdat1) @app.route('/facilityallocation') def facilityallocation(): return render_template('facilityhome.html') @app.route('/dataimport') def dataimport(): return render_template('facilityimport.html') @app.route('/dataimport1') def dataimport1(): return redirect(url_for('dataimport')) @app.route('/facility_location') def facility_location(): return render_template('facility_location.html') @app.route('/facility') def facility(): return redirect(url_for('facilityallocation')) @app.route("/imprt", methods=['GET','POST']) def imprt(): global customerdata global factorydata global Facyy global Custo customerfile = request.files['CustomerData'].read() factoryfile = request.files['FactoryData'].read() if len(customerfile)==0 or len(factoryfile)==0: return render_template('facilityhome.html',warning='Data Invalid') cdat=pd.read_csv(io.StringIO(customerfile.decode('utf-8'))) customerdata=pd.DataFrame(cdat) fdat=pd.read_csv(io.StringIO(factoryfile.decode('utf-8'))) factorydata=pd.DataFrame(fdat) Custo=customerdata.drop(['Lat','Long'],axis=1) Facyy=factorydata.drop(['Lat','Long'],axis=1) return render_template('facilityimport1.html',loc1=factorydata.values,loc2=customerdata.values,factory=Facyy.to_html(index=False),customer=Custo.to_html(index=False)) @app.route("/gmap") def gmap(): custdata=customerdata Factorydata=factorydata price=1 #to get distance beetween customer and factory #first get the Dimension #get no of factories Numberoffact=len(Factorydata) #get Number of Customer Numberofcust=len(custdata) #Get The dist/unit cost cost=price #def function for distance calculation # approximate radius of earth in km def dist(lati1,long1,lati2,long2,cost): R = 6373.0 lat1 = radians(lati1) lon1 = radians(long1) lat2 = radians(lati2) lon2 = radians(long2) dlon = lon2 - lon1 dlat = lat2 - lat1 a = sin(dlat / 2)**2 + cos(lat1) * cos(lat2) * sin(dlon / 2)**2 c = 2 * atan2(sqrt(a), sqrt(1 - a)) distance =round(R * c,2) return distance*cost #Create a list for customer and factory def costtable(custdata,Factorydata): distance=list() for lat1,long1 in zip(custdata.Lat, custdata.Long): for lat2,long2 in zip(Factorydata.Lat, Factorydata.Long): distance.append(dist(lat1,long1,lat2,long2,cost)) distable=np.reshape(distance, (Numberofcust,Numberoffact)).T tab=pd.DataFrame(distable,index=[Factorydata.Factory],columns=[custdata.Customer]) return tab DelCost=costtable(custdata,Factorydata)#return cost table of the customer and factoery #creating Demand Table demand=np.array(custdata.Demand) col1=np.array(custdata.Customer) Demand=pd.DataFrame(demand,col1).T cols=sorted(col1) #Creating capacity table fact=np.array(Factorydata.Capacity) col2=np.array(Factorydata.Factory) Capacity=pd.DataFrame(fact,index=col2).T colo=sorted(col2) #creating Fixed cost table fixed_c=np.array(Factorydata.FixedCost) col3=np.array(Factorydata.Factory) FixedCost= pd.DataFrame(fixed_c,index=col3) # Create the 'prob' variable to contain the problem data model = LpProblem("Min Cost Facility Location problem",LpMinimize) production = pulp.LpVariable.dicts("Production", ((factory, cust) for factory in Capacity for cust in Demand), lowBound=0, cat='Integer') factory_status =pulp.LpVariable.dicts("factory_status", (factory for factory in Capacity), cat='Binary') cap_slack =pulp.LpVariable.dicts("capslack", (cust for cust in Demand), lowBound=0, cat='Integer') model += pulp.lpSum( [DelCost.loc[factory, cust] * production[factory, cust] for factory in Capacity for cust in Demand] + [FixedCost.loc[factory] * factory_status[factory] for factory in Capacity] + 5000000*cap_slack[cust] for cust in Demand) for cust in Demand: model += pulp.lpSum(production[factory, cust] for factory in Capacity)+cap_slack[cust] == Demand[cust] for factory in Capacity: model += pulp.lpSum(production[factory, cust] for cust in Demand) <= Capacity[factory]*factory_status[factory] model.solve() print("Status:", LpStatus[model.status]) for v in model.variables(): print(v.name, "=", v.varValue) print("Total Cost of Ingredients per can = ", value(model.objective)) # Getting the table for the Factorywise Allocation def factoryalloc(model,Numberoffact,Numberofcust,listoffac,listofcus): listj=list() listk=list() listcaps=list() for v in model.variables(): listj.append(v.varValue) customer=listj[(len(listj)-Numberofcust-Numberoffact):(len(listj)-Numberoffact)] del listj[(len(listj)-Numberoffact-Numberofcust):len(listj)] for row in listj: if row==0: listk.append(0) else: listk.append(1) x=np.reshape(listj,(Numberoffact,Numberofcust)) y=np.reshape(listk,(Numberoffact,Numberofcust)) FactoryAlloc_table=pd.DataFrame(x,index=listoffac,columns=listofcus) Factorystatus=pd.DataFrame(y,index=listoffac,columns=listofcus) return FactoryAlloc_table,Factorystatus,customer Alltable,FactorystatusTable,ded=factoryalloc(model,Numberoffact,Numberofcust,colo,cols) Allstatus=list() dede=pd.DataFrame(ded,columns=['UnSatisfied']) finaldede=dede[dede.UnSatisfied != 0] colss=pd.DataFrame(cols,columns=['CustomerLocation']) fina=pd.concat([colss,finaldede],axis=1, join='inner') print(fina) for i in range(len(Alltable)): for j in range(len(Alltable.columns)): if (Alltable.loc[Alltable.index[i], Alltable.columns[j]]>0): all=[Alltable.index[i], Alltable.columns[j], Alltable.loc[Alltable.index[i], Alltable.columns[j]]] Allstatus.append(all) Status=pd.DataFrame(Allstatus,columns=['Factory','Customer','Allocation']).astype(str) #To get the Factory Data con = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) #Making Connection to the Database cur = con.cursor() engine = create_engine("mysql+pymysql://{user}:{pw}@localhost/{db}".format(user="root",pw="",db="inventory_management")) Status.to_sql(con=engine, name='facilityallocation',index=False, if_exists='replace') cur = con.cursor() cur1 = con.cursor() cur.execute("SELECT * FROM `facilityallocation`") file=cur.fetchall() dat=pd.DataFrame(file) lst=dat[['Factory','Customer']] mlst=[] names=lst['Factory'].unique().tolist() for name in names: lsty=lst.loc[lst.Factory==name] mlst.append(lsty.values) data=dat[['Factory','Customer','Allocation']] sql="SELECT SUM(`Allocation`) AS 'UseCapacity', `Factory` FROM `facilityallocation` GROUP BY `Factory`" cur1.execute(sql) file2=cur1.fetchall() udata=pd.DataFrame(file2) bdata=factorydata.sort_values(by=['Factory']) adata=bdata['Capacity'] con.close() infdata=dat[['Customer','Factory','Allocation']] infodata=infdata.sort_values(by=['Customer']) namess=infodata.Customer.unique() lstyy=[] for nam in namess: bb=infodata[infodata.Customer==nam] comment=bb['Factory']+":"+bb['Allocation'] prin=[nam,str(comment.values).strip('[]')] lstyy.append(prin) return render_template('facilityoptimise.html',say=1,lstyy=lstyy,x1=adata.values,x2=udata.values,dat=mlst,loc1=factorydata.values, loc2=customerdata.values,factory=Facyy.to_html(index=False),customer=Custo.to_html(index=False),summary=data.to_html(index=False)) #Demand Forecast @app.route('/demandforecast') def demandforecast(): return render_template('demandforecast.html') @app.route("/demandforecastdataimport",methods = ['GET','POST']) def demandforecastdataimport(): if request.method== 'POST': global actualforecastdata flat=request.files['flat'].read() if len(flat)==0: return('No Data Selected') cdat=pd.read_csv(io.StringIO(flat.decode('utf-8'))) actualforecastdata=pd.DataFrame(cdat) return render_template('demandforecast.html',data=actualforecastdata.to_html(index=False)) @app.route('/demandforecastinput', methods = ['GET', 'POST']) def demandforecastinput(): if request.method=='POST': global demandforecastfrm global demandforecasttoo global demandforecastinputdata demandforecastfrm=request.form['from'] demandforecasttoo=request.form['to'] value=request.form['typedf'] demandforecastinputdata=actualforecastdata[(actualforecastdata['Date'] >= demandforecastfrm) & (actualforecastdata['Date'] <= demandforecasttoo)] if value=='monthly': ##monthly engine = create_engine("mysql+pymysql://{user}:{pw}@localhost/{db}".format(user="root",pw="",db="inventory_management")) demandforecastinputdata.to_sql(con=engine, name='demandforecastinputdata', index=False,if_exists='replace') return redirect(url_for('monthlyforecast')) if value=='quarterly': ##quarterly global Quaterdata dated2 = demandforecastinputdata['Date'] nlst=[] for var in dated2: var1 = int(var[5:7]) if var1 >=1 and var1 <4: varr=var[:4]+'-01-01' elif var1 >=4 and var1 <7: varr=var[:4]+'-04-01' elif var1 >=7 and var1 <10: varr=var[:4]+'-07-01' else: varr=var[:4]+'-10-01' nlst.append(varr) nwlst=pd.DataFrame(nlst,columns=['Newyear']) demandforecastinputdata=demandforecastinputdata.reset_index() demandforecastinputdata['Date']=nwlst['Newyear'] Quaterdata=demandforecastinputdata.groupby(['Date']).sum() Quaterdata=Quaterdata.reset_index() Quaterdata=Quaterdata.drop('index',axis=1) engine = create_engine("mysql+pymysql://{user}:{pw}@localhost/{db}".format(user="root",pw="",db="inventory_management")) Quaterdata.to_sql(con=engine, name='demandforecastinputdata', index=False,if_exists='replace') return redirect(url_for('quarterlyforecast')) if value=='yearly': ##yearly global Yeardata #copydata=demandforecastinputdata dated1 = demandforecastinputdata['Date'] lst=[] for var in dated1: var1 = var[:4]+'-01-01' lst.append(var1) newlst=pd.DataFrame(lst,columns=['NewYear']) demandforecastinputdata=demandforecastinputdata.reset_index() demandforecastinputdata['Date']=newlst['NewYear'] Yeardata=demandforecastinputdata.groupby(['Date']).sum() Yeardata=Yeardata.reset_index() Yeardata=Yeardata.drop('index',axis=1) engine = create_engine("mysql+pymysql://{user}:{pw}@localhost/{db}".format(user="root",pw="",db="inventory_management")) Yeardata.to_sql(con=engine, name='demandforecastinputdata', index=False,if_exists='replace') return redirect(url_for('yearlyforecast')) #if value=='weakly': ##weakly # return redirect(url_for('output4')) return render_template('demandforecast.html') @app.route("/monthlyforecast",methods = ['GET','POST']) def monthlyforecast(): data = pd.DataFrame(demandforecastinputdata) # container1 a1=data.sort_values(['GDP','TotalDemand'], ascending=[True,True]) # container2 a2=data.sort_values(['Pi_Exports','TotalDemand'], ascending=[True,True]) # container3 a3=data.sort_values(['Market_Share','TotalDemand'], ascending=[True,True]) # container4 a4=data.sort_values(['Advertisement_Expense','TotalDemand'], ascending=[True,True]) # container1 df=a1[['GDP']] re11 = np.array([]) res11 = np.append(re11,df) df1=a1[['TotalDemand']] r1 = np.array([]) r11 = np.append(r1, df1) # top graph tdf=data['Date'].astype(str) tre11 = np.array([]) tres11 = np.append(tre11,tdf) tr1 = np.array([]) tr11 = np.append(tr1, df1) # container2 udf=a2[['Pi_Exports']] ure11 = np.array([]) ures11 = np.append(ure11,udf) ur1 = np.array([]) ur11 = np.append(ur1, df1) # container3 vdf=a3[['Market_Share']] vre11 = np.array([]) vres11 = np.append(vre11,vdf) vr1 = np.array([]) vr11 = np.append(vr1, df1) # container4 wdf=a4[['Advertisement_Expense']] wre11 = np.array([]) wres11 = np.append(wre11,wdf) wr1 = np.array([]) wr11 = np.append(wr1, df1) if request.method == 'POST': mov=0 exp=0 reg=0 ari=0 arx=0 till = request.form.get('till') if request.form.get('moving'): mov=1 if request.form.get('ESPO'): exp=1 if request.form.get('regression'): reg=1 if request.form.get('ARIMA'): ari=1 if request.form.get('ARIMAX'): arx=1 con = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = con.cursor() cur.execute("CREATE TABLE IF NOT EXISTS `ftech` (`mov` VARCHAR(1),`exp` VARCHAR(1), `reg` VARCHAR(1),`ari` VARCHAR(1),`arx` VARCHAR(1),`till` VARCHAR(10))") cur.execute("DELETE FROM `ftech`") con.commit() cur.execute("INSERT INTO `ftech` VALUES('"+str(mov)+"','"+str(exp)+"','"+str(reg)+"','"+str(ari)+"','"+str(arx)+"','"+str(till)+"')") con.commit() cur.execute("CREATE TABLE IF NOT EXISTS `forecastoutput`(`Model` VARCHAR(25),`Date` VARCHAR(10),`TotalDemand` VARCHAR(10),`RatioIncrease` VARCHAR(10),`Spain` VARCHAR(10),`Austria` VARCHAR(10),`Japan` VARCHAR(10),`Hungary` VARCHAR(10),`Germany` VARCHAR(10),`Polland` VARCHAR(10),`UK` VARCHAR(10),`France` VARCHAR(10),`Romania` VARCHAR(10),`Italy` VARCHAR(10),`Greece` VARCHAR(10),`Crotia` VARCHAR(10),`Holland` VARCHAR(10),`Finland` VARCHAR(10),`Hongkong` VARCHAR(10))") con.commit() cur.execute("DELETE FROM `forecastoutput`") con.commit() sql = "INSERT INTO `forecastoutput` (`Model`,`Date`,`TotalDemand`,`RatioIncrease`,`Spain`,`Austria`,`Japan`,`Hungary`,`Germany`,`Polland`,`UK`,`France`,`Romania`,`Italy`,`Greece`,`Crotia`,`Holland`,`Finland`,`Hongkong`) VALUES (%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s)" #read the monthly file and index that with time df=data.set_index('Date') split_point =int(0.7*len(df)) D, V = df[0:split_point],df[split_point:] data=pd.DataFrame(D) #Functions for ME, MAE, MAPE #ME def ME(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(y_true - y_pred) #MAE def MAE(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(np.abs(y_true - y_pred)) #MAPE def MAPE(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(np.abs((y_true - y_pred) / y_pred)) * 100 cur1=con.cursor() cur1.execute("SELECT * FROM `ftech`") ftech=pd.DataFrame(cur1.fetchall()) ari=int(ftech['ari']) arx=int(ftech['arx']) exp=int(ftech['exp']) mov=int(ftech['mov']) reg=int(ftech['reg']) start_index1=str(D['GDP'].index[-1]) end_index1=str(ftech['till'][0]) #end_index1=indx[:4] df2 = pd.DataFrame(data=0,index=["ME","MAE","MAPE"],columns=["Moving Average","ARIMA","Exponential Smoothing","Regression"]) if mov==1: #2---------------simple moving average------------------------- #################################MovingAverage####################### list1=list() def mavg(data): m=len(data.columns.tolist()) for i in range(0,m-5): #Arima Model Fitting model1=ARIMA(data[data.columns.tolist()[i]].astype(float), order=(0,0,1)) results_ARIMA1=model1.fit(disp=0) # start_index1 = '2017-01-01' # end_index1 = '2022-01-01' #4 year forecast ARIMA_fit1= results_ARIMA1.fittedvalues forecast2=results_ARIMA1.predict(start=start_index1, end=end_index1) list1.append(forecast2) if(i==0): #ME s=ME(data['TotalDemand'],ARIMA_fit1) #MAE so=MAE(data['TotalDemand'],ARIMA_fit1) #MAPE son=MAPE(data['TotalDemand'],ARIMA_fit1) df2["Moving Average"].iloc[0]=s df2["Moving Average"].iloc[1]=so df2["Moving Average"].iloc[2]=son s=pd.DataFrame(forecast2) ratio_inc=[] ratio_inc.append(0) for j in range(2,len(s)+1): a=s.iloc[j-2] b=s.iloc[j-1] ratio_inc.append(int(((b-a)/a)*100)) return list1,ratio_inc print(data) Ma_Out,ratio_incma=mavg(data) dfs=pd.DataFrame(Ma_Out) tdfs=dfs.T print(tdfs) tdfs.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] tdfs['Model']='Moving Average' tdfs['RatioIncrease']=ratio_incma tdfs['Date']=(tdfs.index).strftime("20%y-%m-%d") tdfs.astype(str) for index, i in tdfs.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() if ari==1: ##--------------min errors--ARIMA (1,0,0)----------------------------- ############################for Total Demand Monthly#################################### list2=list() def AutoRimavg(data): m=len(data.columns.tolist()) for i in range(0,m-5): #Arima Model Fitting model1=ARIMA(data[data.columns.tolist()[i]].astype(float), order=(1,0,0)) results_ARIMA1=model1.fit(disp=0) ARIMA_fit1= results_ARIMA1.fittedvalues forecast2=results_ARIMA1.predict(start=start_index1, end=end_index1) list2.append(forecast2) if(i==0): #ME s=ME(data['TotalDemand'],ARIMA_fit1) #MAE so=MAE(data['TotalDemand'],ARIMA_fit1) #MAPE son=MAPE(data['TotalDemand'],ARIMA_fit1) df2["ARIMA"].iloc[0]=s df2["ARIMA"].iloc[1]=so df2["ARIMA"].iloc[2]=son Ars=pd.DataFrame(forecast2) ratio_inc=[] ratio_inc.append(0) for j in range(2,len(Ars)+1): As=(Ars.iloc[j-2]) bs=(Ars.iloc[j-1]) ratio_inc.append(int(((As-bs)/As)*100)) return list1,ratio_inc Arimamodel,ratio_inc=AutoRimavg(data) Amodel=pd.DataFrame(Arimamodel) Results=Amodel.T Results.astype(str) Results.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] Results['Model']="ARIMA" Results['RatioIncrease']=ratio_inc Results['Date']=Results.index.astype(str) for index, i in Results.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() if reg==1: #Linear Regression #Regression Modeling dates=pd.date_range(start_index1,end_index1,freq='M') lprd=len(dates) dateofterms= pd.PeriodIndex(freq='M', start=start_index1, periods=lprd+1) dofterm=dateofterms.strftime("20%y-%m-%d") Rdate=pd.DataFrame(dofterm) noofterms=len(dofterm) def regression(data,V,noofterms): #Getting length of Data Frame lenofdf=len(data.columns.tolist()) #Getting List Of Atributes in Data Frame listofatr=list() listofatr=data.columns.tolist() #making list of pred pred=pd.DataFrame() #now riun for each row for i in range(0,(lenofdf)-5): df=pd.DataFrame(data[data.columns.tolist()[i]].reset_index()) xvar=list() for row in df[listofatr[i]]: xvar.append(row) df5=pd.DataFrame(xvar) yvar=list() for j in range(0,len(df[listofatr[i]])): yvar.append(j) dfss=pd.DataFrame(yvar) clf = linear_model.LinearRegression() clf.fit(dfss,df5) # Make predictions using the testing set dfv=pd.DataFrame(V[V.columns.tolist()[i]].reset_index()) k=list() for l in range(len(df[listofatr[i]]),len(df[listofatr[i]])+len(dfv)): k.append(l) ks=pd.DataFrame(k) #Future prediction predlist=list() for j in range(len(df[listofatr[i]]),len(df[listofatr[i]])+noofterms): predlist.append(j) dataframeoflenofpred=pd.DataFrame(predlist) dateframeofpred=pd.DataFrame(clf.predict(dataframeoflenofpred)) pred=pd.concat([pred,dateframeofpred],axis=1) #Accuracy Of the mODEL y_pred = clf.predict(ks) if(i==0): meanerror=ME(dfv[listofatr[i]], y_pred) mae=MAE(dfv[listofatr[i]], y_pred) mape=MAPE(dfv[listofatr[i]],y_pred) df2["Regression"].iloc[0]=meanerror df2["Regression"].iloc[1]=mae df2["Regression"].iloc[2]=mape regp=pd.DataFrame(pred) ratio_incrr=[] ratio_incrr.append(0) for j in range(2,len(regp)+1): Ra=regp.iloc[j-2] Rb=regp.iloc[j-1] ratio_incrr.append(int(((Rb-Ra)/Ra)*100)) return pred,ratio_incrr monthlyRegression,ratio_incrr=regression(data,V,noofterms) r=pd.DataFrame(monthlyRegression) r.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] r['Model']="Regression" r['Date']=Rdate r['RatioIncrease']=ratio_incrr r.astype(str) for index, i in r.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() if exp==1: #Exponential Smoothing dates=pd.date_range(start_index1,end_index1,freq='M') lengthofprd=len(dates) dateofterm= pd.PeriodIndex(freq='M', start=start_index1, periods=lengthofprd+1) dateofterms=dateofterm.strftime("20%y-%m-%d") Edate=pd.DataFrame(dateofterms) predictonterm=len(Edate) def exponential_smoothing(series, alpha,predictonterm): result = [series[0]] # first value is same as series for i in range(1,len(series)): result.append(alpha * series[i] + (1 - alpha) * result[i-1]) preds=result[len(series)-1]#pred actual=series[len(series)-1]#actual forecastlist=[] for i in range(0,predictonterm): forecast=(alpha*actual)+((1-alpha)*preds) forecastlist.append(forecast) actual=preds preds=forecast return result,forecastlist def Exponentialmooth(data,alpha,predicterm): predexp=list() forecaste=pd.DataFrame() m=len(data.columns.tolist()) for i in range(0,m-5): pred,forecasts=exponential_smoothing(data[data.columns.tolist()[i]],0.5,predictonterm) ss=pd.DataFrame(forecasts) predexp.append(pred) forecaste=pd.concat([forecaste,ss],axis=1) if(i==0): meanerr=ME(len(data[data.columns.tolist()[i]]),predexp) meanaverr=MAE(data[data.columns.tolist()[i]],predexp) mperr=MAPE(data[data.columns.tolist()[i]],predexp) df2["Exponential Smoothing"].iloc[0]=meanerr df2["Exponential Smoothing"].iloc[1]=meanaverr df2["Exponential Smoothing"].iloc[2]=mperr Exponentials=pd.DataFrame(forecaste) ratio_incex=[] ratio_incex.append(0) for j in range(2,len(Exponentials)+1): Ea=Exponentials.iloc[j-2] Eb=Exponentials.iloc[j-1] ratio_incex.append(int(((Eb-Ea)/Ea)*100)) return forecaste,ratio_incex fore,ratio_incex=Exponentialmooth(data,0.5,predictonterm) skf=pd.DataFrame(fore) skf.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] skf['Model']="Exponential Smoothing" skf['Date']=Edate skf['RatioIncrease']=ratio_incex skf.astype(str) for index, i in skf.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() dates=pd.date_range(start_index1,end_index1,freq='M') lengthofprd=len(dates) dateofterm= pd.PeriodIndex(freq='M', start=start_index1, periods=lengthofprd+1) dateofterms=dateofterm.strftime("20%y-%m-%d") ss=pd.DataFrame(dateofterms,columns=['Date']) dataframeforsum=pd.concat([ss]) if mov==1: cur.execute("SELECT `TotalDemand` FROM `forecastoutput` WHERE `Model`= 'Moving Average'" ) Xmdata = cur.fetchall() Xmadata = pd.DataFrame(Xmdata) movsummm=pd.DataFrame(Xmadata) movsummm.columns=['Moving Average'] dataframeforsum=pd.concat([dataframeforsum,movsummm],axis=1) if ari==1: cur.execute("SELECT `TotalDemand` FROM `forecastoutput` WHERE `Model`= 'ARIMA'" ) Xadata = cur.fetchall() Xardata = pd.DataFrame(Xadata) movsumma=pd.DataFrame(Xardata) movsumma.columns=['ARIMA'] dataframeforsum=pd.concat([dataframeforsum,movsumma],axis=1) if exp==1: cur.execute("SELECT `TotalDemand` FROM `forecastoutput` WHERE `Model`= 'Exponential Smoothing'" ) Xedata = cur.fetchall() Xesdata = pd.DataFrame(Xedata) exp=pd.DataFrame(Xesdata) exp.columns=['Exponential Smoothing'] dataframeforsum=pd.concat([dataframeforsum,exp],axis=1) if reg==1: cur.execute("SELECT `TotalDemand` FROM `forecastoutput` WHERE `Model`= 'Regression'" ) Xrdata = cur.fetchall() Xredata = pd.DataFrame(Xrdata) regr=pd.DataFrame(Xredata) regr.columns=['Regression'] dataframeforsum=pd.concat([dataframeforsum,regr],axis=1) dataframeforsum.astype(str) from pandas.io import sql engine = create_engine("mysql+pymysql://{user}:{pw}@localhost/{db}".format(user="root",pw="",db="inventory_management")) dataframeforsum.to_sql(con=engine, name='summaryoutput',index=False, if_exists='replace') engine2 = create_engine("mysql+pymysql://{user}:{pw}@localhost/{db}".format(user="root",pw="",db="inventory_management")) df2.to_sql(con=engine2, name='summaryerror',index=False, if_exists='replace') con.commit() cnr=con.cursor() cnr.execute("SELECT * FROM `summaryoutput`") sdata = cnr.fetchall() summaryq = pd.DataFrame(sdata) con.close() return render_template('monthly.html',summaryq=summaryq.to_html(index=False),sayy=1,smt='Monthly',yr1=demandforecastfrm+' to ',yr2=demandforecasttoo,x=res11,y=r11,x1=tres11,y1=tr11,x2=ures11,y2=ur11,x3=vres11,y3=vr11,x4=wres11,y4=wr11) return render_template('monthly.html',sayy=1,smt='Monthly',yr1=demandforecastfrm+' to ',yr2=demandforecasttoo,x=res11,y=r11,x1=tres11,y1=tr11,x2=ures11,y2=ur11,x3=vres11,y3=vr11,x4=wres11,y4=wr11) ##quarterly @app.route("/quarterlyforecast",methods = ['GET','POST']) def quarterlyforecast(): data = pd.DataFrame(Quaterdata) a1=data.sort_values(['GDP','TotalDemand'], ascending=[True,True])# container1 a2=data.sort_values(['Pi_Exports','TotalDemand'], ascending=[True,True])# container2 a3=data.sort_values(['Market_Share','TotalDemand'], ascending=[True,True])# container3 a4=data.sort_values(['Advertisement_Expense','TotalDemand'], ascending=[True,True])# container4 # container1 df=a1[['GDP']]/3 re11 = np.array([]) res11 = np.append(re11,df) df1=a1[['TotalDemand']] r1 = np.array([]) r11 = np.append(r1, df1) # top graph tdf=data['Date'].astype(str) tre11 = np.array([]) tres11 = np.append(tre11,tdf) tr1 = np.array([]) tr11 = np.append(tr1, df1) # container2 udf=a2[['Pi_Exports']] ure11 = np.array([]) ures11 = np.append(ure11,udf) ur1 = np.array([]) ur11 = np.append(ur1, df1) # container3 vdf=a3[['Market_Share']]/3 vre11 = np.array([]) vres11 = np.append(vre11,vdf) vr1 = np.array([]) vr11 = np.append(vr1, df1) # container4 wdf=a4[['Advertisement_Expense']] wre11 = np.array([]) wres11 = np.append(wre11,wdf) wr1 = np.array([]) wr11 = np.append(wr1, df1) if request.method == 'POST': mov=0 exp=0 reg=0 ari=0 arx=0 till = request.form.get('till') if request.form.get('moving'): mov=1 if request.form.get('ESPO'): exp=1 if request.form.get('regression'): reg=1 if request.form.get('ARIMA'): ari=1 if request.form.get('ARIMAX'): arx=1 con = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = con.cursor() cur.execute("CREATE TABLE IF NOT EXISTS `ftech` (`mov` VARCHAR(1),`exp` VARCHAR(1), `reg` VARCHAR(1),`ari` VARCHAR(1),`arx` VARCHAR(1),`till` VARCHAR(10))") cur.execute("DELETE FROM `ftech`") con.commit() cur.execute("INSERT INTO `ftech` VALUES('"+str(mov)+"','"+str(exp)+"','"+str(reg)+"','"+str(ari)+"','"+str(arx)+"','"+str(till)+"')") con.commit() cur.execute("CREATE TABLE IF NOT EXISTS `forecastoutputq`(`Model` VARCHAR(25),`Date` VARCHAR(10),`TotalDemand` VARCHAR(10),`RatioIncrease` VARCHAR(10),`Spain` VARCHAR(10),`Austria` VARCHAR(10),`Japan` VARCHAR(10),`Hungary` VARCHAR(10),`Germany` VARCHAR(10),`Polland` VARCHAR(10),`UK` VARCHAR(10),`France` VARCHAR(10),`Romania` VARCHAR(10),`Italy` VARCHAR(10),`Greece` VARCHAR(10),`Crotia` VARCHAR(10),`Holland` VARCHAR(10),`Finland` VARCHAR(10),`Hongkong` VARCHAR(10))") con.commit() cur.execute("DELETE FROM `forecastoutputq`") con.commit() sql = "INSERT INTO `forecastoutputq` (`Model`,`Date`,`TotalDemand`,`RatioIncrease`,`Spain`,`Austria`,`Japan`,`Hungary`,`Germany`,`Polland`,`UK`,`France`,`Romania`,`Italy`,`Greece`,`Crotia`,`Holland`,`Finland`,`Hongkong`) VALUES (%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s)" #read the monthly file and index that with time df=data.set_index('Date') split_point =int(0.7*len(df)) D, V = df[0:split_point],df[split_point:] data=pd.DataFrame(D) #Functions for ME, MAE, MAPE #ME def ME(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(y_true - y_pred) #MAE def MAE(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(np.abs(y_true - y_pred)) #MAPE def MAPE(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(np.abs((y_true - y_pred) / y_pred)) * 100 cur1=con.cursor() cur1.execute("SELECT * FROM `ftech`") ftech=pd.DataFrame(cur1.fetchall()) ari=int(ftech['ari']) arx=int(ftech['arx']) exp=int(ftech['exp']) mov=int(ftech['mov']) reg=int(ftech['reg']) start_index1=str(D['GDP'].index[-1]) end_index1=str(ftech['till'][0]) #end_index1=indx[:4] df2 = pd.DataFrame(data=0,index=["ME","MAE","MAPE"],columns=["Moving Average","ARIMA","Exponential Smoothing","Regression"]) if mov==1: #2---------------simple moving average------------------------- #################################MovingAverage####################### list1=list() def mavg(data): m=len(data.columns.tolist()) for i in range(0,m-5): #Arima Model Fitting model1=ARIMA(data[data.columns.tolist()[i]].astype(float), order=(0,0,1)) results_ARIMA1=model1.fit(disp=0) # start_index1 = '2017-01-01' # end_index1 = '2022-01-01' #4 year forecast ARIMA_fit1= results_ARIMA1.fittedvalues forecast2=results_ARIMA1.predict(start=start_index1, end=end_index1) list1.append(forecast2) if(i==0): #ME s=ME(data['TotalDemand'],ARIMA_fit1) #MAE so=MAE(data['TotalDemand'],ARIMA_fit1) #MAPE son=MAPE(data['TotalDemand'],ARIMA_fit1) df2["Moving Average"].iloc[0]=s df2["Moving Average"].iloc[1]=so df2["Moving Average"].iloc[2]=son s=pd.DataFrame(forecast2) ratio_inc=[] ratio_inc.append(0) for j in range(2,len(s)+1): a=s.iloc[j-2] b=s.iloc[j-1] ratio_inc.append(int(((b-a)/a)*100)) return list1,ratio_inc print(data) Ma_Out,ratio_incma=mavg(data) dfs=pd.DataFrame(Ma_Out) tdfs=dfs.T print(tdfs) tdfs.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] tdfs['Model']='Moving Average' tdfs['RatioIncrease']=ratio_incma tdfs['Date']=(tdfs.index).strftime("20%y-%m-%d") tdfs.astype(str) for index, i in tdfs.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() if ari==1: ##--------------min errors--ARIMA (1,0,0)----------------------------- ############################for Total Demand Monthly#################################### list2=list() def AutoRimavg(data): m=len(data.columns.tolist()) for i in range(0,m-5): #Arima Model Fitting model1=ARIMA(data[data.columns.tolist()[i]].astype(float), order=(1,0,0)) results_ARIMA1=model1.fit(disp=0) ARIMA_fit1= results_ARIMA1.fittedvalues forecast2=results_ARIMA1.predict(start=start_index1, end=end_index1) list2.append(forecast2) if(i==0): #ME s=ME(data['TotalDemand'],ARIMA_fit1) #MAE so=MAE(data['TotalDemand'],ARIMA_fit1) #MAPE son=MAPE(data['TotalDemand'],ARIMA_fit1) df2["ARIMA"].iloc[0]=s df2["ARIMA"].iloc[1]=so df2["ARIMA"].iloc[2]=son Ars=pd.DataFrame(forecast2) ratio_inc=[] ratio_inc.append(0) for j in range(2,len(Ars)+1): As=(Ars.iloc[j-2]) bs=(Ars.iloc[j-1]) ratio_inc.append(int(((As-bs)/As)*100)) return list1,ratio_inc Arimamodel,ratio_inc=AutoRimavg(data) Amodel=pd.DataFrame(Arimamodel) Results=Amodel.T Results.astype(str) Results.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] Results['Model']="ARIMA" Results['RatioIncrease']=ratio_inc Results['Date']=Results.index.astype(str) for index, i in Results.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() if reg==1: #Linear Regression #Regression Modeling dates=pd.date_range(start_index1,end_index1,freq='3M') lprd=len(dates) dateofterms= pd.PeriodIndex(freq='3M', start=start_index1, periods=lprd+1) dofterm=dateofterms.strftime("20%y-%m-%d") Rdate=pd.DataFrame(dofterm) noofterms=len(dofterm) def regression(data,V,noofterms): #Getting length of Data Frame lenofdf=len(data.columns.tolist()) #Getting List Of Atributes in Data Frame listofatr=list() listofatr=data.columns.tolist() #making list of pred pred=pd.DataFrame() #now riun for each row for i in range(0,(lenofdf)-5): df=pd.DataFrame(data[data.columns.tolist()[i]].reset_index()) xvar=list() for row in df[listofatr[i]]: xvar.append(row) df5=pd.DataFrame(xvar) yvar=list() for j in range(0,len(df[listofatr[i]])): yvar.append(j) dfss=pd.DataFrame(yvar) clf = linear_model.LinearRegression() clf.fit(dfss,df5) # Make predictions using the testing set dfv=pd.DataFrame(V[V.columns.tolist()[i]].reset_index()) k=list() for l in range(len(df[listofatr[i]]),len(df[listofatr[i]])+len(dfv)): k.append(l) ks=pd.DataFrame(k) #Future prediction predlist=list() for j in range(len(df[listofatr[i]]),len(df[listofatr[i]])+noofterms): predlist.append(j) dataframeoflenofpred=pd.DataFrame(predlist) dateframeofpred=pd.DataFrame(clf.predict(dataframeoflenofpred)) pred=pd.concat([pred,dateframeofpred],axis=1) #Accuracy Of the mODEL y_pred = clf.predict(ks) if(i==0): meanerror=ME(dfv[listofatr[i]], y_pred) mae=MAE(dfv[listofatr[i]], y_pred) mape=MAPE(dfv[listofatr[i]],y_pred) df2["Regression"].iloc[0]=meanerror df2["Regression"].iloc[1]=mae df2["Regression"].iloc[2]=mape regp=pd.DataFrame(pred) ratio_incrr=[] ratio_incrr.append(0) for j in range(2,len(regp)+1): Ra=regp.iloc[j-2] Rb=regp.iloc[j-1] ratio_incrr.append(int(((Rb-Ra)/Ra)*100)) return pred,ratio_incrr monthlyRegression,ratio_incrr=regression(data,V,noofterms) r=pd.DataFrame(monthlyRegression) r.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] r['Model']="Regression" r['Date']=Rdate r['RatioIncrease']=ratio_incrr r.astype(str) for index, i in r.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() if exp==1: #Exponential Smoothing dates=pd.date_range(start_index1,end_index1,freq='3M') lengthofprd=len(dates) dateofterm= pd.PeriodIndex(freq='3M', start=start_index1, periods=lengthofprd+1) dateofterms=dateofterm.strftime("20%y-%m-%d") Edate=pd.DataFrame(dateofterms) predictonterm=len(Edate) def exponential_smoothing(series, alpha,predictonterm): result = [series[0]] # first value is same as series for i in range(1,len(series)): result.append(alpha * series[i] + (1 - alpha) * result[i-1]) preds=result[len(series)-1]#pred actual=series[len(series)-1]#actual forecastlist=[] for i in range(0,predictonterm): forecast=(alpha*actual)+((1-alpha)*preds) forecastlist.append(forecast) actual=preds preds=forecast return result,forecastlist def Exponentialmooth(data,alpha,predicterm): predexp=list() forecaste=pd.DataFrame() m=len(data.columns.tolist()) for i in range(0,m-5): pred,forecasts=exponential_smoothing(data[data.columns.tolist()[i]],0.5,predictonterm) ss=pd.DataFrame(forecasts) predexp.append(pred) forecaste=pd.concat([forecaste,ss],axis=1) if(i==0): meanerr=ME(len(data[data.columns.tolist()[i]]),predexp) meanaverr=MAE(data[data.columns.tolist()[i]],predexp) mperr=MAPE(data[data.columns.tolist()[i]],predexp) df2["Exponential Smoothing"].iloc[0]=meanerr df2["Exponential Smoothing"].iloc[1]=meanaverr df2["Exponential Smoothing"].iloc[2]=mperr Exponentials=pd.DataFrame(forecaste) ratio_incex=[] ratio_incex.append(0) for j in range(2,len(Exponentials)+1): Ea=Exponentials.iloc[j-2] Eb=Exponentials.iloc[j-1] ratio_incex.append(int(((Eb-Ea)/Ea)*100)) return forecaste,ratio_incex fore,ratio_incex=Exponentialmooth(data,0.5,predictonterm) skf=pd.DataFrame(fore) skf.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] skf['Model']="Exponential Smoothing" skf['Date']=Edate skf['RatioIncrease']=ratio_incex skf.astype(str) for index, i in skf.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() dates=pd.date_range(start_index1,end_index1,freq='3M') lengthofprd=len(dates) dateofterm= pd.PeriodIndex(freq='3M', start=start_index1, periods=lengthofprd+1) dateofterms=dateofterm.strftime("20%y-%m-%d") ss=pd.DataFrame(dateofterms,columns=['Date']) dataframeforsum=pd.concat([ss]) if mov==1: cur.execute("SELECT `TotalDemand` FROM `forecastoutputq` WHERE `Model`= 'Moving Average'" ) Xmdata = cur.fetchall() Xmadata = pd.DataFrame(Xmdata) movsummm=pd.DataFrame(Xmadata) movsummm.columns=['Moving Average'] dataframeforsum=pd.concat([dataframeforsum,movsummm],axis=1) if ari==1: cur.execute("SELECT `TotalDemand` FROM `forecastoutputq` WHERE `Model`= 'ARIMA'" ) Xadata = cur.fetchall() Xardata = pd.DataFrame(Xadata) movsumma=pd.DataFrame(Xardata) movsumma.columns=['ARIMA'] dataframeforsum=pd.concat([dataframeforsum,movsumma],axis=1) if exp==1: cur.execute("SELECT `TotalDemand` FROM `forecastoutputq` WHERE `Model`= 'Exponential Smoothing'" ) Xedata = cur.fetchall() Xesdata = pd.DataFrame(Xedata) exp=pd.DataFrame(Xesdata) exp.columns=['Exponential Smoothing'] dataframeforsum=pd.concat([dataframeforsum,exp],axis=1) if reg==1: cur.execute("SELECT `TotalDemand` FROM `forecastoutputq` WHERE `Model`= 'Regression'" ) Xrdata = cur.fetchall() Xredata = pd.DataFrame(Xrdata) regr=pd.DataFrame(Xredata) regr.columns=['Regression'] dataframeforsum=pd.concat([dataframeforsum,regr],axis=1) dataframeforsum.astype(str) from pandas.io import sql engine = create_engine("mysql+pymysql://{user}:{pw}@localhost/{db}".format(user="root",pw="",db="inventory_management")) dataframeforsum.to_sql(con=engine, name='summaryoutputq',index=False, if_exists='replace') engine2 = create_engine("mysql+pymysql://{user}:{pw}@localhost/{db}".format(user="root",pw="",db="inventory_management")) df2.to_sql(con=engine2, name='summaryerror',index=False, if_exists='replace') con.commit() cnr=con.cursor() cnr.execute("SELECT * FROM `summaryoutputq`") sdata = cnr.fetchall() summaryq = pd.DataFrame(sdata) con.close() return render_template('quarterly.html',summaryq=summaryq.to_html(index=False),sayy=1,smt='Quarterly',yr1=demandforecastfrm+' to ',yr2=demandforecasttoo,x=res11,y=r11,x1=tres11,y1=tr11,x2=ures11,y2=ur11,x3=vres11,y3=vr11,x4=wres11,y4=wr11) return render_template('quarterly.html',sayy=1,smt='Quarterly',yr1=demandforecastfrm+' to ',yr2=demandforecasttoo,x=res11,y=r11,x1=tres11,y1=tr11,x2=ures11,y2=ur11,x3=vres11,y3=vr11,x4=wres11,y4=wr11) ##yearly @app.route("/yearlyforecast",methods = ['GET','POST']) def yearlyforecast(): data = pd.DataFrame(Yeardata) a1=data.sort_values(['GDP','TotalDemand'], ascending=[True,True])# container1 a2=data.sort_values(['Pi_Exports','TotalDemand'], ascending=[True,True])# container2 a3=data.sort_values(['Market_Share','TotalDemand'], ascending=[True,True])# container3 a4=data.sort_values(['Advertisement_Expense','TotalDemand'], ascending=[True,True])# container4 # container1 df=a1[['GDP']]/12 re11 = np.array([]) res11 = np.append(re11,df) df1=a1[['TotalDemand']] r1 = np.array([]) r11 = np.append(r1, df1) # top graph tdf=data['Date'] vari=[] for var in tdf: vari.append(var[:4]) tres11 = vari tr1 = np.array([]) tr11 = np.append(tr1, df1) # container2 udf=a2[['Pi_Exports']] ure11 = np.array([]) ures11 = np.append(ure11,udf) ur1 = np.array([]) ur11 = np.append(ur1, df1) # container3 vdf=a3[['Market_Share']]/12 vre11 = np.array([]) vres11 = np.append(vre11,vdf) vr1 = np.array([]) vr11 = np.append(vr1, df1) # container4 wdf=a4[['Advertisement_Expense']] wre11 = np.array([]) wres11 = np.append(wre11,wdf) wr1 = np.array([]) wr11 = np.append(wr1, df1) if request.method == 'POST': mov=0 exp=0 reg=0 ari=0 arx=0 till = request.form.get('till') if request.form.get('moving'): mov=1 if request.form.get('ESPO'): exp=1 if request.form.get('regression'): reg=1 if request.form.get('ARIMA'): ari=1 if request.form.get('ARIMAX'): arx=1 con = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = con.cursor() cur.execute("CREATE TABLE IF NOT EXISTS `ftech` (`mov` VARCHAR(1),`exp` VARCHAR(1), `reg` VARCHAR(1),`ari` VARCHAR(1),`arx` VARCHAR(1),`till` VARCHAR(10))") cur.execute("DELETE FROM `ftech`") con.commit() cur.execute("INSERT INTO `ftech` VALUES('"+str(mov)+"','"+str(exp)+"','"+str(reg)+"','"+str(ari)+"','"+str(arx)+"','"+str(till)+"')") con.commit() cur.execute("CREATE TABLE IF NOT EXISTS `forecastoutputy`(`Model` VARCHAR(25),`Date` VARCHAR(10),`TotalDemand` VARCHAR(10),`RatioIncrease` VARCHAR(10),`Spain` VARCHAR(10),`Austria` VARCHAR(10),`Japan` VARCHAR(10),`Hungary` VARCHAR(10),`Germany` VARCHAR(10),`Polland` VARCHAR(10),`UK` VARCHAR(10),`France` VARCHAR(10),`Romania` VARCHAR(10),`Italy` VARCHAR(10),`Greece` VARCHAR(10),`Crotia` VARCHAR(10),`Holland` VARCHAR(10),`Finland` VARCHAR(10),`Hongkong` VARCHAR(10))") con.commit() cur.execute("DELETE FROM `forecastoutputy`") con.commit() sql = "INSERT INTO `forecastoutputy` (`Model`,`Date`,`TotalDemand`,`RatioIncrease`,`Spain`,`Austria`,`Japan`,`Hungary`,`Germany`,`Polland`,`UK`,`France`,`Romania`,`Italy`,`Greece`,`Crotia`,`Holland`,`Finland`,`Hongkong`) VALUES (%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s)" #read the monthly file and index that with time df=data.set_index('Date') split_point =int(0.7*len(df)) D, V = df[0:split_point],df[split_point:] data=pd.DataFrame(D) #Functions for ME, MAE, MAPE #ME def ME(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(y_true - y_pred) #MAE def MAE(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(np.abs(y_true - y_pred)) #MAPE def MAPE(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(np.abs((y_true - y_pred) / y_pred)) * 100 cur1=con.cursor() cur1.execute("SELECT * FROM `ftech`") ftech=pd.DataFrame(cur1.fetchall()) ari=int(ftech['ari']) arx=int(ftech['arx']) exp=int(ftech['exp']) mov=int(ftech['mov']) reg=int(ftech['reg']) start_index1=str(D['GDP'].index[-1]) end_index1=str(ftech['till'][0]) #end_index1=indx[:4] df2 = pd.DataFrame(data=0,index=["ME","MAE","MAPE"],columns=["Moving Average","ARIMA","Exponential Smoothing","Regression"]) if mov==1: #2---------------simple moving average------------------------- #################################MovingAverage####################### list1=list() def mavg(data): m=len(data.columns.tolist()) for i in range(0,m-5): #Arima Model Fitting model1=ARIMA(data[data.columns.tolist()[i]].astype(float), order=(0,0,1)) results_ARIMA1=model1.fit(disp=0) # start_index1 = '2017-01-01' # end_index1 = '2022-01-01' #4 year forecast ARIMA_fit1= results_ARIMA1.fittedvalues forecast2=results_ARIMA1.predict(start=start_index1, end=end_index1) list1.append(forecast2) if(i==0): #ME s=ME(data['TotalDemand'],ARIMA_fit1) #MAE so=MAE(data['TotalDemand'],ARIMA_fit1) #MAPE son=MAPE(data['TotalDemand'],ARIMA_fit1) df2["Moving Average"].iloc[0]=s df2["Moving Average"].iloc[1]=so df2["Moving Average"].iloc[2]=son s=pd.DataFrame(forecast2) ratio_inc=[] ratio_inc.append(0) for j in range(2,len(s)+1): a=s.iloc[j-2] b=s.iloc[j-1] ratio_inc.append(int(((b-a)/a)*100)) return list1,ratio_inc print(data) Ma_Out,ratio_incma=mavg(data) dfs=pd.DataFrame(Ma_Out) tdfs=dfs.T print(tdfs) tdfs.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] tdfs['Model']='Moving Average' tdfs['RatioIncrease']=ratio_incma dindex=(tdfs.index).strftime("20%y") tdfs['Date']=(dindex) tdfs.astype(str) for index, i in tdfs.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() if ari==1: ##--------------min errors--ARIMA (1,0,0)----------------------------- ############################for Total Demand Monthly#################################### list2=list() def AutoRimavg(data): m=len(data.columns.tolist()) for i in range(0,m-5): #Arima Model Fitting model1=ARIMA(data[data.columns.tolist()[i]].astype(float), order=(1,0,0)) results_ARIMA1=model1.fit(disp=0) ARIMA_fit1= results_ARIMA1.fittedvalues forecast2=results_ARIMA1.predict(start=start_index1, end=end_index1) list2.append(forecast2) if(i==0): #ME s=ME(data['TotalDemand'],ARIMA_fit1) #MAE so=MAE(data['TotalDemand'],ARIMA_fit1) #MAPE son=MAPE(data['TotalDemand'],ARIMA_fit1) df2["ARIMA"].iloc[0]=s df2["ARIMA"].iloc[1]=so df2["ARIMA"].iloc[2]=son Ars=pd.DataFrame(forecast2) ratio_inc=[] ratio_inc.append(0) for j in range(2,len(Ars)+1): As=(Ars.iloc[j-2]) bs=(Ars.iloc[j-1]) ratio_inc.append(int(((As-bs)/As)*100)) return list1,ratio_inc Arimamodel,ratio_inc=AutoRimavg(data) Amodel=pd.DataFrame(Arimamodel) Results=Amodel.T Results.astype(str) Results.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] Results['Model']="ARIMA" Results['RatioIncrease']=ratio_inc Results['Date']=Results.index.astype(str) for index, i in Results.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() if reg==1: #Linear Regression #Regression Modeling dates=pd.date_range(start_index1,end_index1,freq='A') lprd=len(dates) dateofterms= pd.PeriodIndex(freq='A', start=start_index1, periods=lprd+1) dofterm=dateofterms.strftime("20%y") Rdate=pd.DataFrame(dofterm) noofterms=len(dofterm) def regression(data,V,noofterms): #Getting length of Data Frame lenofdf=len(data.columns.tolist()) #Getting List Of Atributes in Data Frame listofatr=list() listofatr=data.columns.tolist() #making list of pred pred=pd.DataFrame() #now riun for each row for i in range(0,(lenofdf)-5): df=pd.DataFrame(data[data.columns.tolist()[i]].reset_index()) xvar=list() for row in df[listofatr[i]]: xvar.append(row) df5=pd.DataFrame(xvar) yvar=list() for j in range(0,len(df[listofatr[i]])): yvar.append(j) dfss=pd.DataFrame(yvar) clf = linear_model.LinearRegression() clf.fit(dfss,df5) # Make predictions using the testing set dfv=pd.DataFrame(V[V.columns.tolist()[i]].reset_index()) k=list() for l in range(len(df[listofatr[i]]),len(df[listofatr[i]])+len(dfv)): k.append(l) ks=pd.DataFrame(k) #Future prediction predlist=list() for j in range(len(df[listofatr[i]]),len(df[listofatr[i]])+noofterms): predlist.append(j) dataframeoflenofpred=pd.DataFrame(predlist) dateframeofpred=pd.DataFrame(clf.predict(dataframeoflenofpred)) pred=pd.concat([pred,dateframeofpred],axis=1) #Accuracy Of the mODEL y_pred = clf.predict(ks) if(i==0): meanerror=ME(dfv[listofatr[i]], y_pred) mae=MAE(dfv[listofatr[i]], y_pred) mape=MAPE(dfv[listofatr[i]],y_pred) df2["Regression"].iloc[0]=meanerror df2["Regression"].iloc[1]=mae df2["Regression"].iloc[2]=mape regp=pd.DataFrame(pred) ratio_incrr=[] ratio_incrr.append(0) for j in range(2,len(regp)+1): Ra=regp.iloc[j-2] Rb=regp.iloc[j-1] ratio_incrr.append(int(((Rb-Ra)/Ra)*100)) return pred,ratio_incrr monthlyRegression,ratio_incrr=regression(data,V,noofterms) r=pd.DataFrame(monthlyRegression) r.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] r['Model']="Regression" r['Date']=Rdate r['RatioIncrease']=ratio_incrr r.astype(str) for index, i in r.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() if exp==1: #Exponential Smoothing dates=pd.date_range(start_index1,end_index1,freq='A') lengthofprd=len(dates) dateofterm= pd.PeriodIndex(freq='A', start=start_index1, periods=lengthofprd+1) dateofterms=dateofterm.strftime("20%y") Edate=pd.DataFrame(dateofterms) predictonterm=len(Edate) def exponential_smoothing(series, alpha,predictonterm): result = [series[0]] # first value is same as series for i in range(1,len(series)): result.append(alpha * series[i] + (1 - alpha) * result[i-1]) preds=result[len(series)-1]#pred actual=series[len(series)-1]#actual forecastlist=[] for i in range(0,predictonterm): forecast=(alpha*actual)+((1-alpha)*preds) forecastlist.append(forecast) actual=preds preds=forecast return result,forecastlist def Exponentialmooth(data,alpha,predicterm): predexp=list() forecaste=pd.DataFrame() m=len(data.columns.tolist()) for i in range(0,m-5): pred,forecasts=exponential_smoothing(data[data.columns.tolist()[i]],0.5,predictonterm) ss=pd.DataFrame(forecasts) predexp.append(pred) forecaste=pd.concat([forecaste,ss],axis=1) if(i==0): meanerr=ME(len(data[data.columns.tolist()[i]]),predexp) meanaverr=MAE(data[data.columns.tolist()[i]],predexp) mperr=MAPE(data[data.columns.tolist()[i]],predexp) df2["Exponential Smoothing"].iloc[0]=meanerr df2["Exponential Smoothing"].iloc[1]=meanaverr df2["Exponential Smoothing"].iloc[2]=mperr Exponentials=pd.DataFrame(forecaste) ratio_incex=[] ratio_incex.append(0) for j in range(2,len(Exponentials)+1): Ea=Exponentials.iloc[j-2] Eb=Exponentials.iloc[j-1] ratio_incex.append(int(((Eb-Ea)/Ea)*100)) return forecaste,ratio_incex fore,ratio_incex=Exponentialmooth(data,0.5,predictonterm) skf=pd.DataFrame(fore) skf.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] skf['Model']="Exponential Smoothing" skf['Date']=Edate skf['RatioIncrease']=ratio_incex skf.astype(str) for index, i in skf.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() dates=pd.date_range(start_index1,end_index1,freq='A') lengthofprd=len(dates) dateofterm= pd.PeriodIndex(freq='A', start=start_index1, periods=lengthofprd+1) dateofterms=dateofterm.strftime("20%y") ss=pd.DataFrame(dateofterms,columns=['Date']) dataframeforsum=pd.concat([ss]) if mov==1: cur.execute("SELECT `TotalDemand` FROM `forecastoutputy` WHERE `Model`= 'Moving Average'" ) Xmdata = cur.fetchall() Xmadata = pd.DataFrame(Xmdata) movsummm=pd.DataFrame(Xmadata) movsummm.columns=['Moving Average'] dataframeforsum=pd.concat([dataframeforsum,movsummm],axis=1) if ari==1: cur.execute("SELECT `TotalDemand` FROM `forecastoutputy` WHERE `Model`= 'ARIMA'" ) Xadata = cur.fetchall() Xardata = pd.DataFrame(Xadata) movsumma=pd.DataFrame(Xardata) movsumma.columns=['ARIMA'] dataframeforsum=pd.concat([dataframeforsum,movsumma],axis=1) if exp==1: cur.execute("SELECT `TotalDemand` FROM `forecastoutputy` WHERE `Model`= 'Exponential Smoothing'" ) Xedata = cur.fetchall() Xesdata = pd.DataFrame(Xedata) exp=pd.DataFrame(Xesdata) exp.columns=['Exponential Smoothing'] dataframeforsum=pd.concat([dataframeforsum,exp],axis=1) if reg==1: cur.execute("SELECT `TotalDemand` FROM `forecastoutputy` WHERE `Model`= 'Regression'" ) Xrdata = cur.fetchall() Xredata = pd.DataFrame(Xrdata) regr=pd.DataFrame(Xredata) regr.columns=['Regression'] dataframeforsum=pd.concat([dataframeforsum,regr],axis=1) dataframeforsum.astype(str) from pandas.io import sql engine = create_engine("mysql+pymysql://{user}:{pw}@localhost/{db}".format(user="root",pw="",db="inventory_management")) dataframeforsum.to_sql(con=engine, name='summaryoutputy',index=False, if_exists='replace') engine2 = create_engine("mysql+pymysql://{user}:{pw}@localhost/{db}".format(user="root",pw="",db="inventory_management")) df2.to_sql(con=engine2, name='summaryerror',index=False, if_exists='replace') con.commit() cnr=con.cursor() cnr.execute("SELECT * FROM `summaryoutputy`") sdata = cnr.fetchall() summaryq = pd.DataFrame(sdata) con.close() return render_template('yearly.html',summaryq=summaryq.to_html(index=False),sayy=1,smt='Yearly',yr1=demandforecastfrm+' to ',yr2=demandforecasttoo,x=res11,y=r11,x1=tres11,y1=tr11,x2=ures11,y2=ur11,x3=vres11,y3=vr11,x4=wres11,y4=wr11) return render_template('yearly.html',sayy=1,smt='Yearly',yr1=demandforecastfrm+' to ',yr2=demandforecasttoo,x=res11,y=r11,x1=tres11,y1=tr11,x2=ures11,y2=ur11,x3=vres11,y3=vr11,x4=wres11,y4=wr11) #############################Dashboard####################################### #yearly @app.route('/youtgraph', methods = ['GET','POST']) def youtgraph(): con = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = con.cursor() cur.execute("SELECT `Model` FROM `forecastoutputy` GROUP BY `Model`") sfile=cur.fetchall() global yqst qlist=pd.DataFrame(sfile) qlst=qlist['Model'].astype(str) yqst=qlst.values con.close() return render_template('ydashboard.html',qulist=yqst) @app.route('/youtgraph1', methods = ['GET', 'POST']) def youtgraph1(): if request.method=='POST': value=request.form['item'] qconn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) qcur = qconn.cursor() qcur.execute("SELECT * FROM `demandforecastinputdata") qsdata = qcur.fetchall() qdata = pd.DataFrame(qsdata) #graph1 adata=qdata['TotalDemand'] x_axis=qdata['Date'].astype(str) #predictedgraph1 pcur = qconn.cursor() pcur.execute("SELECT * FROM `forecastoutputy` WHERE `Model`='"+value+"'") psdata = pcur.fetchall() edata = pd.DataFrame(psdata) eedata=edata['TotalDemand'].astype(float) ldata=eedata.values nur = qconn.cursor() nur.execute("SELECT MIN(`Date`) AS 'MIN' FROM `forecastoutputy` WHERE `Model`='"+value+"'") MIN=nur.fetchone() pdata=[] i=0 k=0 a="null" while(x_axis[i]<MIN['MIN']): pdata.append(a) i=i+1 k=k+1 ata=np.concatenate((pdata,ldata),axis=0) #x axis fcur = qconn.cursor() fcur.execute("SELECT `Date` FROM `demandforecastinputdata` WHERE `Date`<'"+MIN['MIN']+"'") fsdata = fcur.fetchall() indx = pd.DataFrame(fsdata) indx=indx['Date'] index=np.concatenate((indx,edata['Date'].values),axis=0) yindx=[] for var in index: var1 = var[:4] yindx.append(var1) #bargraph bcur = qconn.cursor() bcur.execute("SELECT * FROM `forecastoutputy` WHERE `Model`='"+value+"'") bsdata = bcur.fetchall() bdata = pd.DataFrame(bsdata) btdf=bdata['Date'].astype(str) btre11 = np.array([]) btres11 = np.append(btre11,btdf) b1tdf1=bdata[['Spain']] #spain b1tr1 = np.array([]) b1tr11 = np.append(b1tr1, b1tdf1) b2tdf1=bdata[['Austria']] #austria b2tr1 = np.array([]) b2tr11 = np.append(b2tr1, b2tdf1) b3tdf1=bdata[['Japan']] #japan b3tr1 = np.array([]) b3tr11 = np.append(b3tr1, b3tdf1) b4tdf1=bdata[['Hungary']] #hungry b4tr1 = np.array([]) b4tr11 = np.append(b4tr1, b4tdf1) b5tdf1=bdata[['Germany']] #germany b5tr1 = np.array([]) b5tr11 = np.append(b5tr1, b5tdf1) b6tdf1=bdata[['TotalDemand']] #total b6tr1 = np.array([]) b6tr11 = np.append(b6tr1, b6tdf1) #comparisonbar ccur = qconn.cursor() ccur.execute("SELECT * FROM `forecastoutputy` WHERE `Model`='"+value+"'") csdata = ccur.fetchall() cdata = pd.DataFrame(csdata) ctdf=cdata['Date'].astype(str) ctre11 = np.array([]) ctres11 = np.append(ctre11,ctdf) c1tdf1=cdata[['RatioIncrease']] #ratioincrease c1tr1 = np.array([]) c1tr11 = np.append(c1tr1, c1tdf1) qcur.execute("SELECT * FROM `summaryerror`") sdata = qcur.fetchall() mape = pd.DataFrame(sdata) qconn.close() return render_template('ydashboard.html',mon=value,qulist=yqst,mape=mape.to_html(index=False),say=1,pdata=ata,adata=adata.values,x_axis=yindx,frm=len(qdata)-1,to=k,x13=btres11,x14=ctres11,y13=b1tr11,y14=b2tr11,y15=b3tr11,y16=b4tr11,y17=b5tr11,y18=b6tr11,y19=c1tr11) #monthly @app.route('/moutgraph', methods = ['GET','POST']) def moutgraph(): con = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = con.cursor() cur.execute("SELECT `Model` FROM `forecastoutput` GROUP BY `Model`") sfile=cur.fetchall() global mqst qlist=pd.DataFrame(sfile) qlst=qlist['Model'].astype(str) mqst=qlst.values con.close() return render_template('mdashboard.html',qulist=mqst) @app.route('/moutgraph1', methods = ['GET', 'POST']) def moutgraph1(): if request.method=='POST': value=request.form['item'] qconn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) qcur = qconn.cursor() qcur.execute("SELECT * FROM `demandforecastinputdata") qsdata = qcur.fetchall() qdata = pd.DataFrame(qsdata) #graph1 adata=qdata['TotalDemand'] x_axis=qdata['Date'].astype(str) #predictedgraph1 pcur = qconn.cursor() pcur.execute("SELECT * FROM `forecastoutput` WHERE `Model`='"+value+"'") psdata = pcur.fetchall() edata = pd.DataFrame(psdata) eedata=edata['TotalDemand'].astype(float) ldata=eedata.values nur = qconn.cursor() nur.execute("SELECT MIN(`Date`) AS 'MIN' FROM `forecastoutput` WHERE `Model`='"+value+"'") MIN=nur.fetchone() pdata=[] i=0 k=0 a="null" while(x_axis[i]<MIN['MIN']): pdata.append(a) i=i+1 k=k+1 ata=np.concatenate((pdata,ldata),axis=0) #x axis fcur = qconn.cursor() fcur.execute("SELECT `Date` FROM `demandforecastinputdata` WHERE `Date`<'"+MIN['MIN']+"'") fsdata = fcur.fetchall() indx = pd.DataFrame(fsdata) indx=indx['Date'].astype(str).values index=np.concatenate((indx,edata['Date'].values),axis=0) #bargraph bcur = qconn.cursor() bcur.execute("SELECT * FROM `forecastoutput` WHERE `Model`='"+value+"'") bsdata = bcur.fetchall() bdata = pd.DataFrame(bsdata) btdf=bdata['Date'].astype(str) btre11 = np.array([]) btres11 = np.append(btre11,btdf) b1tdf1=bdata[['Spain']] #spain b1tr1 = np.array([]) b1tr11 = np.append(b1tr1, b1tdf1) b2tdf1=bdata[['Austria']] #austria b2tr1 = np.array([]) b2tr11 = np.append(b2tr1, b2tdf1) b3tdf1=bdata[['Japan']] #japan b3tr1 = np.array([]) b3tr11 = np.append(b3tr1, b3tdf1) b4tdf1=bdata[['Hungary']] #hungry b4tr1 = np.array([]) b4tr11 = np.append(b4tr1, b4tdf1) b5tdf1=bdata[['Germany']] #germany b5tr1 = np.array([]) b5tr11 = np.append(b5tr1, b5tdf1) b6tdf1=bdata[['TotalDemand']] #total b6tr1 = np.array([]) b6tr11 = np.append(b6tr1, b6tdf1) #comparisonbar ccur = qconn.cursor() ccur.execute("SELECT * FROM `forecastoutput` WHERE `Model`='"+value+"'") csdata = ccur.fetchall() cdata = pd.DataFrame(csdata) ctdf=cdata['Date'].astype(str) ctre11 = np.array([]) ctres11 = np.append(ctre11,ctdf) c1tdf1=cdata[['RatioIncrease']] #ratioincrease c1tr1 = np.array([]) c1tr11 = np.append(c1tr1, c1tdf1) qcur.execute("SELECT * FROM `summaryerror`") sdata = qcur.fetchall() mape = pd.DataFrame(sdata) qconn.close() return render_template('mdashboard.html',mon=value,qulist=mqst,mape=mape.to_html(index=False),say=1,pdata=ata,adata=adata.values,x_axis=index,frm=len(qdata)-1,to=k,x13=btres11,x14=ctres11,y13=b1tr11,y14=b2tr11,y15=b3tr11,y16=b4tr11,y17=b5tr11,y18=b6tr11,y19=c1tr11) #quarterly @app.route('/qoutgraph', methods = ['GET','POST']) def qoutgraph(): con = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = con.cursor() cur.execute("SELECT `Model` FROM `forecastoutputq` GROUP BY `Model`") sfile=cur.fetchall() global qst qlist=pd.DataFrame(sfile) qlst=qlist['Model'].astype(str) qst=qlst.values con.close() return render_template('qdashboard.html',qulist=qst) @app.route('/qoutgraph1', methods = ['GET', 'POST']) def qoutgraph1(): if request.method=='POST': value=request.form['item'] qconn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) qcur = qconn.cursor() qcur.execute("SELECT * FROM `demandforecastinputdata") qsdata = qcur.fetchall() qdata = pd.DataFrame(qsdata) #graph1 adata=qdata['TotalDemand'] x_axis=qdata['Date'].astype(str) #predictedgraph1 pcur = qconn.cursor() pcur.execute("SELECT * FROM `forecastoutputq` WHERE `Model`='"+value+"'") psdata = pcur.fetchall() edata = pd.DataFrame(psdata) eedata=edata['TotalDemand'].astype(float) ldata=eedata.values nur = qconn.cursor() nur.execute("SELECT MIN(`Date`) AS 'MIN' FROM `forecastoutputq` WHERE `Model`='"+value+"'") MIN=nur.fetchone() pdata=[] i=0 k=0 a="null" while(x_axis[i]<MIN['MIN']): pdata.append(a) i=i+1 k=k+1 ata=np.concatenate((pdata,ldata),axis=0) #x axis fcur = qconn.cursor() fcur.execute("SELECT `Date` FROM `demandforecastinputdata` WHERE `Date`<'"+MIN['MIN']+"'") fsdata = fcur.fetchall() indx = pd.DataFrame(fsdata) indx=indx['Date'].astype(str).values index=np.concatenate((indx,edata['Date'].values),axis=0) #bargraph bcur = qconn.cursor() bcur.execute("SELECT * FROM `forecastoutputq` WHERE `Model`='"+value+"'") bsdata = bcur.fetchall() bdata = pd.DataFrame(bsdata) btdf=bdata['Date'].astype(str) btre11 = np.array([]) btres11 = np.append(btre11,btdf) b1tdf1=bdata[['Spain']] #spain b1tr1 = np.array([]) b1tr11 = np.append(b1tr1, b1tdf1) b2tdf1=bdata[['Austria']] #austria b2tr1 = np.array([]) b2tr11 = np.append(b2tr1, b2tdf1) b3tdf1=bdata[['Japan']] #japan b3tr1 = np.array([]) b3tr11 = np.append(b3tr1, b3tdf1) b4tdf1=bdata[['Hungary']] #hungry b4tr1 = np.array([]) b4tr11 = np.append(b4tr1, b4tdf1) b5tdf1=bdata[['Germany']] #germany b5tr1 = np.array([]) b5tr11 = np.append(b5tr1, b5tdf1) b6tdf1=bdata[['TotalDemand']] #total b6tr1 = np.array([]) b6tr11 = np.append(b6tr1, b6tdf1) #comparisonbar ccur = qconn.cursor() ccur.execute("SELECT * FROM `forecastoutputq` WHERE `Model`='"+value+"'") csdata = ccur.fetchall() cdata = pd.DataFrame(csdata) ctdf=cdata['Date'].astype(str) ctre11 = np.array([]) ctres11 = np.append(ctre11,ctdf) c1tdf1=cdata[['RatioIncrease']] #ratioincrease c1tr1 = np.array([]) c1tr11 = np.append(c1tr1, c1tdf1) qcur.execute("SELECT * FROM `summaryerror`") sdata = qcur.fetchall() mape = pd.DataFrame(sdata) qconn.close() return render_template('qdashboard.html',mon=value,qulist=qst,mape=mape.to_html(index=False),say=1,pdata=ata,adata=adata.values,x_axis=index,frm=len(qdata)-1,to=k,x13=btres11,x14=ctres11,y13=b1tr11,y14=b2tr11,y15=b3tr11,y16=b4tr11,y17=b5tr11,y18=b6tr11,y19=c1tr11) @app.route("/yearlysimulation",methods = ['GET','POST']) def yearlysimulation(): if request.method == 'POST': gdp=0 pi=0 ms=0 adv=0 gdp_dis=request.form.get('gdp_dis') pi_dis=request.form.get('pi_dis') ms_dis=request.form.get('ms_dis') adv_dis=request.form.get('adv_dis') min=request.form.get('min') max=request.form.get('max') mue=request.form.get('mue') sig=request.form.get('sig') cval=request.form.get('cval') min1=request.form.get('min1') max1=request.form.get('max1') mue1=request.form.get('mue1') sig1=request.form.get('sig1') cval1=request.form.get('cval1') min2=request.form.get('min2') max2=request.form.get('max2') mue2=request.form.get('mue2') sig2=request.form.get('sig2') cval2=request.form.get('cval2') min3=request.form.get('min3') max3=request.form.get('max3') mue3=request.form.get('mue3') sig3=request.form.get('sig3') cval3=request.form.get('cval3') itr= int(request.form.get('itr')) frm = request.form.get('from') sfrm=int(frm[:4]) to = request.form.get('to') sto=int(to[:4]) kwargs={} atrtable=[] if request.form.get('gdp'): gdp=1 atrtable.append('Gdp') if gdp_dis == 'gdp_dis1': min=request.form.get('min') max=request.form.get('max') kwargs['Gdp_dis']='Uniform' kwargs['gdpvalues']=[min,max] if gdp_dis == 'gdp_dis2': mue=request.form.get('mue') sig=request.form.get('sig') kwargs['Gdp_dis']='Normal' kwargs['gdpvalues']=[mue,sig] if gdp_dis == 'gdp_dis3': kwargs['Gdp_dis']='Random' pass if gdp_dis == 'gdp_dis4': cval=request.form.get('cval') kwargs['Gdp_dis']='Constant' kwargs['gdpvalues']=[cval] if request.form.get('pi'): pi=1 atrtable.append('Pi') if pi_dis == 'pi_dis1': min1=request.form.get('min1') max1=request.form.get('max1') kwargs['Pi_dis']='Uniform' kwargs['pivalues']=[min1,max1] if pi_dis == 'pi_dis2': mue1=request.form.get('mue1') sig1=request.form.get('sig1') kwargs['Pi_dis']='Normal' kwargs['pivalues']=[mue1,sig1] if pi_dis == 'pi_dis3': kwargs['Pi_dis']='Random' pass if pi_dis == 'pi_dis4': cval1=request.form.get('cval1') kwargs['Pi_dis']='Constant' kwargs['pivalues']=[cval1] if request.form.get('ms'): ms=1 atrtable.append('Ms') if ms_dis == 'ms_dis1': min=request.form.get('min2') max=request.form.get('max2') kwargs['Ms_dis']='Uniform' kwargs['msvalues']=[min2,max2] if ms_dis == 'ms_dis2': mue=request.form.get('mue2') sig=request.form.get('sig2') kwargs['Ms_dis']='Normal' kwargs['msvalues']=[mue2,sig2] if ms_dis == 'ms_dis3': kwargs['Ms_dis']='Random' pass if ms_dis == 'ms_dis4': cval=request.form.get('cval2') kwargs['Ms_dis']='Constant' kwargs['msvalues']=[cval2] if request.form.get('adv'): adv=1 atrtable.append('Adv') if adv_dis == 'adv_dis1': min=request.form.get('min3') max=request.form.get('max3') kwargs['Adv_dis']='Uniform' kwargs['advvalues']=[min3,max3] if adv_dis == 'adv_dis2': mue=request.form.get('mue3') sig=request.form.get('sig3') kwargs['Adv_dis']='Normal' kwargs['advvalues']=[mue3,sig3] if adv_dis == 'adv_dis3': kwargs['Adv_dis']='Random' pass if adv_dis == 'adv_dis4': cval=request.form.get('cval3') kwargs['Adv_dis']='Constant' kwargs['advvalues']=[cval3] #print(kwargs) #print(atrtable) con = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = con.cursor() cur.execute("CREATE TABLE IF NOT EXISTS `stech` (`gdp` VARCHAR(1),`pi` VARCHAR(1), `ms` VARCHAR(1),`adv` VARCHAR(1),`itr` VARCHAR(5),`sfrm` VARCHAR(10),`sto` VARCHAR(10))") cur.execute("DELETE FROM `stech`") con.commit() cur.execute("INSERT INTO `stech` VALUES('"+str(gdp)+"','"+str(pi)+"','"+str(ms)+"','"+str(adv)+"','"+str(itr)+"','"+str(sfrm)+"','"+str(sto)+"')") con.commit() data = pd.DataFrame(Yeardata) #print(data) data.columns xvar=pd.concat([data['GDP'],data['Pi_Exports'],data['Market_Share'],data['Advertisement_Expense']],axis=1) yvar=
pd.DataFrame(data['TotalDemand'])
pandas.DataFrame
from rdkit import Chem from rdkit.Chem import rdmolops, rdMolDescriptors, Crippen, GraphDescriptors import numpy as np import pandas as pd import pkg_resources import sys def crippenHContribs(mol,contribs): """Adds Crippen molar refractivity atomic contributions from attached H atoms to a heavy atom's contribution""" res = 0.0 ccontribs = [] for i,at in enumerate(mol.GetAtoms()): if at.GetAtomicNum() != 1: #look through heavy atoms contrib = contribs[i] for nbr in at.GetNeighbors(): if nbr.GetAtomicNum()==1: #look at attached hydrogens contrib += contribs[nbr.GetIdx()] res += contrib ccontribs.append(contrib) return res,ccontribs def degreeContribs(mol): contribs = [] for i,at in enumerate(mol.GetAtoms()): #grab all atom contributions deg = at.GetDegree() contribs.append(deg) return contribs def load_mcgowan(): stream = pkg_resources.resource_stream(__name__, 'mcgowan.csv') return
pd.read_csv(stream)
pandas.read_csv
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """This is to find out why my R peaks at a value around 2021-07-01, that is much higher than RIVM's. Created on Fri Jul 23 12:52:53 2021 @author: hk_nien """ import matplotlib.pyplot as plt import pandas as pd import numpy as np import tools import nlcovidstats as nlcs def get_Rt_rivm(mindate, maxdate): """Return Series with R(rivm). Note timestamps are always at time 12:00:00.""" df_rivm = nlcs.DFS['Rt_rivm'].copy() # get 4 days extra from 'prognosis' prog = df_rivm.loc[df_rivm['R'].isna()].iloc[:4] prog_R = np.around(np.sqrt(prog['Rmin']*prog['Rmax']), 2) df_rivm.loc[prog_R.index, 'R'] = prog_R R_rivm = df_rivm.loc[~df_rivm['R'].isna(), 'R'] return R_rivm.loc[(R_rivm.index >= mindate) & (R_rivm.index <= maxdate)] def get_Rt_mine(mindate, maxdate, slide_delay=True, cdf=None): """Return my Rt estimate, sampled at 12:00 daily. Optionally provide cdf as test case; DataFrame with time index and 'Delta7r' column (7-day rolling average daily positive cases). """ from scipy.interpolate import interp1d delay = nlcs.DELAY_INF2REP if slide_delay else 4.0 if cdf is None: cdf, _npop = nlcs.get_region_data('Nederland', lastday=-1, correct_anomalies=True) Rdf = nlcs.estimate_Rt_df(cdf['Delta7r'].iloc[10:], delay=delay, Tc=4.0) r_interp = interp1d( Rdf.index.astype(np.int64), Rdf['Rt'], bounds_error=False, fill_value=(Rdf['Rt'].iloc[0], Rdf['Rt'].iloc[-1]) ) tlims = [pd.to_datetime(t).strftime('%Y-%m-%dT12:00') for t in [mindate, maxdate] ] index = pd.date_range(*tlims, freq='1d') R_mine = pd.Series(r_interp(index.astype(int)), index=index) return R_mine def get_Rt_test_case(mindate, maxdate, case='step', slide_delay=True): index = pd.date_range('2021-01-01', 'now', freq='1d') cdf = pd.DataFrame(index=index +
pd.Timedelta(4, 'd')
pandas.Timedelta
''' This is a script for editing OS's ITN Road Network shapefiles so that: - the attributeds include an id for the 'to' and 'from' nodes - line strings are duplicated along links that are bidirectional Purpose of this script is to use the extracted orientation information from the gml data to edit the roads linesting shape file such that two way road are duplicated with one linestring orientated in one direction and the other orientated in another direction. ''' import json import numpy as np import pandas as pd import geopandas as gpd import os import networkx as nx import osmnx from shapely.geometry import Point, MultiPoint, Polygon, MultiPolygon, LineString, MultiLineString from shapely import ops import itertools import copy import fiona ###################### # # # Functions # # ###################### import math def make_linestring_coords_2d(l): new_coords = [] for c in l.coords: if len(c) > 1: new_coords.append((c[0],c[1])) return LineString(new_coords) def dot(vA, vB): return vA[0]*vB[0]+vA[1]*vB[1] def ang(lineA, lineB): # Get nicer vector form lACoords = lineA.coords lBCoords = lineB.coords vA = [(lACoords[0][0]-lACoords[1][0]), (lACoords[0][1]-lACoords[1][1])] vB = [(lBCoords[0][0]-lBCoords[1][0]), (lBCoords[0][1]-lBCoords[1][1])] # Get dot prod dot_prod = dot(vA, vB) # Get magnitudes magA = dot(vA, vA)**0.5 magB = dot(vB, vB)**0.5 # Get cosine value cos_ = round(dot_prod/magA/magB, 4) # Get angle in radians and then convert to degrees angle = math.acos(cos_) # Basically doing angle <- angle mod 360 ang_deg = math.degrees(angle)%360 if ang_deg-180>=0: # As in if statement return 360 - ang_deg else: return ang_deg def group(lst, n, overlapp = 1): '''Group a list in to groups of size n, with overlap number of iterms overlapping ''' for i in range(0, len(lst), n - overlapp): val = lst[i:i+n] if len(val) == n: yield tuple(val) def split_line(l, npoints = 2): '''Takes a list string geometry and splits it into subline strings made up of npoints. Useful for simplifying a linestring geometry ''' coord_pairs = group(l.coords, npoints, overlapp = 1) for cpair in coord_pairs: yield LineString(cpair) def simplify_line_angle(l, angle_threshold = 10): '''Break a linestring into components such that the anglular distance along each component is below the threshold. Also simplify the linestrings to be two coordinates only. Cleans road network so that each line string acts as maximal angular deviation unit of angular distance Might want to separate these two cleaning operations ''' simplified_lines = [] split_lines = split_line(l, 2) la = next(split_lines) lb = None c1 = la.coords[0] angle = 0.0 for lb in split_lines: angle+=abs(ang(la,lb)) # If angle has reached threshold create simplified linestring if angle >= angle_threshold: c2 = la.coords[-1] simplified_lines.append(LineString((c1,c2))) c1 = c2 angle = 0 la = lb c2 = lb.coords[-1] simplified_lines.append(LineString((c1,c2))) return simplified_lines def break_line_by_angle(l, angle_threshold = 10, min_link_length = 15): '''Break a linestring into components such that the anglular distance along each component is below the threshold. Also simplify the linestrings to be two coordinates only. Cleans road network so that each line string acts as maximal angular deviation unit of angular distance Might want to separate these two cleaning operations ''' simplified_lines = [] split_lines = list(split_line(l, 2)) la = split_lines[0] lb = None c1 = la.coords[0] angle = 0.0 dist = la.length break_line = False for i in range(1, len(split_lines)): lb = split_lines[i] angle+=abs(ang(la,lb)) # First check if enough distance covered or angular deviation to break link, if not continue if (dist>min_link_length) & (angle >= angle_threshold): # Also need to check that next link will surpass distance threshold remaining_dist = lb.length for j in range(i+1, len(split_lines)): remaining_dist += split_lines[j].length if (remaining_dist > min_link_length): break_line = True # If angle and distance conditions satisfied create simplified linestring if break_line: c2 = la.coords[-1] simplified_lines.append(LineString((c1,c2))) c1 = c2 angle = 0 dist = 0 break_line = False la = lb dist += la.length c2 = lb.coords[-1] simplified_lines.append(LineString((c1,c2))) return simplified_lines # Disolved geometries are multi polygons, explode to single polygons def simplify_line_gdf_by_angle(indf, angle_threshold, id_col, new_id_col): outdf = gpd.GeoDataFrame(columns=indf.columns) outdf[new_id_col] = np.nan for idx, row in indf.iterrows(): l = row['geometry'] if len(l.coords) == 2: row[new_id_col] = row[id_col] outdf = outdf.append(row,ignore_index=True) else: simplified_lines = simplify_line_angle(l, angle_threshold) multdf = gpd.GeoDataFrame(columns=indf.columns) nlines = len(simplified_lines) multdf = multdf.append([row]*nlines,ignore_index=True) for i in range(nlines): multdf.loc[i,'geometry'] = simplified_lines[i] multdf.loc[i, new_id_col] = multdf.loc[i, id_col] + "_{}".format(i) outdf = outdf.append(multdf,ignore_index=True) return outdf def _is_point_in_nodes(p, nodes): # Search new nodes for this coordinate point_in_node = False for v in nodes.values(): if (p.x == v['x']) & (p.y == v['y']): # This coordiante has already been recorded as a new node point_in_node = True break return point_in_node def _node_data_from_point(p): d = {} d['x'] = p.x d['y'] = p.y d['geometry'] = p return d def _match_nodes_to_geometry(g, u, v, graph_nodes, other_nodes): """Find start and end nodes for the new edge geometry. First check if input u and v nodes match start and end point of geometry. Then search through input list of nodes. Allows distingusing between nodes that already are in a graph (u and v) and node that need to be added. """ new_u = None new_u_data = None if (g.coords[0][0] == graph_nodes[u]['x']) & (g.coords[0][1] == graph_nodes[u]['y']): new_u = u new_u_data = graph_nodes[new_u] elif (g.coords[0][0] == graph_nodes[v]['x']) & (g.coords[0][1] == graph_nodes[v]['y']): new_u = v new_u_data = graph_nodes[new_u] else: # Find which newly created nodes matched the end of this line string for node_id, node_data in other_nodes.items(): if (g.coords[0][0] == node_data['x']) & (g.coords[0][1] == node_data['y']): new_u = node_id new_u_data = node_data break new_v = None new_v_data = None if (g.coords[-1][0] == graph_nodes[u]['x']) & (g.coords[-1][1] == graph_nodes[u]['y']): new_v = u new_v_data = graph_nodes[new_v] elif (g.coords[-1][0] == graph_nodes[v]['x']) & (g.coords[-1][1] == graph_nodes[v]['y']): new_v = v new_v_data = graph_nodes[new_v] else: # Find which newly created nodes matched the end of this line string for node_id, node_data in other_nodes.items(): if (g.coords[-1][0] == node_data['x']) & (g.coords[-1][1] == node_data['y']): new_v = node_id new_v_data = node_data break return (new_u, new_u_data), (new_v, new_v_data) # Disolved geometries are multi polygons, explode to single polygons def break_edges_by_angle(G, angle_threshold, min_link_length, id_col, new_id_col): """Given and input graph, break up edges that contain more than two coordinates where the angle between edge segments is greater thatn the input angle threshold. """ H = nx.MultiGraph() H.graph = G.graph new_nodes = {} # Record the points of intersections between edge geometries and use these as addition nodes nodes = G.nodes(data=True) new_node_index = 0 # loop over the edges in the graph for e in G.edges(data=True, keys = True): e_data = copy.deepcopy(e[-1]) g = e_data['geometry'] if len(g.coords) == 2: e_data[new_id_col] = e_data[id_col] u_data = nodes[e[0]] v_data = nodes[e[1]] H.add_node(e[0], **u_data) # If node has already been added the graph will be unchanged H.add_node(e[1], **v_data) # If node has already been added the graph will be unchanged H.add_edge(e[0], e[1], key = e[2], **e_data) else: # Break geometry into component edges component_geoms = break_line_by_angle(g, angle_threshold, min_link_length) # Add these component edges to the graph for i, cg in enumerate(component_geoms): comp_e_data = copy.deepcopy(e_data) comp_e_data[new_id_col] = "{}_{}".format(comp_e_data[id_col], i) comp_e_data['geometry'] = cg # Add start and end points of geometry to new nodes for p in (Point(cg.coords[0]), Point(cg.coords[-1])): point_in_nodes = _is_point_in_nodes(p, new_nodes) if point_in_nodes: continue else: node_id = "break_angle_node_{}".format(new_node_index) new_node_index += 1 new_nodes[node_id] = _node_data_from_point(p) # Get the nodes for this geometry (new_u, new_u_data), (new_v, new_v_data) = _match_nodes_to_geometry(cg, e[0], e[1], nodes, new_nodes) # Finally add the edge to the new graph if (new_u is None) | (new_v is None): print("New nodes not found for edge {}".format(e)) else: H.add_node(new_v, **new_v_data) # If node has already been added the graph will be unchanged H.add_node(new_u, **new_u_data) # If node has already been added the graph will be unchanged H.add_edge(new_u, new_v, **comp_e_data) return H def largest_connected_component_nodes_within_dist(G, source_node, dist, weight): if G.is_directed(): lccNodes = max(nx.weakly_connected_components(G), key=len) else: lccNodes = max(nx.connected_components(G), key=len) lccG = G.subgraph(lccNodes).copy() shortest_paths = nx.single_source_dijkstra(lccG, source_node, target=None, cutoff=dist, weight=weight) reachable_nodes = shortest_paths[0].keys() return reachable_nodes def nodes_gdf_from_edges_gdf(gdf_edges, u, v): '''Given a geo data frame of network edges with LineString geometries, etract the start and end points of the LineString geometries and create a nodes geo data frame from these. Set the u and v columns of the edges geo data frame to the corresponding node ids ---------- edges_gdf : geopandas.GeoDataFrame input edges u : str column to use for u node id v : str column to use for v node id Returns ------- tuple (gdf_nodes, gdf_edges) ''' gdf_edges['c1'] = gdf_edges['geometry'].map(lambda g: Point(g.coords[0])) gdf_edges['c2'] = gdf_edges['geometry'].map(lambda g: Point(g.coords[1])) node_geoms = pd.concat([gdf_edges['c1'], gdf_edges['c2']]) node_coords = node_geoms.map(lambda x: x.coords[0]).drop_duplicates() node_geoms = node_coords.map(lambda x: Point(x)) node_ids = ['or_node_{}'.format(i) for i in np.arange(len(node_geoms))] gdf_nodes = gpd.GeoDataFrame({'node_fid': node_ids, 'geometry':node_geoms}) gdf_nodes.crs = gdf_edges.crs # Join nodes to edges on coordinate gdf_edges = gdf_edges.set_geometry("c1") gdf_edges = gpd.geopandas.sjoin(gdf_edges, gdf_nodes, how='inner', op='intersects', lsuffix='left', rsuffix='right') assert gdf_edges['node_fid'].isnull().any() == False gdf_edges.rename(columns={'node_fid':u}, inplace=True) gdf_edges = gdf_edges.drop(['index_right'], axis = 1) gdf_edges = gdf_edges.set_geometry("c2") gdf_edges = gpd.geopandas.sjoin(gdf_edges, gdf_nodes , how='inner', op='intersects', lsuffix='left', rsuffix='right') assert gdf_edges['node_fid'].isnull().any() == False gdf_edges.rename(columns={'node_fid':v}, inplace=True) gdf_edges = gdf_edges.drop(['index_right'], axis = 1) # Tidy up gdf_edges = gdf_edges.set_geometry("geometry") gdf_edges = gdf_edges.drop(["c1", "c2"], axis = 1) return gdf_nodes, gdf_edges def simplify_graph(G, strict=True, remove_rings=True, rebuild_geoms = False): """ Simplify a graph's topology by removing interstitial nodes. Simplifies graph topology by removing all nodes that are not intersections or dead-ends. Create an edge directly between the end points that encapsulate them, but retain the geometry of the original edges, saved as a new `geometry` attribute on the new edge. Note that only simplified edges receive a `geometry` attribute. Some of the resulting consolidated edges may comprise multiple OSM ways, and if so, their multiple attribute values are stored as a list. Parameters ---------- G : networkx.MultiDiGraph input graph strict : bool if False, allow nodes to be end points even if they fail all other rules but have incident edges with different OSM IDs. Lets you keep nodes at elbow two-way intersections, but sometimes individual blocks have multiple OSM IDs within them too. remove_rings : bool if True, remove isolated self-contained rings that have no endpoints Returns ------- G : networkx.MultiDiGraph topologically simplified graph, with a new `geometry` attribute on each simplified edge """ if "simplified" in G.graph and G.graph["simplified"]: # pragma: no cover raise Exception("This graph has already been simplified, cannot simplify it again.") osmnx.utils.log("Begin topologically simplifying the graph...") # make a copy to not mutate original graph object caller passed in G = G.copy() initial_node_count = len(G) initial_edge_count = len(G.edges) all_nodes_to_remove = [] all_edges_to_add = [] # generate each path that needs to be simplified for path in osmnx.simplification._get_paths_to_simplify(G, strict=strict): # add the interstitial edges we're removing to a list so we can retain # their spatial geometry edge_attributes = dict() for u, v in zip(path[:-1], path[1:]): # there should rarely be multiple edges between interstitial nodes # usually happens if OSM has duplicate ways digitized for just one # street... we will keep only one of the edges (see below) if G.number_of_edges(u, v) != 1: osmnx.utils.log(f"Found multiple edges between {u} and {v} when simplifying") # get edge between these nodes: if multiple edges exist between # them (see above), we retain only one in the simplified graph edge = G.edges[u, v, 0] for key in edge: if key in edge_attributes: # if this key already exists in the dict, append it to the # value list if isinstance(edge[key], (list, tuple)): for item in edge[key]: edge_attributes[key].append(item) else: edge_attributes[key].append(edge[key]) else: # if this key doesn't already exist, but the value is a list set the value to the edge value # otherwise set the value to a list containing the one value if isinstance(edge[key], (list, tuple)): edge_attributes[key] = list(edge[key]) else: edge_attributes[key] = [edge[key]] for key in edge_attributes: # don't touch the length or geometry attribute, we'll sum it at the end if key in ["length", "geometry"]: continue elif len(set(edge_attributes[key])) == 1: # if there's only 1 unique value in this attribute list, # consolidate it to the single value (the zero-th) edge_attributes[key] = edge_attributes[key][0] else: # otherwise, if there are multiple values, keep one of each value edge_attributes[key] = list(set(edge_attributes[key])) # construct the geometry and sum the lengths of the segments if rebuild_geoms: edge_attributes["geometry"] = LineString( [Point((G.nodes[node]["x"], G.nodes[node]["y"])) for node in path] ) edge_attributes["length"] = sum(edge_attributes["length"]) else: # Create single geometry from the coordinates of the component geometries merged_line = ops.linemerge(MultiLineString(edge_attributes["geometry"])) edge_attributes["geometry"] = merged_line edge_attributes["length"] = merged_line.length # add the nodes and edges to their lists for processing at the end all_nodes_to_remove.extend(path[1:-1]) all_edges_to_add.append( {"origin": path[0], "destination": path[-1], "attr_dict": edge_attributes} ) # for each edge to add in the list we assembled, create a new edge between # the origin and destination for edge in all_edges_to_add: G.add_edge(edge["origin"], edge["destination"], **edge["attr_dict"]) # finally remove all the interstitial nodes between the new edges G.remove_nodes_from(set(all_nodes_to_remove)) if remove_rings: # remove any connected components that form a self-contained ring # without any endpoints wccs = nx.weakly_connected_components(G) nodes_in_rings = set() for wcc in wccs: if not any(osmnx.simplification._is_endpoint(G, n) for n in wcc): nodes_in_rings.update(wcc) G.remove_nodes_from(nodes_in_rings) # mark graph as having been simplified G.graph["simplified"] = True msg = ( f"Simplified graph: {initial_node_count} to {len(G)} nodes, " f"{initial_edge_count} to {len(G.edges)} edges" ) osmnx.utils.log(msg) return G def break_overlapping_edges(G, id_attr = 'strg_id'): """Used to deal with edges geometries that overlap. Create nodes at intersection between edges and break edge geometries at these points. Rebuild graph by assigning nodes to start and end of graph. -------------- Returns: geopandas.GeoDataFrame, geopandas.GeoDataFrame gdfNodes, gdfLinks """ print("Breaking overlapping edges") H = nx.MultiGraph() H.graph = G.graph new_nodes = {} # Record the points of intersections between edge geometries and use these as addition nodes nodes = G.nodes(data=True) new_node_index = 0 for n in nodes: u = n[0] # Now loop through pairs of edges attached to this node for e1, e2 in itertools.combinations(G.edges(u,data=True, keys=True), 2): # Unpack for ease u1,v1,k1,d1 = e1 u2,v2,k2,d2 = e2 g1 = copy.deepcopy(d1['geometry']) g2 = copy.deepcopy(d2['geometry']) # Remove overlaps between geometries g1 = g1.difference(g2) if (g1.is_empty) & ~(g2.is_empty): print("Empty line. e1:{}, e2:{}".format((u1,v1), (u2,v2))) continue elif ~(g1.is_empty) & (g2.is_empty): print("Empty line. e1:{}, e2:{}".format((u1,v1), (u2,v2))) continue # Find intersecting points of geometries intersection = g1.intersection(g2) if isinstance(intersection, Point): #node_data['geometry'].append(intersection) intersection = MultiPoint([intersection]) elif isinstance(intersection, MultiPoint): pass else: print("Unexpected intersection. e1:{}, e2:{}".format((u1,v1,k1), (u2,v2,k2))) # Add intersection points to dict of new nodes for p in intersection: point_in_nodes = _is_point_in_nodes(p, new_nodes) if point_in_nodes: continue else: node_id = "overlap_node_{}".format(new_node_index) new_node_index += 1 new_nodes[node_id] = _node_data_from_point(p) # Create multipoint geometry containing all the nodes, use this to split edges points = [Point(n[-1]['x'],n[-1]['y']) for n in nodes] points += [v['geometry'] for k,v in new_nodes.items()] mp = MultiPoint(points) # Split edge geometries by the intersecting points for e in G.edges(data=True, keys=True): data = copy.deepcopy(e[-1]) g = data['geometry'] new_edge_index = 0 for new_geom in ops.split(g, mp): # Find start and end nodes for the new edge geometry # Although start and end coords might match points of intersection, retain original node IDs where possible # Means that only intersection node sthat are used should be added to the graph, otherwise will get duplicated node geometries (new_u, new_u_data), (new_v, new_v_data) = _match_nodes_to_geometry(new_geom, e[0], e[1], nodes, new_nodes) # Finally add the edge to the new graph if (new_u is None) | (new_v is None): print("New nodes not found for edge {}".format(e)) else: H.add_node(new_v, **new_v_data) # If node has already been added the graph will be unchanged H.add_node(new_u, **new_u_data) # If node has already been added the graph will be unchanged new_data = data new_data['geometry'] = new_geom new_data['sub_'+id_attr] = "sub_{}".format(new_edge_index) new_edge_index += 1 H.add_edge(new_u, new_v, **new_data) return H def remove_duplicated_edges(G): """Breaking up edges where they overlap can create multiple links between the same two nodes with the same geometry. These are considered duplicate link. This functions removes these links from the graph. """ D = G.copy() # Loop through node pairs, if multiple keys check if geometry is duplicated and delete if so for u in D.nodes(): if isinstance(G, nx.MultiGraph): neighbours = set(D.neighbors(u)) elif isinstance(G, nx.MultiDiGraph): neighbours = set(list(D.predecessors(u)) + list(D.successors(u))) for v in neighbours: keys = list(D[u][v].keys()) if len(keys)==1: # no multi edge between these nodes continue else: # Check for duplicate geometries geoms = [D[u][v][k]['geometry'] for k in keys] for k1, k2 in itertools.combinations(keys, 2): try: g1 = D[u][v][k1]['geometry'] g2 = D[u][v][k2]['geometry'] except KeyError as ke: # Get key error if an edge has been removed continue if g1.equals(g2): D.remove_edge(u,v,key = k2) # Check there is still an edge between u and v try: e = D[u][v] except KeyError: assert False return D def duplicate_geometry_row_ids(gdf, geometry = 'geometry'): dup_ids = [] for ix, row in gdf.iterrows(): g1 = row[geometry] temp = [ix] for ix_, row_ in gdf.loc[ix:,].iterrows(): if ix_ == ix: continue g2 = row_[geometry] if g1.equals(g2): temp.append(ix_) if len(temp) > 1: dup_ids.append(temp) return dup_ids def drop_duplicate_geometries(gdf, geometry = 'geometry', **kwargs): duplicated_ids = duplicate_geometry_row_ids(gdf, geometry = geometry) for id_group in duplicated_ids: gdf = gdf.drop(id_group[1:], axis=0, errors = 'ignore') # Keep the first entry, ignore errors since possible that this will try to drop the same row multiple times return gdf ###################### # # # Initialise variables and paths to data inputs and outputs # # ##################### projectCRS = "epsg:27700" with open("config.json") as f: config = json.load(f) gis_data_dir = config['gis_data_dir'] itn_file = os.path.join(gis_data_dir, config['mastermap_itn_file']) open_roads_link_file = os.path.join(gis_data_dir, config['open_roads_link_file']) open_roads_node_file = os.path.join(gis_data_dir, config['open_roads_node_file']) poi_file = os.path.join(gis_data_dir, config['poi_file']) output_directory = os.path.join(gis_data_dir, "processed_gis_data") if os.path.isdir(output_directory) == False: os.mkdir(output_directory) selection_layer_file = os.path.join(gis_data_dir, config['clip_file']) output_itn_link_file = os.path.join(output_directory, config["mastermap_link_processed_file"]) output_itn_node_file = os.path.join(output_directory, config["mastermap_node_processed_file"]) output_or_link_file = os.path.join(output_directory, config["openroads_link_processed_file"]) output_or_node_file = os.path.join(output_directory, config["openroads_node_processed_file"]) def run(): ########################### # # # Load Data # # ########################## # Mastermap ITN data - for road network gdfITNLink = gpd.read_file(itn_file, layer = "RoadLink") if gdfITNLink.crs is None: gdfITNLink.crs = projectCRS else: assert gdfITNLink.crs.to_string().lower() == projectCRS gdfITNNode = gpd.read_file(itn_file, layer = "RoadNode") if gdfITNNode.crs is None: gdfITNNode.crs = projectCRS else: assert gdfITNNode.crs.to_string().lower() == projectCRS # OS Open Road - for ped road network gdfORLink = gpd.read_file(open_roads_link_file) if gdfORLink.crs is None: gdfORLink.crs = projectCRS else: assert gdfORLink.crs.to_string().lower() == projectCRS gdfORNode = gpd.read_file(open_roads_node_file) if gdfORNode.crs is None: gdfORNode.crs = projectCRS else: assert gdfORNode.crs.to_string().lower() == projectCRS c = fiona.open(poi_file) gdfPOIs = gpd.GeoDataFrame.from_features(c) if gdfPOIs.crs is None: gdfPOIs.crs = projectCRS else: assert gdfPOIs.crs.to_string().lower() == projectCRS # Study area polygon - to select data within the study area centre_poi = gdfPOIs.loc[gdfPOIs['ref_no'] == config['centre_poi_ref']] centre_poi_geom = centre_poi['geometry'].values[0] seriesStudyArea = centre_poi.buffer(config['study_area_dist']) seriesStudyArea.to_file(os.path.join(gis_data_dir, "study_area.shp")) studyPolygon = seriesStudyArea.values[0] ################################ # # First clip ITN and OR networks to study area buffer, reduces size of data, makes it easier to work with # Select the ITN Road Network that lies in the study area # # Need to use study polygon rather than network distance method because at this stage the ITN network has not been created. # This is done in the script makeITNdirectional.py # ################################ # Select only the polygons that intersect or lie within the junc clip area gdfITNLink = gdfITNLink.loc[ (gdfITNLink.geometry.intersects(studyPolygon)) | (gdfITNLink.geometry.within(studyPolygon))] gdfITNNode = gpd.sjoin(gdfITNNode, gdfITNLink.loc[:,['fid','geometry']], op = 'intersects', lsuffix = 'node', rsuffix = 'line') # Clean up gdfITNNode.drop(['fid_line', 'index_line'], axis = 1, inplace=True) gdfITNNode.drop_duplicates(inplace = True) gdfITNNode.rename(columns = {'fid_node':'fid'}, inplace = True) # Repeat for Open Roads gdfORLink = gdfORLink.loc[ (gdfORLink.geometry.intersects(studyPolygon)) | (gdfORLink.geometry.within(studyPolygon))] gdfORNode = gpd.sjoin(gdfORNode, gdfORLink.loc[:,['identifier','geometry']], op = 'intersects', lsuffix = 'node', rsuffix = 'line') # Clean up gdfORNode.drop(['identifier_line', 'index_line'], axis = 1, inplace=True) gdfORNode.drop_duplicates(inplace = True) gdfORNode.rename(columns = {'identifier_node':'identifier'}, inplace = True) ############################## # # Select the OS Open Road data that lies in the study area # # OS Open Road Data is used for pedestrian routing. Less detail on lanes and roundabouts so more suitable for peds # ############################## # Get into format required for osmnx compliant graph gdfORLink = gdfORLink[ gdfORLink['geometry'].type == "LineString"] # Handle multi links gdfORLink['key'] = None gdfORLink['key'] = gdfORLink.groupby(['startNode','endNode'])['key'].transform(lambda df: np.arange(df.shape[0])) assert gdfORLink.loc[:, ['startNode','endNode', 'key']].duplicated().any() == False # Represent undirected network as directed graph gdfORLinkReversed = gdfORLink.copy() gdfORLinkReversed = gdfORLink.rename(columns = {'startNode':'endNode', 'endNode':'startNode'}) gdfORLinkReversed['geometry'] = gdfORLinkReversed['geometry'].map(lambda g: LineString(g.coords[::-1])) gdfORLink =
pd.concat([gdfORLink, gdfORLinkReversed])
pandas.concat
from sklearn.ensemble import ExtraTreesRegressor, RandomForestRegressor,RandomForestClassifier import pickle import scikitplot as skplt from sklearn import tree from sklearn.naive_bayes import GaussianNB from sklearn.neighbors import KNeighborsClassifier from sklearn.metrics import confusion_matrix,precision_score,recall_score from sklearn.ensemble import ExtraTreesRegressor import seaborn as sns from sklearn.linear_model import LogisticRegression import pandas as pd import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split import numpy as np from sklearn import metrics from sklearn.neural_network import MLPClassifier def main (): data=pd.read_csv('Final_Classification_with_dummies.csv') y=data.extreme_weather data=data.drop('extreme_weather',axis=1) data=normalize(data) #Logistic Regression print ("Logistic") logistic_ExtremeWeatherConditions(data,y) logistic_ExtremeWeatherConditions_Feature_importance(data,y) # # # ##Decision tree print ("Decision Tree") Decision_Tree_Extreme_weather(data,y) Decision_Tree_Extreme_weather_Feature_importance(data,y) # # ##Naive naive_bayes print ("Naive Bayes") naive_bayes_Extreme_weather(data,y) naive_bayes_Extreme_weather_Feature_importance(data,y) ## KNN print ("KNN") KNN_Extreme_weather(data,y) KNN_Extreme_weather_Feature_importance(data,y) ##Neural Network print ("NN") NN_Extreme_weather(data,y) NN_Extreme_weather_Feature_importance(data,y) ##Random forest RandomForest_Extreme_weather(data,y) RandomForest_Extreme_weather_Feature_importance(data,y) ##Analysing extreme weather condition in all three seasons count_weather_classes() ##misclassification misclassification() ##Bagging bagging(data,y) ##undersampling undersampling() ##Bar_graph # Bar_graph(a1,a2,b1,b2,c1,c2,d1,d2,e1,e2) def normalize(data): for c in data.columns: mean = data[c].mean() max = data[c].max() min = data[c].min() data[c] = (data[c] - min) / (max - min) return data def ROC(t,p): skplt.metrics.plot_roc(t, p, title="ROC Curve For Svm model") plt.show() ## Logistic Regression def logistic_ExtremeWeatherConditions(data,y): X_train, X_val, y_train, y_val = train_test_split(data, y, test_size=0.2, random_state=1) model=LogisticRegression() model=model.fit(X_train,y_train) print("Training Accuracy",model.score(X_train,y_train)) prediction=model.predict(X_train) print("Precision Score:",precision_score(y_train,prediction)) print("Recall Score:",recall_score(y_train, prediction)) print("Confusion MATRIX",confusion_matrix(y_train,prediction)) ROC(y_train,model.predict_proba(X_train)) print("Testing Accuracy",model.score(X_val,y_val)) prediction=model.predict(X_val) print("Precision Score:",precision_score(y_val,prediction)) print("Recall Score:",recall_score(y_val, prediction)) print("Confusion MATRIX",confusion_matrix(y_val,prediction)) ROC(y_val,model.predict_proba(X_val)) def logistic_ExtremeWeatherConditions_Feature_importance(data,y): tree_clf = ExtraTreesRegressor() tree_clf.fit(data, y) importances = tree_clf.feature_importances_ feature_names = data.columns imp_features=dict(zip(feature_names,importances)) features_up = sorted(imp_features.items(), key=lambda x: x[1], reverse=True) features_down = sorted(imp_features.items(), key=lambda x: x[1], reverse=False) #best features print(features_up[:10]) import time start=time.time() plt.bar(range(len(features_up)), [imp[1] for imp in features_up], align='center') plt.xticks(np.arange(len(features_up)),[x[0] for x in features_up], rotation='vertical', label='Features') plt.yticks(label='Feature Importance') # plt.title('features') plt.show() print(time.time()-start) import time start=time.time() plt.bar(range(len(features_up[4:])), [imp[1] for imp in features_up[4:]], align='center') plt.title('features') plt.show() print(time.time()-start) # x = [i[0] for i in features_up] # x=data[x] # X_train, X_val, y_train, y_val = train_test_split(x, y, test_size=0.2, random_state=1) # model=LogisticRegression() # model=model.fit(X_train,y_train) # print("Training Accuracy",model.score(X_train,y_train)) # prediction=model.predict(X_train) # print("Precision Score:",precision_score(y_train,prediction)) # print("Recall Score:",recall_score(y_train, prediction)) # print("Confusion MATRIX",confusion_matrix(y_train,prediction)) # ROC(y_train,model.predict_proba(X_train)) # print("Testing Accuracy",model.score(X_val,y_val)) # prediction=model.predict(X_val) # print("Precision Score:",precision_score(y_val,prediction)) # print("Recall Score:",recall_score(y_val, prediction)) # print("Confusion MATRIX",confusion_matrix(y_val,prediction)) # ROC(y_val,model.predict_proba(X_val)) #Predicting AQI using all features def Decision_Tree_Extreme_weather(data,y): X_train, X_val, y_train, y_val = train_test_split(data, y, test_size=0.2, random_state=1) model = tree.DecisionTreeClassifier() model = model.fit(X_train,y_train) print("Training Accuracy",model.score(X_train,y_train)) prediction=model.predict(X_train) print("Precision Score:",precision_score(y_train,prediction)) print("Recall Score:",recall_score(y_train, prediction)) print("Confusion MATRIX",confusion_matrix(y_train,prediction)) ROC(y_train,model.predict_proba(X_train)) print("Testing Accuracy",model.score(X_val,y_val)) prediction=model.predict(X_val) print("Precision Score:",precision_score(y_val,prediction)) print("Recall Score:",recall_score(y_val, prediction)) print("Confusion MATRIX",confusion_matrix(y_val,prediction)) ROC(y_val,model.predict_proba(X_val)) #Predicting AQI using features from features importance graph def Decision_Tree_Extreme_weather_Feature_importance(data,y): tree_clf = ExtraTreesRegressor() tree_clf.fit(data, y) importances = tree_clf.feature_importances_ feature_names = data.columns imp_features=dict(zip(feature_names,importances)) features_up = sorted(imp_features.items(), key=lambda x: x[1], reverse=True) features_down = sorted(imp_features.items(), key=lambda x: x[1], reverse=False) x = [i[0] for i in features_up] x=data[x] X_train, X_val, y_train, y_val = train_test_split(x, y, test_size=0.2, random_state=1) model = tree.DecisionTreeClassifier() model = model.fit(X_train,y_train) print("Training Accuracy",model.score(X_train,y_train)) prediction=model.predict(X_train) print("Precision Score:",precision_score(y_train,prediction)) print("Recall Score:",recall_score(y_train, prediction)) print("Confusion MATRIX",confusion_matrix(y_train,prediction)) ROC(y_train,model.predict_proba(X_train)) print("Testing Accuracy",model.score(X_val,y_val)) prediction=model.predict(X_val) print("Precision Score:",precision_score(y_val,prediction)) print("Recall Score:",recall_score(y_val, prediction)) print("Confusion MATRIX",confusion_matrix(y_val,prediction)) ROC(y_val,model.predict_proba(X_val)) return model def naive_bayes_Extreme_weather(data,y): X_train, X_val, y_train, y_val = train_test_split(data, y, test_size=0.2, random_state=1) model = GaussianNB() model = model.fit(X_train,y_train) print("Training Accuracy",model.score(X_train,y_train)) prediction=model.predict(X_train) print("Precision Score:",precision_score(y_train,prediction)) print("Recall Score:",recall_score(y_train, prediction)) print("Confusion MATRIX",confusion_matrix(y_train,prediction)) ROC(y_train,model.predict_proba(X_train)) print("Testing Accuracy",model.score(X_val,y_val)) prediction=model.predict(X_val) print("Precision Score:",precision_score(y_val,prediction)) print("Recall Score:",recall_score(y_val, prediction)) print("Confusion MATRIX",confusion_matrix(y_val,prediction)) ROC(y_val,model.predict_proba(X_val)) #Predicting AQI using features from features importance graph def naive_bayes_Extreme_weather_Feature_importance(data,y): tree_clf = ExtraTreesRegressor() tree_clf.fit(data, y) importances = tree_clf.feature_importances_ feature_names = data.columns imp_features=dict(zip(feature_names,importances)) features_up = sorted(imp_features.items(), key=lambda x: x[1], reverse=True) features_down = sorted(imp_features.items(), key=lambda x: x[1], reverse=False) x = [i[0] for i in features_up] x=data[x] X_train, X_val, y_train, y_val = train_test_split(x, y, test_size=0.2, random_state=1) model = GaussianNB() model = model.fit(X_train,y_train) print("Training Accuracy",model.score(X_train,y_train)) prediction=model.predict(X_train) print("Precision Score:",precision_score(y_train,prediction)) print("Recall Score:",recall_score(y_train, prediction)) print("Confusion MATRIX",confusion_matrix(y_train,prediction)) ROC(y_train,model.predict_proba(X_train)) print("Testing Accuracy",model.score(X_val,y_val)) prediction=model.predict(X_val) print("Precision Score:",precision_score(y_val,prediction)) print("Recall Score:",recall_score(y_val, prediction)) print("Confusion MATRIX",confusion_matrix(y_val,prediction)) ROC(y_val,model.predict_proba(X_val)) def KNN_Extreme_weather(data,y): X_train, X_val, y_train, y_val = train_test_split(data, y, test_size=0.2, random_state=1) model = KNeighborsClassifier(n_neighbors=3) model = model.fit(X_train,y_train) print("Training Accuracy",model.score(X_train,y_train)) prediction=model.predict(X_train) print("Precision Score:",precision_score(y_train,prediction)) print("Recall Score:",recall_score(y_train, prediction)) print("Confusion MATRIX",confusion_matrix(y_train,prediction)) ROC(y_train,model.predict_proba(X_train)) print("Testing Accuracy",model.score(X_val,y_val)) prediction=model.predict(X_val) print("Precision Score:",precision_score(y_val,prediction)) print("Recall Score:",recall_score(y_val, prediction)) print("Confusion MATRIX",confusion_matrix(y_val,prediction)) ROC(y_val,model.predict_proba(X_val)) #Predicting AQI using features from features importance graph def KNN_Extreme_weather_Feature_importance(data,y): tree_clf = ExtraTreesRegressor() tree_clf.fit(data, y) importances = tree_clf.feature_importances_ feature_names = data.columns imp_features=dict(zip(feature_names,importances)) features_up = sorted(imp_features.items(), key=lambda x: x[1], reverse=True) features_down = sorted(imp_features.items(), key=lambda x: x[1], reverse=False) x = [i[0] for i in features_up] x=data[x] X_train, X_val, y_train, y_val = train_test_split(x, y, test_size=0.2, random_state=1) model = KNeighborsClassifier(n_neighbors=3) model = model.fit(X_train,y_train) print("Training Accuracy",model.score(X_train,y_train)) prediction=model.predict(X_train) print("Precision Score:",precision_score(y_train,prediction)) print("Recall Score:",recall_score(y_train, prediction)) print("Confusion MATRIX",confusion_matrix(y_train,prediction)) ROC(y_train,model.predict_proba(X_train)) print("Testing Accuracy",model.score(X_val,y_val)) prediction=model.predict(X_val) print("Precision Score:",precision_score(y_val,prediction)) print("Recall Score:",recall_score(y_val, prediction)) print("Confusion MATRIX",confusion_matrix(y_val,prediction)) ROC(y_val,model.predict_proba(X_val)) return model def NN_Extreme_weather(data,y): X_train, X_val, y_train, y_val = train_test_split(data, y, test_size=0.2, random_state=1) model=MLPClassifier() model=model.fit(X_train,y_train) print("Training Accuracy",model.score(X_train,y_train)) prediction=model.predict(X_train) print("Precision Score:",precision_score(y_train,prediction)) print("Recall Score:",recall_score(y_train, prediction)) print("Confusion MATRIX",confusion_matrix(y_train,prediction)) ROC(y_train,model.predict_proba(X_train)) print("Testing Accuracy",model.score(X_val,y_val)) prediction=model.predict(X_val) print("Precision Score:",precision_score(y_val,prediction)) print("Recall Score:",recall_score(y_val, prediction)) print("Confusion MATRIX",confusion_matrix(y_val,prediction)) ROC(y_val,model.predict_proba(X_val)) #Predicting AQI using features from features importance graph def NN_Extreme_weather_Feature_importance(data,y, layer): tree_clf = ExtraTreesRegressor() tree_clf.fit(data, y) importances = tree_clf.feature_importances_ feature_names = data.columns imp_features=dict(zip(feature_names,importances)) features_up = sorted(imp_features.items(), key=lambda x: x[1], reverse=True) features_down = sorted(imp_features.items(), key=lambda x: x[1], reverse=False) x = [i[0] for i in features_up] x=data[x] X_train, X_val, y_train, y_val = train_test_split(x, y, test_size=0.2, random_state=1) model=MLPClassifier(solver='adam', alpha='0.01', hidden_layer_sizes=layer,batch_size=500,random_state=1) model=model.fit(X_train,y_train) print("Training Accuracy",model.score(X_train,y_train)) prediction=model.predict(X_train) print("Precision Score:",precision_score(y_train,prediction)) print("Recall Score:",recall_score(y_train, prediction)) print("Confusion MATRIX",confusion_matrix(y_train,prediction)) ROC(y_train,model.predict_proba(X_train)) print("Testing Accuracy",model.score(X_val,y_val)) prediction=model.predict(X_val) print("Precision Score:",precision_score(y_val,prediction)) print("Recall Score:",recall_score(y_val, prediction)) print("Confusion MATRIX",confusion_matrix(y_val,prediction)) ROC(y_val,model.predict_proba(X_val)) def RandomForest_Extreme_weather_Feature_importance(data,y): X_train, X_val, y_train, y_val = train_test_split(data, y, test_size=0.2, random_state=1) model=RandomForestClassifier(max_depth=None, random_state=0,n_estimators=100) model=model.fit(X_train,y_train) print("Training", model.score(X_train, y_train)) print("Testing", model.score(X_val, y_val)) prediction = model.predict(X_val) confusionMetrics(y_val, prediction) print("Precision Score:", precision_score(y_val, prediction)) print("Recall Score:", recall_score(y_val, prediction)) ROC(y_train, model.predict_proba(X_train)) ROC(y_val, model.predict_proba(X_val)) return model def RandomForest_Extreme_weather(data,y): tree_clf = ExtraTreesRegressor() tree_clf.fit(data, y) importances = tree_clf.feature_importances_ feature_names = data.columns imp_features=dict(zip(feature_names,importances)) features_up = sorted(imp_features.items(), key=lambda x: x[1], reverse=True) features_down = sorted(imp_features.items(), key=lambda x: x[1], reverse=False) x = [i[0] for i in features_up] x=data[x] X_train, X_val, y_train, y_val = train_test_split(x, y, test_size=0.2, random_state=1) model=RandomForestClassifier(max_depth=None, random_state=0,n_estimators=100) model=model.fit(X_train,y_train) print("Training", model.score(X_train, y_train)) print("Testing", model.score(X_val, y_val)) prediction = model.predict(X_val) confusionMetrics(y_val, prediction) print("Precision Score:", precision_score(y_val, prediction)) print("Recall Score:", recall_score(y_val, prediction)) ROC(y_train, model.predict_proba(X_train)) ROC(y_val, model.predict_proba(X_val)) def confusionMetrics(a, b): print(confusion_matrix(a, b)) def misclassification(): with open("misclassified.txt", "rb") as fp: # Unpickling misclassified = pickle.load(fp)[0] data = pd.read_csv('Final_Classification_with_dummies.csv') mc = [1 if i in misclassified else 0 for i in data.index] data['ind'] = [i for i in data.index] data['misclassified'] = mc # data.plot.scatter(x='ind', y='AQI', c='misclassified',colormap='viridis') # sns.heatmap(pd.crosstab(data.extreme_weather, data.year,values= data['AQI'], aggfunc="mean"), # cmap="coolwarm", annot=True, cbar=True) # plt.title("Average Temprature 1996-2016") # plt.plot() d = data.loc[11500:, :] sns.countplot(x='extreme_weather',data=d) plt.show() sns.countplot(x='misclassified',data=d) plt.show() def bagging(data,y): X_train, X_val, y_train, y_val = train_test_split(data, y, test_size=0.2, random_state=1) models = [] models.append(Decision_Tree_Extreme_weather_Feature_importance(X_train, y_train)) models.append(RandomForest_Extreme_weather_Feature_importance(X_train, y_train)) models.append(KNN_Extreme_weather_Feature_importance(X_train, y_train)) predictions=[] print("Bagging......") X_df = pd.DataFrame(X_val) for i in X_df.index: x = X_df.loc[i,:].values x=x.reshape(1, -1) pred = [] for i in range (len(models)): pred.append(models[i].predict(x)) # print(np.sum(pred)) if(np.sum(pred)>=2): predictions.append(1) else: predictions.append(0) print("bagging test Accuracy",metrics.accuracy_score(predictions,y_val)) def count_weather_classes(): data1 = pd.read_csv('Classification_autumn_data.csv') y = data1.extreme_weather a = y.to_numpy() count_0 = np.where(a == 0) count_0_autom=len(count_0[0]) count_1_autom=len(y)-count_0_autom data1 = pd.read_csv('Classification_summer_data.csv') y = data1.extreme_weather a = y.to_numpy() count_0 = np.where(a == 0) print(len(count_0[0])) count_0_summer=len(count_0[0]) count_1_summer=len(y)-count_0_autom data1 =
pd.read_csv('Classification_winter_data.csv')
pandas.read_csv
import os import cv2 import pandas as pd import dataset_settings from util import insert_into_df, write_info, resize_image def prepare_subset_data(data_path, train_csv_path, test_csv_path, source_url): count = {'normal': 0, 'pneumonia': 0, 'covid-19': 0} train_csv = pd.read_csv(train_csv_path, nrows=None) test_csv =
pd.read_csv(test_csv_path, nrows=None)
pandas.read_csv
import plotly.graph_objs as go import math import pandas as pd color_palette = ['#586BA4', '#324376', '#F5DD90', '#F68E5F', '#F76C5E'] def create_timedelta_graph(events_df): if events_df.empty: x_values = list() y_values = list() ticktext = list() else: events_df['delta_2'] = (
pd.to_datetime(events_df['timestamp'])
pandas.to_datetime
# coding: utf-8 # In[1]: import numpy as np from keras.models import Sequential from keras.layers import Dense, Dropout from sklearn import preprocessing from keras.optimizers import SGD import pandas as pd # In[4]: def xtrain_and_test(df_all): ''' 得到训练数据和测试数据 ''' df_label = pd.read_csv('../data/public/train.csv') df_test_label =
pd.read_csv('../data/public/evaluation_public.csv')
pandas.read_csv
import pandas as pd import numpy as np from sklearn.metrics import mean_squared_error from sklearn.externals import joblib from collections import OrderedDict import json import argparse import os # 加上48小时前obs 信息 # 处理 RAIN 值 去除 35以上数值 target_list=['t2m','rh2m','w10m'] from datetime import timedelta from datetime import datetime def datelist(beginDate, endDate): date_l=[datetime.strftime(x,'%Y-%m-%d') for x in list(pd.date_range(start=beginDate, end=endDate))] return date_l if __name__=='__main__': parser = argparse.ArgumentParser() parser.add_argument('--log-level', dest='log_level', default='info', type=str, help='Logging level.') parser.add_argument('--model_dir', dest='model_dir', default='../checkpoints/lgb_global', type=str) parser.add_argument('--data_dir',dest='data_dir', default='../data/testb7/merge',type=str) parser.add_argument('--dst_dir',dest='dst_dir', default='../result/lgb_global') parser.add_argument('--first_day',dest='first_day', default='20181028',type=str) parser.add_argument('--last_day',dest='last_day', default='20181103',type=str) opt = parser.parse_args() feature_columns = ['t2m_obs', 'rh2m_obs', 'w10m_obs', 'psur_obs', 'q2m_obs', 'u10m_obs', 'v10m_obs', 'RAIN_obs', 't2m_prophet', 'rh2m_prophet', 'w10m_prophet', 't2m_M', 'rh2m_M', 'w10m_M', 'hour_sin', 'hour_cos', 'month_sin', 'month_cos', 'psfc_M', 'q2m_M', 'u10m_M', 'v10m_M', 'SWD_M', 'GLW_M', 'HFX_M', 'RAIN_M', 'PBLH_M', 'TC975_M', 'TC925_M', 'TC850_M', 'TC700_M', 'TC500_M', 'wspd925_M', 'wspd850_M', 'wspd700_M', 'wspd500_M', 'location_90001', 'location_90002', 'location_90003', 'location_90004', 'location_90005', 'location_90006', 'location_90007', 'location_90008', 'location_90009', 'location_90010'] if opt.model_dir.endswith('_q'): feature_columns = feature_columns + ['Q975_M', 'Q925_M', 'Q850_M', 'Q700_M', 'Q500_M', 'LH_M'] history_num = 24 begin_dates = datelist(pd.to_datetime(opt.first_day)-timedelta(days=2),
pd.to_datetime(opt.last_day)
pandas.to_datetime
import os import sys sys.path.append(os.path.abspath(os.path.dirname(__file__) + '/' + '../..')) import numpy as np import pandas as pd from python.tools import ( clean_folder ) # Formatters for LaTeX output def f1(x): return '%1.0f' % x def f2(x): return '%1.2f' % x ################ ## Parameters ## ################ output_folder = './regressions/output/correlate_epiestim/' input_folder = './regressions/input/correlate_epiestim/' min_T = 20 # Minimum number of time-series observations ############### ## Load data ## ############### clean_folder(output_folder) # Load data on our estimates of R df = pd.read_csv('{}/estimated_R.csv'.format(input_folder)) df['Date'] = pd.to_datetime(df['Date']) # Look at benchmark estimates mask = df['days_infectious'] == 7 df = df.loc[mask, ] # Remove World aggregate mask = df['Country/Region'] == 'World' df = df.loc[~mask, ] # Load estimates of R using the Cori et al method df_epi = pd.read_csv('{}/R_EpiEstim.csv'.format(input_folder)) ## Clean up EpiEstim estimates # Only look at country-level estimates mask = (df_epi['resolution'] == 'country') df_temp = df_epi.loc[mask, ].copy() # Manually set missing codes to NaN & clean up mask = (df_temp['Rt_plot'] == -888) | (df_temp['Rt_plot'] == -88) df_temp.loc[mask, 'Rt_plot'] = np.nan df_temp = df_temp[['dispID', 'date', 'Rt_plot']] df_temp.rename(columns = {'dispID': 'Country/Region', 'date': 'Date', 'Rt_plot': 'R_EpiEstim'}, inplace = True) df_temp['Date'] = pd.to_datetime(df_temp['Date']) # Replace country names with consistency # with our naming conventions mask = (df_temp['Country/Region'] == 'Korea, South') df_temp.loc[mask, 'Country/Region'] = 'South Korea' mask = (df_temp['Country/Region'] == 'Taiwan*') df_temp.loc[mask, 'Country/Region'] = 'Taiwan' # Merge in to main dataset df = pd.merge(df, df_temp, on = ['Country/Region', 'Date'], how = 'left') ############################ ## Calculate correlations ## ############################ res = [] for country in df['Country/Region'].unique(): mask = df['Country/Region'] == country df_temp = df.loc[mask, ].copy() corr = df_temp[['R', 'R_EpiEstim']].corr().values[0, 1] N = np.min([df_temp['R'].count(), df_temp['R_EpiEstim'].count()]) res.append({'Country/Region': country, 'corr': corr, 'T': N}) res =
pd.DataFrame(res)
pandas.DataFrame
import pandas as pd import matplotlib.pyplot as plt import glob import numpy # open btc csv clean and get ready btc = pd.read_csv('btc_dataset.csv') btc['Date'] = pd.to_datetime(btc['Date'])# btc= btc.set_index('Date') Btc =
pd.DataFrame(btc.ix['2015-01-01':, "Avg_price"])
pandas.DataFrame
# coding=utf-8 import pandas as pd from mock import MagicMock from sparkmagic.livyclientlib.exceptions import BadUserDataException from nose.tools import assert_raises, assert_equals from sparkmagic.livyclientlib.command import Command import sparkmagic.utils.constants as constants from sparkmagic.livyclientlib.sendpandasdftosparkcommand import ( SendPandasDfToSparkCommand, ) def test_send_to_scala(): input_variable_name = "input" input_variable_value = pd.DataFrame({"A": [1], "B": [2]}) output_variable_name = "output" maxrows = 1 sparkcommand = SendPandasDfToSparkCommand( input_variable_name, input_variable_value, output_variable_name, maxrows ) sparkcommand._scala_command = MagicMock(return_value=MagicMock()) sparkcommand.to_command( constants.SESSION_KIND_SPARK, input_variable_name, input_variable_value, output_variable_name, ) sparkcommand._scala_command.assert_called_with( input_variable_name, input_variable_value, output_variable_name ) def test_send_to_r(): input_variable_name = "input" input_variable_value = pd.DataFrame({"A": [1], "B": [2]}) output_variable_name = "output" maxrows = 1 sparkcommand = SendPandasDfToSparkCommand( input_variable_name, input_variable_value, output_variable_name, maxrows ) sparkcommand._r_command = MagicMock(return_value=MagicMock()) sparkcommand.to_command( constants.SESSION_KIND_SPARKR, input_variable_name, input_variable_value, output_variable_name, ) sparkcommand._r_command.assert_called_with( input_variable_name, input_variable_value, output_variable_name ) def test_send_to_python(): input_variable_name = "input" input_variable_value =
pd.DataFrame({"A": [1], "B": [2]})
pandas.DataFrame
import pandas as pd # bookings_to_arr # # Accepts a pandas dataframe containing bookings data and returns a pandas # dataframe containing changes in ARR with the following columns: # - date - the date of the change # - type - the type of the change (new, upsell, downsell, and churn) # - customer_id - the id of the customer # - prior_arr - the ARR for the customer prior to the change # - next_arr - the ARR for the customer following the change # - delta_arr - the change in ARR # # The bookings (input) dataframe should contain the following columns: # - date - the date of the booking (as pandas Timestamps) # - customer_id - the unique id of the customer # - arr - the amount of ARR booked # - start_date - the start date of the contract (as pandas Timestamps) # - end_date - the end date of the contract (as pandas Timestamps) def bookings_to_arr(bookings): intervals = bookings_to_intervals(bookings) print(intervals) def bookings_to_intervals(bookings): interval_list = [] for index, row in bookings.sort_values(by=["customer_id", "start_date"]).iterrows(): interval_list.append(row) if index == 2: interval_list.append(row) # print(f"Index: {index}") # print(bookings.loc[index]) # print("\n") return pd.DataFrame(data=interval_list) test_bookings = pd.DataFrame.from_records( [ { "date": pd.Timestamp(ts_input="9/25/2019", tz="UTC"), "customer_id": 1234, "arr": 200, "start_date": pd.Timestamp(ts_input="10/1/2019", tz="UTC"), "end_date": pd.Timestamp(ts_input="9/30/2020", tz="UTC"), }, { "date": pd.Timestamp(ts_input="9/25/2018", tz="UTC"), "customer_id": 1234, "arr": 125, "start_date": pd.Timestamp(ts_input="10/1/2018", tz="UTC"), "end_date": pd.Timestamp(ts_input="9/30/2019", tz="UTC"), }, { "date": pd.Timestamp(ts_input="9/25/2020", tz="UTC"), "customer_id": 1234, "arr": 150, "start_date": pd.Timestamp(ts_input="10/1/2020", tz="UTC"), "end_date": pd.Timestamp(ts_input="9/30/2021", tz="UTC"), }, { "date": pd.Timestamp(ts_input="9/25/2021", tz="UTC"), "customer_id": 1234, "arr": 150, "start_date": pd.Timestamp(ts_input="10/1/2021", tz="UTC"), "end_date": pd.Timestamp(ts_input="9/30/2022", tz="UTC"), }, { "date": pd.Timestamp(ts_input="9/25/2018", tz="UTC"), "customer_id": 5000, "arr": 100, "start_date": pd.Timestamp(ts_input="10/1/2018", tz="UTC"), "end_date": pd.Timestamp(ts_input="9/30/2019", tz="UTC"), }, { "date": pd.Timestamp(ts_input="9/25/2019", tz="UTC"), "customer_id": 5000, "arr": 100, "start_date": pd.Timestamp(ts_input="10/1/2019", tz="UTC"), "end_date": pd.Timestamp(ts_input="9/30/2020", tz="UTC"), }, { "date":
pd.Timestamp(ts_input="9/25/2020", tz="UTC")
pandas.Timestamp
# coding: utf-8 import tweepy import json import os from datetime import datetime import pandas as pd import credentials.credentials_twitter as cred class Twitter_Analysis: """ copyright© 2019 — <NAME> - License MIT """ __consumer_key = cred.CONSUMER_KEY __token = cred.TOKEN __api = None def __init__(self, dico_file, maxTweets, filename, company_name, companies_CSV_file): self.dico_file, self.dico_found = self.open_dico(dico_file) self.max_tweets = maxTweets self.tweetsPerQry = 100 # Can't change that self.fName = filename self.companies_list = self.open_csv_companies(companies_CSV_file) self.company_name = company_name self.__class__.__api, self.apifound = self.__class__.authentificator() if self.dico_found: # This is what we're searching for : self.searchQuery = " OR ".join(['\"' + item + '\"' for item in self.dico_file["eco_responsable"]]) self.searchQuery += " -filter:retweets AND -filter:replies" @staticmethod def open_dico(dico_file): try: with open(dico_file) as dico: return(eval(dico.read()), True) except: return(0, False) @staticmethod def open_csv_companies(companies_CSV_file): try: if companies_CSV_file is not None: df = pd.read_csv(companies_CSV_file, encoding='utf-8', delimiter=';') companies_list = df["companies"].tolist() #companies_with_twitter_account = [str(x) for x in companies_list if str(x)!='nan'] ##companies_with_twitter_account = [str(x) for x in companies_list if str(x)!='nan'] return(companies_list) else: return([]) except: print('No dataset found') return([]) @classmethod def authentificator(cls): try: auth = tweepy.AppAuthHandler(cls.__consumer_key, cls.__token) api = tweepy.API(auth, wait_on_rate_limit=True, wait_on_rate_limit_notify=True) print("Authentification success !") return api, True #cls.__api = api #return("sucess") except: print("Impossible to Authentifiate !") #return("fail") return None, False def search(self): if self.dico_found: try: print('Liste des companies : '+str(self.companies_list)+'\n') except: pass if len(self.companies_list)>0: for companie in self.companies_list: print('\n'+repr(companie)+'\n') parameter = " AND " + repr(companie) print('Requete Finale : '+self.searchQuery+parameter) self.twitter_retrieval(addParam=parameter) elif len(str(self.company_name))>0: parameter = " AND " + repr(self.company_name) print('Requete Finale : '+self.searchQuery+parameter) self.twitter_retrieval(addParam=parameter) else: print('Requete Finale : '+self.searchQuery) self.twitter_retrieval() return ('JSON disponible!', True) else: return ('Fichier de dictionnaire manquant', False) def twitter_retrieval(self, max_id=-1, sinceId=None, addParam=None): # default to no upper limit, start from the most recent tweet matching the search query. tweetCount = 0 ##print(max_id) ##if (not sinceId): print(2) print("Downloading max {0} tweets".format(self.max_tweets)) with open(str(self.fName + '.json'), 'a',encoding='utf-8') as f: while tweetCount < self.max_tweets: try: if (max_id <= 0): if (not sinceId): new_tweets = self.__class__.__api.search(q=self.searchQuery+addParam, count=self.tweetsPerQry) else: new_tweets = self.__class__.__api.search(q=self.searchQuery+addParam, count=self.tweetsPerQry, since_id=sinceId) else: if (not sinceId): new_tweets = self.__class__.__api.search(q=self.searchQuery+addParam, count=self.tweetsPerQry, max_id=str(max_id - 1)) else: new_tweets = self.__class__.__api.search(q=self.searchQuery+addParam, count=self.tweetsPerQry, max_id=str(max_id - 1), since_id=sinceId) if not new_tweets: print("No more tweets found") break for tweet in new_tweets: f.write(str({k:str(tweet._json.get(k, None)) for k in ('id_str', 'created_at', 'text', 'retweeted', 'user', 'entities', 'lang', 'retweet_count', 'geo')})+"\n") tweetCount += len(new_tweets) print("Downloaded {0} tweets".format(tweetCount)) max_id = new_tweets[-1].id except tweepy.TweepError as e: # Just exit if any error print("some error : " + str(e)) break print ("Downloaded {0} tweets, Saved to {1}".format(tweetCount, self.fName+'.json')) def tweets_to_dataframe(self): ##### tweet retrieval ###### if self.dico_found: json_found=True try: lines = [line.rstrip('\n') for line in open(self.fName+'.json', 'r', encoding='utf-8')] new = [json.loads(json.dumps(eval(item))) for item in lines] df=
pd.DataFrame(new)
pandas.DataFrame
from copy import deepcopy from sklearn.model_selection import KFold import numpy as np import pandas as pd from .data_augmentation import DACombine from core.models.metrics import avg_loss, mse, rejection_ratio, avg_win_loss, avg_loss_ratio, loss_sum, invariance benchmark_functions = [avg_loss, mse, rejection_ratio, avg_win_loss, avg_loss_ratio, loss_sum, invariance] def target_to_enforced_target_values(y, enforced_target_values): y = y.ravel() res = np.array(y) for (lower, higher), value in enforced_target_values.items(): res[(lower<y) & (y<=higher)] = value return res def process_model(model, xTrain, yTrain, xTest, yTest, fit_kwargs=None, predict_kwargs=None, metrics=None, enforced_target_values=None): if metrics is None: metrics = benchmark_functions if enforced_target_values is not None: yTrain = target_to_enforced_target_values(yTrain, enforced_target_values) fit_kwargs = {} if fit_kwargs is None else fit_kwargs predict_kwargs = {} if predict_kwargs is None else predict_kwargs model.fit(xTrain, yTrain, **fit_kwargs) yPredict = model.predict(xTest, **predict_kwargs) results = {func.__name__: func(yTest, yPredict) for func in metrics} return results def process_benchmark_cv(model, X, y, cv=5, fit_kwargs=None, predict_kwargs=None, augment_data=None, metrics=None, enforced_target_values=None): """ :param model: model with fit/predict methods :param X: features :param y: target :param cv: (int) cross validation splits :param fit_kwargs: (dict) kwargs for fit :param predict_kwargs: (dict) kwargs for predict :param augment_data: (None|1|2) 1: random, 2: upsample """ # We make sure original values aren't modified, even by mistake X = np.copy(X) y = np.copy(y) kf = KFold(n_splits=cv) results = [] for train_index, test_index in kf.split(X): xTrain, yTrain = X[train_index], y[train_index] if augment_data: upsample = augment_data==2 xTrain, yTrain = DACombine().fit_predict(xTrain, yTrain, upsample=upsample) xTest, yTest = X[test_index], y[test_index] benchmark_result = process_model(deepcopy(model), xTrain, yTrain, xTest, yTest, fit_kwargs, predict_kwargs, metrics, enforced_target_values) results.append(benchmark_result) return pd.DataFrame(results) def process_benchmarks(models_dict, X, y, cv=5, fit_kwargs=None, predict_kwargs=None, augment_data=None, shuffle=False, metrics=None, enforced_target_values=None): """ Benchmark multiple models using the same augmented data to spare time from data augmentation :param models_dict: {key:model} dict of models with fit/predict methods :param X: features :param y: target :param cv: (int) cross validation splits :param fit_kwargs: (dict) kwargs for fit :param predict_kwargs: (dict) kwargs for predict :param augment_data: (None|1|2|list) None: no data-augmentation, 1: random, 2: upsample :param shuffle: if True, shuffle data :returns: dict of dataframe results """ X = np.copy(X) y = np.copy(y) if shuffle: mask = np.arange(0, X.shape[0]) np.random.shuffle(mask) X = X[mask] y = y[mask] if not isinstance(augment_data, (list, tuple)): augment_data = [augment_data] benchmark_results = {key:[] for key in models_dict} kf = KFold(n_splits=cv) for train_index, test_index in kf.split(X): xTrain, yTrain = X[train_index], y[train_index] for augment_data_step in augment_data: if augment_data_step: upsample = augment_data_step==2 xTrain, yTrain = DACombine().fit_predict(xTrain, yTrain, upsample=upsample) xTest, yTest = X[test_index], y[test_index] for key, model in models_dict.items(): benchmark_result = process_model(deepcopy(model), xTrain, yTrain, xTest, yTest, fit_kwargs, predict_kwargs, metrics, enforced_target_values) nKey = key if augment_data_step: nKey += "_da" + str(augment_data_step) nKey_results = benchmark_results.get(nKey, []) nKey_results.append(benchmark_result) benchmark_results[nKey] = nKey_results return {key:
pd.DataFrame(results)
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Fri Jun 24 00:52:56 2016 @author: ARM """ import numpy as np import pandas as pd import matplotlib.pyplot as plt from keras.models import Sequential, Graph from keras.layers.core import Dense, Dropout, Activation from keras.optimizers import SGD, Adam from sklearn.cross_validation import train_test_split from sklearn.metrics import confusion_matrix from sklearn.metrics import classification_report, accuracy_score import time from keras.layers.advanced_activations import ELU from sklearn.metrics import * import matplotlib.pyplot as plt lim=13000 name1='OFF_Back-tilt.txt' cf1=pd.read_csv(name1,' ') vals1=(cf1.iloc[1:lim,:]) vals1_n=(vals1-vals1.min(axis=0))/(vals1.max(axis=0)-vals1.min(axis=0)) #normalize name2='OFF_Front-tilt.txt' cf2=pd.read_csv(name2,' ') vals2=(cf2.iloc[1:lim,:]) vals2_n=(vals2-vals2.min(axis=0))/(vals2.max(axis=0)-vals2.min(axis=0)) #normalize name3='OFF_Left-tilt.txt' cf3=pd.read_csv(name3,' ') vals3=(cf3.iloc[1:lim,:]) vals3_n=(vals3-vals3.min(axis=0))/(vals3.max(axis=0)-vals3.min(axis=0)) #normalize name4='OFF_Right-tilt.txt' cf4=pd.read_csv(name4,' ') vals4=(cf4.iloc[1:lim,:]) vals4_n=(vals4-vals4.min(axis=0))/(vals4.max(axis=0)-vals4.min(axis=0)) #normalize name5='OFF_Upright.txt' cf5=
pd.read_csv(name5,' ')
pandas.read_csv
import pandas as pd import numpy as np from sklearn.metrics import roc_curve, auc, confusion_matrix, precision_score, recall_score, f1_score from sklearn.metrics import average_precision_score, precision_recall_curve from ._woe_binning import woe_binning, woe_binning_2, woe_binning_3 class Metrics: def __init__(self, df, actual, prediction): self.df = df self.target = actual self.actual = df[actual] self.prediction = df[prediction] self.gains = self.calculate_gains() self.ks = self.ks() self.gini = self.gini() self.tn, self.fp, self.fn, self.tp, self.precision, self.recall, self.f1_score = self.precision_recall_f1_score() def calculate_gains(self): """Returns a pandas dataframe with gains along with KS and Gini calculated""" self.df['scaled_score'] = (self.df['positive_probability']*1000000).round(0) gains = self.df.groupby('scaled_score')[self.target].agg(['count','sum']) gains.columns = ['total','responders'] gains.reset_index(inplace=True) gains.sort_values(by='scaled_score', ascending=False) gains['non_responders'] = gains['total'] - gains['responders'] gains['cum_resp'] = gains['responders'].cumsum() gains['cum_non_resp'] = gains['non_responders'].cumsum() gains['total_resp'] = gains['responders'].sum() gains['total_non_resp'] = gains['non_responders'].sum() gains['perc_resp'] = (gains['responders']/gains['total_resp'])*100 gains['perc_non_resp'] = (gains['non_responders']/gains['total_non_resp'])*100 gains['perc_cum_resp'] = gains['perc_resp'].cumsum() gains['perc_cum_non_resp'] = gains['perc_non_resp'].cumsum() gains['k_s'] = gains['perc_cum_resp'] - gains['perc_cum_non_resp'] return gains def get_threshold(self): """Returns a pandas dataframe with y_pred based on threshold from roc_curve.""" fpr, tpr, threshold = roc_curve(self.actual, self.prediction) threshold_cutoff_df = pd.DataFrame({'fpr': fpr, 'tpr': tpr, 'threshold': threshold}) threshold_cutoff_df['distance'] = ((threshold_cutoff_df['fpr']-0)**2+(threshold_cutoff_df['tpr']-1)**2)**0.5 threshold_cutoff_df['distance_diff'] = abs(threshold_cutoff_df['distance'].diff(periods=1)) for index, rows in threshold_cutoff_df.iterrows(): if index != 0 and index != threshold_cutoff_df.shape[0]-1: curr_val = threshold_cutoff_df.loc[index, 'distance_diff'] prev_val = threshold_cutoff_df.loc[index-1, 'distance_diff'] next_val = threshold_cutoff_df.loc[index+1, 'distance_diff'] if curr_val>prev_val and curr_val>next_val: threshold_cutoff = threshold_cutoff_df.loc[index, 'threshold'] break return threshold_cutoff def gini(self): fpr, tpr, threshold = roc_curve(self.actual, self.prediction) auroc = auc(fpr, tpr) gini = 2*auroc -1 return gini def ks(self): gains = self.gains() return gains['k_s'].max() def precision_recall_f1_score(self): threshold_cutoff = self.get_threshold() self.y_pred = np.where(self.prediction>=threshold_cutoff,1,0) self.df['y_pred'] = self.y_pred tn, fp, fn, tp = confusion_matrix(self.actual, self.y_pred).ravel() precision = precision_score(self.actual, self.y_pred) recall = recall_score(self.actual, self.y_pred) f1 = f1_score(self.actual, self.y_pred) return tn, fp, fn, tp, precision, recall, f1 def to_dict(self): return {'ks': self.ks, 'gini': self.gini, 'tn': self.tn, 'tp': self.tp, 'fn': self.fn, 'fp': self.fp, 'precision': self.precision, 'recall': self.recall, 'f1_score': self.f1_score} def standard_metrics(df, target_col, prediction_col): """Returns a dict with all metrics - Gini, KS, Precision, Recall, F1 Score, True Negative, True Positive, False Positive, False Negative.""" metrics = Metrics(df, target_col, prediction_col) return metrics.to_dict() def quick_psi(dev, val): """Calculate PSI from 2 arrays - dev and val""" return sum([(a-b)*np.log(a/b) for (a,b) in zip(dev,val)]) def psi(dev, val, target='positive_probability', n_bins=10): """ Returns a pandas dataframe with psi column (Population Stability Index) after creating 10 deciles. Code includes creating score calculation using round(500-30 x log(100 x (p/(1-p))), 0) where p is probability. We need to pass both dev and val at same time to apply same bins created on dev dataframe. """ dev['score'] = dev[target].apply(lambda x: round(500-30*np.log2(100*(x/(1-x))), 0)) val['score'] = val[target].apply(lambda x: round(500-30*np.log2(100*(x/(1-x))), 0)) _, bins = pd.qcut(dev.score, n_bins, retbins=True, precision=0) bins = [int(i) if abs(i)!=np.inf else i for i in bins] dev['bins'] = pd.cut(dev.score, bins) val['bins'] = pd.cut(val.score, bins) dev_bins = dev.bins.value_counts(sort=False, normalize=True) val_bins = val.bins.value_counts(sort=False, normalize=True) psi_ = pd.concat([dev_bins, val_bins], axis=1) psi_.columns = ['dev', 'val'] psi_['psi'] = (psi_.dev - psi_.val)*np.log(psi_.dev/psi_.val) return psi_ def gsi(data, col='GENDER', col_val='F', target='positive_probability', n_bins=10): """ Returns a pandas dataframe with gsi columns (Group Stability Index) after creating n bins. Args: data: pandas dataframe col: Columns on which GSI has to be calculated (ex: Gender column) col_val: selected value will be compared with rest of the values (ex: F vs Rest) target: score column n_bins: number of bins to be created (Default=10) """ df = data.copy() df['decile'] = pd.qcut(df[target], n_bins, labels=False) df.loc[df[col]!=col_val, col] = 'Rest' pivot_ = df.groupby(['decile', col])[target].count().unstack() pivot = pivot_.div(pivot_.sum(axis=0), axis=1) pivot['gsi'] = (pivot[col_val]-pivot['Rest'])*np.log(pivot[col_val]/pivot['Rest']) return pivot def iv(df, suffix='_dev'): """Returns a pandas dataframe with calculated fields - resp_rate, perc_dist, perc_non_resp, perc_resp, raw_odds, ln_odds, iv, exp_resp, exp_non_resp, chi_square.""" df['resp_rate'+suffix] = (df['responders'+suffix]*100)/df['total'+suffix] df['perc_dist'+suffix] = (df['total'+suffix]*100)/df.groupby('var_name')['total'+suffix].transform('sum') df['perc_non_resp'+suffix] = (df['non_responders'+suffix]*100)/df.groupby('var_name')['non_responders'+suffix].transform('sum') df['perc_resp'+suffix] = (df['responders'+suffix]*100)/df.groupby('var_name')['responders'+suffix].transform('sum') df['raw_odds'+suffix] = df.apply(lambda r: 0 if r['perc_resp'+suffix]==0 else r['perc_non_resp'+suffix]/r['perc_resp'+suffix], axis=1) df['ln_odds'+suffix] = df['raw_odds'+suffix].apply(lambda x: 0 if abs(np.log(x))==np.inf else np.log(x)) df['iv'+suffix] = (df['perc_non_resp'+suffix]-df['perc_resp'+suffix])*df['ln_odds'+suffix]/100 df['exp_resp'+suffix] = df['total'+suffix]*df.groupby('var_name')['responders'+suffix].transform('sum')/df.groupby('var_name')['total'+suffix].transform('sum') df['exp_non_resp'+suffix] = df['total'+suffix]*df.groupby('var_name')['non_responders'+suffix].transform('sum')/df.groupby('var_name')['total'+suffix].transform('sum') df['chi_square'+suffix] = (((df['responders'+suffix]-df['exp_resp'+suffix])**2)/df['exp_resp'+suffix]) + (((df['non_responders'+suffix]-df['exp_non_resp'+suffix])**2)/df['exp_non_resp'+suffix]) return df def iv_var(df, var_name, resp_name, suffix='_dev', var_cuts=None): """Returns IV of a variable""" summ_df, _ = woe_bins(df, var_name, resp_name, suffix, var_cuts) iv_ = iv(summ_df, suffix) return iv_, iv_['iv'+suffix].sum() def woe_bins(df, var_name, resp_name, suffix='_dev', var_cuts=None): """ Returns a pandas dataframe, var_cuts after creating bins. Returns: df: pandas dataframe has var_cuts_string, total, responders, non_responders, var_name (with _dev or _val suffix) var_cuts: list of Interval items to be used on val file. """ df1 = df[[resp_name, var_name]] if (np.issubdtype(df1[var_name].dtype, np.number)): n = df1[var_name].nunique() if var_cuts is None: suffix = '_dev' var_cuts = woe_binning_3(df1, resp_name, var_name, 0.05, 0.00001, 0, 50, 'bad', 'good') var_cuts = list(set(var_cuts)) var_cuts.sort() df1.loc[:,'var_binned'] = pd.cut(df[var_name], var_cuts, right=True, labels=None, retbins=False, precision=10, include_lowest=False) var_min = float(df1[var_name].min()) var_max = float(df1[var_name].max()) summ_df = df1.groupby('var_binned')[resp_name].agg(['count','sum']).reset_index() summ_df['delta'] = summ_df['count'] - summ_df['sum'] summ_df['var_name'] = var_name summ_df.columns = ['var_cuts', 'total'+suffix, 'responders'+suffix, 'non_responders'+suffix, 'var_name'] summ_df['var_cuts_string'+suffix] = summ_df.var_cuts.apply(lambda x: str(x.left if x.left!=-np.inf else var_min)+' To '+str(x.right if x.right!=np.inf else var_max)) else: df1[var_name].fillna('Blank', inplace=True) summ_df = df1.groupby(var_name)[resp_name].agg(['count','sum']).reset_index() summ_df['delta'] = summ_df['count'] - summ_df['sum'] summ_df['var_name'] = var_name summ_df.columns = ['var_cuts_string'+suffix, 'total'+suffix, 'responders'+suffix, 'non_responders'+suffix, 'var_name'] summ_df['var_cuts'] = summ_df['var_cuts_string'+suffix] return summ_df[summ_df['total'+suffix]!=0], var_cuts def csi(dev_df, val_df, var_list, resp_name): """Returns a pandas dataframe with csi, csi_var, perc_csi columns (Charecteristic Stability Index) calculated based on both dev and val dataframes.""" dev_df.fillna(0, inplace=True) val_df.fillna(0, inplace=True) dev_dfs = [] var_cuts = {} for var_name in var_list: summ_df, cut = woe_bins(dev_df, var_name, resp_name, '_dev') dev_dfs.append(summ_df) var_cuts[var_name] = cut dev = pd.concat(dev_dfs, axis=0) dev = iv(dev, '_dev') val_dfs = [] val_cuts = {} for var_name in var_list: val_summ_df, val_cut = woe_bins(val_df, var_name, resp_name, '_val', var_cuts[var_name]) val_dfs.append(val_summ_df) val_cuts[var_name] = val_cut val = pd.concat(val_dfs, axis=0) val = iv(val, '_val') final =
pd.merge(dev, val, how='left', on=['var_name', 'var_cuts'], suffixes=['_dev','_val'])
pandas.merge
import unittest import qteasy as qt import pandas as pd from pandas import Timestamp import numpy as np from numpy import int64 import itertools import datetime from qteasy.utilfuncs import list_to_str_format, regulate_date_format, time_str_format, str_to_list from qteasy.utilfuncs import maybe_trade_day, is_market_trade_day, prev_trade_day, next_trade_day, prev_market_trade_day from qteasy.utilfuncs import next_market_trade_day from qteasy.space import Space, Axis, space_around_centre, ResultPool from qteasy.core import apply_loop from qteasy.built_in import SelectingFinanceIndicator from qteasy.history import stack_dataframes from qteasy.tsfuncs import income, indicators, name_change, get_bar from qteasy.tsfuncs import stock_basic, trade_calendar, new_share, get_index from qteasy.tsfuncs import balance, cashflow, top_list, index_indicators, composite from qteasy.tsfuncs import future_basic, future_daily, options_basic, options_daily from qteasy.tsfuncs import fund_basic, fund_net_value, index_basic from qteasy.evaluate import eval_alpha, eval_benchmark, eval_beta, eval_fv from qteasy.evaluate import eval_info_ratio, eval_max_drawdown, eval_sharp from qteasy.evaluate import eval_volatility from qteasy.tafuncs import bbands, dema, ema, ht, kama, ma, mama, mavp, mid_point from qteasy.tafuncs import mid_price, sar, sarext, sma, t3, tema, trima, wma, adx, adxr from qteasy.tafuncs import apo, bop, cci, cmo, dx, macd, macdext, aroon, aroonosc from qteasy.tafuncs import macdfix, mfi, minus_di, minus_dm, mom, plus_di, plus_dm from qteasy.tafuncs import ppo, roc, rocp, rocr, rocr100, rsi, stoch, stochf, stochrsi from qteasy.tafuncs import trix, ultosc, willr, ad, adosc, obv, atr, natr, trange from qteasy.tafuncs import avgprice, medprice, typprice, wclprice, ht_dcperiod from qteasy.tafuncs import ht_dcphase, ht_phasor, ht_sine, ht_trendmode, cdl2crows from qteasy.tafuncs import cdl3blackcrows, cdl3inside, cdl3linestrike, cdl3outside from qteasy.tafuncs import cdl3starsinsouth, cdl3whitesoldiers, cdlabandonedbaby from qteasy.tafuncs import cdladvanceblock, cdlbelthold, cdlbreakaway, cdlclosingmarubozu from qteasy.tafuncs import cdlconcealbabyswall, cdlcounterattack, cdldarkcloudcover from qteasy.tafuncs import cdldoji, cdldojistar, cdldragonflydoji, cdlengulfing from qteasy.tafuncs import cdleveningdojistar, cdleveningstar, cdlgapsidesidewhite from qteasy.tafuncs import cdlgravestonedoji, cdlhammer, cdlhangingman, cdlharami from qteasy.tafuncs import cdlharamicross, cdlhighwave, cdlhikkake, cdlhikkakemod from qteasy.tafuncs import cdlhomingpigeon, cdlidentical3crows, cdlinneck from qteasy.tafuncs import cdlinvertedhammer, cdlkicking, cdlkickingbylength from qteasy.tafuncs import cdlladderbottom, cdllongleggeddoji, cdllongline, cdlmarubozu from qteasy.tafuncs import cdlmatchinglow, cdlmathold, cdlmorningdojistar, cdlmorningstar from qteasy.tafuncs import cdlonneck, cdlpiercing, cdlrickshawman, cdlrisefall3methods from qteasy.tafuncs import cdlseparatinglines, cdlshootingstar, cdlshortline, cdlspinningtop from qteasy.tafuncs import cdlstalledpattern, cdlsticksandwich, cdltakuri, cdltasukigap from qteasy.tafuncs import cdlthrusting, cdltristar, cdlunique3river, cdlupsidegap2crows from qteasy.tafuncs import cdlxsidegap3methods, beta, correl, linearreg, linearreg_angle from qteasy.tafuncs import linearreg_intercept, linearreg_slope, stddev, tsf, var, acos from qteasy.tafuncs import asin, atan, ceil, cos, cosh, exp, floor, ln, log10, sin, sinh from qteasy.tafuncs import sqrt, tan, tanh, add, div, max, maxindex, min, minindex, minmax from qteasy.tafuncs import minmaxindex, mult, sub, sum from qteasy.history import get_financial_report_type_raw_data, get_price_type_raw_data from qteasy.database import DataSource from qteasy._arg_validators import _parse_string_kwargs, _valid_qt_kwargs class TestCost(unittest.TestCase): def setUp(self): self.amounts = np.array([10000, 20000, 10000]) self.op = np.array([0, 1, -0.33333333]) self.prices = np.array([10, 20, 10]) self.r = qt.Cost() def test_rate_creation(self): print('testing rates objects\n') self.assertIsInstance(self.r, qt.Cost, 'Type should be Rate') def test_rate_operations(self): self.assertEqual(self.r['buy_fix'], 0.0, 'Item got is incorrect') self.assertEqual(self.r['sell_fix'], 0.0, 'Item got is wrong') self.assertEqual(self.r['buy_rate'], 0.003, 'Item got is incorrect') self.assertEqual(self.r['sell_rate'], 0.001, 'Item got is incorrect') self.assertEqual(self.r['buy_min'], 5., 'Item got is incorrect') self.assertEqual(self.r['sell_min'], 0.0, 'Item got is incorrect') self.assertEqual(self.r['slipage'], 0.0, 'Item got is incorrect') self.assertEqual(np.allclose(self.r(self.amounts), [0.003, 0.003, 0.003]), True, 'fee calculation wrong') def test_rate_fee(self): self.r.buy_rate = 0.003 self.r.sell_rate = 0.001 self.r.buy_fix = 0 self.r.sell_fix = 0 self.r.buy_min = 0 self.r.sell_min = 0 self.r.slipage = 0 print('\nSell result with fixed rate = 0.001 and moq = 0:') print(self.r.get_selling_result(self.prices, self.op, self.amounts)) test_rate_fee_result = self.r.get_selling_result(self.prices, self.op, self.amounts) self.assertIs(np.allclose(test_rate_fee_result[0], [0., 0., -3333.3333]), True, 'result incorrect') self.assertAlmostEqual(test_rate_fee_result[1], 33299.999667, msg='result incorrect') self.assertAlmostEqual(test_rate_fee_result[2], 33.333332999999996, msg='result incorrect') print('\nSell result with fixed rate = 0.001 and moq = 1:') print(self.r.get_selling_result(self.prices, self.op, self.amounts, 1)) test_rate_fee_result = self.r.get_selling_result(self.prices, self.op, self.amounts, 1) self.assertIs(np.allclose(test_rate_fee_result[0], [0., 0., -3333]), True, 'result incorrect') self.assertAlmostEqual(test_rate_fee_result[1], 33296.67, msg='result incorrect') self.assertAlmostEqual(test_rate_fee_result[2], 33.33, msg='result incorrect') print('\nSell result with fixed rate = 0.001 and moq = 100:') print(self.r.get_selling_result(self.prices, self.op, self.amounts, 100)) test_rate_fee_result = self.r.get_selling_result(self.prices, self.op, self.amounts, 100) self.assertIs(np.allclose(test_rate_fee_result[0], [0., 0., -3300]), True, 'result incorrect') self.assertAlmostEqual(test_rate_fee_result[1], 32967.0, msg='result incorrect') self.assertAlmostEqual(test_rate_fee_result[2], 33, msg='result incorrect') print('\nPurchase result with fixed rate = 0.003 and moq = 0:') print(self.r.get_purchase_result(self.prices, self.op, self.amounts, 0)) test_rate_fee_result = self.r.get_purchase_result(self.prices, self.op, self.amounts, 0) self.assertIs(np.allclose(test_rate_fee_result[0], [0., 997.00897308, 0.]), True, 'result incorrect') self.assertAlmostEqual(test_rate_fee_result[1], -20000.0, msg='result incorrect') self.assertAlmostEqual(test_rate_fee_result[2], 59.82053838484547, msg='result incorrect') print('\nPurchase result with fixed rate = 0.003 and moq = 1:') print(self.r.get_purchase_result(self.prices, self.op, self.amounts, 1)) test_rate_fee_result = self.r.get_purchase_result(self.prices, self.op, self.amounts, 1) self.assertIs(np.allclose(test_rate_fee_result[0], [0., 997., 0.]), True, 'result incorrect') self.assertAlmostEqual(test_rate_fee_result[1], -19999.82, msg='result incorrect') self.assertAlmostEqual(test_rate_fee_result[2], 59.82, msg='result incorrect') print('\nPurchase result with fixed rate = 0.003 and moq = 100:') print(self.r.get_purchase_result(self.prices, self.op, self.amounts, 100)) test_rate_fee_result = self.r.get_purchase_result(self.prices, self.op, self.amounts, 100) self.assertIs(np.allclose(test_rate_fee_result[0], [0., 900., 0.]), True, 'result incorrect') self.assertAlmostEqual(test_rate_fee_result[1], -18054., msg='result incorrect') self.assertAlmostEqual(test_rate_fee_result[2], 54.0, msg='result incorrect') def test_min_fee(self): self.r.buy_rate = 0. self.r.sell_rate = 0. self.r.buy_fix = 0. self.r.sell_fix = 0. self.r.buy_min = 300 self.r.sell_min = 300 self.r.slipage = 0. print('\npurchase result with fixed cost rate with min fee = 300 and moq = 0:') print(self.r.get_purchase_result(self.prices, self.op, self.amounts, 0)) test_min_fee_result = self.r.get_purchase_result(self.prices, self.op, self.amounts, 0) self.assertIs(np.allclose(test_min_fee_result[0], [0., 985, 0.]), True, 'result incorrect') self.assertAlmostEqual(test_min_fee_result[1], -20000.0, msg='result incorrect') self.assertAlmostEqual(test_min_fee_result[2], 300.0, msg='result incorrect') print('\npurchase result with fixed cost rate with min fee = 300 and moq = 10:') print(self.r.get_purchase_result(self.prices, self.op, self.amounts, 10)) test_min_fee_result = self.r.get_purchase_result(self.prices, self.op, self.amounts, 10) self.assertIs(np.allclose(test_min_fee_result[0], [0., 980, 0.]), True, 'result incorrect') self.assertAlmostEqual(test_min_fee_result[1], -19900.0, msg='result incorrect') self.assertAlmostEqual(test_min_fee_result[2], 300.0, msg='result incorrect') print('\npurchase result with fixed cost rate with min fee = 300 and moq = 100:') print(self.r.get_purchase_result(self.prices, self.op, self.amounts, 100)) test_min_fee_result = self.r.get_purchase_result(self.prices, self.op, self.amounts, 100) self.assertIs(np.allclose(test_min_fee_result[0], [0., 900, 0.]), True, 'result incorrect') self.assertAlmostEqual(test_min_fee_result[1], -18300.0, msg='result incorrect') self.assertAlmostEqual(test_min_fee_result[2], 300.0, msg='result incorrect') print('\nselling result with fixed cost rate with min fee = 300 and moq = 0:') print(self.r.get_selling_result(self.prices, self.op, self.amounts)) test_min_fee_result = self.r.get_selling_result(self.prices, self.op, self.amounts) self.assertIs(np.allclose(test_min_fee_result[0], [0, 0, -3333.3333]), True, 'result incorrect') self.assertAlmostEqual(test_min_fee_result[1], 33033.333) self.assertAlmostEqual(test_min_fee_result[2], 300.0) print('\nselling result with fixed cost rate with min fee = 300 and moq = 1:') print(self.r.get_selling_result(self.prices, self.op, self.amounts, 1)) test_min_fee_result = self.r.get_selling_result(self.prices, self.op, self.amounts, 1) self.assertIs(np.allclose(test_min_fee_result[0], [0, 0, -3333]), True, 'result incorrect') self.assertAlmostEqual(test_min_fee_result[1], 33030) self.assertAlmostEqual(test_min_fee_result[2], 300.0) print('\nselling result with fixed cost rate with min fee = 300 and moq = 100:') print(self.r.get_selling_result(self.prices, self.op, self.amounts, 100)) test_min_fee_result = self.r.get_selling_result(self.prices, self.op, self.amounts, 100) self.assertIs(np.allclose(test_min_fee_result[0], [0, 0, -3300]), True, 'result incorrect') self.assertAlmostEqual(test_min_fee_result[1], 32700) self.assertAlmostEqual(test_min_fee_result[2], 300.0) def test_rate_with_min(self): """Test transaction cost calculated by rate with min_fee""" self.r.buy_rate = 0.0153 self.r.sell_rate = 0.01 self.r.buy_fix = 0. self.r.sell_fix = 0. self.r.buy_min = 300 self.r.sell_min = 333 self.r.slipage = 0. print('\npurchase result with fixed cost rate with buy_rate = 0.0153, min fee = 300 and moq = 0:') print(self.r.get_purchase_result(self.prices, self.op, self.amounts, 0)) test_rate_with_min_result = self.r.get_purchase_result(self.prices, self.op, self.amounts, 0) self.assertIs(np.allclose(test_rate_with_min_result[0], [0., 984.9305624, 0.]), True, 'result incorrect') self.assertAlmostEqual(test_rate_with_min_result[1], -20000.0, msg='result incorrect') self.assertAlmostEqual(test_rate_with_min_result[2], 301.3887520929774, msg='result incorrect') print('\npurchase result with fixed cost rate with buy_rate = 0.0153, min fee = 300 and moq = 10:') print(self.r.get_purchase_result(self.prices, self.op, self.amounts, 10)) test_rate_with_min_result = self.r.get_purchase_result(self.prices, self.op, self.amounts, 10) self.assertIs(np.allclose(test_rate_with_min_result[0], [0., 980, 0.]), True, 'result incorrect') self.assertAlmostEqual(test_rate_with_min_result[1], -19900.0, msg='result incorrect') self.assertAlmostEqual(test_rate_with_min_result[2], 300.0, msg='result incorrect') print('\npurchase result with fixed cost rate with buy_rate = 0.0153, min fee = 300 and moq = 100:') print(self.r.get_purchase_result(self.prices, self.op, self.amounts, 100)) test_rate_with_min_result = self.r.get_purchase_result(self.prices, self.op, self.amounts, 100) self.assertIs(np.allclose(test_rate_with_min_result[0], [0., 900, 0.]), True, 'result incorrect') self.assertAlmostEqual(test_rate_with_min_result[1], -18300.0, msg='result incorrect') self.assertAlmostEqual(test_rate_with_min_result[2], 300.0, msg='result incorrect') print('\nselling result with fixed cost rate with sell_rate = 0.01, min fee = 333 and moq = 0:') print(self.r.get_selling_result(self.prices, self.op, self.amounts)) test_rate_with_min_result = self.r.get_selling_result(self.prices, self.op, self.amounts) self.assertIs(np.allclose(test_rate_with_min_result[0], [0, 0, -3333.3333]), True, 'result incorrect') self.assertAlmostEqual(test_rate_with_min_result[1], 32999.99967) self.assertAlmostEqual(test_rate_with_min_result[2], 333.33333) print('\nselling result with fixed cost rate with sell_rate = 0.01, min fee = 333 and moq = 1:') print(self.r.get_selling_result(self.prices, self.op, self.amounts, 1)) test_rate_with_min_result = self.r.get_selling_result(self.prices, self.op, self.amounts, 1) self.assertIs(np.allclose(test_rate_with_min_result[0], [0, 0, -3333]), True, 'result incorrect') self.assertAlmostEqual(test_rate_with_min_result[1], 32996.7) self.assertAlmostEqual(test_rate_with_min_result[2], 333.3) print('\nselling result with fixed cost rate with sell_rate = 0.01, min fee = 333 and moq = 100:') print(self.r.get_selling_result(self.prices, self.op, self.amounts, 100)) test_rate_with_min_result = self.r.get_selling_result(self.prices, self.op, self.amounts, 100) self.assertIs(np.allclose(test_rate_with_min_result[0], [0, 0, -3300]), True, 'result incorrect') self.assertAlmostEqual(test_rate_with_min_result[1], 32667.0) self.assertAlmostEqual(test_rate_with_min_result[2], 333.0) def test_fixed_fee(self): self.r.buy_rate = 0. self.r.sell_rate = 0. self.r.buy_fix = 200 self.r.sell_fix = 150 self.r.buy_min = 0 self.r.sell_min = 0 self.r.slipage = 0 print('\nselling result of fixed cost with fixed fee = 150 and moq=0:') print(self.r.get_selling_result(self.prices, self.op, self.amounts, 0)) test_fixed_fee_result = self.r.get_selling_result(self.prices, self.op, self.amounts) self.assertIs(np.allclose(test_fixed_fee_result[0], [0, 0, -3333.3333]), True, 'result incorrect') self.assertAlmostEqual(test_fixed_fee_result[1], 33183.333, msg='result incorrect') self.assertAlmostEqual(test_fixed_fee_result[2], 150.0, msg='result incorrect') print('\nselling result of fixed cost with fixed fee = 150 and moq=100:') print(self.r.get_selling_result(self.prices, self.op, self.amounts, 100)) test_fixed_fee_result = self.r.get_selling_result(self.prices, self.op, self.amounts, 100) self.assertIs(np.allclose(test_fixed_fee_result[0], [0, 0, -3300.]), True, f'result incorrect, {test_fixed_fee_result[0]} does not equal to [0,0,-3400]') self.assertAlmostEqual(test_fixed_fee_result[1], 32850., msg='result incorrect') self.assertAlmostEqual(test_fixed_fee_result[2], 150., msg='result incorrect') print('\npurchase result of fixed cost with fixed fee = 200:') print(self.r.get_purchase_result(self.prices, self.op, self.amounts, 0)) test_fixed_fee_result = self.r.get_purchase_result(self.prices, self.op, self.amounts, 0) self.assertIs(np.allclose(test_fixed_fee_result[0], [0., 990., 0.]), True, 'result incorrect') self.assertAlmostEqual(test_fixed_fee_result[1], -20000.0, msg='result incorrect') self.assertAlmostEqual(test_fixed_fee_result[2], 200.0, msg='result incorrect') print('\npurchase result of fixed cost with fixed fee = 200:') print(self.r.get_purchase_result(self.prices, self.op, self.amounts, 100)) test_fixed_fee_result = self.r.get_purchase_result(self.prices, self.op, self.amounts, 100) self.assertIs(np.allclose(test_fixed_fee_result[0], [0., 900., 0.]), True, 'result incorrect') self.assertAlmostEqual(test_fixed_fee_result[1], -18200.0, msg='result incorrect') self.assertAlmostEqual(test_fixed_fee_result[2], 200.0, msg='result incorrect') def test_slipage(self): self.r.buy_fix = 0 self.r.sell_fix = 0 self.r.buy_min = 0 self.r.sell_min = 0 self.r.buy_rate = 0.003 self.r.sell_rate = 0.001 self.r.slipage = 1E-9 print('\npurchase result of fixed rate = 0.003 and slipage = 1E-10 and moq = 0:') print(self.r.get_purchase_result(self.prices, self.op, self.amounts, 0)) print('\npurchase result of fixed rate = 0.003 and slipage = 1E-10 and moq = 100:') print(self.r.get_purchase_result(self.prices, self.op, self.amounts, 100)) print('\nselling result with fixed rate = 0.001 and slipage = 1E-10:') print(self.r.get_selling_result(self.prices, self.op, self.amounts)) test_fixed_fee_result = self.r.get_selling_result(self.prices, self.op, self.amounts) self.assertIs(np.allclose(test_fixed_fee_result[0], [0, 0, -3333.3333]), True, f'{test_fixed_fee_result[0]} does not equal to [0, 0, -10000]') self.assertAlmostEqual(test_fixed_fee_result[1], 33298.88855591, msg=f'{test_fixed_fee_result[1]} does not equal to 99890.') self.assertAlmostEqual(test_fixed_fee_result[2], 34.44444409, msg=f'{test_fixed_fee_result[2]} does not equal to -36.666663.') test_fixed_fee_result = self.r.get_purchase_result(self.prices, self.op, self.amounts, 0) self.assertIs(np.allclose(test_fixed_fee_result[0], [0., 996.98909294, 0.]), True, 'result incorrect') self.assertAlmostEqual(test_fixed_fee_result[1], -20000.0, msg='result incorrect') self.assertAlmostEqual(test_fixed_fee_result[2], 60.21814121353513, msg='result incorrect') test_fixed_fee_result = self.r.get_purchase_result(self.prices, self.op, self.amounts, 100) self.assertIs(np.allclose(test_fixed_fee_result[0], [0., 900., 0.]), True, 'result incorrect') self.assertAlmostEqual(test_fixed_fee_result[1], -18054.36, msg='result incorrect') self.assertAlmostEqual(test_fixed_fee_result[2], 54.36, msg='result incorrect') class TestSpace(unittest.TestCase): def test_creation(self): """ test if creation of space object is fine """ # first group of inputs, output Space with two discr axis from [0,10] print('testing space objects\n') # pars_list = [[(0, 10), (0, 10)], # [[0, 10], [0, 10]]] # # types_list = ['discr', # ['discr', 'discr']] # # input_pars = itertools.product(pars_list, types_list) # for p in input_pars: # # print(p) # s = qt.Space(*p) # b = s.boes # t = s.types # # print(s, t) # self.assertIsInstance(s, qt.Space) # self.assertEqual(b, [(0, 10), (0, 10)], 'boes incorrect!') # self.assertEqual(t, ['discr', 'discr'], 'types incorrect') # pars_list = [[(0, 10), (0, 10)], [[0, 10], [0, 10]]] types_list = ['foo, bar', ['foo', 'bar']] input_pars = itertools.product(pars_list, types_list) for p in input_pars: # print(p) s = Space(*p) b = s.boes t = s.types # print(s, t) self.assertEqual(b, [(0, 10), (0, 10)], 'boes incorrect!') self.assertEqual(t, ['enum', 'enum'], 'types incorrect') pars_list = [[(0, 10), (0, 10)], [[0, 10], [0, 10]]] types_list = [['discr', 'foobar']] input_pars = itertools.product(pars_list, types_list) for p in input_pars: # print(p) s = Space(*p) b = s.boes t = s.types # print(s, t) self.assertEqual(b, [(0, 10), (0, 10)], 'boes incorrect!') self.assertEqual(t, ['discr', 'enum'], 'types incorrect') pars_list = [(0., 10), (0, 10)] s = Space(pars=pars_list, par_types=None) self.assertEqual(s.types, ['conti', 'discr']) self.assertEqual(s.dim, 2) self.assertEqual(s.size, (10.0, 11)) self.assertEqual(s.shape, (np.inf, 11)) self.assertEqual(s.count, np.inf) self.assertEqual(s.boes, [(0., 10), (0, 10)]) pars_list = [(0., 10), (0, 10)] s = Space(pars=pars_list, par_types='conti, enum') self.assertEqual(s.types, ['conti', 'enum']) self.assertEqual(s.dim, 2) self.assertEqual(s.size, (10.0, 2)) self.assertEqual(s.shape, (np.inf, 2)) self.assertEqual(s.count, np.inf) self.assertEqual(s.boes, [(0., 10), (0, 10)]) pars_list = [(1, 2), (2, 3), (3, 4)] s = Space(pars=pars_list) self.assertEqual(s.types, ['discr', 'discr', 'discr']) self.assertEqual(s.dim, 3) self.assertEqual(s.size, (2, 2, 2)) self.assertEqual(s.shape, (2, 2, 2)) self.assertEqual(s.count, 8) self.assertEqual(s.boes, [(1, 2), (2, 3), (3, 4)]) pars_list = [(1, 2, 3), (2, 3, 4), (3, 4, 5)] s = Space(pars=pars_list) self.assertEqual(s.types, ['enum', 'enum', 'enum']) self.assertEqual(s.dim, 3) self.assertEqual(s.size, (3, 3, 3)) self.assertEqual(s.shape, (3, 3, 3)) self.assertEqual(s.count, 27) self.assertEqual(s.boes, [(1, 2, 3), (2, 3, 4), (3, 4, 5)]) pars_list = [((1, 2, 3), (2, 3, 4), (3, 4, 5))] s = Space(pars=pars_list) self.assertEqual(s.types, ['enum']) self.assertEqual(s.dim, 1) self.assertEqual(s.size, (3,)) self.assertEqual(s.shape, (3,)) self.assertEqual(s.count, 3) pars_list = ((1, 2, 3), (2, 3, 4), (3, 4, 5)) s = Space(pars=pars_list) self.assertEqual(s.types, ['enum', 'enum', 'enum']) self.assertEqual(s.dim, 3) self.assertEqual(s.size, (3, 3, 3)) self.assertEqual(s.shape, (3, 3, 3)) self.assertEqual(s.count, 27) self.assertEqual(s.boes, [(1, 2, 3), (2, 3, 4), (3, 4, 5)]) def test_extract(self): """ :return: """ pars_list = [(0, 10), (0, 10)] types_list = ['discr', 'discr'] s = Space(pars=pars_list, par_types=types_list) extracted_int, count = s.extract(3, 'interval') extracted_int_list = list(extracted_int) print('extracted int\n', extracted_int_list) self.assertEqual(count, 16, 'extraction count wrong!') self.assertEqual(extracted_int_list, [(0, 0), (0, 3), (0, 6), (0, 9), (3, 0), (3, 3), (3, 6), (3, 9), (6, 0), (6, 3), (6, 6), (6, 9), (9, 0), (9, 3), (9, 6), (9, 9)], 'space extraction wrong!') extracted_rand, count = s.extract(10, 'rand') extracted_rand_list = list(extracted_rand) self.assertEqual(count, 10, 'extraction count wrong!') print('extracted rand\n', extracted_rand_list) for point in list(extracted_rand_list): self.assertEqual(len(point), 2) self.assertLessEqual(point[0], 10) self.assertGreaterEqual(point[0], 0) self.assertLessEqual(point[1], 10) self.assertGreaterEqual(point[1], 0) pars_list = [(0., 10), (0, 10)] s = Space(pars=pars_list, par_types=None) extracted_int2, count = s.extract(3, 'interval') self.assertEqual(count, 16, 'extraction count wrong!') extracted_int_list2 = list(extracted_int2) self.assertEqual(extracted_int_list2, [(0, 0), (0, 3), (0, 6), (0, 9), (3, 0), (3, 3), (3, 6), (3, 9), (6, 0), (6, 3), (6, 6), (6, 9), (9, 0), (9, 3), (9, 6), (9, 9)], 'space extraction wrong!') print('extracted int list 2\n', extracted_int_list2) self.assertIsInstance(extracted_int_list2[0][0], float) self.assertIsInstance(extracted_int_list2[0][1], (int, int64)) extracted_rand2, count = s.extract(10, 'rand') self.assertEqual(count, 10, 'extraction count wrong!') extracted_rand_list2 = list(extracted_rand2) print('extracted rand list 2:\n', extracted_rand_list2) for point in extracted_rand_list2: self.assertEqual(len(point), 2) self.assertIsInstance(point[0], float) self.assertLessEqual(point[0], 10) self.assertGreaterEqual(point[0], 0) self.assertIsInstance(point[1], (int, int64)) self.assertLessEqual(point[1], 10) self.assertGreaterEqual(point[1], 0) pars_list = [(0., 10), ('a', 'b')] s = Space(pars=pars_list, par_types='enum, enum') extracted_int3, count = s.extract(1, 'interval') self.assertEqual(count, 4, 'extraction count wrong!') extracted_int_list3 = list(extracted_int3) self.assertEqual(extracted_int_list3, [(0., 'a'), (0., 'b'), (10, 'a'), (10, 'b')], 'space extraction wrong!') print('extracted int list 3\n', extracted_int_list3) self.assertIsInstance(extracted_int_list3[0][0], float) self.assertIsInstance(extracted_int_list3[0][1], str) extracted_rand3, count = s.extract(3, 'rand') self.assertEqual(count, 3, 'extraction count wrong!') extracted_rand_list3 = list(extracted_rand3) print('extracted rand list 3:\n', extracted_rand_list3) for point in extracted_rand_list3: self.assertEqual(len(point), 2) self.assertIsInstance(point[0], (float, int)) self.assertLessEqual(point[0], 10) self.assertGreaterEqual(point[0], 0) self.assertIsInstance(point[1], str) self.assertIn(point[1], ['a', 'b']) pars_list = [((0, 10), (1, 'c'), ('a', 'b'), (1, 14))] s = Space(pars=pars_list, par_types='enum') extracted_int4, count = s.extract(1, 'interval') self.assertEqual(count, 4, 'extraction count wrong!') extracted_int_list4 = list(extracted_int4) it = zip(extracted_int_list4, [(0, 10), (1, 'c'), (0, 'b'), (1, 14)]) for item, item2 in it: print(item, item2) self.assertTrue(all([tuple(ext_item) == item for ext_item, item in it])) print('extracted int list 4\n', extracted_int_list4) self.assertIsInstance(extracted_int_list4[0], tuple) extracted_rand4, count = s.extract(3, 'rand') self.assertEqual(count, 3, 'extraction count wrong!') extracted_rand_list4 = list(extracted_rand4) print('extracted rand list 4:\n', extracted_rand_list4) for point in extracted_rand_list4: self.assertEqual(len(point), 2) self.assertIsInstance(point[0], (int, str)) self.assertIn(point[0], [0, 1, 'a']) self.assertIsInstance(point[1], (int, str)) self.assertIn(point[1], [10, 14, 'b', 'c']) self.assertIn(point, [(0., 10), (1, 'c'), ('a', 'b'), (1, 14)]) pars_list = [((0, 10), (1, 'c'), ('a', 'b'), (1, 14)), (1, 4)] s = Space(pars=pars_list, par_types='enum, discr') extracted_int5, count = s.extract(1, 'interval') self.assertEqual(count, 16, 'extraction count wrong!') extracted_int_list5 = list(extracted_int5) for item, item2 in extracted_int_list5: print(item, item2) self.assertTrue(all([tuple(ext_item) == item for ext_item, item in it])) print('extracted int list 5\n', extracted_int_list5) self.assertIsInstance(extracted_int_list5[0], tuple) extracted_rand5, count = s.extract(5, 'rand') self.assertEqual(count, 5, 'extraction count wrong!') extracted_rand_list5 = list(extracted_rand5) print('extracted rand list 5:\n', extracted_rand_list5) for point in extracted_rand_list5: self.assertEqual(len(point), 2) self.assertIsInstance(point[0], tuple) print(f'type of point[1] is {type(point[1])}') self.assertIsInstance(point[1], (int, np.int64)) self.assertIn(point[0], [(0., 10), (1, 'c'), ('a', 'b'), (1, 14)]) print(f'test incremental extraction') pars_list = [(10., 250), (10., 250), (10., 250), (10., 250), (10., 250), (10., 250)] s = Space(pars_list) ext, count = s.extract(64, 'interval') self.assertEqual(count, 4096) points = list(ext) # 已经取出所有的点,围绕其中10个点生成十个subspaces # 检查是否每个subspace都为Space,是否都在s范围内,使用32生成点集,检查生成数量是否正确 for point in points[1000:1010]: subspace = s.from_point(point, 64) self.assertIsInstance(subspace, Space) self.assertTrue(subspace in s) self.assertEqual(subspace.dim, 6) self.assertEqual(subspace.types, ['conti', 'conti', 'conti', 'conti', 'conti', 'conti']) ext, count = subspace.extract(32) points = list(ext) self.assertGreaterEqual(count, 512) self.assertLessEqual(count, 4096) print(f'\n---------------------------------' f'\nthe space created around point <{point}> is' f'\n{subspace.boes}' f'\nand extracted {count} points, the first 5 are:' f'\n{points[:5]}') def test_axis_extract(self): # test axis object with conti type axis = Axis((0., 5)) self.assertIsInstance(axis, Axis) self.assertEqual(axis.axis_type, 'conti') self.assertEqual(axis.axis_boe, (0., 5.)) self.assertEqual(axis.count, np.inf) self.assertEqual(axis.size, 5.0) self.assertTrue(np.allclose(axis.extract(1, 'int'), [0., 1., 2., 3., 4.])) self.assertTrue(np.allclose(axis.extract(0.5, 'int'), [0., 0.5, 1., 1.5, 2., 2.5, 3., 3.5, 4., 4.5])) extracted = axis.extract(8, 'rand') self.assertEqual(len(extracted), 8) self.assertTrue(all([(0 <= item <= 5) for item in extracted])) # test axis object with discrete type axis = Axis((1, 5)) self.assertIsInstance(axis, Axis) self.assertEqual(axis.axis_type, 'discr') self.assertEqual(axis.axis_boe, (1, 5)) self.assertEqual(axis.count, 5) self.assertEqual(axis.size, 5) self.assertTrue(np.allclose(axis.extract(1, 'int'), [1, 2, 3, 4, 5])) self.assertRaises(ValueError, axis.extract, 0.5, 'int') extracted = axis.extract(8, 'rand') self.assertEqual(len(extracted), 8) self.assertTrue(all([(item in [1, 2, 3, 4, 5]) for item in extracted])) # test axis object with enumerate type axis = Axis((1, 5, 7, 10, 'A', 'F')) self.assertIsInstance(axis, Axis) self.assertEqual(axis.axis_type, 'enum') self.assertEqual(axis.axis_boe, (1, 5, 7, 10, 'A', 'F')) self.assertEqual(axis.count, 6) self.assertEqual(axis.size, 6) self.assertEqual(axis.extract(1, 'int'), [1, 5, 7, 10, 'A', 'F']) self.assertRaises(ValueError, axis.extract, 0.5, 'int') extracted = axis.extract(8, 'rand') self.assertEqual(len(extracted), 8) self.assertTrue(all([(item in [1, 5, 7, 10, 'A', 'F']) for item in extracted])) def test_from_point(self): """测试从一个点生成一个space""" # 生成一个space,指定space中的一个点以及distance,生成一个sub-space pars_list = [(0., 10), (0, 10)] s = Space(pars=pars_list, par_types=None) self.assertEqual(s.types, ['conti', 'discr']) self.assertEqual(s.dim, 2) self.assertEqual(s.size, (10., 11)) self.assertEqual(s.shape, (np.inf, 11)) self.assertEqual(s.count, np.inf) self.assertEqual(s.boes, [(0., 10), (0, 10)]) print('create subspace from a point in space') p = (3, 3) distance = 2 subspace = s.from_point(p, distance) self.assertIsInstance(subspace, Space) self.assertEqual(subspace.types, ['conti', 'discr']) self.assertEqual(subspace.dim, 2) self.assertEqual(subspace.size, (4.0, 5)) self.assertEqual(subspace.shape, (np.inf, 5)) self.assertEqual(subspace.count, np.inf) self.assertEqual(subspace.boes, [(1, 5), (1, 5)]) print('create subspace from a 6 dimensional discrete space') s = Space(pars=[(10, 250), (10, 250), (10, 250), (10, 250), (10, 250), (10, 250)]) p = (15, 200, 150, 150, 150, 150) d = 10 subspace = s.from_point(p, d) self.assertIsInstance(subspace, Space) self.assertEqual(subspace.types, ['discr', 'discr', 'discr', 'discr', 'discr', 'discr']) self.assertEqual(subspace.dim, 6) self.assertEqual(subspace.volume, 65345616) self.assertEqual(subspace.size, (16, 21, 21, 21, 21, 21)) self.assertEqual(subspace.shape, (16, 21, 21, 21, 21, 21)) self.assertEqual(subspace.count, 65345616) self.assertEqual(subspace.boes, [(10, 25), (190, 210), (140, 160), (140, 160), (140, 160), (140, 160)]) print('create subspace from a 6 dimensional continuous space') s = Space(pars=[(10., 250), (10., 250), (10., 250), (10., 250), (10., 250), (10., 250)]) p = (15, 200, 150, 150, 150, 150) d = 10 subspace = s.from_point(p, d) self.assertIsInstance(subspace, Space) self.assertEqual(subspace.types, ['conti', 'conti', 'conti', 'conti', 'conti', 'conti']) self.assertEqual(subspace.dim, 6) self.assertEqual(subspace.volume, 48000000) self.assertEqual(subspace.size, (15.0, 20.0, 20.0, 20.0, 20.0, 20.0)) self.assertEqual(subspace.shape, (np.inf, np.inf, np.inf, np.inf, np.inf, np.inf)) self.assertEqual(subspace.count, np.inf) self.assertEqual(subspace.boes, [(10, 25), (190, 210), (140, 160), (140, 160), (140, 160), (140, 160)]) print('create subspace with different distances on each dimension') s = Space(pars=[(10., 250), (10., 250), (10., 250), (10., 250), (10., 250), (10., 250)]) p = (15, 200, 150, 150, 150, 150) d = [10, 5, 5, 10, 10, 5] subspace = s.from_point(p, d) self.assertIsInstance(subspace, Space) self.assertEqual(subspace.types, ['conti', 'conti', 'conti', 'conti', 'conti', 'conti']) self.assertEqual(subspace.dim, 6) self.assertEqual(subspace.volume, 6000000) self.assertEqual(subspace.size, (15.0, 10.0, 10.0, 20.0, 20.0, 10.0)) self.assertEqual(subspace.shape, (np.inf, np.inf, np.inf, np.inf, np.inf, np.inf)) self.assertEqual(subspace.count, np.inf) self.assertEqual(subspace.boes, [(10, 25), (195, 205), (145, 155), (140, 160), (140, 160), (145, 155)]) class TestCashPlan(unittest.TestCase): def setUp(self): self.cp1 = qt.CashPlan(['2012-01-01', '2010-01-01'], [10000, 20000], 0.1) self.cp1.info() self.cp2 = qt.CashPlan(['20100501'], 10000) self.cp2.info() self.cp3 = qt.CashPlan(pd.date_range(start='2019-01-01', freq='Y', periods=12), [i * 1000 + 10000 for i in range(12)], 0.035) self.cp3.info() def test_creation(self): self.assertIsInstance(self.cp1, qt.CashPlan, 'CashPlan object creation wrong') self.assertIsInstance(self.cp2, qt.CashPlan, 'CashPlan object creation wrong') self.assertIsInstance(self.cp3, qt.CashPlan, 'CashPlan object creation wrong') # test __repr__() print(self.cp1) print(self.cp2) print(self.cp3) # test __str__() self.cp1.info() self.cp2.info() self.cp3.info() # test assersion errors self.assertRaises(AssertionError, qt.CashPlan, '2016-01-01', [10000, 10000]) self.assertRaises(KeyError, qt.CashPlan, '2020-20-20', 10000) def test_properties(self): self.assertEqual(self.cp1.amounts, [20000, 10000], 'property wrong') self.assertEqual(self.cp1.first_day, Timestamp('2010-01-01')) self.assertEqual(self.cp1.last_day, Timestamp('2012-01-01')) self.assertEqual(self.cp1.investment_count, 2) self.assertEqual(self.cp1.period, 730) self.assertEqual(self.cp1.dates, [Timestamp('2010-01-01'), Timestamp('2012-01-01')]) self.assertEqual(self.cp1.ir, 0.1) self.assertAlmostEqual(self.cp1.closing_value, 34200) self.assertAlmostEqual(self.cp2.closing_value, 10000) self.assertAlmostEqual(self.cp3.closing_value, 220385.3483685) self.assertIsInstance(self.cp1.plan, pd.DataFrame) self.assertIsInstance(self.cp2.plan, pd.DataFrame) self.assertIsInstance(self.cp3.plan, pd.DataFrame) def test_operation(self): cp_self_add = self.cp1 + self.cp1 cp_add = self.cp1 + self.cp2 cp_add_int = self.cp1 + 10000 cp_mul_int = self.cp1 * 2 cp_mul_float = self.cp2 * 1.5 cp_mul_time = 3 * self.cp2 cp_mul_time2 = 2 * self.cp1 cp_mul_time3 = 2 * self.cp3 cp_mul_float2 = 2. * self.cp3 self.assertIsInstance(cp_self_add, qt.CashPlan) self.assertEqual(cp_self_add.amounts, [40000, 20000]) self.assertEqual(cp_add.amounts, [20000, 10000, 10000]) self.assertEqual(cp_add_int.amounts, [30000, 20000]) self.assertEqual(cp_mul_int.amounts, [40000, 20000]) self.assertEqual(cp_mul_float.amounts, [15000]) self.assertEqual(cp_mul_float.dates, [Timestamp('2010-05-01')]) self.assertEqual(cp_mul_time.amounts, [10000, 10000, 10000]) self.assertEqual(cp_mul_time.dates, [Timestamp('2010-05-01'), Timestamp('2011-05-01'), Timestamp('2012-04-30')]) self.assertEqual(cp_mul_time2.amounts, [20000, 10000, 20000, 10000]) self.assertEqual(cp_mul_time2.dates, [Timestamp('2010-01-01'), Timestamp('2012-01-01'), Timestamp('2014-01-01'), Timestamp('2016-01-01')]) self.assertEqual(cp_mul_time3.dates, [Timestamp('2019-12-31'), Timestamp('2020-12-31'), Timestamp('2021-12-31'), Timestamp('2022-12-31'), Timestamp('2023-12-31'), Timestamp('2024-12-31'), Timestamp('2025-12-31'), Timestamp('2026-12-31'), Timestamp('2027-12-31'), Timestamp('2028-12-31'), Timestamp('2029-12-31'), Timestamp('2030-12-31'), Timestamp('2031-12-29'), Timestamp('2032-12-29'), Timestamp('2033-12-29'), Timestamp('2034-12-29'), Timestamp('2035-12-29'), Timestamp('2036-12-29'), Timestamp('2037-12-29'), Timestamp('2038-12-29'), Timestamp('2039-12-29'), Timestamp('2040-12-29'), Timestamp('2041-12-29'), Timestamp('2042-12-29')]) self.assertEqual(cp_mul_float2.dates, [Timestamp('2019-12-31'), Timestamp('2020-12-31'), Timestamp('2021-12-31'), Timestamp('2022-12-31'), Timestamp('2023-12-31'), Timestamp('2024-12-31'), Timestamp('2025-12-31'), Timestamp('2026-12-31'), Timestamp('2027-12-31'), Timestamp('2028-12-31'), Timestamp('2029-12-31'), Timestamp('2030-12-31')]) self.assertEqual(cp_mul_float2.amounts, [20000.0, 22000.0, 24000.0, 26000.0, 28000.0, 30000.0, 32000.0, 34000.0, 36000.0, 38000.0, 40000.0, 42000.0]) class TestPool(unittest.TestCase): def setUp(self): self.p = ResultPool(5) self.items = ['first', 'second', (1, 2, 3), 'this', 24] self.perfs = [1, 2, 3, 4, 5] self.additional_result1 = ('abc', 12) self.additional_result2 = ([1, 2], -1) self.additional_result3 = (12, 5) def test_create(self): self.assertIsInstance(self.p, ResultPool) def test_operation(self): self.p.in_pool(self.additional_result1[0], self.additional_result1[1]) self.p.cut() self.assertEqual(self.p.item_count, 1) self.assertEqual(self.p.items, ['abc']) for item, perf in zip(self.items, self.perfs): self.p.in_pool(item, perf) self.assertEqual(self.p.item_count, 6) self.assertEqual(self.p.items, ['abc', 'first', 'second', (1, 2, 3), 'this', 24]) self.p.cut() self.assertEqual(self.p.items, ['second', (1, 2, 3), 'this', 24, 'abc']) self.assertEqual(self.p.perfs, [2, 3, 4, 5, 12]) self.p.in_pool(self.additional_result2[0], self.additional_result2[1]) self.p.in_pool(self.additional_result3[0], self.additional_result3[1]) self.assertEqual(self.p.item_count, 7) self.p.cut(keep_largest=False) self.assertEqual(self.p.items, [[1, 2], 'second', (1, 2, 3), 'this', 24]) self.assertEqual(self.p.perfs, [-1, 2, 3, 4, 5]) class TestCoreSubFuncs(unittest.TestCase): """Test all functions in core.py""" def setUp(self): pass def test_input_to_list(self): print('Testing input_to_list() function') input_str = 'first' self.assertEqual(qt.utilfuncs.input_to_list(input_str, 3), ['first', 'first', 'first']) self.assertEqual(qt.utilfuncs.input_to_list(input_str, 4), ['first', 'first', 'first', 'first']) self.assertEqual(qt.utilfuncs.input_to_list(input_str, 2, None), ['first', 'first']) input_list = ['first', 'second'] self.assertEqual(qt.utilfuncs.input_to_list(input_list, 3), ['first', 'second', None]) self.assertEqual(qt.utilfuncs.input_to_list(input_list, 4, 'padder'), ['first', 'second', 'padder', 'padder']) self.assertEqual(qt.utilfuncs.input_to_list(input_list, 1), ['first', 'second']) self.assertEqual(qt.utilfuncs.input_to_list(input_list, -5), ['first', 'second']) def test_point_in_space(self): sp = Space([(0., 10.), (0., 10.), (0., 10.)]) p1 = (5.5, 3.2, 7) p2 = (-1, 3, 10) self.assertTrue(p1 in sp) print(f'point {p1} is in space {sp}') self.assertFalse(p2 in sp) print(f'point {p2} is not in space {sp}') sp = Space([(0., 10.), (0., 10.), range(40, 3, -2)], 'conti, conti, enum') p1 = (5.5, 3.2, 8) self.assertTrue(p1 in sp) print(f'point {p1} is in space {sp}') def test_space_in_space(self): print('test if a space is in another space') sp = Space([(0., 10.), (0., 10.), (0., 10.)]) sp2 = Space([(0., 10.), (0., 10.), (0., 10.)]) self.assertTrue(sp2 in sp) self.assertTrue(sp in sp2) print(f'space {sp2} is in space {sp}\n' f'and space {sp} is in space {sp2}\n' f'they are equal to each other\n') sp2 = Space([(0, 5.), (2, 7.), (3., 9.)]) self.assertTrue(sp2 in sp) self.assertFalse(sp in sp2) print(f'space {sp2} is in space {sp}\n' f'and space {sp} is not in space {sp2}\n' f'{sp2} is a sub space of {sp}\n') sp2 = Space([(0, 5), (2, 7), (3., 9)]) self.assertFalse(sp2 in sp) self.assertFalse(sp in sp2) print(f'space {sp2} is not in space {sp}\n' f'and space {sp} is not in space {sp2}\n' f'they have different types of axes\n') sp = Space([(0., 10.), (0., 10.), range(40, 3, -2)]) self.assertFalse(sp in sp2) self.assertFalse(sp2 in sp) print(f'space {sp2} is not in space {sp}\n' f'and space {sp} is not in space {sp2}\n' f'they have different types of axes\n') def test_space_around_centre(self): sp = Space([(0., 10.), (0., 10.), (0., 10.)]) p1 = (5.5, 3.2, 7) ssp = space_around_centre(space=sp, centre=p1, radius=1.2) print(ssp.boes) print('\ntest multiple diameters:') self.assertEqual(ssp.boes, [(4.3, 6.7), (2.0, 4.4), (5.8, 8.2)]) ssp = space_around_centre(space=sp, centre=p1, radius=[1, 2, 1]) print(ssp.boes) self.assertEqual(ssp.boes, [(4.5, 6.5), (1.2000000000000002, 5.2), (6.0, 8.0)]) print('\ntest points on edge:') p2 = (5.5, 3.2, 10) ssp = space_around_centre(space=sp, centre=p1, radius=3.9) print(ssp.boes) self.assertEqual(ssp.boes, [(1.6, 9.4), (0.0, 7.1), (3.1, 10.0)]) print('\ntest enum spaces') sp = Space([(0, 100), range(40, 3, -2)], 'discr, enum') p1 = [34, 12] ssp = space_around_centre(space=sp, centre=p1, radius=5, ignore_enums=False) self.assertEqual(ssp.boes, [(29, 39), (22, 20, 18, 16, 14, 12, 10, 8, 6, 4)]) print(ssp.boes) print('\ntest enum space and ignore enum axis') ssp = space_around_centre(space=sp, centre=p1, radius=5) self.assertEqual(ssp.boes, [(29, 39), (40, 38, 36, 34, 32, 30, 28, 26, 24, 22, 20, 18, 16, 14, 12, 10, 8, 6, 4)]) print(sp.boes) def test_time_string_format(self): print('Testing qt.time_string_format() function:') t = 3.14 self.assertEqual(time_str_format(t), '3s 140.0ms') self.assertEqual(time_str_format(t, estimation=True), '3s ') self.assertEqual(time_str_format(t, short_form=True), '3"140') self.assertEqual(time_str_format(t, estimation=True, short_form=True), '3"') t = 300.14 self.assertEqual(time_str_format(t), '5min 140.0ms') self.assertEqual(time_str_format(t, estimation=True), '5min ') self.assertEqual(time_str_format(t, short_form=True), "5'140") self.assertEqual(time_str_format(t, estimation=True, short_form=True), "5'") t = 7435.0014 self.assertEqual(time_str_format(t), '2hrs 3min 55s 1.4ms') self.assertEqual(time_str_format(t, estimation=True), '2hrs ') self.assertEqual(time_str_format(t, short_form=True), "2H3'55\"001") self.assertEqual(time_str_format(t, estimation=True, short_form=True), "2H") t = 88425.0509 self.assertEqual(time_str_format(t), '1days 33min 45s 50.9ms') self.assertEqual(time_str_format(t, estimation=True), '1days ') self.assertEqual(time_str_format(t, short_form=True), "1D33'45\"051") self.assertEqual(time_str_format(t, estimation=True, short_form=True), "1D") def test_get_stock_pool(self): print(f'start test building stock pool function\n') share_basics = stock_basic(fields='ts_code,symbol,name,area,industry,market,list_date,exchange') print(f'\nselect all stocks by area') stock_pool = qt.get_stock_pool(area='上海') print(f'{len(stock_pool)} shares selected, first 5 are: {stock_pool[0:5]}\n' f'check if all stock areas are "上海"\n' f'{share_basics[np.isin(share_basics.ts_code, stock_pool)].head()}') self.assertTrue(share_basics[np.isin(share_basics.ts_code, stock_pool)]['area'].eq('上海').all()) print(f'\nselect all stocks by multiple areas') stock_pool = qt.get_stock_pool(area='贵州,北京,天津') print(f'\n{len(stock_pool)} shares selected, first 5 are: {stock_pool[0:5]}\n' f'check if all stock areas are in list of ["贵州", "北京", "天津"]\n' f'{share_basics[np.isin(share_basics.ts_code, stock_pool)].head()}') self.assertTrue(share_basics[np.isin(share_basics.ts_code, stock_pool)]['area'].isin(['贵州', '北京', '天津']).all()) print(f'\nselect all stocks by area and industry') stock_pool = qt.get_stock_pool(area='四川', industry='银行, 金融') print(f'\n{len(stock_pool)} shares selected, first 5 are: {stock_pool[0:5]}\n' f'check if all stock areas are "四川", and industry in ["银行", "金融"]\n' f'{share_basics[np.isin(share_basics.ts_code, stock_pool)].head()}') self.assertTrue(share_basics[np.isin(share_basics.ts_code, stock_pool)]['industry'].isin(['银行', '金融']).all()) self.assertTrue(share_basics[np.isin(share_basics.ts_code, stock_pool)]['area'].isin(['四川']).all()) print(f'\nselect all stocks by industry') stock_pool = qt.get_stock_pool(industry='银行, 金融') print(f'\n{len(stock_pool)} shares selected, first 5 are: {stock_pool[0:5]}\n' f'check if all stocks industry in ["银行", "金融"]\n' f'{share_basics[np.isin(share_basics.ts_code, stock_pool)].head()}') self.assertTrue(share_basics[np.isin(share_basics.ts_code, stock_pool)]['industry'].isin(['银行', '金融']).all()) print(f'\nselect all stocks by market') stock_pool = qt.get_stock_pool(market='主板') print(f'\n{len(stock_pool)} shares selected, first 5 are: {stock_pool[0:5]}\n' f'check if all stock market is "主板"\n' f'{share_basics[np.isin(share_basics.ts_code, stock_pool)].head()}') self.assertTrue(share_basics[np.isin(share_basics.ts_code, stock_pool)]['market'].isin(['主板']).all()) print(f'\nselect all stocks by market and list date') stock_pool = qt.get_stock_pool(date='2000-01-01', market='主板') print(f'\n{len(stock_pool)} shares selected, first 5 are: {stock_pool[0:5]}\n' f'check if all stock market is "主板", and list date after "2000-01-01"\n' f'{share_basics[np.isin(share_basics.ts_code, stock_pool)].head()}') self.assertTrue(share_basics[np.isin(share_basics.ts_code, stock_pool)]['market'].isin(['主板']).all()) self.assertTrue(share_basics[np.isin(share_basics.ts_code, stock_pool)]['list_date'].le('2000-01-01').all()) print(f'\nselect all stocks by list date') stock_pool = qt.get_stock_pool(date='1997-01-01') print(f'\n{len(stock_pool)} shares selected, first 5 are: {stock_pool[0:5]}\n' f'check if all list date after "1997-01-01"\n' f'{share_basics[np.isin(share_basics.ts_code, stock_pool)].head()}') self.assertTrue(share_basics[np.isin(share_basics.ts_code, stock_pool)]['list_date'].le('1997-01-01').all()) print(f'\nselect all stocks by exchange') stock_pool = qt.get_stock_pool(exchange='SSE') print(f'\n{len(stock_pool)} shares selected, first 5 are: {stock_pool[0:5]}\n' f'check if all exchanges are "SSE"\n' f'{share_basics[np.isin(share_basics.ts_code, stock_pool)].head()}') self.assertTrue(share_basics[np.isin(share_basics.ts_code, stock_pool)]['exchange'].eq('SSE').all()) print(f'\nselect all stocks by industry, area and list date') industry_list = ['银行', '全国地产', '互联网', '环境保护', '区域地产', '酒店餐饮', '运输设备', '综合类', '建筑工程', '玻璃', '家用电器', '文教休闲', '其他商业', '元器件', 'IT设备', '其他建材', '汽车服务', '火力发电', '医药商业', '汽车配件', '广告包装', '轻工机械', '新型电力', '多元金融', '饲料'] area_list = ['深圳', '北京', '吉林', '江苏', '辽宁', '广东', '安徽', '四川', '浙江', '湖南', '河北', '新疆', '山东', '河南', '山西', '江西', '青海', '湖北', '内蒙', '海南', '重庆', '陕西', '福建', '广西', '上海'] stock_pool = qt.get_stock_pool(date='19980101', industry=industry_list, area=area_list) print(f'\n{len(stock_pool)} shares selected, first 5 are: {stock_pool[0:5]}\n' f'check if all exchanges are "SSE"\n' f'{share_basics[np.isin(share_basics.ts_code, stock_pool)].head()}') self.assertTrue(share_basics[np.isin(share_basics.ts_code, stock_pool)]['list_date'].le('1998-01-01').all()) self.assertTrue(share_basics[np.isin(share_basics.ts_code, stock_pool)]['industry'].isin(industry_list).all()) self.assertTrue(share_basics[np.isin(share_basics.ts_code, stock_pool)]['area'].isin(area_list).all()) self.assertRaises(KeyError, qt.get_stock_pool, industry=25) self.assertRaises(KeyError, qt.get_stock_pool, share_name='000300.SH') self.assertRaises(KeyError, qt.get_stock_pool, markets='SSE') class TestEvaluations(unittest.TestCase): """Test all evaluation functions in core.py""" # 以下手动计算结果在Excel文件中 def setUp(self): """用np.random生成测试用数据,使用cumsum()模拟股票走势""" self.test_data1 = pd.DataFrame([5.34892759, 5.65768696, 5.79227076, 5.56266871, 5.88189632, 6.24795001, 5.92755558, 6.38748165, 6.31331899, 5.86001665, 5.61048472, 5.30696736, 5.40406792, 5.03180571, 5.37886353, 5.78608307, 6.26540339, 6.59348026, 6.90943801, 6.70911677, 6.33015954, 6.06697417, 5.9752499, 6.45786408, 6.95273763, 6.7691991, 6.70355481, 6.28048969, 6.61344541, 6.24620003, 6.47409983, 6.4522311, 6.8773094, 6.99727832, 6.59262674, 6.59014938, 6.63758237, 6.38331869, 6.09902105, 6.35390109, 6.51993567, 6.87244592, 6.83963485, 7.08797815, 6.88003144, 6.83657323, 6.97819483, 7.01600276, 7.12554256, 7.58941523, 7.61014457, 7.21224091, 7.48174399, 7.66490854, 7.51371968, 7.11586198, 6.97147399, 6.67453301, 6.2042138, 6.33967015, 6.22187938, 5.98426993, 6.37096079, 6.55897161, 6.26422645, 6.69363762, 7.12668015, 6.83232926, 7.30524081, 7.4262041, 7.54031383, 7.17545919, 7.20659257, 7.44886016, 7.37094393, 6.88011022, 7.08142491, 6.74992833, 6.5967097, 6.21336693, 6.35565105, 6.82347596, 6.44773408, 6.84538053, 6.47966466, 6.09699528, 5.63927014, 6.01081024, 6.20585303, 6.60528206, 7.01594726, 7.03684251, 6.76574977, 7.08740846, 6.65336462, 7.07126686, 6.80058956, 6.79241977, 6.47843472, 6.39245474], columns=['value']) self.test_data2 = pd.DataFrame([5.09276527, 4.83828592, 4.6000911, 4.63170487, 4.63566451, 4.50546921, 4.96390044, 4.64557907, 4.25787855, 3.76585551, 3.38826334, 3.76243422, 4.06365426, 3.87084726, 3.91400935, 4.13438822, 4.27064542, 4.56776104, 5.03800296, 5.31070529, 5.39902276, 5.21186286, 5.05683114, 4.68842046, 5.11895168, 5.27151571, 5.72294993, 6.09961056, 6.26569635, 6.48806151, 6.16058885, 6.2582459, 6.38934791, 6.57831057, 6.19508831, 5.70155153, 5.20435735, 5.36538825, 5.40450056, 5.2227697, 5.37828693, 5.53058991, 6.02996797, 5.76802181, 5.66166713, 6.07988994, 5.61794367, 5.63218151, 6.10728013, 6.0324168, 6.27164431, 6.27551239, 6.52329665, 7.00470007, 7.34163113, 7.33699083, 7.67661334, 8.09395749, 7.68086668, 7.58341161, 7.46219819, 7.58671899, 7.19348298, 7.40088323, 7.47562005, 7.93342043, 8.2286081, 8.3521632, 8.43590025, 8.34977395, 8.57563095, 8.81586328, 9.08738649, 9.01542031, 8.8653815, 9.21763111, 9.04233017, 8.59533999, 8.47590075, 8.70857222, 8.78890756, 8.92697606, 9.35743773, 9.68280866, 10.15622021, 10.55908549, 10.6337894, 10.55197128, 10.65435176, 10.54611045, 10.19432562, 10.48320884, 10.36176768, 10.03186854, 10.23656092, 10.0062843, 10.13669686, 10.30758958, 9.87904176, 10.05126375], columns=['value']) self.test_data3 = pd.DataFrame([5.02851874, 5.20700348, 5.02410709, 5.49836387, 5.06834371, 5.10956737, 5.15314979, 5.02256472, 5.09746382, 5.23909247, 4.93410336, 4.96316186, 5.40026682, 5.7353255, 5.53438319, 5.79092139, 5.67528173, 5.89840855, 5.75379463, 6.10855386, 5.77322365, 5.84538021, 5.6103973, 5.7518655, 5.49729695, 5.13610628, 5.30524121, 5.68093462, 5.73251319, 6.04420783, 6.26929843, 6.59610234, 6.09872345, 6.25475121, 6.72927396, 6.91395783, 7.00693283, 7.36217783, 7.71516676, 7.67580263, 7.62477511, 7.73600568, 7.53457914, 7.46170277, 7.83658014, 8.11481319, 8.03705544, 7.64948845, 7.52043731, 7.67247943, 7.46511982, 7.43541798, 7.58856517, 7.9392717, 8.25406287, 7.77031632, 8.03223447, 7.86799055, 7.57630999, 7.33230519, 7.22378732, 6.85972264, 7.17548456, 7.5387846, 7.2392632, 6.8455644, 6.59557185, 6.6496796, 6.73685623, 7.18598015, 7.13619128, 6.88060157, 7.1399681, 7.30308077, 6.94942434, 7.0247815, 7.37567798, 7.50080197, 7.59719284, 7.14520561, 7.29913484, 7.79551341, 8.15497781, 8.40456095, 8.86516528, 8.53042688, 8.94268762, 8.52048006, 8.80036284, 8.91602364, 9.19953385, 8.70828953, 8.24613093, 8.18770453, 7.79548389, 7.68627967, 7.23205036, 6.98302636, 7.06515819, 6.95068113], columns=['value']) self.test_data4 = pd.DataFrame([4.97926539, 5.44016005, 5.45122915, 5.74485615, 5.45600553, 5.44858945, 5.2435413, 5.47315161, 5.58464303, 5.36179749, 5.38236326, 5.29614981, 5.76523508, 5.75102892, 6.15316618, 6.03852528, 6.01442228, 5.70510182, 5.22748133, 5.46762379, 5.78926267, 5.8221362, 5.61236849, 5.30615725, 5.24200611, 5.41042642, 5.59940342, 5.28306781, 4.99451932, 5.08799266, 5.38865647, 5.58229139, 5.33492845, 5.48206276, 5.09721379, 5.39190493, 5.29965087, 5.0374415, 5.50798022, 5.43107577, 5.22759507, 4.991809, 5.43153084, 5.39966868, 5.59916352, 5.66412137, 6.00611838, 5.63564902, 5.66723484, 5.29863863, 4.91115153, 5.3749929, 5.75082334, 6.08308148, 6.58091182, 6.77848803, 7.19588758, 7.64862286, 7.99818347, 7.91824794, 8.30341071, 8.45984973, 7.98700002, 8.18924931, 8.60755649, 8.66233396, 8.91018407, 9.0782739, 9.33515448, 8.95870245, 8.98426422, 8.50340317, 8.64916085, 8.93592407, 8.63145745, 8.65322862, 8.39543204, 8.37969997, 8.23394504, 8.04062872, 7.91259763, 7.57252171, 7.72670114, 7.74486117, 8.06908188, 7.99166889, 7.92155906, 8.39956136, 8.80181323, 8.47464091, 8.06557064, 7.87145573, 8.0237959, 8.39481998, 8.68525692, 8.81185461, 8.98632237, 9.0989835, 8.89787405, 8.86508591], columns=['value']) self.test_data5 = pd.DataFrame([4.50258923, 4.35142568, 4.07459514, 3.87791297, 3.73715985, 3.98455684, 4.07587908, 4.00042472, 4.28276612, 4.01362051, 4.13713565, 4.49312372, 4.48633159, 4.4641207, 4.13444605, 3.79107217, 4.22941629, 4.56548511, 4.92472163, 5.27723158, 5.67409193, 6.00176917, 5.88889928, 5.55256103, 5.39308314, 5.2610492, 5.30738908, 5.22222408, 4.90332238, 4.57499908, 4.96097146, 4.81531011, 4.39115442, 4.63200662, 5.04588813, 4.67866025, 5.01705123, 4.83562258, 4.60381702, 4.66187576, 4.41292828, 4.86604507, 4.42280124, 4.07517294, 4.16317319, 4.10316596, 4.42913598, 4.06609666, 3.96725913, 4.15965746, 4.12379564, 4.04054068, 3.84342851, 3.45902867, 3.17649855, 3.09773586, 3.5502119, 3.66396995, 3.66306483, 3.29131401, 2.79558533, 2.88319542, 3.03671098, 3.44645857, 3.88167161, 3.57961874, 3.60180276, 3.96702102, 4.05429995, 4.40056979, 4.05653231, 3.59600456, 3.60792477, 4.09989922, 3.73503663, 4.01892626, 3.94597242, 3.81466605, 3.71417992, 3.93767156, 4.42806557, 4.06988106, 4.03713636, 4.34408673, 4.79810156, 5.18115011, 4.89798406, 5.3960077, 5.72504875, 5.61894017, 5.1958197, 4.85275896, 5.17550207, 4.71548987, 4.62408567, 4.55488535, 4.36532649, 4.26031979, 4.25225607, 4.58627048], columns=['value']) self.test_data6 = pd.DataFrame([5.08639513, 5.05761083, 4.76160923, 4.62166504, 4.62923183, 4.25070173, 4.13447513, 3.90890013, 3.76687608, 3.43342482, 3.67648224, 3.6274775, 3.9385404, 4.39771627, 4.03199346, 3.93265288, 3.50059789, 3.3851961, 3.29743973, 3.2544872, 2.93692949, 2.70893003, 2.55461976, 2.20922332, 2.29054475, 2.2144714, 2.03726827, 2.39007617, 2.29866155, 2.40607111, 2.40440444, 2.79374649, 2.66541922, 2.27018079, 2.08505127, 2.55478864, 2.22415625, 2.58517923, 2.58802256, 2.94870959, 2.69301739, 2.19991535, 2.69473146, 2.64704637, 2.62753542, 2.14240825, 2.38565154, 1.94592117, 2.32243877, 2.69337246, 2.51283854, 2.62484451, 2.15559054, 2.35410875, 2.31219177, 1.96018265, 2.34711266, 2.58083322, 2.40290041, 2.20439791, 2.31472425, 2.16228248, 2.16439749, 2.20080737, 1.73293206, 1.9264407, 2.25089861, 2.69269101, 2.59296687, 2.1420998, 1.67819153, 1.98419023, 2.14479494, 1.89055376, 1.96720648, 1.9916694, 2.37227761, 2.14446036, 2.34573903, 1.86162546, 2.1410721, 2.39204939, 2.52529064, 2.47079939, 2.9299031, 3.09452923, 2.93276708, 3.21731309, 3.06248964, 2.90413406, 2.67844632, 2.45621213, 2.41463398, 2.7373913, 3.14917045, 3.4033949, 3.82283446, 4.02285451, 3.7619638, 4.10346795], columns=['value']) self.test_data7 = pd.DataFrame([4.75233583, 4.47668283, 4.55894263, 4.61765848, 4.622892, 4.58941116, 4.32535872, 3.88112797, 3.47237806, 3.50898953, 3.82530406, 3.6718017, 3.78918195, 4.1800752, 4.01818557, 4.40822582, 4.65474654, 4.89287256, 4.40879274, 4.65505126, 4.36876403, 4.58418934, 4.75687172, 4.3689799, 4.16126498, 4.0203982, 3.77148242, 3.38198096, 3.07261764, 2.9014741, 2.5049543, 2.756105, 2.28779058, 2.16986991, 1.8415962, 1.83319008, 2.20898291, 2.00128981, 1.75747025, 1.26676663, 1.40316876, 1.11126484, 1.60376367, 1.22523829, 1.58816681, 1.49705679, 1.80244138, 1.55128293, 1.35339409, 1.50985759, 1.0808451, 1.05892796, 1.43414812, 1.43039101, 1.73631655, 1.43940867, 1.82864425, 1.71088265, 2.12015154, 2.45417128, 2.84777618, 2.7925612, 2.90975121, 3.25920745, 3.13801182, 3.52733677, 3.65468491, 3.69395211, 3.49862035, 3.24786017, 3.64463138, 4.00331929, 3.62509565, 3.78013949, 3.4174012, 3.76312271, 3.62054004, 3.67206716, 3.60596058, 3.38636199, 3.42580676, 3.32921095, 3.02976759, 3.28258676, 3.45760838, 3.24917528, 2.94618304, 2.86980011, 2.63191259, 2.39566759, 2.53159917, 2.96273967, 3.25626185, 2.97425402, 3.16412191, 3.58280763, 3.23257727, 3.62353556, 3.12806399, 2.92532313], columns=['value']) # 建立一个长度为 500 个数据点的测试数据, 用于测试数据点多于250个的情况下的评价过程 self.long_data = pd.DataFrame([ 9.879, 9.916, 10.109, 10.214, 10.361, 10.768, 10.594, 10.288, 10.082, 9.994, 10.125, 10.126, 10.384, 10.734, 10.4 , 10.87 , 11.338, 11.061, 11.415, 11.724, 12.077, 12.196, 12.064, 12.423, 12.19 , 11.729, 11.677, 11.448, 11.485, 10.989, 11.242, 11.239, 11.113, 11.075, 11.471, 11.745, 11.754, 11.782, 12.079, 11.97 , 12.178, 11.95 , 12.438, 12.612, 12.804, 12.952, 12.612, 12.867, 12.832, 12.832, 13.015, 13.315, 13.249, 12.904, 12.776, 12.64 , 12.543, 12.287, 12.225, 11.844, 11.985, 11.945, 11.542, 11.871, 12.245, 12.228, 12.362, 11.899, 11.962, 12.374, 12.816, 12.649, 12.252, 12.579, 12.3 , 11.988, 12.177, 12.312, 12.744, 12.599, 12.524, 12.82 , 12.67 , 12.876, 12.986, 13.271, 13.606, 13.82 , 14.161, 13.833, 13.831, 14.137, 13.705, 13.414, 13.037, 12.759, 12.642, 12.948, 13.297, 13.483, 13.836, 14.179, 13.709, 13.655, 13.198, 13.508, 13.953, 14.387, 14.043, 13.987, 13.561, 13.391, 12.923, 12.555, 12.503, 12.292, 11.877, 12.34 , 12.141, 11.687, 11.992, 12.458, 12.131, 11.75 , 11.739, 11.263, 11.762, 11.976, 11.578, 11.854, 12.136, 12.422, 12.311, 12.56 , 12.879, 12.861, 12.973, 13.235, 13.53 , 13.531, 13.137, 13.166, 13.31 , 13.103, 13.007, 12.643, 12.69 , 12.216, 12.385, 12.046, 12.321, 11.9 , 11.772, 11.816, 11.871, 11.59 , 11.518, 11.94 , 11.803, 11.924, 12.183, 12.136, 12.361, 12.406, 11.932, 11.684, 11.292, 11.388, 11.874, 12.184, 12.002, 12.16 , 11.741, 11.26 , 11.123, 11.534, 11.777, 11.407, 11.275, 11.679, 11.62 , 11.218, 11.235, 11.352, 11.366, 11.061, 10.661, 10.582, 10.899, 11.352, 11.792, 11.475, 11.263, 11.538, 11.183, 10.936, 11.399, 11.171, 11.214, 10.89 , 10.728, 11.191, 11.646, 11.62 , 11.195, 11.178, 11.18 , 10.956, 11.205, 10.87 , 11.098, 10.639, 10.487, 10.507, 10.92 , 10.558, 10.119, 9.882, 9.573, 9.515, 9.845, 9.852, 9.495, 9.726, 10.116, 10.452, 10.77 , 11.225, 10.92 , 10.824, 11.096, 11.542, 11.06 , 10.568, 10.585, 10.884, 10.401, 10.068, 9.964, 10.285, 10.239, 10.036, 10.417, 10.132, 9.839, 9.556, 9.084, 9.239, 9.304, 9.067, 8.587, 8.471, 8.007, 8.321, 8.55 , 9.008, 9.138, 9.088, 9.434, 9.156, 9.65 , 9.431, 9.654, 10.079, 10.411, 10.865, 10.51 , 10.205, 10.519, 10.367, 10.855, 10.642, 10.298, 10.622, 10.173, 9.792, 9.995, 9.904, 9.771, 9.597, 9.506, 9.212, 9.688, 10.032, 9.723, 9.839, 9.918, 10.332, 10.236, 9.989, 10.192, 10.685, 10.908, 11.275, 11.72 , 12.158, 12.045, 12.244, 12.333, 12.246, 12.552, 12.958, 13.11 , 13.53 , 13.123, 13.138, 13.57 , 13.389, 13.511, 13.759, 13.698, 13.744, 13.467, 13.795, 13.665, 13.377, 13.423, 13.772, 13.295, 13.073, 12.718, 12.388, 12.399, 12.185, 11.941, 11.818, 11.465, 11.811, 12.163, 11.86 , 11.935, 11.809, 12.145, 12.624, 12.768, 12.321, 12.277, 11.889, 12.11 , 12.606, 12.943, 12.945, 13.112, 13.199, 13.664, 14.051, 14.189, 14.339, 14.611, 14.656, 15.112, 15.086, 15.263, 15.021, 15.346, 15.572, 15.607, 15.983, 16.151, 16.215, 16.096, 16.089, 16.32 , 16.59 , 16.657, 16.752, 16.583, 16.743, 16.373, 16.662, 16.243, 16.163, 16.491, 16.958, 16.977, 17.225, 17.637, 17.344, 17.684, 17.892, 18.036, 18.182, 17.803, 17.588, 17.101, 17.538, 17.124, 16.787, 17.167, 17.138, 16.955, 17.148, 17.135, 17.635, 17.718, 17.675, 17.622, 17.358, 17.754, 17.729, 17.576, 17.772, 18.239, 18.441, 18.729, 18.319, 18.608, 18.493, 18.069, 18.122, 18.314, 18.423, 18.709, 18.548, 18.384, 18.391, 17.988, 17.986, 17.653, 17.249, 17.298, 17.06 , 17.36 , 17.108, 17.348, 17.596, 17.46 , 17.635, 17.275, 17.291, 16.933, 17.337, 17.231, 17.146, 17.148, 16.751, 16.891, 17.038, 16.735, 16.64 , 16.231, 15.957, 15.977, 16.077, 16.054, 15.797, 15.67 , 15.911, 16.077, 16.17 , 15.722, 15.258, 14.877, 15.138, 15. , 14.811, 14.698, 14.407, 14.583, 14.704, 15.153, 15.436, 15.634, 15.453, 15.877, 15.696, 15.563, 15.927, 16.255, 16.696, 16.266, 16.698, 16.365, 16.493, 16.973, 16.71 , 16.327, 16.605, 16.486, 16.846, 16.935, 17.21 , 17.389, 17.546, 17.773, 17.641, 17.485, 17.794, 17.354, 16.904, 16.675, 16.43 , 16.898, 16.819, 16.921, 17.201, 17.617, 17.368, 17.864, 17.484], columns=['value']) self.long_bench = pd.DataFrame([ 9.7 , 10.179, 10.321, 9.855, 9.936, 10.096, 10.331, 10.662, 10.59 , 11.031, 11.154, 10.945, 10.625, 10.233, 10.284, 10.252, 10.221, 10.352, 10.444, 10.773, 10.904, 11.104, 10.797, 10.55 , 10.943, 11.352, 11.641, 11.983, 11.696, 12.138, 12.365, 12.379, 11.969, 12.454, 12.947, 13.119, 13.013, 12.763, 12.632, 13.034, 12.681, 12.561, 12.938, 12.867, 13.202, 13.132, 13.539, 13.91 , 13.456, 13.692, 13.771, 13.904, 14.069, 13.728, 13.97 , 14.228, 13.84 , 14.041, 13.963, 13.689, 13.543, 13.858, 14.118, 13.987, 13.611, 14.028, 14.229, 14.41 , 14.74 , 15.03 , 14.915, 15.207, 15.354, 15.665, 15.877, 15.682, 15.625, 15.175, 15.105, 14.893, 14.86 , 15.097, 15.178, 15.293, 15.238, 15. , 15.283, 14.994, 14.907, 14.664, 14.888, 15.297, 15.313, 15.368, 14.956, 14.802, 14.506, 14.257, 14.619, 15.019, 15.049, 14.625, 14.894, 14.978, 15.434, 15.578, 16.038, 16.107, 16.277, 16.365, 16.204, 16.465, 16.401, 16.895, 17.057, 16.621, 16.225, 16.075, 15.863, 16.292, 16.551, 16.724, 16.817, 16.81 , 17.192, 16.86 , 16.745, 16.707, 16.552, 16.133, 16.301, 16.08 , 15.81 , 15.75 , 15.909, 16.127, 16.457, 16.204, 16.329, 16.748, 16.624, 17.011, 16.548, 16.831, 16.653, 16.791, 16.57 , 16.778, 16.928, 16.932, 17.22 , 16.876, 17.301, 17.422, 17.689, 17.316, 17.547, 17.534, 17.409, 17.669, 17.416, 17.859, 17.477, 17.307, 17.245, 17.352, 17.851, 17.412, 17.144, 17.138, 17.085, 16.926, 16.674, 16.854, 17.064, 16.95 , 16.609, 16.957, 16.498, 16.552, 16.175, 15.858, 15.697, 15.781, 15.583, 15.36 , 15.558, 16.046, 15.968, 15.905, 16.358, 16.783, 17.048, 16.762, 17.224, 17.363, 17.246, 16.79 , 16.608, 16.423, 15.991, 15.527, 15.147, 14.759, 14.792, 15.206, 15.148, 15.046, 15.429, 14.999, 15.407, 15.124, 14.72 , 14.713, 15.022, 15.092, 14.982, 15.001, 14.734, 14.713, 14.841, 14.562, 15.005, 15.483, 15.472, 15.277, 15.503, 15.116, 15.12 , 15.442, 15.476, 15.789, 15.36 , 15.764, 16.218, 16.493, 16.642, 17.088, 16.816, 16.645, 16.336, 16.511, 16.2 , 15.994, 15.86 , 15.929, 16.316, 16.416, 16.746, 17.173, 17.531, 17.627, 17.407, 17.49 , 17.768, 17.509, 17.795, 18.147, 18.63 , 18.945, 19.021, 19.518, 19.6 , 19.744, 19.63 , 19.32 , 18.933, 19.297, 19.598, 19.446, 19.236, 19.198, 19.144, 19.159, 19.065, 19.032, 18.586, 18.272, 18.119, 18.3 , 17.894, 17.744, 17.5 , 17.083, 17.092, 16.864, 16.453, 16.31 , 16.681, 16.342, 16.447, 16.715, 17.068, 17.067, 16.822, 16.673, 16.675, 16.592, 16.686, 16.397, 15.902, 15.597, 15.357, 15.162, 15.348, 15.603, 15.283, 15.257, 15.082, 14.621, 14.366, 14.039, 13.957, 14.141, 13.854, 14.243, 14.414, 14.033, 13.93 , 14.104, 14.461, 14.249, 14.053, 14.165, 14.035, 14.408, 14.501, 14.019, 14.265, 14.67 , 14.797, 14.42 , 14.681, 15.16 , 14.715, 14.292, 14.411, 14.656, 15.094, 15.366, 15.055, 15.198, 14.762, 14.294, 13.854, 13.811, 13.549, 13.927, 13.897, 13.421, 13.037, 13.32 , 13.721, 13.511, 13.999, 13.529, 13.418, 13.881, 14.326, 14.362, 13.987, 14.015, 13.599, 13.343, 13.307, 13.689, 13.851, 13.404, 13.577, 13.395, 13.619, 13.195, 12.904, 12.553, 12.294, 12.649, 12.425, 11.967, 12.062, 11.71 , 11.645, 12.058, 12.136, 11.749, 11.953, 12.401, 12.044, 11.901, 11.631, 11.396, 11.036, 11.244, 10.864, 11.207, 11.135, 11.39 , 11.723, 12.084, 11.8 , 11.471, 11.33 , 11.504, 11.295, 11.3 , 10.901, 10.494, 10.825, 11.054, 10.866, 10.713, 10.875, 10.846, 10.947, 11.422, 11.158, 10.94 , 10.521, 10.36 , 10.411, 10.792, 10.472, 10.305, 10.525, 10.853, 10.556, 10.72 , 10.54 , 10.583, 10.299, 10.061, 10.004, 9.903, 9.796, 9.472, 9.246, 9.54 , 9.456, 9.177, 9.484, 9.557, 9.493, 9.968, 9.536, 9.39 , 8.922, 8.423, 8.518, 8.686, 8.771, 9.098, 9.281, 8.858, 9.027, 8.553, 8.784, 8.996, 9.379, 9.846, 9.855, 9.502, 9.608, 9.761, 9.409, 9.4 , 9.332, 9.34 , 9.284, 8.844, 8.722, 8.376, 8.775, 8.293, 8.144, 8.63 , 8.831, 8.957, 9.18 , 9.601, 9.695, 10.018, 9.841, 9.743, 9.292, 8.85 , 9.316, 9.288, 9.519, 9.738, 9.289, 9.785, 9.804, 10.06 , 10.188, 10.095, 9.739, 9.881, 9.7 , 9.991, 10.391, 10.002], columns=['value']) def test_performance_stats(self): """test the function performance_statistics() """ pass def test_fv(self): print(f'test with test data and empty DataFrame') self.assertAlmostEqual(eval_fv(self.test_data1), 6.39245474) self.assertAlmostEqual(eval_fv(self.test_data2), 10.05126375) self.assertAlmostEqual(eval_fv(self.test_data3), 6.95068113) self.assertAlmostEqual(eval_fv(self.test_data4), 8.86508591) self.assertAlmostEqual(eval_fv(self.test_data5), 4.58627048) self.assertAlmostEqual(eval_fv(self.test_data6), 4.10346795) self.assertAlmostEqual(eval_fv(self.test_data7), 2.92532313) self.assertAlmostEqual(eval_fv(pd.DataFrame()), -np.inf) print(f'Error testing') self.assertRaises(AssertionError, eval_fv, 15) self.assertRaises(KeyError, eval_fv, pd.DataFrame([1, 2, 3], columns=['non_value'])) def test_max_drawdown(self): print(f'test with test data and empty DataFrame') self.assertAlmostEqual(eval_max_drawdown(self.test_data1)[0], 0.264274308) self.assertEqual(eval_max_drawdown(self.test_data1)[1], 53) self.assertEqual(eval_max_drawdown(self.test_data1)[2], 86) self.assertTrue(np.isnan(eval_max_drawdown(self.test_data1)[3])) self.assertAlmostEqual(eval_max_drawdown(self.test_data2)[0], 0.334690849) self.assertEqual(eval_max_drawdown(self.test_data2)[1], 0) self.assertEqual(eval_max_drawdown(self.test_data2)[2], 10) self.assertEqual(eval_max_drawdown(self.test_data2)[3], 19) self.assertAlmostEqual(eval_max_drawdown(self.test_data3)[0], 0.244452899) self.assertEqual(eval_max_drawdown(self.test_data3)[1], 90) self.assertEqual(eval_max_drawdown(self.test_data3)[2], 99) self.assertTrue(np.isnan(eval_max_drawdown(self.test_data3)[3])) self.assertAlmostEqual(eval_max_drawdown(self.test_data4)[0], 0.201849684) self.assertEqual(eval_max_drawdown(self.test_data4)[1], 14) self.assertEqual(eval_max_drawdown(self.test_data4)[2], 50) self.assertEqual(eval_max_drawdown(self.test_data4)[3], 54) self.assertAlmostEqual(eval_max_drawdown(self.test_data5)[0], 0.534206456) self.assertEqual(eval_max_drawdown(self.test_data5)[1], 21) self.assertEqual(eval_max_drawdown(self.test_data5)[2], 60) self.assertTrue(np.isnan(eval_max_drawdown(self.test_data5)[3])) self.assertAlmostEqual(eval_max_drawdown(self.test_data6)[0], 0.670062689) self.assertEqual(eval_max_drawdown(self.test_data6)[1], 0) self.assertEqual(eval_max_drawdown(self.test_data6)[2], 70) self.assertTrue(np.isnan(eval_max_drawdown(self.test_data6)[3])) self.assertAlmostEqual(eval_max_drawdown(self.test_data7)[0], 0.783577449) self.assertEqual(eval_max_drawdown(self.test_data7)[1], 17) self.assertEqual(eval_max_drawdown(self.test_data7)[2], 51) self.assertTrue(np.isnan(eval_max_drawdown(self.test_data7)[3])) self.assertEqual(eval_max_drawdown(pd.DataFrame()), -np.inf) print(f'Error testing') self.assertRaises(AssertionError, eval_fv, 15) self.assertRaises(KeyError, eval_fv, pd.DataFrame([1, 2, 3], columns=['non_value'])) # test max drawdown == 0: # TODO: investigate: how does divide by zero change? self.assertAlmostEqual(eval_max_drawdown(self.test_data4 - 5)[0], 1.0770474121951792) self.assertEqual(eval_max_drawdown(self.test_data4 - 5)[1], 14) self.assertEqual(eval_max_drawdown(self.test_data4 - 5)[2], 50) def test_info_ratio(self): reference = self.test_data1 self.assertAlmostEqual(eval_info_ratio(self.test_data2, reference, 'value'), 0.075553316) self.assertAlmostEqual(eval_info_ratio(self.test_data3, reference, 'value'), 0.018949457) self.assertAlmostEqual(eval_info_ratio(self.test_data4, reference, 'value'), 0.056328143) self.assertAlmostEqual(eval_info_ratio(self.test_data5, reference, 'value'), -0.004270068) self.assertAlmostEqual(eval_info_ratio(self.test_data6, reference, 'value'), 0.009198027) self.assertAlmostEqual(eval_info_ratio(self.test_data7, reference, 'value'), -0.000890283) def test_volatility(self): self.assertAlmostEqual(eval_volatility(self.test_data1), 0.748646166) self.assertAlmostEqual(eval_volatility(self.test_data2), 0.75527442) self.assertAlmostEqual(eval_volatility(self.test_data3), 0.654188853) self.assertAlmostEqual(eval_volatility(self.test_data4), 0.688375814) self.assertAlmostEqual(eval_volatility(self.test_data5), 1.089989522) self.assertAlmostEqual(eval_volatility(self.test_data6), 1.775419308) self.assertAlmostEqual(eval_volatility(self.test_data7), 1.962758406) self.assertAlmostEqual(eval_volatility(self.test_data1, logarithm=False), 0.750993311) self.assertAlmostEqual(eval_volatility(self.test_data2, logarithm=False), 0.75571473) self.assertAlmostEqual(eval_volatility(self.test_data3, logarithm=False), 0.655331424) self.assertAlmostEqual(eval_volatility(self.test_data4, logarithm=False), 0.692683021) self.assertAlmostEqual(eval_volatility(self.test_data5, logarithm=False), 1.09602969) self.assertAlmostEqual(eval_volatility(self.test_data6, logarithm=False), 1.774789504) self.assertAlmostEqual(eval_volatility(self.test_data7, logarithm=False), 2.003329156) self.assertEqual(eval_volatility(pd.DataFrame()), -np.inf) self.assertRaises(AssertionError, eval_volatility, [1, 2, 3]) # 测试长数据的Volatility计算 expected_volatility = np.array([ np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, 0.39955371, 0.39974258, 0.40309866, 0.40486593, 0.4055514 , 0.40710639, 0.40708157, 0.40609006, 0.4073625 , 0.40835305, 0.41155304, 0.41218193, 0.41207489, 0.41300276, 0.41308415, 0.41292392, 0.41207645, 0.41238397, 0.41229291, 0.41164056, 0.41316317, 0.41348842, 0.41462249, 0.41474574, 0.41652625, 0.41649176, 0.41701556, 0.4166593 , 0.41684221, 0.41491689, 0.41435209, 0.41549087, 0.41849338, 0.41998049, 0.41959106, 0.41907311, 0.41916103, 0.42120773, 0.42052391, 0.42111225, 0.42124589, 0.42356445, 0.42214672, 0.42324022, 0.42476639, 0.42621689, 0.42549439, 0.42533678, 0.42539414, 0.42545038, 0.42593637, 0.42652095, 0.42665489, 0.42699563, 0.42798159, 0.42784512, 0.42898006, 0.42868781, 0.42874188, 0.42789631, 0.4277768 , 0.42776827, 0.42685216, 0.42660989, 0.42563155, 0.42618281, 0.42606281, 0.42505222, 0.42653242, 0.42555378, 0.42500842, 0.42561939, 0.42442059, 0.42395414, 0.42384356, 0.42319135, 0.42397497, 0.42488579, 0.42449729, 0.42508766, 0.42509878, 0.42456616, 0.42535577, 0.42681884, 0.42688552, 0.42779918, 0.42706058, 0.42792887, 0.42762114, 0.42894045, 0.42977398, 0.42919859, 0.42829041, 0.42780946, 0.42825318, 0.42858952, 0.42858315, 0.42805601, 0.42764751, 0.42744107, 0.42775518, 0.42707283, 0.4258592 , 0.42615335, 0.42526286, 0.4248906 , 0.42368986, 0.4232565 , 0.42265079, 0.42263954, 0.42153046, 0.42132051, 0.41995353, 0.41916605, 0.41914271, 0.41876945, 0.41740175, 0.41583884, 0.41614026, 0.41457908, 0.41472411, 0.41310876, 0.41261041, 0.41212369, 0.41211677, 0.4100645 , 0.40852504, 0.40860297, 0.40745338, 0.40698661, 0.40644546, 0.40591375, 0.40640744, 0.40620663, 0.40656649, 0.40727154, 0.40797605, 0.40807137, 0.40808913, 0.40809676, 0.40711767, 0.40724628, 0.40713077, 0.40772698, 0.40765157, 0.40658297, 0.4065991 , 0.405011 , 0.40537645, 0.40432626, 0.40390177, 0.40237701, 0.40291623, 0.40301797, 0.40324145, 0.40312864, 0.40328316, 0.40190955, 0.40246506, 0.40237663, 0.40198407, 0.401969 , 0.40185623, 0.40198313, 0.40005643, 0.39940743, 0.39850438, 0.39845398, 0.39695093, 0.39697295, 0.39663201, 0.39675444, 0.39538699, 0.39331959, 0.39326074, 0.39193287, 0.39157266, 0.39021327, 0.39062591, 0.38917591, 0.38976991, 0.38864187, 0.38872158, 0.38868096, 0.38868377, 0.38842057, 0.38654784, 0.38649517, 0.38600464, 0.38408115, 0.38323049, 0.38260215, 0.38207663, 0.38142669, 0.38003262, 0.37969367, 0.37768092, 0.37732108, 0.37741991, 0.37617779, 0.37698504, 0.37606784, 0.37499276, 0.37533731, 0.37350437, 0.37375172, 0.37385382, 0.37384003, 0.37338938, 0.37212288, 0.37273075, 0.370559 , 0.37038506, 0.37062153, 0.36964661, 0.36818564, 0.3656634 , 0.36539259, 0.36428672, 0.36502487, 0.3647148 , 0.36551435, 0.36409919, 0.36348181, 0.36254383, 0.36166601, 0.36142665, 0.35954942, 0.35846915, 0.35886759, 0.35813867, 0.35642888, 0.35375231, 0.35061783, 0.35078463, 0.34995508, 0.34688918, 0.34548257, 0.34633158, 0.34622833, 0.34652111, 0.34622774, 0.34540951, 0.34418809, 0.34276593, 0.34160916, 0.33811193, 0.33822709, 0.3391685 , 0.33883381]) test_volatility = eval_volatility(self.long_data) test_volatility_roll = self.long_data['volatility'].values self.assertAlmostEqual(test_volatility, np.nanmean(expected_volatility)) self.assertTrue(np.allclose(expected_volatility, test_volatility_roll, equal_nan=True)) def test_sharp(self): self.assertAlmostEqual(eval_sharp(self.test_data1, 5, 0), 0.06135557) self.assertAlmostEqual(eval_sharp(self.test_data2, 5, 0), 0.167858667) self.assertAlmostEqual(eval_sharp(self.test_data3, 5, 0), 0.09950547) self.assertAlmostEqual(eval_sharp(self.test_data4, 5, 0), 0.154928241) self.assertAlmostEqual(eval_sharp(self.test_data5, 5, 0.002), 0.007868673) self.assertAlmostEqual(eval_sharp(self.test_data6, 5, 0.002), 0.018306537) self.assertAlmostEqual(eval_sharp(self.test_data7, 5, 0.002), 0.006259971) # 测试长数据的sharp率计算 expected_sharp = np.array([ np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, -0.02346815, -0.02618783, -0.03763912, -0.03296276, -0.03085698, -0.02851101, -0.02375842, -0.02016746, -0.01107885, -0.01426613, -0.00787204, -0.01135784, -0.01164232, -0.01003481, -0.00022512, -0.00046792, -0.01209378, -0.01278892, -0.01298135, -0.01938214, -0.01671044, -0.02120509, -0.0244281 , -0.02416067, -0.02763238, -0.027579 , -0.02372774, -0.02215294, -0.02467094, -0.02091266, -0.02590194, -0.03049876, -0.02077131, -0.01483653, -0.02488144, -0.02671638, -0.02561547, -0.01957986, -0.02479803, -0.02703162, -0.02658087, -0.01641755, -0.01946472, -0.01647757, -0.01280889, -0.00893643, -0.00643275, -0.00698457, -0.00549962, -0.00654677, -0.00494757, -0.0035633 , -0.00109037, 0.00750654, 0.00451208, 0.00625502, 0.01221367, 0.01326454, 0.01535037, 0.02269538, 0.02028715, 0.02127712, 0.02333264, 0.02273159, 0.01670643, 0.01376513, 0.01265342, 0.02211647, 0.01612449, 0.00856706, -0.00077147, -0.00268848, 0.00210993, -0.00443934, -0.00411912, -0.0018756 , -0.00867461, -0.00581601, -0.00660835, -0.00861137, -0.00678614, -0.01188408, -0.00589617, -0.00244323, -0.00201891, -0.01042846, -0.01471016, -0.02167034, -0.02258554, -0.01306809, -0.00909086, -0.01233746, -0.00595166, -0.00184208, 0.00750497, 0.01481886, 0.01761972, 0.01562886, 0.01446414, 0.01285826, 0.01357719, 0.00967613, 0.01636272, 0.01458437, 0.02280183, 0.02151903, 0.01700276, 0.01597368, 0.02114336, 0.02233297, 0.02585631, 0.02768459, 0.03519235, 0.04204535, 0.04328161, 0.04672855, 0.05046191, 0.04619848, 0.04525853, 0.05381529, 0.04598861, 0.03947394, 0.04665006, 0.05586077, 0.05617728, 0.06495018, 0.06205172, 0.05665466, 0.06500615, 0.0632062 , 0.06084328, 0.05851466, 0.05659229, 0.05159347, 0.0432977 , 0.0474047 , 0.04231723, 0.03613176, 0.03618391, 0.03591012, 0.03885674, 0.0402686 , 0.03846423, 0.04534014, 0.04721458, 0.05130912, 0.05026281, 0.05394312, 0.05529349, 0.05949243, 0.05463304, 0.06195165, 0.06767606, 0.06880985, 0.07048996, 0.07078815, 0.07420767, 0.06773439, 0.0658441 , 0.06470875, 0.06302349, 0.06456876, 0.06411282, 0.06216669, 0.067094 , 0.07055075, 0.07254976, 0.07119253, 0.06173308, 0.05393352, 0.05681246, 0.05250643, 0.06099845, 0.0655544 , 0.06977334, 0.06636514, 0.06177949, 0.06869908, 0.06719767, 0.06178738, 0.05915714, 0.06882277, 0.06756821, 0.06507994, 0.06489791, 0.06553941, 0.073123 , 0.07576757, 0.06805446, 0.06063571, 0.05033801, 0.05206971, 0.05540306, 0.05249118, 0.05755587, 0.0586174 , 0.05051288, 0.0564852 , 0.05757284, 0.06358355, 0.06130082, 0.04925482, 0.03834472, 0.04163981, 0.04648316, 0.04457858, 0.04324626, 0.04328791, 0.04156207, 0.04818652, 0.04972634, 0.06024123, 0.06489556, 0.06255485, 0.06069815, 0.06466389, 0.07081163, 0.07895358, 0.0881782 , 0.09374151, 0.08336506, 0.08764795, 0.09080174, 0.08808926, 0.08641158, 0.07811943, 0.06885318, 0.06479503, 0.06851185, 0.07382819, 0.07047903, 0.06658251, 0.07638379, 0.08667974, 0.08867918, 0.08245323, 0.08961866, 0.09905298, 0.0961908 , 0.08562706, 0.0839014 , 0.0849072 , 0.08338395, 0.08783487, 0.09463609, 0.10332336, 0.11806497, 0.11220297, 0.11589097, 0.11678405]) test_sharp = eval_sharp(self.long_data, 5, 0.00035) self.assertAlmostEqual(np.nanmean(expected_sharp), test_sharp) self.assertTrue(np.allclose(self.long_data['sharp'].values, expected_sharp, equal_nan=True)) def test_beta(self): reference = self.test_data1 self.assertAlmostEqual(eval_beta(self.test_data2, reference, 'value'), -0.017148939) self.assertAlmostEqual(eval_beta(self.test_data3, reference, 'value'), -0.042204233) self.assertAlmostEqual(eval_beta(self.test_data4, reference, 'value'), -0.15652986) self.assertAlmostEqual(eval_beta(self.test_data5, reference, 'value'), -0.049195532) self.assertAlmostEqual(eval_beta(self.test_data6, reference, 'value'), -0.026995082) self.assertAlmostEqual(eval_beta(self.test_data7, reference, 'value'), -0.01147809) self.assertRaises(TypeError, eval_beta, [1, 2, 3], reference, 'value') self.assertRaises(TypeError, eval_beta, self.test_data3, [1, 2, 3], 'value') self.assertRaises(KeyError, eval_beta, self.test_data3, reference, 'not_found_value') # 测试长数据的beta计算 expected_beta = np.array([ np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, -0.04988841, -0.05127618, -0.04692104, -0.04272652, -0.04080598, -0.0493347 , -0.0460858 , -0.0416761 , -0.03691527, -0.03724924, -0.03678865, -0.03987324, -0.03488321, -0.02567672, -0.02690303, -0.03010128, -0.02437967, -0.02571932, -0.02455681, -0.02839811, -0.03358653, -0.03396697, -0.03466321, -0.03050966, -0.0247583 , -0.01629325, -0.01880895, -0.01480403, -0.01348783, -0.00544294, -0.00648176, -0.00467036, -0.01135331, -0.0156841 , -0.02340763, -0.02615705, -0.02730771, -0.02906174, -0.02860664, -0.02412914, -0.02066416, -0.01744816, -0.02185133, -0.02145285, -0.02681765, -0.02827694, -0.02394581, -0.02744096, -0.02778825, -0.02703065, -0.03160023, -0.03615371, -0.03681072, -0.04265126, -0.04344738, -0.04232421, -0.04705272, -0.04533344, -0.04605934, -0.05272737, -0.05156463, -0.05134196, -0.04730733, -0.04425352, -0.03869831, -0.04159571, -0.04223998, -0.04346747, -0.04229844, -0.04740093, -0.04992507, -0.04621232, -0.04477644, -0.0486915 , -0.04598224, -0.04943463, -0.05006391, -0.05362256, -0.04994067, -0.05464769, -0.05443275, -0.05513493, -0.05173594, -0.04500994, -0.04662891, -0.03903505, -0.0419592 , -0.04307773, -0.03925718, -0.03711574, -0.03992631, -0.0433058 , -0.04533641, -0.0461183 , -0.05600344, -0.05758377, -0.05959874, -0.05605942, -0.06002859, -0.06253002, -0.06747014, -0.06427915, -0.05931947, -0.05769974, -0.04791515, -0.05175088, -0.05748039, -0.05385232, -0.05072975, -0.05052637, -0.05125567, -0.05005785, -0.05325104, -0.04977727, -0.04947867, -0.05148544, -0.05739156, -0.05742069, -0.06047279, -0.0558414 , -0.06086126, -0.06265151, -0.06411129, -0.06828052, -0.06781762, -0.07083409, -0.07211207, -0.06799162, -0.06913295, -0.06775162, -0.0696265 , -0.06678248, -0.06867502, -0.06581961, -0.07055823, -0.06448184, -0.06097973, -0.05795587, -0.0618383 , -0.06130145, -0.06050652, -0.05936661, -0.05749424, -0.0499 , -0.05050495, -0.04962687, -0.05033439, -0.05070116, -0.05422009, -0.05369759, -0.05548943, -0.05907353, -0.05933035, -0.05927918, -0.06227663, -0.06011455, -0.05650432, -0.05828134, -0.05620949, -0.05715323, -0.05482478, -0.05387113, -0.05095559, -0.05377999, -0.05334267, -0.05220438, -0.04001521, -0.03892434, -0.03660782, -0.04282708, -0.04324623, -0.04127048, -0.04227559, -0.04275226, -0.04347049, -0.04125853, -0.03806295, -0.0330632 , -0.03155531, -0.03277152, -0.03304518, -0.03878731, -0.03830672, -0.03727434, -0.0370571 , -0.04509224, -0.04207632, -0.04116198, -0.04545179, -0.04584584, -0.05287341, -0.05417433, -0.05175836, -0.05005509, -0.04268674, -0.03442321, -0.03457309, -0.03613426, -0.03524391, -0.03629479, -0.04361312, -0.02626705, -0.02406115, -0.03046384, -0.03181044, -0.03375164, -0.03661673, -0.04520779, -0.04926951, -0.05726738, -0.0584486 , -0.06220608, -0.06800563, -0.06797431, -0.07562211, -0.07481996, -0.07731229, -0.08413381, -0.09031826, -0.09691925, -0.11018071, -0.11952675, -0.10826026, -0.11173895, -0.10756359, -0.10775916, -0.11664559, -0.10505051, -0.10606547, -0.09855355, -0.10004159, -0.10857084, -0.12209301, -0.11605758, -0.11105113, -0.1155195 , -0.11569505, -0.10513348, -0.09611072, -0.10719791, -0.10843965, -0.11025856, -0.10247839, -0.10554044, -0.10927647, -0.10645088, -0.09982498, -0.10542734, -0.09631372, -0.08229695]) test_beta_mean = eval_beta(self.long_data, self.long_bench, 'value') test_beta_roll = self.long_data['beta'].values self.assertAlmostEqual(test_beta_mean, np.nanmean(expected_beta)) self.assertTrue(np.allclose(test_beta_roll, expected_beta, equal_nan=True)) def test_alpha(self): reference = self.test_data1 self.assertAlmostEqual(eval_alpha(self.test_data2, 5, reference, 'value', 0.5), 11.63072977) self.assertAlmostEqual(eval_alpha(self.test_data3, 5, reference, 'value', 0.5), 1.886590071) self.assertAlmostEqual(eval_alpha(self.test_data4, 5, reference, 'value', 0.5), 6.827021872) self.assertAlmostEqual(eval_alpha(self.test_data5, 5, reference, 'value', 0.92), -1.192265168) self.assertAlmostEqual(eval_alpha(self.test_data6, 5, reference, 'value', 0.92), -1.437142359) self.assertAlmostEqual(eval_alpha(self.test_data7, 5, reference, 'value', 0.92), -1.781311545) # 测试长数据的alpha计算 expected_alpha = np.array([ np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, -0.09418119, -0.11188463, -0.17938358, -0.15588172, -0.1462678 , -0.13089586, -0.10780125, -0.09102891, -0.03987585, -0.06075686, -0.02459503, -0.04104284, -0.0444565 , -0.04074585, 0.02191275, 0.02255955, -0.05583375, -0.05875539, -0.06055551, -0.09648245, -0.07913737, -0.10627829, -0.12320965, -0.12368335, -0.1506743 , -0.15768033, -0.13638829, -0.13065298, -0.14537834, -0.127428 , -0.15504529, -0.18184636, -0.12652146, -0.09190138, -0.14847221, -0.15840648, -0.1525789 , -0.11859418, -0.14700954, -0.16295761, -0.16051645, -0.10364859, -0.11961134, -0.10258267, -0.08090148, -0.05727746, -0.0429945 , -0.04672356, -0.03581408, -0.0439215 , -0.03429495, -0.0260362 , -0.01075022, 0.04931808, 0.02779388, 0.03984083, 0.08311951, 0.08995566, 0.10522428, 0.16159058, 0.14238174, 0.14759783, 0.16257712, 0.158908 , 0.11302115, 0.0909566 , 0.08272888, 0.15261884, 0.10546376, 0.04990313, -0.01284111, -0.02720704, 0.00454725, -0.03965491, -0.03818265, -0.02186992, -0.06574751, -0.04846454, -0.05204211, -0.06316498, -0.05095099, -0.08502656, -0.04681162, -0.02362027, -0.02205091, -0.07706374, -0.10371841, -0.14434688, -0.14797935, -0.09055402, -0.06739549, -0.08824959, -0.04855888, -0.02291244, 0.04027138, 0.09370505, 0.11472939, 0.10243593, 0.0921445 , 0.07662648, 0.07946651, 0.05450718, 0.10497677, 0.09068334, 0.15462924, 0.14231034, 0.10544952, 0.09980256, 0.14035223, 0.14942974, 0.17624102, 0.19035477, 0.2500807 , 0.30724652, 0.31768915, 0.35007521, 0.38412975, 0.34356521, 0.33614463, 0.41206165, 0.33999177, 0.28045963, 0.34076789, 0.42220356, 0.42314636, 0.50790423, 0.47713348, 0.42520169, 0.50488411, 0.48705211, 0.46252601, 0.44325578, 0.42640573, 0.37986783, 0.30652822, 0.34503393, 0.2999069 , 0.24928617, 0.24730218, 0.24326897, 0.26657905, 0.27861168, 0.26392824, 0.32552649, 0.34177792, 0.37837011, 0.37025267, 0.4030612 , 0.41339361, 0.45076809, 0.40383354, 0.47093422, 0.52505036, 0.53614256, 0.5500943 , 0.55319293, 0.59021451, 0.52358459, 0.50605947, 0.49359168, 0.47895956, 0.49320243, 0.4908336 , 0.47310767, 0.51821564, 0.55105932, 0.57291504, 0.5599809 , 0.46868842, 0.39620087, 0.42086934, 0.38317217, 0.45934108, 0.50048866, 0.53941991, 0.50676751, 0.46500915, 0.52993663, 0.51668366, 0.46405428, 0.44100603, 0.52726147, 0.51565458, 0.49186248, 0.49001081, 0.49367648, 0.56422294, 0.58882785, 0.51334664, 0.44386256, 0.35056709, 0.36490029, 0.39205071, 0.3677061 , 0.41134736, 0.42315067, 0.35356394, 0.40324562, 0.41340007, 0.46503322, 0.44355762, 0.34854314, 0.26412842, 0.28633753, 0.32335224, 0.30761141, 0.29709569, 0.29570487, 0.28000063, 0.32802547, 0.33967726, 0.42511212, 0.46252357, 0.44244974, 0.42152907, 0.45436727, 0.50482359, 0.57339198, 0.6573356 , 0.70912003, 0.60328917, 0.6395092 , 0.67015805, 0.64241557, 0.62779142, 0.55028063, 0.46448736, 0.43709245, 0.46777983, 0.51789439, 0.48594916, 0.4456216 , 0.52008189, 0.60548684, 0.62792473, 0.56645031, 0.62766439, 0.71829315, 0.69481356, 0.59550329, 0.58133754, 0.59014148, 0.58026655, 0.61719273, 0.67373203, 0.75573056, 0.89501633, 0.8347253 , 0.87964685, 0.89015835]) test_alpha_mean = eval_alpha(self.long_data, 100, self.long_bench, 'value') test_alpha_roll = self.long_data['alpha'].values self.assertAlmostEqual(test_alpha_mean, np.nanmean(expected_alpha)) self.assertTrue(np.allclose(test_alpha_roll, expected_alpha, equal_nan=True)) def test_calmar(self): """test evaluate function eval_calmar()""" pass def test_benchmark(self): reference = self.test_data1 tr, yr = eval_benchmark(self.test_data2, reference, 'value') self.assertAlmostEqual(tr, 0.19509091) self.assertAlmostEqual(yr, 0.929154957) tr, yr = eval_benchmark(self.test_data3, reference, 'value') self.assertAlmostEqual(tr, 0.19509091) self.assertAlmostEqual(yr, 0.929154957) tr, yr = eval_benchmark(self.test_data4, reference, 'value') self.assertAlmostEqual(tr, 0.19509091) self.assertAlmostEqual(yr, 0.929154957) tr, yr = eval_benchmark(self.test_data5, reference, 'value') self.assertAlmostEqual(tr, 0.19509091) self.assertAlmostEqual(yr, 0.929154957) tr, yr = eval_benchmark(self.test_data6, reference, 'value') self.assertAlmostEqual(tr, 0.19509091) self.assertAlmostEqual(yr, 0.929154957) tr, yr = eval_benchmark(self.test_data7, reference, 'value') self.assertAlmostEqual(tr, 0.19509091) self.assertAlmostEqual(yr, 0.929154957) def test_evaluate(self): pass class TestLoop(unittest.TestCase): """通过一个假设但精心设计的例子来测试loop_step以及loop方法的正确性""" def setUp(self): self.shares = ['share1', 'share2', 'share3', 'share4', 'share5', 'share6', 'share7'] self.dates = ['2016/07/01', '2016/07/04', '2016/07/05', '2016/07/06', '2016/07/07', '2016/07/08', '2016/07/11', '2016/07/12', '2016/07/13', '2016/07/14', '2016/07/15', '2016/07/18', '2016/07/19', '2016/07/20', '2016/07/21', '2016/07/22', '2016/07/25', '2016/07/26', '2016/07/27', '2016/07/28', '2016/07/29', '2016/08/01', '2016/08/02', '2016/08/03', '2016/08/04', '2016/08/05', '2016/08/08', '2016/08/09', '2016/08/10', '2016/08/11', '2016/08/12', '2016/08/15', '2016/08/16', '2016/08/17', '2016/08/18', '2016/08/19', '2016/08/22', '2016/08/23', '2016/08/24', '2016/08/25', '2016/08/26', '2016/08/29', '2016/08/30', '2016/08/31', '2016/09/01', '2016/09/02', '2016/09/05', '2016/09/06', '2016/09/07', '2016/09/08', '2016/09/09', '2016/09/12', '2016/09/13', '2016/09/14', '2016/09/15', '2016/09/16', '2016/09/19', '2016/09/20', '2016/09/21', '2016/09/22', '2016/09/23', '2016/09/26', '2016/09/27', '2016/09/28', '2016/09/29', '2016/09/30', '2016/10/10', '2016/10/11', '2016/10/12', '2016/10/13', '2016/10/14', '2016/10/17', '2016/10/18', '2016/10/19', '2016/10/20', '2016/10/21', '2016/10/23', '2016/10/24', '2016/10/25', '2016/10/26', '2016/10/27', '2016/10/29', '2016/10/30', '2016/10/31', '2016/11/01', '2016/11/02', '2016/11/05', '2016/11/06', '2016/11/07', '2016/11/08', '2016/11/09', '2016/11/12', '2016/11/13', '2016/11/14', '2016/11/15', '2016/11/16', '2016/11/19', '2016/11/20', '2016/11/21', '2016/11/22'] self.dates = [pd.Timestamp(date_text) for date_text in self.dates] self.prices = np.array([[5.35, 5.09, 5.03, 4.98, 4.50, 5.09, 4.75], [5.66, 4.84, 5.21, 5.44, 4.35, 5.06, 4.48], [5.79, 4.60, 5.02, 5.45, 4.07, 4.76, 4.56], [5.56, 4.63, 5.50, 5.74, 3.88, 4.62, 4.62], [5.88, 4.64, 5.07, 5.46, 3.74, 4.63, 4.62], [6.25, 4.51, 5.11, 5.45, 3.98, 4.25, 4.59], [5.93, 4.96, 5.15, 5.24, 4.08, 4.13, 4.33], [6.39, 4.65, 5.02, 5.47, 4.00, 3.91, 3.88], [6.31, 4.26, 5.10, 5.58, 4.28, 3.77, 3.47], [5.86, 3.77, 5.24, 5.36, 4.01, 3.43, 3.51], [5.61, 3.39, 4.93, 5.38, 4.14, 3.68, 3.83], [5.31, 3.76, 4.96, 5.30, 4.49, 3.63, 3.67], [5.40, 4.06, 5.40, 5.77, 4.49, 3.94, 3.79], [5.03, 3.87, 5.74, 5.75, 4.46, 4.40, 4.18], [5.38, 3.91, 5.53, 6.15, 4.13, 4.03, 4.02], [5.79, 4.13, 5.79, 6.04, 3.79, 3.93, 4.41], [6.27, 4.27, 5.68, 6.01, 4.23, 3.50, 4.65], [6.59, 4.57, 5.90, 5.71, 4.57, 3.39, 4.89], [6.91, 5.04, 5.75, 5.23, 4.92, 3.30, 4.41], [6.71, 5.31, 6.11, 5.47, 5.28, 3.25, 4.66], [6.33, 5.40, 5.77, 5.79, 5.67, 2.94, 4.37], [6.07, 5.21, 5.85, 5.82, 6.00, 2.71, 4.58], [5.98, 5.06, 5.61, 5.61, 5.89, 2.55, 4.76], [6.46, 4.69, 5.75, 5.31, 5.55, 2.21, 4.37], [6.95, 5.12, 5.50, 5.24, 5.39, 2.29, 4.16], [6.77, 5.27, 5.14, 5.41, 5.26, 2.21, 4.02], [6.70, 5.72, 5.31, 5.60, 5.31, 2.04, 3.77], [6.28, 6.10, 5.68, 5.28, 5.22, 2.39, 3.38], [6.61, 6.27, 5.73, 4.99, 4.90, 2.30, 3.07], [6.25, 6.49, 6.04, 5.09, 4.57, 2.41, 2.90], [6.47, 6.16, 6.27, 5.39, 4.96, 2.40, 2.50], [6.45, 6.26, 6.60, 5.58, 4.82, 2.79, 2.76], [6.88, 6.39, 6.10, 5.33, 4.39, 2.67, 2.29], [7.00, 6.58, 6.25, 5.48, 4.63, 2.27, 2.17], [6.59, 6.20, 6.73, 5.10, 5.05, 2.09, 1.84], [6.59, 5.70, 6.91, 5.39, 4.68, 2.55, 1.83], [6.64, 5.20, 7.01, 5.30, 5.02, 2.22, 2.21], [6.38, 5.37, 7.36, 5.04, 4.84, 2.59, 2.00], [6.10, 5.40, 7.72, 5.51, 4.60, 2.59, 1.76], [6.35, 5.22, 7.68, 5.43, 4.66, 2.95, 1.27], [6.52, 5.38, 7.62, 5.23, 4.41, 2.69, 1.40], [6.87, 5.53, 7.74, 4.99, 4.87, 2.20, 1.11], [6.84, 6.03, 7.53, 5.43, 4.42, 2.69, 1.60], [7.09, 5.77, 7.46, 5.40, 4.08, 2.65, 1.23], [6.88, 5.66, 7.84, 5.60, 4.16, 2.63, 1.59], [6.84, 6.08, 8.11, 5.66, 4.10, 2.14, 1.50], [6.98, 5.62, 8.04, 6.01, 4.43, 2.39, 1.80], [7.02, 5.63, 7.65, 5.64, 4.07, 1.95, 1.55], [7.13, 6.11, 7.52, 5.67, 3.97, 2.32, 1.35], [7.59, 6.03, 7.67, 5.30, 4.16, 2.69, 1.51], [7.61, 6.27, 7.47, 4.91, 4.12, 2.51, 1.08], [7.21, 6.28, 7.44, 5.37, 4.04, 2.62, 1.06], [7.48, 6.52, 7.59, 5.75, 3.84, 2.16, 1.43], [7.66, 7.00, 7.94, 6.08, 3.46, 2.35, 1.43], [7.51, 7.34, 8.25, 6.58, 3.18, 2.31, 1.74], [7.12, 7.34, 7.77, 6.78, 3.10, 1.96, 1.44], [6.97, 7.68, 8.03, 7.20, 3.55, 2.35, 1.83], [6.67, 8.09, 7.87, 7.65, 3.66, 2.58, 1.71], [6.20, 7.68, 7.58, 8.00, 3.66, 2.40, 2.12], [6.34, 7.58, 7.33, 7.92, 3.29, 2.20, 2.45], [6.22, 7.46, 7.22, 8.30, 2.80, 2.31, 2.85], [5.98, 7.59, 6.86, 8.46, 2.88, 2.16, 2.79], [6.37, 7.19, 7.18, 7.99, 3.04, 2.16, 2.91], [6.56, 7.40, 7.54, 8.19, 3.45, 2.20, 3.26], [6.26, 7.48, 7.24, 8.61, 3.88, 1.73, 3.14], [6.69, 7.93, 6.85, 8.66, 3.58, 1.93, 3.53], [7.13, 8.23, 6.60, 8.91, 3.60, 2.25, 3.65], [6.83, 8.35, 6.65, 9.08, 3.97, 2.69, 3.69], [7.31, 8.44, 6.74, 9.34, 4.05, 2.59, 3.50], [7.43, 8.35, 7.19, 8.96, 4.40, 2.14, 3.25], [7.54, 8.58, 7.14, 8.98, 4.06, 1.68, 3.64], [7.18, 8.82, 6.88, 8.50, 3.60, 1.98, 4.00], [7.21, 9.09, 7.14, 8.65, 3.61, 2.14, 3.63], [7.45, 9.02, 7.30, 8.94, 4.10, 1.89, 3.78], [7.37, 8.87, 6.95, 8.63, 3.74, 1.97, 3.42], [6.88, 9.22, 7.02, 8.65, 4.02, 1.99, 3.76], [7.08, 9.04, 7.38, 8.40, 3.95, 2.37, 3.62], [6.75, 8.60, 7.50, 8.38, 3.81, 2.14, 3.67], [6.60, 8.48, 7.60, 8.23, 3.71, 2.35, 3.61], [6.21, 8.71, 7.15, 8.04, 3.94, 1.86, 3.39], [6.36, 8.79, 7.30, 7.91, 4.43, 2.14, 3.43], [6.82, 8.93, 7.80, 7.57, 4.07, 2.39, 3.33], [6.45, 9.36, 8.15, 7.73, 4.04, 2.53, 3.03], [6.85, 9.68, 8.40, 7.74, 4.34, 2.47, 3.28], [6.48, 10.16, 8.87, 8.07, 4.80, 2.93, 3.46], [6.10, 10.56, 8.53, 7.99, 5.18, 3.09, 3.25], [5.64, 10.63, 8.94, 7.92, 4.90, 2.93, 2.95], [6.01, 10.55, 8.52, 8.40, 5.40, 3.22, 2.87], [6.21, 10.65, 8.80, 8.80, 5.73, 3.06, 2.63], [6.61, 10.55, 8.92, 8.47, 5.62, 2.90, 2.40], [7.02, 10.19, 9.20, 8.07, 5.20, 2.68, 2.53], [7.04, 10.48, 8.71, 7.87, 4.85, 2.46, 2.96], [6.77, 10.36, 8.25, 8.02, 5.18, 2.41, 3.26], [7.09, 10.03, 8.19, 8.39, 4.72, 2.74, 2.97], [6.65, 10.24, 7.80, 8.69, 4.62, 3.15, 3.16], [7.07, 10.01, 7.69, 8.81, 4.55, 3.40, 3.58], [6.80, 10.14, 7.23, 8.99, 4.37, 3.82, 3.23], [6.79, 10.31, 6.98, 9.10, 4.26, 4.02, 3.62], [6.48, 9.88, 7.07, 8.90, 4.25, 3.76, 3.13], [6.39, 10.05, 6.95, 8.87, 4.59, 4.10, 2.93]]) self.op_signals = np.array([[0, 0, 0, 0, 0.25, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0.1, 0.15], [0.2, 0.2, 0, 0, 0, 0, 0], [0, 0, 0.1, 0, 0, 0, 0], [0, 0, 0, 0, -0.75, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [-0.333, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, -0.5, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, -1], [0, 0, 0, 0, 0.2, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [-0.5, 0, 0, 0.15, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0.2, 0, -1, 0.2, 0], [0.5, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0.2, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -0.5, 0.2], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0.2, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0.15, 0, 0], [-1, 0, 0.25, 0.25, 0, 0.25, 0], [0, 0, 0, 0, 0, 0, 0], [0.25, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0.2, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, -1, 0, 0.2], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, -1, 0, 0, 0, 0, 0], [-1, 0, 0.15, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0]]) self.cash = qt.CashPlan(['2016/07/01', '2016/08/12', '2016/09/23'], [10000, 10000, 10000]) self.rate = qt.Cost(buy_fix=0, sell_fix=0, buy_rate=0, sell_rate=0, buy_min=0, sell_min=0, slipage=0) self.rate2 = qt.Cost(buy_fix=0, sell_fix=0, buy_rate=0, sell_rate=0, buy_min=10, sell_min=5, slipage=0) self.op_signal_df = pd.DataFrame(self.op_signals, index=self.dates, columns=self.shares) self.history_list = pd.DataFrame(self.prices, index=self.dates, columns=self.shares) self.res = np.array([[0.000, 0.000, 0.000, 0.000, 555.556, 0.000, 0.000, 7500.000, 0.000, 10000.000], [0.000, 0.000, 0.000, 0.000, 555.556, 0.000, 0.000, 7500.000, 0.000, 9916.667], [0.000, 0.000, 0.000, 0.000, 555.556, 205.065, 321.089, 5059.722, 0.000, 9761.111], [346.982, 416.679, 0.000, 0.000, 555.556, 205.065, 321.089, 1201.278, 0.000, 9646.112], [346.982, 416.679, 191.037, 0.000, 555.556, 205.065, 321.089, 232.719, 0.000, 9685.586], [346.982, 416.679, 191.037, 0.000, 138.889, 205.065, 321.089, 1891.052, 0.000, 9813.218], [346.982, 416.679, 191.037, 0.000, 138.889, 205.065, 321.089, 1891.052, 0.000, 9803.129], [346.982, 416.679, 191.037, 0.000, 138.889, 205.065, 321.089, 1891.052, 0.000, 9608.020], [346.982, 416.679, 191.037, 0.000, 138.889, 205.065, 321.089, 1891.052, 0.000, 9311.573], [346.982, 416.679, 191.037, 0.000, 138.889, 205.065, 321.089, 1891.052, 0.000, 8883.625], [346.982, 416.679, 191.037, 0.000, 138.889, 205.065, 321.089, 1891.052, 0.000, 8751.390], [346.982, 416.679, 191.037, 0.000, 138.889, 205.065, 321.089, 1891.052, 0.000, 8794.181], [346.982, 416.679, 191.037, 0.000, 138.889, 205.065, 321.089, 1891.052, 0.000, 9136.570], [231.437, 416.679, 191.037, 0.000, 138.889, 205.065, 321.089, 2472.244, 0.000, 9209.359], [231.437, 416.679, 191.037, 0.000, 138.889, 205.065, 321.089, 2472.244, 0.000, 9093.829], [231.437, 416.679, 191.037, 0.000, 138.889, 205.065, 321.089, 2472.244, 0.000, 9387.554], [231.437, 416.679, 191.037, 0.000, 138.889, 205.065, 321.089, 2472.244, 0.000, 9585.959], [231.437, 416.679, 95.519, 0.000, 138.889, 205.065, 321.089, 3035.804, 0.000, 9928.777], [231.437, 416.679, 95.519, 0.000, 138.889, 205.065, 321.089, 3035.804, 0.000, 10060.381], [231.437, 416.679, 95.519, 0.000, 138.889, 205.065, 321.089, 3035.804, 0.000, 10281.002], [231.437, 416.679, 95.519, 0.000, 138.889, 205.065, 321.089, 3035.804, 0.000, 10095.561], [231.437, 416.679, 95.519, 0.000, 138.889, 205.065, 0.000, 4506.393, 0.000, 10029.957], [231.437, 416.679, 95.519, 0.000, 474.224, 205.065, 0.000, 2531.270, 0.000, 9875.613], [231.437, 416.679, 95.519, 0.000, 474.224, 205.065, 0.000, 2531.270, 0.000, 9614.946], [231.437, 416.679, 95.519, 0.000, 474.224, 205.065, 0.000, 2531.270, 0.000, 9824.172], [115.719, 416.679, 95.519, 269.850, 474.224, 205.065, 0.000, 1854.799, 0.000, 9732.574], [115.719, 416.679, 95.519, 269.850, 474.224, 205.065, 0.000, 1854.799, 0.000, 9968.339], [115.719, 416.679, 95.519, 269.850, 474.224, 205.065, 0.000, 1854.799, 0.000, 10056.158], [115.719, 416.679, 95.519, 269.850, 474.224, 205.065, 0.000, 1854.799, 0.000, 9921.492], [115.719, 416.679, 95.519, 269.850, 474.224, 205.065, 0.000, 1854.799, 0.000, 9894.162], [115.719, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 6179.774, 0.000, 20067.937], [1073.823, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 0.000, 0.000, 21133.508], [1073.823, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 0.000, 0.000, 20988.848], [1073.823, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 0.000, 0.000, 20596.743], [1073.823, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 0.000, 0.000, 19910.773], [1073.823, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 0.000, 0.000, 20776.707], [1073.823, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 0.000, 0.000, 20051.797], [1073.823, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 0.000, 0.000, 20725.388], [1073.823, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 0.000, 0.000, 20828.880], [1073.823, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 0.000, 0.000, 21647.181], [1073.823, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 0.000, 0.000, 21310.169], [1073.823, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 0.000, 0.000, 20852.099], [1073.823, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 0.000, 0.000, 21912.395], [1073.823, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 0.000, 0.000, 21937.828], [1073.823, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 0.000, 0.000, 21962.458], [1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 21389.402], [1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 22027.453], [1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 20939.999], [1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 21250.064], [1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 22282.781], [1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 21407.066], [1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 21160.237], [1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 21826.768], [1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 22744.940], [1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 23466.118], [1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 22017.882], [1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 23191.466], [1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 23099.082], [1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 22684.767], [1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 22842.135], [1073.823, 416.679, 735.644, 269.850, 1785.205, 938.697, 1339.207, 5001.425, 0, 33323.836], [0.000, 416.679, 1290.692, 719.924, 1785.205, 2701.488, 1339.207, 0.000, 0.000, 32820.290], [0.000, 416.679, 1290.692, 719.924, 1785.205, 2701.488, 1339.207, 0.000, 0.000, 33174.614], [0.000, 416.679, 1290.692, 719.924, 1785.205, 2701.488, 1339.207, 0.000, 0.000, 35179.466], [0.000, 416.679, 1290.692, 719.924, 1785.205, 2701.488, 1339.207, 0.000, 0.000, 34465.195], [0.000, 416.679, 1290.692, 719.924, 1785.205, 2701.488, 1339.207, 0.000, 0.000, 34712.354], [0.000, 416.679, 1290.692, 719.924, 1785.205, 2701.488, 1339.207, 0.000, 0.000, 35755.550], [0.000, 416.679, 1290.692, 719.924, 1785.205, 2701.488, 1339.207, 0.000, 0.000, 37895.223], [0.000, 416.679, 1290.692, 719.924, 1785.205, 2701.488, 1339.207, 0.000, 0.000, 37854.284], [0.000, 416.679, 1290.692, 719.924, 1785.205, 2701.488, 1339.207, 0.000, 0.000, 37198.374], [0.000, 416.679, 1290.692, 719.924, 1785.205, 2701.488, 1339.207, 0.000, 0.000, 35916.711], [0.000, 416.679, 1290.692, 719.924, 1785.205, 2701.488, 1339.207, 0.000, 0.000, 35806.937], [0.000, 416.679, 1290.692, 719.924, 1785.205, 2701.488, 1339.207, 0.000, 0.000, 36317.592], [0.000, 416.679, 1290.692, 719.924, 1785.205, 2701.488, 1339.207, 0.000, 0.000, 37103.973], [0.000, 416.679, 1290.692, 719.924, 1785.205, 2701.488, 1339.207, 0.000, 0.000, 35457.883], [0.000, 416.679, 1290.692, 719.924, 1785.205, 2701.488, 1339.207, 0.000, 0.000, 36717.685], [0.000, 416.679, 1290.692, 719.924, 1785.205, 2701.488, 1339.207, 0.000, 0.000, 37641.463], [0.000, 416.679, 1290.692, 719.924, 1785.205, 2701.488, 1339.207, 0.000, 0.000, 36794.298], [0.000, 416.679, 1290.692, 719.924, 1785.205, 2701.488, 1339.207, 0.000, 0.000, 37073.817], [0.000, 416.679, 1290.692, 719.924, 1785.205, 2701.488, 1339.207, 0.000, 0.000, 35244.299], [0.000, 416.679, 1290.692, 719.924, 1785.205, 2701.488, 1339.207, 0.000, 0.000, 37062.382], [0.000, 416.679, 1290.692, 719.924, 1785.205, 2701.488, 1339.207, 0.000, 0.000, 37420.067], [0.000, 416.679, 1290.692, 719.924, 1785.205, 2701.488, 1339.207, 0.000, 0.000, 38089.058], [0.000, 416.679, 1290.692, 719.924, 1785.205, 2701.488, 1339.207, 0.000, 0.000, 39260.542], [0.000, 416.679, 1290.692, 719.924, 1785.205, 2701.488, 1339.207, 0.000, 0.000, 42609.684], [0.000, 416.679, 1290.692, 719.924, 1785.205, 2701.488, 1339.207, 0.000, 0.000, 43109.309], [0.000, 416.679, 1290.692, 719.924, 1785.205, 2701.488, 1339.207, 0.000, 0.000, 42283.408], [0.000, 416.679, 1290.692, 719.924, 0.000, 2701.488, 4379.099, 915.621, 0.000, 43622.444], [0.000, 416.679, 1290.692, 719.924, 0.000, 2701.488, 4379.099, 915.621, 0.000, 42830.254], [0.000, 416.679, 1290.692, 719.924, 0.000, 2701.488, 4379.099, 915.621, 0.000, 41266.463], [0.000, 416.679, 1290.692, 719.924, 0.000, 2701.488, 4379.099, 915.621, 0.000, 41164.839], [0.000, 416.679, 1290.692, 719.924, 0.000, 2701.488, 4379.099, 915.621, 0.000, 41797.937], [0.000, 416.679, 1290.692, 719.924, 0.000, 2701.488, 4379.099, 915.621, 0.000, 42440.861], [0.000, 416.679, 1290.692, 719.924, 0.000, 2701.488, 4379.099, 915.621, 0.000, 42113.839], [0.000, 416.679, 1290.692, 719.924, 0.000, 2701.488, 4379.099, 915.621, 0.000, 43853.588], [0.000, 416.679, 1290.692, 719.924, 0.000, 2701.488, 4379.099, 915.621, 0.000, 46216.760], [0.000, 0.000, 1290.692, 719.924, 0.000, 2701.488, 4379.099, 5140.743, 0.000, 45408.737], [0.000, 0.000, 2027.188, 719.924, 0.000, 2701.488, 4379.099, 0.000, 0.000, 47413.401], [0.000, 0.000, 2027.188, 719.924, 0.000, 2701.488, 4379.099, 0.000, 0.000, 44603.718], [0.000, 0.000, 2027.188, 719.924, 0.000, 2701.488, 4379.099, 0.000, 0.000, 44381.544]]) def test_loop_step(self): cash, amounts, fee, value = qt.core._loop_step(pre_cash=10000, pre_amounts=np.zeros(7, dtype='float'), op=self.op_signals[0], prices=self.prices[0], rate=self.rate, moq_buy=0, moq_sell=0, print_log=True) print(f'day 1 result in complete looping: \n' f'cash: {cash}\n' f'amounts: {np.round(amounts, 2)}\n' f'value: {value}') self.assertAlmostEqual(cash, 7500) self.assertTrue(np.allclose(amounts, np.array([0, 0, 0, 0, 555.5555556, 0, 0]))) self.assertAlmostEqual(value, 10000.00) cash, amounts, fee, value = qt.core._loop_step(pre_cash=5059.722222, pre_amounts=np.array([0, 0, 0, 0, 555.5555556, 205.0653595, 321.0891813]), op=self.op_signals[3], prices=self.prices[3], rate=self.rate, moq_buy=0, moq_sell=0, print_log=True) print(f'day 4 result in complete looping: \n' f'cash: {cash}\n' f'amounts: {np.round(amounts, 2)}\n' f'value: {value}') self.assertAlmostEqual(cash, 1201.2775195, 5) self.assertTrue(np.allclose(amounts, np.array([346.9824373, 416.6786936, 0, 0, 555.5555556, 205.0653595, 321.0891813]))) self.assertAlmostEqual(value, 9646.111756, 5) cash, amounts, fee, value = qt.core._loop_step(pre_cash=6179.77423, pre_amounts=np.array([115.7186428, 416.6786936, 735.6441811, 269.8495646, 0, 1877.393446, 0]), op=self.op_signals[31], prices=self.prices[31], rate=self.rate, moq_buy=0, moq_sell=0, print_log=True) print(f'day 32 result in complete looping: \n' f'cash: {cash}\n' f'amounts: {np.round(amounts, 2)}\n' f'value: {value}') self.assertAlmostEqual(cash, 0, 5) self.assertTrue(np.allclose(amounts, np.array([1073.823175, 416.6786936, 735.6441811, 269.8495646, 0, 1877.393446, 0]))) self.assertAlmostEqual(value, 21133.50798, 5) cash, amounts, fee, value = qt.core._loop_step(pre_cash=10000, pre_amounts=np.array([1073.823175, 416.6786936, 735.6441811, 269.8495646, 0, 938.6967231, 1339.207325]), op=self.op_signals[60], prices=self.prices[60], rate=self.rate, moq_buy=0, moq_sell=0, print_log=True) print(f'day 61 result in complete looping: \n' f'cash: {cash}\n' f'amounts: {np.round(amounts, 2)}\n' f'value: {value}') self.assertAlmostEqual(cash, 5001.424618, 5) self.assertTrue(np.allclose(amounts, np.array([1073.823175, 416.6786936, 735.6441811, 269.8495646, 1785.205494, 938.6967231, 1339.207325]))) self.assertAlmostEqual(value, 33323.83588, 5) cash, amounts, fee, value = qt.core._loop_step(pre_cash=cash, pre_amounts=amounts, op=self.op_signals[61], prices=self.prices[61], rate=self.rate, moq_buy=0, moq_sell=0, print_log=True) print(f'day 62 result in complete looping: \n' f'cash: {cash}\n' f'amounts: {np.round(amounts, 2)}\n' f'value: {value}') self.assertAlmostEqual(cash, 0, 5) self.assertTrue(np.allclose(amounts, np.array([0, 416.6786936, 1290.69215, 719.9239224, 1785.205494, 2701.487958, 1339.207325]))) self.assertAlmostEqual(value, 32820.29007, 5) cash, amounts, fee, value = qt.core._loop_step(pre_cash=915.6208259, pre_amounts=np.array([0, 416.6786936, 1290.69215, 719.9239224, 0, 2701.487958, 4379.098907]), op=self.op_signals[96], prices=self.prices[96], rate=self.rate, moq_buy=0, moq_sell=0, print_log=True) print(f'day 97 result in complete looping: \n' f'cash: {cash}\n' f'amounts: {np.round(amounts, 2)}\n' f'value: {value}') self.assertAlmostEqual(cash, 5140.742779, 5) self.assertTrue(np.allclose(amounts, np.array([0, 0, 1290.69215, 719.9239224, 0, 2701.487958, 4379.098907]))) self.assertAlmostEqual(value, 45408.73655, 4) cash, amounts, fee, value = qt.core._loop_step(pre_cash=cash, pre_amounts=amounts, op=self.op_signals[97], prices=self.prices[97], rate=self.rate, moq_buy=0, moq_sell=0, print_log=True) print(f'day 98 result in complete looping: \n' f'cash: {cash}\n' f'amounts: {np.round(amounts, 2)}\n' f'value: {value}') self.assertAlmostEqual(cash, 0, 5) self.assertTrue(np.allclose(amounts, np.array([0, 0, 2027.18825, 719.9239224, 0, 2701.487958, 4379.098907]))) self.assertAlmostEqual(value, 47413.40131, 4) def test_loop(self): res = apply_loop(op_list=self.op_signal_df, history_list=self.history_list, cash_plan=self.cash, cost_rate=self.rate, moq_buy=0, moq_sell=0, inflation_rate=0, print_log=True) self.assertIsInstance(res, pd.DataFrame) print(f'in test_loop:\nresult of loop test is \n{res}') self.assertTrue(np.allclose(res.values, self.res, 5)) print(f'test assertion errors in apply_loop: detect moqs that are not compatible') self.assertRaises(AssertionError, apply_loop, self.op_signal_df, self.history_list, self.cash, self.rate, 0, 1, 0, False) self.assertRaises(AssertionError, apply_loop, self.op_signal_df, self.history_list, self.cash, self.rate, 1, 5, 0, False) print(f'test loop results with moq equal to 100') res = apply_loop(op_list=self.op_signal_df, history_list=self.history_list, cash_plan=self.cash, cost_rate=self.rate2, moq_buy=100, moq_sell=1, inflation_rate=0, print_log=True) self.assertIsInstance(res, pd.DataFrame) print(f'in test_loop:\nresult of loop test is \n{res}') class TestOperatorSubFuncs(unittest.TestCase): def setUp(self): mask_list = [[0.0, 0.0, 0.0, 0.0], [0.5, 0.0, 0.0, 1.0], [0.5, 0.0, 0.3, 1.0], [0.5, 0.0, 0.3, 0.5], [0.5, 0.5, 0.3, 0.5], [0.5, 0.5, 0.3, 1.0], [0.3, 0.5, 0.0, 1.0], [0.3, 1.0, 0.0, 1.0]] signal_list = [[0.0, 0.0, 0.0, 0.0], [0.5, 0.0, 0.0, 1.0], [0.0, 0.0, 0.3, 0.0], [0.0, 0.0, 0.0, -0.5], [0.0, 0.5, 0.0, 0.0], [0.0, 0.0, 0.0, 0.5], [-0.4, 0.0, -1.0, 0.0], [0.0, 0.5, 0.0, 0.0]] mask_multi = [[[0, 0, 1, 1, 0], [0, 1, 1, 1, 0], [1, 1, 1, 1, 0], [1, 1, 1, 1, 1], [1, 1, 1, 1, 1], [1, 1, 0, 1, 1], [0, 1, 0, 0, 1], [1, 1, 0, 0, 1], [1, 1, 0, 0, 1], [1, 0, 0, 0, 1]], [[0, 0, 1, 0, 1], [0, 1, 1, 1, 1], [1, 1, 0, 1, 1], [1, 1, 1, 0, 0], [1, 1, 0, 0, 0], [1, 0, 0, 0, 0], [1, 0, 0, 0, 0], [1, 1, 0, 0, 0], [1, 1, 0, 1, 0], [0, 1, 0, 1, 0]], [[0, 0, 0., 0, 1], [0, 0, 1., 0, 1], [0, 0, 1., 0, 1], [1, 0, 1., 0, 1], [1, 1, .5, 1, 1], [1, 0, .5, 1, 0], [1, 1, .5, 1, 0], [0, 1, 0., 0, 0], [1, 0, 0., 0, 0], [0, 1, 0., 0, 0]]] signal_multi = [[[0., 0., 1., 1., 0.], [0., 1., 0., 0., 0.], [1., 0., 0., 0., 0.], [0., 0., 0., 0., 1.], [0., 0., 0., 0., 0.], [0., 0., -1., 0., 0.], [-1., 0., 0., -1., 0.], [1., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., -1., 0., 0., 0.]], [[0., 0., 1., 0., 1.], [0., 1., 0., 1., 0.], [1., 0., -1., 0., 0.], [0., 0., 1., -1., -1.], [0., 0., -1., 0., 0.], [0., -1., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 1., 0., 0., 0.], [0., 0., 0., 1., 0.], [-1., 0., 0., 0., 0.]], [[0., 0., 0., 0., 1.], [0., 0., 1., 0., 0.], [0., 0., 0., 0., 0.], [1., 0., 0., 0., 0.], [0., 1., -0.5, 1., 0.], [0., -1., 0., 0., -1.], [0., 1., 0., 0., 0.], [-1., 0., -1., -1., 0.], [1., -1., 0., 0., 0.], [-1., 1., 0., 0., 0.]]] self.mask = np.array(mask_list) self.multi_mask = np.array(mask_multi) self.correct_signal = np.array(signal_list) self.correct_multi_signal = np.array(signal_multi) self.op = qt.Operator() def test_ls_blend(self): """测试多空蒙板的混合器,三种混合方式均需要测试""" ls_mask1 = [[0.0, 0.0, 0.0, -0.0], [1.0, 0.0, 0.0, -1.0], [1.0, 0.0, 1.0, -1.0], [1.0, 0.0, 1.0, -1.0], [1.0, 1.0, 1.0, -1.0], [1.0, 1.0, 1.0, -1.0], [0.0, 1.0, 0.0, -1.0], [0.0, 1.0, 0.0, -1.0]] ls_mask2 = [[0.0, 0.0, 0.5, -0.5], [0.0, 0.0, 0.5, -0.3], [0.0, 0.5, 0.5, -0.0], [0.5, 0.5, 0.3, -0.0], [0.5, 0.5, 0.3, -0.3], [0.5, 0.5, 0.0, -0.5], [0.3, 0.5, 0.0, -1.0], [0.3, 1.0, 0.0, -1.0]] ls_mask3 = [[0.5, 0.0, 1.0, -0.4], [0.4, 0.0, 1.0, -0.3], [0.3, 0.0, 0.8, -0.2], [0.2, 0.0, 0.6, -0.1], [0.1, 0.2, 0.4, -0.2], [0.1, 0.3, 0.2, -0.5], [0.1, 0.4, 0.0, -0.5], [0.1, 0.5, 0.0, -1.0]] # result with blender 'avg' ls_blnd_avg = [[0.16666667, 0.00000000, 0.50000000, -0.3], [0.46666667, 0.00000000, 0.50000000, -0.53333333], [0.43333333, 0.16666667, 0.76666667, -0.4], [0.56666667, 0.16666667, 0.63333333, -0.36666667], [0.53333333, 0.56666667, 0.56666667, -0.5], [0.53333333, 0.60000000, 0.40000000, -0.66666667], [0.13333333, 0.63333333, 0.00000000, -0.83333333], [0.13333333, 0.83333333, 0.00000000, -1.]] # result with blender 'str-1.5' ls_blnd_str_15 = [[0, 0, 1, 0], [0, 0, 1, -1], [0, 0, 1, 0], [1, 0, 1, 0], [1, 1, 1, -1], [1, 1, 0, -1], [0, 1, 0, -1], [0, 1, 0, -1]] # result with blender 'pos-2' == 'pos-2-0' ls_blnd_pos_2 = [[0, 0, 1, -1], [1, 0, 1, -1], [1, 0, 1, -1], [1, 0, 1, -1], [1, 1, 1, -1], [1, 1, 1, -1], [1, 1, 0, -1], [1, 1, 0, -1]] # result with blender 'pos-2-0.25' ls_blnd_pos_2_25 = [[0, 0, 1, -1], [1, 0, 1, -1], [1, 0, 1, 0], [1, 0, 1, 0], [1, 1, 1, -1], [1, 1, 0, -1], [0, 1, 0, -1], [0, 1, 0, -1]] # result with blender 'avg_pos-2' == 'pos-2-0' ls_blnd_avg_pos_2 = [[0.00000000, 0.00000000, 0.50000000, -0.3], [0.46666667, 0.00000000, 0.50000000, -0.53333333], [0.43333333, 0.00000000, 0.76666667, -0.4], [0.56666667, 0.00000000, 0.63333333, -0.36666667], [0.53333333, 0.56666667, 0.56666667, -0.5], [0.53333333, 0.60000000, 0.40000000, -0.66666667], [0.13333333, 0.63333333, 0.00000000, -0.83333333], [0.13333333, 0.83333333, 0.00000000, -1.]] # result with blender 'avg_pos-2-0.25' ls_blnd_avg_pos_2_25 = [[0.00000000, 0.00000000, 0.50000000, -0.3], [0.46666667, 0.00000000, 0.50000000, -0.53333333], [0.43333333, 0.00000000, 0.76666667, 0.00000000], [0.56666667, 0.00000000, 0.63333333, 0.00000000], [0.53333333, 0.56666667, 0.56666667, -0.5], [0.53333333, 0.60000000, 0.00000000, -0.66666667], [0.00000000, 0.63333333, 0.00000000, -0.83333333], [0.00000000, 0.83333333, 0.00000000, -1.]] # result with blender 'combo' ls_blnd_combo = [[0.5, 0., 1.5, -0.9], [1.4, 0., 1.5, -1.6], [1.3, 0.5, 2.3, -1.2], [1.7, 0.5, 1.9, -1.1], [1.6, 1.7, 1.7, -1.5], [1.6, 1.8, 1.2, -2.], [0.4, 1.9, 0., -2.5], [0.4, 2.5, 0., -3.]] ls_masks = np.array([np.array(ls_mask1), np.array(ls_mask2), np.array(ls_mask3)]) # test A: the ls_blender 'str-T' self.op.set_blender('ls', 'str-1.5') res = qt.Operator._ls_blend(self.op, ls_masks) print(f'test A: result of ls_blender: str-1.5: \n{res}') self.assertTrue(np.allclose(res, ls_blnd_str_15)) # test B: the ls_blender 'pos-N-T' self.op.set_blender('ls', 'pos-2') res = qt.Operator._ls_blend(self.op, ls_masks) print(f'Test B-1: result of ls_blender: pos-2: \n{res}') self.assertTrue(np.allclose(res, ls_blnd_pos_2)) self.op.set_blender('ls', 'pos-2-0.25') res = qt.Operator._ls_blend(self.op, ls_masks) print(f'Test B-2: result of ls_blender: pos-2-0.25: \n{res}') self.assertTrue(np.allclose(res, ls_blnd_pos_2_25)) # test C: the ls_blender 'avg_pos-N-T' self.op.set_blender('ls', 'avg_pos-2') res = qt.Operator._ls_blend(self.op, ls_masks) print(f'Test C-1: result of ls_blender: avg_pos-2: \n{res}') self.assertTrue(np.allclose(res, ls_blnd_pos_2, 5)) self.op.set_blender('ls', 'avg_pos-2-0.25') res = qt.Operator._ls_blend(self.op, ls_masks) print(f'Test C-2: result of ls_blender: avg_pos-2-0.25: \n{res}') self.assertTrue(np.allclose(res, ls_blnd_pos_2_25, 5)) # test D: the ls_blender 'avg' self.op.set_blender('ls', 'avg') res = qt.Operator._ls_blend(self.op, ls_masks) print(f'Test D: result of ls_blender: avg: \n{res}') self.assertTrue(np.allclose(res, ls_blnd_avg)) # test E: the ls_blender 'combo' self.op.set_blender('ls', 'combo') res = qt.Operator._ls_blend(self.op, ls_masks) print(f'Test E: result of ls_blender: combo: \n{res}') self.assertTrue(np.allclose(res, ls_blnd_combo)) def test_sel_blend(self): """测试选股蒙板的混合器,包括所有的混合模式""" # step2, test blending of sel masks pass def test_bs_blend(self): """测试买卖信号混合模式""" # step3, test blending of op signals pass def test_unify(self): print('Testing Unify functions\n') l1 = np.array([[3, 2, 5], [5, 3, 2]]) res = qt.unify(l1) target = np.array([[0.3, 0.2, 0.5], [0.5, 0.3, 0.2]]) self.assertIs(np.allclose(res, target), True, 'sum of all elements is 1') l1 = np.array([[1, 1, 1, 1, 1], [2, 2, 2, 2, 2]]) res = qt.unify(l1) target = np.array([[0.2, 0.2, 0.2, 0.2, 0.2], [0.2, 0.2, 0.2, 0.2, 0.2]]) self.assertIs(np.allclose(res, target), True, 'sum of all elements is 1') def test_mask_to_signal(self): signal = qt.mask_to_signal(self.mask) print(f'Test A: single mask to signal, result: \n{signal}') self.assertTrue(np.allclose(signal, self.correct_signal)) signal = qt.mask_to_signal(self.multi_mask) print(f'Test A: single mask to signal, result: \n{signal}') self.assertTrue(np.allclose(signal, self.correct_multi_signal)) class TestLSStrategy(qt.RollingTiming): """用于test测试的简单多空蒙板生成策略。基于RollingTiming滚动择时方法生成 该策略有两个参数,N与Price N用于计算OHLC价格平均值的N日简单移动平均,判断,当移动平均值大于等于Price时,状态为看多,否则为看空 """ def __init__(self): super().__init__(stg_name='test_LS', stg_text='test long/short strategy', par_count=2, par_types='discr, conti', par_bounds_or_enums=([1, 5], [2, 10]), data_types='close, open, high, low', data_freq='d', window_length=5) pass def _realize(self, hist_data: np.ndarray, params: tuple): n, price = params h = hist_data.T avg = (h[0] + h[1] + h[2] + h[3]) / 4 ma = sma(avg, n) if ma[-1] < price: return 0 else: return 1 class TestSelStrategy(qt.SimpleSelecting): """用于Test测试的简单选股策略,基于Selecting策略生成 策略没有参数,选股周期为5D 在每个选股周期内,从股票池的三只股票中选出今日变化率 = (今收-昨收)/平均股价(OHLC平均股价)最高的两支,放入中选池,否则落选。 选股比例为平均分配 """ def __init__(self): super().__init__(stg_name='test_SEL', stg_text='test portfolio selection strategy', par_count=0, par_types='', par_bounds_or_enums=(), data_types='high, low, close', data_freq='d', sample_freq='10d', window_length=5) pass def _realize(self, hist_data: np.ndarray, params: tuple): avg = np.nanmean(hist_data, axis=(1, 2)) dif = (hist_data[:, :, 2] - np.roll(hist_data[:, :, 2], 1, 1)) dif_no_nan = np.array([arr[~np.isnan(arr)][-1] for arr in dif]) difper = dif_no_nan / avg large2 = difper.argsort()[1:] chosen = np.zeros_like(avg) chosen[large2] = 0.5 return chosen class TestSelStrategyDiffTime(qt.SimpleSelecting): """用于Test测试的简单选股策略,基于Selecting策略生成 策略没有参数,选股周期为5D 在每个选股周期内,从股票池的三只股票中选出今日变化率 = (今收-昨收)/平均股价(OHLC平均股价)最高的两支,放入中选池,否则落选。 选股比例为平均分配 """ def __init__(self): super().__init__(stg_name='test_SEL', stg_text='test portfolio selection strategy', par_count=0, par_types='', par_bounds_or_enums=(), data_types='close, low, open', data_freq='d', sample_freq='w', window_length=2) pass def _realize(self, hist_data: np.ndarray, params: tuple): avg = hist_data.mean(axis=1).squeeze() difper = (hist_data[:, :, 0] - np.roll(hist_data[:, :, 0], 1))[:, -1] / avg large2 = difper.argsort()[0:2] chosen = np.zeros_like(avg) chosen[large2] = 0.5 return chosen class TestSigStrategy(qt.SimpleTiming): """用于Test测试的简单信号生成策略,基于SimpleTiming策略生成 策略有三个参数,第一个参数为ratio,另外两个参数为price1以及price2 ratio是k线形状比例的阈值,定义为abs((C-O)/(H-L))。当这个比值小于ratio阈值时,判断该K线为十字交叉(其实还有丁字等多种情形,但这里做了 简化处理。 信号生成的规则如下: 1,当某个K线出现十字交叉,且昨收与今收之差大于price1时,买入信号 2,当某个K线出现十字交叉,且昨收与今收之差小于price2时,卖出信号 """ def __init__(self): super().__init__(stg_name='test_SIG', stg_text='test signal creation strategy', par_count=3, par_types='conti, conti, conti', par_bounds_or_enums=([2, 10], [0, 3], [0, 3]), data_types='close, open, high, low', window_length=2) pass def _realize(self, hist_data: np.ndarray, params: tuple): r, price1, price2 = params h = hist_data.T ratio = np.abs((h[0] - h[1]) / (h[3] - h[2])) diff = h[0] - np.roll(h[0], 1) sig = np.where((ratio < r) & (diff > price1), 1, np.where((ratio < r) & (diff < price2), -1, 0)) return sig class TestOperator(unittest.TestCase): """全面测试Operator对象的所有功能。包括: 1, Strategy 参数的设置 2, 历史数据的获取与分配提取 3, 策略优化参数的批量设置和优化空间的获取 4, 策略输出值的正确性验证 5, 策略结果的混合结果确认 """ def setUp(self): """prepare data for Operator test""" print('start testing HistoryPanel object\n') # build up test data: a 4-type, 3-share, 50-day matrix of prices that contains nan values in some days # for some share_pool # for share1: data_rows = 50 share1_close = [10.04, 10, 10, 9.99, 9.97, 9.99, 10.03, 10.03, 10.06, 10.06, 10.11, 10.09, 10.07, 10.06, 10.09, 10.03, 10.03, 10.06, 10.08, 10, 9.99, 10.03, 10.03, 10.06, 10.03, 9.97, 9.94, 9.83, 9.77, 9.84, 9.91, 9.93, 9.96, 9.91, 9.91, 9.88, 9.91, 9.64, 9.56, 9.57, 9.55, 9.57, 9.61, 9.61, 9.55, 9.57, 9.63, 9.64, 9.65, 9.62] share1_open = [10.02, 10, 9.98, 9.97, 9.99, 10.01, 10.04, 10.06, 10.06, 10.11, 10.11, 10.07, 10.06, 10.09, 10.03, 10.02, 10.06, 10.08, 9.99, 10, 10.03, 10.02, 10.06, 10.03, 9.97, 9.94, 9.83, 9.78, 9.77, 9.91, 9.92, 9.97, 9.91, 9.9, 9.88, 9.91, 9.63, 9.64, 9.57, 9.55, 9.58, 9.61, 9.62, 9.55, 9.57, 9.61, 9.63, 9.64, 9.61, 9.56] share1_high = [10.07, 10, 10, 10, 10.03, 10.03, 10.04, 10.09, 10.1, 10.14, 10.11, 10.1, 10.09, 10.09, 10.1, 10.05, 10.07, 10.09, 10.1, 10, 10.04, 10.04, 10.06, 10.09, 10.05, 9.97, 9.96, 9.86, 9.77, 9.92, 9.94, 9.97, 9.97, 9.92, 9.92, 9.92, 9.93, 9.64, 9.58, 9.6, 9.58, 9.62, 9.62, 9.64, 9.59, 9.62, 9.63, 9.7, 9.66, 9.64] share1_low = [9.99, 10, 9.97, 9.97, 9.97, 9.98, 9.99, 10.03, 10.03, 10.04, 10.11, 10.07, 10.05, 10.03, 10.03, 10.01, 9.99, 10.03, 9.95, 10, 9.95, 10, 10.01, 9.99, 9.96, 9.89, 9.83, 9.77, 9.77, 9.8, 9.9, 9.91, 9.89, 9.89, 9.87, 9.85, 9.6, 9.64, 9.53, 9.55, 9.54, 9.55, 9.58, 9.54, 9.53, 9.53, 9.63, 9.64, 9.59, 9.56] # for share2: share2_close = [9.68, 9.87, 9.86, 9.87, 9.79, 9.82, 9.8, 9.66, 9.62, 9.58, 9.69, 9.78, 9.75, 9.96, 9.9, 10.04, 10.06, 10.08, 10.24, 10.24, 10.24, 9.86, 10.13, 10.12, 10.1, 10.25, 10.24, 10.22, 10.75, 10.64, 10.56, 10.6, 10.42, 10.25, 10.24, 10.49, 10.57, 10.63, 10.48, 10.37, 10.96, 11.02, np.nan, np.nan, 10.88, 10.87, 11.01, 11.01, 11.58, 11.8] share2_open = [9.88, 9.88, 9.89, 9.75, 9.74, 9.8, 9.62, 9.65, 9.58, 9.67, 9.81, 9.8, 10, 9.95, 10.1, 10.06, 10.14, 9.9, 10.2, 10.29, 9.86, 9.48, 10.01, 10.24, 10.26, 10.24, 10.12, 10.65, 10.64, 10.56, 10.42, 10.43, 10.29, 10.3, 10.44, 10.6, 10.67, 10.46, 10.39, 10.9, 11.01, 11.01, np.nan, np.nan, 10.82, 11.02, 10.96, 11.55, 11.74, 11.8] share2_high = [9.91, 10.04, 9.93, 10.04, 9.84, 9.88, 9.99, 9.7, 9.67, 9.71, 9.85, 9.9, 10, 10.2, 10.11, 10.18, 10.21, 10.26, 10.38, 10.47, 10.42, 10.07, 10.24, 10.27, 10.38, 10.43, 10.39, 10.65, 10.84, 10.65, 10.73, 10.63, 10.51, 10.35, 10.46, 10.63, 10.74, 10.76, 10.54, 11.02, 11.12, 11.17, np.nan, np.nan, 10.92, 11.15, 11.11, 11.55, 11.95, 11.93] share2_low = [9.63, 9.84, 9.81, 9.74, 9.67, 9.72, 9.57, 9.54, 9.51, 9.47, 9.68, 9.63, 9.75, 9.65, 9.9, 9.93, 10.03, 9.8, 10.14, 10.09, 9.78, 9.21, 9.11, 9.68, 10.05, 10.12, 9.89, 9.89, 10.59, 10.43, 10.34, 10.32, 10.21, 10.2, 10.18, 10.36, 10.51, 10.41, 10.32, 10.37, 10.87, 10.95, np.nan, np.nan, 10.65, 10.71, 10.75, 10.91, 11.31, 11.58] # for share3: share3_close = [6.64, 7.26, 7.03, 6.87, np.nan, 6.64, 6.85, 6.7, 6.39, 6.22, 5.92, 5.91, 6.11, 5.91, 6.23, 6.28, 6.28, 6.27, np.nan, 5.56, 5.67, 5.16, 5.69, 6.32, 6.14, 6.25, 5.79, 5.26, 5.05, 5.45, 6.06, 6.21, 5.69, 5.46, 6.02, 6.69, 7.43, 7.72, 8.16, 7.83, 8.7, 8.71, 8.88, 8.54, 8.87, 8.87, 8.18, 7.8, 7.97, 8.25] share3_open = [7.26, 7, 6.88, 6.91, np.nan, 6.81, 6.63, 6.45, 6.16, 6.24, 5.96, 5.97, 5.96, 6.2, 6.35, 6.11, 6.37, 5.58, np.nan, 5.65, 5.19, 5.42, 6.3, 6.15, 6.05, 5.89, 5.22, 5.2, 5.07, 6.04, 6.12, 5.85, 5.67, 6.02, 6.04, 7.07, 7.64, 7.99, 7.59, 8.73, 8.72, 8.97, 8.58, 8.71, 8.77, 8.4, 7.95, 7.76, 8.25, 7.51] share3_high = [7.41, 7.31, 7.14, 7, np.nan, 6.82, 6.96, 6.85, 6.5, 6.34, 6.04, 6.02, 6.12, 6.38, 6.43, 6.46, 6.43, 6.27, np.nan, 6.01, 5.67, 5.67, 6.35, 6.32, 6.43, 6.36, 5.79, 5.47, 5.65, 6.04, 6.14, 6.23, 5.83, 6.25, 6.27, 7.12, 7.82, 8.14, 8.27, 8.92, 8.76, 9.15, 8.9, 9.01, 9.16, 9, 8.27, 7.99, 8.33, 8.25] share3_low = [6.53, 6.87, 6.83, 6.7, np.nan, 6.63, 6.57, 6.41, 6.15, 6.07, 5.89, 5.82, 5.73, 5.81, 6.1, 6.06, 6.16, 5.57, np.nan, 5.51, 5.19, 5.12, 5.69, 6.01, 5.97, 5.86, 5.18, 5.19, 4.96, 5.45, 5.84, 5.85, 5.28, 5.42, 6.02, 6.69, 7.28, 7.64, 7.25, 7.83, 8.41, 8.66, 8.53, 8.54, 8.73, 8.27, 7.95, 7.67, 7.8, 7.51] # for sel_finance test shares_eps = np.array([[np.nan, np.nan, np.nan], [0.1, np.nan, np.nan], [np.nan, 0.2, np.nan], [np.nan, np.nan, 0.3], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, 0.2], [0.1, np.nan, np.nan], [np.nan, 0.3, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [0.3, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, 0.3, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, 0.3], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, 0, 0.2], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [0.1, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, 0.2], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [0.15, np.nan, np.nan], [np.nan, 0.1, np.nan], [np.nan, np.nan, np.nan], [0.1, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, 0.3], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [0.2, np.nan, np.nan], [np.nan, 0.5, np.nan], [0.4, np.nan, 0.3], [np.nan, np.nan, np.nan], [np.nan, 0.3, np.nan], [0.9, np.nan, np.nan], [np.nan, np.nan, 0.1]]) self.date_indices = ['2016-07-01', '2016-07-04', '2016-07-05', '2016-07-06', '2016-07-07', '2016-07-08', '2016-07-11', '2016-07-12', '2016-07-13', '2016-07-14', '2016-07-15', '2016-07-18', '2016-07-19', '2016-07-20', '2016-07-21', '2016-07-22', '2016-07-25', '2016-07-26', '2016-07-27', '2016-07-28', '2016-07-29', '2016-08-01', '2016-08-02', '2016-08-03', '2016-08-04', '2016-08-05', '2016-08-08', '2016-08-09', '2016-08-10', '2016-08-11', '2016-08-12', '2016-08-15', '2016-08-16', '2016-08-17', '2016-08-18', '2016-08-19', '2016-08-22', '2016-08-23', '2016-08-24', '2016-08-25', '2016-08-26', '2016-08-29', '2016-08-30', '2016-08-31', '2016-09-01', '2016-09-02', '2016-09-05', '2016-09-06', '2016-09-07', '2016-09-08'] self.shares = ['000010', '000030', '000039'] self.types = ['close', 'open', 'high', 'low'] self.sel_finance_tyeps = ['eps'] self.test_data_3D = np.zeros((3, data_rows, 4)) self.test_data_2D = np.zeros((data_rows, 3)) self.test_data_2D2 = np.zeros((data_rows, 4)) self.test_data_sel_finance = np.empty((3, data_rows, 1)) # Build up 3D data self.test_data_3D[0, :, 0] = share1_close self.test_data_3D[0, :, 1] = share1_open self.test_data_3D[0, :, 2] = share1_high self.test_data_3D[0, :, 3] = share1_low self.test_data_3D[1, :, 0] = share2_close self.test_data_3D[1, :, 1] = share2_open self.test_data_3D[1, :, 2] = share2_high self.test_data_3D[1, :, 3] = share2_low self.test_data_3D[2, :, 0] = share3_close self.test_data_3D[2, :, 1] = share3_open self.test_data_3D[2, :, 2] = share3_high self.test_data_3D[2, :, 3] = share3_low self.test_data_sel_finance[:, :, 0] = shares_eps.T self.hp1 = qt.HistoryPanel(values=self.test_data_3D, levels=self.shares, columns=self.types, rows=self.date_indices) print(f'in test Operator, history panel is created for timing test') self.hp1.info() self.hp2 = qt.HistoryPanel(values=self.test_data_sel_finance, levels=self.shares, columns=self.sel_finance_tyeps, rows=self.date_indices) print(f'in test_Operator, history panel is created for selection finance test:') self.hp2.info() self.op = qt.Operator(selecting_types=['all'], timing_types='dma', ricon_types='urgent') def test_info(self): """Test information output of Operator""" print(f'test printing information of operator object') # self.op.info() def test_operator_ready(self): """test the method ready of Operator""" pass # print(f'operator is ready? "{self.op.ready}"') def test_operator_add_strategy(self): """test adding strategies to Operator""" pass # self.assertIsInstance(self.op, qt.Operator) # self.assertIsInstance(self.op.timing[0], qt.TimingDMA) # self.assertIsInstance(self.op.selecting[0], qt.SelectingAll) # self.assertIsInstance(self.op.ricon[0], qt.RiconUrgent) # self.assertEqual(self.op.selecting_count, 1) # self.assertEqual(self.op.strategy_count, 3) # self.assertEqual(self.op.ricon_count, 1) # self.assertEqual(self.op.timing_count, 1) # self.assertEqual(self.op.ls_blender, 'pos-1') # print(f'test adding strategies into existing op') # print('test adding strategy by string') # self.op.add_strategy('macd', 'timing') # self.assertIsInstance(self.op.timing[0], qt.TimingDMA) # self.assertIsInstance(self.op.timing[1], qt.TimingMACD) # self.assertEqual(self.op.selecting_count, 1) # self.assertEqual(self.op.strategy_count, 4) # self.assertEqual(self.op.ricon_count, 1) # self.assertEqual(self.op.timing_count, 2) # self.assertEqual(self.op.ls_blender, 'pos-1') # self.op.add_strategy('random', 'selecting') # self.assertIsInstance(self.op.selecting[0], qt.TimingDMA) # self.assertIsInstance(self.op.selecting[1], qt.TimingMACD) # self.assertEqual(self.op.selecting_count, 2) # self.assertEqual(self.op.strategy_count, 5) # self.assertEqual(self.op.ricon_count, 1) # self.assertEqual(self.op.timing_count, 2) # self.assertEqual(self.op.selecting_blender, '0 or 1') # self.op.add_strategy('none', 'ricon') # self.assertIsInstance(self.op.ricon[0], qt.TimingDMA) # self.assertIsInstance(self.op.ricon[1], qt.TimingMACD) # self.assertEqual(self.op.selecting_count, 2) # self.assertEqual(self.op.strategy_count, 6) # self.assertEqual(self.op.ricon_count, 2) # self.assertEqual(self.op.timing_count, 2) # print('test adding strategy by list') # self.op.add_strategy(['dma', 'macd'], 'timing') # print('test adding strategy by object') # test_ls = TestLSStrategy() # self.op.add_strategy(test_ls, 'timing') def test_operator_remove_strategy(self): """test removing strategies from Operator""" pass # self.op.remove_strategy(stg='macd') def test_property_get(self): self.assertIsInstance(self.op, qt.Operator) self.assertIsInstance(self.op.timing[0], qt.TimingDMA) self.assertIsInstance(self.op.selecting[0], qt.SelectingAll) self.assertIsInstance(self.op.ricon[0], qt.RiconUrgent) self.assertEqual(self.op.selecting_count, 1) self.assertEqual(self.op.strategy_count, 3) self.assertEqual(self.op.ricon_count, 1) self.assertEqual(self.op.timing_count, 1) print(self.op.strategies, '\n', [qt.TimingDMA, qt.SelectingAll, qt.RiconUrgent]) print(f'info of Timing strategy: \n{self.op.strategies[0].info()}') self.assertEqual(len(self.op.strategies), 3) self.assertIsInstance(self.op.strategies[0], qt.TimingDMA) self.assertIsInstance(self.op.strategies[1], qt.SelectingAll) self.assertIsInstance(self.op.strategies[2], qt.RiconUrgent) self.assertEqual(self.op.strategy_count, 3) self.assertEqual(self.op.op_data_freq, 'd') self.assertEqual(self.op.op_data_types, ['close']) self.assertEqual(self.op.opt_space_par, ([], [])) self.assertEqual(self.op.max_window_length, 270) self.assertEqual(self.op.ls_blender, 'pos-1') self.assertEqual(self.op.selecting_blender, '0') self.assertEqual(self.op.ricon_blender, 'add') self.assertEqual(self.op.opt_types, [0, 0, 0]) def test_prepare_data(self): test_ls = TestLSStrategy() test_sel = TestSelStrategy() test_sig = TestSigStrategy() self.op = qt.Operator(timing_types=[test_ls], selecting_types=[test_sel], ricon_types=[test_sig]) too_early_cash = qt.CashPlan(dates='2016-01-01', amounts=10000) early_cash = qt.CashPlan(dates='2016-07-01', amounts=10000) on_spot_cash = qt.CashPlan(dates='2016-07-08', amounts=10000) no_trade_cash = qt.CashPlan(dates='2016-07-08, 2016-07-30, 2016-08-11, 2016-09-03', amounts=[10000, 10000, 10000, 10000]) late_cash = qt.CashPlan(dates='2016-12-31', amounts=10000) multi_cash = qt.CashPlan(dates='2016-07-08, 2016-08-08', amounts=[10000, 10000]) self.op.set_parameter(stg_id='t-0', pars={'000300': (5, 10.), '000400': (5, 10.), '000500': (5, 6.)}) self.op.set_parameter(stg_id='s-0', pars=()) self.op.set_parameter(stg_id='r-0', pars=(0.2, 0.02, -0.02)) self.op.prepare_data(hist_data=self.hp1, cash_plan=on_spot_cash) self.assertIsInstance(self.op._selecting_history_data, list) self.assertIsInstance(self.op._timing_history_data, list) self.assertIsInstance(self.op._ricon_history_data, list) self.assertEqual(len(self.op._selecting_history_data), 1) self.assertEqual(len(self.op._timing_history_data), 1) self.assertEqual(len(self.op._ricon_history_data), 1) sel_hist_data = self.op._selecting_history_data[0] tim_hist_data = self.op._timing_history_data[0] ric_hist_data = self.op._ricon_history_data[0] print(f'in test_prepare_data in TestOperator:') print('selecting history data:\n', sel_hist_data) print('originally passed data in correct sequence:\n', self.test_data_3D[:, 3:, [2, 3, 0]]) print('difference is \n', sel_hist_data - self.test_data_3D[:, :, [2, 3, 0]]) self.assertTrue(np.allclose(sel_hist_data, self.test_data_3D[:, :, [2, 3, 0]], equal_nan=True)) self.assertTrue(np.allclose(tim_hist_data, self.test_data_3D, equal_nan=True)) self.assertTrue(np.allclose(ric_hist_data, self.test_data_3D[:, 3:, :], equal_nan=True)) # raises Value Error if empty history panel is given empty_hp = qt.HistoryPanel() correct_hp = qt.HistoryPanel(values=np.random.randint(10, size=(3, 50, 4)), columns=self.types, levels=self.shares, rows=self.date_indices) too_many_shares = qt.HistoryPanel(values=np.random.randint(10, size=(5, 50, 4))) too_many_types = qt.HistoryPanel(values=np.random.randint(10, size=(3, 50, 5))) # raises Error when history panel is empty self.assertRaises(ValueError, self.op.prepare_data, empty_hp, on_spot_cash) # raises Error when first investment date is too early self.assertRaises(AssertionError, self.op.prepare_data, correct_hp, early_cash) # raises Error when last investment date is too late self.assertRaises(AssertionError, self.op.prepare_data, correct_hp, late_cash) # raises Error when some of the investment dates are on no-trade-days self.assertRaises(ValueError, self.op.prepare_data, correct_hp, no_trade_cash) # raises Error when number of shares in history data does not fit self.assertRaises(AssertionError, self.op.prepare_data, too_many_shares, on_spot_cash) # raises Error when too early cash investment date self.assertRaises(AssertionError, self.op.prepare_data, correct_hp, too_early_cash) # raises Error when number of d_types in history data does not fit self.assertRaises(AssertionError, self.op.prepare_data, too_many_types, on_spot_cash) # test the effect of data type sequence in strategy definition def test_operator_generate(self): """ :return: """ test_ls = TestLSStrategy() test_sel = TestSelStrategy() test_sig = TestSigStrategy() self.op = qt.Operator(timing_types=[test_ls], selecting_types=[test_sel], ricon_types=[test_sig]) self.assertIsInstance(self.op, qt.Operator, 'Operator Creation Error') self.op.set_parameter(stg_id='t-0', pars={'000300': (5, 10.), '000400': (5, 10.), '000500': (5, 6.)}) self.op.set_parameter(stg_id='s-0', pars=()) # 在所有策略的参数都设置好之前调用prepare_data会发生assertion Error self.assertRaises(AssertionError, self.op.prepare_data, hist_data=self.hp1, cash_plan=qt.CashPlan(dates='2016-07-08', amounts=10000)) self.op.set_parameter(stg_id='r-0', pars=(0.2, 0.02, -0.02)) self.op.prepare_data(hist_data=self.hp1, cash_plan=qt.CashPlan(dates='2016-07-08', amounts=10000)) self.op.info() op_list = self.op.create_signal(hist_data=self.hp1) print(f'operation list is created: as following:\n {op_list}') self.assertTrue(isinstance(op_list, pd.DataFrame)) self.assertEqual(op_list.shape, (26, 3)) # 删除去掉重复信号的code后,信号从原来的23条变为26条,包含三条重复信号,但是删除重复信号可能导致将不应该删除的信号删除,详见 # operator.py的create_signal()函数注释836行 target_op_dates = ['2016/07/08', '2016/07/12', '2016/07/13', '2016/07/14', '2016/07/18', '2016/07/20', '2016/07/22', '2016/07/26', '2016/07/27', '2016/07/28', '2016/08/02', '2016/08/03', '2016/08/04', '2016/08/05', '2016/08/08', '2016/08/10', '2016/08/16', '2016/08/18', '2016/08/24', '2016/08/26', '2016/08/29', '2016/08/30', '2016/08/31', '2016/09/05', '2016/09/06', '2016/09/08'] target_op_values = np.array([[0.0, 1.0, 0.0], [0.5, -1.0, 0.0], [1.0, 0.0, 0.0], [0.0, 0.0, -1.0], [0.0, 1.0, 0.0], [0.0, 1.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.5, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, -1.0], [0.0, 1.0, 0.0], [0.0, -1.0, 0.0], [0.0, 0.0, -1.0], [0.0, 1.0, 0.0], [-1.0, 0.0, 0.0], [0.0, 0.0, -1.0], [0.0, 0.0, -1.0], [0.0, 0.0, 1.0], [-1.0, 0.0, 0.0], [0.0, 1.0, 1.0], [0.0, 1.0, 0.5], [0.0, 1.0, 0.0], [0.0, 1.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, -1.0], [0.0, 1.0, 0.0]]) target_op = pd.DataFrame(data=target_op_values, index=target_op_dates, columns=['000010', '000030', '000039']) target_op = target_op.rename(index=pd.Timestamp) print(f'target operation list is as following:\n {target_op}') dates_pairs = [[date1, date2, date1 == date2] for date1, date2 in zip(target_op.index.strftime('%m-%d'), op_list.index.strftime('%m-%d'))] signal_pairs = [[list(sig1), list(sig2), all(sig1 == sig2)] for sig1, sig2 in zip(list(target_op.values), list(op_list.values))] print(f'dates side by side:\n ' f'{dates_pairs}') print(f'signals side by side:\n' f'{signal_pairs}') print([item[2] for item in dates_pairs]) print([item[2] for item in signal_pairs]) self.assertTrue(np.allclose(target_op.values, op_list.values, equal_nan=True)) self.assertTrue(all([date1 == date2 for date1, date2 in zip(target_op.index.strftime('%m-%d'), op_list.index.strftime('%m-%d'))])) def test_operator_parameter_setting(self): """ :return: """ new_op = qt.Operator(selecting_types=['all'], timing_types='dma', ricon_types='urgent') print(new_op.strategies, '\n', [qt.TimingDMA, qt.SelectingAll, qt.RiconUrgent]) print(f'info of Timing strategy in new op: \n{new_op.strategies[0].info()}') self.op.set_parameter('t-0', pars=(5, 10, 5), opt_tag=1, par_boes=((5, 10), (5, 15), (10, 15)), window_length=10, data_types=['close', 'open', 'high']) self.op.set_parameter(stg_id='s-0', pars=None, opt_tag=1, sample_freq='10d', window_length=10, data_types='close, open') self.op.set_parameter(stg_id='r-0', pars=None, opt_tag=0, sample_freq='d', window_length=20, data_types='close, open') self.assertEqual(self.op.timing[0].pars, (5, 10, 5)) self.assertEqual(self.op.timing[0].par_boes, ((5, 10), (5, 15), (10, 15))) self.assertEqual(self.op.op_data_freq, 'd') self.assertEqual(self.op.op_data_types, ['close', 'high', 'open']) self.assertEqual(self.op.opt_space_par, ([(5, 10), (5, 15), (10, 15), (0, 1)], ['discr', 'discr', 'discr', 'conti'])) self.assertEqual(self.op.max_window_length, 20) self.assertRaises(AssertionError, self.op.set_parameter, stg_id='t-1', pars=(1, 2)) self.assertRaises(AssertionError, self.op.set_parameter, stg_id='t1', pars=(1, 2)) self.assertRaises(AssertionError, self.op.set_parameter, stg_id=32, pars=(1, 2)) self.op.set_blender('selecting', '0 and 1 or 2') self.op.set_blender('ls', 'str-1.2') self.assertEqual(self.op.ls_blender, 'str-1.2') self.assertEqual(self.op.selecting_blender, '0 and 1 or 2') self.assertEqual(self.op.selecting_blender_expr, ['or', 'and', '0', '1', '2']) self.assertEqual(self.op.ricon_blender, 'add') self.assertRaises(ValueError, self.op.set_blender, 'select', '0and1') self.assertRaises(TypeError, self.op.set_blender, 35, '0 and 1') self.assertEqual(self.op.opt_space_par, ([(5, 10), (5, 15), (10, 15), (0, 1)], ['discr', 'discr', 'discr', 'conti'])) self.assertEqual(self.op.opt_types, [1, 1, 0]) def test_exp_to_blender(self): self.op.set_blender('selecting', '0 and 1 or 2') self.assertEqual(self.op.selecting_blender_expr, ['or', 'and', '0', '1', '2']) self.op.set_blender('selecting', '0 and ( 1 or 2 )') self.assertEqual(self.op.selecting_blender_expr, ['and', '0', 'or', '1', '2']) self.assertRaises(ValueError, self.op.set_blender, 'selecting', '0 and (1 or 2)') def test_set_opt_par(self): self.op.set_parameter('t-0', pars=(5, 10, 5), opt_tag=1, par_boes=((5, 10), (5, 15), (10, 15)), window_length=10, data_types=['close', 'open', 'high']) self.op.set_parameter(stg_id='s-0', pars=(0.5,), opt_tag=0, sample_freq='10d', window_length=10, data_types='close, open') self.op.set_parameter(stg_id='r-0', pars=(9, -0.23), opt_tag=1, sample_freq='d', window_length=20, data_types='close, open') self.assertEqual(self.op.timing[0].pars, (5, 10, 5)) self.assertEqual(self.op.selecting[0].pars, (0.5,)) self.assertEqual(self.op.ricon[0].pars, (9, -0.23)) self.assertEqual(self.op.opt_types, [1, 0, 1]) self.op.set_opt_par((5, 12, 9, 8, -0.1)) self.assertEqual(self.op.timing[0].pars, (5, 12, 9)) self.assertEqual(self.op.selecting[0].pars, (0.5,)) self.assertEqual(self.op.ricon[0].pars, (8, -0.1)) # test set_opt_par when opt_tag is set to be 2 (enumerate type of parameters) self.assertRaises(ValueError, self.op.set_opt_par, (5, 12, 9, 8)) def test_stg_attribute_get_and_set(self): self.stg = qt.TimingCrossline() self.stg_type = 'TIMING' self.stg_name = "CROSSLINE STRATEGY" self.stg_text = 'Moving average crossline strategy, determine long/short position according to the cross ' \ 'point' \ ' of long and short term moving average prices ' self.pars = (35, 120, 10, 'buy') self.par_boes = [(10, 250), (10, 250), (1, 100), ('buy', 'sell', 'none')] self.par_count = 4 self.par_types = ['discr', 'discr', 'conti', 'enum'] self.opt_tag = 0 self.data_types = ['close'] self.data_freq = 'd' self.sample_freq = 'd' self.window_length = 270 self.assertEqual(self.stg.stg_type, self.stg_type) self.assertEqual(self.stg.stg_name, self.stg_name) self.assertEqual(self.stg.stg_text, self.stg_text) self.assertEqual(self.stg.pars, self.pars) self.assertEqual(self.stg.par_types, self.par_types) self.assertEqual(self.stg.par_boes, self.par_boes) self.assertEqual(self.stg.par_count, self.par_count) self.assertEqual(self.stg.opt_tag, self.opt_tag) self.assertEqual(self.stg.data_freq, self.data_freq) self.assertEqual(self.stg.sample_freq, self.sample_freq) self.assertEqual(self.stg.data_types, self.data_types) self.assertEqual(self.stg.window_length, self.window_length) self.stg.stg_name = 'NEW NAME' self.stg.stg_text = 'NEW TEXT' self.assertEqual(self.stg.stg_name, 'NEW NAME') self.assertEqual(self.stg.stg_text, 'NEW TEXT') self.stg.pars = (1, 2, 3, 4) self.assertEqual(self.stg.pars, (1, 2, 3, 4)) self.stg.par_count = 3 self.assertEqual(self.stg.par_count, 3) self.stg.par_boes = [(1, 10), (1, 10), (1, 10), (1, 10)] self.assertEqual(self.stg.par_boes, [(1, 10), (1, 10), (1, 10), (1, 10)]) self.stg.par_types = ['conti', 'conti', 'discr', 'enum'] self.assertEqual(self.stg.par_types, ['conti', 'conti', 'discr', 'enum']) self.stg.par_types = 'conti, conti, discr, conti' self.assertEqual(self.stg.par_types, ['conti', 'conti', 'discr', 'conti']) self.stg.data_types = 'close, open' self.assertEqual(self.stg.data_types, ['close', 'open']) self.stg.data_types = ['close', 'high', 'low'] self.assertEqual(self.stg.data_types, ['close', 'high', 'low']) self.stg.data_freq = 'w' self.assertEqual(self.stg.data_freq, 'w') self.stg.window_length = 300 self.assertEqual(self.stg.window_length, 300) def test_rolling_timing(self): stg = TestLSStrategy() stg_pars = {'000100': (5, 10), '000200': (5, 10), '000300': (5, 6)} stg.set_pars(stg_pars) history_data = self.hp1.values output = stg.generate(hist_data=history_data) self.assertIsInstance(output, np.ndarray) self.assertEqual(output.shape, (45, 3)) lsmask = np.array([[0., 0., 1.], [0., 0., 1.], [1., 0., 1.], [1., 0., 1.], [1., 0., 1.], [1., 0., 1.], [1., 0., 1.], [1., 0., 1.], [1., 0., 1.], [1., 0., 1.], [1., 0., 1.], [1., 0., 1.], [1., 1., 1.], [1., 1., 1.], [1., 1., 1.], [1., 1., 0.], [1., 1., 0.], [1., 1., 0.], [1., 0., 0.], [1., 0., 0.], [1., 1., 0.], [0., 1., 0.], [0., 1., 0.], [0., 1., 0.], [0., 1., 0.], [0., 1., 0.], [0., 1., 0.], [0., 1., 0.], [0., 1., 0.], [0., 1., 0.], [0., 1., 1.], [0., 1., 1.], [0., 1., 1.], [0., 1., 1.], [0., 1., 1.], [0., 1., 1.], [0., 1., 1.], [0., 1., 1.], [0., 1., 1.], [0., 1., 1.], [0., 1., 1.], [0., 1., 1.], [0., 1., 1.], [0., 1., 1.], [0., 1., 1.]]) # TODO: Issue to be solved: the np.nan value are converted to 0 in the lsmask,这样做可能会有意想不到的后果 # TODO: 需要解决nan值的问题 self.assertEqual(output.shape, lsmask.shape) self.assertTrue(np.allclose(output, lsmask, equal_nan=True)) def test_sel_timing(self): stg = TestSelStrategy() stg_pars = () stg.set_pars(stg_pars) history_data = self.hp1['high, low, close', :, :] seg_pos, seg_length, seg_count = stg._seg_periods(dates=self.hp1.hdates, freq=stg.sample_freq) self.assertEqual(list(seg_pos), [0, 5, 11, 19, 26, 33, 41, 47, 49]) self.assertEqual(list(seg_length), [5, 6, 8, 7, 7, 8, 6, 2]) self.assertEqual(seg_count, 8) output = stg.generate(hist_data=history_data, shares=self.hp1.shares, dates=self.hp1.hdates) self.assertIsInstance(output, np.ndarray) self.assertEqual(output.shape, (45, 3)) selmask = np.array([[0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0]]) self.assertEqual(output.shape, selmask.shape) self.assertTrue(np.allclose(output, selmask)) def test_simple_timing(self): stg = TestSigStrategy() stg_pars = (0.2, 0.02, -0.02) stg.set_pars(stg_pars) history_data = self.hp1['close, open, high, low', :, 3:50] output = stg.generate(hist_data=history_data, shares=self.shares, dates=self.date_indices) self.assertIsInstance(output, np.ndarray) self.assertEqual(output.shape, (45, 3)) sigmatrix = np.array([[0.0, 1.0, 0.0], [0.0, 0.0, 0.0], [0.0, -1.0, 0.0], [1.0, 0.0, 0.0], [0.0, 0.0, -1.0], [0.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, -1.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, -1.0], [0.0, 1.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, -1.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, -1.0], [0.0, 0.0, 0.0], [0.0, 0.0, 1.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [-1.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 1.0, 1.0], [0.0, 1.0, 0.0], [0.0, 1.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, -1.0], [0.0, 0.0, 0.0], [0.0, 1.0, 0.0]]) side_by_side_array = np.array([[i, out_line, sig_line] for i, out_line, sig_line in zip(range(len(output)), output, sigmatrix)]) print(f'output and signal matrix lined up side by side is \n' f'{side_by_side_array}') self.assertEqual(sigmatrix.shape, output.shape) self.assertTrue(np.allclose(output, sigmatrix)) def test_sel_finance(self): """Test selecting_finance strategy, test all built-in strategy parameters""" stg = SelectingFinanceIndicator() stg_pars = (False, 'even', 'greater', 0, 0, 0.67) stg.set_pars(stg_pars) stg.window_length = 5 stg.data_freq = 'd' stg.sample_freq = '10d' stg.sort_ascending = False stg.condition = 'greater' stg.lbound = 0 stg.ubound = 0 stg._poq = 0.67 history_data = self.hp2.values print(f'Start to test financial selection parameter {stg_pars}') seg_pos, seg_length, seg_count = stg._seg_periods(dates=self.hp1.hdates, freq=stg.sample_freq) self.assertEqual(list(seg_pos), [0, 5, 11, 19, 26, 33, 41, 47, 49]) self.assertEqual(list(seg_length), [5, 6, 8, 7, 7, 8, 6, 2]) self.assertEqual(seg_count, 8) output = stg.generate(hist_data=history_data, shares=self.hp1.shares, dates=self.hp1.hdates) self.assertIsInstance(output, np.ndarray) self.assertEqual(output.shape, (45, 3)) selmask = np.array([[0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0]]) self.assertEqual(output.shape, selmask.shape) self.assertTrue(np.allclose(output, selmask)) # test single factor, get mininum factor stg_pars = (True, 'even', 'less', 1, 1, 0.67) stg.sort_ascending = True stg.condition = 'less' stg.lbound = 1 stg.ubound = 1 stg.set_pars(stg_pars) print(f'Start to test financial selection parameter {stg_pars}') output = stg.generate(hist_data=history_data, shares=self.hp1.shares, dates=self.hp1.hdates) selmask = np.array([[0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5]]) self.assertEqual(output.shape, selmask.shape) self.assertTrue(np.allclose(output, selmask)) # test single factor, get max factor in linear weight stg_pars = (False, 'linear', 'greater', 0, 0, 0.67) stg.sort_ascending = False stg.weighting = 'linear' stg.condition = 'greater' stg.lbound = 0 stg.ubound = 0 stg.set_pars(stg_pars) print(f'Start to test financial selection parameter {stg_pars}') output = stg.generate(hist_data=history_data, shares=self.hp1.shares, dates=self.hp1.hdates) selmask = np.array([[0.00000, 0.33333, 0.66667], [0.00000, 0.33333, 0.66667], [0.00000, 0.33333, 0.66667], [0.00000, 0.33333, 0.66667], [0.00000, 0.33333, 0.66667], [0.00000, 0.33333, 0.66667], [0.00000, 0.66667, 0.33333], [0.00000, 0.66667, 0.33333], [0.00000, 0.66667, 0.33333], [0.00000, 0.66667, 0.33333], [0.00000, 0.66667, 0.33333], [0.00000, 0.66667, 0.33333], [0.00000, 0.66667, 0.33333], [0.00000, 0.66667, 0.33333], [0.00000, 0.33333, 0.66667], [0.00000, 0.33333, 0.66667], [0.00000, 0.33333, 0.66667], [0.00000, 0.33333, 0.66667], [0.00000, 0.33333, 0.66667], [0.00000, 0.33333, 0.66667], [0.00000, 0.33333, 0.66667], [0.33333, 0.00000, 0.66667], [0.33333, 0.00000, 0.66667], [0.33333, 0.00000, 0.66667], [0.33333, 0.00000, 0.66667], [0.33333, 0.00000, 0.66667], [0.33333, 0.00000, 0.66667], [0.33333, 0.00000, 0.66667], [0.00000, 0.00000, 1.00000], [0.00000, 0.00000, 1.00000], [0.00000, 0.00000, 1.00000], [0.00000, 0.00000, 1.00000], [0.00000, 0.00000, 1.00000], [0.00000, 0.00000, 1.00000], [0.00000, 0.00000, 1.00000], [0.00000, 0.00000, 1.00000], [0.33333, 0.00000, 0.66667], [0.33333, 0.00000, 0.66667], [0.33333, 0.00000, 0.66667], [0.33333, 0.00000, 0.66667], [0.33333, 0.00000, 0.66667], [0.33333, 0.00000, 0.66667], [0.33333, 0.66667, 0.00000], [0.33333, 0.66667, 0.00000], [0.33333, 0.66667, 0.00000]]) self.assertEqual(output.shape, selmask.shape) self.assertTrue(np.allclose(output, selmask)) # test single factor, get max factor in linear weight stg_pars = (False, 'proportion', 'greater', 0, 0, 0.67) stg.sort_ascending = False stg.weighting = 'proportion' stg.condition = 'greater' stg.lbound = 0 stg.ubound = 0 stg.set_pars(stg_pars) print(f'Start to test financial selection parameter {stg_pars}') output = stg.generate(hist_data=history_data, shares=self.hp1.shares, dates=self.hp1.hdates) selmask = np.array([[0.00000, 0.08333, 0.91667], [0.00000, 0.08333, 0.91667], [0.00000, 0.08333, 0.91667], [0.00000, 0.08333, 0.91667], [0.00000, 0.08333, 0.91667], [0.00000, 0.08333, 0.91667], [0.00000, 0.91667, 0.08333], [0.00000, 0.91667, 0.08333], [0.00000, 0.91667, 0.08333], [0.00000, 0.91667, 0.08333], [0.00000, 0.91667, 0.08333], [0.00000, 0.91667, 0.08333], [0.00000, 0.91667, 0.08333], [0.00000, 0.91667, 0.08333], [0.00000, 0.50000, 0.50000], [0.00000, 0.50000, 0.50000], [0.00000, 0.50000, 0.50000], [0.00000, 0.50000, 0.50000], [0.00000, 0.50000, 0.50000], [0.00000, 0.50000, 0.50000], [0.00000, 0.50000, 0.50000], [0.08333, 0.00000, 0.91667], [0.08333, 0.00000, 0.91667], [0.08333, 0.00000, 0.91667], [0.08333, 0.00000, 0.91667], [0.08333, 0.00000, 0.91667], [0.08333, 0.00000, 0.91667], [0.08333, 0.00000, 0.91667], [0.00000, 0.00000, 1.00000], [0.00000, 0.00000, 1.00000], [0.00000, 0.00000, 1.00000], [0.00000, 0.00000, 1.00000], [0.00000, 0.00000, 1.00000], [0.00000, 0.00000, 1.00000], [0.00000, 0.00000, 1.00000], [0.00000, 0.00000, 1.00000], [0.08333, 0.00000, 0.91667], [0.08333, 0.00000, 0.91667], [0.08333, 0.00000, 0.91667], [0.08333, 0.00000, 0.91667], [0.08333, 0.00000, 0.91667], [0.08333, 0.00000, 0.91667], [0.08333, 0.91667, 0.00000], [0.08333, 0.91667, 0.00000], [0.08333, 0.91667, 0.00000]]) self.assertEqual(output.shape, selmask.shape) self.assertTrue(np.allclose(output, selmask, 0.001)) # test single factor, get max factor in linear weight, threshold 0.2 stg_pars = (False, 'even', 'greater', 0.2, 0.2, 0.67) stg.sort_ascending = False stg.weighting = 'even' stg.condition = 'greater' stg.lbound = 0.2 stg.ubound = 0.2 stg.set_pars(stg_pars) print(f'Start to test financial selection parameter {stg_pars}') output = stg.generate(hist_data=history_data, shares=self.hp1.shares, dates=self.hp1.hdates) selmask = np.array([[0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0]]) self.assertEqual(output.shape, selmask.shape) self.assertTrue(np.allclose(output, selmask, 0.001)) class TestLog(unittest.TestCase): def test_init(self): pass class TestConfig(unittest.TestCase): """测试Config对象以及QT_CONFIG变量的设置和获取值""" def test_init(self): pass def test_invest(self): pass def test_pars_string_to_type(self): _parse_string_kwargs('000300', 'asset_pool', _valid_qt_kwargs()) class TestHistoryPanel(unittest.TestCase): def setUp(self): print('start testing HistoryPanel object\n') self.data = np.random.randint(10, size=(5, 10, 4)) self.index = pd.date_range(start='20200101', freq='d', periods=10) self.index2 = ['2016-07-01', '2016-07-04', '2016-07-05', '2016-07-06', '2016-07-07', '2016-07-08', '2016-07-11', '2016-07-12', '2016-07-13', '2016-07-14'] self.index3 = '2016-07-01, 2016-07-04, 2016-07-05, 2016-07-06, 2016-07-07, ' \ '2016-07-08, 2016-07-11, 2016-07-12, 2016-07-13, 2016-07-14' self.shares = '000100,000101,000102,000103,000104' self.htypes = 'close,open,high,low' self.data2 = np.random.randint(10, size=(10, 5)) self.data3 = np.random.randint(10, size=(10, 4)) self.data4 = np.random.randint(10, size=(10)) self.hp = qt.HistoryPanel(values=self.data, levels=self.shares, columns=self.htypes, rows=self.index) self.hp2 = qt.HistoryPanel(values=self.data2, levels=self.shares, columns='close', rows=self.index) self.hp3 = qt.HistoryPanel(values=self.data3, levels='000100', columns=self.htypes, rows=self.index2) self.hp4 = qt.HistoryPanel(values=self.data4, levels='000100', columns='close', rows=self.index3) self.hp5 = qt.HistoryPanel(values=self.data) self.hp6 = qt.HistoryPanel(values=self.data, levels=self.shares, rows=self.index3) def test_properties(self): """ test all properties of HistoryPanel """ self.assertFalse(self.hp.is_empty) self.assertEqual(self.hp.row_count, 10) self.assertEqual(self.hp.column_count, 4) self.assertEqual(self.hp.level_count, 5) self.assertEqual(self.hp.shape, (5, 10, 4)) self.assertSequenceEqual(self.hp.htypes, ['close', 'open', 'high', 'low']) self.assertSequenceEqual(self.hp.shares, ['000100', '000101', '000102', '000103', '000104']) self.assertSequenceEqual(list(self.hp.hdates), list(self.index)) self.assertDictEqual(self.hp.columns, {'close': 0, 'open': 1, 'high': 2, 'low': 3}) self.assertDictEqual(self.hp.levels, {'000100': 0, '000101': 1, '000102': 2, '000103': 3, '000104': 4}) row_dict = {Timestamp('2020-01-01 00:00:00', freq='D'): 0, Timestamp('2020-01-02 00:00:00', freq='D'): 1, Timestamp('2020-01-03 00:00:00', freq='D'): 2, Timestamp('2020-01-04 00:00:00', freq='D'): 3, Timestamp('2020-01-05 00:00:00', freq='D'): 4, Timestamp('2020-01-06 00:00:00', freq='D'): 5, Timestamp('2020-01-07 00:00:00', freq='D'): 6, Timestamp('2020-01-08 00:00:00', freq='D'): 7, Timestamp('2020-01-09 00:00:00', freq='D'): 8, Timestamp('2020-01-10 00:00:00', freq='D'): 9} self.assertDictEqual(self.hp.rows, row_dict) def test_len(self): """ test the function len(HistoryPanel) :return: """ self.assertEqual(len(self.hp), 10) def test_empty_history_panel(self): """测试空HP或者特殊HP如维度标签为纯数字的HP""" test_hp = qt.HistoryPanel(self.data) self.assertFalse(test_hp.is_empty) self.assertIsInstance(test_hp, qt.HistoryPanel) self.assertEqual(test_hp.shape[0], 5) self.assertEqual(test_hp.shape[1], 10) self.assertEqual(test_hp.shape[2], 4) self.assertEqual(test_hp.level_count, 5) self.assertEqual(test_hp.row_count, 10) self.assertEqual(test_hp.column_count, 4) self.assertEqual(test_hp.shares, list(range(5))) self.assertEqual(test_hp.hdates, list(pd.date_range(start='20200730', periods=10, freq='d'))) self.assertEqual(test_hp.htypes, list(range(4))) self.assertTrue(np.allclose(test_hp.values, self.data)) print(f'shares: {test_hp.shares}\nhtypes: {test_hp.htypes}') print(test_hp) empty_hp = qt.HistoryPanel() self.assertTrue(empty_hp.is_empty) self.assertIsInstance(empty_hp, qt.HistoryPanel) self.assertEqual(empty_hp.shape[0], 0) self.assertEqual(empty_hp.shape[1], 0) self.assertEqual(empty_hp.shape[2], 0) self.assertEqual(empty_hp.level_count, 0) self.assertEqual(empty_hp.row_count, 0) self.assertEqual(empty_hp.column_count, 0) def test_create_history_panel(self): """ test the creation of a HistoryPanel object by passing all data explicitly """ self.assertIsInstance(self.hp, qt.HistoryPanel) self.assertEqual(self.hp.shape[0], 5) self.assertEqual(self.hp.shape[1], 10) self.assertEqual(self.hp.shape[2], 4) self.assertEqual(self.hp.level_count, 5) self.assertEqual(self.hp.row_count, 10) self.assertEqual(self.hp.column_count, 4) self.assertEqual(list(self.hp.levels.keys()), self.shares.split(',')) self.assertEqual(list(self.hp.columns.keys()), self.htypes.split(',')) self.assertEqual(list(self.hp.rows.keys())[0], pd.Timestamp('20200101')) self.assertIsInstance(self.hp2, qt.HistoryPanel) self.assertEqual(self.hp2.shape[0], 5) self.assertEqual(self.hp2.shape[1], 10) self.assertEqual(self.hp2.shape[2], 1) self.assertEqual(self.hp2.level_count, 5) self.assertEqual(self.hp2.row_count, 10) self.assertEqual(self.hp2.column_count, 1) self.assertEqual(list(self.hp2.levels.keys()), self.shares.split(',')) self.assertEqual(list(self.hp2.columns.keys()), ['close']) self.assertEqual(list(self.hp2.rows.keys())[0], pd.Timestamp('20200101')) self.assertIsInstance(self.hp3, qt.HistoryPanel) self.assertEqual(self.hp3.shape[0], 1) self.assertEqual(self.hp3.shape[1], 10) self.assertEqual(self.hp3.shape[2], 4) self.assertEqual(self.hp3.level_count, 1) self.assertEqual(self.hp3.row_count, 10) self.assertEqual(self.hp3.column_count, 4) self.assertEqual(list(self.hp3.levels.keys()), ['000100']) self.assertEqual(list(self.hp3.columns.keys()), self.htypes.split(',')) self.assertEqual(list(self.hp3.rows.keys())[0], pd.Timestamp('2016-07-01')) self.assertIsInstance(self.hp4, qt.HistoryPanel) self.assertEqual(self.hp4.shape[0], 1) self.assertEqual(self.hp4.shape[1], 10) self.assertEqual(self.hp4.shape[2], 1) self.assertEqual(self.hp4.level_count, 1) self.assertEqual(self.hp4.row_count, 10) self.assertEqual(self.hp4.column_count, 1) self.assertEqual(list(self.hp4.levels.keys()), ['000100']) self.assertEqual(list(self.hp4.columns.keys()), ['close']) self.assertEqual(list(self.hp4.rows.keys())[0], pd.Timestamp('2016-07-01')) self.hp5.info() self.assertIsInstance(self.hp5, qt.HistoryPanel) self.assertTrue(np.allclose(self.hp5.values, self.data)) self.assertEqual(self.hp5.shape[0], 5) self.assertEqual(self.hp5.shape[1], 10) self.assertEqual(self.hp5.shape[2], 4) self.assertEqual(self.hp5.level_count, 5) self.assertEqual(self.hp5.row_count, 10) self.assertEqual(self.hp5.column_count, 4) self.assertEqual(list(self.hp5.levels.keys()), [0, 1, 2, 3, 4]) self.assertEqual(list(self.hp5.columns.keys()), [0, 1, 2, 3]) self.assertEqual(list(self.hp5.rows.keys())[0], pd.Timestamp('2020-07-30')) self.hp6.info() self.assertIsInstance(self.hp6, qt.HistoryPanel) self.assertTrue(np.allclose(self.hp6.values, self.data)) self.assertEqual(self.hp6.shape[0], 5) self.assertEqual(self.hp6.shape[1], 10) self.assertEqual(self.hp6.shape[2], 4) self.assertEqual(self.hp6.level_count, 5) self.assertEqual(self.hp6.row_count, 10) self.assertEqual(self.hp6.column_count, 4) self.assertEqual(list(self.hp6.levels.keys()), ['000100', '000101', '000102', '000103', '000104']) self.assertEqual(list(self.hp6.columns.keys()), [0, 1, 2, 3]) self.assertEqual(list(self.hp6.rows.keys())[0], pd.Timestamp('2016-07-01')) # Error testing during HistoryPanel creating # shape does not match self.assertRaises(AssertionError, qt.HistoryPanel, self.data, levels=self.shares, columns='close', rows=self.index) # valus is not np.ndarray self.assertRaises(AssertionError, qt.HistoryPanel, list(self.data)) # dimension/shape does not match self.assertRaises(AssertionError, qt.HistoryPanel, self.data2, levels='000100', columns=self.htypes, rows=self.index) # value dimension over 3 self.assertRaises(AssertionError, qt.HistoryPanel, np.random.randint(10, size=(5, 10, 4, 2))) # lebel value not valid self.assertRaises(ValueError, qt.HistoryPanel, self.data2, levels=self.shares, columns='close', rows='a,b,c,d,e,f,g,h,i,j') def test_history_panel_slicing(self): """测试HistoryPanel的各种切片方法 包括通过标签名称切片,通过数字切片,通过逗号分隔的标签名称切片,通过冒号分隔的标签名称切片等切片方式""" self.assertTrue(np.allclose(self.hp['close'], self.data[:, :, 0:1])) self.assertTrue(np.allclose(self.hp['close,open'], self.data[:, :, 0:2])) self.assertTrue(np.allclose(self.hp[['close', 'open']], self.data[:, :, 0:2])) self.assertTrue(np.allclose(self.hp['close:high'], self.data[:, :, 0:3])) self.assertTrue(np.allclose(self.hp['close,high'], self.data[:, :, [0, 2]])) self.assertTrue(np.allclose(self.hp[:, '000100'], self.data[0:1, :, ])) self.assertTrue(np.allclose(self.hp[:, '000100,000101'], self.data[0:2, :])) self.assertTrue(np.allclose(self.hp[:, ['000100', '000101']], self.data[0:2, :])) self.assertTrue(np.allclose(self.hp[:, '000100:000102'], self.data[0:3, :])) self.assertTrue(np.allclose(self.hp[:, '000100,000102'], self.data[[0, 2], :])) self.assertTrue(np.allclose(self.hp['close,open', '000100,000102'], self.data[[0, 2], :, 0:2])) print('start testing HistoryPanel') data = np.random.randint(10, size=(10, 5)) # index = pd.date_range(start='20200101', freq='d', periods=10) shares = '000100,000101,000102,000103,000104' dtypes = 'close' df = pd.DataFrame(data) print('=========================\nTesting HistoryPanel creation from DataFrame') hp = qt.dataframe_to_hp(df=df, shares=shares, htypes=dtypes) hp.info() hp = qt.dataframe_to_hp(df=df, shares='000100', htypes='close, open, high, low, middle', column_type='htypes') hp.info() print('=========================\nTesting HistoryPanel creation from initialization') data = np.random.randint(10, size=(5, 10, 4)).astype('float') index = pd.date_range(start='20200101', freq='d', periods=10) dtypes = 'close, open, high,low' data[0, [5, 6, 9], [0, 1, 3]] = np.nan data[1:4, [4, 7, 6, 2], [1, 1, 3, 0]] = np.nan data[4:5, [2, 9, 1, 2], [0, 3, 2, 1]] = np.nan hp = qt.HistoryPanel(data, levels=shares, columns=dtypes, rows=index) hp.info() print('==========================\n输出close类型的所有历史数据\n') self.assertTrue(np.allclose(hp['close', :, :], data[:, :, 0:1], equal_nan=True)) print(f'==========================\n输出close和open类型的所有历史数据\n') self.assertTrue(np.allclose(hp[[0, 1], :, :], data[:, :, 0:2], equal_nan=True)) print(f'==========================\n输出第一只股票的所有类型历史数据\n') self.assertTrue(np.allclose(hp[:, [0], :], data[0:1, :, :], equal_nan=True)) print('==========================\n输出第0、1、2个htype对应的所有股票全部历史数据\n') self.assertTrue(np.allclose(hp[[0, 1, 2]], data[:, :, 0:3], equal_nan=True)) print('==========================\n输出close、high两个类型的所有历史数据\n') self.assertTrue(np.allclose(hp[['close', 'high']], data[:, :, [0, 2]], equal_nan=True)) print('==========================\n输出0、1两个htype的所有历史数据\n') self.assertTrue(np.allclose(hp[[0, 1]], data[:, :, 0:2], equal_nan=True)) print('==========================\n输出close、high两个类型的所有历史数据\n') self.assertTrue(np.allclose(hp['close,high'], data[:, :, [0, 2]], equal_nan=True)) print('==========================\n输出close起到high止的三个类型的所有历史数据\n') self.assertTrue(np.allclose(hp['close:high'], data[:, :, 0:3], equal_nan=True)) print('==========================\n输出0、1、3三个股票的全部历史数据\n') self.assertTrue(np.allclose(hp[:, [0, 1, 3]], data[[0, 1, 3], :, :], equal_nan=True)) print('==========================\n输出000100、000102两只股票的所有历史数据\n') self.assertTrue(np.allclose(hp[:, ['000100', '000102']], data[[0, 2], :, :], equal_nan=True)) print('==========================\n输出0、1、2三个股票的历史数据\n', hp[:, 0: 3]) self.assertTrue(np.allclose(hp[:, 0: 3], data[0:3, :, :], equal_nan=True)) print('==========================\n输出000100、000102两只股票的所有历史数据\n') self.assertTrue(np.allclose(hp[:, '000100, 000102'], data[[0, 2], :, :], equal_nan=True)) print('==========================\n输出所有股票的0-7日历史数据\n') self.assertTrue(np.allclose(hp[:, :, 0:8], data[:, 0:8, :], equal_nan=True)) print('==========================\n输出000100股票的0-7日历史数据\n') self.assertTrue(np.allclose(hp[:, '000100', 0:8], data[0, 0:8, :], equal_nan=True)) print('==========================\nstart testing multy axis slicing of HistoryPanel object') print('==========================\n输出000100、000120两只股票的close、open两组历史数据\n', hp['close,open', ['000100', '000102']]) print('==========================\n输出000100、000120两只股票的close到open三组历史数据\n', hp['close,open', '000100, 000102']) print(f'historyPanel: hp:\n{hp}') print(f'data is:\n{data}') hp.htypes = 'open,high,low,close' hp.info() hp.shares = ['000300', '600227', '600222', '000123', '000129'] hp.info() def test_relabel(self): new_shares_list = ['000001', '000002', '000003', '000004', '000005'] new_shares_str = '000001, 000002, 000003, 000004, 000005' new_htypes_list = ['close', 'volume', 'value', 'exchange'] new_htypes_str = 'close, volume, value, exchange' temp_hp = self.hp.copy() temp_hp.re_label(shares=new_shares_list) print(temp_hp.info()) print(temp_hp.htypes) self.assertTrue(np.allclose(self.hp.values, temp_hp.values)) self.assertEqual(self.hp.htypes, temp_hp.htypes) self.assertEqual(self.hp.hdates, temp_hp.hdates) self.assertEqual(temp_hp.shares, new_shares_list) temp_hp = self.hp.copy() temp_hp.re_label(shares=new_shares_str) self.assertTrue(np.allclose(self.hp.values, temp_hp.values)) self.assertEqual(self.hp.htypes, temp_hp.htypes) self.assertEqual(self.hp.hdates, temp_hp.hdates) self.assertEqual(temp_hp.shares, new_shares_list) temp_hp = self.hp.copy() temp_hp.re_label(htypes=new_htypes_list) self.assertTrue(np.allclose(self.hp.values, temp_hp.values)) self.assertEqual(self.hp.shares, temp_hp.shares) self.assertEqual(self.hp.hdates, temp_hp.hdates) self.assertEqual(temp_hp.htypes, new_htypes_list) temp_hp = self.hp.copy() temp_hp.re_label(htypes=new_htypes_str) self.assertTrue(np.allclose(self.hp.values, temp_hp.values)) self.assertEqual(self.hp.shares, temp_hp.shares) self.assertEqual(self.hp.hdates, temp_hp.hdates) self.assertEqual(temp_hp.htypes, new_htypes_list) print(f'test errors raising') temp_hp = self.hp.copy() self.assertRaises(AssertionError, temp_hp.re_label, htypes=new_shares_str) self.assertRaises(TypeError, temp_hp.re_label, htypes=123) self.assertRaises(AssertionError, temp_hp.re_label, htypes='wrong input!') def test_csv_to_hp(self): pass def test_hdf_to_hp(self): pass def test_hp_join(self): # TODO: 这里需要加强,需要用具体的例子确认hp_join的结果正确 # TODO: 尤其是不同的shares、htypes、hdates,以及它们在顺 # TODO: 序不同的情况下是否能正确地组合 print(f'join two simple HistoryPanels with same shares') temp_hp = self.hp.join(self.hp2, same_shares=True) self.assertIsInstance(temp_hp, qt.HistoryPanel) def test_df_to_hp(self): print(f'test converting DataFrame to HistoryPanel') data = np.random.randint(10, size=(10, 5)) df1 = pd.DataFrame(data) df2 = pd.DataFrame(data, columns=qt.str_to_list(self.shares)) df3 = pd.DataFrame(data[:, 0:4]) df4 = pd.DataFrame(data[:, 0:4], columns=qt.str_to_list(self.htypes)) hp = qt.dataframe_to_hp(df1, htypes='close') self.assertIsInstance(hp, qt.HistoryPanel) self.assertEqual(hp.shares, [0, 1, 2, 3, 4]) self.assertEqual(hp.htypes, ['close']) self.assertEqual(hp.hdates, [pd.Timestamp('1970-01-01 00:00:00'), pd.Timestamp('1970-01-01 00:00:00.000000001'), pd.Timestamp('1970-01-01 00:00:00.000000002'), pd.Timestamp('1970-01-01 00:00:00.000000003'), pd.Timestamp('1970-01-01 00:00:00.000000004'), pd.Timestamp('1970-01-01 00:00:00.000000005'), pd.Timestamp('1970-01-01 00:00:00.000000006'), pd.Timestamp('1970-01-01 00:00:00.000000007'), pd.Timestamp('1970-01-01 00:00:00.000000008'), pd.Timestamp('1970-01-01 00:00:00.000000009')]) hp = qt.dataframe_to_hp(df2, shares=self.shares, htypes='close') self.assertIsInstance(hp, qt.HistoryPanel) self.assertEqual(hp.shares, qt.str_to_list(self.shares)) self.assertEqual(hp.htypes, ['close']) hp = qt.dataframe_to_hp(df3, shares='000100', column_type='htypes') self.assertIsInstance(hp, qt.HistoryPanel) self.assertEqual(hp.shares, ['000100']) self.assertEqual(hp.htypes, [0, 1, 2, 3]) hp = qt.dataframe_to_hp(df4, shares='000100', htypes=self.htypes, column_type='htypes') self.assertIsInstance(hp, qt.HistoryPanel) self.assertEqual(hp.shares, ['000100']) self.assertEqual(hp.htypes, qt.str_to_list(self.htypes)) hp.info() self.assertRaises(KeyError, qt.dataframe_to_hp, df1) def test_to_dataframe(self): """ 测试HistoryPanel对象的to_dataframe方法 """ print(f'START TEST == test_to_dataframe') print(f'test converting test hp to dataframe with share == "000102":') df_test = self.hp.to_dataframe(share='000102') self.assertIsInstance(df_test, pd.DataFrame) self.assertEqual(list(self.hp.hdates), list(df_test.index)) self.assertEqual(list(self.hp.htypes), list(df_test.columns)) values = df_test.values self.assertTrue(np.allclose(self.hp[:, '000102'], values)) print(f'test DataFrame conversion with share == "000100"') df_test = self.hp.to_dataframe(share='000100') self.assertIsInstance(df_test, pd.DataFrame) self.assertEqual(list(self.hp.hdates), list(df_test.index)) self.assertEqual(list(self.hp.htypes), list(df_test.columns)) values = df_test.values self.assertTrue(np.allclose(self.hp[:, '000100'], values)) print(f'test DataFrame conversion error: type incorrect') self.assertRaises(AssertionError, self.hp.to_dataframe, share=3.0) print(f'test DataFrame error raising with share not found error') self.assertRaises(KeyError, self.hp.to_dataframe, share='000300') print(f'test DataFrame conversion with htype == "close"') df_test = self.hp.to_dataframe(htype='close') self.assertIsInstance(df_test, pd.DataFrame) self.assertEqual(list(self.hp.hdates), list(df_test.index)) self.assertEqual(list(self.hp.shares), list(df_test.columns)) values = df_test.values self.assertTrue(np.allclose(self.hp['close'].T, values)) print(f'test DataFrame conversion with htype == "high"') df_test = self.hp.to_dataframe(htype='high') self.assertIsInstance(df_test, pd.DataFrame) self.assertEqual(list(self.hp.hdates), list(df_test.index)) self.assertEqual(list(self.hp.shares), list(df_test.columns)) values = df_test.values self.assertTrue(np.allclose(self.hp['high'].T, values)) print(f'test DataFrame conversion with htype == "high" and dropna') v = self.hp.values.astype('float') v[:, 3, :] = np.nan v[:, 4, :] = np.inf test_hp = qt.HistoryPanel(v, levels=self.shares, columns=self.htypes, rows=self.index) df_test = test_hp.to_dataframe(htype='high', dropna=True) self.assertIsInstance(df_test, pd.DataFrame) self.assertEqual(list(self.hp.hdates[:3]) + list(self.hp.hdates[4:]), list(df_test.index)) self.assertEqual(list(self.hp.shares), list(df_test.columns)) values = df_test.values target_values = test_hp['high'].T target_values = target_values[np.where(~np.isnan(target_values))].reshape(9, 5) self.assertTrue(np.allclose(target_values, values)) print(f'test DataFrame conversion with htype == "high", dropna and treat infs as na') v = self.hp.values.astype('float') v[:, 3, :] = np.nan v[:, 4, :] = np.inf test_hp = qt.HistoryPanel(v, levels=self.shares, columns=self.htypes, rows=self.index) df_test = test_hp.to_dataframe(htype='high', dropna=True, inf_as_na=True) self.assertIsInstance(df_test, pd.DataFrame) self.assertEqual(list(self.hp.hdates[:3]) + list(self.hp.hdates[5:]), list(df_test.index)) self.assertEqual(list(self.hp.shares), list(df_test.columns)) values = df_test.values target_values = test_hp['high'].T target_values = target_values[np.where(~np.isnan(target_values) & ~np.isinf(target_values))].reshape(8, 5) self.assertTrue(np.allclose(target_values, values)) print(f'test DataFrame conversion error: type incorrect') self.assertRaises(AssertionError, self.hp.to_dataframe, htype=pd.DataFrame()) print(f'test DataFrame error raising with share not found error') self.assertRaises(KeyError, self.hp.to_dataframe, htype='non_type') print(f'Raises ValueError when both or none parameter is given') self.assertRaises(KeyError, self.hp.to_dataframe) self.assertRaises(KeyError, self.hp.to_dataframe, share='000100', htype='close') def test_to_df_dict(self): """测试HistoryPanel公有方法to_df_dict""" print('test convert history panel slice by share') df_dict = self.hp.to_df_dict('share') self.assertEqual(self.hp.shares, list(df_dict.keys())) df_dict = self.hp.to_df_dict() self.assertEqual(self.hp.shares, list(df_dict.keys())) print('test convert historypanel slice by htype ') df_dict = self.hp.to_df_dict('htype') self.assertEqual(self.hp.htypes, list(df_dict.keys())) print('test raise assertion error') self.assertRaises(AssertionError, self.hp.to_df_dict, by='random text') self.assertRaises(AssertionError, self.hp.to_df_dict, by=3) print('test empty hp') df_dict = qt.HistoryPanel().to_df_dict('share') self.assertEqual(df_dict, {}) def test_stack_dataframes(self): print('test stack dataframes in a list') df1 = pd.DataFrame({'a': [1, 2, 3, 4], 'b': [2, 3, 4, 5], 'c': [3, 4, 5, 6]}) df1.index = ['20200101', '20200102', '20200103', '20200104'] df2 = pd.DataFrame({'b': [4, 3, 2, 1], 'd': [1, 1, 1, 1], 'c': [6, 5, 4, 3]}) df2.index = ['20200101', '20200102', '20200104', '20200105'] df3 = pd.DataFrame({'a': [6, 6, 6, 6], 'd': [4, 4, 4, 4], 'b': [2, 4, 6, 8]}) df3.index = ['20200101', '20200102', '20200103', '20200106'] values1 = np.array([[[1., 2., 3., np.nan], [2., 3., 4., np.nan], [3., 4., 5., np.nan], [4., 5., 6., np.nan], [np.nan, np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan, np.nan]], [[np.nan, 4., 6., 1.], [np.nan, 3., 5., 1.], [np.nan, np.nan, np.nan, np.nan], [np.nan, 2., 4., 1.], [np.nan, 1., 3., 1.], [np.nan, np.nan, np.nan, np.nan]], [[6., 2., np.nan, 4.], [6., 4., np.nan, 4.], [6., 6., np.nan, 4.], [np.nan, np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan, np.nan], [6., 8., np.nan, 4.]]]) values2 = np.array([[[1., np.nan, 6.], [2., np.nan, 6.], [3., np.nan, 6.], [4., np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, 6.]], [[2., 4., 2.], [3., 3., 4.], [4., np.nan, 6.], [5., 2., np.nan], [np.nan, 1., np.nan], [np.nan, np.nan, 8.]], [[3., 6., np.nan], [4., 5., np.nan], [5., np.nan, np.nan], [6., 4., np.nan], [np.nan, 3., np.nan], [np.nan, np.nan, np.nan]], [[np.nan, 1., 4.], [np.nan, 1., 4.], [np.nan, np.nan, 4.], [np.nan, 1., np.nan], [np.nan, 1., np.nan], [np.nan, np.nan, 4.]]]) print(df1.rename(index=pd.to_datetime)) print(df2.rename(index=pd.to_datetime)) print(df3.rename(index=pd.to_datetime)) hp1 = stack_dataframes([df1, df2, df3], stack_along='shares', shares=['000100', '000200', '000300']) hp2 = stack_dataframes([df1, df2, df3], stack_along='shares', shares='000100, 000300, 000200') print('hp1 is:\n', hp1) print('hp2 is:\n', hp2) self.assertEqual(hp1.htypes, ['a', 'b', 'c', 'd']) self.assertEqual(hp1.shares, ['000100', '000200', '000300']) self.assertTrue(np.allclose(hp1.values, values1, equal_nan=True)) self.assertEqual(hp2.htypes, ['a', 'b', 'c', 'd']) self.assertEqual(hp2.shares, ['000100', '000300', '000200']) self.assertTrue(np.allclose(hp2.values, values1, equal_nan=True)) hp3 = stack_dataframes([df1, df2, df3], stack_along='htypes', htypes=['close', 'high', 'low']) hp4 = stack_dataframes([df1, df2, df3], stack_along='htypes', htypes='open, close, high') print('hp3 is:\n', hp3.values) print('hp4 is:\n', hp4.values) self.assertEqual(hp3.htypes, ['close', 'high', 'low']) self.assertEqual(hp3.shares, ['a', 'b', 'c', 'd']) self.assertTrue(np.allclose(hp3.values, values2, equal_nan=True)) self.assertEqual(hp4.htypes, ['open', 'close', 'high']) self.assertEqual(hp4.shares, ['a', 'b', 'c', 'd']) self.assertTrue(np.allclose(hp4.values, values2, equal_nan=True)) print('test stack dataframes in a dict') df1 = pd.DataFrame({'a': [1, 2, 3, 4], 'b': [2, 3, 4, 5], 'c': [3, 4, 5, 6]}) df1.index = ['20200101', '20200102', '20200103', '20200104'] df2 = pd.DataFrame({'b': [4, 3, 2, 1], 'd': [1, 1, 1, 1], 'c': [6, 5, 4, 3]}) df2.index = ['20200101', '20200102', '20200104', '20200105'] df3 = pd.DataFrame({'a': [6, 6, 6, 6], 'd': [4, 4, 4, 4], 'b': [2, 4, 6, 8]}) df3.index = ['20200101', '20200102', '20200103', '20200106'] values1 = np.array([[[1., 2., 3., np.nan], [2., 3., 4., np.nan], [3., 4., 5., np.nan], [4., 5., 6., np.nan], [np.nan, np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan, np.nan]], [[np.nan, 4., 6., 1.], [np.nan, 3., 5., 1.], [np.nan, np.nan, np.nan, np.nan], [np.nan, 2., 4., 1.], [np.nan, 1., 3., 1.], [np.nan, np.nan, np.nan, np.nan]], [[6., 2., np.nan, 4.], [6., 4., np.nan, 4.], [6., 6., np.nan, 4.], [np.nan, np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan, np.nan], [6., 8., np.nan, 4.]]]) values2 = np.array([[[1., np.nan, 6.], [2., np.nan, 6.], [3., np.nan, 6.], [4., np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, 6.]], [[2., 4., 2.], [3., 3., 4.], [4., np.nan, 6.], [5., 2., np.nan], [np.nan, 1., np.nan], [np.nan, np.nan, 8.]], [[3., 6., np.nan], [4., 5., np.nan], [5., np.nan, np.nan], [6., 4., np.nan], [np.nan, 3., np.nan], [np.nan, np.nan, np.nan]], [[np.nan, 1., 4.], [np.nan, 1., 4.], [np.nan, np.nan, 4.], [np.nan, 1., np.nan], [np.nan, 1., np.nan], [np.nan, np.nan, 4.]]]) print(df1.rename(index=pd.to_datetime)) print(df2.rename(index=pd.to_datetime)) print(df3.rename(index=pd.to_datetime)) hp1 = stack_dataframes(dfs={'000001.SZ': df1, '000002.SZ': df2, '000003.SZ': df3}, stack_along='shares') hp2 = stack_dataframes(dfs={'000001.SZ': df1, '000002.SZ': df2, '000003.SZ': df3}, stack_along='shares', shares='000100, 000300, 000200') print('hp1 is:\n', hp1) print('hp2 is:\n', hp2) self.assertEqual(hp1.htypes, ['a', 'b', 'c', 'd']) self.assertEqual(hp1.shares, ['000001.SZ', '000002.SZ', '000003.SZ']) self.assertTrue(np.allclose(hp1.values, values1, equal_nan=True)) self.assertEqual(hp2.htypes, ['a', 'b', 'c', 'd']) self.assertEqual(hp2.shares, ['000100', '000300', '000200']) self.assertTrue(np.allclose(hp2.values, values1, equal_nan=True)) hp3 = stack_dataframes(dfs={'close': df1, 'high': df2, 'low': df3}, stack_along='htypes') hp4 = stack_dataframes(dfs={'close': df1, 'low': df2, 'high': df3}, stack_along='htypes', htypes='open, close, high') print('hp3 is:\n', hp3.values) print('hp4 is:\n', hp4.values) self.assertEqual(hp3.htypes, ['close', 'high', 'low']) self.assertEqual(hp3.shares, ['a', 'b', 'c', 'd']) self.assertTrue(np.allclose(hp3.values, values2, equal_nan=True)) self.assertEqual(hp4.htypes, ['open', 'close', 'high']) self.assertEqual(hp4.shares, ['a', 'b', 'c', 'd']) self.assertTrue(np.allclose(hp4.values, values2, equal_nan=True)) def test_to_csv(self): pass def test_to_hdf(self): pass def test_fill_na(self): print(self.hp) new_values = self.hp.values.astype(float) new_values[[0, 1, 3, 2], [1, 3, 0, 2], [1, 3, 2, 2]] = np.nan print(new_values) temp_hp = qt.HistoryPanel(values=new_values, levels=self.hp.levels, rows=self.hp.rows, columns=self.hp.columns) self.assertTrue(np.allclose(temp_hp.values[[0, 1, 3, 2], [1, 3, 0, 2], [1, 3, 2, 2]], np.nan, equal_nan=True)) temp_hp.fillna(2.3) new_values[[0, 1, 3, 2], [1, 3, 0, 2], [1, 3, 2, 2]] = 2.3 self.assertTrue(np.allclose(temp_hp.values, new_values, equal_nan=True)) def test_get_history_panel(self): # TODO: implement this test case # test get only one line of data pass def test_get_price_type_raw_data(self): shares = '000039.SZ, 600748.SH, 000040.SZ' start = '20200101' end = '20200131' htypes = 'open, high, low, close' target_price_000039 = [[9.45, 9.49, 9.12, 9.17], [9.46, 9.56, 9.4, 9.5], [9.7, 9.76, 9.5, 9.51], [9.7, 9.75, 9.7, 9.72], [9.73, 9.77, 9.7, 9.73], [9.83, 9.85, 9.71, 9.72], [9.85, 9.85, 9.75, 9.79], [9.96, 9.96, 9.83, 9.86], [9.87, 9.94, 9.77, 9.93], [9.82, 9.9, 9.76, 9.87], [9.8, 9.85, 9.77, 9.82], [9.84, 9.86, 9.71, 9.72], [9.83, 9.93, 9.81, 9.86], [9.7, 9.87, 9.7, 9.82], [9.83, 9.86, 9.69, 9.79], [9.8, 9.94, 9.8, 9.86]] target_price_600748 = [[5.68, 5.68, 5.32, 5.37], [5.62, 5.68, 5.46, 5.65], [5.72, 5.72, 5.61, 5.62], [5.76, 5.77, 5.6, 5.73], [5.78, 5.84, 5.73, 5.75], [5.89, 5.91, 5.76, 5.77], [6.03, 6.04, 5.87, 5.89], [5.94, 6.07, 5.94, 6.02], [5.96, 5.98, 5.88, 5.97], [6.04, 6.06, 5.95, 5.96], [5.98, 6.04, 5.96, 6.03], [6.1, 6.11, 5.89, 5.94], [6.02, 6.12, 6., 6.1], [5.96, 6.05, 5.88, 6.01], [6.03, 6.03, 5.95, 5.99], [6.02, 6.12, 5.99, 5.99]] target_price_000040 = [[3.63, 3.83, 3.63, 3.65], [3.99, 4.07, 3.97, 4.03], [4.1, 4.11, 3.93, 3.95], [4.12, 4.13, 4.06, 4.11], [4.13, 4.19, 4.07, 4.13], [4.27, 4.28, 4.11, 4.12], [4.37, 4.38, 4.25, 4.29], [4.34, 4.5, 4.32, 4.41], [4.28, 4.35, 4.2, 4.34], [4.41, 4.43, 4.29, 4.31], [4.42, 4.45, 4.36, 4.41], [4.51, 4.56, 4.33, 4.35], [4.35, 4.55, 4.31, 4.55], [4.3, 4.41, 4.22, 4.36], [4.27, 4.44, 4.23, 4.34], [4.23, 4.27, 4.18, 4.25]] print(f'test get price type raw data with single thread') df_list = get_price_type_raw_data(start=start, end=end, shares=shares, htypes=htypes, freq='d') self.assertIsInstance(df_list, dict) self.assertEqual(len(df_list), 3) self.assertTrue(np.allclose(df_list['000039.SZ'].values, np.array(target_price_000039))) self.assertTrue(np.allclose(df_list['600748.SH'].values, np.array(target_price_600748))) self.assertTrue(np.allclose(df_list['000040.SZ'].values, np.array(target_price_000040))) print(f'in get financial report type raw data, got DataFrames: \n"000039.SZ":\n' f'{df_list["000039.SZ"]}\n"600748.SH":\n' f'{df_list["600748.SH"]}\n"000040.SZ":\n{df_list["000040.SZ"]}') print(f'test get price type raw data with with multi threads') df_list = get_price_type_raw_data(start=start, end=end, shares=shares, htypes=htypes, freq='d', parallel=10) self.assertIsInstance(df_list, dict) self.assertEqual(len(df_list), 3) self.assertTrue(np.allclose(df_list['000039.SZ'].values, np.array(target_price_000039))) self.assertTrue(np.allclose(df_list['600748.SH'].values, np.array(target_price_600748))) self.assertTrue(np.allclose(df_list['000040.SZ'].values, np.array(target_price_000040))) print(f'in get financial report type raw data, got DataFrames: \n"000039.SZ":\n' f'{df_list["000039.SZ"]}\n"600748.SH":\n' f'{df_list["600748.SH"]}\n"000040.SZ":\n{df_list["000040.SZ"]}') def test_get_financial_report_type_raw_data(self): shares = '000039.SZ, 600748.SH, 000040.SZ' start = '20160101' end = '20201231' htypes = 'eps,basic_eps,diluted_eps,total_revenue,revenue,total_share,' \ 'cap_rese,undistr_porfit,surplus_rese,net_profit' target_eps_000039 = [[1.41], [0.1398], [-0.0841], [-0.1929], [0.37], [0.1357], [0.1618], [0.1191], [1.11], [0.759], [0.3061], [0.1409], [0.81], [0.4187], [0.2554], [0.1624], [0.14], [-0.0898], [-0.1444], [0.1291]] target_eps_600748 = [[0.41], [0.22], [0.22], [0.09], [0.42], [0.23], [0.22], [0.09], [0.36], [0.16], [0.15], [0.07], [0.47], [0.19], [0.12], [0.07], [0.32], [0.22], [0.14], [0.07]] target_eps_000040 = [[-0.6866], [-0.134], [-0.189], [-0.036], [-0.6435], [0.05], [0.062], [0.0125], [0.8282], [1.05], [0.985], [0.811], [0.41], [0.242], [0.113], [0.027], [0.19], [0.17], [0.17], [0.064]] target_basic_eps_000039 = [[1.3980000e-01, 1.3980000e-01, 6.3591954e+10, 6.3591954e+10], [-8.4100000e-02, -8.4100000e-02, 3.9431807e+10, 3.9431807e+10], [-1.9290000e-01, -1.9290000e-01, 1.5852177e+10, 1.5852177e+10], [3.7000000e-01, 3.7000000e-01, 8.5815341e+10, 8.5815341e+10], [1.3570000e-01, 1.3430000e-01, 6.1660271e+10, 6.1660271e+10], [1.6180000e-01, 1.6040000e-01, 4.2717729e+10, 4.2717729e+10], [1.1910000e-01, 1.1900000e-01, 1.9099547e+10, 1.9099547e+10], [1.1100000e+00, 1.1000000e+00, 9.3497622e+10, 9.3497622e+10], [7.5900000e-01, 7.5610000e-01, 6.6906147e+10, 6.6906147e+10], [3.0610000e-01, 3.0380000e-01, 4.3560398e+10, 4.3560398e+10], [1.4090000e-01, 1.4050000e-01, 1.9253639e+10, 1.9253639e+10], [8.1000000e-01, 8.1000000e-01, 7.6299930e+10, 7.6299930e+10], [4.1870000e-01, 4.1710000e-01, 5.3962706e+10, 5.3962706e+10], [2.5540000e-01, 2.5440000e-01, 3.3387152e+10, 3.3387152e+10], [1.6240000e-01, 1.6200000e-01, 1.4675987e+10, 1.4675987e+10], [1.4000000e-01, 1.4000000e-01, 5.1111652e+10, 5.1111652e+10], [-8.9800000e-02, -8.9800000e-02, 3.4982614e+10, 3.4982614e+10], [-1.4440000e-01, -1.4440000e-01, 2.3542843e+10, 2.3542843e+10], [1.2910000e-01, 1.2860000e-01, 1.0412416e+10, 1.0412416e+10], [7.2000000e-01, 7.1000000e-01, 5.8685804e+10, 5.8685804e+10]] target_basic_eps_600748 = [[2.20000000e-01, 2.20000000e-01, 5.29423397e+09, 5.29423397e+09], [2.20000000e-01, 2.20000000e-01, 4.49275653e+09, 4.49275653e+09], [9.00000000e-02, 9.00000000e-02, 1.59067065e+09, 1.59067065e+09], [4.20000000e-01, 4.20000000e-01, 8.86555586e+09, 8.86555586e+09], [2.30000000e-01, 2.30000000e-01, 5.44850143e+09, 5.44850143e+09], [2.20000000e-01, 2.20000000e-01, 4.34978927e+09, 4.34978927e+09], [9.00000000e-02, 9.00000000e-02, 1.73793793e+09, 1.73793793e+09], [3.60000000e-01, 3.60000000e-01, 8.66375241e+09, 8.66375241e+09], [1.60000000e-01, 1.60000000e-01, 4.72875116e+09, 4.72875116e+09], [1.50000000e-01, 1.50000000e-01, 3.76879016e+09, 3.76879016e+09], [7.00000000e-02, 7.00000000e-02, 1.31785454e+09, 1.31785454e+09], [4.70000000e-01, 4.70000000e-01, 7.23391685e+09, 7.23391685e+09], [1.90000000e-01, 1.90000000e-01, 3.76072215e+09, 3.76072215e+09], [1.20000000e-01, 1.20000000e-01, 2.35845364e+09, 2.35845364e+09], [7.00000000e-02, 7.00000000e-02, 1.03831865e+09, 1.03831865e+09], [3.20000000e-01, 3.20000000e-01, 6.48880919e+09, 6.48880919e+09], [2.20000000e-01, 2.20000000e-01, 3.72209142e+09, 3.72209142e+09], [1.40000000e-01, 1.40000000e-01, 2.22563924e+09, 2.22563924e+09], [7.00000000e-02, 7.00000000e-02, 8.96647052e+08, 8.96647052e+08], [4.80000000e-01, 4.80000000e-01, 6.61917508e+09, 6.61917508e+09]] target_basic_eps_000040 = [[-1.34000000e-01, -1.34000000e-01, 2.50438755e+09, 2.50438755e+09], [-1.89000000e-01, -1.89000000e-01, 1.32692347e+09, 1.32692347e+09], [-3.60000000e-02, -3.60000000e-02, 5.59073338e+08, 5.59073338e+08], [-6.43700000e-01, -6.43700000e-01, 6.80576162e+09, 6.80576162e+09], [5.00000000e-02, 5.00000000e-02, 6.38891620e+09, 6.38891620e+09], [6.20000000e-02, 6.20000000e-02, 5.23267082e+09, 5.23267082e+09], [1.25000000e-02, 1.25000000e-02, 2.22420874e+09, 2.22420874e+09], [8.30000000e-01, 8.30000000e-01, 8.67628947e+09, 8.67628947e+09], [1.05000000e+00, 1.05000000e+00, 5.29431716e+09, 5.29431716e+09], [9.85000000e-01, 9.85000000e-01, 3.56822382e+09, 3.56822382e+09], [8.11000000e-01, 8.11000000e-01, 1.06613439e+09, 1.06613439e+09], [4.10000000e-01, 4.10000000e-01, 8.13102532e+09, 8.13102532e+09], [2.42000000e-01, 2.42000000e-01, 5.17971521e+09, 5.17971521e+09], [1.13000000e-01, 1.13000000e-01, 3.21704120e+09, 3.21704120e+09], [2.70000000e-02, 2.70000000e-02, 8.41966738e+08, 8.24272235e+08], [1.90000000e-01, 1.90000000e-01, 3.77350171e+09, 3.77350171e+09], [1.70000000e-01, 1.70000000e-01, 2.38643892e+09, 2.38643892e+09], [1.70000000e-01, 1.70000000e-01, 1.29127117e+09, 1.29127117e+09], [6.40000000e-02, 6.40000000e-02, 6.03256858e+08, 6.03256858e+08], [1.30000000e-01, 1.30000000e-01, 1.66572918e+09, 1.66572918e+09]] target_total_share_000039 = [[3.5950140e+09, 4.8005360e+09, 2.1573660e+10, 3.5823430e+09], [3.5860750e+09, 4.8402300e+09, 2.0750827e+10, 3.5823430e+09], [3.5860750e+09, 4.9053550e+09, 2.0791307e+10, 3.5823430e+09], [3.5845040e+09, 4.8813110e+09, 2.1482857e+10, 3.5823430e+09], [3.5831490e+09, 4.9764250e+09, 2.0926816e+10, 3.2825850e+09], [3.5825310e+09, 4.8501270e+09, 2.1020418e+10, 3.2825850e+09], [2.9851110e+09, 5.4241420e+09, 2.2438350e+10, 3.2825850e+09], [2.9849890e+09, 4.1284000e+09, 2.2082769e+10, 3.2825850e+09], [2.9849610e+09, 4.0838010e+09, 2.1045994e+10, 3.2815350e+09], [2.9849560e+09, 4.2491510e+09, 1.9694345e+10, 3.2815350e+09], [2.9846970e+09, 4.2351600e+09, 2.0016361e+10, 3.2815350e+09], [2.9828890e+09, 4.2096630e+09, 1.9734494e+10, 3.2815350e+09], [2.9813960e+09, 3.4564240e+09, 1.8562738e+10, 3.2793790e+09], [2.9803530e+09, 3.0759650e+09, 1.8076208e+10, 3.2793790e+09], [2.9792680e+09, 3.1376690e+09, 1.7994776e+10, 3.2793790e+09], [2.9785770e+09, 3.1265850e+09, 1.7495053e+10, 3.2793790e+09], [2.9783640e+09, 3.1343850e+09, 1.6740840e+10, 3.2035780e+09], [2.9783590e+09, 3.1273880e+09, 1.6578389e+10, 3.2035780e+09], [2.9782780e+09, 3.1169280e+09, 1.8047639e+10, 3.2035780e+09], [2.9778200e+09, 3.1818630e+09, 1.7663145e+10, 3.2035780e+09]] target_total_share_600748 = [[1.84456289e+09, 2.60058426e+09, 5.72443733e+09, 4.58026529e+08], [1.84456289e+09, 2.60058426e+09, 5.72096899e+09, 4.58026529e+08], [1.84456289e+09, 2.60058426e+09, 5.65738237e+09, 4.58026529e+08], [1.84456289e+09, 2.60058426e+09, 5.50257806e+09, 4.58026529e+08], [1.84456289e+09, 2.59868164e+09, 5.16741523e+09, 4.44998882e+08], [1.84456289e+09, 2.59684471e+09, 5.14677280e+09, 4.44998882e+08], [1.84456289e+09, 2.59684471e+09, 4.94955591e+09, 4.44998882e+08], [1.84456289e+09, 2.59684471e+09, 4.79001451e+09, 4.44998882e+08], [1.84456289e+09, 3.11401684e+09, 4.46326988e+09, 4.01064256e+08], [1.84456289e+09, 3.11596723e+09, 4.45419136e+09, 4.01064256e+08], [1.84456289e+09, 3.11596723e+09, 4.39652948e+09, 4.01064256e+08], [1.84456289e+09, 3.18007783e+09, 4.26608403e+09, 4.01064256e+08], [1.84456289e+09, 3.10935622e+09, 3.78417688e+09, 3.65651701e+08], [1.84456289e+09, 3.10935622e+09, 3.65806574e+09, 3.65651701e+08], [1.84456289e+09, 3.10935622e+09, 3.62063090e+09, 3.65651701e+08], [1.84456289e+09, 3.10935622e+09, 3.50063915e+09, 3.65651701e+08], [1.41889453e+09, 3.55940850e+09, 3.22272993e+09, 3.62124939e+08], [1.41889453e+09, 3.56129650e+09, 3.11477476e+09, 3.62124939e+08], [1.41889453e+09, 3.59632888e+09, 3.06836903e+09, 3.62124939e+08], [1.08337087e+09, 3.37400726e+07, 3.00918704e+09, 3.62124939e+08]] target_total_share_000040 = [[1.48687387e+09, 1.06757900e+10, 8.31900755e+08, 2.16091994e+08], [1.48687387e+09, 1.06757900e+10, 7.50177302e+08, 2.16091994e+08], [1.48687387e+09, 1.06757899e+10, 9.90255974e+08, 2.16123282e+08], [1.48687387e+09, 1.06757899e+10, 1.03109866e+09, 2.16091994e+08], [1.48687387e+09, 1.06757910e+10, 2.07704745e+09, 2.16123282e+08], [1.48687387e+09, 1.06757910e+10, 2.09608665e+09, 2.16123282e+08], [1.48687387e+09, 1.06803833e+10, 2.13354083e+09, 2.16123282e+08], [1.48687387e+09, 1.06804090e+10, 2.11489364e+09, 2.16123282e+08], [1.33717327e+09, 8.87361727e+09, 2.42939924e+09, 1.88489589e+08], [1.33717327e+09, 8.87361727e+09, 2.34220254e+09, 1.88489589e+08], [1.33717327e+09, 8.87361727e+09, 2.16390368e+09, 1.88489589e+08], [1.33717327e+09, 8.87361727e+09, 1.07961915e+09, 1.88489589e+08], [1.33717327e+09, 8.87361727e+09, 8.58866066e+08, 1.88489589e+08], [1.33717327e+09, 8.87361727e+09, 6.87024393e+08, 1.88489589e+08], [1.33717327e+09, 8.87361727e+09, 5.71554565e+08, 1.88489589e+08], [1.33717327e+09, 8.87361727e+09, 5.54241222e+08, 1.88489589e+08], [1.33717327e+09, 8.87361726e+09, 5.10059576e+08, 1.88489589e+08], [1.33717327e+09, 8.87361726e+09, 4.59351639e+08, 1.88489589e+08], [4.69593364e+08, 2.78355875e+08, 4.13430814e+08, 1.88489589e+08], [4.69593364e+08, 2.74235459e+08, 3.83557678e+08, 1.88489589e+08]] target_net_profit_000039 = [[np.nan], [2.422180e+08], [np.nan], [2.510113e+09], [np.nan], [1.102220e+09], [np.nan], [4.068455e+09], [np.nan], [1.315957e+09], [np.nan], [3.158415e+09], [np.nan], [1.066509e+09], [np.nan], [7.349830e+08], [np.nan], [-5.411600e+08], [np.nan], [2.271961e+09]] target_net_profit_600748 = [[np.nan], [4.54341757e+08], [np.nan], [9.14476670e+08], [np.nan], [5.25360283e+08], [np.nan], [9.24502415e+08], [np.nan], [4.66560302e+08], [np.nan], [9.15265285e+08], [np.nan], [2.14639674e+08], [np.nan], [7.45093049e+08], [np.nan], [2.10967312e+08], [np.nan], [6.04572711e+08]] target_net_profit_000040 = [[np.nan], [-2.82458846e+08], [np.nan], [-9.57130872e+08], [np.nan], [9.22114527e+07], [np.nan], [1.12643819e+09], [np.nan], [1.31715269e+09], [np.nan], [5.39940093e+08], [np.nan], [1.51440838e+08], [np.nan], [1.75339071e+08], [np.nan], [8.04740415e+07], [np.nan], [6.20445815e+07]] print('test get financial data, in multi thread mode') df_list = get_financial_report_type_raw_data(start=start, end=end, shares=shares, htypes=htypes, parallel=4) self.assertIsInstance(df_list, tuple) self.assertEqual(len(df_list), 4) self.assertEqual(len(df_list[0]), 3) self.assertEqual(len(df_list[1]), 3) self.assertEqual(len(df_list[2]), 3) self.assertEqual(len(df_list[3]), 3) # 检查确认所有数据类型正确 self.assertTrue(all(isinstance(item, pd.DataFrame) for subdict in df_list for item in subdict.values())) # 检查是否有空数据 print(all(item.empty for subdict in df_list for item in subdict.values())) # 检查获取的每组数据正确,且所有数据的顺序一致, 如果取到空数据,则忽略 if df_list[0]['000039.SZ'].empty: print(f'income data for "000039.SZ" is empty') else: self.assertTrue(np.allclose(df_list[0]['000039.SZ'].values, target_basic_eps_000039)) if df_list[0]['600748.SH'].empty: print(f'income data for "600748.SH" is empty') else: self.assertTrue(np.allclose(df_list[0]['600748.SH'].values, target_basic_eps_600748)) if df_list[0]['000040.SZ'].empty: print(f'income data for "000040.SZ" is empty') else: self.assertTrue(np.allclose(df_list[0]['000040.SZ'].values, target_basic_eps_000040)) if df_list[1]['000039.SZ'].empty: print(f'indicator data for "000039.SZ" is empty') else: self.assertTrue(np.allclose(df_list[1]['000039.SZ'].values, target_eps_000039)) if df_list[1]['600748.SH'].empty: print(f'indicator data for "600748.SH" is empty') else: self.assertTrue(np.allclose(df_list[1]['600748.SH'].values, target_eps_600748)) if df_list[1]['000040.SZ'].empty: print(f'indicator data for "000040.SZ" is empty') else: self.assertTrue(np.allclose(df_list[1]['000040.SZ'].values, target_eps_000040)) if df_list[2]['000039.SZ'].empty: print(f'balance data for "000039.SZ" is empty') else: self.assertTrue(np.allclose(df_list[2]['000039.SZ'].values, target_total_share_000039)) if df_list[2]['600748.SH'].empty: print(f'balance data for "600748.SH" is empty') else: self.assertTrue(np.allclose(df_list[2]['600748.SH'].values, target_total_share_600748)) if df_list[2]['000040.SZ'].empty: print(f'balance data for "000040.SZ" is empty') else: self.assertTrue(np.allclose(df_list[2]['000040.SZ'].values, target_total_share_000040)) if df_list[3]['000039.SZ'].empty: print(f'cash flow data for "000039.SZ" is empty') else: self.assertTrue(np.allclose(df_list[3]['000039.SZ'].values, target_net_profit_000039, equal_nan=True)) if df_list[3]['600748.SH'].empty: print(f'cash flow data for "600748.SH" is empty') else: self.assertTrue(np.allclose(df_list[3]['600748.SH'].values, target_net_profit_600748, equal_nan=True)) if df_list[3]['000040.SZ'].empty: print(f'cash flow data for "000040.SZ" is empty') else: self.assertTrue(np.allclose(df_list[3]['000040.SZ'].values, target_net_profit_000040, equal_nan=True)) print('test get financial data, in single thread mode') df_list = get_financial_report_type_raw_data(start=start, end=end, shares=shares, htypes=htypes, parallel=0) self.assertIsInstance(df_list, tuple) self.assertEqual(len(df_list), 4) self.assertEqual(len(df_list[0]), 3) self.assertEqual(len(df_list[1]), 3) self.assertEqual(len(df_list[2]), 3) self.assertEqual(len(df_list[3]), 3) # 检查确认所有数据类型正确 self.assertTrue(all(isinstance(item, pd.DataFrame) for subdict in df_list for item in subdict.values())) # 检查是否有空数据,因为网络问题,有可能会取到空数据 self.assertFalse(all(item.empty for subdict in df_list for item in subdict.values())) # 检查获取的每组数据正确,且所有数据的顺序一致, 如果取到空数据,则忽略 if df_list[0]['000039.SZ'].empty: print(f'income data for "000039.SZ" is empty') else: self.assertTrue(np.allclose(df_list[0]['000039.SZ'].values, target_basic_eps_000039)) if df_list[0]['600748.SH'].empty: print(f'income data for "600748.SH" is empty') else: self.assertTrue(np.allclose(df_list[0]['600748.SH'].values, target_basic_eps_600748)) if df_list[0]['000040.SZ'].empty: print(f'income data for "000040.SZ" is empty') else: self.assertTrue(np.allclose(df_list[0]['000040.SZ'].values, target_basic_eps_000040)) if df_list[1]['000039.SZ'].empty: print(f'indicator data for "000039.SZ" is empty') else: self.assertTrue(np.allclose(df_list[1]['000039.SZ'].values, target_eps_000039)) if df_list[1]['600748.SH'].empty: print(f'indicator data for "600748.SH" is empty') else: self.assertTrue(np.allclose(df_list[1]['600748.SH'].values, target_eps_600748)) if df_list[1]['000040.SZ'].empty: print(f'indicator data for "000040.SZ" is empty') else: self.assertTrue(np.allclose(df_list[1]['000040.SZ'].values, target_eps_000040)) if df_list[2]['000039.SZ'].empty: print(f'balance data for "000039.SZ" is empty') else: self.assertTrue(np.allclose(df_list[2]['000039.SZ'].values, target_total_share_000039)) if df_list[2]['600748.SH'].empty: print(f'balance data for "600748.SH" is empty') else: self.assertTrue(np.allclose(df_list[2]['600748.SH'].values, target_total_share_600748)) if df_list[2]['000040.SZ'].empty: print(f'balance data for "000040.SZ" is empty') else: self.assertTrue(np.allclose(df_list[2]['000040.SZ'].values, target_total_share_000040)) if df_list[3]['000039.SZ'].empty: print(f'cash flow data for "000039.SZ" is empty') else: self.assertTrue(np.allclose(df_list[3]['000039.SZ'].values, target_net_profit_000039, equal_nan=True)) if df_list[3]['600748.SH'].empty: print(f'cash flow data for "600748.SH" is empty') else: self.assertTrue(np.allclose(df_list[3]['600748.SH'].values, target_net_profit_600748, equal_nan=True)) if df_list[3]['000040.SZ'].empty: print(f'cash flow data for "000040.SZ" is empty') else: self.assertTrue(np.allclose(df_list[3]['000040.SZ'].values, target_net_profit_000040, equal_nan=True)) def test_get_composite_type_raw_data(self): pass class TestUtilityFuncs(unittest.TestCase): def setUp(self): pass def test_str_to_list(self): self.assertEqual(str_to_list('a,b,c,d,e'), ['a', 'b', 'c', 'd', 'e']) self.assertEqual(str_to_list('a, b, c '), ['a', 'b', 'c']) self.assertEqual(str_to_list('a, b: c', sep_char=':'), ['a,b', 'c']) def test_list_or_slice(self): str_dict = {'close': 0, 'open': 1, 'high': 2, 'low': 3} self.assertEqual(qt.list_or_slice(slice(1, 2, 1), str_dict), slice(1, 2, 1)) self.assertEqual(qt.list_or_slice('open', str_dict), [1]) self.assertEqual(list(qt.list_or_slice('close, high, low', str_dict)), [0, 2, 3]) self.assertEqual(list(qt.list_or_slice('close:high', str_dict)), [0, 1, 2]) self.assertEqual(list(qt.list_or_slice(['open'], str_dict)), [1]) self.assertEqual(list(qt.list_or_slice(['open', 'high'], str_dict)), [1, 2]) self.assertEqual(list(qt.list_or_slice(0, str_dict)), [0]) self.assertEqual(list(qt.list_or_slice([0, 2], str_dict)), [0, 2]) self.assertEqual(list(qt.list_or_slice([True, False, True, False], str_dict)), [0, 2]) def test_label_to_dict(self): target_list = [0, 1, 10, 100] target_dict = {'close': 0, 'open': 1, 'high': 2, 'low': 3} target_dict2 = {'close': 0, 'open': 2, 'high': 1, 'low': 3} self.assertEqual(qt.labels_to_dict('close, open, high, low', target_list), target_dict) self.assertEqual(qt.labels_to_dict(['close', 'open', 'high', 'low'], target_list), target_dict) self.assertEqual(qt.labels_to_dict('close, high, open, low', target_list), target_dict2) self.assertEqual(qt.labels_to_dict(['close', 'high', 'open', 'low'], target_list), target_dict2) def test_regulate_date_format(self): self.assertEqual(regulate_date_format('2019/11/06'), '20191106') self.assertEqual(regulate_date_format('2019-11-06'), '20191106') self.assertEqual(regulate_date_format('20191106'), '20191106') self.assertEqual(regulate_date_format('191106'), '20061119') self.assertEqual(regulate_date_format('830522'), '19830522') self.assertEqual(regulate_date_format(datetime.datetime(2010, 3, 15)), '20100315') self.assertEqual(regulate_date_format(pd.Timestamp('2010.03.15')), '20100315') self.assertRaises(ValueError, regulate_date_format, 'abc') self.assertRaises(ValueError, regulate_date_format, '2019/13/43') def test_list_to_str_format(self): self.assertEqual(list_to_str_format(['close', 'open', 'high', 'low']), 'close,open,high,low') self.assertEqual(list_to_str_format(['letters', ' ', '123 4', 123, ' kk l']), 'letters,,1234,kkl') self.assertEqual(list_to_str_format('a string input'), 'a,string,input') self.assertEqual(list_to_str_format('already,a,good,string'), 'already,a,good,string') self.assertRaises(AssertionError, list_to_str_format, 123) def test_is_trade_day(self): """test if the funcion maybe_trade_day() and is_market_trade_day() works properly """ date_trade = '20210401' date_holiday = '20210102' date_weekend = '20210424' date_seems_trade_day = '20210217' date_too_early = '19890601' date_too_late = '20230105' date_christmas = '20201225' self.assertTrue(maybe_trade_day(date_trade)) self.assertFalse(maybe_trade_day(date_holiday)) self.assertFalse(maybe_trade_day(date_weekend)) self.assertTrue(maybe_trade_day(date_seems_trade_day)) self.assertTrue(maybe_trade_day(date_too_early)) self.assertTrue(maybe_trade_day(date_too_late)) self.assertTrue(maybe_trade_day(date_christmas)) self.assertTrue(is_market_trade_day(date_trade)) self.assertFalse(is_market_trade_day(date_holiday)) self.assertFalse(is_market_trade_day(date_weekend)) self.assertFalse(is_market_trade_day(date_seems_trade_day)) self.assertFalse(is_market_trade_day(date_too_early)) self.assertFalse(is_market_trade_day(date_too_late)) self.assertTrue(is_market_trade_day(date_christmas)) self.assertFalse(is_market_trade_day(date_christmas, exchange='XHKG')) date_trade = pd.to_datetime('20210401') date_holiday = pd.to_datetime('20210102') date_weekend = pd.to_datetime('20210424') self.assertTrue(maybe_trade_day(date_trade)) self.assertFalse(maybe_trade_day(date_holiday)) self.assertFalse(maybe_trade_day(date_weekend)) def test_prev_trade_day(self): """test the function prev_trade_day() """ date_trade = '20210401' date_holiday = '20210102' prev_holiday = pd.to_datetime(date_holiday) - pd.Timedelta(2, 'd') date_weekend = '20210424' prev_weekend = pd.to_datetime(date_weekend) - pd.Timedelta(1, 'd') date_seems_trade_day = '20210217' prev_seems_trade_day = '20210217' date_too_early = '19890601' date_too_late = '20230105' date_christmas = '20201225' self.assertEqual(pd.to_datetime(prev_trade_day(date_trade)), pd.to_datetime(date_trade)) self.assertEqual(pd.to_datetime(prev_trade_day(date_holiday)), pd.to_datetime(prev_holiday)) self.assertEqual(pd.to_datetime(prev_trade_day(date_weekend)), pd.to_datetime(prev_weekend)) self.assertEqual(pd.to_datetime(prev_trade_day(date_seems_trade_day)),
pd.to_datetime(prev_seems_trade_day)
pandas.to_datetime
#!/usr/bin/env python3 # requirement: a unique train path for each given bitmap day and UID import app.solr as solr import json import pandas as pd DAY = pd.offsets.Day() MONDAY = pd.offsets.Week(weekday=0) WEEK = 7 * DAY N = 0 def days_str(n): return '{:b}'.format(n).zfill(7) def day_int(bitmap): return int(bitmap, 2) DEBUG = True if __name__ == '__main__': DEBUG = False if DEBUG: pd.set_option('display.max_columns', None) df1 = pd.DataFrame(solr.get_query('PA', fl='UUID, UID, Date_From, Date_To, Days, STP, Transaction, id, Origin, Terminus')) df1['ID'] = 'PT' for KEY in ['Date_From', 'Date_To']: df1[KEY] = pd.to_datetime(df1[KEY]) df2 = df1[['Date_From', 'Date_To']].rename(columns={'Date_From': 'Start_Date', 'Date_To': 'End_Date'}) idx2 = df2['End_Date'].isnull() df2.loc[idx2, 'End_Date'] = df2.loc[idx2, 'Start_Date'] idx_monday = df2['Start_Date'].dt.dayofweek == 0 df2.loc[~idx_monday, 'Start_Date'] = df2.loc[~idx_monday, 'Start_Date'] - MONDAY df2['End_Date'] = df2['End_Date'] + MONDAY df1 = df1.join(df2) idx1 = df1['Days'].isna() df1.loc[idx1, 'Days'] = '0000000' df1 = df1.drop(['Date_From', 'Date_To'], axis=1) df1['Actual'] = df1['Days'] def output_schedule(this_schedule): this_schedule['Active'] = this_schedule['Start_Date'].dt.strftime('%Y-%m-%d') + '.' + this_schedule['End_Date'].dt.strftime('%Y-%m-%d') + '.' + this_schedule['Actual'] this_schedule['id'] = this_schedule['id'] + '.' + this_schedule.groupby('id').cumcount().apply(str) for KEY in ['Start_Date', 'End_Date']: this_schedule[KEY] = this_schedule[KEY].dt.strftime('%Y-%m-%dT%H:%M:%SZ') df1 = this_schedule['Actual'].apply(lambda s: {'{}'.format(str(k)): v for k, v in enumerate(list(s))}) df2 = pd.DataFrame(df1.to_list(), index=df1.index) this_schedule = this_schedule.join(df2) this_data = [json.dumps({k: v for k, v in path.to_dict().items() if v}) for _, path in this_schedule.iterrows()] print('\n'.join(this_data)) #Identify all unique UIDs in timetable idx1 = df1['UID'].duplicated(keep=False) SCHEDULE = pd.DataFrame(df1[~idx1]).reset_index(drop=True) output_schedule(SCHEDULE) DUPLICATES = df1[idx1] # Identify all UIDs without date overlap in timetable df2 = DUPLICATES[['UID', 'Start_Date', 'End_Date']].sort_values(['UID', 'Start_Date']).reset_index(drop=True) df3 = df2[['UID', 'Start_Date']].rename({'UID': 'UID2', 'Start_Date': 'overlap'}, axis=1).shift(-1) df2 = df2.join(df3) df3 = df2[df2['UID'] == df2['UID2']].drop('UID2', axis=1).set_index('UID') df2 = DUPLICATES.set_index('UID', drop=False) idx3 = df3[df3['End_Date'] > df3['overlap']].index.unique() SCHEDULE = df2.drop(idx3).reset_index(drop=True) output_schedule(SCHEDULE) # Identify all UIDs with date overlap and interleave df2 = df2.loc[idx3] def xor_bitmap(a, b): return b & (a ^ b) def overlay_bits(b): v = list(b[::-1]) for n in range(1, len(v)): v = v[:n] + [(xor_bitmap(v[n - 1], i)) for i in v[n:]] return tuple(v[::-1]) def interleave(these_objects): this_interval = [(j['Start_Date'], j['End_Date'], day_int(j['Days']), (j),) for j in these_objects] idx = sorted(set([j for i in this_interval for j in (i[0], i[1])])) all_paths = {} for i in this_interval: (m, n, bit, k) = i for j in range(idx.index(m), idx.index(n)): (k1, k2) = (idx[j], idx[j+1]) try: all_paths[(k1, k2)] += ((bit, k),) except KeyError: all_paths[(k1, k2)] = ((bit, k),) this_schedule = [] for (k1, k2), v in all_paths.items(): (bits, paths) = zip(*v) bits = overlay_bits((bits)) for bit, path in zip(bits, paths): if bit > 0: path = path.copy() path['Start_Date'] = k1 path['End_Date'] = k2 path['Actual'] = days_str(bit) this_schedule.append(path) return this_schedule UPDATE = [] for UID in df2.index.unique(): this_schedule = [i.to_dict() for _, i in df2.loc[UID].iterrows()] UPDATE += interleave(this_schedule) SCHEDULE =
pd.DataFrame(UPDATE)
pandas.DataFrame
# import libraries import requests import numpy as np import pandas as pd from bs4 import BeautifulSoup as bs import time import random import re import os # Important Note --- # change the value for which you want to scrape the data defaults to 2008-2019 year_list = [year for year in range(2019, 2007, -1)] # project paths project_root_dir = os.path.normpath(os.getcwd() + os.sep + os.pardir) file_path = os.path.join(project_root_dir, "data") os.makedirs(file_path, exist_ok=True) # function for loading data def load_data(filename, file_path=file_path): csv_path = os.path.join(file_path, filename) return pd.read_csv(csv_path) # function for saving data as csv file def save_dataframe(df, filename, file_path=file_path): """ This function takes a dataframe and save it as a csv file. df: dataframe to save filename: Name to use for the csv file eg: 'my_file.csv' file_path = where to save the file """ path = os.path.join(file_path, filename) df.to_csv(path, index=False) def get_batting_data(year): """This function gets the data from ipl official website, extract all the table data and return it as a pandas dataframe. """ try: # get the html from the website url = "https://www.iplt20.com/stats/{}/most-runs".format(year) response = requests.get(url) batting_html = response.text # parse the html batting_soup = bs(batting_html, features="lxml") # get the table data batting_table_data = batting_soup.find(class_="js-table") # get the column names col_names = [] for header in batting_table_data.find_all("th"): col_names.append(header.text.strip()) # create the dataframe a_list = [] for data in batting_table_data.find_all("td"): a_list.append(" ".join(data.text.split())) n = 14 final = [a_list[i : i + n] for i in range(0, len(a_list), n)] df = pd.DataFrame(final) df.columns = col_names # Add the nationality of each player in the dataframe nationality_list = [] for index, data in enumerate(batting_table_data.find_all("tr")[1:]): try: nationality_list.append(data["data-nationality"]) except Exception as e: print(e) print(index) # add none nationality_list.append(None) df["Nationality"] = nationality_list # Add the player link for more info in the dataframe base_url = "https://www.iplt20.com" player_link_list = [] try: # get all the links and add it to the list for data in batting_table_data.find_all("a"): player_link_list.append(base_url + data["href"]) # create a column with None value df[15] = None # iterate through each row and create a player name pattern for index, row in df.iterrows(): player_name = row["PLAYER"].replace(" ", "-") player_regex = re.compile(r"{}".format(player_name), re.IGNORECASE) for item in player_link_list: # if the pattern matches any links if player_regex.search(item) != None: # then append it to that row of the df df.iloc[index, 15] = item # rename the column df.rename(columns={15: "Player Link"}, inplace=True) # extract the player team name from the link and add to the df team_regex = r"teams/(\w+-\w+-?\w+)" df["Team"] = df["Player Link"].str.extract(team_regex, flags=re.IGNORECASE) df["Team"] = df["Team"].apply(lambda x: str(x).title().replace("-", " ")) # convert data types from string to numeric df["POS"] = pd.to_numeric(df["POS"], errors="coerce").fillna(0) df["Mat"] = pd.to_numeric(df["Mat"], errors="coerce").fillna(0) df["Inns"] = pd.to_numeric(df["Inns"], errors="coerce").fillna(0) df["NO"] = pd.to_numeric(df["NO"], errors="coerce").fillna(0) df["Runs"] = pd.to_numeric(df["Runs"], errors="coerce").fillna(0) df["HS"] = pd.to_numeric( df["HS"].str.replace("*", ""), errors="coerce" ).fillna(0) df["Avg"] = pd.to_numeric(df["Avg"], errors="coerce").fillna(0) df["BF"] = pd.to_numeric(df["BF"], errors="coerce").fillna(0) df["SR"] = pd.to_numeric(df["SR"], errors="coerce").fillna(0) df["100"] = pd.to_numeric(df["100"], errors="coerce").fillna(0) df["50"] = pd.to_numeric(df["50"], errors="coerce").fillna(0) df["4s"] = pd.to_numeric(df["4s"], errors="coerce").fillna(0) df["6s"] = pd.to_numeric(df["6s"], errors="coerce").fillna(0) # Add season year df["Season"] = year except Exception as e: print(e) print(year) except Exception as e: print(e) print(year) # return the dataframe return df def combine_all_years_data(function, year_list): """ Common function for combining data for all the years for a given table from ipl website or any other. All table have different functions to get the data from the websites. """ try: # create an empty list to hold all the dataframes df_list = [] # loop through each year and extract the data for year in year_list: # call the function to get the data for that year df = function(year) # append the data to the df list df_list.append(df) # add some random pause time.sleep(1 + 2 * random.random()) # concat all the dataframes df = pd.concat(df_list, ignore_index=True) except Exception as e: print(e) print(year) # return the dataframe return df def get_points_table_data(year): """This Function takes the year value and extract the points table data from HowStat and return it as a Pandas Dataframe. """ try: url = "http://www.howstat.com/cricket/Statistics/IPL/PointsTable.asp?s={}".format( year ) response = requests.get(url) except Exception as e: print(e) print(year) try: # get the html text points_html_str = response.text # parse it using BeautifulSoup points_soup = bs(points_html_str, features="lxml") # Get all the Table data table_data = points_soup.find(class_="TableLined") # create an empty list a_list = [] # loop through all the table data and extract the desired value and append # it to the empty list for data in table_data.find_all("td"): a_list.append(data.text.strip()) # total item to put in a list as we have 10 columns n = 10 # create a list of list each contains 10 items final = [a_list[i : i + n] for i in range(0, len(a_list), n)] # create a dataframe from the list of list df = pd.DataFrame(final) # set the column names which is in the 0th index df.columns = df.iloc[0] # drop the column names from the 0th index df = df.drop(df.index[0]) # convert the data types of all the following columns col_to_convert = ["Mat", "Won", "Lost", "Tied", "N/R", "Points", "Net R/R"] # function for converting string to numerical values def convert_to_float(val): return float(val) # do the conversion for each column for col in col_to_convert: df[col] = df[col].apply(convert_to_float) # add season year df["Season"] = year except Exception as e: print(e) print("year:", year) print("Status Code:", response.status_code) # return the dataframe return df def get_series_matches_data(year): """This function takes the year value and returns the series match data. """ try: url = "http://howstat.com/cricket/Statistics/IPL/SeriesMatches.asp?s={}".format( year ) response = requests.get(url) except Exception as e: print(e) print(year) try: # get the html text series_match_html = response.text # parse the html text series_soup = bs(series_match_html, features="lxml") # get the table data series_table_data = series_soup.find(class_="TableLined") # an empty list and append all the data to it a_list = [] for data in series_table_data.find_all("td"): a_list.append(data.text.strip()) n = 4 final = [a_list[i : i + n] for i in range(0, len(a_list), n)] df = pd.DataFrame(final) df.columns = df.iloc[0] df = df.drop(df.index[0]) # convert to datetime object df["Date"] = pd.to_datetime(df["Date"]) # split the match number and teams names df[["Match Number", "Teams"]] = df["Match"].str.split(":", expand=True) # get the team A and team B names df[["Team A", "Team B"]] = df["Teams"].str.split("v", expand=True) # matching pattern for team names team_regex = r""" (Rajasthan\sRoyals|Kings\sXI\sPunjab|Chennai\sSuper\sKings|Delhi\sCapitals|Mumbai\sIndians| Kolkata\sKnight\sRiders|Royal\sChallengers\sBangalore|Deccan\sChargers|Kochi\sTuskers\sKerala| Pune\sWarriors|Sunrisers\sHyderabad|Gujarat\sLions|Rising\sPune\sSupergiant|No\sresult|Match\sabandoned) """ # Extract the data df["winner"] = df["Result"].str.extract( team_regex, flags=re.VERBOSE | re.IGNORECASE ) df["Wins By Runs"] = ( df["Result"] .str.extract(r"(\d{1,3})\s(Runs|Run)", flags=re.IGNORECASE) .fillna(0) .iloc[:, 0] ) df["Wins By Wickets"] = ( df["Result"] .str.extract(r"(\d{1,2})\s(Wickets|Wicket)", flags=re.IGNORECASE) .fillna(0) .iloc[:, 0] ) df["Season"] = df["Date"].dt.year # columns to drop cols_to_drop = ["Match", "Teams", "Result"] df = df.drop(cols_to_drop, axis=1) # convert strings to int df["Wins By Runs"] = df["Wins By Runs"].astype("int") df["Wins By Wickets"] = df["Wins By Wickets"].astype("int") except Exception as e: print(e) print(year) print(response.status_code) # return the dataframe return df def get_fastest_fifties_data(year): """ Get the fastest fifties data. """ try: url = "https://www.iplt20.com/stats/{}/fastest-fifties".format(year) response = requests.get(url) fifties_html = response.text fifties_soup = bs(fifties_html, features="lxml") # get the table data fifties_table_data = fifties_soup.find(class_="js-table") # get the column names col_names = [] for header in fifties_table_data.find_all("th"): col_names.append(header.text.strip()) a_list = [] for data in fifties_table_data.find_all("td"): a_list.append(" ".join(data.text.split())) n = 9 final = [a_list[i : i + n] for i in range(0, len(a_list), n)] df = pd.DataFrame(final) df.columns = col_names # convert to datetime object df["Match Date"] = pd.to_datetime(df["Match Date"]) # convert data types df["POS"] = pd.to_numeric(df["POS"], errors="coerce").fillna(0) df["BF"] = pd.to_numeric(df["BF"], errors="coerce").fillna(0) df["6s"] = pd.to_numeric(df["6s"], errors="coerce").fillna(0) df["4s"] = pd.to_numeric(df["4s"], errors="coerce").fillna(0) df["Runs"] = pd.to_numeric(df["Runs"], errors="coerce").fillna(0) # Add season year df["Season"] = year except Exception as e: print(e) print(year) return df def get_fastest_centuries_data(year): """ Extract fastest centuries data for this year. """ try: url = "https://www.iplt20.com/stats/{}/fastest-centuries".format(year) response = requests.get(url) centuries_html = response.text centuries_soup = bs(centuries_html, features="lxml") # get the table data centuries_table_data = centuries_soup.find(class_="js-table") # get the column names col_names = [] for header in centuries_table_data.find_all("th"): col_names.append(header.text.strip()) a_list = [] for data in centuries_table_data.find_all("td"): a_list.append(" ".join(data.text.split())) n = 9 final = [a_list[i : i + n] for i in range(0, len(a_list), n)] df = pd.DataFrame(final) df.columns = col_names # convert to datetime object df["Match Date"] = pd.to_datetime(df["Match Date"]) # convert data from string to numeric df["POS"] = pd.to_numeric(df["POS"], errors="coerce").fillna(0) df["BF"] = pd.to_numeric(df["BF"], errors="coerce").fillna(0) df["6s"] = pd.to_numeric(df["6s"], errors="coerce").fillna(0) df["4s"] = pd.to_numeric(df["4s"], errors="coerce").fillna(0) df["Runs"] = pd.to_numeric(df["Runs"], errors="coerce").fillna(0) # add season year df["Season"] = year except Exception as e: print(e) print(year) return df def get_dot_balls_data(year): """This function gets the dot balls data for a particular year.""" url = "https://www.iplt20.com/stats/{}/most-dot-balls".format(year) response = requests.get(url) dots_html = response.text dots_soup = bs(dots_html, features="lxml") dots_table_data = dots_soup.find(class_="js-table") # get the column names col_names = [] for header in dots_table_data.find_all("th"): col_names.append(header.text.strip()) a_list = [] for data in dots_table_data.find_all("td"): a_list.append(" ".join(data.text.split())) n = 13 final = [a_list[i : i + n] for i in range(0, len(a_list), n)] df = pd.DataFrame(final) df.columns = col_names # select only player name and Dots data df = df[["PLAYER", "Dots"]] # convert data type df["Dots"] = pd.to_numeric(df["Dots"], errors="coerce").fillna(0) return df def get_maidens_data(year): """This function gets the player name and maidens data for a particular year. """ try: url = "https://www.iplt20.com/stats/{}/most-maidens".format(year) response = requests.get(url) maidens_html = response.text maidens_soup = bs(maidens_html, features="lxml") maidens_table_data = maidens_soup.find(class_="js-table") # get the column names col_names = [] for header in maidens_table_data.find_all("th"): col_names.append(header.text.strip()) a_list = [] for data in maidens_table_data.find_all("td"): a_list.append(" ".join(data.text.split())) n = 13 final = [a_list[i : i + n] for i in range(0, len(a_list), n)] df = pd.DataFrame(final) df.columns = col_names # select only player name and maid column df = df[["PLAYER", "Maid"]] # change data type df["Maid"] = pd.to_numeric(df["Maid"], errors="coerce").fillna(0) except Exception as e: print(e) print(year) return df def get_dots_maidens(year): """ Combine the dots, maidens and data into a single df. """ try: dots_df = get_dot_balls_data(year) maidens_df = get_maidens_data(year) # hats_df = get_hat_tricks_data(year) df = pd.merge(left=dots_df, right=maidens_df, how="left", on=["PLAYER"]) # df = pd.merge(left=df, right=hats_df,how='left',on=['PLAYER']) # fill missing values df.fillna(0, inplace=True) except Exception as e: print(e) print(year) return df def get_bowling_data(year): try: url = "https://www.iplt20.com/stats/{}/most-wickets".format(year) response = requests.get(url) bowling_html = response.text bowling_soup = bs(bowling_html, features="lxml") # get the table data bowling_table_data = bowling_soup.find(class_="js-table") # get the column names col_names = [] for header in bowling_table_data.find_all("th"): col_names.append(header.text.strip()) a_list = [] for data in bowling_table_data.find_all("td"): a_list.append(" ".join(data.text.split())) n = 13 final = [a_list[i : i + n] for i in range(0, len(a_list), n)] df = pd.DataFrame(final) df.columns = col_names # Add the nationality of each player in the dataframe nationality_list = [] for index, data in enumerate(bowling_table_data.find_all("tr")[1:]): try: nationality_list.append(data["data-nationality"]) except Exception as e: print(e) print(index) # add none nationality_list.append(None) df["Nationality"] = nationality_list # Add the player link for more info in the dataframe base_url = "https://www.iplt20.com" player_link_list = [] # get all the links and add it to the list for data in bowling_table_data.find_all("a"): player_link_list.append(base_url + data["href"]) # create a column with None value df[14] = None # iterate through each row and create a player name pattern for index, row in df.iterrows(): player_name = row["PLAYER"].replace(" ", "-") player_regex = re.compile(r"{}".format(player_name), re.IGNORECASE) for item in player_link_list: # if the pattern matches any links if player_regex.search(item) != None: # then append it to that row of the df df.iloc[index, 14] = item # rename the column df.rename(columns={14: "Player Link"}, inplace=True) # extract the player team name from the link and add to the df team_regex = r"teams/(\w+-\w+-?\w+)" df["Team"] = df["Player Link"].str.extract(team_regex, flags=re.IGNORECASE) df["Team"] = df["Team"].apply(lambda x: str(x).title().replace("-", " ")) # convert data types from string to numeric df["POS"] = pd.to_numeric(df["POS"], errors="coerce").fillna(0) df["Mat"] = pd.to_numeric(df["Mat"], errors="coerce").fillna(0) df["Inns"] = pd.to_numeric(df["Inns"], errors="coerce").fillna(0) df["Ov"] = pd.to_numeric(df["Ov"], errors="coerce").fillna(0) df["Runs"] = pd.to_numeric(df["Runs"], errors="coerce").fillna(0) df["Wkts"] = pd.to_numeric(df["Wkts"], errors="coerce").fillna(0) df["BBI"] = pd.to_numeric(df["BBI"], errors="coerce").fillna(0) df["Avg"] = pd.to_numeric(df["Avg"], errors="coerce").fillna(0) df["Econ"] = pd.to_numeric(df["Econ"], errors="coerce").fillna(0) df["SR"] = pd.to_numeric(df["SR"], errors="coerce").fillna(0) df["4w"] = pd.to_numeric(df["4w"], errors="coerce").fillna(0) df["5w"] = pd.to_numeric(df["5w"], errors="coerce").fillna(0) # extract the dots balls and maidens data df2 = get_dots_maidens(year) # combine both the dataframes df = pd.merge(left=df, right=df2, how="left", on=["PLAYER"]) # fill missing values df.fillna(0, inplace=True) # add season year df["Season"] = year except Exception as e: print(e) print(year) # return dataframe return df def get_wins_losses_data(): win_losses = pd.read_html( "https://en.wikipedia.org/wiki/List_of_Indian_Premier_League_records_and_statistics" ) # select the win losses table win_losses_df = win_losses[3] # drop the last win_losses_df.drop(win_losses_df.index[-1], inplace=True) # change names of the teams val_dict = { "CSK": "Chennai Super Kings", "DC": "Delhi Capitals", "KXIP": "Kings XI Punjab", "KKR": "Kolkata Knight Riders", "MI": "Mumbai Indians", "RR": "Rajasthan Royals", "RCB": "Royal Challengers Banglore", "SRH": "Sunrisers Hyderabad", } win_losses_df["Team"] = win_losses_df["Team"].map(val_dict) # rename the column win_losses_df.rename(columns={"Win\xa0%": "Win %"}, inplace=True) # columns list cols_list = [ "Matches", "Won", "Lost", "No Result", "Tied and won", "Tied and lost", "Win %", "Titles", ] # convert data types for col in cols_list: win_losses_df[col] = pd.to_numeric(win_losses_df[col], errors="coerce").fillna( 0 ) return win_losses_df def batting_all_time_record(df): """This Function create the aggregated all the season data into a single dataframe. """ agg_dict = { "Mat": "sum", "Inns": "sum", "NO": "sum", "Runs": "sum", "HS": "max", "Avg": "mean", "BF": "sum", "SR": "mean", "100": "sum", "50": "sum", "4s": "sum", "6s": "sum", } batting_all_time = ( batting.groupby("PLAYER") .aggregate(agg_dict) .reset_index() .sort_values(by="Runs", ascending=False) ) batting_all_time = batting_all_time.round(2) batting_all_time.index = np.arange(0, len(batting_all_time)) return batting_all_time def get_bowling_data_all_time(): try: url = "https://www.iplt20.com/stats/all-time/most-wickets" response = requests.get(url) bowling_html = response.text bowling_soup = bs(bowling_html, "lxml") # get the table data bowling_table_data = bowling_soup.find(class_="js-table") # get the column names col_names = [] for header in bowling_table_data.find_all("th"): col_names.append(header.text.strip()) a_list = [] for data in bowling_table_data.find_all("td"): a_list.append(" ".join(data.text.split())) n = 13 final = [a_list[i : i + n] for i in range(0, len(a_list), n)] df = pd.DataFrame(final) df.columns = col_names # Add the nationality of each player in the dataframe nationality_list = [] for index, data in enumerate(bowling_table_data.find_all("tr")[1:]): try: nationality_list.append(data["data-nationality"]) except Exception as e: print(e) print(index) # add none nationality_list.append(None) df["Nationality"] = nationality_list # Add the player link for more info in the dataframe base_url = "https://www.iplt20.com" player_link_list = [] # get all the links and add it to the list for data in bowling_table_data.find_all("a"): player_link_list.append(base_url + data["href"]) # create a column with None value df[14] = None # iterate through each row and create a player name pattern for index, row in df.iterrows(): player_name = row["PLAYER"].replace(" ", "-") player_regex = re.compile(r"{}".format(player_name), re.IGNORECASE) for item in player_link_list: # if the pattern matches any links if player_regex.search(item) != None: # then append it to that row of the df df.iloc[index, 14] = item # rename the column df.rename(columns={14: "Player Link"}, inplace=True) # extract the player team name from the link and add to the df team_regex = r"teams/(\w+-\w+-?\w+)" df["Team"] = df["Player Link"].str.extract(team_regex, flags=re.IGNORECASE) df["Team"] = df["Team"].apply(lambda x: str(x).title().replace("-", " ")) # convert data types from string to numeric df["POS"] = pd.to_numeric(df["POS"], errors="coerce").fillna(0) df["Mat"] =
pd.to_numeric(df["Mat"], errors="coerce")
pandas.to_numeric
# -*- coding: utf-8 -*- """Provides programs to process and analyze GOES X-ray data.""" from __future__ import absolute_import import datetime import matplotlib.dates from matplotlib import pyplot as plt from astropy.io import fits as pyfits from numpy import nan from numpy import floor from pandas import DataFrame from sunpy.lightcurve import LightCurve from sunpy.time import parse_time, TimeRange, is_time_in_given_format from sunpy.util import net __all__ = ['GOESLightCurve'] class GOESLightCurve(LightCurve): """ GOES XRS LightCurve Each GOES satellite there are two X-ray Sensors (XRS) which provide solar X ray fluxes for the wavelength bands of 0.5 to 4 Å (short channel) and 1 to 8 Å (long channel). Most recent data is usually available one or two days late. Data is available starting on 1981/01/01. Examples -------- >>> from sunpy import lightcurve as lc >>> from sunpy.time import TimeRange >>> goes = lc.GOESLightCurve.create(TimeRange('2012/06/01', '2012/06/05')) >>> goes.peek() # doctest: +SKIP References ---------- * `GOES Mission Homepage <http://www.goes.noaa.gov>`_ * `GOES XRS Homepage <http://www.swpc.noaa.gov/products/goes-x-ray-flux>`_ * `GOES XRS Guide <http://ngdc.noaa.gov/stp/satellite/goes/doc/GOES_XRS_readme.pdf>`_ * `NASCOM Data Archive <http://umbra.nascom.nasa.gov/goes/fits/>`_ """ def peek(self, title="GOES Xray Flux"): """Plots GOES XRS light curve is the usual manner. An example is shown below. .. plot:: from sunpy import lightcurve as lc from sunpy.data.sample import GOES_LIGHTCURVE goes = lc.GOESLightCurve.create(GOES_LIGHTCURVE) goes.peek() Parameters ---------- title : str The title of the plot. **kwargs : dict Any additional plot arguments that should be used when plotting. Returns ------- fig : `~matplotlib.Figure` A plot figure. """ figure = plt.figure() axes = plt.gca() dates = matplotlib.dates.date2num(parse_time(self.data.index)) axes.plot_date(dates, self.data['xrsa'], '-', label='0.5--4.0 $\AA$', color='blue', lw=2) axes.plot_date(dates, self.data['xrsb'], '-', label='1.0--8.0 $\AA$', color='red', lw=2) axes.set_yscale("log") axes.set_ylim(1e-9, 1e-2) axes.set_title(title) axes.set_ylabel('Watts m$^{-2}$') axes.set_xlabel(datetime.datetime.isoformat(self.data.index[0])[0:10]) ax2 = axes.twinx() ax2.set_yscale("log") ax2.set_ylim(1e-9, 1e-2) ax2.set_yticks((1e-9, 1e-8, 1e-7, 1e-6, 1e-5, 1e-4, 1e-3, 1e-2)) ax2.set_yticklabels((' ', 'A', 'B', 'C', 'M', 'X', ' ')) axes.yaxis.grid(True, 'major') axes.xaxis.grid(False, 'major') axes.legend() # @todo: display better tick labels for date range (e.g. 06/01 - 06/05) formatter = matplotlib.dates.DateFormatter('%H:%M') axes.xaxis.set_major_formatter(formatter) axes.fmt_xdata = matplotlib.dates.DateFormatter('%H:%M') figure.autofmt_xdate() figure.show() return figure @classmethod def _get_default_uri(cls): """Returns the URL for the latest GOES data.""" now = datetime.datetime.utcnow() time_range = TimeRange(datetime.datetime(now.year, now.month, now.day), now) url_does_exist = net.url_exists(cls._get_url_for_date_range(time_range)) while not url_does_exist: time_range = TimeRange(time_range.start-datetime.timedelta(days=1), time_range.start) url_does_exist = net.url_exists(cls._get_url_for_date_range(time_range)) return cls._get_url_for_date_range(time_range) @classmethod def _get_goes_sat_num(self, start, end): """Parses the query time to determine which GOES satellite to use.""" goes_operational = { 2: TimeRange('1980-01-04', '1983-05-01'), 5: TimeRange('1983-05-02', '1984-08-01'), 6: TimeRange('1983-06-01', '1994-08-19'), 7: TimeRange('1994-01-01', '1996-08-14'), 8: TimeRange('1996-03-21', '2003-06-19'), 9: TimeRange('1997-01-01', '1998-09-09'), 10: TimeRange('1998-07-10', '2009-12-02'), 11: TimeRange('2006-06-20', '2008-02-16'), 12: TimeRange('2002-12-13', '2007-05-09'), 13: TimeRange('2006-08-01', '2006-08-01'), 14: TimeRange('2009-12-02', '2010-11-05'), 15: TimeRange('2010-09-01', datetime.datetime.utcnow())} sat_list = [] for sat_num in goes_operational: if ((start >= goes_operational[sat_num].start and start <= goes_operational[sat_num].end and (end >= goes_operational[sat_num].start and end <= goes_operational[sat_num].end))): # if true then the satellite with sat_num is available sat_list.append(sat_num) if not sat_list: # if no satellites were found then raise an exception raise Exception('No operational GOES satellites within time range') else: return sat_list @staticmethod def _get_url_for_date_range(*args): """Returns a URL to the GOES data for the specified date. Parameters ---------- args : `~sunpy.time.TimeRange`, `datetime.datetime`, str Date range should be specified using a TimeRange, or start and end dates at datetime instances or date strings. satellite_number : int GOES satellite number (default = 15) data_type : str Data type to return for the particular GOES satellite. Supported types depend on the satellite number specified. (default = xrs_2s) """ # TimeRange if len(args) == 1 and isinstance(args[0], TimeRange): start = args[0].start end = args[0].end elif len(args) == 2: start = parse_time(args[0]) end = parse_time(args[1]) if end < start: raise ValueError('start time > end time') # find out which satellite and datatype to query from the query times sat_num = GOESLightCurve._get_goes_sat_num(start, end) base_url = 'http://umbra.nascom.nasa.gov/goes/fits/' if start < parse_time('1999/01/15'): url = base_url + "{date:%Y}/go{sat:02d}{date:%y%m%d}.fits".format( date=start, sat=sat_num[0]) else: url = base_url + "{date:%Y}/go{sat:02d}{date:%Y%m%d}.fits".format( date=start, sat=sat_num[0]) return url @staticmethod def _parse_fits(filepath): """Parses a GOES FITS file from http://umbra.nascom.nasa.gov/goes/fits/""" fits = pyfits.open(filepath) header = fits[0].header if len(fits) == 4: if is_time_in_given_format(fits[0].header['DATE-OBS'], '%d/%m/%Y'): start_time = datetime.datetime.strptime(fits[0].header['DATE-OBS'], '%d/%m/%Y') elif is_time_in_given_format(fits[0].header['DATE-OBS'], '%d/%m/%y'): start_time = datetime.datetime.strptime(fits[0].header['DATE-OBS'], '%d/%m/%y') else: raise ValueError("Date not recognized") xrsb = fits[2].data['FLUX'][0][:, 0] xrsa = fits[2].data['FLUX'][0][:, 1] seconds_from_start = fits[2].data['TIME'][0] elif 1 <= len(fits) <= 3: start_time = parse_time(header['TIMEZERO']) seconds_from_start = fits[0].data[0] xrsb = fits[0].data[1] xrsa = fits[0].data[2] else: raise ValueError("Don't know how to parse this file") times = [start_time + datetime.timedelta(seconds=int(floor(s)), microseconds=int((s - floor(s)) * 1e6)) for s in seconds_from_start] # remove bad values as defined in header comments xrsb[xrsb == -99999] = nan xrsa[xrsa == -99999] = nan # fix byte ordering newxrsa = xrsa.byteswap().newbyteorder() newxrsb = xrsb.byteswap().newbyteorder() data =
DataFrame({'xrsa': newxrsa, 'xrsb': newxrsb}, index=times)
pandas.DataFrame
import viola import pandas as pd from io import StringIO import sys, os HERE = os.path.abspath(os.path.dirname(__file__)) data_expected = """vcf1_test1 0 small_del vcf2_test1 0 small_del vcf1_test2 0 small_del vcf2_test2 0 small_del vcf1_test3 0 large_del vcf2_test3 0 large_del vcf1_test4 0 large_del vcf2_test4 0 large_del vcf1_test5 0 large_del vcf2_test5 0 large_del vcf1_test6 0 small_dup vcf2_test6 0 small_dup vcf1_test7 0 small_inv vcf2_test7 0 small_inv vcf1_test8 0 others vcf2_test8 0 others vcf1_test9 0 small_inv vcf2_test9 0 small_inv vcf1_viola_breakpoint:0 0 tra vcf2_viola_breakpoint:0 0 tra vcf1_viola_breakpoint:1 0 tra vcf2_viola_breakpoint:1 0 tra """ DEFINITIONS = """name 'small_del' 0 SVLEN > -100 1 SVTYPE == DEL logic 0 & 1 name 'large_del' 0 SVTYPE == DEL logic 0 name 'small_dup' 0 SVLEN < 100 1 SVTYPE == DUP logic 0 & 1 name 'large_dup' 0 SVTYPE == DUP logic 0 name 'small_inv' 0 SVLEN < 100 1 SVTYPE == INV logic 0 & 1 name 'tra' 0 SVTYPE == TRA logic 0 """ def small_del(x): return x.filter(['svlen > -100', 'svtype == DEL']).ids def large_del(x): return x.filter(['svtype == DEL']).ids def small_dup(x): return x.filter(['svlen < 100', 'svtype == DUP']).ids def large_dup(x): return x.filter(['svtype == DUP']).ids def small_inv(x): return x.filter(['svlen < 100', 'svtype == INV']).ids def tra(x): return x.filter('svtype == TRA').ids def test_classify_manual_svtype(): vcf = viola.read_vcf(os.path.join(HERE, 'data/manta1.vcf')) vcf2 = vcf.copy() vcf = vcf.breakend2breakpoint() vcf2 = vcf2.breakend2breakpoint() multi_vcf = viola.MultiVcf([vcf, vcf2], ['vcf1', 'vcf2']) ls_conditions = [small_del, large_del, small_dup, large_dup, small_inv, tra] ls_names = ['small_del', 'large_del', 'small_dup', 'large_dup', 'small_inv', 'tra'] result = multi_vcf.classify_manual_svtype(ls_conditions=ls_conditions, ls_names=ls_names) manual_sv_type = multi_vcf.manual_sv_type manual_sv_type.set_index('id', inplace=True) manual_sv_type_expected = pd.read_csv(StringIO(data_expected), sep='\t', names=('id', 'value_idx', 'manual_sv_type')) manual_sv_type_expected.set_index('id', inplace=True)
pd.testing.assert_frame_equal(manual_sv_type, manual_sv_type_expected, check_like=True)
pandas.testing.assert_frame_equal
from os.path import abspath, dirname, join, isfile, normpath, relpath from pandas.testing import assert_frame_equal from numpy.testing import assert_allclose from scipy.interpolate import interp1d import matplotlib.pylab as plt from datetime import datetime import mhkit.wave as wave from io import StringIO import pandas as pd import numpy as np import contextlib import unittest import netCDF4 import inspect import pickle import json import sys import os import time from random import seed, randint testdir = dirname(abspath(__file__)) datadir = normpath(join(testdir,relpath('../../examples/data/wave'))) class TestResourceSpectrum(unittest.TestCase): @classmethod def setUpClass(self): omega = np.arange(0.1,3.5,0.01) self.f = omega/(2*np.pi) self.Hs = 2.5 self.Tp = 8 df = self.f[1] - self.f[0] Trep = 1/df self.t = np.arange(0, Trep, 0.05) @classmethod def tearDownClass(self): pass def test_pierson_moskowitz_spectrum(self): S = wave.resource.pierson_moskowitz_spectrum(self.f,self.Tp) Tp0 = wave.resource.peak_period(S).iloc[0,0] error = np.abs(self.Tp - Tp0)/self.Tp self.assertLess(error, 0.01) def test_bretschneider_spectrum(self): S = wave.resource.bretschneider_spectrum(self.f,self.Tp,self.Hs) Hm0 = wave.resource.significant_wave_height(S).iloc[0,0] Tp0 = wave.resource.peak_period(S).iloc[0,0] errorHm0 = np.abs(self.Tp - Tp0)/self.Tp errorTp0 = np.abs(self.Hs - Hm0)/self.Hs self.assertLess(errorHm0, 0.01) self.assertLess(errorTp0, 0.01) def test_surface_elevation_seed(self): S = wave.resource.bretschneider_spectrum(self.f,self.Tp,self.Hs) sig = inspect.signature(wave.resource.surface_elevation) seednum = sig.parameters['seed'].default eta0 = wave.resource.surface_elevation(S, self.t) eta1 = wave.resource.surface_elevation(S, self.t, seed=seednum) assert_frame_equal(eta0, eta1) def test_surface_elevation_phasing(self): S = wave.resource.bretschneider_spectrum(self.f,self.Tp,self.Hs) eta0 = wave.resource.surface_elevation(S, self.t) sig = inspect.signature(wave.resource.surface_elevation) seednum = sig.parameters['seed'].default np.random.seed(seednum) phases = np.random.rand(len(S)) * 2 * np.pi eta1 = wave.resource.surface_elevation(S, self.t, phases=phases) assert_frame_equal(eta0, eta1) def test_surface_elevation_phases_np_and_pd(self): S0 = wave.resource.bretschneider_spectrum(self.f,self.Tp,self.Hs) S1 = wave.resource.bretschneider_spectrum(self.f,self.Tp,self.Hs*1.1) S = pd.concat([S0, S1], axis=1) phases_np = np.random.rand(S.shape[0], S.shape[1]) * 2 * np.pi phases_pd = pd.DataFrame(phases_np, index=S.index, columns=S.columns) eta_np = wave.resource.surface_elevation(S, self.t, phases=phases_np) eta_pd = wave.resource.surface_elevation(S, self.t, phases=phases_pd) assert_frame_equal(eta_np, eta_pd) def test_surface_elevation_frequency_bins_np_and_pd(self): S0 = wave.resource.bretschneider_spectrum(self.f,self.Tp,self.Hs) S1 = wave.resource.bretschneider_spectrum(self.f,self.Tp,self.Hs*1.1) S = pd.concat([S0, S1], axis=1) eta0 = wave.resource.surface_elevation(S, self.t) f_bins_np = np.array([np.diff(S.index)[0]]*len(S)) f_bins_pd = pd.DataFrame(f_bins_np, index=S.index, columns=['df']) eta_np = wave.resource.surface_elevation(S, self.t, frequency_bins=f_bins_np) eta_pd = wave.resource.surface_elevation(S, self.t, frequency_bins=f_bins_pd) assert_frame_equal(eta0, eta_np) assert_frame_equal(eta_np, eta_pd) def test_surface_elevation_moments(self): S = wave.resource.jonswap_spectrum(self.f, self.Tp, self.Hs) eta = wave.resource.surface_elevation(S, self.t) dt = self.t[1] - self.t[0] Sn = wave.resource.elevation_spectrum(eta, 1/dt, len(eta.values), detrend=False, window='boxcar', noverlap=0) m0 = wave.resource.frequency_moment(S,0).m0.values[0] m0n = wave.resource.frequency_moment(Sn,0).m0.values[0] errorm0 = np.abs((m0 - m0n)/m0) self.assertLess(errorm0, 0.01) m1 = wave.resource.frequency_moment(S,1).m1.values[0] m1n = wave.resource.frequency_moment(Sn,1).m1.values[0] errorm1 = np.abs((m1 - m1n)/m1) self.assertLess(errorm1, 0.01) def test_surface_elevation_rmse(self): S = wave.resource.jonswap_spectrum(self.f, self.Tp, self.Hs) eta = wave.resource.surface_elevation(S, self.t) dt = self.t[1] - self.t[0] Sn = wave.resource.elevation_spectrum(eta, 1/dt, len(eta), detrend=False, window='boxcar', noverlap=0) fSn = interp1d(Sn.index.values, Sn.values, axis=0) rmse = (S.values - fSn(S.index.values))**2 rmse_sum = (np.sum(rmse)/len(rmse))**0.5 self.assertLess(rmse_sum, 0.02) def test_jonswap_spectrum(self): S = wave.resource.jonswap_spectrum(self.f, self.Tp, self.Hs) Hm0 = wave.resource.significant_wave_height(S).iloc[0,0] Tp0 = wave.resource.peak_period(S).iloc[0,0] errorHm0 = np.abs(self.Tp - Tp0)/self.Tp errorTp0 = np.abs(self.Hs - Hm0)/self.Hs self.assertLess(errorHm0, 0.01) self.assertLess(errorTp0, 0.01) def test_plot_spectrum(self): filename = abspath(join(testdir, 'wave_plot_spectrum.png')) if isfile(filename): os.remove(filename) S = wave.resource.pierson_moskowitz_spectrum(self.f,self.Tp) plt.figure() wave.graphics.plot_spectrum(S) plt.savefig(filename, format='png') plt.close() self.assertTrue(isfile(filename)) def test_plot_chakrabarti(self): filename = abspath(join(testdir, 'wave_plot_chakrabarti.png')) if isfile(filename): os.remove(filename) D = 5 H = 10 lambda_w = 200 wave.graphics.plot_chakrabarti(H, lambda_w, D) plt.savefig(filename) def test_plot_chakrabarti_np(self): filename = abspath(join(testdir, 'wave_plot_chakrabarti_np.png')) if isfile(filename): os.remove(filename) D = np.linspace(5, 15, 5) H = 10 * np.ones_like(D) lambda_w = 200 * np.ones_like(D) wave.graphics.plot_chakrabarti(H, lambda_w, D) plt.savefig(filename) self.assertTrue(isfile(filename)) def test_plot_chakrabarti_pd(self): filename = abspath(join(testdir, 'wave_plot_chakrabarti_pd.png')) if isfile(filename): os.remove(filename) D = np.linspace(5, 15, 5) H = 10 * np.ones_like(D) lambda_w = 200 * np.ones_like(D) df = pd.DataFrame([H.flatten(),lambda_w.flatten(),D.flatten()], index=['H','lambda_w','D']).transpose() wave.graphics.plot_chakrabarti(df.H, df.lambda_w, df.D) plt.savefig(filename) self.assertTrue(isfile(filename)) class TestResourceMetrics(unittest.TestCase): @classmethod def setUpClass(self): omega = np.arange(0.1,3.5,0.01) self.f = omega/(2*np.pi) self.Hs = 2.5 self.Tp = 8 file_name = join(datadir, 'ValData1.json') with open(file_name, "r") as read_file: self.valdata1 = pd.DataFrame(json.load(read_file)) self.valdata2 = {} file_name = join(datadir, 'ValData2_MC.json') with open(file_name, "r") as read_file: data = json.load(read_file) self.valdata2['MC'] = data for i in data.keys(): # Calculate elevation spectra elevation = pd.DataFrame(data[i]['elevation']) elevation.index = elevation.index.astype(float) elevation.sort_index(inplace=True) sample_rate = data[i]['sample_rate'] NFFT = data[i]['NFFT'] self.valdata2['MC'][i]['S'] = wave.resource.elevation_spectrum(elevation, sample_rate, NFFT) file_name = join(datadir, 'ValData2_AH.json') with open(file_name, "r") as read_file: data = json.load(read_file) self.valdata2['AH'] = data for i in data.keys(): # Calculate elevation spectra elevation = pd.DataFrame(data[i]['elevation']) elevation.index = elevation.index.astype(float) elevation.sort_index(inplace=True) sample_rate = data[i]['sample_rate'] NFFT = data[i]['NFFT'] self.valdata2['AH'][i]['S'] = wave.resource.elevation_spectrum(elevation, sample_rate, NFFT) file_name = join(datadir, 'ValData2_CDiP.json') with open(file_name, "r") as read_file: data = json.load(read_file) self.valdata2['CDiP'] = data for i in data.keys(): temp = pd.Series(data[i]['S']).to_frame('S') temp.index = temp.index.astype(float) self.valdata2['CDiP'][i]['S'] = temp @classmethod def tearDownClass(self): pass def test_kfromw(self): for i in self.valdata1.columns: f = np.array(self.valdata1[i]['w'])/(2*np.pi) h = self.valdata1[i]['h'] rho = self.valdata1[i]['rho'] expected = self.valdata1[i]['k'] k = wave.resource.wave_number(f, h, rho) calculated = k.loc[:,'k'].values error = ((expected-calculated)**2).sum() # SSE self.assertLess(error, 1e-6) def test_kfromw_one_freq(self): g = 9.81 f = 0.1 h = 1e9 w = np.pi*2*f # deep water dispersion expected = w**2 / g calculated = wave.resource.wave_number(f=f, h=h, g=g).values[0][0] error = np.abs(expected-calculated) self.assertLess(error, 1e-6) def test_wave_length(self): k_list=[1,2,10,3] l_expected = (2.*np.pi/np.array(k_list)).tolist() k_df = pd.DataFrame(k_list,index = [1,2,3,4]) k_series= k_df[0] k_array=np.array(k_list) for l in [k_list, k_df, k_series, k_array]: l_calculated = wave.resource.wave_length(l) self.assertListEqual(l_expected,l_calculated.tolist()) idx=0 k_int = k_list[idx] l_calculated = wave.resource.wave_length(k_int) self.assertEqual(l_expected[idx],l_calculated) def test_depth_regime(self): expected = [True,True,False,True] l_list=[1,2,10,3] l_df = pd.DataFrame(l_list,index = [1,2,3,4]) l_series= l_df[0] l_array=np.array(l_list) h = 10 for l in [l_list, l_df, l_series, l_array]: calculated = wave.resource.depth_regime(l,h) self.assertListEqual(expected,calculated.tolist()) idx=0 l_int = l_list[idx] calculated = wave.resource.depth_regime(l_int,h) self.assertEqual(expected[idx],calculated) def test_wave_celerity(self): # Depth regime ratio dr_ratio=2 # small change in f will give similar value cg f=np.linspace(20.0001,20.0005,5) # Choose index to spike at. cg spike is inversly proportional to k k_idx=2 k_tmp=[1, 1, 0.5, 1, 1] k = pd.DataFrame(k_tmp, index=f) # all shallow cg_shallow1 = wave.resource.wave_celerity(k, h=0.0001,depth_check=True) cg_shallow2 = wave.resource.wave_celerity(k, h=0.0001,depth_check=False) self.assertTrue(all(cg_shallow1.squeeze().values == cg_shallow2.squeeze().values)) # all deep cg = wave.resource.wave_celerity(k, h=1000,depth_check=True) self.assertTrue(all(np.pi*f/k.squeeze().values == cg.squeeze().values)) def test_energy_flux_deep(self): # Dependent on mhkit.resource.BS spectrum S = wave.resource.bretschneider_spectrum(self.f,self.Tp,self.Hs) Te = wave.resource.energy_period(S) Hm0 = wave.resource.significant_wave_height(S) rho=1025 g=9.80665 coeff = rho*(g**2)/(64*np.pi) J = coeff*(Hm0.squeeze()**2)*Te.squeeze() h=-1 # not used when deep=True J_calc = wave.resource.energy_flux(S, h, deep=True) self.assertTrue(J_calc.squeeze() == J) def test_moments(self): for file_i in self.valdata2.keys(): # for each file MC, AH, CDiP datasets = self.valdata2[file_i] for s in datasets.keys(): # for each set data = datasets[s] for m in data['m'].keys(): expected = data['m'][m] S = data['S'] if s == 'CDiP1' or s == 'CDiP6': f_bins=pd.Series(data['freqBinWidth']) else: f_bins = None calculated = wave.resource.frequency_moment(S, int(m) ,frequency_bins=f_bins).iloc[0,0] error = np.abs(expected-calculated)/expected self.assertLess(error, 0.01) def test_metrics(self): for file_i in self.valdata2.keys(): # for each file MC, AH, CDiP datasets = self.valdata2[file_i] for s in datasets.keys(): # for each set data = datasets[s] S = data['S'] if file_i == 'CDiP': f_bins=
pd.Series(data['freqBinWidth'])
pandas.Series
import re import pandas as pd from .soup import get_soup, table_to_df TICKER_IN_PARENTHESIS_RE = re.compile(r'(?P<company_name>.+) \((?P<ticker>[A-Z]+)\)') def get_wiki_table_df(url, index_col=None, columns=None): """Returns the first table of a Wikipedia page as a DataFrame""" soup = get_soup(url) table = soup.find('table', attrs={'class': 'wikitable'}) return table_to_df(table, index_col, columns) def wiki_components_list_to_df(list_tag): d = {'ticker': [], 'company_name': []} for li in list_tag.find_all('li'): match = TICKER_IN_PARENTHESIS_RE.search(li.text) d['ticker'].append(match.group('ticker')) d['company_name'].append(match.group('company_name')) return
pd.DataFrame(d)
pandas.DataFrame
import io import os from random import choice import pandas as pd import torch import torch.nn as nn from PIL import Image from torch.utils.data import DataLoader from torchvision import transforms as T from torchvision.datasets import ImageFolder from torchvision.models.resnet import BasicBlock, ResNet SANITY_DIR = "dataset/sanity" ID2LABEL = { 0: 'chicken_curry', 1: 'chicken_wings', 2: 'fried_rice', 3: 'grilled_salmon', 4: 'hamburger', 5: 'ice_cream', 6: 'pizza', 7: 'ramen', 8: 'steak', 9: 'sushi' } class ImageClassifier(ResNet): def __init__(self): super(ImageClassifier, self).__init__(BasicBlock, [2,2,2,2], num_classes=10) self.fc = nn.Sequential( nn.Linear(512 * BasicBlock.expansion, 128), nn.ReLU(), nn.Dropout(.2), nn.Linear(128, 10), nn.LogSoftmax(dim=1) ) image_processing = T.Compose([ T.Resize((256,256)), T.CenterCrop((224,224)), T.ToTensor(), T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) sanity_dataset = ImageFolder( root=SANITY_DIR, transform=image_processing ) sanity_loader = DataLoader( sanity_dataset, batch_size=8, num_workers=0, shuffle=True ) model = ImageClassifier() model.load_state_dict(torch.load("model/foodnet_resnet18.pth", map_location=torch.device('cpu'))) model.eval(); criterion = nn.CrossEntropyLoss() running_corrects, running_loss = .0, .0 all_preds = torch.Tensor() shuffled_labels = torch.Tensor() for inputs, labels in sanity_loader: inputs, labels = inputs.to('cpu'), labels.to('cpu') shuffled_labels = torch.cat((shuffled_labels, labels), dim=0) with torch.no_grad(): outputs = model(inputs) _, preds = torch.max(outputs, 1) loss = criterion(outputs, labels) all_preds = torch.cat((all_preds, preds), dim=0) running_loss += loss.item() * inputs.size(0) running_corrects += torch.sum(preds == labels) stacks = torch.stack((shuffled_labels.type(torch.int32), all_preds.type(torch.int32)), dim=1) conf_mat = torch.zeros(len(ID2LABEL), len(ID2LABEL), dtype=torch.int32) for stack in stacks: true_label, pred_label = stack.tolist() conf_mat[true_label, pred_label] += 1 with open("confusion_matrix.txt", "w") as f: f.write(pd.DataFrame(conf_mat.numpy(), index=list(ID2LABEL.values()), columns=list(ID2LABEL.values())).to_markdown()) loss = running_loss / len(sanity_dataset) acc = running_corrects.double() / len(sanity_dataset) with open("results.txt", "w") as f: f.write(
pd.DataFrame([{'accuracy': acc, 'loss': loss}])
pandas.DataFrame
import calendar import datetime import numpy as np import pandas as pd from pandas.util.testing import (assert_frame_equal, assert_series_equal, assert_index_equal) from numpy.testing import assert_allclose import pytest from pvlib.location import Location from pvlib import solarposition, spa from conftest import (requires_ephem, needs_pandas_0_17, requires_spa_c, requires_numba) # setup times and locations to be tested. times = pd.date_range(start=datetime.datetime(2014,6,24), end=datetime.datetime(2014,6,26), freq='15Min') tus = Location(32.2, -111, 'US/Arizona', 700) # no DST issues possible # In 2003, DST in US was from April 6 to October 26 golden_mst = Location(39.742476, -105.1786, 'MST', 1830.14) # no DST issues possible golden = Location(39.742476, -105.1786, 'America/Denver', 1830.14) # DST issues possible times_localized = times.tz_localize(tus.tz) tol = 5 @pytest.fixture() def expected_solpos(): return pd.DataFrame({'elevation': 39.872046, 'apparent_zenith': 50.111622, 'azimuth': 194.340241, 'apparent_elevation': 39.888378}, index=['2003-10-17T12:30:30Z']) @pytest.fixture() def expected_solpos_multi(): return pd.DataFrame({'elevation': [39.872046, 39.505196], 'apparent_zenith': [50.111622, 50.478260], 'azimuth': [194.340241, 194.311132], 'apparent_elevation': [39.888378, 39.521740]}, index=[['2003-10-17T12:30:30Z', '2003-10-18T12:30:30Z']]) # the physical tests are run at the same time as the NREL SPA test. # pyephem reproduces the NREL result to 2 decimal places. # this doesn't mean that one code is better than the other. @requires_spa_c def test_spa_c_physical(expected_solpos): times = pd.date_range(datetime.datetime(2003,10,17,12,30,30), periods=1, freq='D', tz=golden_mst.tz) ephem_data = solarposition.spa_c(times, golden_mst.latitude, golden_mst.longitude, pressure=82000, temperature=11) expected_solpos.index = times assert_frame_equal(expected_solpos, ephem_data[expected_solpos.columns]) @requires_spa_c def test_spa_c_physical_dst(expected_solpos): times = pd.date_range(datetime.datetime(2003,10,17,13,30,30), periods=1, freq='D', tz=golden.tz) ephem_data = solarposition.spa_c(times, golden.latitude, golden.longitude, pressure=82000, temperature=11) expected_solpos.index = times assert_frame_equal(expected_solpos, ephem_data[expected_solpos.columns]) def test_spa_python_numpy_physical(expected_solpos): times = pd.date_range(datetime.datetime(2003,10,17,12,30,30), periods=1, freq='D', tz=golden_mst.tz) ephem_data = solarposition.spa_python(times, golden_mst.latitude, golden_mst.longitude, pressure=82000, temperature=11, delta_t=67, atmos_refract=0.5667, how='numpy') expected_solpos.index = times assert_frame_equal(expected_solpos, ephem_data[expected_solpos.columns]) def test_spa_python_numpy_physical_dst(expected_solpos): times = pd.date_range(datetime.datetime(2003,10,17,13,30,30), periods=1, freq='D', tz=golden.tz) ephem_data = solarposition.spa_python(times, golden.latitude, golden.longitude, pressure=82000, temperature=11, delta_t=67, atmos_refract=0.5667, how='numpy') expected_solpos.index = times assert_frame_equal(expected_solpos, ephem_data[expected_solpos.columns]) @requires_numba def test_spa_python_numba_physical(expected_solpos): times = pd.date_range(datetime.datetime(2003,10,17,12,30,30), periods=1, freq='D', tz=golden_mst.tz) ephem_data = solarposition.spa_python(times, golden_mst.latitude, golden_mst.longitude, pressure=82000, temperature=11, delta_t=67, atmos_refract=0.5667, how='numba', numthreads=1) expected_solpos.index = times assert_frame_equal(expected_solpos, ephem_data[expected_solpos.columns]) @requires_numba def test_spa_python_numba_physical_dst(expected_solpos): times = pd.date_range(datetime.datetime(2003,10,17,13,30,30), periods=1, freq='D', tz=golden.tz) ephem_data = solarposition.spa_python(times, golden.latitude, golden.longitude, pressure=82000, temperature=11, delta_t=67, atmos_refract=0.5667, how='numba', numthreads=1) expected_solpos.index = times assert_frame_equal(expected_solpos, ephem_data[expected_solpos.columns]) @needs_pandas_0_17 def test_get_sun_rise_set_transit(): south = Location(-35.0, 0.0, tz='UTC') times = pd.DatetimeIndex([datetime.datetime(1996, 7, 5, 0), datetime.datetime(2004, 12, 4, 0)] ).tz_localize('UTC') sunrise = pd.DatetimeIndex([datetime.datetime(1996, 7, 5, 7, 8, 15), datetime.datetime(2004, 12, 4, 4, 38, 57)] ).tz_localize('UTC').tolist() sunset = pd.DatetimeIndex([datetime.datetime(1996, 7, 5, 17, 1, 4), datetime.datetime(2004, 12, 4, 19, 2, 2)] ).tz_localize('UTC').tolist() result = solarposition.get_sun_rise_set_transit(times, south.latitude, south.longitude, delta_t=64.0) frame = pd.DataFrame({'sunrise':sunrise, 'sunset':sunset}, index=times) result_rounded = pd.DataFrame(index=result.index) # need to iterate because to_datetime does not accept 2D data # the rounding fails on pandas < 0.17 for col, data in result.iteritems(): result_rounded[col] = pd.to_datetime( np.floor(data.values.astype(np.int64) / 1e9)*1e9, utc=True) del result_rounded['transit'] assert_frame_equal(frame, result_rounded) # tests from USNO # Golden golden = Location(39.0, -105.0, tz='MST') times = pd.DatetimeIndex([datetime.datetime(2015, 1, 2), datetime.datetime(2015, 8, 2),] ).tz_localize('MST') sunrise = pd.DatetimeIndex([datetime.datetime(2015, 1, 2, 7, 19, 2), datetime.datetime(2015, 8, 2, 5, 1, 26) ]).tz_localize('MST').tolist() sunset = pd.DatetimeIndex([datetime.datetime(2015, 1, 2, 16, 49, 10), datetime.datetime(2015, 8, 2, 19, 11, 31) ]).tz_localize('MST').tolist() result = solarposition.get_sun_rise_set_transit(times, golden.latitude, golden.longitude, delta_t=64.0) frame = pd.DataFrame({'sunrise':sunrise, 'sunset':sunset}, index=times) result_rounded = pd.DataFrame(index=result.index) # need to iterate because to_datetime does not accept 2D data # the rounding fails on pandas < 0.17 for col, data in result.iteritems(): result_rounded[col] = (pd.to_datetime( np.floor(data.values.astype(np.int64) / 1e9)*1e9, utc=True) .tz_convert('MST')) del result_rounded['transit'] assert_frame_equal(frame, result_rounded) @requires_ephem def test_pyephem_physical(expected_solpos): times = pd.date_range(datetime.datetime(2003,10,17,12,30,30), periods=1, freq='D', tz=golden_mst.tz) ephem_data = solarposition.pyephem(times, golden_mst.latitude, golden_mst.longitude, pressure=82000, temperature=11) expected_solpos.index = times assert_frame_equal(expected_solpos.round(2), ephem_data[expected_solpos.columns].round(2)) @requires_ephem def test_pyephem_physical_dst(expected_solpos): times = pd.date_range(datetime.datetime(2003,10,17,13,30,30), periods=1, freq='D', tz=golden.tz) ephem_data = solarposition.pyephem(times, golden.latitude, golden.longitude, pressure=82000, temperature=11) expected_solpos.index = times assert_frame_equal(expected_solpos.round(2), ephem_data[expected_solpos.columns].round(2)) @requires_ephem def test_calc_time(): import pytz import math # validation from USNO solar position calculator online epoch = datetime.datetime(1970,1,1) epoch_dt = pytz.utc.localize(epoch) loc = tus loc.pressure = 0 actual_time = pytz.timezone(loc.tz).localize( datetime.datetime(2014, 10, 10, 8, 30)) lb = pytz.timezone(loc.tz).localize(datetime.datetime(2014, 10, 10, tol)) ub = pytz.timezone(loc.tz).localize(datetime.datetime(2014, 10, 10, 10)) alt = solarposition.calc_time(lb, ub, loc.latitude, loc.longitude, 'alt', math.radians(24.7)) az = solarposition.calc_time(lb, ub, loc.latitude, loc.longitude, 'az', math.radians(116.3)) actual_timestamp = (actual_time - epoch_dt).total_seconds() assert_allclose((alt.replace(second=0, microsecond=0) - epoch_dt).total_seconds(), actual_timestamp) assert_allclose((az.replace(second=0, microsecond=0) - epoch_dt).total_seconds(), actual_timestamp) @requires_ephem def test_earthsun_distance(): times = pd.date_range(datetime.datetime(2003,10,17,13,30,30), periods=1, freq='D') distance = solarposition.pyephem_earthsun_distance(times).values[0] assert_allclose(1, distance, atol=0.1) def test_ephemeris_physical(expected_solpos): times = pd.date_range(datetime.datetime(2003,10,17,12,30,30), periods=1, freq='D', tz=golden_mst.tz) ephem_data = solarposition.ephemeris(times, golden_mst.latitude, golden_mst.longitude, pressure=82000, temperature=11) expected_solpos.index = times expected_solpos = np.round(expected_solpos, 2) ephem_data = np.round(ephem_data, 2) assert_frame_equal(expected_solpos, ephem_data[expected_solpos.columns]) def test_ephemeris_physical_dst(expected_solpos): times = pd.date_range(datetime.datetime(2003,10,17,13,30,30), periods=1, freq='D', tz=golden.tz) ephem_data = solarposition.ephemeris(times, golden.latitude, golden.longitude, pressure=82000, temperature=11) expected_solpos.index = times expected_solpos = np.round(expected_solpos, 2) ephem_data = np.round(ephem_data, 2)
assert_frame_equal(expected_solpos, ephem_data[expected_solpos.columns])
pandas.util.testing.assert_frame_equal
from datetime import datetime, timedelta import dateutil import numpy as np import pytest import pytz from pandas._libs.tslibs.ccalendar import DAYS, MONTHS from pandas._libs.tslibs.period import IncompatibleFrequency from pandas.compat import lrange, range, zip import pandas as pd from pandas import DataFrame, Series, Timestamp from pandas.core.indexes.base import InvalidIndexError from pandas.core.indexes.datetimes import date_range from pandas.core.indexes.period import Period, PeriodIndex, period_range from pandas.core.resample import _get_period_range_edges import pandas.util.testing as tm from pandas.util.testing import ( assert_almost_equal, assert_frame_equal, assert_series_equal) import pandas.tseries.offsets as offsets @pytest.fixture() def _index_factory(): return period_range @pytest.fixture def _series_name(): return 'pi' class TestPeriodIndex(object): @pytest.mark.parametrize('freq', ['2D', '1H', '2H']) @pytest.mark.parametrize('kind', ['period', None, 'timestamp']) def test_asfreq(self, series_and_frame, freq, kind): # GH 12884, 15944 # make sure .asfreq() returns PeriodIndex (except kind='timestamp') obj = series_and_frame if kind == 'timestamp': expected = obj.to_timestamp().resample(freq).asfreq() else: start = obj.index[0].to_timestamp(how='start') end = (obj.index[-1] + obj.index.freq).to_timestamp(how='start') new_index = date_range(start=start, end=end, freq=freq, closed='left') expected = obj.to_timestamp().reindex(new_index).to_period(freq) result = obj.resample(freq, kind=kind).asfreq() assert_almost_equal(result, expected) def test_asfreq_fill_value(self, series): # test for fill value during resampling, issue 3715 s = series new_index = date_range(s.index[0].to_timestamp(how='start'), (s.index[-1]).to_timestamp(how='start'), freq='1H') expected = s.to_timestamp().reindex(new_index, fill_value=4.0) result = s.resample('1H', kind='timestamp').asfreq(fill_value=4.0) assert_series_equal(result, expected) frame = s.to_frame('value') new_index = date_range(frame.index[0].to_timestamp(how='start'), (frame.index[-1]).to_timestamp(how='start'), freq='1H') expected = frame.to_timestamp().reindex(new_index, fill_value=3.0) result = frame.resample('1H', kind='timestamp').asfreq(fill_value=3.0) assert_frame_equal(result, expected) @pytest.mark.parametrize('freq', ['H', '12H', '2D', 'W']) @pytest.mark.parametrize('kind', [None, 'period', 'timestamp']) @pytest.mark.parametrize('kwargs', [dict(on='date'), dict(level='d')]) def test_selection(self, index, freq, kind, kwargs): # This is a bug, these should be implemented # GH 14008 rng = np.arange(len(index), dtype=np.int64) df = DataFrame({'date': index, 'a': rng}, index=pd.MultiIndex.from_arrays([rng, index], names=['v', 'd'])) msg = ("Resampling from level= or on= selection with a PeriodIndex is" r" not currently supported, use \.set_index\(\.\.\.\) to" " explicitly set index") with pytest.raises(NotImplementedError, match=msg): df.resample(freq, kind=kind, **kwargs) @pytest.mark.parametrize('month', MONTHS) @pytest.mark.parametrize('meth', ['ffill', 'bfill']) @pytest.mark.parametrize('conv', ['start', 'end']) @pytest.mark.parametrize('targ', ['D', 'B', 'M']) def test_annual_upsample_cases(self, targ, conv, meth, month, simple_period_range_series): ts = simple_period_range_series( '1/1/1990', '12/31/1991', freq='A-%s' % month) result = getattr(ts.resample(targ, convention=conv), meth)() expected = result.to_timestamp(targ, how=conv) expected = expected.asfreq(targ, meth).to_period() assert_series_equal(result, expected) def test_basic_downsample(self, simple_period_range_series): ts = simple_period_range_series('1/1/1990', '6/30/1995', freq='M') result = ts.resample('a-dec').mean() expected = ts.groupby(ts.index.year).mean() expected.index = period_range('1/1/1990', '6/30/1995', freq='a-dec') assert_series_equal(result, expected) # this is ok assert_series_equal(ts.resample('a-dec').mean(), result) assert_series_equal(ts.resample('a').mean(), result) @pytest.mark.parametrize('rule,expected_error_msg', [ ('a-dec', '<YearEnd: month=12>'), ('q-mar', '<QuarterEnd: startingMonth=3>'), ('M', '<MonthEnd>'), ('w-thu', '<Week: weekday=3>') ]) def test_not_subperiod( self, simple_period_range_series, rule, expected_error_msg): # These are incompatible period rules for resampling ts = simple_period_range_series('1/1/1990', '6/30/1995', freq='w-wed') msg = ("Frequency <Week: weekday=2> cannot be resampled to {}, as they" " are not sub or super periods").format(expected_error_msg) with pytest.raises(IncompatibleFrequency, match=msg): ts.resample(rule).mean() @pytest.mark.parametrize('freq', ['D', '2D']) def test_basic_upsample(self, freq, simple_period_range_series): ts = simple_period_range_series('1/1/1990', '6/30/1995', freq='M') result = ts.resample('a-dec').mean() resampled = result.resample(freq, convention='end').ffill() expected = result.to_timestamp(freq, how='end') expected = expected.asfreq(freq, 'ffill').to_period(freq) assert_series_equal(resampled, expected) def test_upsample_with_limit(self): rng = period_range('1/1/2000', periods=5, freq='A') ts = Series(np.random.randn(len(rng)), rng) result = ts.resample('M', convention='end').ffill(limit=2) expected = ts.asfreq('M').reindex(result.index, method='ffill', limit=2) assert_series_equal(result, expected) def test_annual_upsample(self, simple_period_range_series): ts = simple_period_range_series('1/1/1990', '12/31/1995', freq='A-DEC') df = DataFrame({'a': ts}) rdf = df.resample('D').ffill() exp = df['a'].resample('D').ffill() assert_series_equal(rdf['a'], exp) rng = period_range('2000', '2003', freq='A-DEC') ts = Series([1, 2, 3, 4], index=rng) result = ts.resample('M').ffill() ex_index = period_range('2000-01', '2003-12', freq='M') expected = ts.asfreq('M', how='start').reindex(ex_index, method='ffill') assert_series_equal(result, expected) @pytest.mark.parametrize('month', MONTHS) @pytest.mark.parametrize('target', ['D', 'B', 'M']) @pytest.mark.parametrize('convention', ['start', 'end']) def test_quarterly_upsample(self, month, target, convention, simple_period_range_series): freq = 'Q-{month}'.format(month=month) ts = simple_period_range_series('1/1/1990', '12/31/1995', freq=freq) result = ts.resample(target, convention=convention).ffill() expected = result.to_timestamp(target, how=convention) expected = expected.asfreq(target, 'ffill').to_period() assert_series_equal(result, expected) @pytest.mark.parametrize('target', ['D', 'B']) @pytest.mark.parametrize('convention', ['start', 'end']) def test_monthly_upsample(self, target, convention, simple_period_range_series): ts = simple_period_range_series('1/1/1990', '12/31/1995', freq='M') result = ts.resample(target, convention=convention).ffill() expected = result.to_timestamp(target, how=convention) expected = expected.asfreq(target, 'ffill').to_period() assert_series_equal(result, expected) def test_resample_basic(self): # GH3609 s = Series(range(100), index=date_range( '20130101', freq='s', periods=100, name='idx'), dtype='float') s[10:30] = np.nan index = PeriodIndex([ Period('2013-01-01 00:00', 'T'), Period('2013-01-01 00:01', 'T')], name='idx') expected = Series([34.5, 79.5], index=index) result = s.to_period().resample('T', kind='period').mean() assert_series_equal(result, expected) result2 = s.resample('T', kind='period').mean() assert_series_equal(result2, expected) @pytest.mark.parametrize('freq,expected_vals', [('M', [31, 29, 31, 9]), ('2M', [31 + 29, 31 + 9])]) def test_resample_count(self, freq, expected_vals): # GH12774 series = Series(1, index=pd.period_range(start='2000', periods=100)) result = series.resample(freq).count() expected_index = pd.period_range(start='2000', freq=freq, periods=len(expected_vals)) expected = Series(expected_vals, index=expected_index) assert_series_equal(result, expected) def test_resample_same_freq(self, resample_method): # GH12770 series = Series(range(3), index=pd.period_range( start='2000', periods=3, freq='M')) expected = series result = getattr(series.resample('M'), resample_method)() assert_series_equal(result, expected) def test_resample_incompat_freq(self): msg = ("Frequency <MonthEnd> cannot be resampled to <Week: weekday=6>," " as they are not sub or super periods") with pytest.raises(IncompatibleFrequency, match=msg): Series(range(3), index=pd.period_range( start='2000', periods=3, freq='M')).resample('W').mean() def test_with_local_timezone_pytz(self): # see gh-5430 local_timezone = pytz.timezone('America/Los_Angeles') start = datetime(year=2013, month=11, day=1, hour=0, minute=0, tzinfo=pytz.utc) # 1 day later end = datetime(year=2013, month=11, day=2, hour=0, minute=0, tzinfo=pytz.utc) index = pd.date_range(start, end, freq='H') series = Series(1, index=index) series = series.tz_convert(local_timezone) result = series.resample('D', kind='period').mean() # Create the expected series # Index is moved back a day with the timezone conversion from UTC to # Pacific expected_index = (pd.period_range(start=start, end=end, freq='D') - offsets.Day()) expected = Series(1, index=expected_index) assert_series_equal(result, expected) def test_resample_with_pytz(self): # GH 13238 s = Series(2, index=pd.date_range('2017-01-01', periods=48, freq="H", tz="US/Eastern")) result = s.resample("D").mean() expected = Series(2, index=pd.DatetimeIndex(['2017-01-01', '2017-01-02'], tz="US/Eastern")) assert_series_equal(result, expected) # Especially assert that the timezone is LMT for pytz assert result.index.tz == pytz.timezone('US/Eastern') def test_with_local_timezone_dateutil(self): # see gh-5430 local_timezone = 'dateutil/America/Los_Angeles' start = datetime(year=2013, month=11, day=1, hour=0, minute=0, tzinfo=dateutil.tz.tzutc()) # 1 day later end = datetime(year=2013, month=11, day=2, hour=0, minute=0, tzinfo=dateutil.tz.tzutc()) index = pd.date_range(start, end, freq='H', name='idx') series = Series(1, index=index) series = series.tz_convert(local_timezone) result = series.resample('D', kind='period').mean() # Create the expected series # Index is moved back a day with the timezone conversion from UTC to # Pacific expected_index = (pd.period_range(start=start, end=end, freq='D', name='idx') - offsets.Day()) expected = Series(1, index=expected_index) assert_series_equal(result, expected) def test_resample_nonexistent_time_bin_edge(self): # GH 19375 index = date_range('2017-03-12', '2017-03-12 1:45:00', freq='15T') s = Series(np.zeros(len(index)), index=index) expected = s.tz_localize('US/Pacific') result = expected.resample('900S').mean() tm.assert_series_equal(result, expected) # GH 23742 index = date_range(start='2017-10-10', end='2017-10-20', freq='1H') index = index.tz_localize('UTC').tz_convert('America/Sao_Paulo') df = DataFrame(data=list(range(len(index))), index=index) result = df.groupby(pd.Grouper(freq='1D')).count() expected = date_range(start='2017-10-09', end='2017-10-20', freq='D', tz="America/Sao_Paulo", nonexistent='shift_forward', closed='left') tm.assert_index_equal(result.index, expected) def test_resample_ambiguous_time_bin_edge(self): # GH 10117 idx = pd.date_range("2014-10-25 22:00:00", "2014-10-26 00:30:00", freq="30T", tz="Europe/London") expected = Series(np.zeros(len(idx)), index=idx) result = expected.resample('30T').mean() tm.assert_series_equal(result, expected) def test_fill_method_and_how_upsample(self): # GH2073 s = Series(np.arange(9, dtype='int64'), index=date_range('2010-01-01', periods=9, freq='Q')) last = s.resample('M').ffill() both = s.resample('M').ffill().resample('M').last().astype('int64') assert_series_equal(last, both) @pytest.mark.parametrize('day', DAYS) @pytest.mark.parametrize('target', ['D', 'B']) @pytest.mark.parametrize('convention', ['start', 'end']) def test_weekly_upsample(self, day, target, convention, simple_period_range_series): freq = 'W-{day}'.format(day=day) ts = simple_period_range_series('1/1/1990', '12/31/1995', freq=freq) result = ts.resample(target, convention=convention).ffill() expected = result.to_timestamp(target, how=convention) expected = expected.asfreq(target, 'ffill').to_period() assert_series_equal(result, expected) def test_resample_to_timestamps(self, simple_period_range_series): ts = simple_period_range_series('1/1/1990', '12/31/1995', freq='M') result = ts.resample('A-DEC', kind='timestamp').mean() expected = ts.to_timestamp(how='start').resample('A-DEC').mean() assert_series_equal(result, expected) def test_resample_to_quarterly(self, simple_period_range_series): for month in MONTHS: ts = simple_period_range_series( '1990', '1992', freq='A-%s' % month) quar_ts = ts.resample('Q-%s' % month).ffill() stamps = ts.to_timestamp('D', how='start') qdates = period_range(ts.index[0].asfreq('D', 'start'), ts.index[-1].asfreq('D', 'end'), freq='Q-%s' % month) expected = stamps.reindex(qdates.to_timestamp('D', 's'), method='ffill') expected.index = qdates assert_series_equal(quar_ts, expected) # conforms, but different month ts = simple_period_range_series('1990', '1992', freq='A-JUN') for how in ['start', 'end']: result = ts.resample('Q-MAR', convention=how).ffill() expected = ts.asfreq('Q-MAR', how=how) expected = expected.reindex(result.index, method='ffill') # .to_timestamp('D') # expected = expected.resample('Q-MAR').ffill() assert_series_equal(result, expected) def test_resample_fill_missing(self): rng = PeriodIndex([2000, 2005, 2007, 2009], freq='A') s = Series(np.random.randn(4), index=rng) stamps = s.to_timestamp() filled = s.resample('A').ffill() expected = stamps.resample('A').ffill().to_period('A') assert_series_equal(filled, expected) def test_cant_fill_missing_dups(self): rng = PeriodIndex([2000, 2005, 2005, 2007, 2007], freq='A') s = Series(np.random.randn(5), index=rng) msg = "Reindexing only valid with uniquely valued Index objects" with pytest.raises(InvalidIndexError, match=msg): s.resample('A').ffill() @pytest.mark.parametrize('freq', ['5min']) @pytest.mark.parametrize('kind', ['period', None, 'timestamp']) def test_resample_5minute(self, freq, kind): rng = period_range('1/1/2000', '1/5/2000', freq='T') ts = Series(np.random.randn(len(rng)), index=rng) expected = ts.to_timestamp().resample(freq).mean() if kind != 'timestamp': expected = expected.to_period(freq) result = ts.resample(freq, kind=kind).mean() assert_series_equal(result, expected) def test_upsample_daily_business_daily(self, simple_period_range_series): ts = simple_period_range_series('1/1/2000', '2/1/2000', freq='B') result = ts.resample('D').asfreq() expected = ts.asfreq('D').reindex(period_range('1/3/2000', '2/1/2000')) assert_series_equal(result, expected) ts = simple_period_range_series('1/1/2000', '2/1/2000') result = ts.resample('H', convention='s').asfreq() exp_rng = period_range('1/1/2000', '2/1/2000 23:00', freq='H') expected = ts.asfreq('H', how='s').reindex(exp_rng) assert_series_equal(result, expected) def test_resample_irregular_sparse(self): dr = date_range(start='1/1/2012', freq='5min', periods=1000) s = Series(np.array(100), index=dr) # subset the data. subset = s[:'2012-01-04 06:55'] result = subset.resample('10min').apply(len) expected = s.resample('10min').apply(len).loc[result.index] assert_series_equal(result, expected) def test_resample_weekly_all_na(self): rng = date_range('1/1/2000', periods=10, freq='W-WED') ts = Series(np.random.randn(len(rng)), index=rng) result = ts.resample('W-THU').asfreq() assert result.isna().all() result = ts.resample('W-THU').asfreq().ffill()[:-1] expected = ts.asfreq('W-THU').ffill() assert_series_equal(result, expected) def test_resample_tz_localized(self): dr = date_range(start='2012-4-13', end='2012-5-1') ts = Series(lrange(len(dr)), dr) ts_utc = ts.tz_localize('UTC') ts_local = ts_utc.tz_convert('America/Los_Angeles') result = ts_local.resample('W').mean() ts_local_naive = ts_local.copy() ts_local_naive.index = [x.replace(tzinfo=None) for x in ts_local_naive.index.to_pydatetime()] exp = ts_local_naive.resample( 'W').mean().tz_localize('America/Los_Angeles') assert_series_equal(result, exp) # it works result = ts_local.resample('D').mean() # #2245 idx = date_range('2001-09-20 15:59', '2001-09-20 16:00', freq='T', tz='Australia/Sydney') s = Series([1, 2], index=idx) result = s.resample('D', closed='right', label='right').mean() ex_index = date_range('2001-09-21', periods=1, freq='D', tz='Australia/Sydney') expected = Series([1.5], index=ex_index) assert_series_equal(result, expected) # for good measure result = s.resample('D', kind='period').mean() ex_index = period_range('2001-09-20', periods=1, freq='D') expected = Series([1.5], index=ex_index) assert_series_equal(result, expected) # GH 6397 # comparing an offset that doesn't propagate tz's rng = date_range('1/1/2011', periods=20000, freq='H') rng = rng.tz_localize('EST') ts = DataFrame(index=rng) ts['first'] = np.random.randn(len(rng)) ts['second'] = np.cumsum(np.random.randn(len(rng))) expected = DataFrame( { 'first': ts.resample('A').sum()['first'], 'second': ts.resample('A').mean()['second']}, columns=['first', 'second']) result = ts.resample( 'A').agg({'first': np.sum, 'second': np.mean}).reindex(columns=['first', 'second']) assert_frame_equal(result, expected) def test_closed_left_corner(self): # #1465 s = Series(np.random.randn(21), index=date_range(start='1/1/2012 9:30', freq='1min', periods=21)) s[0] = np.nan result = s.resample('10min', closed='left', label='right').mean() exp = s[1:].resample('10min', closed='left', label='right').mean() assert_series_equal(result, exp) result = s.resample('10min', closed='left', label='left').mean() exp = s[1:].resample('10min', closed='left', label='left').mean() ex_index = date_range(start='1/1/2012 9:30', freq='10min', periods=3) tm.assert_index_equal(result.index, ex_index) assert_series_equal(result, exp) def test_quarterly_resampling(self): rng = period_range('2000Q1', periods=10, freq='Q-DEC') ts = Series(np.arange(10), index=rng) result = ts.resample('A').mean() exp = ts.to_timestamp().resample('A').mean().to_period() assert_series_equal(result, exp) def test_resample_weekly_bug_1726(self): # 8/6/12 is a Monday ind = date_range(start="8/6/2012", end="8/26/2012", freq="D") n = len(ind) data = [[x] * 5 for x in range(n)] df = DataFrame(data, columns=['open', 'high', 'low', 'close', 'vol'], index=ind) # it works! df.resample('W-MON', closed='left', label='left').first() def test_resample_with_dst_time_change(self): # GH 15549 index = (
pd.DatetimeIndex([1457537600000000000, 1458059600000000000])
pandas.DatetimeIndex
import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt import random import pickle import missingno as msno from sklearn.experimental import enable_iterative_imputer from sklearn.impute import IterativeImputer from sklearn.preprocessing import StandardScaler from sklearn.decomposition import PCA from imblearn.over_sampling import SMOTE import sklearn from sklearn.feature_selection import SelectKBest, f_classif, chi2 from sklearn import svm from sklearn.svm import OneClassSVM from sklearn.preprocessing import OneHotEncoder, label_binarize from sklearn.model_selection import train_test_split, GridSearchCV from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import cross_val_score, RepeatedStratifiedKFold from sklearn.linear_model import LogisticRegression, SGDClassifier from sklearn.multiclass import OneVsRestClassifier from sklearn.metrics import confusion_matrix, accuracy_score, precision_score, recall_score, f1_score, auc, \ classification_report, multilabel_confusion_matrix, precision_recall_curve, roc_curve, average_precision_score from lightgbm import LGBMClassifier import keras from keras.models import Sequential from keras.layers import Dense, Activation from keras.wrappers.scikit_learn import KerasClassifier from src.config import Config from src.analysis import Analysis pd.set_option('display.max_rows', 500) class Train(Config): def __init__(self): self.data = {} def dataset_prep(self, retrain_pca=False, save_pca=False): # Set 1: Raw Data + Missing Data Deletion data = analysis.read_file() raw_data = data[~data.isna().any(axis=1)].reset_index(drop=True) dataset1 = raw_data.copy() missing_data = pd.DataFrame(raw_data.isna().sum()[raw_data.isna().sum() != 0], columns=["missing_count"]) missing_data["percentage"] = missing_data.missing_count*100/raw_data.shape[0] # Set 2: Raw Data + Missing Data Deletion + Outlier Removal (Set 1 + Outlier Removal) # Outlier Removal of Normal Class where Minority Class have same behavior # Selected columns are also columns used for flagging (Feature Engineering) selected_columns = Config.ANALYSIS_CONFIG["XCHART_COLUMNS"] numerical_columns = raw_data[selected_columns].select_dtypes(["float", "int"]) clean_df = analysis.outlier_identification(raw_data, numerical_columns, mode="outlier_removal") # Since the inherent missingess is from majority class and the maximum percentage missingness is 5%, \ # the rows are simply removed missing_data = pd.DataFrame(clean_df.isna().sum()[clean_df.isna().sum() != 0], columns=["missing_count"]) missing_data["percentage"] = missing_data.missing_count*100/clean_df.shape[0] dataset2 = clean_df[~clean_df.isna().any(axis=1)].reset_index(drop=True) # Set 3: Raw Data + Missing Data Deletion + Outlier Removal + Feature Transformation (Set 2 + Feature Transformation) transformed_dict, _ = analysis.data_transformation(dataset2) transformed_df = pd.concat([transformed_dict["SYMMETRICAL_DATA"], transformed_dict["MODPOS_TRANSFORMED"], transformed_dict["MODNEG_TRANSFORMED"], transformed_dict["HIGHPOS_TRANSFORMED"], transformed_dict["HIGHNEG_TRANSFORMED"], dataset2[["105", "147"]], # Include bimodal distributions for now dataset2.select_dtypes("category")], axis=1) dataset3 = transformed_df.copy() # Set 4: Raw Data + Missing Data Deletion + Outlier Removal + Feature Transformation + Feature Engineering (Flag) selected_columns = Config.ANALYSIS_CONFIG["TRANSFORMED_COLUMNS"] numerical_columns = dataset3[selected_columns].select_dtypes(["float", "int"]) flag_data = analysis.outlier_identification(dataset3, numerical_columns, mode='feature_engineering') dataset4 = pd.concat([flag_data.reset_index(drop=True), dataset3[selected_columns].select_dtypes(["category"])], axis=1) # Save dataset dataset1.to_csv("./data/dataset1.csv", index=False) dataset2.to_csv("./data/dataset2.csv", index=False) dataset3.to_csv("./data/dataset3.csv", index=False) dataset4.to_csv("./data/dataset4.csv", index=False) # Read dataset and change datatype dataset1 = analysis.read_file("./data/dataset1.csv") dataset2 = analysis.read_file("./data/dataset2.csv") dataset3 = analysis.read_file("./data/dataset3.csv") dataset4 = analysis.read_file("./data/dataset4.csv") # Set 5: Set 4 -> Pure PCA + Target pca_df1 = analysis.pca_transformation(dataset1, retrain=retrain_pca, fname="./models/pca_v3.sav", save=save_pca) pca_df2 = analysis.pca_transformation(dataset2, retrain=retrain_pca, fname="./models/pca_v4.sav", save=save_pca) pca_df3 = analysis.pca_transformation(dataset3, retrain=retrain_pca, fname="./models/pca_v3.sav", save=save_pca) pca_df4 = analysis.pca_transformation(dataset4, retrain=retrain_pca, fname="./models/pca_v4.sav", save=save_pca) pca_df1.to_csv("./data/pca_dataset1.csv", index=False) pca_df2.to_csv("./data/pca_dataset2.csv", index=False) pca_df3.to_csv("./data/pca_dataset3.csv", index=False) pca_df4.to_csv("./data/pca_dataset4.csv", index=False) pca_df1 = analysis.read_file("./data/pca_dataset1.csv") pca_df2 = analysis.read_file("./data/pca_dataset2.csv") pca_df3 = analysis.read_file("./data/pca_dataset3.csv") pca_df4 = analysis.read_file("./data/pca_dataset4.csv") # Set 6: Hybrid of all (Transformed, Engineering) combined_df1 = pd.concat([dataset1.loc[:, ~dataset1.columns.isin(["target"])].reset_index(drop=True), pca_df1.reset_index(drop=True)], axis=1) combined_df2 = pd.concat([dataset2.loc[:, ~dataset2.columns.isin(["target"])].reset_index(drop=True), pca_df2.reset_index(drop=True)], axis=1) combined_df3 = pd.concat([dataset3.loc[:, ~dataset3.columns.isin(["target"])].reset_index(drop=True), pca_df3.reset_index(drop=True)], axis=1) combined_df4 = pd.concat([dataset4.loc[:, ~dataset4.columns.isin(["target"])].reset_index(drop=True), pca_df4.reset_index(drop=True)], axis=1) combined_df1.to_csv("./data/combined_dataset1.csv", index=False) combined_df2.to_csv("./data/combined_dataset2.csv", index=False) combined_df3.to_csv("./data/combined_dataset3.csv", index=False) combined_df4.to_csv("./data/combined_dataset4.csv", index=False) def feature_selection(self, X_train, y_train, fname, retrain=False, num_cols="all", threshold=.5): random.seed(123) # Numerical input Categorical Output: ANOVA X_anova = X_train.select_dtypes(["float", "int"]) filename = "./models/models_new/anova_{}".format(fname) if retrain: fs = SelectKBest(score_func=f_classif, k=num_cols).fit(X_anova, y_train) pickle.dump(fs, open(filename, 'wb')) fs = pickle.load(open(filename, 'rb')) X_selected = fs.transform(X_anova) anova_df = pd.DataFrame({"features_selected" : list(X_anova.loc[:, fs.get_support()].columns), "features_pvalues": list(fs.pvalues_[fs.get_support()])}) anova_df = anova_df.loc[anova_df.features_pvalues <= threshold, :] anova_df = anova_df.sort_values(by="features_pvalues", ascending=True) # Numerical input Categorical Output: Chi2 X_chi2 = X_train.select_dtypes(["category"]) filename = "./models/models_new/chi2_{}".format(fname) if retrain: fs = SelectKBest(score_func=chi2, k=num_cols).fit(X_chi2, y_train) pickle.dump(fs, open(filename, 'wb')) fs = pickle.load(open(filename, 'rb')) X_selected = fs.transform(X_chi2) chi2_df = pd.DataFrame({"features_selected" : list(X_chi2.loc[:, fs.get_support()].columns), "features_pvalues": list(fs.pvalues_[fs.get_support()])}) chi2_df = chi2_df.loc[chi2_df.features_pvalues <= threshold, :] chi2_df = chi2_df.sort_values(by="features_pvalues", ascending=False) return anova_df, chi2_df def feature_importance(self, data, title, fontsize=20): fig = plt.figure(figsize=(20,50)) plt.barh(data["features_selected"], data["features_pvalues"]) plt.title(title, fontsize=fontsize) plt.xlabel("features_pvalues", fontsize=fontsize) plt.ylabel("features", fontsize=fontsize) return fig def oversampling(self, X_train, y_train, plot=False): oversample = SMOTE(random_state=123) X_otrain,y_otrain = oversample.fit_resample(X_train,y_train) if plot: display(y_otrain.value_counts(normalize=True).plot.pie()) return X_otrain, y_otrain def print_confusion_matrix(self, confusion_matrix, axes, class_label, class_names, fontsize=14): df_cm = pd.DataFrame(confusion_matrix, index=class_names, columns=class_names) try: heatmap = sns.heatmap(df_cm, annot=True, fmt="d", cbar=False, ax=axes) except ValueError: raise ValueError("Confusion matrix values must be integers.") heatmap.yaxis.set_ticklabels(heatmap.yaxis.get_ticklabels(), rotation=0, ha='right', fontsize=fontsize) heatmap.xaxis.set_ticklabels(heatmap.xaxis.get_ticklabels(), rotation=45, ha='right', fontsize=fontsize) axes.set_ylabel('True label') axes.set_xlabel('Predicted label') axes.set_title("Confusion Matrix for the class - " + class_label) return fig def cm_single(self, y_test, y_pred, fontsize=14): labels = ["".join("c" + str(i[0])) for i in pd.DataFrame(y_test).value_counts().index] df_cm = pd.DataFrame(confusion_matrix(y_test, y_pred), index=labels, columns=labels) fig = plt.figure(figsize=(6,4)) heatmap = sns.heatmap(df_cm, annot=True, fmt="d", cbar=False) heatmap.yaxis.set_ticklabels(heatmap.yaxis.get_ticklabels(), rotation=0, ha='right', fontsize=fontsize) heatmap.xaxis.set_ticklabels(heatmap.xaxis.get_ticklabels(), rotation=45, ha='right', fontsize=fontsize) heatmap.set_ylabel('True label') heatmap.set_xlabel('Predicted label') heatmap.set_title("Confusion Matrix for Binary Label" ) return fig def cm_plot(self, y_test, y_pred, nrow=3, ncol=2): labels = ["".join("c" + str(i[0])) for i in pd.DataFrame(y_test).value_counts().index] cm = multilabel_confusion_matrix(y_test, y_pred) if nrow == 1: figsize = (8,4) else: figsize = (12,7) fig, ax = plt.subplots(nrow, ncol, figsize=figsize) for axes, cfs_matrix, label in zip(ax.flatten(), cm, labels): print_confusion_matrix(cfs_matrix, axes, label, ["0", "1"]) if nrow == 3: fig.delaxes(ax[2,1]) fig.tight_layout() return fig def pr_auc(self, X_test, y_test, n_classes): fig, ax = plt.subplots(2, 1, figsize=(12, 7)) # Precision-Recall Curve y_score = model.predict_proba(X_test) y_test = label_binarize(y_test, classes=[*range(n_classes)]) precision = dict() recall = dict() for i in range(n_classes): precision[i], recall[i], _ = precision_recall_curve(y_test[:, i],y_score[:, i]) ax[0].plot(recall[i], precision[i], lw=2, label='class {}'.format(i)) no_skill = len(y[y==1]) / len(y) ax[0].plot([0, 1], [no_skill, no_skill], linestyle='--', label='No Skill') ax[0].set_xlabel("recall") ax[0].set_ylabel("precision") ax[0].legend(loc="best") ax[0].set_title("precision vs. recall curve") # ROC curve fpr = dict() tpr = dict() for i in range(n_classes): fpr[i], tpr[i], _ = roc_curve(y_test[:, i], y_score[:, i]) ax[1].plot(fpr[i], tpr[i], lw=2, label='class {}'.format(i)) ax[1].plot([0, 1], [0, 1], linestyle='--', label='No Skill') ax[1].set_xlabel("false positive rate") ax[1].set_ylabel("true positive rate") ax[1].legend(loc="best") ax[1].set_title("ROC curve") fig.tight_layout() return fig def traintest_split(self, data, test_size=0.3): X, y = data.loc[:,~data.columns.isin(["target"])], data.loc[:,data.columns.isin(["target"])] X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y, test_size=test_size) return X_train, X_test, y_train, y_test def class_count(self, y_test, y_pred): true = pd.DataFrame(y_test.value_counts()) pred = pd.DataFrame(list(np.unique(y_pred, return_counts=True)[1])) pred.index = list(np.unique(y_pred, return_counts=True)[0]) final = pd.concat([true, pred], axis=1).rename(columns={0:"pred"}) return final def plot_graphs(self, X_test, y_test, y_pred, model, fontsize=16): algo_name = type(model).__name__ y_proba = model.predict_proba(X_test) n_classes = len(y_test["target"].unique()) onehotencoder = OneHotEncoder() y_enc = onehotencoder.fit_transform(np.array(y_test).reshape(-1,1)).toarray() fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(12, 5)) plt.style.use('default') fpr = dict() tpr = dict() roc_auc = dict() for i in range(n_classes): fpr[i], tpr[i], _ = roc_curve(y_enc[:, i], y_proba[:, i]) roc_auc[i] = auc(fpr[i], tpr[i]) ax1.plot(fpr[i], tpr[i], lw=2, label='ROC curve of class {0} (area = {1:0.2f})'.format(i, roc_auc[i])) ax1.set_xlim([0.0, 1.0]) ax1.set_ylim([0.0, 1.05]) ax1.set_xlabel("false positive rate") ax1.set_ylabel("true positive rate") ax1.legend(loc="lower right", prop={'size': 10}) ax1.set_title('ROC to multi-class') fig.suptitle(algo_name, fontsize=16) plt.style.use('default') precision = dict() recall = dict() for i in range(n_classes): precision[i], recall[i], _ = precision_recall_curve(y_enc[:, i], y_proba[:, i]) ax2.plot(recall[i], precision[i], lw=2, label='PR Curve of class {}'.format(i)) ax2.set_xlim([0.0, 1.0]) ax2.set_ylim([0.0, 1.05]) ax2.set_xlabel("recall") ax2.set_ylabel("precision") ax2.legend(loc="lower right", prop={'size': 10}) ax2.set_title('Precision-Recall to multi-class') fig.suptitle(algo_name, fontsize=16) labels = ["".join("c" + str(i[0])) for i in
pd.DataFrame(y_test)
pandas.DataFrame
import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn.model_selection import KFold from sklearn.preprocessing import StandardScaler from scipy.stats import multivariate_normal as mvn import seaborn as sn import math import gc import tensorflow as tf from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense from tensorflow.keras.callbacks import EarlyStopping from tensorflow.keras.optimizers import Adam from sklearn.preprocessing import MinMaxScaler, normalize import FourierClock from scipy.stats import ks_2samp from functools import reduce import random import os from numpy.linalg import norm import subprocess from copulas.multivariate import GaussianMultivariate val_errors1 = [] test_errors1 = [] N_GENES = 30 SEED = 0 random.seed(SEED) np.random.seed(SEED) tf.random.set_seed(SEED) os.environ['PYTHONHASHSEED'] = str(SEED) df = pd.read_csv('Data\\X_train_raw.csv').T df_valid = pd.read_csv('Data\\X_valid_raw.csv').T df_test = pd.concat((pd.read_csv('Data\\X_test_raw_A.txt').T, pd.read_csv('Data\\X_test_raw_B.txt').T)).iloc[[0, 1, 2, 4, 5], :] rach_clusters = pd.read_csv('Data\\X_train_clusters.csv') Y_data = df.iloc[1:, -1].astype('float64') Y_copy = Y_data Y_valid_data = df_valid.iloc[1:, -1].astype('float64') Y_valid_copy = Y_valid_data common_IDs = reduce(np.intersect1d, (df.iloc[0, :-1].values, df_valid.iloc[0, :-1].values, df_test.iloc[0, :].values)) idx = np.where(df.iloc[0, :].isin(common_IDs))[0] df = df.iloc[:, idx] idx_valid = np.where(df_valid.iloc[0, :].isin(common_IDs))[0] df_valid = df_valid.iloc[:, idx_valid] idx_test = np.where(df_test.iloc[0, :].isin(common_IDs))[0] df_test = df_test.iloc[:, idx_test] X_data = df.iloc[1:, :].astype('float64') X_ID = df.iloc[0, :] X_valid_data = df_valid.iloc[1:, :].astype('float64') X_valid_ID = df_valid.iloc[0, :] X_test_data = df_test.iloc[1:, :].astype('float64') X_test_ID = df_test.iloc[0, :] X_ID1 = np.argsort(X_ID) X_ID = X_ID.iloc[X_ID1] X_data = X_data.iloc[:, X_ID1] X_data.columns = X_ID X_ID1 = np.argsort(X_valid_ID) X_valid_ID = X_valid_ID.iloc[X_ID1] X_valid_data = X_valid_data.iloc[:, X_ID1] X_valid_data.columns = X_valid_ID X_ID1 = np.argsort(X_test_ID) X_test_ID = X_test_ID.iloc[X_ID1] X_test_data = X_test_data.iloc[:, X_ID1] X_test_data.columns = X_test_ID # Variance threshold from sklearn.feature_selection import VarianceThreshold selector = VarianceThreshold() selector.fit(X_data) var_idx = selector.variances_ > 5 X_data = X_data.iloc[:, var_idx] X_ID = X_ID.iloc[var_idx] X_valid_data = X_valid_data.iloc[:, var_idx] X_valid_ID = X_valid_ID.iloc[var_idx] X_test_data = X_test_data.iloc[:, var_idx] X_test_ID = X_test_ID.iloc[var_idx] X_data.reset_index(inplace=True, drop=True) X_valid_data.reset_index(inplace=True, drop=True) X_test_data.reset_index(inplace=True, drop=True) X_ID.reset_index(inplace=True, drop=True) X_valid_ID.reset_index(inplace=True, drop=True) X_test_ID.reset_index(inplace=True, drop=True) del df gc.collect() n_folds = Y_data.shape[0] folds = KFold(n_splits=n_folds, shuffle=True, random_state=SEED) y_cos = -np.cos((2 * np.pi * Y_data.astype('float64') / 24)+(np.pi/2)) y_sin = np.sin((2 * np.pi * Y_data.astype('float64') / 24)+(np.pi/2)) Y_valid_cos = -np.cos((2 * np.pi * Y_valid_data.astype('float64') / 24)+(np.pi/2)) Y_valid_sin = np.sin((2 * np.pi * Y_valid_data.astype('float64') / 24)+(np.pi/2)) def cyclical_loss(y_true, y_pred): error = 0 for i in range(y_pred.shape[0]): error += np.arccos((y_true[i, :] @ y_pred[i, :]) / (norm(y_true[i, :]) * norm(y_pred[i, :]))) return error def custom_loss(y_true, y_pred): return tf.reduce_mean((tf.math.acos(tf.matmul(y_true, tf.transpose(y_pred)) / ((tf.norm(y_true) * tf.norm(y_pred)) + tf.keras.backend.epsilon()))**2)) adam = Adam(lr=0.00001, beta_1=0.9, beta_2=0.999, amsgrad=False) def larger_model(): # create model model = Sequential() model.add(Dense(256, kernel_initializer='normal', activation='relu')) model.add(Dense(1024, kernel_initializer='normal', activation='relu')) model.add(Dense(2, kernel_initializer='normal')) # Compile model model.compile(loss=custom_loss, optimizer=adam) return model Y_data = np.concatenate((y_cos.values.reshape(-1, 1), y_sin.values.reshape(-1, 1)), axis=1) Y_valid_data = np.concatenate((Y_valid_cos.values.reshape(-1, 1), Y_valid_sin.values.reshape(-1, 1)), axis=1) error = 0 # Initialise error all_preds = np.zeros((Y_data.shape[0], 2)) # Create empty array all_valid_preds = np.zeros((Y_valid_data.shape[0], 2)) # Create empty array early_stop = EarlyStopping(patience=100, restore_best_weights=True, monitor='val_loss', mode='min') X_data_times = X_data.T Y_times = np.array([0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44]) scaler = StandardScaler() X_data_times_idx = X_data_times.index X_data_times = (scaler.fit_transform(X_data_times.T)).T X_data_times = pd.DataFrame(data=X_data_times, index=X_data_times_idx) X_data_times = pd.concat((pd.DataFrame(Y_times.reshape(1, 12)), X_data_times), axis=0) X_data_times.to_csv('Data\\X_train_times.csv', header=None) subprocess.call(['C:\\Program Files\\R\\R-4.0.3\\bin\\Rscript', 'metacycle_scores.R'], shell=False) arser_scores = pd.read_csv('MetaScores\\ARSresult_X_train_times.csv') jtk_scores = pd.read_csv('MetaScores\\JTKresult_X_train_times.csv') auto_indices, auto_clock_genes, auto_scores = FourierClock.get_autocorrelated_genes(X_data, X_ID) auto_scores = np.abs(np.array(auto_scores)) cross_indices, cross_clock_genes, cross_scores = FourierClock.cross_corr(X_data, Y_copy, X_ID) cross_scores = np.abs(np.array(cross_scores)) scores = np.concatenate((auto_scores.reshape(-1, 1), cross_scores.reshape(-1, 1), arser_scores['fdr_BH'].values.reshape(-1, 1), jtk_scores['ADJ.P'].values.reshape(-1, 1)), axis=1) scores[:, 2:] = 1-scores[:, 2:] num_resamples = 1000 # Change to 50,000/100,000 gcopula = GaussianMultivariate() gcopula.fit(scores) random_sample = gcopula.sample(num_resamples) sample_scores = pd.DataFrame(random_sample) mean = np.mean(sample_scores.values, axis=0) covariance = np.cov(sample_scores.T) dist = mvn(mean=mean, cov=covariance, allow_singular=True) gene_scores = [] for i in range(scores.shape[0]): gene_scores.append(dist.cdf(x=scores[i, :])) gene_scores = np.array(gene_scores) gene_scores = np.concatenate((arser_scores['CycID'].values.reshape(-1, 1), gene_scores.reshape(-1, 1)), axis=1) gene_scores = gene_scores[gene_scores[:, 1].argsort()[::-1]] selected_genes = gene_scores[:N_GENES*3, 0] idx = np.where(X_ID.isin(selected_genes))[0] selected_scores = gene_scores[idx] X_data = X_data.iloc[:, idx] idx_valid = np.where(X_valid_ID.isin(selected_genes))[0] X_valid_data = X_valid_data.iloc[:, idx_valid] idx_test = np.where(X_test_ID.isin(selected_genes))[0] X_test_data = X_test_data.iloc[:, idx_test] X_ID = X_ID.iloc[idx] X_valid_ID = X_valid_ID.iloc[idx_valid] X_test_ID = X_test_ID.iloc[idx_test] scores = [] pvalues = [] for i in range(X_data.shape[1]): l = ks_2samp(X_data.iloc[:, i], X_valid_data.iloc[:, i]) scores.append(i) pvalues.append(l.pvalue) pvalues_idx = np.argsort(pvalues) scores = pvalues_idx[(pvalues_idx.shape[0]-2*N_GENES):] similar_genes = selected_genes[scores] X_data = X_data.iloc[:, scores] selected_scores = selected_scores[scores] X_ID = X_ID.iloc[scores] X_valid_data = X_valid_data.iloc[:, scores] X_test_data = X_test_data.iloc[:, scores] Y_copy_res = np.array([0, 4, 8, 12, 16, 20, 0, 4, 8, 12, 16, 20]) X_ID2 = X_data.columns.values scaler = MinMaxScaler() scaler.fit(X_data) X_data = scaler.transform(X_data) X_valid_data = scaler.transform(X_valid_data) X_test_data = scaler.transform(X_test_data) X_data = pd.DataFrame(data=X_data, columns=X_ID2) X_valid_data = pd.DataFrame(data=X_valid_data, columns=X_ID2) X_test_data =
pd.DataFrame(data=X_test_data, columns=X_ID2)
pandas.DataFrame
import matplotlib matplotlib.use('Agg') import tessreduce as tr import numpy as np import pandas as pd import matplotlib.pyplot as plt import lightkurve as lk from astropy.coordinates import SkyCoord from astropy import units as u import os dirname = os.path.dirname(__file__) #where we're going we dont need warnings!! import warnings warnings.filterwarnings("ignore") file = os.path.join(dirname,'/data/cataclysmic_variables.csv') cvs = pd.read_csv('./data/cataclysmic_variables.csv') # don't want to deal with the crowded Tuc, Pav, or Sgr zones for now ind = (cvs['GCVS'].values == 'Tuc ') | (cvs['GCVS'].values == 'Pav ') | (cvs['GCVS'].values == 'Sgr ') cvs = cvs.iloc[~ind] for j in range(len(cvs)): cv = cvs.iloc[j] print('NAME: ',cv['Names']) ra = cv['RAJ2000'] dec = cv['DEJ2000'] c = SkyCoord(ra=float(ra)*u.degree, dec=float(dec) *u.degree, frame='icrs') tess = lk.search_tesscut(c,sector=None) try: if len(tess) > 0: lcs = [] zps = [] err = [] sectors = [] trends1 = [] trends2 = [] if len(tess) > 1: tpfs = [] for t in tess: tpf = t.download(cutout_size=50) #aper_b18 = np.zeros(tpf.shape[1:], dtype=bool) #aper_b18[44:48, 44:47] = True res = tr.Quick_reduce(tpf,calibrate=False)#,aper=aper_b18) lcs += [res['lc']] err += [res['err']] zps += [res['zp']] sectors += [tpf.sector] try: trends1 += [tr.Remove_stellar_variability(lcs[-1],err[-1],variable=True)] trends2 += [tr.Remove_stellar_variability(lcs[-1],err[-1],variable=False)] except: print('trend error in {} sector {}'.format(cv['Names'],tpf.sector)) filler = np.nan * np.ones(len(err[-1])) trends1 += [filler] trends2 += [filler] name = cv['Names'] print('MAKE FIGURE') plt.figure(figsize=(6.5,8)) plt.subplot(311) plt.title(name) for i in range(len(lcs)): plt.plot(lcs[i][0],lcs[i][1],label='S ' + str(sectors[i])) plt.legend() plt.ylabel('Counts') plt.subplot(312) plt.title('trend method 1') for i in range(len(lcs)): #plt.fill_between(lcs[i][0],lcs[i][1]-trends1[i]-err[i],lcs[i][1]-trends1[i]+err[i],alpha=.5) plt.plot(lcs[i][0],lcs[i][1]-trends1[i]) plt.ylabel('Counts') plt.subplot(313) plt.title('trend method 2') for i in range(len(lcs)): #plt.fill_between(lcs[i][0],lcs[i][1]-trends2[i]-err[i],lcs[i][1]-trends2[i]+err[i],alpha=.5) plt.plot(lcs[i][0],lcs[i][1]-trends2[i]) plt.ylabel('Counts') plt.xlabel('MJD') plt.tight_layout() savename = name.replace('/',' ').replace(' ','_') plt.savefig('./figs/{}.pdf'.format(savename)) # save to cvs print('SAVE TO CSV') mjd = lcs[0][0].copy() flux = lcs[0][1].copy() e = err[0].copy() t1 = trends1[0].copy() t2 = trends2[0].copy() z = np.ones(len(lcs[0][0])) * zps[0][0] s = np.ones(len(lcs[0][0])) * sectors[0] for i in range(len(lcs)-1): i += 1 mjd = np.append(mjd,lcs[i][0]) flux = np.append(flux,lcs[i][1]) e = np.append(e,err[i]) t1 = np.append(t1,trends1[i]) t2 = np.append(t2,trends2[i]) zz = np.ones(len(lcs[i][0])) * zps[i][0] ss = np.ones(len(lcs[i][0])) * sectors[i] z = np.append(z,zz) s = np.append(s,ss) df =
pd.DataFrame(columns=['mjd','flux','err','trend1','trend2','zp','sector'])
pandas.DataFrame
import numpy as np import pandas as pd from insolver.frame import InsolverDataFrame from insolver.transforms import InsolverTransform, AutoFillNATransforms def test_fillna_numerical(): df_test = InsolverDataFrame(pd.DataFrame(data={'col1': [1, 2, np.nan]})) df_transformed = InsolverTransform(df_test, [ AutoFillNATransforms(), ]) df_transformed.ins_transform() assert df_transformed['col1'][2] == 1.5 def test_fillna_numerical_all_na(): df_test = InsolverDataFrame(
pd.DataFrame(data={'col1': [np.nan, np.nan, np.nan]})
pandas.DataFrame
""" This module defines geometric methods that work in 3D and allow receiverpoints and observation objects to interact with a map """ # rays,to_crs used in observations # fresnel,to_crs,is_outside,ground_level used in sim # map_to_crs is a standalone map method from itertools import chain, compress, cycle, repeat from typing import Union import warnings import geopandas as gpd import numpy as np import pandas as pd import pyproj import pygeos import shapely.geometry from shapely.ops import transform from shapely.wkt import loads import gnssmapper.common as cm from gnssmapper.common.check import Rays def coordinates(rays: Rays) -> np.array: coords = pygeos.get_coordinates(rays.array.data, include_z=True) return coords.reshape((rays.shape[0], 2, 3)) def z(points: gpd.GeoSeries) -> pd.Series: """Returns Z coordinate for a set of point geometries """ return
pd.Series((point.z for point in points), index=points.index)
pandas.Series
import json import pandas as pd from pandas import DataFrame import matplotlib.pyplot as plt import os import collections import nltk.classify import nltk.metrics import numpy as np import csv """ read all business id """ business=[] users=[] scores=[] rates=[] t=0 userdd=
pd.read_csv('users.tsv', sep="\t")
pandas.read_csv
import unittest from zeppos_bcpy.sql_statement import SqlStatement import pandas as pd import os class TestTheProjectMethods(unittest.TestCase): def test_get_table_create_statement_method(self): df =
pd.DataFrame({'seconds': [3600], 'minutes': [10]}, columns=['seconds', 'minutes'])
pandas.DataFrame
import shelve import numpy as np import re import pandas as pd import json import pickle import pdb from copy import copy with open('metadata/bacnet_devices.json', 'r') as fp: sensor_dict = json.load(fp) nae_dict = dict() nae_dict['bonner'] = ["607", "608", "609", "557", "610"] nae_dict['ap_m'] = ['514', '513','604'] nae_dict['bsb'] = ['519', '568', '567', '566', '564', '565'] nae_dict['ebu3b'] = ["505", "506"] nae_dict['music'] = ['523'] nae_dict['sme'] = ['572', '573', '574'] nae_dict['bml'] = ['510'] # Vectorization #Parse the data in the dictionary as filtered by device_list #Gives us a sensor_list with sensor information of a building def remove_emptystr(s): while '' in s: s.remove('') return s def extract_words(sentence, delimiter): #result = re.findall('(\d+\s?-?\s?\d+)|(\d+)', sentence) result = sentence.lower().split(delimiter) while '' in result: result.remove('') return result def sentence2lower(wordList): return [word.lower() for word in wordList] def tokenize(tokenType, raw, mappedWordMap=None): raw = raw.replace('_', ' ') if tokenType=='Alphanumeric': sentence = re.findall("\w+", raw) elif tokenType in ['AlphaAndNum', 'NumAsSingleWord']: sentence = re.findall("[a-zA-Z]+|\d+", raw) elif tokenType=='NoNumber': sentence = re.findall("[a-zA-Z]+", raw) elif tokenType=='JustSeparate': sentence = re.findall("([a-zA-Z]+|\d+|[^0-9a-z])", raw) else: assert(False) if tokenType=='NumAsSingleWord': sentence = ['NUM' if len(re.findall('\d+',word))>0 else word for word in sentence] sentence = sentence2lower(sentence) if mappedWordMap!=None: terms = mappedWordMap.keys() else: terms = list() retSentence = list() for word in sentence: alphaWord = re.findall('[a-zA-Z]+',word) if len(alphaWord )>0: if alphaWord in terms: #mappedWordList = mappedWordMap[alphaWord] #for mappedWord in mappedWordList: #word = word.replace(mappedWord, '_'+mappedWord+'_') word = word.replace(alphaWord, '_'+'_'.join(mappedWordMap[alphaWord])+'_') retSentence = retSentence + remove_emptystr(word.split('_')) return retSentence def parse_sentence(sentence): return re.findall("([a-zA-Z]+|\d+|[^0-9a-z])", sentence.lower()) def get_bacnettype_dict(building_name): bacnettypeMap = pd.read_csv('metadata/bacnettype_mapping.csv').set_index('bacnet_type_str') naeList = nae_dict[building_name] source_id_set = set([]) bacnettype_dict = dict() bacnettype_code_dict = dict() for nae in naeList: device = sensor_dict[nae] h_dev = device['props'] for sensor in device['objs']: h_obj = sensor['props'] source_id = str(h_dev['device_id']) + '_' + str(h_obj['type']) + '_' + str(h_obj['instance']) # if not source_id in validSrcidList: # continue if h_obj['type'] not in (0,1,2,3,4,5,13,14,19): continue if source_id in source_id_set: continue else: source_id_set.add(source_id) if sensor['props']['type_str']: typeStr = bacnettypeMap.loc[sensor['props']['type_str']].tolist()[0] if type(typeStr)!=str: if np.isnan(typeStr): typeStr = '' else: print("Error in bacnettype map file") assert(False) else: typeStr = '' bacnettype_dict[source_id] = typeStr bacnettype_code_dict[source_id] = sensor['props']['type_str'] return bacnettype_dict def get_unit_dict(building_name): unitMap = pd.read_csv('metadata/unit_mapping.csv').set_index('unit') naeList = nae_dict[building_name] unit_code_dict = dict() unit_dict = dict() source_id_set = set([]) for nae in naeList: device = sensor_dict[nae] h_dev = device['props'] for sensor in device['objs']: h_obj = sensor['props'] source_id = str(h_dev['device_id']) + '_' + str(h_obj['type']) + '_' + str(h_obj['instance']) # if not source_id in validSrcidList: # continue if h_obj['type'] not in (0,1,2,3,4,5,13,14,19): continue if source_id in source_id_set: continue else: source_id_set.add(source_id) if sensor['unit']: try: unit_str = unitMap.loc[sensor['unit']].tolist()[0] if type(unit_str) != str: if np.isnan(unit_str): unit_str = '' else: print("Error in unit map file") assert(False) except: print("===================") print(sensor['unit']) print(sensor) print("===================") assert(False) else: unit_str = '' unit_code_dict[source_id] = sensor['unit'] unit_dict[source_id] = unit_str return unit_dict def parse_sentences(building_name): if building_name == 'pouya': metadata_file = 'metadata/pouya.csv' df = pd.read_csv(metadata_file) names = df['Address'].tolist() srcids = copy(names) names = [parse_sentence(name) for name in names] blanks = ['' for name in names] jcinames = copy(blanks) descs = copy(blanks) units = copy(blanks) bacnettypes = copy(blanks) return None, srcids, names, jcinames, descs, units, bacnettypes unitMap = pd.read_csv('metadata/unit_mapping.csv').set_index('unit') bacnettypeMap = pd.read_csv('metadata/bacnettype_mapping.csv').set_index('bacnet_type_str') naeList = nae_dict[building_name] sensor_list = [] name_list = [] desc_list = [] unit_list = [] bacnettype_list = [] jciname_list = list() source_id_set = set([]) source_id_list = list() for nae in naeList: device = sensor_dict[nae] h_dev = device['props'] for sensor in device['objs']: h_obj = sensor['props'] source_id = str(h_dev['device_id']) + '_' + str(h_obj['type']) + '_' + str(h_obj['instance']) # if not source_id in validSrcidList: # continue if h_obj['type'] not in (0,1,2,3,4,5,13,14,19): continue if source_id in source_id_set: continue else: source_id_set.add(source_id) source_id_list.append(source_id) jciname_list.append(parse_sentence(sensor['jci_name'])) name_list.append(parse_sentence(sensor['name'])) desc_list.append(parse_sentence(sensor['desc'])) if not sensor['unit']==None: try: unit_str = unitMap.loc[sensor['unit']].tolist()[0] if type(unit_str) != str: if np.isnan(unit_str): unit_str = '' else: print("Error in unit map file") assert(False) except: print("===================") print(sensor['unit']) print(sensor) print("===================") assert(False) else: unit_str = '' unit_list.append([unit_str]) if not sensor['props']['type_str']==None: typeStr = bacnettypeMap.loc[sensor['props']['type_str']].tolist()[0] if type(typeStr)!=str: if np.isnan(typeStr): typeStr = '' else: print("Error in bacnettype map file") assert(False) else: typeStr = '' bacnettype_list.append([typeStr]) sensor_list.append({'source_id': source_id, 'name': sensor['name'], 'description': sensor['desc'], 'unit': sensor['unit'], 'type_string': h_obj['type_str'], 'type': h_obj['type'], #'device_id': h_obj['device_id'], 'jci_name': sensor['jci_name'], #add data related characteristics here }) sensor_df = pd.DataFrame(sensor_list) return sensor_df, source_id_list, name_list, jciname_list, desc_list, \ unit_list, bacnettype_list def structure_metadata(buildingName=None, tokenType=None, bigramFlag=False, validSrcidList=[], mappedWordMap=None, withDotFlag=True): unitMap = pd.read_csv('metadata/unit_mapping.csv').set_index('unit') bacnettypeMap =
pd.read_csv('metadata/bacnettype_mapping.csv')
pandas.read_csv
# Librairies print("Load Libraries") import os import hashlib import numpy as np import pandas as pd import tensorflow.keras.preprocessing.image as kpi import tensorflow.keras.models as km from tensorflow.python.client import device_lib MODE = "GPU" if "GPU" in [k.device_type for k in device_lib.list_local_devices()] else "CPU" print(MODE) ## Argument import argparse parser = argparse.ArgumentParser() parser.add_argument('--epochs', type=int, default=10) parser.add_argument('--batch_size', type=int, default=20) parser.add_argument('--data_dir', type=str, default="/Users/bguillouet/Insa/TP_Insa/dev/IA-Frameworks/GoogleCloud/data/sample_2/") parser.add_argument('--results_dir', type=str, default="/Users/bguillouet/Insa/TP_Insa/dev/IA-Frameworks/GoogleCloud/results/") parser.add_argument('--model_dir', type=str, default="/Users/bguillouet/Insa/TP_Insa/dev/IA-Frameworks/GoogleCloud/model/") args = parser.parse_args() ## Definition des variables img_width = 150 img_height = 150 ## Data Generator data_dir_test = args.data_dir+'/test' N_test = len(os.listdir(data_dir_test+"/test")) test_datagen = kpi.ImageDataGenerator(rescale=1. / 255) test_generator = test_datagen.flow_from_directory( data_dir_test, target_size=(img_height, img_width), batch_size=args.batch_size, class_mode=None, shuffle=False) ## Telechargement du modele args_str = "_".join([k + ":" + str(v) for k, v in sorted(vars(args).items(), key=lambda x : x[0])]) id_str = hashlib.md5(args_str.encode("utf8")).hexdigest() model_conv = km.load_model(args.model_dir + "/" + id_str + ".h5") ## Prediction test_prediction = model_conv.predict_generator(test_generator, N_test // args.batch_size, verbose=1) ## Save prediction in csv images_test = test_generator.filenames classes = [int(t>0.5) for t in test_prediction] array = np.vstack((images_test, test_prediction[:,0], classes)).T df =
pd.DataFrame(array, columns=["filename","probabilities","classes"])
pandas.DataFrame
''' This program will calculate a timeseries of active users across the lifetime of a project (or a workflow id/version for a project). The inputs needed are: the classification export file (request & download from the Project Builder) [optional] the workflow id [optional] the workflow version (only the major (int) version needed) [optional] the output filename. [optional] a flag to let the program know to just make plots, don't re-calculate The program takes snapshots of the classification timeline in units of hours, and over that hour it simply computes the number of classifications submitted and the number of classifiers (registered and unregistered) who submitted the classifications. It outputs these timeseries to a CSV file. <NAME>, 30th March 2017 ''' import sys, os # put this way up here so if there are no inputs we exit quickly before even trying to load everything else try: classfile_in = sys.argv[1] except: print("\nUsage: %s classifications_infile" % sys.argv[0]) print(" classifications_infile is a Zooniverse (Panoptes) classifications data export CSV.") print(" Optional extra inputs (no spaces):") print(" workflow_id=N") print(" specify the program should only consider classifications from workflow id N") print(" workflow_version=M") print(" specify the program should only consider classifications from workflow version M") print(" (note the program will only consider the major version, i.e. the integer part)") print(" outfile=filename.csv") print(" specify the name of the output file. If not specified, it will") print(" be based on the input filename, e.g. if your input file is") print(" my-project-classifications.csv, the output file name will be") print(" my-project-classifications_active_users_timeseries.csv.") print(" --plots_only") print(" if specified, the program won't re-calculate the time series") print(" and will instead just read in the outfile and re-make plots.") sys.exit(0) import numpy as np import pandas as pd import datetime import dateutil.parser import matplotlib.pyplot as plt import matplotlib.dates as mdates import matplotlib.gridspec as gridspec import json import gc plt.rc('figure', facecolor='none', edgecolor='none', autolayout=True) plt.rc('path', simplify=True) plt.rc('text', usetex=True) plt.rc('font', family='serif') plt.rc('axes', labelsize='large', facecolor='none', linewidth=0.7, color_cycle = ['k', 'r', 'g', 'b', 'c', 'm', 'y']) plt.rc('xtick', labelsize='medium') plt.rc('ytick', labelsize='medium') plt.rc('lines', markersize=4, linewidth=1, markeredgewidth=0.2) plt.rc('legend', numpoints=1, frameon=False, handletextpad=0.3, scatterpoints=1, handlelength=2, handleheight=0.1) plt.rc('savefig', facecolor='none', edgecolor='none', frameon='False') params = {'font.size' : 11, 'xtick.major.size': 8, 'ytick.major.size': 8, 'xtick.minor.size': 3, 'ytick.minor.size': 3, } plt.rcParams.update(params) # default value is not to care about workflow ID or version workflow_id = -1 workflow_version = -1 # default mode is to calculate the timeseries afresh plot_only = False outfile = classfile_in.replace(".csv", "_active_users_timeseries.csv") # if the input filename doesn't have ".csv" in it you might end up overwriting # the input file with the output file and that would be bad; don't do that. if outfile == classfile_in: outfile += "_active_users_timeseries.csv" # Print out the input parameters just as a sanity check print("File to be read: %s" % classfile_in) print(len(sys.argv)) # check for other command-line arguments if len(sys.argv) > 2: # if there are additional arguments, loop through them for i_arg, argstr in enumerate(sys.argv[2:]): arg = argstr.split('=') if arg[0] == "workflow_id": workflow_id = int(arg[1]) print("Restricting classifications to workflow id: %d" % workflow_id) elif arg[0] == "workflow_version": workflow_version = float(arg[1]) print("Restricting classifications to workflow version: %d" % int(workflow_version)) elif arg[0] == "outfile": outfile = arg[1] elif arg[0] == "--plots_only": plot_only = True print("File to be written: %s" % outfile) if not plot_only: print("Reading classifications...") #classifications = pd.read_csv(classfile_in) # the above will work but uses a LOT of memory for projects with > 1 million # classifications. Nothing here uses the actual classification data so don't read it cols_keep = ["user_name", "user_id", "user_ip", "workflow_id", "workflow_version", "created_at"] classifications = pd.read_csv(classfile_in, usecols=cols_keep) # now restrict classifications to a particular workflow id/version if requested if (workflow_id > 0) | (workflow_version > 0): # only keep the stuff that matches these workflow properties if (workflow_id > 0): #print("Considering only workflow id %d" % workflow_id) in_workflow = classifications.workflow_id == workflow_id else: # the workflow id wasn't specified, so just make an array of true in_workflow = np.array([True for q in classifications.workflow_id]) if (workflow_version > 0): classifications['version_int'] = [int(q) for q in classifications.workflow_version] #print("Considering only major workflow version %d" % int(workflow_version)) # we only care about the major workflow version, not the minor version in_version = classifications.version_int == int(workflow_version) else: in_version = np.array([True for q in classifications.workflow_version]) if (sum(in_workflow & in_version) == 0): print("ERROR: your combination of workflow_id and workflow_version does not exist!\nIgnoring workflow id/version request and computing stats for ALL classifications instead.") #classifications = classifications_all else: # select the subset of classifications classifications = classifications[in_workflow & in_version] else: # just use everything #classifications = classifications_all workflow_ids = classifications.workflow_id.unique() # this takes too much CPU time just for a print statement. Just use float versions #classifications['version_int'] = [int(q) for q in classifications.workflow_version] version_ints = classifications.workflow_version.unique() print("Considering all classifications in workflow ids:") print(workflow_ids) print(" and workflow_versions:") print(version_ints) print("Creating timeseries...")#,datetime.datetime.now().strftime('%H:%M:%S.%f') ca_temp = classifications['created_at'].copy() # Do these separately so you can track errors to a specific line # Try the format-specified ones first (because it's faster, if it works) try: classifications['created_at_ts'] = pd.to_datetime(ca_temp, format='%Y-%m-%d %H:%M:%S %Z') except Exception as the_error: #print "Oops:\n", the_error try: classifications['created_at_ts'] = pd.to_datetime(ca_temp, format='%Y-%m-%d %H:%M:%S') except Exception as the_error: #print "Oops:\n", the_error classifications['created_at_ts'] = pd.to_datetime(ca_temp) # no except for this because if it fails the program really should exit anyway # index this into a timeseries # this means the index might no longer be unique, but it has many advantages classifications.set_index('created_at_ts', inplace=True, drop=False) # get the first and last classification timestamps first_class = min(classifications.created_at_ts) last_class = max(classifications.created_at_ts) hour_start_str = first_class.strftime('%Y-%m-%d %H:00:00') hour_end_str = last_class.strftime('%Y-%m-%d %H:00:00') hour_start = pd.to_datetime(hour_start_str, format='%Y-%m-%d %H:%M:%S') hour_end = pd.to_datetime(hour_end_str, format='%Y-%m-%d %H:%M:%S') + np.timedelta64(1, 'h') # writing to a file as we go turns out to be faster fout = open(outfile, "w") fout.write("time_start,time_end,n_class_total,n_class_registered,n_class_unregistered,n_users_total,n_users_registered,n_users_unregistered\n") the_time = hour_start # testing purposes #the_time = pd.to_datetime("2017-04-04 00:00:00", format='%Y-%m-%d %H:%M:%S') dt = np.timedelta64(1, 'h') while the_time < hour_end: # pick just the classifications in this time period the_time_hi = the_time + dt subclass = classifications[(classifications.created_at_ts >= the_time) & (classifications.created_at_ts < the_time_hi)] # just the usernames subusers = subclass.user_name.unique() # total classification count n_class = len(subclass) if n_class > 0: # total user count n_users = len(subusers) # identify registered and unregistered users is_unregistered_user = np.array([q.startswith("not-logged-in") for q in subusers]) is_registered_user = np.invert(is_unregistered_user) n_users_unreg = sum(is_unregistered_user) n_users_reg = n_users - n_users_unreg # count classifications by registered and unregistered users is_unregistered_class = np.array([q.startswith("not-logged-in") for q in subclass.user_name]) is_registered_class = np.invert(is_unregistered_class) n_class_unreg = sum(is_unregistered_class) n_class_reg = n_class - n_class_unreg fout.write("%s,%s,%d,%d,%d,%d,%d,%d\n" % (the_time.strftime('%Y-%m-%d %H:%M:%S'), the_time_hi.strftime('%Y-%m-%d %H:%M:%S'), n_class, n_class_reg, n_class_unreg, n_users, n_users_reg, n_users_unreg)) else: # there weren't any classifications in this time period # so everything is zero fout.write("%s,%s,0,0,0,0,0,0\n" % (the_time.strftime('%Y-%m-%d %H:%M:%S'), the_time_hi.strftime('%Y-%m-%d %H:%M:%S'))) the_time += dt # end of while loop fout.close() # end "if not plot_only" # now read in the csv and make a plot or two the_ts = pd.read_csv(outfile) t_temp = the_ts['time_end'].copy() the_ts['hour_end'] =
pd.to_datetime(t_temp, format='%Y-%m-%d %H:%M:%S')
pandas.to_datetime
# ---------------------------------------------------------------------------- # Copyright (c) 2013--, scikit-bio development team. # # Distributed under the terms of the Modified BSD License. # # The full license is in the file COPYING.txt, distributed with this software. # ---------------------------------------------------------------------------- import collections import copy import unittest import functools import itertools import types import numpy as np import numpy.testing as npt import pandas as pd import scipy.stats from skbio import Sequence, DNA, RNA, Protein, TabularMSA from skbio.sequence import GrammaredSequence from skbio.util import classproperty from skbio.util._decorator import overrides from skbio.util._testing import ReallyEqualMixin from skbio.metadata._testing import (MetadataMixinTests, PositionalMetadataMixinTests) from skbio.util import assert_data_frame_almost_equal from skbio.util._testing import assert_index_equal class TabularMSASubclass(TabularMSA): """Used for testing purposes.""" pass class TestTabularMSAMetadata(unittest.TestCase, ReallyEqualMixin, MetadataMixinTests): def setUp(self): self._metadata_constructor_ = functools.partial(TabularMSA, []) class TestTabularMSAPositionalMetadata(unittest.TestCase, ReallyEqualMixin, PositionalMetadataMixinTests): def setUp(self): def factory(axis_len, positional_metadata=None): return TabularMSA([DNA('A' * axis_len)], positional_metadata=positional_metadata) self._positional_metadata_constructor_ = factory class TestTabularMSA(unittest.TestCase, ReallyEqualMixin): def test_from_dict_empty(self): self.assertEqual(TabularMSA.from_dict({}), TabularMSA([], index=[])) def test_from_dict_single_sequence(self): self.assertEqual(TabularMSA.from_dict({'foo': DNA('ACGT')}), TabularMSA([DNA('ACGT')], index=['foo'])) def test_from_dict_multiple_sequences(self): msa = TabularMSA.from_dict( {1: DNA('ACG'), 2: DNA('GGG'), 3: DNA('TAG')}) # Sort because order is arbitrary. msa.sort() self.assertEqual( msa, TabularMSA([DNA('ACG'), DNA('GGG'), DNA('TAG')], index=[1, 2, 3])) def test_from_dict_invalid_input(self): # Basic test to make sure error-checking in the TabularMSA constructor # is being invoked. with self.assertRaisesRegex( ValueError, 'must match the number of positions'): TabularMSA.from_dict({'a': DNA('ACG'), 'b': DNA('ACGT')}) def test_constructor_invalid_dtype(self): with self.assertRaisesRegex(TypeError, 'GrammaredSequence.*Sequence'): TabularMSA([Sequence('')]) with self.assertRaisesRegex(TypeError, 'GrammaredSequence.*int'): TabularMSA([42, DNA('')]) def test_constructor_not_monomorphic(self): with self.assertRaisesRegex(TypeError, 'matching type.*RNA.*DNA'): TabularMSA([DNA(''), RNA('')]) with self.assertRaisesRegex(TypeError, 'matching type.*float.*Protein'): TabularMSA([Protein(''), Protein(''), 42.0, Protein('')]) def test_constructor_unequal_length(self): with self.assertRaisesRegex( ValueError, 'must match the number of positions.*1 != 0'): TabularMSA([Protein(''), Protein('P')]) with self.assertRaisesRegex( ValueError, 'must match the number of positions.*1 != 3'): TabularMSA([Protein('PAW'), Protein('ABC'), Protein('A')]) def test_constructor_non_iterable(self): with self.assertRaises(TypeError): TabularMSA(42) def test_constructor_minter_and_index_both_provided(self): with self.assertRaisesRegex(ValueError, 'both.*minter.*index'): TabularMSA([DNA('ACGT'), DNA('TGCA')], minter=str, index=['a', 'b']) def test_constructor_invalid_minter_callable(self): with self.assertRaises(TypeError): TabularMSA([DNA('ACGT'), DNA('TGCA')], minter=float) def test_constructor_missing_minter_metadata_key(self): with self.assertRaises(KeyError): TabularMSA([DNA('ACGT', metadata={'foo': 'bar'}), DNA('TGCA')], minter='foo') def test_constructor_unhashable_minter_metadata_key(self): with self.assertRaises(TypeError): TabularMSA([DNA('ACGT'), DNA('TGCA')], minter=[]) def test_constructor_index_length_mismatch_iterable(self): with self.assertRaisesRegex(ValueError, 'sequences.*2.*index length.*0'): TabularMSA([DNA('ACGT'), DNA('TGCA')], index=iter([])) def test_constructor_index_length_mismatch_index_object(self): with self.assertRaisesRegex(ValueError, 'sequences.*2.*index length.*0'): TabularMSA([DNA('ACGT'), DNA('TGCA')], index=
pd.Index([])
pandas.Index
#!/usr/bin/env python # coding: utf-8 # In[ ]: # This Python 3 environment comes with many helpful analytics libraries installed # It is defined by the kaggle/python docker image: https://github.com/kaggle/docker-python # For example, here's several helpful packages to load in import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the "../../../input/shrutimechlearn_churn-modelling/" directory. # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("../../../input/shrutimechlearn_churn-modelling"): for filename in filenames: print(os.path.join(dirname, filename)) # Any results you write to the current directory are saved as output. # In[ ]: # # importing basic Libararies # In[ ]: import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns # # Loading the Dataset # In[ ]: df =pd.read_csv("../../../input/shrutimechlearn_churn-modelling/Churn_Modelling.csv") df.shape # In[ ]: df.sample(5) # # Handling Missing value # In[ ]: df.isna().sum() # # Handling CAtegorical Variables # In[ ]: df.select_dtypes(include='object').columns # In[ ]: for i in ['Geography' ,'Gender']: print(df[i].value_counts()) # In[ ]: # encoding for [''Geography' ,]Gneder'] geography = pd.get_dummies(df['Geography'], drop_first=True) gender =
pd.get_dummies(df['Gender'], drop_first=True)
pandas.get_dummies
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri Jan 26 15:39:02 2018 @author: joyce """ import pandas as pd import numpy as np from numpy.matlib import repmat from stats import get_stockdata_from_sql,get_tradedate,Corr,Delta,Rank,Cross_max,\ Cross_min,Delay,Sum,Mean,STD,TsRank,TsMax,TsMin,DecayLinear,Count,SMA,Cov,DTM,DBM,\ Highday,Lowday,HD,LD,RegBeta,RegResi,SUMIF,get_indexdata_from_sql,timer,get_fama class stAlpha(object): def __init__(self,begin,end): self.begin = begin self.end = end self.close = get_stockdata_from_sql(1,self.begin,self.end,'Close') self.open = get_stockdata_from_sql(1,self.begin,self.end,'Open') self.high = get_stockdata_from_sql(1,self.begin,self.end,'High') self.low = get_stockdata_from_sql(1,self.begin,self.end,'Low') self.volume = get_stockdata_from_sql(1,self.begin,self.end,'Vol') self.amt = get_stockdata_from_sql(1,self.begin,self.end,'Amount') self.vwap = get_stockdata_from_sql(1,self.begin,self.end,'Vwap') self.ret = get_stockdata_from_sql(1,begin,end,'Pctchg') self.close_index = get_indexdata_from_sql(1,begin,end,'close','000001.SH') self.open_index = get_indexdata_from_sql(1,begin,end,'open','000001.SH') # self.mkt = get_fama_from_sql() @timer def alpha1(self): volume = self.volume ln_volume = np.log(volume) ln_volume_delta = Delta(ln_volume,1) close = self.close Open = self.open price_temp = pd.concat([close,Open],axis = 1,join = 'outer') price_temp['ret'] = (price_temp['Close'] - price_temp['Open'])/price_temp['Open'] del price_temp['Close'],price_temp['Open'] r_ln_volume_delta = Rank(ln_volume_delta) r_ret = Rank(price_temp) rank = pd.concat([r_ln_volume_delta,r_ret],axis = 1,join = 'inner') rank.columns = ['r1','r2'] corr = Corr(rank,6) alpha = corr alpha.columns = ['alpha1'] return alpha @timer def alpha2(self): close = self.close low = self.low high = self.high temp = pd.concat([close,low,high],axis = 1,join = 'outer') temp['alpha'] = (2 * temp['Close'] - temp['Low'] - temp['High']) \ / (temp['High'] - temp['Low']) del temp['Close'],temp['Low'],temp['High'] alpha = -1 * Delta(temp,1) alpha.columns = ['alpha2'] return alpha @timer def alpha3(self): close = self.close low = self.low high = self.high temp = pd.concat([close,low,high],axis = 1,join = 'outer') close_delay = Delay(pd.DataFrame(temp['Close']),1) close_delay.columns = ['close_delay'] temp = pd.concat([temp,close_delay],axis = 1,join = 'inner') temp['min'] = Cross_max(pd.DataFrame(temp['close_delay']),pd.DataFrame(temp['Low'])) temp['max'] = Cross_min(pd.DataFrame(temp['close_delay']),pd.DataFrame(temp['High'])) temp['alpha_temp'] = 0 temp['alpha_temp'][temp['Close'] > temp['close_delay']] = temp['Close'] - temp['min'] temp['alpha_temp'][temp['Close'] < temp['close_delay']] = temp['Close'] - temp['max'] alpha = Sum(pd.DataFrame(temp['alpha_temp']),6) alpha.columns = ['alpha3'] return alpha @timer def alpha4(self): close = self.close volume = self.volume close_mean_2 = Mean(close,2) close_mean_8 = Mean(close,8) close_std = STD(close,8) volume_mean_20 = Mean(volume,20) data = pd.concat([close_mean_2,close_mean_8,close_std,volume_mean_20,volume],axis = 1,join = 'inner') data.columns = ['close_mean_2','close_mean_8','close_std','volume_mean_20','volume'] data['alpha'] = -1 data['alpha'][data['close_mean_2'] < data['close_mean_8'] - data['close_std']] = 1 data['alpha'][data['volume']/data['volume_mean_20'] >= 1] = 1 alpha = pd.DataFrame(data['alpha']) alpha.columns = ['alpha4'] return alpha @timer def alpha5(self): volume = self.volume high = self.high r1 = TsRank(volume,5) r2 = TsRank(high,5) rank = pd.concat([r1,r2],axis = 1,join = 'inner') rank.columns = ['r1','r2'] corr = Corr(rank,5) alpha = -1 * TsMax(corr,5) alpha.columns = ['alpha5'] return alpha @timer def alpha6(self): Open = self.open high = self.high df = pd.concat([Open,high],axis = 1,join = 'inner') df['price'] = df['Open'] * 0.85 + df['High'] * 0.15 df_delta = Delta(pd.DataFrame(df['price']),1) alpha = Rank(np.sign(df_delta)) alpha.columns = ['alpha6'] return alpha @timer def alpha7(self): close = self.close vwap = self.vwap volume = self.volume volume_delta = Delta(volume,3) data = pd.concat([close,vwap],axis = 1,join = 'inner') data['diff'] = data['Vwap'] - data['Close'] r1 = Rank(TsMax(pd.DataFrame(data['diff']),3)) r2 = Rank(TsMin(pd.DataFrame(data['diff']),3)) r3 = Rank(volume_delta) rank = pd.concat([r1,r2,r3],axis = 1,join = 'inner') rank.columns = ['r1','r2','r3'] alpha = (rank['r1'] + rank['r2'])* rank['r3'] alpha = pd.DataFrame(alpha) alpha.columns = ['alpha7'] return alpha @timer def alpha8(self): high = self.high low = self.low vwap = self.vwap data = pd.concat([high,low,vwap],axis = 1,join = 'inner') data_price = (data['High'] + data['Low'])/2 * 0.2 + data['Vwap'] * 0.2 data_price_delta = Delta(pd.DataFrame(data_price),4) * -1 alpha = Rank(data_price_delta) alpha.columns = ['alpha8'] return alpha @timer def alpha9(self): high = self.high low = self.low volume = self.volume data = pd.concat([high,low,volume],axis = 1,join = 'inner') data['price']= (data['High'] + data['Low'])/2 data['price_delay'] = Delay(pd.DataFrame(data['price']),1) alpha_temp = (data['price'] - data['price_delay']) * (data['High'] - data['Low'])/data['Vol'] alpha_temp_unstack = alpha_temp.unstack(level = 'ID') alpha = alpha_temp_unstack.ewm(span = 7, ignore_na = True, min_periods = 7).mean() alpha_final = alpha.stack() alpha = pd.DataFrame(alpha_final) alpha.columns = ['alpha9'] return alpha @timer def alpha10(self): ret = self.ret close = self.close ret_std = STD(pd.DataFrame(ret),20) ret_std.columns = ['ret_std'] data = pd.concat([ret,close,ret_std],axis = 1, join = 'inner') temp1 = pd.DataFrame(data['ret_std'][data['Pctchg'] < 0]) temp2 = pd.DataFrame(data['Close'][data['Pctchg'] >= 0]) temp1.columns = ['temp'] temp2.columns = ['temp'] temp = pd.concat([temp1,temp2],axis = 0,join = 'outer') temp_order = pd.concat([data,temp],axis = 1) temp_square = pd.DataFrame(np.power(temp_order['temp'],2)) alpha_temp = TsMax(temp_square,5) alpha = Rank(alpha_temp) alpha.columns = ['alpha10'] return alpha @timer def alpha11(self): high = self.high low = self.low close = self.close volume = self.volume data = pd.concat([high,low,close,volume],axis = 1,join = 'inner') data_temp = (data['Close'] - data['Low']) -(data['High'] - data['Close'])\ /(data['High'] - data['Low']) * data['Vol'] alpha = Sum(pd.DataFrame(data_temp),6) alpha.columns = ['alpha11'] return alpha @timer def alpha12(self): Open = self.open vwap = self.vwap close = self.close data = pd.concat([Open,vwap,close],axis = 1, join = 'inner') data['p1'] = data['Open'] - Mean(data['Open'],10) data['p2'] = data['Close'] - data['Vwap'] r1 = Rank(pd.DataFrame(data['p1'])) r2 = Rank(pd.DataFrame(np.abs(data['p2']))) rank = pd.concat([r1,r2],axis = 1,join = 'inner') rank.columns = ['r1','r2'] alpha = rank['r1'] - rank['r2'] alpha = pd.DataFrame(alpha) alpha.columns = ['alpha12'] return alpha @timer def alpha13(self): high = self.high low = self.low vwap = self.vwap data = pd.concat([high,low,vwap],axis = 1,join = 'inner') alpha = (data['High'] + data['Low'])/2 - data['Vwap'] alpha = pd.DataFrame(alpha) alpha.columns = ['alpha13'] return alpha @timer def alpha14(self): close = self.close close_delay = Delay(close,5) close_delay.columns = ['close_delay'] data = pd.concat([close,close_delay],axis = 1, join = 'inner') alpha = data['Close'] - data['close_delay'] alpha = pd.DataFrame(alpha) alpha.columns = ['alpha14'] return alpha @timer def alpha15(self): Open = self.open close = self.close close_delay = Delay(close,1) close_delay.columns = ['close_delay'] data = pd.concat([Open,close_delay],axis = 1,join = 'inner') alpha = data['Open']/data['close_delay'] - 1 alpha = pd.DataFrame(alpha) alpha.columns = ['alpha15'] return alpha @timer def alpha16(self): vwap = self.vwap volume = self.volume data = pd.concat([vwap,volume],axis = 1, join = 'inner') r1 = Rank(pd.DataFrame(data['Vol'])) r2 = Rank(pd.DataFrame(data['Vwap'])) rank = pd.concat([r1,r2],axis = 1, join = 'inner') rank.columns = ['r1','r2'] corr = Corr(rank,5) alpha = -1 * TsMax(Rank(corr),5) alpha.columns = ['alpha16'] return alpha @timer def alpha17(self): vwap = self.vwap close = self.close data = pd.concat([vwap,close],axis = 1, join = 'inner') data['vwap_max15'] = TsMax(data['Vwap'],15) data['close_delta5'] = Delta(data['Close'],5) temp = np.power(data['vwap_max15'],data['close_delta5']) alpha = Rank(pd.DataFrame(temp)) alpha.columns = ['alpha17'] return alpha @timer def alpha18(self): """ this one is similar with alpha14 """ close = self.close close_delay = Delay(close,5) close_delay.columns = ['close_delay'] data = pd.concat([close,close_delay],axis = 1, join = 'inner') alpha = data['Close']/data['close_delay'] alpha = pd.DataFrame(alpha) alpha.columns = ['alpha18'] return alpha @timer def alpha19(self): close = self.close close_delay = Delay(close,5) close_delay.columns = ['close_delay'] data = pd.concat([close,close_delay],axis = 1, join = 'inner') data['temp1'] = (data['Close'] - data['close_delay'])/data['close_delay'] data['temp2'] = (data['Close'] - data['close_delay'])/data['Close'] temp1 = pd.DataFrame(data['temp1'][data['Close'] < data['close_delay']]) temp2 = pd.DataFrame(data['temp2'][data['Close'] >= data['close_delay']]) temp1.columns = ['temp'] temp2.columns = ['temp'] temp = pd.concat([temp1,temp2],axis = 0) data = pd.concat([data,temp],axis = 1,join = 'outer') alpha = pd.DataFrame(data['temp']) alpha.columns = ['alpha19'] return alpha @timer def alpha20(self): close = self.close close_delay = Delay(close,6) close_delay.columns = ['close_delay'] data = pd.concat([close,close_delay],axis = 1, join = 'inner') alpha = (data['Close'] - data['close_delay'])/data['close_delay'] alpha = pd.DataFrame(alpha) alpha.columns = ['alpha20'] return alpha @timer def alpha21(self): close = self.close close_mean = Mean(close,6) alpha = RegBeta(0,close_mean,None,6) alpha.columns = ['alpha21'] return alpha @timer def alpha22(self): close = self.close close_mean = Mean(close,6) data = pd.concat([close,close_mean],axis = 1,join = 'inner') data.columns = ['close','close_mean'] temp = pd.DataFrame((data['close'] - data['close_mean'])/data['close_mean']) temp_delay = Delay(temp,3) data_temp = pd.concat([temp,temp_delay],axis = 1,join = 'inner') data_temp.columns = ['temp','temp_delay'] temp2 = pd.DataFrame(data_temp['temp'] - data_temp['temp_delay']) alpha = SMA(temp2,12,1) alpha.columns = ['alpha22'] return alpha @timer def alpha23(self): close = self.close close_std = STD(close,20) close_delay = Delay(close,1) data = pd.concat([close,close_std,close_delay],axis = 1, join = 'inner') data.columns = ['Close','close_std','close_delay'] data['temp'] = data['close_std'] data['temp'][data['Close'] <= data['close_delay']] = 0 temp = pd.DataFrame(data['temp']) sma1 = SMA(temp,20,1) sma2 = SMA(pd.DataFrame(data['close_std']),20,1) sma = pd.concat([sma1,sma2],axis = 1, join = 'inner') sma.columns = ['sma1','sma2'] alpha = pd.DataFrame(sma['sma1']/sma['sma2']) alpha.columns = ['alpha23'] return alpha @timer def alpha24(self): close = self.close close_delay = Delay(close,5) close_delay.columns = ['close_delay'] data = pd.concat([close,close_delay],axis=1 ,join = 'inner' ) temp = data['Close'] - data['close_delay'] temp = pd.DataFrame(temp) alpha = SMA(temp,5,1) alpha.columns = ['alpha24'] return alpha @timer def alpha25(self): close = self.close close_delta = Delta(close,7) ret = self.ret r1 = Rank(close_delta) r3 = Rank(Sum(ret,250)) volume = self.volume volume_mean = Mean(pd.DataFrame(volume['Vol']),20) volume_mean.columns = ['volume_mean'] data = pd.concat([volume,volume_mean],axis = 1,join = 'inner') temp0 = pd.DataFrame(data['Vol']/data['volume_mean']) temp = DecayLinear(temp0,9) r2 = Rank(temp) rank = pd.concat([r1,r2,r3],axis = 1, join = 'inner') rank.columns = ['r1','r2','r3'] alpha = pd.DataFrame(-1 * rank['r1'] * (1 - rank['r2']) * rank['r3']) alpha.columns = ['alpha25'] return alpha @timer def alpha26(self): close = self.close vwap = self.vwap close_mean7 = Mean(close,7) close_mean7.columns = ['close_mean7'] close_delay5 = Delay(close,5) close_delay5.columns = ['close_delay5'] data = pd.concat([vwap,close_delay5],axis = 1,join = 'inner') corr = Corr(data,230) corr.columns = ['corr'] data_temp = pd.concat([corr,close_mean7,close],axis = 1,join = 'inner') alpha = data_temp['close_mean7'] - data_temp['Close'] + data_temp['corr'] alpha = pd.DataFrame(alpha) alpha.columns = ['alpha26'] return alpha @timer def alpha27(self): """ uncompleted """ close = self.close close_delay3 = Delay(close,3) close_delay6 = Delay(close,6) data = pd.concat([close,close_delay3,close_delay6],axis = 1,join = 'inner') data.columns = ['close','close_delay3','close_delay6'] temp1 = pd.DataFrame((data['close'] - data['close_delay3'])/data['close_delay3'] * 100) temp2 = pd.DataFrame((data['close'] - data['close_delay6'])/data['close_delay6'] * 100) data_temp = pd.concat([temp1,temp2],axis = 1,join = 'inner') data_temp.columns = ['temp1','temp2'] temp = pd.DataFrame(data_temp['temp1'] + data_temp['temp2']) alpha = DecayLinear(temp,12) alpha.columns = ['alpha27'] return alpha @timer def alpha28(self): close = self.close low = self.low high = self.high low_min = TsMin(low,9) high_max = TsMax(high,9) data = pd.concat([close,low_min,high_max],axis = 1,join = 'inner') data.columns = ['Close','low_min','high_max'] temp1 = pd.DataFrame((data['Close'] - data['low_min']) /(data['high_max'] - data['low_min'])) sma1 = SMA(temp1,3,1) sma2 = SMA(sma1,3,1) sma = pd.concat([sma1,sma2],axis = 1, join = 'inner') sma.columns = ['sma1','sma2'] alpha = pd.DataFrame(sma['sma1'] * 2 - sma['sma2'] * 3) alpha.columns = ['alpha28'] return alpha @timer def alpha29(self): close = self.close volume = self.volume close_delay = Delay(close,6) close_delay.columns = ['close_delay'] data = pd.concat([close,close_delay,volume],axis = 1, join = 'inner') alpha = (data['Close'] - data['close_delay'])/data['close_delay'] * data['Vol'] alpha = pd.DataFrame(alpha) alpha.columns = ['alpha29'] return alpha @timer def alpha30(self): close = self.close close_delay = Delay(close,1) @timer def alpha31(self): close = self.close close_delay = Delay(close,12) close_delay.columns = ['close_delay'] data = pd.concat([close,close_delay],axis = 1, join = 'inner') alpha = (data['Close'] - data['close_delay'])/data['close_delay'] alpha = pd.DataFrame(alpha) alpha.columns = ['alpha31'] return alpha @timer def alpha32(self): volume = self.volume high = self.high r1 = Rank(volume) r2 = Rank(high) rank = pd.concat([r1,r2],axis = 1,join = 'inner') corr = Corr(rank,3) r = Rank(corr) alpha = -1 * Sum(r,3) alpha.columns = ['alpha32'] return alpha @timer def alpha33(self): low = self.low volume = self.volume ret = self.ret low_min = TsMin(low,5) low_min_delay = Delay(low_min,5) data1 = pd.concat([low_min,low_min_delay],axis = 1,join = 'inner') data1.columns = ['low_min','low_min_delay'] ret_sum240 = Sum(ret,240) ret_sum20 = Sum(ret,20) ret_temp = pd.concat([ret_sum240,ret_sum20],axis = 1, join = 'inner') ret_temp.columns = ['ret240','ret20'] temp1 = pd.DataFrame(data1['low_min_delay'] - data1['low_min']) temp2 = pd.DataFrame((ret_temp['ret240'] - ret_temp['ret20'])/220) r_temp2 = Rank(temp2) r_volume = TsRank(volume,5) temp = pd.concat([temp1,r_temp2,r_volume],axis = 1,join = 'inner') temp.columns = ['temp1','r_temp2','r_volume'] alpha = temp['temp1'] * temp['r_temp2'] * temp['r_volume'] alpha = pd.DataFrame(alpha) alpha.columns = ['alpha33'] return alpha @timer def alpha34(self): close = self.close close_mean = Mean(close,12) close_mean.columns = ['close_mean'] data = pd.concat([close,close_mean],axis = 1, join = 'inner') alpha = pd.DataFrame(data['close_mean']/data['Close']) alpha.columns = ['alpha34'] return alpha @timer def alpha35(self): volume = self.volume Open = self.open open_delay = Delay(Open,1) open_delay.columns = ['open_delay'] open_linear = DecayLinear(Open,17) open_linear.columns = ['open_linear'] open_delay_temp = DecayLinear(open_delay,15) r1 = Rank(open_delay_temp) data = pd.concat([Open,open_linear],axis = 1,join = 'inner') Open_temp = data['Open'] * 0.65 + 0.35 * data['open_linear'] rank = pd.concat([volume,Open_temp],axis = 1, join = 'inner') rank.columns = ['r1','r2'] corr = Corr(rank,7) r2 = Rank(-1 * corr) r = pd.concat([r1,r2],axis = 1,join = 'inner') r.columns = ['r1','r2'] alpha = Cross_min(pd.DataFrame(r['r1']),pd.DataFrame(r['r2'])) alpha = pd.DataFrame(alpha) alpha.columns = ['alpha35'] return alpha @timer def alpha36(self): volume = self.volume vwap = self.vwap r1 = Rank(volume) r2 = Rank(vwap) rank = pd.concat([r1,r2],axis = 1,join = 'inner') corr = Corr(rank,6) temp = Sum(corr,2) alpha = Rank(temp) alpha.columns = ['alpha36'] return alpha @timer def alpha37(self): Open = self.open ret = self.ret open_sum = Sum(Open,5) ret_sum = Sum(ret,5) data = pd.concat([open_sum,ret_sum],axis = 1,join = 'inner') data.columns = ['open_sum','ret_sum'] temp = data['open_sum'] * data['ret_sum'] temp_delay = Delay(temp,10) data_temp = pd.concat([temp,temp_delay],axis = 1,join = 'inner') data_temp.columns = ['temp','temp_delay'] alpha = -1 * Rank(pd.DataFrame(data_temp['temp'] - data_temp['temp_delay'])) alpha.columns = ['alpha37'] return alpha @timer def alpha38(self): high = self.high high_mean = Mean(high,20) high_delta = Delta(high,2) data = pd.concat([high,high_mean,high_delta],axis = 1,join = 'inner') data.columns = ['high','high_mean','high_delta'] data['alpha'] = -1 * data['high_delta'] data['alpha'][data['high_mean'] >= data['high']] = 0 alpha = pd.DataFrame(data['alpha']) alpha.columns = ['alpha38'] return alpha @timer def alpha39(self): close = self.close Open = self.open vwap = self.vwap volume = self.volume close_delta2 = Delta(close,2) close_delta2_decay = DecayLinear(close_delta2,8) r1 = Rank(close_delta2_decay) price_temp = pd.concat([vwap,Open],axis = 1,join = 'inner') price = pd.DataFrame(price_temp['Vwap'] * 0.3 + price_temp['Open'] * 0.7) volume_mean = Mean(volume,180) volume_mean_sum = Sum(volume_mean,37) rank = pd.concat([price,volume_mean_sum],axis = 1,join = 'inner') corr = Corr(rank,14) corr_decay = DecayLinear(corr,12) r2 = Rank(corr_decay) r = pd.concat([r1,r2],axis = 1,join = 'inner') r.columns = ['r1','r2'] alpha = pd.DataFrame(r['r2'] - r['r1']) alpha.columns = ['alpha39'] return alpha @timer def alpha40(self): close = self.close volume = self.volume close_delay = Delay(close,1) data = pd.concat([close,volume,close_delay],axis = 1, join = 'inner') data.columns = ['close','volume','close_delay'] data['temp1'] = data['volume'] data['temp2'] = data['volume'] data['temp1'][data['close'] <= data['close_delay']] = 0 data['temp2'][data['close'] > data['close_delay']] = 0 s1 = Sum(pd.DataFrame(data['temp1']),26) s2 = Sum(pd.DataFrame(data['temp2']),26) s = pd.concat([s1,s2], axis = 1, join = 'inner') s.columns = ['s1','s2'] alpha = pd.DataFrame(s['s1']/s['s2'] * 100) alpha.columns = ['alpha40'] return alpha @timer def alpha41(self): vwap = self.vwap vwap_delta = Delta(vwap,3) vwap_delta_max = TsMax(vwap_delta,5) alpha = -1 * Rank(vwap_delta_max) alpha.columns = ['alpha41'] return alpha @timer def alpha42(self): high = self.high volume = self.volume high_std = STD(high,10) r1 = Rank(high_std) data = pd.concat([high,volume],axis = 1,join = 'inner') corr = Corr(data,10) r = pd.concat([r1,corr],axis = 1,join = 'inner') r.columns = ['r1','corr'] alpha = pd.DataFrame(-1 * r['r1'] * r['corr']) alpha.columns = ['alpha42'] return alpha @timer def alpha43(self): close = self.close volume = self.volume close_delay = Delay(close,1) close_delay.columns = ['close_delay'] data = pd.concat([close,close_delay,volume],axis = 1,join = 'inner') data['sign'] = 1 data['sign'][data['Close'] < data['close_delay']] = -1 temp = pd.DataFrame(data['Vol'] * data['sign']) alpha = Sum(temp,6) alpha.columns = ['alpha43'] return alpha @timer def alpha44(self): volume = self.volume vwap = self.vwap low = self.low volume_mean = Mean(volume,10) rank = pd.concat([low,volume_mean],axis = 1,join = 'inner') corr = Corr(rank,7) corr_decay = DecayLinear(corr,6) r1 = TsRank(corr_decay,4) vwap_delta = Delta(vwap,3) vwap_delta_decay = DecayLinear(vwap_delta,10) r2 = TsRank(vwap_delta_decay,15) r = pd.concat([r1,r2],axis = 1,join = 'inner') r.columns = ['r1','r2'] alpha = pd.DataFrame(r['r1'] + r['r2']) alpha.columns = ['alpha44'] return alpha @timer def alpha45(self): volume = self.volume vwap = self.vwap close = self.close Open = self.open price = pd.concat([close,Open],axis = 1,join = 'inner') price['price'] = price['Close'] * 0.6 + price['Open'] * 0.4 price_delta = Delta(pd.DataFrame(price['price']),1) r1 = Rank(price_delta) volume_mean = Mean(volume,150) data = pd.concat([vwap,volume_mean],axis = 1,join = 'inner') corr = Corr(data,15) r2 = Rank(corr) r = pd.concat([r1,r2],axis = 1,join = 'inner') r.columns = ['r1','r2'] alpha = pd.DataFrame(r['r1'] + r['r2']) alpha.columns = ['alpha45'] return alpha @timer def alpha46(self): close = self.close close_mean3 = Mean(close,3) close_mean6 = Mean(close,6) close_mean12 = Mean(close,12) close_mean24 = Mean(close,24) data = pd.concat([close,close_mean3,close_mean6,close_mean12,close_mean24],axis = 1,join = 'inner') data.columns = ['c','c3','c6','c12','c24'] alpha = (data['c3'] + data['c6'] + data['c12'] + data['c24'])/(4 * data['c']) alpha = pd.DataFrame(alpha) alpha.columns = ['alpha46'] return alpha @timer def alpha47(self): close = self.close low = self.low high = self.high high_max = TsMax(high,6) low_min = TsMin(low,6) data = pd.concat([high_max,low_min,close],axis = 1,join = 'inner') data.columns = ['high_max','low_min','close'] temp = pd.DataFrame((data['high_max'] - data['close'])/(data['high_max'] - \ data['low_min']) * 100) alpha = SMA(temp,9,1) alpha.columns = ['alpha47'] return alpha @timer def alpha48(self): close = self.close volume = self.volume temp1 = Delta(close,1) temp1_delay1 = Delay(temp1,1) temp1_delay2 = Delay(temp1,2) data = pd.concat([temp1,temp1_delay1,temp1_delay2],axis = 1,join = 'inner') data.columns = ['temp1','temp1_delay1','temp1_delay2'] temp2 = pd.DataFrame(np.sign(data['temp1']) + np.sign(data['temp1_delay1']) \ + np.sign(data['temp1_delay2'])) volume_sum5 = Sum(volume,5) volume_sum20 = Sum(volume,20) data_temp = pd.concat([temp2,volume_sum5,volume_sum20],axis = 1,join = 'inner') data_temp.columns = ['temp2','volume_sum5','volume_sum20'] temp3 = pd.DataFrame(data_temp['temp2'] * data_temp['volume_sum5']/\ data_temp['volume_sum20']) alpha = -1 * Rank(temp3) alpha.columns = ['alpha48'] return alpha @timer def alpha49(self): low = self.low high = self.high data = pd.concat([low,high],axis = 1,join = 'inner') price_sum = pd.DataFrame(data['Low'] + data['High']) price_sum_delay = Delay(price_sum,1) price = pd.concat([price_sum,price_sum_delay],axis = 1,join = 'inner') price.columns = ['sum','sum_delay'] price['temp'] = 0 price['temp'][price['sum'] < price['sum_delay']] = 1 alpha = Sum(pd.DataFrame(price['temp']),12) alpha.columns = ['alpha49'] return alpha @timer def alpha50(self): low = self.low high = self.high data = pd.concat([low,high],axis = 1,join = 'inner') price_sum = pd.DataFrame(data['Low'] + data['High']) price_sum_delay = Delay(price_sum,1) price = pd.concat([price_sum,price_sum_delay],axis = 1,join = 'inner') price.columns = ['sum','sum_delay'] price['temp'] = 1 price['temp'][price['sum'] <= price['sum_delay']] = -1 alpha = Sum(pd.DataFrame(price['temp']),12) alpha.columns = ['alpha50'] return alpha @timer def alpha51(self): low = self.low high = self.high data = pd.concat([low,high],axis = 1,join = 'inner') price_sum = pd.DataFrame(data['Low'] + data['High']) price_sum_delay = Delay(price_sum,1) price = pd.concat([price_sum,price_sum_delay],axis = 1,join = 'inner') price.columns = ['sum','sum_delay'] price['temp'] = 1 price['temp'][price['sum'] <= price['sum_delay']] = 0 alpha = Sum(pd.DataFrame(price['temp']),12) alpha.columns = ['alpha51'] return alpha @timer def alpha52(self): low = self.low high = self.high close = self.close data = pd.concat([low,high,close],axis = 1,join = 'inner') data['sum_delay'] = Delay(pd.DataFrame((data['High'] + data['Low'] + data['Close'])/3),1) temp1 = pd.DataFrame(data['High'] - data['sum_delay']) temp1.columns = ['high_diff'] temp2 = pd.DataFrame(data['sum_delay'] - data['Low']) temp2.columns = ['low_diff'] temp1['max'] = temp1['high_diff'] temp1['max'][temp1['high_diff'] < 0 ] = 0 temp2['max'] = temp2['low_diff'] temp2['max'][temp2['low_diff'] < 0 ] = 0 temp1_sum = Sum(pd.DataFrame(temp1['max']),26) temp2_sum = Sum(pd.DataFrame(temp2['max']),26) alpha_temp = pd.concat([temp1_sum,temp2_sum],axis = 1,join = 'inner') alpha_temp.columns = ['s1','s2'] alpha = pd.DataFrame(alpha_temp['s1']/alpha_temp['s2'] * 100) alpha.columns = ['alpha52'] return alpha @timer def alpha53(self): close = self.close close_delay = Delay(close,1) count = Count(0,close,close_delay,12) alpha = count/12.0 * 100 alpha.columns = ['alpha53'] return alpha @timer def alpha54(self): Open = self.open close = self.close data = pd.concat([Open,close], axis = 1, join = 'inner') data.columns = ['close','open'] temp = pd.DataFrame(data['close'] - data['open']) temp_abs = pd.DataFrame(np.abs(temp)) df = pd.concat([temp,temp_abs], axis = 1, join= 'inner') df.columns = ['temp','abs'] std = STD(pd.DataFrame(df['temp'] + df['abs']),10) corr = Corr(data,10) data1 = pd.concat([corr,std],axis = 1, join = 'inner') data1.columns = ['corr','std'] alpha = Rank(pd.DataFrame(data1['corr'] + data1['std'])) * -1 alpha.columns = ['alpha54'] return alpha @timer def alpha55(self): Open = self.open close = self.close low = self.low high = self.high close_delay = Delay(close,1) open_delay = Delay(Open,1) low_delay = Delay(low,1) data = pd.concat([Open,close,low,high,close_delay,open_delay,low_delay], axis =1 ,join = 'inner') data.columns= ['open','close','low','high','close_delay','open_delay','low_delay'] temp1 = pd.DataFrame((data['close'] - data['close_delay'] + (data['close'] - data['open'])/2\ + data['close_delay'] - data['open_delay'])/ np.abs(data['high'] - data['close_delay'])) temp2 = pd.DataFrame(np.abs(data['high'] - data['close_delay']) + np.abs(data['low'] - data['close_delay'])/2 \ + np.abs(data['close_delay'] - data['open_delay'])/4) temp3 = pd.DataFrame(np.abs(data['low'] - data['close_delay']) + np.abs(data['high'] - data['close_delay'])/2 \ + np.abs(data['close_delay'] - data['open_delay'])/4) abs1 = pd.DataFrame(np.abs(data['high'] - data['close_delay'])) abs2 = pd.DataFrame(np.abs(data['low'] - data['close_delay'])) abs3 = pd.DataFrame(np.abs(data['high'] - data['low_delay'])) data1 = pd.concat([abs1,abs2,abs3], axis = 1, join = 'inner') data1.columns = ['abs1','abs2','abs3'] data_temp = pd.concat([abs1,abs2],axis = 1, join = 'inner') data_temp_max = pd.DataFrame(np.max(data_temp,axis = 1)) data_temp_max.columns = ['max'] data_temp1 = pd.concat([data,data_temp_max], axis = 1, join = 'inner') temp4 = pd.DataFrame((np.abs(data_temp1['high'] - data_temp1['low_delay']) + \ np.abs(data_temp1['close_delay'] - data_temp1['open_delay'])) *\ data_temp1['max']) data1['judge1'] = 0 data1['judge2'] = 0 data1['judge3'] = 0 data1['judge4'] = 0 data1['judge1'][data1['abs1'] > data1['abs2']] = 1 data1['judge2'][data1['abs1'] > data1['abs3']] = 1 data1['judge3'][data1['abs2'] > data1['abs3']] = 1 data1['judge3'][data1['abs3'] > data1['abs1']] = 1 judge_1 = pd.DataFrame(data1['judge1'] * data1['judge2']) judge_2 = pd.DataFrame(data1['judge3'] * data1['judge4']) data2 = pd.concat([temp1,temp2,temp3,temp4,judge_1,judge_2], axis = 1, join = 'inner') data2.columns = ['t1','t2','t3','t4','j1','j2'] data2['j3'] = 1 data2['j4'] = data2['j3'] - data2['j1'] - data2['j2'] data2['t5'] = data2['t2'] * data2['j1'] + data2['t3'] * data2['j2'] + \ data2['t4'] * data2['j4'] tep = pd.DataFrame(16 * data2['t5']/data2['t1']) alpha = Sum(tep,20) alpha.columns = ['alpha55'] return alpha @timer def alpha56(self): low = self.low high = self.high volume = self.volume Open = self.open open_min = TsMin(Open,12) data1 = pd.concat([Open,open_min], axis = 1, join = 'inner') data1.columns = ['open','open_min'] r1 = Rank(pd.DataFrame(data1['open'] - data1['open_min'])) volume_mean = Mean(volume,40) volume_mean_sum= Sum(volume_mean,19) data2 = pd.concat([high,low],axis = 1, join = 'inner') temp = pd.DataFrame((data2['High'] + data2['Low'])/2) rank = pd.concat([temp,volume_mean_sum],axis = 1 , join = 'inner') rank.columns = ['temp','volume_mean_sum'] corr = Corr(rank,13) r2 = Rank(corr) r = pd.concat([r1,r2],axis = 1, join = 'inner') r.columns = ['r1','r2'] r['alpha'] = 0 r['alpha'][r['r1'] >= r['r2']] = 1 alpha = pd.DataFrame(r['alpha']) alpha.columns = ['alpha56'] return alpha @timer def alpha57(self): low = self.low high = self.high close = self.close low_min = TsMin(low,9) high_max = TsMax(high,9) data = pd.concat([close,low_min,high_max],axis = 1,join = 'inner') data.columns = ['close','low_min','high_max'] temp = pd.DataFrame((data['close'] - data['low_min'])/(data['high_max'] \ - data['low_min']) * 100) alpha = SMA(temp,3,1) alpha.columns = ['alpha57'] return alpha @timer def alpha58(self): close = self.close close_delay = Delay(close,1) count = Count(0,close,close_delay,20) alpha = count/20.0 * 100 alpha.columns = ['alpha58'] return alpha @timer def alpha59(self): low = self.low high = self.high close = self.close close_delay = Delay(close,1) max_temp = pd.concat([high,close_delay],axis = 1,join = 'inner') min_temp = pd.concat([low,close_delay],axis = 1,join = 'inner') max_temp1 = pd.DataFrame(np.max(max_temp,axis = 1)) min_temp1 = pd.DataFrame(np.min(min_temp,axis = 1)) data = pd.concat([close,close_delay,max_temp1,min_temp1],axis = 1,join = 'inner') data.columns = ['close','close_delay','max','min'] data['max'][data['close'] > data['close_delay']] = 0 data['min'][data['close'] <= data['close_delay']] = 0 alpha = pd.DataFrame(data['max'] + data['min']) alpha.columns = ['alpha59'] return alpha @timer def alpha60(self): low = self.low high = self.high close = self.close volume = self.volume data = pd.concat([low,high,close,volume],axis = 1,join = 'inner') temp = pd.DataFrame((2 * data['Close'] - data['Low'] - data['High'])/(data['Low'] + \ data['High']) * data['Vol']) alpha = Sum(temp,20) alpha.columns = ['alpha60'] return alpha @timer def alpha61(self): low = self.low volume = self.volume vwap = self.vwap vwap_delta = Delta(vwap,1) vwap_delta_decay = DecayLinear(vwap_delta,12) r1 = Rank(vwap_delta_decay) volume_mean = Mean(volume,80) data = pd.concat([low,volume_mean],axis = 1,join = 'inner') corr = Corr(data,8) corr_decay = DecayLinear(corr,17) r2 = Rank(corr_decay) r = pd.concat([r1,r2],axis = 1,join = 'inner') alpha = pd.DataFrame(np.max(r,axis = 1) * -1) alpha.columns = ['alpha61'] return alpha @timer def alpha62(self): high = self.high volume = self.volume volume_r = Rank(volume) data = pd.concat([high,volume_r],axis = 1,join = 'inner') alpha = -1 * Corr(data,5) alpha.columns = ['alpha62'] return alpha @timer def alpha63(self): close = self.close close_delay = Delay(close,1) data = pd.concat([close,close_delay],axis = 1,join = 'inner') data.columns = ['close','close_delay'] data['max'] = data['close'] - data['close_delay'] data['max'][data['max'] < 0] = 0 data['abs'] = np.abs(data['close'] - data['close_delay']) sma1 = SMA(pd.DataFrame(data['max']),6,1) sma2 = SMA(pd.DataFrame(data['abs']),6,1) sma = pd.concat([sma1,sma2],axis = 1,join = 'inner') sma.columns = ['sma1','sma2'] alpha = pd.DataFrame(sma['sma1']/sma['sma2'] * 100) alpha.columns = ['alpha63'] return alpha @timer def alpha64(self): vwap = self.vwap volume = self.volume close = self.close vwap_r = Rank(vwap) volume_r = Rank(volume) data1 = pd.concat([vwap_r,volume_r],axis = 1,join = 'inner') corr1 = Corr(data1,4) corr1_decay = DecayLinear(corr1,4) r1 = Rank(corr1_decay) close_mean = Mean(close,60) close_r = Rank(close) close_mean_r = Rank(close_mean) data2 = pd.concat([close_r,close_mean_r],axis = 1,join = 'inner') corr2 = Corr(data2,4) corr2_max = TsMax(corr2,13) corr2_max_decay = DecayLinear(corr2_max,14) r2 = Rank(corr2_max_decay) r = pd.concat([r1,r2],axis = 1,join = 'inner') alpha = pd.DataFrame(np.max(r,axis = 1) *-1) alpha.columns = ['alpha64'] return alpha @timer def alpha65(self): close = self.close close_mean = Mean(close,6) data = pd.concat([close,close_mean],axis = 1, join = 'inner') data.columns = ['close','close_mean'] alpha = pd.DataFrame(data['close_mean']/data['close']) alpha.columns = ['alpha65'] return alpha @timer def alpha66(self): close = self.close close_mean = Mean(close,6) data = pd.concat([close,close_mean],axis = 1, join = 'inner') data.columns = ['close','close_mean'] alpha = (data['close'] - data['close_mean'])/data['close_mean'] * 100 alpha = pd.DataFrame(alpha) alpha.columns = ['alpha66'] return alpha @timer def alpha67(self): close = self.close close_delay = Delay(close,1) data = pd.concat([close,close_delay],axis = 1,join = 'inner') data.columns = ['close','close_delay'] data['max'] = data['close'] - data['close_delay'] data['max'][data['max'] < 0] = 0 data['abs'] = np.abs(data['close'] - data['close_delay']) sma1 = SMA(pd.DataFrame(data['max']),24,1) sma2 = SMA(pd.DataFrame(data['abs']),24,1) sma = pd.concat([sma1,sma2],axis = 1,join = 'inner') sma.columns = ['sma1','sma2'] alpha = pd.DataFrame(sma['sma1']/sma['sma2'] * 100) alpha.columns = ['alpha67'] return alpha @timer def alpha68(self): high = self.high volume = self.volume low = self.low data = pd.concat([high,low,volume],axis = 1,join = 'inner') data['sum']= (data['High'] + data['Low'])/2 data['sum_delta'] = Delta(pd.DataFrame(data['sum']),1) temp = data['sum_delta'] * (data['High'] - data['Low'])/data['Vol'] alpha = SMA(pd.DataFrame(temp),15,2) alpha.columns = ['alpha68'] return alpha @timer def alpha69(self): high = self.high low = self.low Open = self.open dtm = DTM(Open,high) dbm = DBM(Open,low) dtm_sum = Sum(dtm,20) dbm_sum = Sum(dbm,20) data = pd.concat([dtm_sum,dbm_sum],axis = 1, join = 'inner') data.columns = ['dtm','dbm'] data['temp1'] = (data['dtm'] - data['dbm'])/data['dtm'] data['temp2'] = (data['dtm'] - data['dbm'])/data['dbm'] data['temp1'][data['dtm'] <= data['dbm']] = 0 data['temp2'][data['dtm'] >= data['dbm']] = 0 alpha = pd.DataFrame(data['temp1'] + data['temp2']) alpha.columns = ['alpha69'] return alpha @timer def alpha70(self): amount = self.amt alpha= STD(amount,6) alpha.columns = ['alpha70'] return alpha @timer def alpha71(self): close = self.close close_mean = Mean(close,24) data = pd.concat([close,close_mean],axis = 1, join = 'inner') data.columns = ['close','close_mean'] alpha = (data['close'] - data['close_mean'])/data['close_mean'] * 100 alpha = pd.DataFrame(alpha) alpha.columns = ['alpha71'] return alpha @timer def alpha72(self): low = self.low high = self.high close = self.close low_min = TsMin(low,6) high_max = TsMax(high,6) data = pd.concat([close,low_min,high_max],axis = 1,join = 'inner') data.columns = ['close','low_min','high_max'] temp = (data['high_max'] - data['close'])/(data['high_max'] - data['low_min']) * 100 alpha = SMA(pd.DataFrame(temp),15,1) alpha.columns = ['alpha72'] return alpha @timer def alpha73(self): vwap = self.vwap volume = self.volume close = self.close data1 = pd.concat([close,volume],axis = 1,join = 'inner') corr1 = Corr(data1,10) corr1_decay = DecayLinear(DecayLinear(corr1,16),4) r1 = TsRank(corr1_decay,5) volume_mean = Mean(volume,30) data2 = pd.concat([vwap,volume_mean],axis = 1,join = 'inner') corr2 = Corr(data2,4) corr2_decay = DecayLinear(corr2,3) r2 = Rank(corr2_decay) r = pd.concat([r1,r2],axis = 1,join ='inner') r.columns = ['r1','r2'] alpha = pd.DataFrame(r['r2'] - r['r1']) alpha.columns= ['alpha73'] return alpha @timer def alpha74(self): vwap = self.vwap volume = self.volume low = self.low volume_mean = Mean(volume,40) volume_mean_sum = Sum(volume_mean,20) data1 = pd.concat([low,vwap],axis = 1,join = 'inner') data_sum = Sum(pd.DataFrame(data1['Low'] * 0.35 + data1['Vwap'] * 0.65),20) data = pd.concat([volume_mean_sum,data_sum],axis = 1,join = 'inner') corr = Corr(data,7) r1 = Rank(corr) vwap_r = Rank(vwap) volume_r = Rank(volume) data_temp = pd.concat([vwap_r,volume_r],axis = 1,join = 'inner') corr2 = Corr(data_temp,6) r2 = Rank(corr2) r = pd.concat([r1,r2],axis = 1,join = 'inner') r.columns = ['r1','r2'] alpha = pd.DataFrame(r['r1'] + r['r2']) alpha.columns = ['alpha74'] return alpha @timer def alpha75(self): close = self.close Open = self.open close_index = self.close_index open_index = self.open_index data1 = pd.concat([close,Open], axis = 1, join = 'inner') data1.columns = ['close','open'] data1['temp'] = 1 data1['temp'][data1['close'] <= data1['open']] = 0 data2 = pd.concat([close_index,open_index], axis = 1, join = 'inner') data2.columns = ['close','open'] data2['tep'] = 1 data2['tep'][data2['close'] > data2['open']] = 0 temp = data1['temp'].unstack() tep = data2['tep'].unstack() tep1 = repmat(tep,1,np.size(temp,1)) data3 = temp * tep1 temp_result = data3.rolling(50,min_periods = 50).sum() tep_result = tep.rolling(50,min_periods = 50).sum() tep2_result = np.matlib.repmat(tep_result,1,np.size(temp,1)) result = temp_result/tep2_result alpha = pd.DataFrame(result.stack()) alpha.columns = ['alpha75'] return alpha @timer def alpha76(self): volume = self.volume close = self.close close_delay = Delay(close,1) data = pd.concat([volume,close,close_delay],axis = 1,join = 'inner') data.columns = ['volume','close','close_delay'] temp = pd.DataFrame(np.abs((data['close']/data['close_delay'] -1 )/data['volume'])) temp_std = STD(temp,20) temp_mean = Mean(temp,20) data_temp = pd.concat([temp_std,temp_mean],axis = 1,join = 'inner') data_temp.columns = ['std','mean'] alpha = pd.DataFrame(data_temp['std']/data_temp['mean']) alpha.columns = ['alpha76'] return alpha @timer def alpha77(self): vwap = self.vwap volume = self.volume low = self.low high = self.high data = pd.concat([high,low,vwap],axis = 1,join = 'inner') temp = pd.DataFrame((data['High'] + data['Low'])/2 - data['Vwap']) temp_decay = DecayLinear(temp,20) r1 = Rank(temp_decay) temp1 = pd.DataFrame((data['High'] + data['Low'])/2) volume_mean = Mean(volume,40) data2 = pd.concat([temp1,volume_mean],axis = 1,join = 'inner') corr = Corr(data2,3) corr_decay = DecayLinear(corr,6) r2 = Rank(corr_decay) r = pd.concat([r1,r2],axis = 1,join = 'inner') alpha = pd.DataFrame(np.min(r,axis = 1)) alpha.columns = ['alpha77'] return alpha @timer def alpha78(self): low = self.low high = self.high close = self.close data = pd.concat([low,high,close],axis = 1,join = 'inner') temp = pd.DataFrame((data['Low'] + data['High'] + data['Close'])/3) temp.columns = ['temp'] temp_mean = Mean(temp,12) temp_mean.columns = ['temp_mean'] temp2 = pd.concat([temp,temp_mean],axis = 1,join = 'inner') tmp = pd.DataFrame(temp2['temp'] - temp2['temp_mean']) data1 = pd.concat([close,temp_mean],axis = 1,join = 'inner') temp_abs = pd.DataFrame(np.abs(data1['Close'] - data1['temp_mean'])) temp_abs_mean = Mean(temp_abs,12) df = pd.concat([tmp,temp_abs_mean],axis = 1,join = 'inner') df.columns = ['df1','df2'] alpha = pd.DataFrame(df['df1']/(df['df2'] * 0.015)) alpha.columns = ['alpha78'] return alpha @timer def alpha79(self): close = self.close close_delay = Delay(close,1) data = pd.concat([close,close_delay],axis = 1,join = 'inner') data.columns = ['close','close_delay'] data['max'] = data['close'] - data['close_delay'] data['max'][data['max'] < 0] = 0 data['abs'] = np.abs(data['close'] - data['close_delay']) sma1 = SMA(pd.DataFrame(data['max']),12,1) sma2 = SMA(pd.DataFrame(data['abs']),12,1) sma = pd.concat([sma1,sma2],axis = 1,join = 'inner') sma.columns = ['sma1','sma2'] alpha = pd.DataFrame(sma['sma1']/sma['sma2'] * 100) alpha.columns = ['alpha79'] return alpha @timer def alpha80(self): volume = self.volume volume_delay = Delay(volume,5) volume_delay.columns = ['volume_delay'] data = pd.concat([volume,volume_delay],axis = 1,join = 'inner') alpha = (data['Vol'] - data['volume_delay'])/data['volume_delay'] alpha = pd.DataFrame(alpha) alpha.columns = ['alpha80'] return alpha @timer def alpha81(self): volume = self.volume alpha = SMA(volume,21,2) alpha.columns = ['alpha81'] return alpha @timer def alpha82(self): low = self.low high = self.high close = self.close low_min = TsMin(low,6) high_max = TsMax(high,6) data = pd.concat([close,low_min,high_max],axis = 1,join = 'inner') data.columns = ['close','low_min','high_max'] temp = (data['high_max'] - data['close'])/(data['high_max'] - data['low_min']) * 100 alpha = SMA(pd.DataFrame(temp),20,1) alpha.columns = ['alpha82'] return alpha @timer def alpha83(self): high = self.high volume = self.volume high_r = Rank(high) volume_r = Rank(volume) data = pd.concat([high_r,volume_r],axis = 1,join = 'inner') corr = Corr(data,5) alpha = -1 * Rank(corr) alpha.columns = ['alpha83'] return alpha @timer def alpha84(self): close = self.close volume = self.volume close_delay = Delay(close,1) close_delay.columns = ['close_delay'] data = pd.concat([close,close_delay,volume],axis = 1,join = 'inner') data['sign'] = 1 data['sign'][data['Close'] < data['close_delay']] = -1 data['sign'][data['Close'] == data['close_delay']] = 0 temp = pd.DataFrame(data['Vol'] * data['sign']) alpha = Sum(temp,20) alpha.columns = ['alpha84'] return alpha @timer def alpha85(self): close = self.close volume = self.volume volume_mean = Mean(volume,20) close_delta = Delta(close,7) data1 = pd.concat([volume,volume_mean],axis = 1,join = 'inner') data1.columns = ['volume','volume_mean'] temp1 = pd.DataFrame(data1['volume']/data1['volume_mean']) r1 = TsRank(temp1,20) r2 = TsRank(-1 * close_delta,8) r = pd.concat([r1,r2],axis = 1,join = 'inner') r.columns = ['r1','r2'] alpha = pd.DataFrame(r['r1'] * r['r2']) alpha.columns = ['alpha85'] return alpha @timer def alpha86(self): close = self.close close_delay20 = Delay(close,20) close_delay10 = Delay(close,20) data = pd.concat([close,close_delay20,close_delay10],axis = 1,join = 'inner') data.columns = ['close','close_delay20','close_delay10'] temp = pd.DataFrame((data['close_delay20'] - data['close_delay10'])/10 - \ (data['close_delay10'] - data['close'])/10) close_delta = Delta(close,1) * -1 data_temp = pd.concat([close_delta,temp],axis = 1,join = 'inner') data_temp.columns = ['close_delta','temp'] data_temp['close_delta'][data_temp['temp'] > 0.25]= -1 data_temp['close_delta'][data_temp['temp'] < 0]= 1 alpha = pd.DataFrame(data_temp['close_delta']) alpha.columns = ['alpha86'] return alpha @timer def alpha87(self): vwap = self.vwap high = self.high low = self.low Open = self.open vwap_delta = Delta(vwap,4) vwap_delta_decay = DecayLinear(vwap_delta,7) r1 = Rank(vwap_delta_decay) data = pd.concat([low,high,vwap,Open], axis = 1, join = 'inner') temp = pd.DataFrame((data['Low'] * 0.1 + data['High'] * 0.9 - data['Vwap'])/\ (data['Open'] - 0.5 * (data['Low'] + data['High']))) temp_decay = DecayLinear(temp,11) r2 = TsRank(temp_decay,7) r = pd.concat([r1,r2], axis = 1,join = 'inner') r.columns = ['r1','r2'] alpha = pd.DataFrame(-1 * (r['r1'] + r['r2'])) alpha.columns = ['alpha87'] return alpha @timer def alpha88(self): close = self.close close_delay = Delay(close,20) data = pd.concat([close,close_delay],axis = 1,join = 'inner') data.columns = ['close','close_delta'] alpha = (data['close'] - data['close_delta'])/data['close_delta'] * 100 alpha = pd.DataFrame(alpha) alpha.columns = ['alpha88'] return alpha @timer def alpha89(self): close = self.close sma1 = SMA(close,13,2) sma2 = SMA(close,27,2) sma = pd.concat([sma1,sma2],axis = 1, join = 'inner') sma.columns = ['sma1','sma2'] temp = pd.DataFrame(sma['sma1'] - sma['sma2']) sma3 = SMA(temp,10,2) data = pd.concat([temp,sma3],axis = 1, join = 'inner') data.columns = ['temp','sma'] alpha = pd.DataFrame(2 *(data['temp'] - data['sma'])) alpha.columns = ['alpha89'] return alpha @timer def alpha90(self): volume = self.volume vwap = self.vwap r1 = Rank(volume) r2 = Rank(vwap) rank = pd.concat([r1,r2], axis = 1, join = 'inner') corr = Corr(rank,5) alpha = -1 * Rank(corr) alpha.columns = ['alpha90'] return alpha @timer def alpha91(self): close = self.close volume = self.volume low = self.low close_max = TsMax(close,5) data1 = pd.concat([close,close_max], axis = 1,join = 'inner') data1.columns = ['close','close_max'] r1 = Rank(pd.DataFrame(data1['close'] - data1['close_max'])) volume_mean = Mean(volume,40) data2 = pd.concat([volume_mean,low], axis = 1, join = 'inner') corr = Corr(data2,5) r2 = Rank(corr) r = pd.concat([r1,r2],axis = 1, join = 'inner') r.columns = ['r1','r2'] alpha = pd.DataFrame(r['r1'] * r['r2'] * -1) alpha.columns = ['alpha91'] return alpha @timer def alpha92(self): volume = self.volume vwap = self.vwap close = self.close data = pd.concat([close,vwap],axis = 1, join = 'inner') data['price'] = data['Close'] * 0.35 + data['Vwap'] * 0.65 price_delta = Delta(pd.DataFrame(data['price']),2) price_delta_decay = DecayLinear(price_delta,3) r1 = Rank(price_delta_decay) volume_mean = Mean(volume,180) rank = pd.concat([volume_mean,close],axis = 1,join = 'inner') corr = Corr(rank,13) temp = pd.DataFrame(np.abs(corr)) temp_decay = DecayLinear(temp,5) r2 = TsRank(temp_decay,15) r = pd.concat([r1,r2],axis = 1, join = 'inner') alpha = pd.DataFrame(-1 * np.max(r, axis = 1)) alpha.columns = ['alpha92'] return alpha @timer def alpha93(self): low = self.low Open = self.open open_delay = Delay(Open,1) data = pd.concat([low,Open,open_delay],axis = 1,join = 'inner') data.columns = ['low','open','open_delay'] temp1 = pd.DataFrame(data['open'] - data['low']) temp2 = pd.DataFrame(data['open'] - data['open_delay']) data_temp = pd.concat([temp1,temp2],axis = 1 ,join = 'inner') temp_max = pd.DataFrame(np.max(data_temp,axis = 1)) temp_max.columns = ['max'] data2 = pd.concat([data,temp_max],axis = 1,join = 'inner') data2['temp'] = data2['max'] data2['temp'][data2['open'] >= data2['open_delay']] = 0 alpha = Sum(pd.DataFrame(data2['temp']),20) alpha.columns = ['alpha93'] return alpha @timer def alpha94(self): close = self.close volume = self.volume close_delay = Delay(close,1) close_delay.columns = ['close_delay'] data = pd.concat([close,close_delay,volume],axis = 1,join = 'inner') data['sign'] = 1 data['sign'][data['Close'] < data['close_delay']] = -1 data['sign'][data['Close'] == data['close_delay']] = 0 temp = pd.DataFrame(data['Vol'] * data['sign']) alpha = Sum(temp,30) alpha.columns = ['alpha94'] return alpha @timer def alpha95(self): amt = self.amt alpha = STD(amt,20) alpha.columns = ['alpha95'] return alpha @timer def alpha96(self): low = self.low high = self.high close = self.close low_min = TsMin(low,9) high_max = TsMax(high,9) data = pd.concat([close,low_min,high_max],axis = 1,join = 'inner') data.columns = ['close','low_min','high_max'] temp = ( data['close'] - data['low_min'])/(data['high_max'] - data['low_min']) * 100 alpha_temp = SMA(pd.DataFrame(temp),3,1) alpha = SMA(alpha_temp,3,1) alpha.columns = ['alpha96'] return alpha @timer def alpha97(self): volume = self.volume alpha = STD(volume,10) alpha.columns = ['alpha97'] return alpha @timer def alpha98(self): close = self.close close_mean = Mean(close,100) close_mean_delta = Delta(close_mean,100) close_delay = Delay(close,100) data = pd.concat([close_mean_delta,close_delay],axis = 1,join = 'inner') data.columns = ['delta','delay'] temp = pd.DataFrame(data['delta']/ data['delay']) close_delta = Delta(close,3) close_min = TsMin(close,100) data_temp = pd.concat([close,close_delta,close_min,temp],axis = 1,join = 'inner') data_temp.columns = ['close','close_delta','close_min','temp'] data_temp['diff'] = (data_temp['close'] - data_temp['close_min']) * -1 data_temp['diff'][data_temp['temp'] < 0.05] = 0 data_temp['close_delta'] = data_temp['close_delta'] * -1 data_temp['close_delta'][data_temp['temp'] >= 0.05]= 0 alpha = pd.DataFrame(data_temp['close_delta'] + data_temp['diff']) alpha.columns = ['alpha98'] return alpha @timer def alpha99(self): close = self.close volume = self.volume r1 = Rank(close) r2 = Rank(volume) r = pd.concat([r1,r2],axis = 1,join = 'inner') cov = Cov(r,5) alpha = -1 * Rank(cov) alpha.columns = ['alpha99'] return alpha @timer def alpha100(self): volume = self.volume alpha = STD(volume,20) alpha.columns = ['alpha100'] return alpha @timer def alpha101(self): close = self.close volume = self.volume high = self.high vwap = self.vwap volume_mean = Mean(volume,30) volume_mean_sum = Sum(volume_mean,37) data1 = pd.concat([close,volume_mean_sum], axis = 1, join = 'inner') corr1 = Corr(data1,15) r1 = Rank(corr1) data2 = pd.concat([high,vwap],axis = 1, join = 'inner') temp = pd.DataFrame(data2['High'] * 0.1 + data2['Vwap'] * 0.9) temp_r = Rank(temp) volume_r = Rank(volume) data3 = pd.concat([temp_r,volume_r], axis = 1, join = 'inner') corr2 = Corr(data3,11) r2 = Rank(corr2) r = pd.concat([r1,r2], axis = 1, join = 'inner') r.columns = ['r1','r2'] r['alpha'] = 0 r['alpha'][r['r1'] < r['r2']] = -1 alpha = pd.DataFrame(r['alpha']) alpha.columns = ['alpha101'] return alpha @timer def alpha102(self): volume = self.volume temp = Delta(volume,1) temp.columns = ['temp'] temp['max'] = temp['temp'] temp['max'][temp['temp'] < 0 ] = 0 temp['abs'] = np.abs(temp['temp']) sma1 = SMA(pd.DataFrame(temp['max']),6,1) sma2 = SMA(pd.DataFrame(temp['abs']),6,1) sma = pd.concat([sma1,sma2], axis = 1 ,join ='inner') sma.columns = ['sma1','sma2'] alpha = pd.DataFrame(sma['sma1']/ sma['sma2'] * 100) alpha.columns = ['alpha102'] return alpha @timer def alpha103(self): low = self.low lowday = Lowday(low,20) alpha = (20 - lowday)/20.0 * 100 alpha.columns = ['alpha103'] return alpha @timer def alpha104(self): close = self.close volume = self.volume high = self.high data = pd.concat([high,volume], axis = 1, join = 'inner') corr = Corr(data,5) corr_delta = Delta(corr,5) close_std = STD(close,20) r1 = Rank(close_std) temp = pd.concat([corr_delta,r1], axis = 1, join = 'inner') temp.columns = ['delta','r'] alpha = pd.DataFrame(-1 * temp['delta'] * temp['r']) alpha.columns = ['alpha104'] return alpha @timer def alpha105(self): volume = self.volume Open = self.open volume_r = Rank(volume) open_r = Rank(Open) rank = pd.concat([volume_r,open_r],axis = 1, join = 'inner') alpha = -1 * Corr(rank,10) alpha.columns = ['alpha105'] return alpha @timer def alpha106(self): close = self.close close_delay = Delay(close,20) data = pd.concat([close,close_delay], axis = 1, join = 'inner') data.columns = ['close','close_delay'] alpha = pd.DataFrame(data['close'] - data['close_delay']) alpha.columns = ['alpha106'] return alpha @timer def alpha107(self): Open = self.open high = self.high close = self.close low = self.low high_delay = Delay(high,1) close_delay = Delay(close,1) low_delay = Delay(low,1) data = pd.concat([high_delay,close_delay,low_delay,Open], axis = 1, join = 'inner') data.columns = ['high_delay','close_delay','low_delay','open'] r1 = Rank(pd.DataFrame(data['open'] - data['high_delay'])) r2 = Rank(pd.DataFrame(data['open'] - data['close_delay'])) r3 = Rank(pd.DataFrame(data['open'] - data['low_delay'])) alpha = -1 * r1 * r2 * r3 alpha.columns = ['alpha107'] return alpha @timer def alpha108(self): high = self.high volume = self.volume vwap = self.vwap high_min = TsMin(high,2) data1 = pd.concat([high,high_min], axis = 1, join = 'inner') data1.columns = ['high','high_min'] r1 = Rank(pd.DataFrame(data1['high'] - data1['high_min'])) volume_mean = Mean(volume,120) rank = pd.concat([vwap,volume_mean],axis = 1, join = 'inner') corr = Corr(rank,6) r2 = Rank(corr) r = pd.concat([r1,r2], axis = 1, join = 'inner') r.columns = ['r1','r2'] alpha = r['r1'] * r['r2'] * -1 alpha.columns = ['alpha108'] return alpha @timer def alpha109(self): high = self.high low = self.low data = pd.concat([high,low],axis = 1, join = 'inner') temp = SMA(pd.DataFrame(data['High'] - data['Low']),10,2) sma = SMA(temp,10,2) sma_temp = pd.concat([temp,sma],axis = 1, join = 'inner') sma_temp.columns = ['temp','sma'] alpha = pd.DataFrame(sma_temp['temp']/sma_temp['sma']) alpha.columns = ['alpha109'] return alpha @timer def alpha110(self): high = self.high low = self.low close = self.close close_delay = Delay(close,1) close_delay.columns = ['close_delay'] data = pd.concat([high,low,close_delay], axis = 1, join = 'inner') data['max1'] = data['High'] - data['close_delay'] data['max2'] = data['close_delay'] - data['Low'] data['max1'][data['max1'] < 0] = 0 data['max2'][data['max2'] < 0] = 0 s1 = Sum(pd.DataFrame(data['max1']),20) s2 = Sum(pd.DataFrame(data['max2']),20) s = pd.concat([s1,s2], axis = 1 , join = 'inner') s.columns = ['s1','s2'] alpha = pd.DataFrame(s['s1']/s['s2']) alpha.columns = ['alpha110'] return alpha @timer def alpha111(self): high = self.high low = self.low close = self.close volume = self.volume data = pd.concat([high,low,close,volume], axis = 1, join = 'inner') temp = pd.DataFrame(data['Vol'] * (2 * data['Close'] - data['Low'] - data['High'])\ /(data['High'] - data['Low'])) sma1 = SMA(temp,11,2) sma2 = SMA(temp,4,2) sma = pd.concat([sma1, sma2], axis = 1, join = 'inner') sma.columns = ['sma1','sma2'] alpha = pd.DataFrame(sma['sma1'] - sma['sma2']) alpha.columns = ['alpha111'] return alpha @timer def alpha112(self): close = self.close close_delay = Delay(close,1) data = pd.concat([close, close_delay], axis = 1, join = 'inner') data.columns = ['close','close_delay'] data['temp'] = 1 data['temp'][data['close'] > data['close_delay']] = 0 alpha = Sum(pd.DataFrame(data['temp']),12) alpha.columns = ['alpha112'] return alpha @timer def alpha113(self): close = self.close volume = self.volume close_delay = Delay(close,5) close_delay_mean = Mean(close_delay,20) data1 = pd.concat([close,volume],axis = 1, join = 'inner') corr = Corr(data1,2) r1 = Rank(close_delay_mean) data2 = pd.concat([r1,corr], axis = 1, join = 'inner') data2.columns = ['r1','corr'] r1 = pd.DataFrame(data2['r1'] * data2['corr']) close_sum5 = Sum(close,5) close_sum20 = Sum(close,20) data3 = pd.concat([close_sum5,close_sum20],axis = 1, join = 'inner') corr2 = Corr(data3,2) r2 = Rank(corr2) r = pd.concat([r1,r2], axis = 1, join = 'inner') r.columns = ['r1','r2'] alpha = pd.DataFrame(r['r1'] * r['r2'] * -1) alpha.columns = ['alpha113'] return alpha @timer def alpha114(self): close = self.close high = self.high low = self.low volume = self.volume vwap = self.vwap close_mean = Mean(close,5) data = pd.concat([high,low,close_mean], axis = 1, join = 'inner') data.columns = ['high','low','close_mean'] temp = pd.DataFrame(data['high'] - data['low'] / data['close_mean']) temp_delay = Delay(temp,2) r1 = TsRank(temp_delay,5) temp1 = pd.concat([temp,vwap,close], axis = 1, join = 'inner') temp1.columns = ['temp','vwap','close'] tep = pd.DataFrame(temp1['temp']/(temp1['vwap'] - temp1['close'])) r2 = TsRank(volume,5) data2 = pd.concat([r2,tep], axis = 1, join = 'inner') data2.columns = ['r2','tep'] tep1 = pd.DataFrame(data2['r2']/data2['tep']) r3 = TsRank(tep1,5) r = pd.concat([r1,r3],axis = 1, join = 'inner') r.columns = ['r1','r3'] alpha = pd.DataFrame(r['r1'] + r['r3']) alpha.columns = ['alpha114'] return alpha @timer def alpha115(self): high = self.high low = self.low volume = self.volume volume_mean = Mean(volume,30) price = pd.concat([high,low], axis = 1, join = 'inner') price.columns = ['high','low'] price_temp = price['high'] * 0.9 + price['low'] * 0.1 data = pd.concat([price_temp,volume_mean],axis = 1, join = 'inner') corr = Corr(data,10) r1 = Rank(corr) data2 = pd.concat([high,low], axis = 1, join = 'inner') temp = pd.DataFrame((data2['High'] + data2['Low'])/2) temp_r = TsRank(temp,4) volume_r = TsRank(volume,10) data3 = pd.concat([temp_r,volume_r], axis = 1, join = 'inner') corr2 = Corr(data3,7) r2 = Rank(corr2) r = pd.concat([r1,r2], axis = 1, join = 'inner') r.columns = ['r1','r2'] alpha = pd.DataFrame(r['r1'] * r['r2']) alpha.columns = ['alpha115'] return alpha @timer def alpha116(self): close = self.close alpha = RegResi(0,close,None,20) alpha.columns = ['alpha116'] return alpha @timer def alpha117(self): high = self.high low = self.low close = self.close volume = self.volume ret = self.ret r1 = TsRank(volume,32) data1 = pd.concat([close,high,low],axis = 1, join = 'inner') r2 = TsRank(pd.DataFrame(data1['Close'] + data1['High'] - data1['Low']),16) r3 = TsRank(ret,32) r = pd.concat([r1,r2,r3], axis = 1, join = 'inner') r.columns = ['r1','r2','r3'] alpha = pd.DataFrame(r['r1'] * (1 - r['r2']) * (1 - r['r3'])) alpha.columns = ['alpha117'] return alpha @timer def alpha118(self): high = self.high low = self.low Open = self.open data = pd.concat([high,low,Open], axis = 1, join = 'inner') s1 = Sum(pd.DataFrame(data['High'] - data['Open']),20) s2 = Sum(pd.DataFrame(data['Open'] - data['Low']),20) s = pd.concat([s1,s2], axis = 1, join = 'inner') s.columns = ['s1','s2'] alpha = pd.DataFrame(s['s1']/s['s2'] * 100) alpha.columns = ['alpha118'] return alpha @timer def alpha119(self): Open = self.open volume = self.volume vwap = self.vwap volume_mean = Mean(volume,5) volume_mean_sum = Sum(volume_mean,26) data1 = pd.concat([vwap,volume_mean_sum],axis = 1, join = 'inner') corr1 = Corr(data1,5) corr1_decay = DecayLinear(corr1,7) r1 = Rank(corr1_decay) open_r = Rank(Open) volume_mean2 = Mean(volume,15) volume_mean2_r = Rank(volume_mean2) data2 = pd.concat([open_r, volume_mean2_r], axis = 1, join = 'inner') corr2 = Corr(data2,21) corr2_min = TsMin(corr2,9) corr2_min_r = TsRank(corr2_min,7) corr_min_r_decay = DecayLinear(corr2_min_r,8) r2 = Rank(corr_min_r_decay) r = pd.concat([r1,r2], axis = 1, join = 'inner') r.columns = ['r1','r2'] alpha = pd.DataFrame(r['r1'] - r['r2']) alpha.columns = ['alpha119'] return alpha @timer def alpha120(self): vwap = self.vwap close = self.close data = pd.concat([vwap,close], axis = 1, join = 'inner') r1 = Rank(pd.DataFrame(data['Vwap'] - data['Close'])) r2 = Rank(pd.DataFrame(data['Vwap'] + data['Close'])) r = pd.concat([r1,r2],axis = 1, join = 'inner') r.columns = ['r1','r2'] alpha = pd.DataFrame(r['r1']/r['r2']) alpha.columns = ['alpha120'] return alpha @timer def alpha121(self): vwap = self.vwap volume = self.volume vwap_r = TsRank(vwap,20) volume_mean = Mean(volume,60) volume_mean_r = TsRank(volume_mean,2) data = pd.concat([vwap_r,volume_mean_r], axis = 1, join = 'inner') corr= Corr(data,18) temp = TsRank(corr,3) vwap_min = TsMin(vwap,12) data2 = pd.concat([vwap,vwap_min],axis = 1, join = 'inner') data2.columns = ['vwap','vwap_min'] rank = Rank(pd.DataFrame(data2['vwap'] - data2['vwap_min'])) data3 = pd.concat([rank,temp],axis = 1, join = 'inner') data3.columns = ['rank','temp'] alpha = pd.DataFrame(np.power(data3['rank'],data3['temp']) * -1) alpha.columns = ['alpha121'] return alpha @timer def alpha122(self): close = self.close close_ln = pd.DataFrame(np.log(close)) temp1 = SMA(close_ln,13,2) sma1 = SMA(temp1,13,2) sma2 = SMA(sma1,13,2) sma3 = SMA(sma2,13,2) sma3_delay = Delay(sma3,1) data = pd.concat([sma3,sma3_delay],axis = 1, join = 'inner') data.columns = ['sma','sma_delay'] alpha = pd.DataFrame(data['sma']/data['sma_delay']) alpha.columns = ['alpha122'] return alpha @timer def alpha123(self): volume = self.volume high = self.high low = self.low data1 = pd.concat([high,low], axis = 1, join = 'inner') s1 = Sum(pd.DataFrame((data1['High'] + data1['Low'])/2),20) volume_mean = Mean(volume,60) s2 = Sum(volume_mean,20) data2 = pd.concat([s1,s2], axis = 1, join = 'inner') corr1 = Corr(data2,9) data3 = pd.concat([low,volume], axis = 1, join = 'inner') corr2 = Corr(data3,6) corr1_r = Rank(corr1) corr2_r = Rank(corr2) data = pd.concat([corr1_r,corr2_r], axis = 1, join = 'inner') data.columns = ['r1','r2'] data['alpha'] = -1 data['alpha'][data['r1'] >= data['r2']] = 0 alpha = pd.DataFrame(data['alpha']) alpha.columns = ['alpha123'] return alpha @timer def alpha124(self): close = self.close vwap = self.vwap close_max = TsMax(close,30) close_max_r = Rank(close_max) close_max_r_decay = DecayLinear(close_max_r,2) close_max_r_decay.columns = ['decay'] data = pd.concat([close,vwap,close_max_r_decay], axis = 1, join ='inner') alpha = pd.DataFrame((data['Close'] - data['Vwap'])/data['decay']) alpha.columns = ['alpha124'] return alpha @timer def alpha125(self): close = self.close vwap = self.vwap volume = self.volume volume_mean = Mean(volume,80) data1 = pd.concat([vwap,volume_mean], axis = 1, join = 'inner') corr1 = Corr(data1,17) data2 = pd.concat([close,vwap], axis = 1, join = 'inner') temp2 = pd.DataFrame(0.5*(data2['Close'] + data2['Vwap'])) temp2_delta = Delta(temp2,3) corr1_decay = DecayLinear(corr1,20) r1 = Rank(corr1_decay) temp2_delta_decay = DecayLinear(temp2_delta,16) r2 = Rank(temp2_delta_decay) r = pd.concat([r1,r2], axis = 1, join = 'inner') r.columns = ['r1','r2'] alpha = pd.DataFrame(r['r1']/r['r2']) alpha.columns = ['alpha125'] return alpha @timer def alpha126(self): close = self.close high = self.high low = self.low data = pd.concat([close,high,low], axis = 1, join = 'inner') alpha = pd.DataFrame((data['Close'] + data['High'] + data['Low'])/3) alpha.columns = ['alpha126'] return alpha @timer def alpha127(self): close = self.close close_max = TsMax(close,12) data = pd.concat([close,close_max], axis = 1, join = 'inner') data.columns = ['close','close_max'] alpha = pd.DataFrame((data['close'] - data['close_max'])/data['close_max']) alpha.columns = ['alpha127'] return alpha @timer def alpha128(self): close = self.close high = self.high low = self.low volume = self.volume data = pd.concat([close,high,low,volume], axis = 1, join = 'inner') data['temp1'] = (data['Close'] + data['Low'] + data['High'])/3 data['temp2'] = data['temp1'] * data['Vol'] data['temp3'] = data['temp1'] * data['Vol'] temp_delay = Delay(pd.DataFrame(data['temp1']),1) temp_delay.columns = ['temp_decay'] data = pd.concat([data,temp_delay], axis = 1, join = 'inner') data['temp2'][data['temp1'] < data['temp_decay']] = 0 data['temp3'][data['temp1'] > data['temp_decay']] = 0 s1 = Sum(pd.DataFrame(data['temp2']),14) s2 = Sum(pd.DataFrame(data['temp3']),14) s = pd.concat([s1,s2], axis = 1, join = 'inner') s.columns = ['s1','s2'] alpha = pd.DataFrame(100 - 100/(1+ s['s1']/s['s2'])) alpha.columns = ['alpha128'] return alpha @timer def alpha129(self): close = self.close close_delay = Delay(close,1) data = pd.concat([close,close_delay], axis = 1, join = 'inner') data.columns = ['close','close_delay'] data['abs'] = np.abs(data['close'] - data['close_delay']) data['temp'] = data['abs'] data['temp'][data['close'] < data['close_delay']] = 0 alpha = Sum(pd.DataFrame(data['temp']),12) alpha.columns = ['alpha129'] return alpha @timer def alpha130(self): close = self.close high = self.high low = self.low volume = self.volume volume_mean = Mean(volume,40) data1 = pd.concat([high,low],axis = 1, join = 'inner') temp1 = pd.DataFrame((data1['High'] + data1['Low'])/2) rank1 = pd.concat([temp1,volume_mean], axis = 1, join = 'inner') corr = Corr(rank1,9) close_r = Rank(close) volume_r = Rank(volume) data2 = pd.concat([close_r,volume_r],axis = 1, join = 'inner') corr2 = Corr(data2,7) corr_decay = DecayLinear(corr,10) r1 = Rank(corr_decay) corr2_decay = DecayLinear(corr2,3) r2 = Rank(corr2_decay) r = pd.concat([r1,r2],axis = 1, join = 'inner') r.columns = ['r1','r2'] alpha = pd.DataFrame(r['r1']/r['r2']) alpha.columns = ['alpha130'] return alpha @timer def alpha131(self): close = self.close vwap = self.vwap volume = self.volume volume_mean = Mean(volume,50) data1 = pd.concat([close,volume_mean], axis = 1, join = 'inner') corr = Corr(data1,18) vwap_delta = Delta(vwap,1) temp2 = TsRank(corr,18) data2 = pd.concat([vwap_delta,temp2],axis = 1, join = 'inner') data2.columns = ['vwap_delta','temp2'] temp3 = np.power(data2['vwap_delta'],data2['temp2']) alpha = Rank(pd.DataFrame(temp3)) alpha.columns = ['alpha131'] return alpha @timer def alpha132(self): amt = self.amt alpha = Mean(amt,20) alpha.columns = ['alpha132'] return alpha @timer def alpha133(self): low = self.low high = self.high highday = Highday(high,20) lowday = Lowday(low,20) data = pd.concat([highday,lowday],axis = 1, join = 'inner') data.columns = ['highday','lowday'] alpha = (20 - data['highday']/20.0) * 100 - (20 - data['lowday']/20.0) * 100 alpha = pd.DataFrame(alpha) alpha.columns = ['alpha133'] return alpha @timer def alpha134(self): close = self.close volume = self.volume close_delay = Delay(close,12) close_delay.columns = ['close_delay'] data = pd.concat([close,volume,close_delay], axis = 1, join = 'inner') alpha = pd.DataFrame((data['Close'] - data['close_delay'])/data['close_delay']) alpha.columns = ['alpha134'] return alpha @timer def alpha135(self): close = self.close close_delay = Delay(close,20) data = pd.concat([close,close_delay],axis = 1 , join = 'inner') data.columns = ['close','close_delay'] temp = pd.DataFrame(data['close']/data['close_delay']) temp_delay = Delay(temp,1) alpha = SMA(temp_delay,20,1) alpha.columns = ['alpha135'] return alpha @timer def alpha136(self): volume = self.volume Open = self.open ret = self.ret ret_delta = Delta(ret,3) ret_delta_r = Rank(ret_delta) data = pd.concat([Open,volume],axis = 1, join = 'inner') corr = Corr(data,10) data_temp = pd.concat([ret_delta_r,corr],axis = 1, join = 'inner') data_temp.columns = ['ret_delta','corr'] alpha = pd.DataFrame(-1 * data_temp['ret_delta'] * data_temp['corr']) alpha.columns = ['alpha136'] return alpha @timer def alpha137(self): Open = self.open close = self.close low = self.low high = self.high close_delay = Delay(close,1) open_delay = Delay(Open,1) low_delay = Delay(low,1) data = pd.concat([Open,close,low,high,close_delay,open_delay,low_delay], axis =1 ,join = 'inner') data.columns= ['open','close','low','high','close_delay','open_delay','low_delay'] temp1 = pd.DataFrame((data['close'] - data['close_delay'] + (data['close'] - data['open'])/2\ + data['close_delay'] - data['open_delay'])/ np.abs(data['high'] - data['close_delay'])) temp2 = pd.DataFrame(np.abs(data['high'] - data['close_delay']) + np.abs(data['low'] - data['close_delay'])/2 \ + np.abs(data['close_delay'] - data['open_delay'])/4) temp3 = pd.DataFrame(np.abs(data['low'] - data['close_delay']) + np.abs(data['high'] - data['close_delay'])/2 \ + np.abs(data['close_delay'] - data['open_delay'])/4) abs1 = pd.DataFrame(np.abs(data['high'] - data['close_delay'])) abs2 = pd.DataFrame(np.abs(data['low'] - data['close_delay'])) abs3 = pd.DataFrame(np.abs(data['high'] - data['low_delay'])) data1 = pd.concat([abs1,abs2,abs3], axis = 1, join = 'inner') data1.columns = ['abs1','abs2','abs3'] data_temp = pd.concat([abs1,abs2],axis = 1, join = 'inner') data_temp_max = pd.DataFrame(np.max(data_temp,axis = 1)) data_temp_max.columns = ['max'] data_temp1 = pd.concat([data,data_temp_max], axis = 1, join = 'inner') temp4 = pd.DataFrame((np.abs(data_temp1['high'] - data_temp1['low_delay']) + \ np.abs(data_temp1['close_delay'] - data_temp1['open_delay'])) *\ data_temp1['max']) data1['judge1'] = 0 data1['judge2'] = 0 data1['judge3'] = 0 data1['judge4'] = 0 data1['judge1'][data1['abs1'] > data1['abs2']] = 1 data1['judge2'][data1['abs1'] > data1['abs3']] = 1 data1['judge3'][data1['abs2'] > data1['abs3']] = 1 data1['judge3'][data1['abs3'] > data1['abs1']] = 1 judge_1 = pd.DataFrame(data1['judge1'] * data1['judge2']) judge_2 = pd.DataFrame(data1['judge3'] * data1['judge4']) data2 = pd.concat([temp1,temp2,temp3,temp4,judge_1,judge_2], axis = 1, join = 'inner') data2.columns = ['t1','t2','t3','t4','j1','j2'] data2['j3'] = 1 data2['j4'] = data2['j3'] - data2['j1'] - data2['j2'] data2['t5'] = data2['t2'] * data2['j1'] + data2['t3'] * data2['j2'] + \ data2['t4'] * data2['j4'] alpha = pd.DataFrame(16 * data2['t5']/data2['t1']) alpha.columns = ['alpha137'] return alpha @timer def alpha138(self): vwap = self.vwap volume = self.volume low = self.low data1 = pd.concat([low,vwap], axis = 1, join = 'inner') temp1 = pd.DataFrame(data1['Low'] * 0.7 + data1['Vwap'] * 0.3) temp1_delta = Delta(temp1,3) temp1_delta_decay = DecayLinear(temp1_delta,20) r1 = Rank(temp1_delta_decay) low_r = TsRank(low,8) volume_mean = Mean(volume,60) volume_mean_r = TsRank(volume_mean,17) data2 = pd.concat([low_r,volume_mean_r],axis = 1, join = 'inner') corr = Corr(data2,5) corr_r = TsRank(corr,19) corr_r_decay = DecayLinear(corr_r,16) r2 = TsRank(corr_r_decay,7) r = pd.concat([r1,r2], axis = 1, join = 'inner') r.columns = ['r1','r2'] alpha = pd.DataFrame(r['r1'] - r['r2']) alpha.columns = ['alpha138'] return alpha @timer def alpha139(self): Open = self.open volume = self.volume data = pd.concat([Open,volume], axis = 1, join = 'inner') alpha = -1 * Corr(data,10) alpha.columns = ['alpha139'] return alpha @timer def alpha140(self): Open = self.open volume = self.volume high = self.high low = self.low close = self.close open_r = Rank(Open) low_r = Rank(low) high_r = Rank(high) close_r = Rank(close) data1 = pd.concat([open_r,low_r,high_r,close_r],axis = 1, join = 'inner') data1.columns = ['open_r','low_r','high_r','close_r'] temp = pd.DataFrame(data1['open_r'] + data1['low_r'] - \ (data1['high_r'] + data1['close_r'])) close_r_temp = TsRank(close,8) volume_mean = Mean(volume,70) volume_mean_r = TsRank(volume_mean,20) data2 = pd.concat([close_r_temp,volume_mean_r], axis = 1, join = 'inner') corr = Corr(data2,8) temp_decay = DecayLinear(temp,8) r1 = Rank(temp_decay) corr_decay = DecayLinear(corr,7) r2 = TsRank(corr_decay,3) r = pd.concat([r1,r2], axis = 1, join = 'inner') alpha = pd.DataFrame(np.min(r)) alpha.columns = ['alpha140'] return alpha @timer def alpha141(self): volume = self.volume high = self.high volume_mean = Mean(volume,15) high_r = Rank(high) volume_mean_r = Rank(volume_mean) data = pd.concat([high_r,volume_mean_r], axis = 1, join = 'inner') corr = Corr(data,9) alpha = -1 * Rank(corr) alpha.columns = ['alpha141'] return alpha @timer def alpha142(self): close = self.close volume = self.volume close_r = TsRank(close,10) r1 = Rank(close_r) close_delta = Delta(close,1) close_delta_delta = Delta(close_delta,1) r2 = Rank(close_delta_delta) volume_mean = Mean(volume,20) data = pd.concat([volume,volume_mean], axis = 1, join = 'inner') data.columns = ['v','v_m'] temp = pd.DataFrame(data['v']/data['v_m']) temp_r = TsRank(temp,5) r3 = Rank(temp_r) r = pd.concat([r1,r2,r3],axis = 1, join = 'inner') r.columns = ['r1','r2','r3'] alpha = pd.DataFrame(- 1* r['r1'] * r['r2'] * r['r3']) alpha.columns= ['alpha142'] return alpha @timer def alpha143(self): close = self.close close_delay = Delay(close,1) data = pd.concat([close,close_delay], axis = 1, join = 'inner') data.columns = ['close','close_delay'] temp = pd.DataFrame((data['close'] - data['close_delay'])/data['close_delay']) temp.columns= ['temp'] data_temp = pd.concat([data,temp],axis = 1, join = 'inner') data_temp['temp'][data_temp['close'] <= data_temp['close_delay']] = 1 temp_unstack = data_temp['temp'].unstack() temp_unstack.iloc[0,:] = 1 df = np.cumprod(temp_unstack,axis = 0) alpha = df.stack() alpha.columns = ['alpha143'] return alpha @timer def alpha144(self): close = self.close amt = self.amt close_delay = Delay(close,1) data = pd.concat([close,close_delay,amt], axis = 1, join = 'inner') data.columns = ['close','close_delay','amt'] data['temp'] = np.abs(data['close']/data['close_delay'] - 1)/data['amt'] data['sign'] = 1 data['sign'][data['close'] >= data['close_delay']] = 0 tep1 = Sum(pd.DataFrame(data['sign'] * data['temp']),20) tep2 = Count(0,pd.DataFrame(data['close_delay']),pd.DataFrame(data['close']),20) data2 = pd.concat([tep1,tep2], axis = 1, join = 'inner') data2.columns = ['tep1','tep2'] alpha = pd.DataFrame(data2['tep1']/data2['tep2']) alpha.columns = ['alpha144'] return alpha @timer def alpha145(self): volume = self.volume volume_mean9 = Mean(volume,9) volume_mean26 = Mean(volume,26) volume_mean12 = Mean(volume,12) data = pd.concat([volume_mean9,volume_mean26,volume_mean12], axis = 1, join = 'inner') data.columns = ['m9','m26','m12'] alpha = pd.DataFrame((data['m9'] - data['m26'])/data['m12'] * 100) alpha.columns = ['alpha145'] return alpha @timer def alpha146(self): close = self.close close_delay = Delay(close,1) data = pd.concat([close,close_delay],axis = 1, join = 'inner') data.columns = ['close','close_delay'] temp = pd.DataFrame((data['close'] -data['close_delay'])/data['close_delay']) sma1 = SMA(temp,61,2) data2 = pd.concat([temp,sma1], axis = 1, join = 'inner') data2.columns = ['temp1','sma1'] data2['temp2'] = data2['temp1'] - data2['sma1'] temp2_mean = Mean(pd.DataFrame(data2['temp2']),20) sma2 = SMA(pd.DataFrame(data2['temp1'] - data2['temp2']),61,2) data_temp = pd.concat([temp2_mean,pd.DataFrame(data2['temp2']),sma2], axis = 1 , join = 'inner') data_temp.columns = ['temp2_mean','temp2','sma2'] alpha = data_temp['temp2_mean'] * data_temp['temp2'] / data_temp['sma2'] alpha = pd.DataFrame(alpha) alpha.columns = ['alpha146'] return alpha @timer def alpha147(self): close = self.close close_mean = Mean(close,12) alpha = RegBeta(0,close_mean,None,12) alpha.columns = ['alpha147'] return alpha @timer def alpha148(self): Open = self.open volume = self.volume volume_mean = Mean(volume,60) volume_mean_s = Sum(volume_mean,9) data = pd.concat([Open,volume_mean_s],axis = 1, join = 'inner') corr = Corr(data,6) r1 = Rank(corr) open_min = TsMin(Open,14) data2 = pd.concat([Open,open_min], axis = 1, join = 'inner') data2.columns = ['open','open_min'] r2 = Rank(pd.DataFrame(data2['open'] - data2['open_min'])) r = pd.concat([r1,r2],axis = 1, join = 'inner') r.columns = ['r1','r2'] r['alpha'] = -1 r['alpha'][r['r1'] > r['r2']] = 0 alpha = pd.DataFrame(r['alpha']) alpha.columns = ['alpha148'] return alpha @timer def alpha149(self): close = self.close close_index = self.close_index close_delay = Delay(close,1) close_index_delay = Delay(close_index,1) data_index = pd.concat([close_index,close_index_delay], axis = 1, join = 'inner') data_index.columns = ['close','close_delay'] data_index['delta'] = data_index['close']/data_index['close_delay'] - 1 data_index['judge'] = 1 data_index['judge'][data_index['close'] >= data_index['close_delay']] = 0 data_index['delta'][data_index['judge'] == 0] = np.nan # index_delta_unstack = index_delta_unstack.dropna() data = pd.concat([close,close_delay], axis = 1, join = 'inner') data.columns = ['close','close_delay'] data['delta'] = data['close'] / data['close_delay'] - 1 df1 = pd.DataFrame(data['delta']) df2 = pd.DataFrame(data_index['delta']) alpha = RegBeta(1,df1,df2,252) alpha.columns = ['alpha149'] return alpha @timer def alpha150(self): high = self.high low = self.low close = self.close volume = self.volume data = pd.concat([high,low,close,volume], axis = 1, join = 'inner') alpha = (data['Close'] + data['High'] + data['Low'])/3 * data['Vol'] alpha = pd.DataFrame(alpha) alpha.columns = ['alpha150'] return alpha @timer def alpha151(self): close = self.close close_delay = Delay(close,20) data = pd.concat([close,close_delay], axis = 1, join = 'inner') data.columns = ['close','close_delay'] temp = pd.DataFrame(data['close'] - data['close_delay']) alpha = SMA(temp,20,1) alpha.columns = ['alpha151'] return alpha @timer def alpha152(self): close = self.close close_delay = Delay(close,9) data = pd.concat([close,close_delay], axis = 1, join = 'inner') data.columns = ['close','close_delay'] temp = pd.DataFrame(data['close']/data['close_delay']) temp_delay = Delay(temp,1) sma1 = SMA(temp_delay,9,1) sma1_delay = Delay(sma1,1) sma1_delay_mean1 = Mean(sma1_delay,12) sma1_delay_mean2 = Mean(sma1_delay,26) data_temp = pd.concat([sma1_delay_mean1,sma1_delay_mean2],axis = 1, join = 'inner') data_temp.columns = ['m1','m2'] alpha = SMA(pd.DataFrame(data_temp['m1'] - data_temp['m2']),9,1) alpha.columns = ['alpha152'] return alpha @timer def alpha153(self): close = self.close close_mean3 = Mean(close,3) close_mean6 = Mean(close,6) close_mean12 = Mean(close,12) close_mean24 = Mean(close,24) data = pd.concat([close_mean3, close_mean6, close_mean12, close_mean24], axis = 1 ,join ='inner') alpha = pd.DataFrame(np.mean(data, axis = 1)) alpha.columns = ['alpha153'] return alpha @timer def alpha154(self): volume = self.volume vwap = self.vwap volume_mean = Mean(volume,180) data = pd.concat([vwap,volume_mean], axis = 1, join = 'inner') corr = Corr(data,18) vwap_min = TsMin(vwap,16) data1 = pd.concat([vwap,vwap_min],axis = 1, join = 'inner') data1.columns = ['vwap','vwap_min'] temp = pd.DataFrame(data1['vwap'] - data1['vwap_min']) data_temp = pd.concat([corr,temp], axis = 1, join = 'inner') data_temp.columns = ['corr','temp'] data_temp['alpha'] = 1 data_temp['alpha'][data_temp['corr'] >= data_temp['temp']] = 0 alpha = pd.DataFrame(data_temp['alpha']) alpha.columns = ['alpha154'] return alpha @timer def alpha155(self): volume = self.volume sma1 = SMA(volume,13,2) sma2 = SMA(volume,26,2) sma = pd.concat([sma1, sma2], axis = 1, join = 'inner') sma.columns = ['sma1','sma2'] temp = pd.DataFrame(sma['sma1'] - sma['sma2']) sma3 = SMA(temp,10,2) data = pd.concat([temp,sma3], axis = 1 ,join = 'inner') data.columns = ['temp','sma'] alpha = pd.DataFrame(data['temp'] - data['sma']) alpha.columns = ['alpha155'] return alpha @timer def alpha156(self): vwap = self.vwap Open = self.open low = self.low vwap_delta = Delta(vwap,5) vwap_delta_decay = DecayLinear(vwap_delta,3) r1 = Rank(vwap_delta_decay) data1 = pd.concat([Open,low],axis = 1, join = 'inner') temp = -1 * Delta(pd.DataFrame(data1['Open'] * 0.15 + data1['Low'] * 0.85),2) temp_decay = DecayLinear(temp,3) r2 = Rank(temp_decay) r = pd.concat([r1,r2],axis = 1, join = 'inner') r.columns = ['r1','r2'] alpha = pd.DataFrame(- 1 *np.max(r, axis = 1)) alpha.columns = ['alpha156'] return alpha @timer def alpha157(self): close = self.close ret = self.ret close_delta = Delta(close,5) close_delta_r = Rank(Rank(close_delta) * -1) r1 = TsMin(close_delta_r,2) ret_delay = Delay(-1 * ret,6) r2 = TsRank(ret_delay,5) r = pd.concat([r1,r2],axis = 1,join = 'inner') r.columns = ['r1','r2'] temp = pd.DataFrame(r['r1'] + r['r2']) alpha = TsMin(temp,5) alpha.columns = ['alpha157'] return alpha @timer def alpha158(self): high = self.high low = self.low close = self.close temp = SMA(close,15,2) temp.columns = ['temp'] data = pd.concat([high,low,close,temp],axis = 1 , join = 'inner') alpha =(data['High'] + data['Low'] - 2 * data['temp'] )/data['Close'] alpha = pd.DataFrame(alpha) alpha.columns = ['alpha158'] return alpha @timer def alpha159(self): high = self.high low = self.low close = self.close close_delay = Delay(close,1) data1 = pd.concat([low,close_delay],axis = 1, join = 'inner') data2 = pd.concat([high, close_delay], axis = 1, join = 'inner') temp1 = pd.DataFrame(np.min(data1,axis = 1)) temp2= pd.DataFrame(np.max(data2,axis = 1)) temp = pd.concat([temp1,temp2], axis = 1 ,join = 'inner') temp.columns = ['temp1','temp2'] temp1_sum6 = Sum(temp1,6) temp1_sum12 = Sum(temp1,12) temp1_sum24 = Sum(temp1,24) tep = pd.DataFrame(temp['temp2'] - temp['temp1']) s6 = Sum(tep,6) s12 = Sum(tep,12) s24 = Sum(tep,24) data3 = pd.concat([temp1_sum6,temp1_sum12,temp1_sum24,s6,s12,s24], axis = 1 ,join = 'inner') data3.columns = ['ts6','ts12','ts24','s6','s12','s24'] temp3 = pd.DataFrame(data3['ts6']/data3['s6'] * 12 * 24 + data3['ts12']/data3['s12'] * 6 * 24 \ + data3['ts24']/data3['s24'] * 6 * 24) alpha = temp3 / (6*12 + 6*24 + 12*24) * 100 alpha.columns = ['alpha159'] return alpha @timer def alpha160(self): close = self.close close_std = STD(close,20) close_delay = Delay(close,1) data = pd.concat([close,close_std,close_delay],axis = 1, join = 'inner') data.columns = ['close','close_std','close_delay'] data['close_std'][data['close'] >= data['close_delay']] = 0 alpha = SMA(pd.DataFrame(data['close_std']),20,1) alpha.columns = ['alpha160'] return alpha @timer def alpha161(self): high = self.high low = self.low close = self.close close_delay = Delay(close,1) close_delay.columns = ['close_delay'] data1 = pd.concat([high,low],axis = 1 , join = 'inner') diff = pd.DataFrame(data1['High'] - data1['Low']) data2 = pd.concat([close_delay,high], axis = 1, join ='inner') abs1 = pd.DataFrame(np.abs(data2['close_delay'] - data2['High'])) data3 = pd.concat([diff,abs1], axis = 1, join = 'inner') temp1 = pd.DataFrame(np.max(data3,axis = 1)) data4 = pd.concat([close_delay,low],axis = 1, join = 'inner') temp2 = pd.DataFrame(np.abs(data4['close_delay'] -data4['Low'])) data = pd.concat([temp1,temp2],axis =1 , join = 'inner') data.columns = ['temp1','temp2'] temp = pd.DataFrame(np.max(data, axis = 1)) alpha = Mean(temp,12) alpha.columns = ['alpha161'] return alpha @timer def alpha162(self): close = self.close close_delay = Delay(close,1) data = pd.concat([close,close_delay],axis = 1, join = 'inner') data.columns = ['close','close_delay'] data['max']= data['close'] - data['close_delay'] data['max'][data['max'] < 0] = 0 data['abs'] = np.abs(data['close'] - data['close_delay']) temp1 = SMA(pd.DataFrame(data['max']),12,1) temp2 = SMA(pd.DataFrame(data['abs']),12,1) data1 = pd.concat([temp1,temp2], axis = 1, join = 'inner') data1.columns = ['temp1','temp2'] tep = pd.DataFrame(data1['temp1']/data1['temp2']) temp3 = TsMin(tep,12) temp4 = TsMax(tep,12) data_temp = pd.concat([tep,temp3,temp4], axis = 1, join = 'inner') data_temp.columns = ['tep','temp3','temp4'] alpha = (data_temp['tep'] - data_temp['temp3']/data_temp['temp4']) * 100 alpha = pd.DataFrame(alpha) alpha.columns = ['alpha162'] return alpha @timer def alpha163(self): low = self.low high = self.high volume = self.volume ret = self.ret vwap = self.vwap volume_mean = Mean(volume,20) data = pd.concat([high,low,vwap,ret,volume_mean],axis = 1, join = 'inner') data.columns = ['high','low','vwap','ret','volume_mean'] temp = pd.DataFrame(-1 *data['ret'] * data['volume_mean'] *data['vwap'] * \ (data['high'] - data['low'])) alpha = Rank(temp) alpha.columns = ['alpha163'] return alpha @timer def alpha164(self): close = self.close high = self.high low = self.low close_delay = Delay(close,1) data = pd.concat([close,high,low,close_delay],axis = 1, join = 'inner') data.columns = ['close','high','low','close_delay'] data['temp'] = 1/(data['close'] - data['close_delay']) data_min = TsMin(pd.DataFrame(data['temp']),12) data_min.columns = ['min'] data2 = pd.concat([data,data_min],axis = 1, join = 'inner') data2['tep'] = data2['temp'] - data2['min']/(data2['high'] - data2['low']) data2['tep'][data['close'] <= data['close_delay']] = 0 alpha = SMA(pd.DataFrame(data2['tep']) * 100,13,2) alpha.columns = ['alpha164'] return alpha @timer def alpha165(self): close = self.close close_mean = Mean(close,48) data = pd.concat([close,close_mean],axis = 1, join = 'inner') data.columns = ['close','close_mean'] temp = pd.DataFrame(data['close'] - data['close_mean']) temp_sum = Sum(temp,48) temp_sum_min = TsMin(temp_sum,48) temp_sum_max = TsMax(temp_sum,48) close_std = STD(close,48) data_temp = pd.concat([temp_sum_min,temp_sum_max,close_std], axis = 1, join = 'inner') data_temp.columns = ['min','max','std'] alpha = (data_temp['max'] - data_temp['min'])/data_temp['std'] alpha = pd.DataFrame(alpha) alpha.columns = ['alpha165'] return alpha @timer def alpha166(self): close = self.close close_delay = Delay(close,1) data = pd.concat([close,close_delay], axis = 1, join = 'inner') data.columns = ['close','close_delay'] temp = pd.DataFrame(data['close']/data['close_delay']) temp_mean = Mean(temp,20) data1 = pd.concat([temp,temp_mean], axis = 1, join = 'inner') data1.columns = ['temp','temp_mean'] temp2 = Sum(pd.DataFrame(data1['temp'] - data1['temp_mean']),20) * 20 * 19 temp3 = Sum(temp,20) * 19 * 18 data2 = pd.concat([temp2,temp3], axis = 1, join = 'inner') data2.columns = ['temp2','temp3'] alpha = np.power(data2['temp2'],1.5)/np.power(data2['temp3'],1.5) alpha = pd.DataFrame(alpha) alpha.columns = ['alpha166'] return alpha @timer def alpha167(self): close = self.close close_delay = Delay(close,1) data = pd.concat([close,close_delay], axis = 1, join = 'inner') data.columns = ['close','close_delay'] data['temp'] = data['close'] - data['close_delay'] data['temp'][data['close'] <= data['close_delay']] = 0 alpha = Sum(pd.DataFrame(data['temp']),12) alpha.columns = ['alpha167'] return alpha @timer def alpha168(self): volume = self.volume volume_mean = Mean(volume,20) data = pd.concat([volume,volume_mean], axis = 1, join = 'inner') data.columns = ['volume','volume_mean'] alpha = data['volume']/data['volume_mean'] * -1 alpha.columns = ['alpha168'] return alpha @timer def alpha169(self): close = self.close close_delay = Delay(close,1) data = pd.concat([close,close_delay], axis = 1, join = 'inner') data.columns = ['close','close_delay'] temp1 = pd.DataFrame(data['close'] - data['close_delay']) sma = SMA(temp1,9,1) temp2 = Delay(sma,1) temp2_mean12 = Mean(temp2,12) temp2_mean26 = Mean(temp2,26) data2 = pd.concat([temp2_mean12,temp2_mean26], axis = 1, join ='inner') data2.columns = ['mean1','mean2'] alpha = SMA(pd.DataFrame(data2['mean1'] - data2['mean2']),10,1) alpha.columns = ['alpha169'] return alpha @timer def alpha170(self): close = self.close high = self.high volume = self.volume vwap = self.vwap volume_mean = Mean(volume,20) data1 = pd.concat([high,close,volume,volume_mean], axis = 1, join = 'inner') data1.columns =['high','close','volume','volume_mean'] temp1 = pd.DataFrame(data1['high']/data1['close'] * data1['volume']/data1['volume_mean']) r1 = Rank(temp1) high_mean = Mean(high,5) vwap_delay = Delay(vwap,5) data2 = pd.concat([high,close,high_mean], axis = 1, join = 'inner') data2.columns = ['high','close','high_mean'] temp2 = pd.DataFrame((data2['high'] - data2['close'])/data2['high_mean']) temp2_r = Rank(temp2) data3 = pd.concat([vwap,vwap_delay], axis = 1, join = 'inner') data3.columns = ['vwap','vwap_delay'] temp3 = pd.DataFrame(data3['vwap'] - data3['vwap_delay']) temp3_r = Rank(temp3) rank = pd.concat([temp2_r,temp3_r], axis = 1, join = 'inner') rank.columns = ['r1','r2'] r2 = pd.DataFrame(rank['r1'] - rank['r2']) data_temp = pd.concat([r1,r2],axis = 1, join = 'inner') data_temp.columns = ['r1','r2'] alpha = pd.DataFrame(data_temp['r1'] * data_temp['r2']) alpha.columns = ['alpha170'] return alpha @timer def alpha171(self): high = self.high close = self.close low = self.low Open = self.open data = pd.concat([high,close,low,Open],axis = 1, join = 'inner') alpha = -1 * (data['Low'] - data['Close']) * np.power(data['Open'],5)/\ ((data['Close'] - data['High']) * np.power(data['Close'],5)) alpha.columns = ['alpha171'] return alpha @timer def alpha172(self): high = self.high low = self.low hd = HD(high) ld = LD(low) data = pd.concat([hd,ld],axis = 1, join = 'inner') data.columns = ['hd','ld'] data['temp'] = 0 data['temp'][((data['hd'] > data['ld'])& (data['hd'] > 0)) | \ ((data['ld'] > data['hd'])& (data['ld'] > 0))] = 1 alpha = Mean(pd.DataFrame(data['temp']),6) alpha.columns = ['alpha172'] return alpha @timer def alpha173(self): close = self.close close_ln = pd.DataFrame(np.log(close)) temp1 = SMA(close,13,2) temp2 = SMA(close_ln,13,2) temp3 = SMA(temp1,13,2) temp4 = SMA(SMA(temp2,13,2),13,2) data = pd.concat([temp1,temp3,temp4], axis = 1, join = 'inner') data.columns = ['t1','t2','t3'] alpha = pd.DataFrame(3 * data['t1'] - 2 * data['t2'] + data['t3']) alpha.columns = ['alpha173'] return alpha @timer def alpha174(self): close = self.close close_delay = Delay(close,1) close_std = STD(close,20) data = pd.concat([close,close_delay,close_std], axis = 1, join = 'inner') data.columns = ['close','close_delay','close_std'] data['close_std'][data['close'] <= data['close_delay']] = 0 alpha = SMA(pd.DataFrame(data['close_std']),12,1) alpha.columns = ['alpha174'] return alpha @timer def alpha175(self): high = self.high close = self.close low = self.low close_delay = Delay(close,1) data = pd.concat([high,close,low,close_delay],axis = 1, join = 'inner') data.columns = ['high','close','low','close_delay'] data_abs = pd.DataFrame(np.abs(data['close_delay'] - data['high'])) h_l = pd.DataFrame(data['high'] - data['low']) data1 = pd.concat([data_abs,h_l], axis = 1, join = 'inner') temp1 = pd.DataFrame(np.max(data1,axis = 1)) data_abs2 = pd.DataFrame(np.abs(data['close_delay'] - data['low'])) data2 = pd.concat([temp1,data_abs2], axis = 1, join = 'inner') temp2 = pd.DataFrame(np.max(data2,axis = 1)) data3 = pd.concat([temp1,temp2],axis = 1, join = 'inner') max_temp = pd.DataFrame(np.max(data3,axis = 1)) alpha = Mean(max_temp,6) alpha.columns = ['alpha175'] return alpha @timer def alpha176(self): high = self.high close = self.close low = self.low volume = self.volume low_min = TsMin(low,12) high_max = TsMax(high,12) data1 = pd.concat([close,low_min,high_max],axis = 1, join = 'inner') data1.columns = ['close','low_min','high_max'] temp = pd.DataFrame((data1['close'] - data1['low_min'])\ /(data1['high_max'] - data1['low_min'])) r1 = Rank(temp) r2 = Rank(volume) rank = pd.concat([r1,r2], axis = 1, join = 'inner') alpha = Corr(rank,6) alpha.columns = ['alpha176'] return alpha @timer def alpha177(self): high = self.high highday = Highday(high,20) alpha = pd.DataFrame((20 - highday)/20.0 * 100) alpha.columns = ['alpha177'] return alpha @timer def alpha178(self): close = self.close close_delay = Delay(close,1) volume = self.volume data = pd.concat([close,close_delay,volume], axis = 1, join = 'inner') data.columns = ['close','close_delay','volume'] alpha = pd.DataFrame((data['close'] - data['close_delay'])\ /data['close_delay'] * data['volume']) alpha.columns = ['alpha178'] return alpha @timer def alpha179(self): low = self.low volume = self.volume vwap = self.vwap data1 = pd.concat([vwap,volume], axis = 1, join = 'inner') corr = Corr(data1,4) r1 = Rank(corr) volume_mean = Mean(volume,50) volume_mean_r = Rank(volume_mean) row_r = Rank(low) data2 = pd.concat([row_r,volume_mean_r], axis = 1, join = 'inner') corr2 = Corr(data2,12) r2 = Rank(corr2) data = pd.concat([r1,r2], axis = 1, join = 'inner') data.columns = ['r1','r2'] alpha = pd.DataFrame(data['r1'] * data['r2']) alpha.columns = ['alpha179'] return alpha @timer def alpha180(self): volume = self.volume close = self.close close_delta = Delta(close,7) volume_mean = Mean(volume,20) close_delta_abs = pd.DataFrame(np.abs(close_delta)) r = TsRank(close_delta_abs,60) sign = pd.DataFrame(np.sign(close_delta)) temp = pd.concat([r,sign],axis = 1, join = 'inner') temp.columns = ['r','sign'] temp1 = temp['r'] * temp['sign'] data = pd.concat([volume,volume_mean,temp1], axis = 1, join = 'inner') data.columns = ['volume','volume_mean','temp1'] data['volume1'] = data['volume'] data['temp1'][data['volume'] >= data['volume_mean']] = 0 data['volume1'][data['volume'] < data['volume_mean']] = 0 alpha = -1 * pd.DataFrame(data['volume1'] + data['temp1']) alpha.columns = ['alpha180'] return alpha @timer def alpha181(self): close = self.close close_index = self.close_index close_delay = Delay(close,1) data1 = pd.concat([close,close_delay],axis = 1, join = 'inner') data1.columns = ['close','close_delay'] temp = pd.DataFrame(data1['close']/data1['close_delay']) - 1 temp_mean = Mean(temp,20) data_temp = pd.concat([temp,temp_mean], axis = 1, join = 'inner') data_temp.columns = ['temp','temp_mean'] temp1 = pd.DataFrame(data_temp['temp'] - data_temp['temp_mean']) close_index_mean = Mean(close_index,20) data2 = pd.concat([close_index,close_index_mean], axis = 1, join = 'inner') data2.columns = ['close_index','close_index_mean'] temp2 = pd.DataFrame(np.power(data2['close_index'] - data2['close_index_mean'],2)) temp3 = pd.DataFrame(np.power(data2['close_index'] - data2['close_index_mean'],3)) temp1_unstack = temp1.unstack() temp2_unstack = temp2.unstack() temp2_mod = pd.DataFrame(repmat(temp2_unstack,1,np.size(temp1_unstack,1))) temp3_unstack = temp3.unstack() temp3_mod = pd.DataFrame(repmat(temp3_unstack,1,np.size(temp1_unstack,1))) temp1_result = temp1_unstack.rolling(20, min_periods = 20).sum() temp2_result = temp2_mod.rolling(20, min_periods = 20).sum() temp2_result.index = temp2_unstack.index.tolist() temp3_result = temp3_mod.rolling(20, min_periods = 20).sum() temp3_result.index = temp3_unstack.index.tolist() result = pd.concat([temp1_result,temp2_result,temp3_result], axis = 1, join = 'inner') m = np.size(temp1_result,1) alpha_temp = pd.DataFrame((result.values[:,:m] - result.values[:,m:2*m])/result.values[:,2*m:]) df1 = result.iloc[:,:m] alpha_temp.columns = df1.columns.tolist() alpha_temp.index = df1.index.tolist() alpha = pd.DataFrame(alpha_temp.stack()) alpha.columns = ['alpha181'] return alpha @timer def alpha182(self): close = self.close Open = self.open close_index = self.close_index open_index = self.open_index data1 = pd.concat([close,Open], axis = 1, join = 'inner') data1['temp'] = 1 data1['temp'][data1['Close'] <= data1['Open']] = 0 data1['temp1'] = 1 data1['temp1'][data1['Close'] > data1['Open']] = 0 data2 = pd.concat([close_index,open_index], axis = 1, join = 'inner') data2['tep'] = 0 data2['tep'][data2['close'] > data2['open']] = 1 data2['tep1'] = 0 data2['tep1'][data2['close'] < data2['open']] = 1 temp = data1['temp'].unstack() temp1 = data1['temp1'].unstack() tep = data2['tep'].unstack() tep1 = data2['tep1'].unstack() tep_rep = repmat(tep,1,np.size(temp,1)) tep1_rep = repmat(tep1,1,np.size(temp,1)) data3 = temp * tep_rep + temp1 * tep1_rep - temp * tep_rep * temp1 * tep1_rep result = data3.rolling(20,min_periods = 20).sum() alpha_temp = result/20.0 alpha = pd.DataFrame(alpha_temp.stack()) alpha.columns = ['alpha182'] return alpha @timer def alpha183(self): close = self.close close_mean = Mean(close,24) close_std = STD(close,24) data1 = pd.concat([close,close_mean], axis = 1, join = 'inner') data1.columns = ['close','close_mean'] temp = pd.DataFrame(data1['close'] - data1['close_mean']) temp_max = TsMin(temp,24) temp_min = TsMin(temp,24) data2 = pd.concat([temp_max,temp_min,close_std],axis = 1, join = 'inner') data2.columns = ['max','min','std'] alpha = pd.DataFrame((data2['max'] - data2['min'])/data2['std']) alpha.columns = ['alpha183'] return alpha @timer def alpha184(self): close = self.close Open = self.open data = pd.concat([close,Open], axis = 1, join = 'inner') data['diff'] = data['Open'] - data['Close'] diff_delay = Delay(pd.DataFrame(data['diff']),1) data1 = pd.concat([diff_delay,close],axis = 1, join = 'inner') corr = Corr(data1,200) r1 = Rank(corr) r2 = Rank(pd.DataFrame(data['diff'])) r = pd.concat([r1,r2], axis = 1, join = 'inner') r.columns = ['r1','r2'] alpha =
pd.DataFrame(r['r1'] + r['r2'])
pandas.DataFrame
#!/usr/bin/env python # coding: utf-8 # In[ ]: import xlrd from sklearn.model_selection import train_test_split from sklearn.svm import SVC from sklearn.metrics import classification_report, confusion_matrix from sklearn.metrics import roc_curve, auc, accuracy_score import matplotlib.pyplot as plt import xgboost as xgb import pandas as pd from xgboost import XGBClassifier from pandas.core.frame import DataFrame from sklearn.model_selection import GridSearchCV from sklearn.feature_selection import SelectFromModel from sklearn.ensemble import ExtraTreesClassifier import numpy as np from sklearn import tree from sklearn.tree import export_graphviz import pydotplus import random import requests import json import base64 import urllib import sys import ssl import graphviz import time # In[ ]: def readxls(root): data_list=[] data=xlrd.open_workbook(root) table=data.sheets()[0] nrows=table.nrows ncols=table.ncols for i in range(1,nrows): data_list.append(table.row_values(i)) rowname=table.row_values(0) return data_list,rowname # In[ ]: healthy,rowname=readxls("negative_data.xls") unhealthy,rowname=readxls("positive_data.xls") total_data=healthy+unhealthy total_data=DataFrame(total_data) total_data.columns=rowname #print(total_data) target=[0]*len(healthy)+[1]*len(unhealthy) X_train, X_test, y_train, y_test =train_test_split(total_data, target, test_size=0.25, random_state=99999) # In[ ]: start = time.clock() clf = ExtraTreesClassifier() clf = clf.fit(X_train, y_train) print(clf.feature_importances_) model = SelectFromModel(clf, prefit=True,threshold=0.03) X_train = model.transform(X_train) X_test=model.transform(X_test) print(len(X_train[0])) end = time.clock() print(str(end-start)) # In[ ]: select_result=DataFrame(clf.feature_importances_).sort_values(by=0).T select_result.columns=rowname select_result.to_csv('feature selection.csv') print(select_result) # In[ ]: sel_rows=np.array(rowname)[clf.feature_importances_>=0.03] # In[ ]: X_train=DataFrame(X_train) X_train.columns=np.array(rowname)[clf.feature_importances_>=0.03] X_test=
DataFrame(X_test)
pandas.core.frame.DataFrame
__author__ = "<NAME>" __license__ = "Apache 2" __version__ = "1.0.0" __maintainer__ = "<NAME>" __website__ = "https://llp.berkeley.edu/asgari/" __git__ = "https://github.com/ehsanasgari/" __email__ = "<EMAIL>" __project__ = "1000Langs -- Super parallel project at CIS LMU" import requests from bs4 import BeautifulSoup import tqdm import sys sys.path.append('../') from utility.file_utility import FileUtility import pandas as pd import numpy as np from massive_parallelbible_IF.accessbible import AccessBible def warn(*args, **kwargs): pass import warnings warnings.warn = warn def getMetaFindBible(): #"https://find.bible/bibles/" base_url = '../meta/bibles_list.html' f=open(base_url,'r') soup = BeautifulSoup(f) table=soup.select('table')[0] df=pd.read_html(table.prettify(), flavor='bs4',header=0)[0] res = [[np.where(tag.has_attr('href'),tag.get('href'),"no link") for tag in tagr.find_all('a')] for tagr in table.find_all('tr')] df['trans_ID'] = ['Not Available' if x==[] else x[0].tolist().split('/')[-1] for x in res[1::]] df=df.rename(index=str,columns={x:x.strip() for x in df.columns.tolist()}) df=df.rename(index=str,columns={'Name':'Description','Date':'Year','ISO':'language_iso','Language':'language_name'}) df=df[['trans_ID','language_iso','language_name','Description','Year']] df=df[df['trans_ID']!='Not Available'] df.set_index('trans_ID') return df def getMetaEbible(): try: base_url = 'http://ebible.org/Scriptures/copyright.php' soup = BeautifulSoup(requests.get(base_url).content) tables=soup.select('table') dfs=[] for table in tables: dfs.append(pd.read_html(table.prettify(), flavor='bs4',header=0)[0]) df=pd.concat(dfs, sort=True) mask=(df['FCBH/DBS'].str.len() == 6) & (df['FCBH/DBS'].str.isupper()) except: soup = BeautifulSoup(open("../meta/ebible.html") ) tables=soup.select('table') dfs=[] for table in tables: dfs.append(pd.read_html(table.prettify(), flavor='bs4',header=0)[0]) df=pd.concat(dfs, sort=True) mask=(df['FCBH/DBS'].str.len() == 6) & (df['FCBH/DBS'].str.isupper()) df = df.loc[mask] df['iso']=[x[0:3] for x in df['ID'].tolist()] df=df[['iso','FCBH/DBS','Language in English', 'Year','Short Title']] df=df.rename(index=str,columns={'iso':'language_iso','FCBH/DBS':'trans_ID','Language in English':'language_name','Short Title':'Description','Date':'Year'}) df=df[['trans_ID','language_iso','language_name','Description','Year']] df.set_index('trans_ID') return df def getMetaMerged(): # read and merge two bibles df_ebible=getMetaEbible() df_main=getMetaFindBible() df=pd.concat([df_main,df_ebible]) df.drop_duplicates(subset=['trans_ID'], keep='last', inplace=True) df.set_index('trans_ID') return df def getMassiveparallel_meta(update=False): errors=[] if update: # Get michael's corpora AccBible = AccessBible(AccessBible.path) massive_par_corpora=AccBible.get_list_of_all_lang_translations() massive_par_corpora_length=dict() for lang, trnsls in tqdm.tqdm(massive_par_corpora.items()): length_list=[] for trns in trnsls: try: l=len(AccBible.get_subcorpus_bible_by_lang_trans_filtered(lang,trns)) length_list.append(l) except: errors.append((lang,trns)) if length_list!=[]: massive_par_corpora_length[lang]=(len(length_list),max(length_list),np.mean(length_list)) rows=[] for iso, scores in massive_par_corpora_length.items(): rows.append([iso, scores[0], scores[1], scores[2]]) df=pd.DataFrame(rows) df=df.rename(index=str, columns={0:'language_iso',1:'#trans-massivepar', 2:'max-verse-massivepar',3:'mean-verse-massivepar'}) df=df.set_index('language_iso') df.to_csv('../meta/massive_par_stat.tsv', sep='\t', index=True) return
pd.read_table('../meta/massive_par_stat.tsv', sep='\t')
pandas.read_table
# -*- coding: utf-8 -*- """Creates folders and files with simulated data for various characterization techniques Notes ----- All data is made up and does not correspond to the materials listed. The data is meant to simply emulate real data and allow for basic analysis. @author: <NAME> Created on Jun 15, 2020 """ from pathlib import Path from lmfit import lineshapes import matplotlib.pyplot as plt import numpy as np import pandas as pd import PySimpleGUI as sg from . import utils __all__ = ['generate_raw_data'] _PARAMETER_FILE = 'raw data parameters.txt' def _generate_peaks(x, y, peak_type, params, param_var, **func_kwargs): """ Used to generate peaks with a given variability. Parameters ---------- x : array-like The x data. y : array-like The y data (can contain the background and noise). peak_type : function A peak generating function, which uses x and the items from params as the inputs. params : list or tuple The parameters to create the given peak_type; len(params) is how many peaks will be made by the function. param_var : list or tuple Random variability to add to the parameter; the sigma associated with the normal distribution of the random number generator. func_kwargs : dict Additional keyword arguments to pass to the peak generating function. Returns ------- y : array-like The y data with the peaks added. new_params : list The actual parameter values after applying the given variability. Notes ----- Uses np.random.rand to only use random values in the range [0, 1). This was a mistake, and np.random.randn was supposed to be used, but the parameter values and variability are already optimized for use with np.random.rand, so there is no reason to change anything since it works. """ # to prevent overwriting the input collection objects new_params = [param.copy() for param in params] for param in new_params: for i, value in enumerate(param): param[i] = value + param_var[i] * np.random.rand(1) y += peak_type(x, *param, **func_kwargs) return y, new_params def _generate_XRD_data(directory, num_data=6, show_plots=True): """ Generates the folders and files containing example XRD data. Parameters ---------- directory : Path The file path to the Raw Data folder. num_data : int, optional The number of files to create. show_plots : bool, optional If True, will show a plot of the data. Notes ----- This function will create two folders containing the same data with different file names, simply to create more files. The background is a second order polynomial. Peaks are all pseudovoigt. """ fe_path = Path(directory, 'XRD/Fe') ti_path = Path(directory, 'XRD/Ti') fe_path.mkdir(parents=True, exist_ok=True) ti_path.mkdir(parents=True, exist_ok=True) x = np.linspace(10, 90, 500) background = 0.4 * ((75 - x)**2) # equivalent to 0.4*x^2 - 60*x + 2250 # [amplitude, center, sigma, fraction] params = [ [3000, 18, 0.3, 0.5], [5000, 32, 0.2, 0.5], [5000, 36, 1, 0.5], [1000, 51, 0.5, 0.5], [1500, 65, 0.5, 0.5], [600, 80, 0.5, 0.5] ] param_var = [1000, 1, 1, 0.1] plt.figure(num='xrd') param_dict = {} data = {'x': x} for i in range(num_data if not num_data % 2 else num_data + 1): if i < num_data / 2: sample_name = f'Ti-{i}W-700' sample_name_2 = f'Fe-{i}W-700' else: sample_name = f'Ti-{(i - int(np.ceil(num_data / 2)))}W-800' sample_name_2 = f'Fe-{(i - int(np.ceil(num_data / 2)))}W-800' noise = 10 * np.random.randn(x.size) data['y'], new_params = _generate_peaks( x, background + noise, lineshapes.pvoigt, params, param_var ) param_dict[sample_name] = new_params param_dict[sample_name_2] = new_params data_df =
pd.DataFrame(data)
pandas.DataFrame
import pandas as pd import numpy as np import pandas as pd from datetime import datetime import matplotlib.pyplot as plt import itertools from dateutil.relativedelta import relativedelta import sklearn.tree as tree from sklearn.neural_network import MLPClassifier from imblearn.over_sampling import SMOTE, ADASYN from imblearn.combine import SMOTEENN from imblearn.under_sampling import RandomUnderSampler, EditedNearestNeighbours from sklearn.model_selection import train_test_split from sklearn.metrics import classification_report, confusion_matrix, precision_score, recall_score from imblearn.pipeline import Pipeline from sklearn.model_selection import GridSearchCV, StratifiedShuffleSplit from sklearn.preprocessing import label_binarize from sklearn.preprocessing import scale from sklearn.model_selection import cross_val_predict from sklearn.metrics import roc_auc_score from sklearn.preprocessing import StandardScaler import xgboost as xgb from sklearn.ensemble import GradientBoostingClassifier from joblib import Parallel, delayed pd.set_option('display.max_columns', None) def get_all_data(): #dir = 'D:\\Backups\\StemData\\' files = ['sample_orig_2016.txt', 'sample_orig_2015.txt', 'sample_orig_2014.txt', 'sample_orig_2013.txt', 'sample_orig_2012.txt', 'sample_orig_2011.txt', 'sample_orig_2010.txt', 'sample_orig_2009.txt', 'sample_orig_2008.txt', 'sample_orig_2007.txt'] files1 = ['sample_svcg_2016.txt', 'sample_svcg_2015.txt', 'sample_svcg_2014.txt', 'sample_svcg_2013.txt', 'sample_svcg_2012.txt', 'sample_svcg_2011.txt', 'sample_svcg_2010.txt', 'sample_svcg_2009.txt', 'sample_svcg_2008.txt', 'sample_svcg_2008.txt'] merged_data =
pd.DataFrame()
pandas.DataFrame
from __future__ import annotations from typing import Optional, List, Dict, Tuple import logging import textwrap import pandas as pd import numpy as np import h5py from tqdm import tqdm from .catmaid_interface import Catmaid, Bbox, ConnectorDetail from .utils import CoordZYX logger = logging.getLogger(__name__) def trim_cols(df, required: List[str], name=None): try: return df[required] except KeyError: name = f"{name} " if name else "" msg = f"Invalid {name}dataframe columns.\n\tRequired: {required}\n\t Got: {list(df.columns)}" raise ValueError(msg) class TransformerMixin: _transformer_attr: Optional[str] = None def world_to_px(self, world_coords, as_int=False, round_z=False): if self._transformer_attr is None: out = (np.asarray(world_coords) - self.offset) / self.resolution if round_z: out[..., 0] = np.round(out[..., 0]).astype(out.dtype) if as_int: out = out.astype(np.uint64) return out else: return getattr(self, self._transformer_attr).world_to_px( world_coords, as_int, round_z ) def px_to_world(self, px_coords): if self._transformer_attr is None: return ( np.asarray(px_coords, dtype=np.float64) * self.resolution + self.offset ) else: return getattr(self, self._transformer_attr).px_to_world(px_coords) class Image(TransformerMixin): def __init__( self, array, resolution=(1, 1, 1), offset=(0, 0, 0), dims=("z", "y", "x") ): self.array = np.asarray(array) self.resolution = np.asarray(resolution, dtype=float) self.offset = np.asarray(offset, dtype=float) if list(dims) != ["z", "y", "x"]: raise NotImplementedError("Non-ZYX orientations are not supported") self.dims = dims def extents(self): """[[mins], [maxes]]""" return np.array([self.offset, self.offset + self.resolution * self.array.shape]) def to_hdf5(self, f, name, mode="a", attrs=None): if not isinstance(f, h5py.Group): with h5py.File(f, mode) as f2: return self.to_hdf5(f2, name) ds = f.create_dataset(name, data=self.array, compression="gzip") ds.attrs["resolution"] = self.resolution ds.attrs["offset"] = self.offset ds.attrs["dims"] = self.dims if attrs is not None: ds.attrs.update(attrs) return ds def is_compatible(self, other: Image): try: self.raise_on_incompatible(other) except ValueError: return False return True def raise_on_incompatible(self, other: Image, names=("left", "right")): features = {} if not isinstance(self, Image) or not isinstance(other, Image): features["class"] = (type(self), type(other)) if self.array.shape != other.array.shape: features["shape"] = (self.array.shape, other.array.shape) if tuple(self.resolution) != tuple(other.resolution): features["resolution"] = (tuple(self.resolution), tuple(other.resolution)) if tuple(self.offset) != tuple(other.offset): features["offset"] = (tuple(self.offset), tuple(other.offset)) if tuple(self.dims) != tuple(other.dims): features["dims"] = (tuple(self.dims), tuple(other.dims)) if not features: return left_name, right_name = pad_strs(names) lines = [] for k, (l_val, r_val) in features.items(): lines.append(k) lines.append(f" {left_name}: {l_val}") lines.append(f" {right_name}: {r_val}") msg = textwrap.indent("\n".join(lines), " ") raise ValueError("Images not compatible.\n" + msg) @classmethod def from_hdf5(cls, f, name=None): if isinstance(f, h5py.Dataset): return cls(f[:], f.attrs["resolution"], f.attrs["offset"], f.attrs["dims"]) elif isinstance(f, h5py.Group): return cls.from_hdf5(f[name]) else: with h5py.File(f, "r") as f2: return cls.from_hdf5(f2[name]) def max_plus_one(self): if not issubclass(self.array.dtype, np.integer): raise TypeError("Array is not of integer subtype") return self.array.data.max() + 1 def contains(self, coord: Tuple[float, float, float]) -> bool: """Whether a real-world coordinate tuple is inside the array""" diffs = self.extents - coord return np.all(diffs[0] <= 0) and np.all(diffs[1] >= 0) def sub_image_px( self, internal_offset: Tuple[int, int, int], shape: Tuple[int, int, int] ) -> Image: int_off = np.asarray(internal_offset, int) if np.any(int_off < 0): raise ValueError("internal_offset must be positive") if np.any(int_off + shape > self.array.shape): raise ValueError("sub-image extends beyond image") slicing = tuple(slice(o, o + s) for o, s in zip(int_off, shape)) arr = self.array[slicing] return type(self)( arr, self.resolution, self.offset + int_off * self.resolution, self.dims ) def sub_image( self, internal_offset: Tuple[float, float, float], shape: Tuple[float, float, float], ) -> Image: """Start and stop points are found in world coordinates; then rounded to pixels""" offset_px = np.round(self.offset + internal_offset).astype(int) stop_px = np.round(self.offset + internal_offset + shape).astype(int) return self.sub_image_px(offset_px, stop_px - offset_px) def pad_strs(strs, prefix=True, pad=" "): if len(pad) != 1: raise ValueError("Pad string must be 1 character long") length = max(len(s) for s in strs) return [s + pad * (length - len(s)) for s in strs] def serialize_treenodes(tns: pd.DataFrame): tns = tns.copy() tns["parent_id"] = np.array(tns["parent_id"].fillna(0), dtype=int) return tns def deserialize_treenodes(tns: pd.DataFrame): tns = tns.copy() ids = pd.array(tns["parent_id"], dtype="UInt64") ids[ids == 0] = pd.NA tns["parent_id"] = ids return tns def remove_single_nodes(treenodes: pd.DataFrame): """Remove all nodes belonging to skeletons with only 1 treenode in the dataframe""" skids, counts = np.unique(treenodes["skeleton_id"], return_counts=True) single_tns = skids[counts == 1] to_drop = np.zeros(len(treenodes), bool) for skid in single_tns: to_drop |= treenodes["skeleton_id"] == skid return treenodes.loc[~to_drop].copy() class CatnapIO(TransformerMixin): _transformer_attr = "raw" def __init__( self, raw: Image, treenodes: pd.DataFrame, connectors: pd.DataFrame, partners: pd.DataFrame, labels: Optional[Image] = None, ): self.raw: Image = raw self.treenodes = remove_single_nodes( trim_cols( treenodes, ["treenode_id", "parent_id", "skeleton_id", "z", "y", "x"], "treenode", ) ) self.connectors = trim_cols( connectors, ["connector_id", "z", "y", "x"], "connector" ) self.partners = trim_cols( partners, ["skeleton_id", "treenode_id", "connector_id", "is_presynaptic"], "partners", ) self.labels: Optional[Image] = None self.set_labels(labels) def to_hdf5(self, fpath, gname=""): gname = gname.rstrip("/") if gname else "" prefix = f"{gname}/tables" with pd.HDFStore(fpath, "w") as f: serialize_treenodes(self.treenodes).to_hdf(f, f"{prefix}/treenodes") self.connectors.to_hdf(f, f"{prefix}/connectors") self.partners.to_hdf(f, f"{prefix}/partners") prefix = f"{gname}/volumes" with h5py.File(fpath, "a") as f: self.raw.to_hdf5(f, f"{prefix}/raw") if self.labels is not None: self.labels.to_hdf5(f, f"{prefix}/labels") @classmethod def from_hdf5(cls, fpath, gname="", ignore_labels=False): prefix = f"{gname}/tables" with
pd.HDFStore(fpath, "r")
pandas.HDFStore
import pandas as pd from collections import Counter import sklearn.preprocessing as preprocessing import numpy as np import os from pandas import Series import seaborn as sns from sklearn.preprocessing import LabelEncoder, OneHotEncoder from sklearn.feature_selection import SelectKBest column_names = ['age','workclass','fnlwgt','education','education-num','marital-status','occupation','relationship','race','sex','capital-gain','capital-loss','hours-per-week','native-country','class'] cur_path = os.path.dirname(__file__) ''' Read the data from csv ''' def read_data(path): data = open(path) #column_names = list(data.columns.values) data =
pd.read_csv(data,sep='\s*,\s*',encoding='ascii',names = column_names,engine='python')
pandas.read_csv
""" Functions and objects to work with mzML data and tabular data obtained from third party software used to process Mass Spectrometry data. Objects ------- MSData: reads raw MS data in the mzML format. Manages Chromatograms and MSSpectrum creation. Performs feature detection on centroid data. Functions --------- read_pickle(path): Reads a DataContainer stored as a pickle. read_progenesis(path): Reads data matrix in a csv file generated with Progenesis software. read_data_matrix(path, mode): Reads data matrix in several formats. Calls other read functions. functions. See Also -------- Chromatogram MSSpectrum DataContainer Roi """ import numpy as np import pandas as pd import os from typing import Optional, Iterable, Callable, Union, List, BinaryIO, TextIO from .container import DataContainer from ._names import * from . import lcms from . import validation import pickle import requests import warnings import pyopenms def read_pickle(path: Union[str, BinaryIO]) -> DataContainer: """ read a DataContainer stored as a pickle Parameters ---------- path: str or file path to read DataContainer Returns ------- DataContainer """ if hasattr(path, "read"): with path as fin: result = pickle.load(fin) else: with open(path, "rb") as fin: result = pickle.load(fin) return result def read_progenesis(path: Union[str, TextIO]): """ Read a progenesis file into a DataContainer Parameters ---------- path : str or file Returns ------- dc : DataContainer """ df_header = pd.read_csv(path, low_memory=False) df = df_header.iloc[2:].copy() col_names = df_header.iloc[1].values df.columns = col_names df = df.set_index("Compound") df_header = df_header.iloc[:1].copy() df_header = df_header.fillna(axis=1, method="ffill") norm_index = df_header.columns.get_loc("Normalised abundance") - 1 raw_index = df_header.columns.get_loc("Raw abundance") - 1 ft_def = df.iloc[:, 0:norm_index].copy() data = df.iloc[:, raw_index:(2 * raw_index - norm_index)].T sample_info = \ df_header.iloc[:, (raw_index + 1):(2 * raw_index - norm_index + 1)].T # rename data matrix data.index.rename("sample", inplace=True) data.columns.rename("feature", inplace=True) data = data.astype(float) # rename sample info sample_info.index = data.index sample_info.rename({sample_info.columns[0]: _sample_class}, axis="columns", inplace=True) # rename features def ft_def.index.rename("feature", inplace=True) ft_def.rename({"m/z": "mz", "Retention time (min)": "rt"}, axis="columns", inplace=True) ft_def = ft_def.astype({"rt": float, "mz": float}) ft_def["rt"] = ft_def["rt"] * 60 validation.validate_data_container(data, ft_def, sample_info) dc = DataContainer(data, ft_def, sample_info) return dc def read_mzmine(data: Union[str, TextIO], sample_metadata: Union[str, TextIO]) -> DataContainer: """ read a MZMine2 csv file into a DataContainer. Parameters ---------- data : str or file csv file generated with MZMine. sample_metadata : str, file or DataFrame csv file with sample metadata. The following columns are required: * sample : the same sample names used in `data` * class : the sample classes Columns with run order and analytical batch information are optional. Must be names "order" and "batch" Returns ------- DataContainer """ df = pd.read_csv(data) col_names =
pd.Series(df.columns)
pandas.Series
import os import argparse import itertools import numpy as np import pandas as pd import scipy.sparse as sp from tqdm import tqdm from shqod import ( read_trajec_csv, trajec, read_level_grid, od_matrix, calculate_field, field_to_dict, mobility_functional, fractalD, trajectory_length, ) project_dir = os.environ["dementia"] # set in the shell grids_dir = os.path.join(project_dir, "data", "grids", "") processed_dir = os.path.join(project_dir, "data", "processed", "") apoe_dir = os.path.join(project_dir, "data", "apoe_dataframes") ad_dir = os.path.join(project_dir, "data", "ad_dataframe") # e3e4_dir = os.path.join(apoe_dir, 'e3e4') # e3e3_dir = os.path.join(apoe_dir, 'e3e3') # e4e4_dir = os.path.join(apoe_dir, 'e4e4') class NormativeBenchmark(object): def __init__( self, age_range: str, gender: str, od_matrix: sp.csr.csr_matrix, nb_trajecs: int, grid_width: int, grid_length: int, level: int = None, flags: np.array = None, ): self.age_range = age_range self.gender = gender self.normative_mat = od_matrix self.N = nb_trajecs self.width = grid_width self.length = grid_length if level: self.level = level if flags: self.flags = flags self.test_names = [ "Frob. norm", "Inf. norm", "Restrict. sum", "Mobty functional", "Fractal dim.", "Tot. length", ] def __str__(self): return f"Normative bechmark - level {self.level} - {self.age_range} - {self.gender} (N={self.N})" def test_trajectory(self, trajectory_data: str): """Run the battery of 6 tests.""" t = list(trajec(trajectory_data, lexico=False)) lex = trajec(trajectory_data, lexico=True, grid_width=self.width) od_mat = od_matrix([lex], self.width * self.length) norm_mat = self.normative_mat / self.N fro = np.linalg.norm((norm_mat - od_mat).toarray(), "fro") inf = np.linalg.norm((norm_mat - od_mat).toarray(), np.inf) # Sum of matching entries r, s = od_mat.nonzero() match = norm_mat[r, s].sum() / len(r) # Mobility functional mob = mobility_functional(t, self.normative_mat, self.width, self.N) # Fractal dimension dim = fractalD(t, self.width, self.length) # Total length lgt = trajectory_length(t) return [fro, inf, match, mob, dim, lgt] def load_environments(levels, Rs): """Load the normative benchmark environments.""" counts_df = pd.read_csv(processed_dir + "uk_counts.csv") out = dict() for lvl in levels: # Level width and length filename_grid = grids_dir + f"level{lvl:02}.json" _, _, width, length = read_level_grid(filename_grid) # The table containing counts per level, age group and gender lvl_counts_df = counts_df.loc[counts_df.level == lvl] for age_range, gender in itertools.product(Rs, ["f", "m"]): # The processed normative matrix filename = os.path.join( processed_dir, f"level_{lvl}_uk_{age_range}_{gender}.npz" ) norm_mat = sp.load_npz(filename) # The nbr of entries for that age range and gender age_counts = ( lvl_counts_df.loc[counts_df.age_range == age_range] .set_index("gender")["counts"] .to_dict() ) N = age_counts[gender] out[(lvl, age_range, gender)] = NormativeBenchmark( age_range, gender, norm_mat, N, width, length, level=lvl ) return out def group_tidy_df(filename, envs, Rs): """Load level data for several groups and run the tests.""" df = read_trajec_csv(filename) levels = df.level.unique() # We append the age range df["age_range"] = ( df["age"] .apply(lambda x: x // 10) .replace(dict(zip([int(x[0]) for x in Rs], Rs))) ) # The test names are defined inside the environment object test_names = envs[list(envs)[0]].test_names dfs = [] for lvl in tqdm(levels): lvl_df = df.loc[df.level == lvl].reset_index(drop=True) results = np.ones((len(lvl_df), 6)) # Load the trajectories and calculate the results for k, row in lvl_df.iterrows(): ar, g, data = row[["age_range", "gender", "trajectory_data"]] results[k] = envs[(lvl, ar, g)].test_trajectory(data) res_df = pd.DataFrame(results, columns=test_names) res_df["level"] = lvl dfs.append(res_df) # We keep original ids in the results df out_df =
pd.concat(dfs)
pandas.concat
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Jul 31 15:16:47 2017 @author: wasifaahmed """ from flask import Flask, flash,render_template, request, Response, redirect, url_for, send_from_directory,jsonify,session import json as json from datetime import datetime,timedelta,date from sklearn.cluster import KMeans import numpy as np from PIL import Image from flask.ext.sqlalchemy import SQLAlchemy import matplotlib.image as mpimg from io import StringIO from skimage import data, exposure, img_as_float ,io,color import scipy from scipy import ndimage import time import tensorflow as tf import os , sys import shutil import numpy as np import pandas as pd from PIL import Image from model import * from sqlalchemy.sql import text from sqlalchemy import * from forms import * import math from io import StringIO import csv from sqlalchemy.orm import load_only from datetime import datetime,date from numpy import genfromtxt from sqlalchemy.ext.serializer import loads, dumps from sqlalchemy.orm import sessionmaker, scoped_session from flask_bootstrap import Bootstrap graph = tf.Graph() with graph.as_default(): sess = tf.Session(graph=graph) init_op = tf.global_variables_initializer() pointsarray=[] def load_model(): sess.run(init_op) saver = tf.train.import_meta_graph('E:/FRAS Windows/FRAS_production/Simulation/FRAS_20170726/FRAS_20170727.meta') #saver = tf.train.import_meta_graph('/Users/wasifaahmed/Documents/FRAS/Fras_production_v.0.1/FRAS Windows/FRAS Windows/FRAS_production/Simulation/FRAS_20170726/FRAS_20170727.meta') print('The model is loading...') #saver.restore(sess, "/Users/wasifaahmed/Documents/FRAS/Fras_production_v.0.1/FRAS Windows/FRAS Windows/FRAS_production/Simulation/FRAS_20170726/FRAS_20170727") saver.restore(sess, 'E:/FRAS Windows/FRAS_production/Simulation/FRAS_20170726/FRAS_20170727') print('loaded...') pass engine =create_engine('postgresql://postgres:user@localhost/postgres') Session = scoped_session(sessionmaker(bind=engine)) mysession = Session() app = Flask(__name__) app.config.update( DEBUG=True, SECRET_KEY='\<KEY>') app.config['SQLALCHEMY_DATABASE_URI'] = 'postgresql://postgres:user@localhost/fras_production' db.init_app(app) Bootstrap(app) @app.after_request def add_header(response): response.headers['X-UA-Compatible'] = 'IE=Edge,chrome=1' response.headers['Cache-Control'] = 'public, max-age=0' return response @app.route('/',methods=['GET', 'POST']) def login(): form = LoginForm() return render_template('forms/login.html', form=form) @app.route('/home',methods=['GET', 'POST']) def index(): return render_template('pages/home.html') @app.route('/detail_setup/') def Detail_Setup(): curdate=time.strftime("%Y-%m-%d") selection=Shooting_Session.query.filter(Shooting_Session.date>=curdate).order_by(Shooting_Session.datetimestamp.desc()).all() firer_1 = [row.service_id for row in Shooter.query.all()] return render_template('pages/detail_setup.html', data=selection, firer_1=firer_1) @app.route('/auto_setup/') def auto_setup(): drop=[] curdate=time.strftime("%Y-%m-%d") form=BulkRegistrationForm() selection_2=Shooting_Session.query.filter(Shooting_Session.date>=curdate).order_by(Shooting_Session.datetimestamp.desc()).all() selection=TGroup.query.distinct(TGroup.group_no).filter(TGroup.date==curdate).all() return render_template('pages/auto_setup.html', data=selection, data_2=selection_2,form=form) @app.route('/auto_setup_1/') def auto_setup_1(): drop=[] curdate=time.strftime("%Y-%m-%d") form=BulkRegistrationForm() selection_2=Shooting_Session.query.filter(Shooting_Session.date>=curdate).order_by(Shooting_Session.datetimestamp.desc()).all() selection=TGroup.query.distinct(TGroup.group_no).all() return render_template('pages/auto_setup_1.html', data=selection, data_2=selection_2,form=form) @app.route('/group_gen/',methods=['GET', 'POST']) def group_gen(): da_1=None da_2=None da_3=None da_4=None da_5=None da_6=None da_7=None da_8=None if request.method == "POST": data = request.get_json() group=data['data'] session['group']=group data=TGroup.query.filter(TGroup.group_no==group).scalar() da_1=data.target_1_no da_2=data.target_2_no da_3=data.target_3_no da_4=data.target_4_no da_5=data.target_5_no da_6=data.target_6_no da_7=data.target_7_no da_8=data.target_8_no return jsonify(data1=da_1, data2=da_2, data3=da_3, data4=da_4, data5=da_5, data6=da_6, data7=da_7, data8=da_8 ) @app.route('/detail_exitence_1/',methods=['GET', 'POST']) def detail_exitence_1(): ra_1=None da_1=None detail=None service_id_1=None session=None paper=None set_no=None cant=None if request.method == "POST": data = request.get_json() detail=data['data'] dt=time.strftime("%Y-%m-%d") data=db.session.query(Session_Detail).filter(Session_Detail.detail_no==detail).scalar() db.session.query(TShooting).delete() db.session.commit() Tdetail_shots =TShooting( date=datetime.now(), datetimestamp=time.strftime("%Y-%m-%d %H:%M"), session_id=data.session_id, detail_no=data.detail_no, target_1_id=data.target_1_id, target_2_id=data.target_2_id, target_3_id=data.target_3_id, target_4_id=data.target_4_id, target_5_id=data.target_5_id, target_6_id=data.target_6_id, target_7_id=data.target_7_id, target_8_id=data.target_8_id, paper_ref=data.paper_ref, set_no=data.set_no, save_flag=0 ) db.session.add(Tdetail_shots) db.session.commit() res=[] ten=[] gp_len=[] tten=db.session.query(MPI.tendency_code).filter(MPI.firer_id==data.target_1_id).order_by(MPI.datetimestamp.desc()).limit(5).all()[::-1] tres = db.session.query(Grouping.result).filter(Grouping.firer_id==data.target_1_id).order_by(Grouping.datetimestamp.desc()).limit(5).all()[::-1] tgp = db.session.query(Grouping.grouping_length_f).filter(Grouping.firer_id==data.target_1_id).order_by(Grouping.datetimestamp.desc()).limit(5).all()[::-1] for ele in tres: for ele2 in ele: res.append(ele2) for ele3 in tten: for ele4 in ele3: ten.append(ele4) for ele5 in tgp: for ele6 in ele5: gp_len.append(ele6) da_1=db.session.query(Shooter.name).filter(Shooter.id==data.target_1_id).scalar() cant_id=db.session.query(Shooter.cantonment_id).filter(Shooter.id==data.target_1_id).scalar() cant=db.session.query(Cantonment.cantonment).filter(Cantonment.id==cant_id).scalar() ra_1_id=db.session.query(Shooter.rank_id).filter(Shooter.id==data.target_1_id).scalar() ra_1 = db.session.query(Rank.name).filter(Rank.id==ra_1_id).scalar() session=db.session.query(TShooting.session_id).scalar() paper=db.session.query(TShooting.paper_ref).scalar() set_no=db.session.query(TShooting.set_no).scalar() service_id_1 = db.session.query(Shooter.service_id).filter(Shooter.id==data.target_1_id).scalar() return jsonify( data1=da_1, ra_1=ra_1, detail=detail, service_id_1=service_id_1, session=session, paper=paper, set_no=set_no, cant=cant, res=res, ten=ten, gp_len=gp_len ) @app.route('/generate_ref/' ,methods=['GET', 'POST']) def generate_ref(): g=None if request.method == "POST": data = request.get_json() paper_ref =data['data'] if (paper_ref == 'New'): g=0 else: obj=TPaper_ref.query.scalar() g= obj.paper_ref return jsonify(gen=int(g)) @app.route('/create_detail_target_2/', methods=['GET', 'POST']) def create_detail_target_2(): curdate=time.strftime("%Y-%m-%d") firer_1 = [row.service_id for row in Shooter.query.all()] detail_data=TShooting.query.scalar() return render_template('pages/create_detail_target_2.html', detail_data=detail_data, firer_1=firer_1 ) @app.route('/save_target_2/', methods=['GET', 'POST']) def save_target_2(): r=request.form['tag'] r_object=Shooter.query.filter(Shooter.service_id==r).scalar() r_id=r_object.id ses=Session_Detail.query.first() ses.target_2_id=r_id db.session.commit() temp =TShooting.query.first() temp.target_2_id=r_id db.session.commit() return redirect(url_for('individual_score_target_2')) @app.route('/create_detail_target_1/', methods=['GET', 'POST']) def create_detail_target_1(): curdate=time.strftime("%Y-%m-%d") selection=Shooting_Session.query.filter(Shooting_Session.date==curdate).all() firer_1 = [row.service_id for row in Shooter.query.all()] return render_template('pages/create_detail_target_1.html', data=selection, firer_1=firer_1 ) @app.route('/create_session/', methods=['GET', 'POST']) def create_session(): try: data = Shooter.query.all() rang= Range.query.all() firearms = Firearms.query.all() ammunation = Ammunation.query.all() rang_name = request.form.get('comp_select_4') fire_name = request.form.get('comp_select_5') ammu_name = request.form.get('comp_select_6') form=SessionForm() if(rang_name is None): range_id=999 fire_id=999 ammu_id=999 else: range_id = db.session.query(Range.id).filter(Range.name==rang_name).scalar() fire_id = db.session.query(Firearms.id).filter(Firearms.name==fire_name).scalar() ammu_id = db.session.query(Ammunation.id).filter(Ammunation.name==ammu_name).scalar() if form.validate_on_submit(): shooting=Shooting_Session( date=form.date.data.strftime('%Y-%m-%d'), datetimestamp=time.strftime("%Y-%m-%d %H:%M"), shooting_range_id=range_id, firearms_id=fire_id, ammunation_id=ammu_id, target_distance = form.target_distance.data, weather_notes = form.weather_notes.data, comments = form.comments.data, session_no=form.session_no.data, occasion=form.occ.data ) db.session.add(shooting) db.session.commit() return redirect(url_for('create_detail_target_1')) except Exception as e: return redirect(url_for('error5_505.html')) return render_template('forms/shooting_form.html', form=form, data =data ,rang=rang , firearmns=firearms, ammunation = ammunation) @app.route('/monthly_report/',methods=['GET','POST']) def monthly_report(): year=None month=None date_start=None try: if request.method=='POST': month=request.form.get('comp_select') year = datetime.now().year if (month == 'October'): dt_start='-10-01' dt_end ='-10-31' str_date_start = str(year)+dt_start date_start=datetime.strptime(str_date_start, "%Y-%m-%d") str_date_end = str(year)+dt_end date_end=datetime.strptime(str_date_end, "%Y-%m-%d") dat1=db.session.query(Grouping.date,Shooter.service_id,Rank.name,Shooter.name.label('firer'),Shooter.unit,Shooter.brigade,Grouping.detail_no,Grouping.result,Grouping.grouping_length_f,MPI.tendency_text).filter(Grouping.date.between(date_start,date_end), Grouping.firer_id==Shooter.id,Shooter.rank_id==Rank.id and Grouping.date==MPI.date, Grouping.session_id==MPI.session_id,Grouping.firer_id==MPI.firer_id,Grouping.detail_no==MPI.detail_no,Grouping.target_no==MPI.target_no,Grouping.spell_no==MPI.spell_no,Grouping.paper_ref==MPI.paper_ref).all() elif(month=='January'): dt_start='-01-01' dt_end ='-01-31' str_date_start = str(year)+dt_start date_start=datetime.strptime(str_date_start, "%Y-%m-%d") str_date_end = str(year)+dt_end date_end=datetime.strptime(str_date_end, "%Y-%m-%d") dat1=db.session.query(Grouping.date,Shooter.service_id,Rank.name,Shooter.name.label('firer'),Shooter.unit,Shooter.brigade,Grouping.detail_no,Grouping.result,Grouping.grouping_length_f,MPI.tendency_text).filter(Grouping.date.between(date_start,date_end), Grouping.firer_id==Shooter.id,Shooter.rank_id==Rank.id and Grouping.date==MPI.date, Grouping.session_id==MPI.session_id,Grouping.firer_id==MPI.firer_id,Grouping.detail_no==MPI.detail_no,Grouping.target_no==MPI.target_no,Grouping.spell_no==MPI.spell_no,Grouping.paper_ref==MPI.paper_ref).all() elif(month=='February'): dt_start='-02-01' dt_end ='-02-28' str_date_start = str(year)+dt_start date_start=datetime.strptime(str_date_start, "%Y-%m-%d") str_date_end = str(year)+dt_end date_end=datetime.strptime(str_date_end, "%Y-%m-%d") dat1=db.session.query(Grouping.date,Shooter.service_id,Rank.name,Shooter.name.label('firer'),Shooter.unit,Shooter.brigade,Grouping.detail_no,Grouping.result,Grouping.grouping_length_f,MPI.tendency_text).filter(Grouping.date.between(date_start,date_end), Grouping.firer_id==Shooter.id,Shooter.rank_id==Rank.id and Grouping.date==MPI.date, Grouping.session_id==MPI.session_id,Grouping.firer_id==MPI.firer_id,Grouping.detail_no==MPI.detail_no,Grouping.target_no==MPI.target_no,Grouping.spell_no==MPI.spell_no,Grouping.paper_ref==MPI.paper_ref).all() elif(month=='March'): dt_start='-03-01' dt_end ='-03-31' str_date_start = str(year)+dt_start date_start=datetime.strptime(str_date_start, "%Y-%m-%d") str_date_end = str(year)+dt_end date_end=datetime.strptime(str_date_end, "%Y-%m-%d") dat1=db.session.query(Grouping.date,Shooter.service_id,Rank.name,Shooter.name.label('firer'),Shooter.unit,Shooter.brigade,Grouping.detail_no,Grouping.result,Grouping.grouping_length_f,MPI.tendency_text).filter(Grouping.date.between(date_start,date_end), Grouping.firer_id==Shooter.id,Shooter.rank_id==Rank.id and Grouping.date==MPI.date, Grouping.session_id==MPI.session_id,Grouping.firer_id==MPI.firer_id,Grouping.detail_no==MPI.detail_no,Grouping.target_no==MPI.target_no,Grouping.spell_no==MPI.spell_no,Grouping.paper_ref==MPI.paper_ref).all() elif(month=='April'): dt_start='-04-01' dt_end ='-04-30' str_date_start = str(year)+dt_start date_start=datetime.strptime(str_date_start, "%Y-%m-%d") str_date_end = str(year)+dt_end date_end=datetime.strptime(str_date_end, "%Y-%m-%d") dat1=db.session.query(Grouping.date,Shooter.service_id,Rank.name,Shooter.name.label('firer'),Shooter.unit,Shooter.brigade,Grouping.detail_no,Grouping.result,Grouping.grouping_length_f,MPI.tendency_text).filter(Grouping.date.between(date_start,date_end), Grouping.firer_id==Shooter.id,Shooter.rank_id==Rank.id and Grouping.date==MPI.date, Grouping.session_id==MPI.session_id,Grouping.firer_id==MPI.firer_id,Grouping.detail_no==MPI.detail_no,Grouping.target_no==MPI.target_no,Grouping.spell_no==MPI.spell_no,Grouping.paper_ref==MPI.paper_ref).all() elif(month=='May'): dt_start='-05-01' dt_end ='-05-31' str_date_start = str(year)+dt_start date_start=datetime.strptime(str_date_start, "%Y-%m-%d") str_date_end = str(year)+dt_end date_end=datetime.strptime(str_date_end, "%Y-%m-%d") dat1=db.session.query(Grouping.date,Shooter.service_id,Rank.name,Shooter.name.label('firer'),Shooter.unit,Shooter.brigade,Grouping.detail_no,Grouping.result,Grouping.grouping_length_f,MPI.tendency_text).filter(Grouping.date.between(date_start,date_end), Grouping.firer_id==Shooter.id,Shooter.rank_id==Rank.id and Grouping.date==MPI.date, Grouping.session_id==MPI.session_id,Grouping.firer_id==MPI.firer_id,Grouping.detail_no==MPI.detail_no,Grouping.target_no==MPI.target_no,Grouping.spell_no==MPI.spell_no,Grouping.paper_ref==MPI.paper_ref).all() elif(month=='June'): dt_start='-06-01' dt_end ='-06-30' str_date_start = str(year)+dt_start date_start=datetime.strptime(str_date_start, "%Y-%m-%d") str_date_end = str(year)+dt_end date_end=datetime.strptime(str_date_end, "%Y-%m-%d") dat1=db.session.query(Grouping.date,Shooter.service_id,Rank.name,Shooter.name.label('firer'),Shooter.unit,Shooter.brigade,Grouping.detail_no,Grouping.result,Grouping.grouping_length_f,MPI.tendency_text).filter(Grouping.date.between(date_start,date_end), Grouping.firer_id==Shooter.id,Shooter.rank_id==Rank.id and Grouping.date==MPI.date, Grouping.session_id==MPI.session_id,Grouping.firer_id==MPI.firer_id,Grouping.detail_no==MPI.detail_no,Grouping.target_no==MPI.target_no,Grouping.spell_no==MPI.spell_no,Grouping.paper_ref==MPI.paper_ref).all() elif(month=='July'): dt_start='-07-01' dt_end ='-07-31' str_date_start = str(year)+dt_start date_start=datetime.strptime(str_date_start, "%Y-%m-%d") str_date_end = str(year)+dt_end date_end=datetime.strptime(str_date_end, "%Y-%m-%d") dat1=db.session.query(Grouping.date,Shooter.service_id,Rank.name,Shooter.name.label('firer'),Shooter.unit,Shooter.brigade,Grouping.detail_no,Grouping.result,Grouping.grouping_length_f,MPI.tendency_text).filter(Grouping.date.between(date_start,date_end), Grouping.firer_id==Shooter.id,Shooter.rank_id==Rank.id and Grouping.date==MPI.date, Grouping.session_id==MPI.session_id,Grouping.firer_id==MPI.firer_id,Grouping.detail_no==MPI.detail_no,Grouping.target_no==MPI.target_no,Grouping.spell_no==MPI.spell_no,Grouping.paper_ref==MPI.paper_ref).all() elif(month=='August'): dt_start='-08-01' dt_end ='-08-31' str_date_start = str(year)+dt_start date_start=datetime.strptime(str_date_start, "%Y-%m-%d") str_date_end = str(year)+dt_end date_end=datetime.strptime(str_date_end, "%Y-%m-%d") dat1=db.session.query(Grouping.date,Shooter.service_id,Rank.name,Shooter.name.label('firer'),Shooter.unit,Shooter.brigade,Grouping.detail_no,Grouping.result,Grouping.grouping_length_f,MPI.tendency_text).filter(Grouping.date.between(date_start,date_end), Grouping.firer_id==Shooter.id,Shooter.rank_id==Rank.id and Grouping.date==MPI.date, Grouping.session_id==MPI.session_id,Grouping.firer_id==MPI.firer_id,Grouping.detail_no==MPI.detail_no,Grouping.target_no==MPI.target_no,Grouping.spell_no==MPI.spell_no,Grouping.paper_ref==MPI.paper_ref).all() elif(month=='September'): dt_start='-09-01' dt_end ='-09-30' str_date_start = str(year)+dt_start date_start=datetime.strptime(str_date_start, "%Y-%m-%d") str_date_end = str(year)+dt_end date_end=datetime.strptime(str_date_end, "%Y-%m-%d") dat1=db.session.query(Grouping.date,Shooter.service_id,Rank.name,Shooter.name.label('firer'),Shooter.unit,Shooter.brigade,Grouping.detail_no,Grouping.result,Grouping.grouping_length_f,MPI.tendency_text).filter(Grouping.date.between(date_start,date_end), Grouping.firer_id==Shooter.id,Shooter.rank_id==Rank.id and Grouping.date==MPI.date, Grouping.session_id==MPI.session_id,Grouping.firer_id==MPI.firer_id,Grouping.detail_no==MPI.detail_no,Grouping.target_no==MPI.target_no,Grouping.spell_no==MPI.spell_no,Grouping.paper_ref==MPI.paper_ref).all() elif(month=='November'): dt_start='-11-01' dt_end ='-11-30' str_date_start = str(year)+dt_start date_start=datetime.strptime(str_date_start, "%Y-%m-%d") str_date_end = str(year)+dt_end date_end=datetime.strptime(str_date_end, "%Y-%m-%d") dat1=db.session.query(Grouping.date,Shooter.service_id,Rank.name,Shooter.name.label('firer'),Shooter.unit,Shooter.brigade,Grouping.detail_no,Grouping.result,Grouping.grouping_length_f,MPI.tendency_text).filter(Grouping.date.between(date_start,date_end), Grouping.firer_id==Shooter.id,Shooter.rank_id==Rank.id and Grouping.date==MPI.date, Grouping.session_id==MPI.session_id,Grouping.firer_id==MPI.firer_id,Grouping.detail_no==MPI.detail_no,Grouping.target_no==MPI.target_no,Grouping.spell_no==MPI.spell_no,Grouping.paper_ref==MPI.paper_ref).all() else: dt_start='-12-01' dt_end ='-12-31' str_date_start = str(year)+dt_start date_start=datetime.strptime(str_date_start, "%Y-%m-%d") str_date_end = str(year)+dt_end date_end=datetime.strptime(str_date_end, "%Y-%m-%d") dat1=db.session.query(Grouping.date,Shooter.service_id,Rank.name,Shooter.name.label('firer'),Shooter.unit,Shooter.brigade,Grouping.detail_no,Grouping.result,Grouping.grouping_length_f,MPI.tendency_text).filter(Grouping.date.between(date_start,date_end), Grouping.firer_id==Shooter.id,Shooter.rank_id==Rank.id and Grouping.date==MPI.date, Grouping.session_id==MPI.session_id,Grouping.firer_id==MPI.firer_id,Grouping.detail_no==MPI.detail_no,Grouping.target_no==MPI.target_no,Grouping.spell_no==MPI.spell_no,Grouping.paper_ref==MPI.paper_ref).all() return render_template('pages/monthly_report.html', dat1=dat1 ,month=month) except Exception as e: return render_template('errors/month_session.html') return render_template('pages/monthly_report.html') @app.route('/save_target_1/', methods=['GET', 'POST']) def save_target_1(): ref_1=None try: if request.method == 'POST': detail_no = request.form['game_id_1'] r=request.form['tag'] r_object=Shooter.query.filter(Shooter.service_id==r).scalar() r_id=r_object.id r2_id=999 r3_id=999 r4_id=999 r5_id=999 r6_id=999 r7_id=999 r8_id=999 ref=request.form['business'] set_no = request.form.get('comp_select_6') shots = request.form['tag_8'] sess=request.form.get('comp_select') ref_1 = None paper=db.session.query(TPaper_ref).scalar() if(ref == ""): ref_1=paper.paper_ref else: ref_1=ref temp_shooting=db.session.query(TShooting).scalar() if(temp_shooting is None): detail_shots =Session_Detail( date=datetime.now(), datetimestamp=time.strftime("%Y-%m-%d %H:%M"), session_id=sess, detail_no=detail_no, target_1_id=r_id, target_2_id=r2_id, target_3_id=r3_id, target_4_id=r4_id, target_5_id=r5_id, target_6_id=r6_id, target_7_id=r7_id, target_8_id=r8_id, paper_ref=ref_1, set_no=set_no, save_flag=0 ) db.session.add(detail_shots) db.session.commit() db.session.query(TPaper_ref).delete() db.session.commit() ref_db = TPaper_ref( paper_ref=ref_1, detail_no=detail_no, session_no=sess ) db.session.add(ref_db) db.session.commit() Tdetail_shots =TShooting( date=datetime.now(), datetimestamp=time.strftime("%Y-%m-%d %H:%M"), session_id=sess, detail_no=detail_no, target_1_id=r_id, target_2_id=r2_id, target_3_id=r3_id, target_4_id=r4_id, target_5_id=r5_id, target_6_id=r6_id, target_7_id=r7_id, target_8_id=r8_id, paper_ref=ref_1, set_no=set_no, save_flag=0 ) db.session.add(Tdetail_shots) db.session.commit() else: db.session.query(TShooting).delete() db.session.commit() db.session.query(TPaper_ref).delete() db.session.commit() ref_db = TPaper_ref( paper_ref=ref_1, detail_no=detail_no, session_no=sess ) db.session.add(ref_db) db.session.commit() detail_shots =Session_Detail( date=datetime.now(), datetimestamp=time.strftime("%Y-%m-%d %H:%M"), session_id=sess, detail_no=detail_no, target_1_id=r_id, target_2_id=r2_id, target_3_id=r3_id, target_4_id=r4_id, target_5_id=r5_id, target_6_id=r6_id, target_7_id=r7_id, target_8_id=r8_id, paper_ref=ref_1, set_no=set_no, save_flag=0 ) db.session.add(detail_shots) db.session.commit() Tdetail_shots =TShooting( date=datetime.now(), datetimestamp=time.strftime("%Y-%m-%d %H:%M"), session_id=sess, detail_no=detail_no, target_1_id=r_id, target_2_id=r2_id, target_3_id=r3_id, target_4_id=r4_id, target_5_id=r5_id, target_6_id=r6_id, target_7_id=r7_id, target_8_id=r8_id, paper_ref=ref_1, set_no=set_no, save_flag=0 ) db.session.add(Tdetail_shots) db.session.commit() except Exception as e: return redirect(url_for('error_target_1')) return redirect(url_for('individual_score_target_1')) @app.route('/FRAS/', methods=['GET', 'POST']) def load (): try: ref_1=None if request.method == 'POST': detail_no = request.form['game_id_1'] tmp_list = [] duplicate = False r=request.form['tag'] if (r== ""): r_id = 999 else: r_object=Shooter.query.filter(Shooter.service_id==r).scalar() r_id=r_object.id r1=request.form['tag_1'] if(r1== ""): r1_id=999 else: r1_object=Shooter.query.filter(Shooter.service_id==r1).scalar() r1_id=r1_object.id r2=request.form['tag_2'] if (r2==""): r2_id=999 else: r2_object=Shooter.query.filter(Shooter.service_id==r2).scalar() r2_id=r2_object.id r3=request.form['tag_3'] if(r3==""): r3_id=999 else: r3_object=Shooter.query.filter(Shooter.service_id==r3).scalar() r3_id=r3_object.id r4=request.form['tag_4'] if(r4==""): r4_id=999 else: r4_object=Shooter.query.filter(Shooter.service_id==r4).scalar() r4_id=r4_object.id r5=request.form['tag_5'] if(r5==""): r5_id=999 else: r5_object=Shooter.query.filter(Shooter.service_id==r5).scalar() r5_id=r5_object.id r6=request.form['tag_6'] if(r6==""): r6_id=999 else: r6_object=Shooter.query.filter(Shooter.service_id==r6).scalar() r6_id=r6_object.id r7=request.form['tag_7'] if(r7== ""): r7_id=999 else: r7_object=Shooter.query.filter(Shooter.service_id==r7).scalar() r7_id=r7_object.id ref=request.form['business'] set_no = request.form.get('comp_select_6') shots = request.form['tag_8'] sess=request.form.get('comp_select') tmp_list.append(r_id) tmp_list.append(r1_id) tmp_list.append(r2_id) tmp_list.append(r3_id) tmp_list.append(r4_id) tmp_list.append(r5_id) tmp_list.append(r6_id) tmp_list.append(r7_id) if ref == None or ref =="": ref_obj=TPaper_ref.query.scalar() ref_1=ref_obj.paper_ref else : print("Inside ref _4 else") ref_1=ref print(ref_1) print("Inside ref _4 else 1") if(int(set_no)>5): print("Inside ref _5 else") return redirect(url_for('paper_duplicate_error')) else: print("Inside TPaper_ref") db.session.query(TPaper_ref).delete() print("Inside TPaper_ref") db.session.commit() ref_db = TPaper_ref( paper_ref=ref_1, detail_no=detail_no, session_no=sess ) db.session.add(ref_db) db.session.commit() print("Inside load 3") for i in range(len(tmp_list)): for j in range(len(tmp_list)): if(tmp_list[i]== 999 and tmp_list[j]==999): duplicate = False elif(i!=j and tmp_list[i]==tmp_list[j]): duplicate = True print("temp1") if(duplicate): return redirect(url_for('duplicate_firer_error')) else: print("temp") temp=db.session.query(TShooting.save_flag).scalar() print(temp) if(temp is None): print("Inside the temp if") print(sess) print(detail_no) Tdetail_shots =TShooting( date=datetime.now(), datetimestamp=time.strftime("%Y-%m-%d %H:%M"), session_id=sess, detail_no=detail_no, target_1_id=r_id, target_2_id=r1_id, target_3_id=r2_id, target_4_id=r3_id, target_5_id=r4_id, target_6_id=r5_id, target_7_id=r6_id, target_8_id=r7_id, paper_ref=ref_1, set_no=set_no, save_flag=0 ) print(Tdetail_shots) print("Tdetail_shots") db.session.add(Tdetail_shots) db.session.commit() print("" ) detail_shots =Session_Detail( date=datetime.now(), datetimestamp=time.strftime("%Y-%m-%d %H:%M"), session_id=sess, detail_no=detail_no, target_1_id=r_id, target_2_id=r1_id, target_3_id=r2_id, target_4_id=r3_id, target_5_id=r4_id, target_6_id=r5_id, target_7_id=r6_id, target_8_id=r7_id, paper_ref=ref_1, set_no=set_no, save_flag=0 ) db.session.add(detail_shots) db.session.commit() else: db.session.query(TShooting).filter(TShooting.id != 999).delete() db.session.commit() Tdetail_shots =TShooting( date=datetime.now(), datetimestamp=time.strftime("%Y-%m-%d %H:%M"), session_id=sess, detail_no=detail_no, target_1_id=r_id, target_2_id=r1_id, target_3_id=r2_id, target_4_id=r3_id, target_5_id=r4_id, target_6_id=r5_id, target_7_id=r6_id, target_8_id=r7_id, paper_ref=ref_1, set_no=set_no, save_flag=0 ) db.session.add(Tdetail_shots) db.session.commit() detail_shots =Session_Detail( date=datetime.now(), datetimestamp=time.strftime("%Y-%m-%d %H:%M"), session_id=sess, detail_no=detail_no, target_1_id=r_id, target_2_id=r1_id, target_3_id=r2_id, target_4_id=r3_id, target_5_id=r4_id, target_6_id=r5_id, target_7_id=r6_id, target_8_id=r7_id, paper_ref=ref_1, set_no=set_no, save_flag=0 ) db.session.add(detail_shots) db.session.commit() except Exception as e: print(e) return redirect(url_for('error_2')) return redirect(url_for('image_process')) @app.route('/FRAS_1/', methods=['GET', 'POST']) def load_1 (): ref_1=None try: if request.method == 'POST': print("This is inside Post") detail_no = request.form['game_id_1'] print("this is detail_no") print(detail_no) tmp_list = [] duplicate = False gr=session.get('group',None) data=TGroup.query.filter(TGroup.group_no==gr).scalar() da_1=data.target_1_no da_2=data.target_2_no da_3=data.target_3_no da_4=data.target_4_no da_5=data.target_5_no da_6=data.target_6_no da_7=data.target_7_no da_8=data.target_8_no if(da_1==""): r_id=999 else: r=Shooter.query.filter(Shooter.service_id==da_1).scalar() r_id=r.id if(da_2==""): r1_id=999 else: r1=Shooter.query.filter(Shooter.service_id==da_2).scalar() r1_id=r1.id if(da_3==""): r2_id=999 else: r2=Shooter.query.filter(Shooter.service_id==da_3).scalar() r2_id=r2.id if(da_4==""): r3_id=999 else: r3=Shooter.query.filter(Shooter.service_id==da_4).scalar() r3_id=r3.id if(da_5==""): r4_id=999 else: r4=Shooter.query.filter(Shooter.service_id==da_5).scalar() r4_id=r4.id if(da_6==""): r5_id=999 else: r5=Shooter.query.filter(Shooter.service_id==da_6).scalar() r5_id=r5.id if(da_7==""): r6_id=999 else: r6=Shooter.query.filter(Shooter.service_id==da_7).scalar() r6_id=r6.id if(da_8==""): r7_id=999 else: r7=Shooter.query.filter(Shooter.service_id==da_8).scalar() r7_id=r7.id ref=request.form['business'] set_no = request.form.get('comp_select_6') shots = request.form['tag_8'] sess=request.form.get('comp_select') tmp_list.append(r_id) tmp_list.append(r1_id) tmp_list.append(r2_id) tmp_list.append(r3_id) tmp_list.append(r4_id) tmp_list.append(r5_id) tmp_list.append(r6_id) tmp_list.append(r7_id) print(tmp_list) if ref == None or ref =="": ref_obj=TPaper_ref.query.scalar() ref_1=ref_obj.paper_ref else : ref_1=ref check=TPaper_ref.query.scalar() cses=check.session_no det=check.detail_no if(int(set_no)>5): return redirect(url_for('paper_duplicate_error')) else: db.session.query(TPaper_ref).delete() db.session.commit() ref_db = TPaper_ref( paper_ref=ref_1, detail_no=detail_no, session_no=sess ) db.session.add(ref_db) db.session.commit() for i in range(len(tmp_list)): for j in range(len(tmp_list)): if(tmp_list[i]== 999 and tmp_list[j]==999): duplicate = False elif(i!=j and tmp_list[i]==tmp_list[j]): duplicate = True if(duplicate): return redirect(url_for('duplicate_firer_error')) else: temp_shooting=db.session.query(TShooting).scalar() if(temp_shooting is None): detail_shots =Session_Detail( date=datetime.now(), datetimestamp=time.strftime("%Y-%m-%d %H:%M"), session_id=sess, detail_no=detail_no, target_1_id=r_id, target_2_id=r1_id, target_3_id=r2_id, target_4_id=r3_id, target_5_id=r4_id, target_6_id=r5_id, target_7_id=r6_id, target_8_id=r7_id, paper_ref=ref_1, set_no=set_no, save_flag=0 ) db.session.add(detail_shots) db.session.commit() Tdetail_shots =TShooting( date=datetime.now(), datetimestamp=time.strftime("%Y-%m-%d %H:%M"), session_id=sess, detail_no=detail_no, target_1_id=r_id, target_2_id=r1_id, target_3_id=r2_id, target_4_id=r3_id, target_5_id=r4_id, target_6_id=r5_id, target_7_id=r6_id, target_8_id=r7_id, paper_ref=ref_1, set_no=set_no, save_flag=0 ) db.session.add(Tdetail_shots) db.session.commit() else: db.session.query(TShooting).filter(TShooting.id != 999).delete() db.session.commit() Tdetail_shots =TShooting( date=datetime.now(), datetimestamp=time.strftime("%Y-%m-%d %H:%M"), session_id=sess, detail_no=detail_no, target_1_id=r_id, target_2_id=r1_id, target_3_id=r2_id, target_4_id=r3_id, target_5_id=r4_id, target_6_id=r5_id, target_7_id=r6_id, target_8_id=r7_id, paper_ref=ref_1, set_no=set_no, save_flag=0 ) db.session.add(Tdetail_shots) db.session.commit() detail_shots =Session_Detail( date=datetime.now(), datetimestamp=time.strftime("%Y-%m-%d %H:%M"), session_id=sess, detail_no=detail_no, target_1_id=r_id, target_2_id=r1_id, target_3_id=r2_id, target_4_id=r3_id, target_5_id=r4_id, target_6_id=r5_id, target_7_id=r6_id, target_8_id=r7_id, paper_ref=ref_1, set_no=set_no, save_flag=0 ) db.session.add(detail_shots) db.session.commit() except Exception as e: return redirect(url_for('error_102')) return redirect(url_for('detail_view')) @app.route('/FRAS_2/', methods=['GET', 'POST']) def load_2 (): ref_1=None try: if request.method == 'POST': print("This is inside Post") detail_no = request.form['game_id_1'] print("this is detail_no") print(detail_no) tmp_list = [] duplicate = False gr=session.get('group',None) data=TGroup.query.filter(TGroup.group_no==gr).scalar() da_1=data.target_1_no da_2=data.target_2_no da_3=data.target_3_no da_4=data.target_4_no da_5=data.target_5_no da_6=data.target_6_no da_7=data.target_7_no da_8=data.target_8_no if(da_1==""): r_id=999 else: r=Shooter.query.filter(Shooter.service_id==da_1).scalar() r_id=r.id if(da_2==""): r1_id=999 else: r1=Shooter.query.filter(Shooter.service_id==da_2).scalar() r1_id=r1.id if(da_3==""): r2_id=999 else: r2=Shooter.query.filter(Shooter.service_id==da_3).scalar() r2_id=r2.id if(da_4==""): r3_id=999 else: r3=Shooter.query.filter(Shooter.service_id==da_4).scalar() r3_id=r3.id if(da_5==""): r4_id=999 else: r4=Shooter.query.filter(Shooter.service_id==da_5).scalar() r4_id=r4.id if(da_6==""): r5_id=999 else: r5=Shooter.query.filter(Shooter.service_id==da_6).scalar() r5_id=r5.id if(da_7==""): r6_id=999 else: r6=Shooter.query.filter(Shooter.service_id==da_7).scalar() r6_id=r6.id if(da_8==""): r7_id=999 else: r7=Shooter.query.filter(Shooter.service_id==da_8).scalar() r7_id=r7.id ref=request.form['business'] set_no = request.form.get('comp_select_6') shots = request.form['tag_8'] sess=request.form.get('comp_select') tmp_list.append(r_id) tmp_list.append(r1_id) tmp_list.append(r2_id) tmp_list.append(r3_id) tmp_list.append(r4_id) tmp_list.append(r5_id) tmp_list.append(r6_id) tmp_list.append(r7_id) print(tmp_list) if ref == None or ref =="": ref_obj=TPaper_ref.query.scalar() ref_1=ref_obj.paper_ref else : ref_1=ref check=TPaper_ref.query.scalar() cses=check.session_no det=check.detail_no if(int(set_no)>5): return redirect(url_for('paper_duplicate_error')) else: db.session.query(TPaper_ref).delete() db.session.commit() ref_db = TPaper_ref( paper_ref=ref_1, detail_no=detail_no, session_no=sess ) db.session.add(ref_db) db.session.commit() for i in range(len(tmp_list)): for j in range(len(tmp_list)): if(tmp_list[i]== 999 and tmp_list[j]==999): duplicate = False elif(i!=j and tmp_list[i]==tmp_list[j]): duplicate = True if(duplicate): return redirect(url_for('duplicate_firer_error')) else: temp_shooting=db.session.query(TShooting).scalar() if(temp_shooting is None): detail_shots =Session_Detail( date=datetime.now(), datetimestamp=time.strftime("%Y-%m-%d %H:%M"), session_id=sess, detail_no=detail_no, target_1_id=r_id, target_2_id=r1_id, target_3_id=r2_id, target_4_id=r3_id, target_5_id=r4_id, target_6_id=r5_id, target_7_id=r6_id, target_8_id=r7_id, paper_ref=ref_1, set_no=set_no, save_flag=0 ) db.session.add(detail_shots) db.session.commit() Tdetail_shots =TShooting( date=datetime.now(), datetimestamp=time.strftime("%Y-%m-%d %H:%M"), session_id=sess, detail_no=detail_no, target_1_id=r_id, target_2_id=r1_id, target_3_id=r2_id, target_4_id=r3_id, target_5_id=r4_id, target_6_id=r5_id, target_7_id=r6_id, target_8_id=r7_id, paper_ref=ref_1, set_no=set_no, save_flag=0 ) db.session.add(Tdetail_shots) db.session.commit() else: db.session.query(TShooting).filter(TShooting.id != 999).delete() db.session.commit() Tdetail_shots =TShooting( date=datetime.now(), datetimestamp=time.strftime("%Y-%m-%d %H:%M"), session_id=sess, detail_no=detail_no, target_1_id=r_id, target_2_id=r1_id, target_3_id=r2_id, target_4_id=r3_id, target_5_id=r4_id, target_6_id=r5_id, target_7_id=r6_id, target_8_id=r7_id, paper_ref=ref_1, set_no=set_no, save_flag=0 ) db.session.add(Tdetail_shots) db.session.commit() detail_shots =Session_Detail( date=datetime.now(), datetimestamp=time.strftime("%Y-%m-%d %H:%M"), session_id=sess, detail_no=detail_no, target_1_id=r_id, target_2_id=r1_id, target_3_id=r2_id, target_4_id=r3_id, target_5_id=r4_id, target_6_id=r5_id, target_7_id=r6_id, target_8_id=r7_id, paper_ref=ref_1, set_no=set_no, save_flag=0 ) db.session.add(detail_shots) db.session.commit() except Exception as e: print(e) return redirect(url_for('error')) return redirect(url_for('image_process')) @app.route('/detail_view/', methods=['GET', 'POST']) def detail_view(): detail = Session_Detail.query.all() for details in detail: details.target_1=Shooter.query.filter(Shooter.id==details.target_1_id).scalar() details.target_2=Shooter.query.filter(Shooter.id==details.target_2_id).scalar() details.target_3=Shooter.query.filter(Shooter.id==details.target_3_id).scalar() details.target_4=Shooter.query.filter(Shooter.id==details.target_4_id).scalar() details.target_5=Shooter.query.filter(Shooter.id==details.target_5_id).scalar() details.target_6=Shooter.query.filter(Shooter.id==details.target_6_id).scalar() details.target_7=Shooter.query.filter(Shooter.id==details.target_7_id).scalar() details.target_8=Shooter.query.filter(Shooter.id==details.target_8_id).scalar() return render_template('pages/detail_view.html',detail=detail) @app.route('/detail_view/detail/<id>', methods=['GET', 'POST']) def view_detail(id): detail=Session_Detail.query.filter(Session_Detail.id == id) for details in detail: details.target_1=Shooter.query.filter(Shooter.id==details.target_1_id).scalar() details.target_2=Shooter.query.filter(Shooter.id==details.target_2_id).scalar() details.target_3=Shooter.query.filter(Shooter.id==details.target_3_id).scalar() details.target_4=Shooter.query.filter(Shooter.id==details.target_4_id).scalar() details.target_5=Shooter.query.filter(Shooter.id==details.target_5_id).scalar() details.target_6=Shooter.query.filter(Shooter.id==details.target_6_id).scalar() details.target_7=Shooter.query.filter(Shooter.id==details.target_7_id).scalar() details.target_8=Shooter.query.filter(Shooter.id==details.target_8_id).scalar() return render_template('pages/detail_view_id.html',data=detail) @app.route('/detail_view/edit/<id>', methods=['GET', 'POST']) def view_detail_edit(id): try: detail=Session_Detail.query.filter(Session_Detail.id == id).first() form=DetailEditForm(obj=detail) if form.validate_on_submit(): tmp_list = [] target_1=Shooter.query.filter(Shooter.service_id == form.target_1_service.data).scalar() tmp_list.append(target_1.id) target_2=Shooter.query.filter(Shooter.service_id == form.target_2_service.data).scalar() tmp_list.append(target_2.id) target_3=Shooter.query.filter(Shooter.service_id == form.target_3_service.data).scalar() tmp_list.append(target_3.id) target_4=Shooter.query.filter(Shooter.service_id == form.target_4_service.data).scalar() tmp_list.append(target_4.id) target_5=Shooter.query.filter(Shooter.service_id == form.target_5_service.data).scalar() tmp_list.append(target_5.id) target_6=Shooter.query.filter(Shooter.service_id == form.target_6_service.data).scalar() tmp_list.append(target_6.id) target_7=Shooter.query.filter(Shooter.service_id == form.target_7_service.data).scalar() tmp_list.append(target_7.id) target_8=Shooter.query.filter(Shooter.service_id == form.target_8_service.data).scalar() tmp_list.append(target_8.id) duplicate = False for i in range(len(tmp_list)): for j in range(len(tmp_list)): if(tmp_list[i]== 999 and tmp_list[j]==999): duplicate = False elif(i!=j and tmp_list[i]==tmp_list[j]): duplicate = True if(duplicate): return redirect(url_for('duplicate_firer_error')) else: detail.date=form.date.data detail.session_id=form.session_id.data detail.detail_no=form.detail_no.data detail.paper_ref=form.paper_ref.data detail.set_no=form.set_no.data target_1_obj=Shooter.query.filter(Shooter.service_id == form.target_1_service.data).scalar() detail.target_1_id=target_1_obj.id target_2_obj=Shooter.query.filter(Shooter.service_id == form.target_2_service.data).scalar() detail.target_2_id=target_2_obj.id target_3_obj=Shooter.query.filter(Shooter.service_id == form.target_3_service.data).scalar() detail.target_3_id=target_3_obj.id target_4_obj=Shooter.query.filter(Shooter.service_id == form.target_4_service.data).scalar() detail.target_4_id=target_4_obj.id target_5_obj=Shooter.query.filter(Shooter.service_id == form.target_5_service.data).scalar() detail.target_5_id=target_5_obj.id target_6_obj=Shooter.query.filter(Shooter.service_id == form.target_6_service.data).scalar() detail.target_6_id=target_6_obj.id target_7_obj=Shooter.query.filter(Shooter.service_id == form.target_7_service.data).scalar() detail.target_7_id=target_7_obj.id target_8_obj=Shooter.query.filter(Shooter.service_id == form.target_8_service.data).scalar() detail.target_8_id=target_8_obj.id db.session.commit() db.session.query(TPaper_ref).delete() db.session.commit() ref_edit = TPaper_ref( paper_ref=form.paper_ref.data, detail_no=form.detail_no.data, session_no=form.session_id.data ) db.session.add(ref_edit) db.session.commit() target_1_obj=Shooter.query.filter(Shooter.service_id == form.target_1_service.data).scalar() target_2_obj=Shooter.query.filter(Shooter.service_id == form.target_2_service.data).scalar() target_3_obj=Shooter.query.filter(Shooter.service_id == form.target_3_service.data).scalar() target_4_obj=Shooter.query.filter(Shooter.service_id == form.target_4_service.data).scalar() target_5_obj=Shooter.query.filter(Shooter.service_id == form.target_5_service.data).scalar() target_6_obj=Shooter.query.filter(Shooter.service_id == form.target_6_service.data).scalar() target_7_obj=Shooter.query.filter(Shooter.service_id == form.target_7_service.data).scalar() target_8_obj=Shooter.query.filter(Shooter.service_id == form.target_8_service.data).scalar() temp_shooting=db.session.query(TShooting).scalar() if(temp_shooting.save_flag==1): return redirect(url_for('data_save')) else: db.session.query(TShooting).filter(TShooting.id != 999).delete() db.session.commit() Tdetail_edit =TShooting( date=form.date.data, datetimestamp=time.strftime("%Y-%m-%d %H:%M"), session_id=form.session_id.data, detail_no=form.detail_no.data, target_1_id=target_1_obj.id, target_2_id=target_2_obj.id, target_3_id=target_3_obj.id, target_4_id=target_4_obj.id, target_5_id=target_5_obj.id, target_6_id=target_6_obj.id, target_7_id=target_7_obj.id, target_8_id=target_8_obj.id, paper_ref=form.paper_ref.data, set_no=form.set_no.data, save_flag=0 ) db.session.add(Tdetail_edit) db.session.commit() return redirect(url_for('detail_view')) form.date.data=detail.date form.session_id.data=detail.session_id form.detail_no.data=detail.detail_no form.paper_ref.data=detail.paper_ref form.set_no.data=detail.set_no name_1= Shooter.query.filter(Shooter.id==detail.target_1_id).scalar() form.target_1_service.data=data=name_1.service_id name_2= Shooter.query.filter(Shooter.id==detail.target_2_id).scalar() form.target_2_service.data=data=name_2.service_id name_3= Shooter.query.filter(Shooter.id==detail.target_3_id).scalar() form.target_3_service.data=data=name_3.service_id name_4= Shooter.query.filter(Shooter.id==detail.target_4_id).scalar() form.target_4_service.data=data=name_4.service_id name_5=Shooter.query.filter(Shooter.id==detail.target_5_id).scalar() form.target_5_service.data=data=name_5.service_id name_6=Shooter.query.filter(Shooter.id==detail.target_6_id).scalar() form.target_6_service.data=data=name_6.service_id name_7=Shooter.query.filter(Shooter.id==detail.target_7_id).scalar() form.target_7_service.data=data=name_7.service_id name_8=Shooter.query.filter(Shooter.id==detail.target_8_id).scalar() form.target_8_service.data=data=name_8.service_id except Exception as e: return render_template('errors/detail_view.html') return render_template('pages/detail_view_edit.html' , detail=detail,form=form) @app.route('/data_save', methods=['GET', 'POST']) def data_save(): return render_template('pages/data_save.html') @app.route('/target_registration/', methods=['GET', 'POST']) def target_registration(): result=None if request.method=="POST": data1 = request.get_json() print(data1) cant=data1['cant'] div=data1['div'] rank=data1['rank'] gen=data1['gender'] dt=data1['date'] name=data1['name'] army_no=data1['service'] unit=data1['unit'] brigade=data1['brig'] gender_id=db.session.query(Gender.id).filter(Gender.name==gen).scalar() rank_id=db.session.query(Rank.id).filter(Rank.name==rank).scalar() cant_id=db.session.query(Cantonment.id).filter(Cantonment.cantonment==cant ,Cantonment.division==div).scalar() print("cant_id") print(cant_id) shooter = Shooter( name=name, service_id = army_no, registration_date = dt, gender_id=gender_id, cantonment_id = cant_id, rank_id =rank_id, unit=unit, brigade=brigade ) db.session.add(shooter) db.session.commit() result="Data Saved Sucessfully" return jsonify(result=result) @app.route('/shooter_registration/', methods=['GET', 'POST']) def registration(): try: cantonment=Cantonment.query.distinct(Cantonment.cantonment) gender =Gender.query.all() rank = Rank.query.all() ran = request.form.get('comp_select4') cant = request.form.get('comp_select') gen = request.form.get('comp_select5') brig = request.form.get('comp_select1') form = RegistrationForm(request.form) if(ran is None): pass else: ran_object=Rank.query.filter(Rank.name==ran).scalar() rank_id = ran_object.id cant_object = Cantonment.query.filter(Cantonment.cantonment==cant,Cantonment.division==brig).scalar() cant_id = cant_object.id gen_obj=Gender.query.filter(Gender.name==gen).scalar() gender_id = gen_obj.id if form.validate_on_submit(): shooter = Shooter( name=form.name.data, service_id = form.service_id.data, registration_date = form.dt.data.strftime('%Y-%m-%d'), gender_id=gender_id, cantonment_id = cant_id, rank_id =rank_id, unit=form.unit.data, brigade=form.brig.data ) db.session.add(shooter) db.session.commit() new_form = RegistrationForm(request.form) return redirect(url_for('firer_details')) except Exception as e: return redirect(url_for('error_4')) return render_template('forms/registration.html', cantonment = cantonment , form=form , rank = rank, gender=gender) @app.route('/get_brigade/') def get_brigade(): cant = request.args.get('customer') da = da = Cantonment.query.filter(Cantonment.cantonment==cant).distinct(Cantonment.division) data = [{"name": x.division} for x in da] return jsonify(data) @app.route('/firer_details/', methods=['GET', 'POST']) def firer_details(): firer = Shooter.query.all() for firers in firer: firers.cantonment_name= Cantonment.query.filter(Cantonment.id==firers.cantonment_id).scalar() firers.division = Cantonment.query.filter(Cantonment.id==firers.cantonment_id).scalar() firers.rank = Rank.query.filter(Rank.id==firers.rank_id).scalar() firers.gender_name = Gender.query.filter(Gender.id==firers.gender_id).scalar() return render_template('pages/firer_details.html' , firer = firer) @app.route('/bulk_registration_group') def bulk_registration_group(): form=BulkRegistrationForm(request.form) return render_template('pages/bulk_registration_group.html',form=form) @app.route('/bulk_registration') def bulk_registration(): cantonment=db.session.query(Cantonment).distinct(Cantonment.cantonment) form=RegistrationForm(request.form) return render_template('pages/bulk_registration.html',cantonment=cantonment,form=form) @app.route('/upload', methods=['POST']) def upload(): try: f = request.files['data_file'] cant = request.form.get('comp_select') div = request.form.get('comp_select1') form=RegistrationForm(request.form) unit = request.form['game_id_1'] brig = request.form['game_id_2'] cant_id = db.session.query(Cantonment.id).filter(Cantonment.cantonment==cant, Cantonment.division==div ).scalar() if form.is_submitted(): stream = StringIO(f.stream.read().decode("UTF8")) csv_input = csv.reader(stream) lis =list(csv_input) for i in range(len(lis)): if (i==0): pass else: shooters = Shooter( name = lis[i][0], service_id=lis[i][3], registration_date=datetime.now(), gender_id=db.session.query(Gender.id).filter(Gender.name==lis[i][2]).scalar(), cantonment_id = cant_id, rank_id = db.session.query(Rank.id).filter(Rank.name==lis[i][1]).scalar(), unit=unit, brigade=brig ) db.session.add(shooters) db.session.commit() except Exception as e: return redirect(url_for('error_3')) return redirect(url_for('firer_details')) @app.route('/uploadgroup', methods=['POST']) def uploadgroup(): try: f = request.files['data_file'] form=BulkRegistrationForm(request.form) if form.is_submitted(): curdate_p=(date.today())- timedelta(1) if(db.session.query(db.exists().where(TGroup.date <= curdate_p)).scalar()): db.session.query(TGroup).delete() db.session.commit() stream = StringIO(f.stream.read().decode("UTF8")) csv_input = csv.reader(stream) lis =list(csv_input) for i in range(len(lis)): if (i==0): pass else: group = TGroup( date=datetime.now(), group_no=lis[i][0], target_1_no=lis[i][1], target_2_no=lis[i][2], target_3_no=lis[i][3], target_4_no=lis[i][4], target_5_no=lis[i][5], target_6_no=lis[i][6], target_7_no=lis[i][7], target_8_no=lis[i][8] ) db.session.add(group) db.session.commit() else: stream = StringIO(f.stream.read().decode("UTF8")) csv_input = csv.reader(stream) lis =list(csv_input) for i in range(len(lis)): if (i==0): pass else: group = TGroup( date=datetime.now(), group_no=lis[i][0], target_1_no=lis[i][1], target_2_no=lis[i][2], target_3_no=lis[i][3], target_4_no=lis[i][4], target_5_no=lis[i][5], target_6_no=lis[i][6], target_7_no=lis[i][7], target_8_no=lis[i][8] ) db.session.add(group) db.session.commit() except Exception as e: return redirect(url_for('error_duplicate')) return redirect(url_for('group_view')) @app.route('/new_group') def new_group(): firer = [row.service_id for row in Shooter.query.all()] return render_template('pages/new_group.html',firer_1=firer) @app.route('/individual_group/', methods=['GET', 'POST']) def individual_group(): try: curdate_p=(date.today())- timedelta(1) #check=mysession.query(TGroup).filter(date==curdate_p).all() if request.method=="POST": grp = request.form['game_id_1'] tmp_list = [] duplicate = False r=request.form['tag'] if (r== ""): r_id = 999 else: r_object=Shooter.query.filter(Shooter.service_id==r).scalar() r_id=r_object.id r1=request.form['tag_1'] if(r1== ""): r1_id=999 else: r1_object=Shooter.query.filter(Shooter.service_id==r1).scalar() r1_id=r1_object.id r2=request.form['tag_2'] if (r2==""): r2_id=999 else: r2_object=Shooter.query.filter(Shooter.service_id==r2).scalar() r2_id=r2_object.id r3=request.form['tag_3'] if(r3==""): r3_id=999 else: r3_object=Shooter.query.filter(Shooter.service_id==r3).scalar() r3_id=r3_object.id r4=request.form['tag_4'] if(r4==""): r4_id=999 else: r4_object=Shooter.query.filter(Shooter.service_id==r4).scalar() r4_id=r4_object.id r5=request.form['tag_5'] if(r5==""): r5_id=999 else: r5_object=Shooter.query.filter(Shooter.service_id==r5).scalar() r5_id=r5_object.id r6=request.form['tag_6'] if(r6==""): r6_id=999 else: r6_object=Shooter.query.filter(Shooter.service_id==r6).scalar() r6_id=r6_object.id r7=request.form['tag_7'] if(r7== ""): r7_id=999 else: r7_object=Shooter.query.filter(Shooter.service_id==r7).scalar() r7_id=r7_object.id tmp_list.append(r_id) tmp_list.append(r1_id) tmp_list.append(r2_id) tmp_list.append(r3_id) tmp_list.append(r4_id) tmp_list.append(r5_id) tmp_list.append(r6_id) tmp_list.append(r7_id) for i in range(len(tmp_list)): for j in range(len(tmp_list)): if(tmp_list[i]== 999 and tmp_list[j]==999): duplicate = False elif(i!=j and tmp_list[i]==tmp_list[j]): duplicate = True if(db.session.query(db.exists().where(TGroup.date == curdate_p)).scalar()): db.session.query(TGroup).delete() db.session.commit() if(duplicate): return redirect(url_for('duplicate_firer_error')) else: gr=TGroup( date=datetime.now(), group_no=grp, target_1_no=r, target_2_no=r1, target_3_no=r2, target_4_no=r3, target_5_no=r4, target_6_no=r5, target_7_no=r6, target_8_no=r7 ) db.session.add(gr) db.session.commit() else: if(duplicate): return redirect(url_for('duplicate_firer_error')) else: gr=TGroup( date=datetime.now(), group_no=grp, target_1_no=r, target_2_no=r1, target_3_no=r2, target_4_no=r3, target_5_no=r4, target_6_no=r5, target_7_no=r6, target_8_no=r7 ) db.session.add(gr) db.session.commit() except Exception as e: return render_template('errors/group_view_error.html') return redirect(url_for('group_view')) @app.route('/group_view/', methods=['GET', 'POST']) def group_view(): detail = TGroup.query.all() return render_template('pages/group_detail_view.html',detail=detail) @app.route('/group_view/detail/<id>', methods=['GET', 'POST']) def group_detail_view(id): view = TGroup.query.filter(TGroup.group_no == id) return render_template('pages/group_detail_view_id.html' , data = view) @app.route('/group_details/edit/<id>', methods=['GET', 'POST']) def group_detail_edit(id): firer = TGroup.query.filter(TGroup.group_no == id).first() form=GroupEditForm(obj=firer) if form.validate_on_submit(): firer.date=form.date.data firer.target_1_no=form.target_1_army.data firer.target_2_no=form.target_2_army.data firer.target_3_no=form.target_3_army.data firer.target_4_no=form.target_4_army.data firer.target_5_no=form.target_5_army.data firer.target_6_no=form.target_6_army.data firer.target_7_no=form.target_7_army.data firer.target_8_no=form.target_8_army.data firer.group_no=form.group_no.data db.session.commit() return redirect(url_for('group_view')) form.group_no.data=firer.group_no form.target_1_army.data=firer.target_1_no form.target_2_army.data=firer.target_2_no form.target_3_army.data=firer.target_3_no form.target_4_army.data=firer.target_4_no form.target_5_army.data=firer.target_5_no form.target_6_army.data=firer.target_6_no form.target_7_army.data=firer.target_7_no form.target_8_army.data=firer.target_8_no return render_template('pages/group_edit.html' , firer = firer , form=form) @app.route('/firer_details/detail/<id>', methods=['GET', 'POST']) def firer_detail_view(id): firer = Shooter.query.filter(Shooter.service_id == id) for firers in firer: firers.cantonment_name= Cantonment.query.filter(Cantonment.id==firers.cantonment_id).scalar() firers.division = Cantonment.query.filter(Cantonment.id==firers.cantonment_id).scalar() firers.rank = Rank.query.filter(Rank.id==firers.rank_id).scalar() firers.gender_name = Gender.query.filter(Gender.id==firers.gender_id).scalar() return render_template('pages/firer_detail_view.html' , data = firer) @app.route('/firer_details/edit/<id>', methods=['GET', 'POST']) def firer_detail_edit(id): firer = Shooter.query.filter(Shooter.service_id == id).first() form=RegistrationEditForm(obj=firer) try: if form.validate_on_submit(): firer.name = form.name.data firer.service_id=form.service_id.data firer.registration_date=form.date.data gender_obj=Gender.query.filter(Gender.name==form.gender.data).scalar() firer.gender_id=gender_obj.id cantonment_obj=Cantonment.query.filter(Cantonment.cantonment==form.cantonment.data ,Cantonment.division==form.div.data).scalar() firer.cantonment_id=cantonment_obj.id rank_obj=Range.query.filter(Rank.name==form.rank.data).distinct(Rank.id).scalar() firer.rank_id=rank_obj.id firer.unit=form.unit.data firer.brigade=form.brigade.data db.session.commit() return redirect(url_for('firer_details')) form.name.data=firer.name form.service_id.data=firer.service_id form.date.data=firer.registration_date gender_name=Gender.query.filter(Gender.id==firer.gender_id).scalar() form.gender.data=gender_name.name cantonment_name=Cantonment.query.filter(Cantonment.id==firer.cantonment_id).scalar() form.cantonment.data=cantonment_name.cantonment form.div.data=cantonment_name.division unit_data=Shooter.query.filter(Shooter.service_id==firer.service_id).scalar() form.unit.data=unit_data.unit form.brigade.data=unit_data.brigade rank_name=Rank.query.filter(Rank.id==firer.rank_id).distinct(Rank.name).scalar() form.rank.data=rank_name.name except Exception as e: return redirect(url_for('error_7')) return render_template('pages/firer_detail_edit.html' , firer = firer , form=form) @app.route('/live/') def live(): T1_name = mysession.query(Shooter.name).filter(Shooter.id==TShooting.target_1_id).scalar() T1_service = mysession.query(Shooter.service_id).filter(Shooter.id==TShooting.target_1_id).scalar() T1_r_id = mysession.query(Shooter.rank_id).filter(Shooter.id==TShooting.target_1_id).scalar() T1_rank = mysession.query(Rank.name).filter(Rank.id==T1_r_id).scalar() T2_name = mysession.query(Shooter.name).filter(Shooter.id==TShooting.target_2_id).scalar() T2_service = mysession.query(Shooter.service_id).filter(Shooter.id==TShooting.target_2_id).scalar() T2_r_id = mysession.query(Shooter.rank_id).filter(Shooter.id==TShooting.target_2_id).scalar() T2_rank = mysession.query(Rank.name).filter(Rank.id==T2_r_id).scalar() T3_name = mysession.query(Shooter.name).filter(Shooter.id==TShooting.target_3_id).scalar() T3_service = mysession.query(Shooter.service_id).filter(Shooter.id==TShooting.target_3_id).scalar() T3_r_id = mysession.query(Shooter.rank_id).filter(Shooter.id==TShooting.target_3_id).scalar() T3_rank = mysession.query(Rank.name).filter(Rank.id==T3_r_id).scalar() T4_name = mysession.query(Shooter.name).filter(Shooter.id==TShooting.target_4_id).scalar() T4_service = mysession.query(Shooter.service_id).filter(Shooter.id==TShooting.target_4_id).scalar() T4_r_id = mysession.query(Shooter.rank_id).filter(Shooter.id==TShooting.target_4_id).scalar() T4_rank = mysession.query(Rank.name).filter(Rank.id==T4_r_id).scalar() T5_name = mysession.query(Shooter.name).filter(Shooter.id==TShooting.target_5_id).scalar() T5_service = mysession.query(Shooter.service_id).filter(Shooter.id==TShooting.target_5_id).scalar() T5_r_id = mysession.query(Shooter.rank_id).filter(Shooter.id==TShooting.target_5_id).scalar() T5_rank = mysession.query(Rank.name).filter(Rank.id==T5_r_id).scalar() T6_name = mysession.query(Shooter.name).filter(Shooter.id==TShooting.target_6_id).scalar() T6_service = mysession.query(Shooter.service_id).filter(Shooter.id==TShooting.target_6_id).scalar() T6_r_id = mysession.query(Shooter.rank_id).filter(Shooter.id==TShooting.target_6_id).scalar() T6_rank = mysession.query(Rank.name).filter(Rank.id==T6_r_id).scalar() T7_name = mysession.query(Shooter.name).filter(Shooter.id==TShooting.target_7_id).scalar() T7_service = mysession.query(Shooter.service_id).filter(Shooter.id==TShooting.target_7_id).scalar() T7_r_id = mysession.query(Shooter.rank_id).filter(Shooter.id==TShooting.target_7_id).scalar() T7_rank = mysession.query(Rank.name).filter(Rank.id==T7_r_id).scalar() T8_name = mysession.query(Shooter.name).filter(Shooter.id==TShooting.target_8_id).scalar() T8_service = mysession.query(Shooter.service_id).filter(Shooter.id==TShooting.target_8_id).scalar() T8_r_id = mysession.query(Shooter.rank_id).filter(Shooter.id==TShooting.target_8_id).scalar() T8_rank = mysession.query(Rank.name).filter(Rank.id==T8_r_id).scalar() return render_template('pages/live.html' , T1_name=T1_name, T1_service=T1_service, T2_name=T2_name, T2_service=T2_service, T3_name=T3_name, T3_service=T3_service, T4_name=T4_name, T4_service=T4_service, T5_name=T5_name, T5_service=T5_service, T6_name=T6_name, T6_service=T6_service, T7_name=T7_name, T7_service=T7_service, T8_name=T8_name, T8_service=T8_service, T1_rank=T1_rank, T2_rank=T2_rank, T3_rank=T3_rank, T4_rank=T4_rank, T5_rank=T5_rank, T6_rank=T6_rank, T7_rank=T7_rank, T8_rank=T8_rank ) @app.route('/cam_detail_2/', methods=['GET', 'POST']) def cam_detail_2(): return render_template('pages/cam_detail_1.html') @app.route('/cam_detail_4/', methods=['GET', 'POST']) def cam_detail_4(): return render_template('pages/cam_detail_2.html') @app.route('/cam_detail_1/', methods=['GET', 'POST']) def cam_detail_1(): return render_template('pages/cam_detail_3.html') @app.route('/cam_detail_3/', methods=['GET', 'POST']) def cam_detail_3(): return render_template('pages/cam_detail_4.html') @app.route('/cam_detail_6/', methods=['GET', 'POST']) def cam_detail_6(): return render_template('pages/cam_detail_5.html') @app.route('/cam_detail_8/', methods=['GET', 'POST']) def cam_detail_8(): return render_template('pages/cam_detail_6.html') @app.route('/cam_detail_7/', methods=['GET', 'POST']) def cam_detail_7(): return render_template('pages/cam_detail_7.html') @app.route('/cam_detail_5/', methods=['GET', 'POST']) def cam_detail_5(): return render_template('pages/cam_detail_8.html') @app.route('/session_setup/', methods=['GET', 'POST']) def session_setup(): try: data = Shooter.query.all() rang= Range.query.all() firearms = Firearms.query.all() ammunation = Ammunation.query.all() rang_name = request.form.get('comp_select_4') fire_name = request.form.get('comp_select_5') ammu_name = request.form.get('comp_select_6') form=SessionForm() if(rang_name is None): range_id=999 fire_id=999 ammu_id=999 else: range_id = db.session.query(Range.id).filter(Range.name==rang_name).scalar() fire_id = db.session.query(Firearms.id).filter(Firearms.name==fire_name).scalar() ammu_id = db.session.query(Ammunation.id).filter(Ammunation.name==ammu_name).scalar() if form.validate_on_submit(): shooting=Shooting_Session( date=form.date.data.strftime('%Y-%m-%d'), datetimestamp=time.strftime("%Y-%m-%d %H:%M"), shooting_range_id=range_id, firearms_id=fire_id, ammunation_id=ammu_id, target_distance = form.target_distance.data, weather_notes = form.weather_notes.data, comments = form.comments.data, session_no=form.session_no.data, occasion=form.occ.data ) db.session.add(shooting) db.session.commit() return redirect(url_for('session_config')) except Exception as e: return redirect(url_for('error5_505.html')) return render_template('forms/shooting_form.html', form=form, data =data ,rang=rang , firearmns=firearms, ammunation = ammunation) @app.route('/configuration/', methods=['GET', 'POST']) def session_config(): config = Shooting_Session.query.all() for con in config: con.range_name = Range.query.filter(Range.id==con.shooting_range_id).scalar() con.firerarms_name = Firearms.query.filter(Firearms.id==con.firearms_id).scalar() con.ammunation_name = Ammunation.query.filter(Ammunation.id==con.ammunation_id).scalar() return render_template('pages/shooting_configuration_detail.html',con=config) @app.route('/image_process/') def image_process(): dt=time.strftime("%Y-%m-%d") detail_data=db.session.query(Session_Detail).filter(Session_Detail.date==dt,Session_Detail.save_flag==0).all() data =TShooting.query.scalar() if(data is None): T1_name ="NA" T1_service ="NA" T1_rank="NA" T2_name ="NA" T2_service ="NA" T2_rank="NA" T3_name ="NA" T3_service ="NA" T3_rank="NA" T4_name ="NA" T4_service ="NA" T4_rank="NA" T5_name ="NA" T5_service ="NA" T5_rank="NA" T6_name ="NA" T6_service ="NA" T6_rank="NA" T7_name ="NA" T7_service ="NA" T7_rank="NA" T8_name ="NA" T8_service ="NA" T8_rank="NA" elif(data.save_flag == 1 ): db.session.query(TShooting).delete() db.session.commit() T1_name ="NA" T1_service ="NA" T1_rank="NA" T2_name ="NA" T2_service ="NA" T2_rank="NA" T3_name ="NA" T3_service ="NA" T3_rank="NA" T4_name ="NA" T4_service ="NA" T4_rank="NA" T5_name ="NA" T5_service ="NA" T5_rank="NA" T6_name ="NA" T6_service ="NA" T6_rank="NA" T7_name ="NA" T7_service ="NA" T7_rank="NA" T8_name ="NA" T8_service ="NA" T8_rank="NA" else: T1=Shooter.query.filter(Shooter.id==TShooting.target_1_id).scalar() if(T1 is None): T1_name ="NA" T1_service ="NA" T1_rank="NA" else: T1_name = T1.name T1_service = T1.service_id T1_r_id = T1.rank_id T1_rank_id = Rank.query.filter(Rank.id==T1_r_id).scalar() T1_rank=T1_rank_id.name T2=Shooter.query.filter(Shooter.id==TShooting.target_2_id).scalar() if(T2 is None): T2_name ="NA" T2_service ="NA" T2_rank="NA" else: T2_name = T2.name T2_service = T2.service_id T2_r_id = T2.rank_id T2_rank_id = Rank.query.filter(Rank.id==T2_r_id).scalar() T2_rank=T2_rank_id.name T3=Shooter.query.filter(Shooter.id==TShooting.target_3_id,TShooting.target_3_id!=999).scalar() if(T3 is None): T3_name ="NA" T3_service ="NA" T3_rank="NA" else: T3_name = T3.name T3_service = T3.service_id T3_r_id = T3.rank_id T3_rank_id = Rank.query.filter(Rank.id==T3_r_id).scalar() T3_rank=T3_rank_id.name T4=Shooter.query.filter(Shooter.id==TShooting.target_4_id,TShooting.target_4_id!=999).scalar() if(T4 is None): T4_name ="NA" T4_service ="NA" T4_rank="NA" else: T4_name = T4.name T4_service = T4.service_id T4_r_id = T4.rank_id T4_rank_id = Rank.query.filter(Rank.id==T4_r_id).scalar() T4_rank=T4_rank_id.name T5=Shooter.query.filter(Shooter.id==TShooting.target_5_id).scalar() if(T5 is None): T5_name ="NA" T5_service ="NA" T5_rank="NA" else: T5_name = T5.name T5_service = T5.service_id T5_r_id = T5.rank_id T5_rank_id = Rank.query.filter(Rank.id==T5_r_id).scalar() T5_rank=T5_rank_id.name T6=Shooter.query.filter(Shooter.id==TShooting.target_6_id).scalar() if(T6 is None): T6_name ="NA" T6_service ="NA" T6_rank="NA" else: T6_name = T6.name T6_service = T6.service_id T6_r_id = T6.rank_id T6_rank_id = Rank.query.filter(Rank.id==T6_r_id).scalar() T6_rank=T6_rank_id.name T7=Shooter.query.filter(Shooter.id==TShooting.target_7_id).scalar() if(T7 is None): T7_name ="NA" T7_service ="NA" T7_rank="NA" else: T7_name = T7.name T7_service = T7.service_id T7_r_id = T7.rank_id T7_rank_id = Rank.query.filter(Rank.id==T7_r_id).scalar() T7_rank=T7_rank_id.name T8=Shooter.query.filter(Shooter.id==TShooting.target_8_id).scalar() if(T8 is None): T8_name ="NA" T8_service ="NA" T8_rank="NA" else: T8_name = T8.name T8_service = T8.service_id T8_r_id = T8.rank_id T8_rank_id = Rank.query.filter(Rank.id==T8_r_id).scalar() T8_rank=T8_rank_id.name return render_template('pages/image_process.html' , T1_name=T1_name, detail_data=detail_data, T1_service=T1_service, T2_name=T2_name, T2_service=T2_service, T3_name=T3_name, T3_service=T3_service, T4_name=T4_name, T4_service=T4_service, T5_name=T5_name, T5_service=T5_service, T6_name=T6_name, T6_service=T6_service, T7_name=T7_name, T7_service=T7_service, T8_name=T8_name, T8_service=T8_service, T1_rank=T1_rank, T2_rank=T2_rank, T3_rank=T3_rank, T4_rank=T4_rank, T5_rank=T5_rank, T6_rank=T6_rank, T7_rank=T7_rank, T8_rank=T8_rank ) @app.route('/image_edit_1/', methods=['GET', 'POST']) def image_edit_1(): return render_template('pages/image_edit_1.html') @app.route('/image_edit_2/', methods=['GET', 'POST']) def image_edit_2(): return render_template('pages/image_edit_2.html') @app.route('/image_edit_3/', methods=['GET', 'POST']) def image_edit_3(): return render_template('pages/image_edit_3.html') @app.route('/image_edit_4/', methods=['GET', 'POST']) def image_edit_4(): return render_template('pages/image_edit_4.html') @app.route('/image_edit_5/', methods=['GET', 'POST']) def image_edit_5(): return render_template('pages/image_edit_5.html') @app.route('/image_edit_6/', methods=['GET', 'POST']) def image_edit_6(): return render_template('pages/image_edit_6.html') @app.route('/image_edit_7/', methods=['GET', 'POST']) def image_edit_7(): return render_template('pages/image_edit_7.html') @app.route('/image_edit_8/', methods=['GET', 'POST']) def image_edit_8(): return render_template('pages/image_edit_8.html') @app.route('/configuration/detail/<id>', methods=['GET', 'POST']) def session_config_detail(id): config = Shooting_Session.query.filter(Shooting_Session.id == id) for con in config: con.range_name = Range.query.filter(Range.id==con.shooting_range_id).scalar() con.firerarms_name = Firearms.query.filter(Firearms.id==con.firearms_id).scalar() con.ammunation_name = Ammunation.query.filter(Ammunation.id==con.ammunation_id).scalar() return render_template('pages/shooting_configuration_detail_view.html',con=config) @app.route('/configuration/edit/<id>', methods=['GET', 'POST']) def shooting_config_edit(id): edit = Shooting_Session.query.get_or_404(id) form = SessionEditForm(obj=edit) if form.validate_on_submit(): edit.session_no = form.session_no.data edit.date = form.date.data edit.occasion=form.occ.data edit.target_distance = form.target_distance.data ammunation_id=Ammunation.query.filter(Ammunation.name==form.ammunation_name.data).scalar() edit.ammunation_id=ammunation_id.id firearms_id=Firearms.query.filter(Firearms.name==form.firerarms_name.data).scalar() edit.firearms_id=firearms_id.id range_id=Range.query.filter(Range.name==form.range_name.data).scalar() edit.shooting_range_id=range_id.id edit.weather_notes=form.weather_notes.data edit.comments=form.comments.data db.session.commit() return redirect(url_for('session_config')) form.session_no.data=edit.session_no form.date.data=edit.date form.occ.data=edit.occasion ammunation_name=Ammunation.query.filter(Ammunation.id==edit.ammunation_id).scalar() form.ammunation_name.data=ammunation_name.name firerarms_name=Firearms.query.filter(Firearms.id==edit.firearms_id).scalar() form.firerarms_name.data=firerarms_name.name range_name=Range.query.filter(Range.id==edit.shooting_range_id).scalar() form.range_name.data=range_name.name form.weather_notes.data=edit.weather_notes form.comments.data=edit.comments return render_template('pages/shooting_configuration_edit.html',form=form,edit=edit) @app.route('/detail_dashboard/') def detail_dashboard(): tshoot=db.session.query(TShooting).scalar() if(tshoot is None): T1_name = "NA" T1_service="NA" T1_rank ="NA" T2_name = "NA" T2_service="NA" T2_rank ="NA" T3_name = "NA" T3_service="NA" T3_rank ="NA" T4_name = "NA" T4_service="NA" T4_rank ="NA" T5_name = "NA" T5_service="NA" T5_rank ="NA" T6_name = "NA" T6_service="NA" T6_rank ="NA" T7_name = "NA" T7_service="NA" T7_rank ="NA" T8_name = "NA" T8_service="NA" T8_rank ="NA" else: T1=Shooter.query.filter(Shooter.id==TShooting.target_1_id).scalar() T1_name = T1.name T1_service = T1.service_id T1_r_id = T1.rank_id T1_rank_id = Rank.query.filter(Rank.id==T1_r_id).scalar() T1_rank=T1_rank_id.name T2=Shooter.query.filter(Shooter.id==TShooting.target_2_id).scalar() T2_name = T2.name T2_service = T2.service_id T2_r_id = T2.rank_id T2_rank_id = Rank.query.filter(Rank.id==T2_r_id).scalar() T2_rank=T2_rank_id.name T3=Shooter.query.filter(Shooter.id==TShooting.target_3_id).scalar() T3_name = T3.name T3_service = T3.service_id T3_r_id = T3.rank_id T3_rank_id = Rank.query.filter(Rank.id==T3_r_id).scalar() T3_rank=T3_rank_id.name T4=Shooter.query.filter(Shooter.id==TShooting.target_4_id).scalar() T4_name = T4.name T4_service = T4.service_id T4_r_id = T4.rank_id T4_rank_id = Rank.query.filter(Rank.id==T4_r_id).scalar() T4_rank=T4_rank_id.name T5=Shooter.query.filter(Shooter.id==TShooting.target_5_id).scalar() T5_name = T5.name T5_service = T5.service_id T5_r_id = T5.rank_id T5_rank_id = Rank.query.filter(Rank.id==T5_r_id).scalar() T5_rank=T5_rank_id.name T6=Shooter.query.filter(Shooter.id==TShooting.target_6_id).scalar() T6_name = T6.name T6_service = T6.service_id T6_r_id = T6.rank_id T6_rank_id = Rank.query.filter(Rank.id==T6_r_id).scalar() T6_rank=T6_rank_id.name T7=Shooter.query.filter(Shooter.id==TShooting.target_7_id).scalar() T7_name = T7.name T7_service = T7.service_id T7_r_id = T7.rank_id T7_rank_id = Rank.query.filter(Rank.id==T7_r_id).scalar() T7_rank=T7_rank_id.name T8=Shooter.query.filter(Shooter.id==TShooting.target_8_id).scalar() T8_name = T8.name T8_service = T8.service_id T8_r_id = T8.rank_id T8_rank_id = Rank.query.filter(Rank.id==T8_r_id).scalar() T8_rank=T8_rank_id.name return render_template('pages/detail_dashboard.html' , T1_name=T1_name, T1_service=T1_service, T2_name=T2_name, T2_service=T2_service, T3_name=T3_name, T3_service=T3_service, T4_name=T4_name, T4_service=T4_service, T5_name=T5_name, T5_service=T5_service, T6_name=T6_name, T6_service=T6_service, T7_name=T7_name, T7_service=T7_service, T8_name=T8_name, T8_service=T8_service, T1_rank=T1_rank, T2_rank=T2_rank, T3_rank=T3_rank, T4_rank=T4_rank, T5_rank=T5_rank, T6_rank=T6_rank, T7_rank=T7_rank, T8_rank=T8_rank ) @app.route('/adhoc_detail_1/', methods=['GET', 'POST']) def adhoc_detail_1(): name_1=None army=None rank=None cant=None set_1_name=None set_1_army=None set_2_name=None set_2_army=None set_3_name=None set_3_army=None set_4_name=None set_4_army=None res=[] ten=[] gp_len=[] if request.method == "POST": data1 = request.get_json() army=data1['usr'] curdate=time.strftime("%Y-%m-%d") name_1=db.session.query(Shooter.name).filter(Shooter.service_id==army).scalar() target_1_id=db.session.query(Shooter.id).filter(Shooter.service_id==army).scalar() rank_id=db.session.query(Shooter.rank_id).filter(Shooter.service_id==army).scalar() cant_id=db.session.query(Shooter.cantonment_id).filter(Shooter.service_id==army).scalar() rank=db.session.query(Rank.name).filter(Rank.id==rank_id).scalar() cant=db.session.query(Cantonment.cantonment).filter(Cantonment.id==cant_id).scalar() tten=db.session.query(MPI.tendency_code).filter(MPI.firer_id==target_1_id).order_by(MPI.datetimestamp.desc()).limit(5).all()[::-1] tres = db.session.query(Grouping.result).filter(Grouping.firer_id==target_1_id).order_by(Grouping.datetimestamp.desc()).limit(5).all()[::-1] tgp = db.session.query(Grouping.grouping_length_f).filter(Grouping.firer_id==target_1_id).order_by(Grouping.datetimestamp.desc()).limit(5).all()[::-1] for ele in tres: for ele2 in ele: res.append(ele2) for ele3 in tten: for ele4 in ele3: ten.append(ele4) for ele5 in tgp: for ele6 in ele5: gp_len.append(ele6) set_1_id = db.session.query(Firer_Details.firer_id).filter(Firer_Details.date==curdate, Firer_Details.target_no==1, Firer_Details.set_no==1 ).distinct().scalar() set_1_name=db.session.query(Shooter.name).filter(Shooter.id==set_1_id).scalar() set_1_army=db.session.query(Shooter.service_id).filter(Shooter.id==set_1_id).scalar() set_2_id = db.session.query(Firer_Details.firer_id).filter(Firer_Details.date==curdate, Firer_Details.target_no==2, Firer_Details.set_no==2 ).distinct().scalar() set_2_name=db.session.query(Shooter.name).filter(Shooter.id==set_2_id).scalar() set_2_army=db.session.query(Shooter.service_id).filter(Shooter.id==set_2_id).scalar() set_3_id = db.session.query(Firer_Details.firer_id).filter(Firer_Details.date==curdate, Firer_Details.target_no==3, Firer_Details.set_no==3 ).distinct().scalar() set_3_name=db.session.query(Shooter.name).filter(Shooter.id==set_3_id).scalar() set_3_army=db.session.query(Shooter.service_id).filter(Shooter.id==set_3_id).scalar() set_4_id = db.session.query(Firer_Details.firer_id).filter(Firer_Details.date==curdate, Firer_Details.target_no==4, Firer_Details.set_no==4 ).distinct().scalar() set_4_name=db.session.query(Shooter.name).filter(Shooter.id==set_4_id).scalar() set_4_army=db.session.query(Shooter.service_id).filter(Shooter.id==set_4_id).scalar() return jsonify(name_1=name_1,army=army,rank=rank,cant=cant, set_1_name=set_1_name, set_2_name=set_2_name, set_3_name=set_3_name, set_4_name=set_4_name, set_1_army=set_1_army, set_2_army=set_2_army, set_3_army=set_3_army, set_4_army=set_4_army, gp_len=gp_len, res=res, ten=ten ) @app.route('/individual_score/target_1', methods=['GET', 'POST']) def individual_score_target_1(): session.clear() data=TShooting.query.scalar() firing_set_arr=[] cantonment=Cantonment.query.distinct(Cantonment.cantonment) curdate=time.strftime("%Y-%m-%d") selection=Shooting_Session.query.filter(Shooting_Session.date>=curdate).order_by(Shooting_Session.datetimestamp.desc()).all() gender =Gender.query.all() rank_s = Rank.query.all() firing_set=db.session.query(Firer_Details.set_no).filter(Firer_Details.target_no==1).distinct().all() for ele in firing_set: for ele2 in ele: firing_set_arr.append(ele2) if(len(firing_set_arr)<1): pass else: i=len(firing_set_arr)-1 if(firing_set_arr[i]==5): db.session.query(Firer_Details).filter(Firer_Details.target_no==1).delete() db.session.commit() else: pass dt=time.strftime("%Y-%m-%d") curdatetime=datetime.now() firer_1 = [row.service_id for row in Shooter.query.all()] detail_data=db.session.query(Session_Detail).filter(Session_Detail.date==dt,Session_Detail.save_flag==0).all() name = "NA" detail_no ="NA" rank ="NA" target_no = 1 service_id ="NA" ten = [] res = [] selection=Shooting_Session.query.filter(Shooting_Session.date>=dt).order_by(Shooting_Session.datetimestamp.desc()).all() firearms = Firearms.query.all() rang= Range.query.all() ammunation = Ammunation.query.all() return render_template('pages/prediction_target_1.html', curdatetime=curdatetime, name = name, firer_1=firer_1, rank=rank, detail_data=detail_data, detail_no=detail_no, target_no=target_no, service_id=service_id, firearms=firearms, ammunation=ammunation, data=selection, rang=rang, res=res, date=dt, ten=ten, cantonment=cantonment, gender=gender, rank_s=rank_s) @app.route('/session_target_1/', methods=['GET', 'POST']) def session_target_1(): if request.method == "POST": data1 = request.get_json() session=data1["session"] ran=data1["range"] arms=data1["arms"] distance=data1["dis"] occ=data1["occ"] ammu=data1["ammu"] weather=data1["weather"] comment=data1["comment"] range_id=db.session.query(Range.id).filter(Range.name==ran).scalar() arms_id=db.session.query(Firearms.id).filter(Firearms.name==arms).scalar() ammu_id=db.session.query(Ammunation.id).filter(Ammunation.name==ammu).scalar() shooting=Shooting_Session( date=time.strftime("%Y-%m-%d"), datetimestamp=time.strftime("%Y-%m-%d %H:%M"), shooting_range_id=range_id, firearms_id=arms_id, ammunation_id=ammu_id, target_distance=distance, weather_notes =weather, comments =comment, session_no=session, occasion=occ ) db.session.add(shooting) db.session.commit() result="This is Successfully Saved" return jsonify(result=result ,session=session) @app.route('/target_1_populate/', methods=['GET', 'POST']) def target_1_populate(): if request.method == 'POST': session_id=db.session.query(TShooting.session_id).scalar() return jsonify(session_id=session_id) @app.route('/load_detail_1/', methods=['GET', 'POST']) def load_detail_1(): result_1="Done" if request.method == 'POST': curdate=time.strftime("%Y-%m-%d") r8=None data=request.get_json() tmp_list = [] duplicate = False detail =data["detail"] sess=data["session"] paper=data["paper"] shot=data["shot"] set=data["set"] if(data["r1"]==""): r1_id=999 else: r1=data["r1"] r1_id=db.session.query(Shooter.id).filter(Shooter.service_id==r1).scalar() if(data["r2"]==""): r2_id=999 else: r2=data["r2"] r2_id=db.session.query(Shooter.id).filter(Shooter.service_id==r2).scalar() if(data["r3"]==""): r3_id=999 else: r3=data["r3"] r3_id=db.session.query(Shooter.id).filter(Shooter.service_id==r3).scalar() if(data["r4"]==""): r4_id=999 else: r4=data["r4"] r4_id=db.session.query(Shooter.id).filter(Shooter.service_id==r4).scalar() if(data["r5"]==""): r5_id=999 else: r5=data["r5"] r5_id=db.session.query(Shooter.id).filter(Shooter.service_id==r5).scalar() if(data["r6"]==""): r6_id=999 else: r6=data["r6"] r6_id=db.session.query(Shooter.id).filter(Shooter.service_id==r6).scalar() if(data["r7"]==""): r7_id=999 else: r7=data["r7"] r7_id=db.session.query(Shooter.id).filter(Shooter.service_id==r7).scalar() if(data["r8"]==""): r8_id=999 else: r8=data["r8"] r8_id=db.session.query(Shooter.id).filter(Shooter.service_id==r8).scalar() tmp_list.append(r1_id) tmp_list.append(r2_id) tmp_list.append(r3_id) tmp_list.append(r4_id) tmp_list.append(r5_id) tmp_list.append(r6_id) tmp_list.append(r7_id) tmp_list.append(r8_id) db.session.query(TPaper_ref).delete() db.session.commit() ref_db = TPaper_ref( date=time.strftime("%Y-%m-%d"), paper_ref=paper, detail_no=detail, session_no=sess ) db.session.add(ref_db) db.session.commit() for i in range(len(tmp_list)): for j in range(len(tmp_list)): if(i!=j and tmp_list[i]==tmp_list[j]): if(tmp_list[i]== 999 and tmp_list[j]==999): duplicate = False else: duplicate = True else: duplicate = False if(duplicate): print("inside dup") error="dup" else: db.session.query(TShooting).delete() db.session.commit() tshoot=TShooting( date=datetime.now(), datetimestamp=time.strftime("%Y-%m-%d %H:%M"), session_id=sess, detail_no=detail, target_1_id=r1_id, target_2_id=r2_id, target_3_id=r3_id, target_4_id=r4_id, target_5_id=r5_id, target_6_id=r6_id, target_7_id=r7_id, target_8_id=r8_id, paper_ref=paper, set_no=set, save_flag=0 ) db.session.add(tshoot) db.session.commit() detail_shots =Session_Detail( date=datetime.now(), datetimestamp=time.strftime("%Y-%m-%d %H:%M"), session_id=sess, detail_no=detail, target_1_id=r1_id, target_2_id=r2_id, target_3_id=r3_id, target_4_id=r4_id, target_5_id=r5_id, target_6_id=r6_id, target_7_id=r7_id, target_8_id=r8_id, paper_ref=paper, set_no=set, save_flag=0 ) db.session.add(detail_shots) db.session.commit() error="ok" firer_name,cant,rank,service_id,res,tenden,gp_len,set_4_name,set_4_army,set_4_session_no,set_4_detail_no,set_3_name,set_3_army,set_3_session_no,set_3_detail_no,set_2_name,set_2_army,set_2_session_no,set_2_detail_no,set_1_name,set_1_army,set_1_session_no,set_1_detail_no,current_firer_name,current_army_no,current_session_no,current_detail_no=get_information(r1_id,sess,paper) result="The Detail is Saved Successfully" return jsonify(result=result,data1=firer_name,ra_1=rank,detail=detail, service_id_1=service_id, session=sess, paper=paper, set_no=set, cant=cant, gp_len=gp_len, res=res, ten=tenden, set_4_name=set_4_name, set_3_name=set_3_name, set_2_name=set_2_name, set_1_name=set_1_name, current_firer_name=current_firer_name, set_4_army=set_4_army, set_3_army=set_3_army, set_2_army=set_2_army, set_1_army=set_1_army, current_army_no=current_army_no, set_4_session_no=set_4_session_no, set_3_session_no=set_3_session_no, set_2_session_no=set_2_session_no, set_1_session_no=set_1_session_no, current_session_no=current_session_no, set_4_detail_no=set_4_detail_no, set_3_detail_no=set_3_detail_no, set_2_detail_no=set_2_detail_no, set_1_detail_no=set_1_detail_no, current_detail_no=current_detail_no ) return jsonify(result_1=result_1) def get_information(target_1_id,sess,paper_ref): res=[] ten=[] gp_len=[] curdate=time.strftime("%Y-%m-%d") tten=db.session.query(MPI.tendency_code).filter(MPI.firer_id==target_1_id).order_by(MPI.datetimestamp.desc()).limit(5).all()[::-1] tres = db.session.query(Grouping.result).filter(Grouping.firer_id==target_1_id).order_by(Grouping.datetimestamp.desc()).limit(5).all()[::-1] tgp = db.session.query(Grouping.grouping_length_f).filter(Grouping.firer_id==target_1_id).order_by(Grouping.datetimestamp.desc()).limit(5).all()[::-1] for ele in tres: for ele2 in ele: res.append(ele2) for ele3 in tten: for ele4 in ele3: ten.append(ele4) for ele5 in tgp: for ele6 in ele5: gp_len.append(int(ele6)) da_1=db.session.query(Shooter.name).filter(Shooter.id==target_1_id).scalar() cant_id=db.session.query(Shooter.cantonment_id).filter(Shooter.id==target_1_id).scalar() cant=db.session.query(Cantonment.cantonment).filter(Cantonment.id==cant_id).scalar() ra_1_id=db.session.query(Shooter.rank_id).filter(Shooter.id==target_1_id).scalar() ra_1 = db.session.query(Rank.name).filter(Rank.id==ra_1_id).scalar() service_id_1 = db.session.query(Shooter.service_id).filter(Shooter.id==target_1_id).scalar() set_1_id = db.session.query(Firer_Details.firer_id).filter( Firer_Details.date==curdate, Firer_Details.target_no==1, Firer_Details.set_no==1 ).distinct().scalar() set_1_session_no=db.session.query(Firer_Details.session_id).filter( Firer_Details.date==curdate, Firer_Details.target_no==1, Firer_Details.set_no==1 ).distinct().scalar() set_1_detail_no=db.session.query(Firer_Details.detail_id).filter( Firer_Details.date==curdate, Firer_Details.target_no==1, Firer_Details.set_no==1 ).distinct().scalar() set_1_name=db.session.query(Shooter.name).filter( Shooter.id==set_1_id ).scalar() set_1_army=db.session.query(Shooter.service_id).filter(Shooter.id==set_1_id).scalar() set_2_id = db.session.query(Firer_Details.firer_id).filter( Firer_Details.date==curdate, Firer_Details.target_no==1, Firer_Details.set_no==2 ).distinct().scalar() set_2_session_no=db.session.query(Firer_Details.session_id).filter( Firer_Details.date==curdate, Firer_Details.target_no==1, Firer_Details.set_no==2 ).distinct().scalar() set_2_detail_no=db.session.query(Firer_Details.detail_id).filter( Firer_Details.date==curdate, Firer_Details.target_no==1, Firer_Details.set_no==2 ).distinct().scalar() set_2_name=db.session.query(Shooter.name).filter( Shooter.id==set_2_id ).scalar() set_2_army=db.session.query(Shooter.service_id).filter(Shooter.id==set_2_id).scalar() set_3_id = db.session.query(Firer_Details.firer_id).filter( Firer_Details.date==curdate, Firer_Details.target_no==1, Firer_Details.set_no==3 ).distinct().scalar() set_3_session_no=db.session.query(Firer_Details.session_id).filter( Firer_Details.date==curdate, Firer_Details.target_no==1, Firer_Details.set_no==3 ).distinct().scalar() set_3_detail_no=db.session.query(Firer_Details.detail_id).filter( Firer_Details.date==curdate, Firer_Details.target_no==1, Firer_Details.set_no==3 ).distinct().scalar() set_3_name=db.session.query(Shooter.name).filter( Shooter.id==set_3_id ).scalar() set_3_army=db.session.query(Shooter.service_id).filter(Shooter.id==set_3_id).scalar() set_4_id = db.session.query(Firer_Details.firer_id).filter( Firer_Details.date==curdate, Firer_Details.target_no==1, Firer_Details.set_no==4 ).distinct().scalar() set_4_session_no=db.session.query(Firer_Details.session_id).filter( Firer_Details.date==curdate, Firer_Details.target_no==1, Firer_Details.set_no==4 ).distinct().scalar() set_4_detail_no=db.session.query(Firer_Details.detail_id).filter( Firer_Details.date==curdate, Firer_Details.target_no==1, Firer_Details.set_no==4 ).distinct().scalar() set_4_name=db.session.query(Shooter.name).filter( Shooter.id==set_4_id ).scalar() set_4_army=db.session.query(Shooter.service_id).filter(Shooter.id==set_4_id).scalar() current_firer_name = db.session.query(Shooter.name).filter(Shooter.id==target_1_id).scalar() current_army_no = db.session.query(Shooter.service_id).filter(Shooter.id==target_1_id).scalar() current_session_no=db.session.query(TShooting.session_id).filter(TShooting.target_1_id==target_1_id).scalar() current_detail_no=db.session.query(TShooting.detail_no).filter(TShooting.target_1_id==target_1_id).scalar() return(da_1,cant,ra_1,service_id_1,res,ten,gp_len, set_4_name,set_4_army,set_4_session_no,set_4_detail_no, set_3_name,set_3_army,set_3_session_no,set_3_detail_no, set_2_name,set_2_army,set_2_session_no,set_2_detail_no, set_1_name,set_1_army,set_1_session_no,set_1_detail_no, current_firer_name,current_army_no,current_session_no,current_detail_no ) @app.route('/individual_score/target_2', methods=['GET', 'POST']) def individual_score_target_2(): firer_id =db.session.query(TShooting.target_2_id).scalar() detail_no =db.session.query(TShooting.detail_no).scalar() session_no =db.session.query(TShooting.session_id).scalar() target_no = 2 tres = db.session.query(Grouping.result).filter(Grouping.firer_id==firer_id).order_by(Grouping.datetimestamp.desc()).limit(5).all()[::-1] res=[] ten=[] tten=db.session.query(MPI.tendency_code).filter(MPI.firer_id==firer_id).order_by(MPI.datetimestamp.desc()).limit(5).all()[::-1] print(tres,) for ele in tres: for ele2 in ele: print(type(ele2)) res.append(ele2) for ele3 in tten: for ele4 in ele3: print(type(ele4)) ten.append(ele4) service_id = db.session.query(Shooter.service_id).filter(Shooter.id==firer_id).scalar() rank_id=db.session.query(Shooter.rank_id).filter(Shooter.id==firer_id).scalar() rank=db.session.query(Rank.name).filter(Rank.id==rank_id).scalar() name = db.session.query(Shooter.name).filter(Shooter.id==firer_id).scalar() firer_id,sess,o,p,u,q,t1_x,t1_y,xmpi,ympi,f,gp,Tfirt_x,Tfirt_y,fin_x_1,fin_y_1,result_1,fir_tendency_1=prediction_calculation_2() if request.method == 'POST': paper_ref=db.session.query(TPaper_ref.paper_ref).scalar() print("paper_ref") print(paper_ref) return render_template('pages/prediction_target_2.html', name = name, detail_no=detail_no, session_no=session_no, target_no=target_no, service_id=service_id, rank=rank, res=res, ten=ten) @app.route('/individual_score/target_3', methods=['GET', 'POST']) def individual_score_target_3(): firer_id =db.session.query(TShooting.target_3_id).scalar() detail_no =db.session.query(TShooting.detail_no).scalar() session_no =db.session.query(TShooting.session_id).scalar() target_no = 3 tres = db.session.query(Grouping.result).filter(Grouping.firer_id==firer_id).order_by(Grouping.datetimestamp.desc()).limit(5).all()[::-1] res=[] ten=[] tten=db.session.query(MPI.tendency_code).filter(MPI.firer_id==firer_id).order_by(MPI.datetimestamp.desc()).limit(5).all()[::-1] print(tres) for ele in tres: for ele2 in ele: print(type(ele2)) res.append(ele2) for ele3 in tten: for ele4 in ele3: print(type(ele4)) ten.append(ele4) service_id = db.session.query(Shooter.service_id).filter(Shooter.id==firer_id).scalar() rank_id=db.session.query(Shooter.rank_id).filter(Shooter.id==firer_id).scalar() rank=db.session.query(Rank.name).filter(Rank.id==rank_id).scalar() name = db.session.query(Shooter.name).filter(Shooter.id==firer_id).scalar() return render_template('pages/prediction_target_3.html', name = name, detail_no=detail_no, session_no=session_no, target_no=target_no, service_id=service_id, rank=rank, res=res, ten=ten) @app.route('/individual_score/target_4', methods=['GET', 'POST']) def individual_score_target_4(): firer_id =db.session.query(TShooting.target_4_id).scalar() detail_no =db.session.query(TShooting.detail_no).scalar() session_no =db.session.query(TShooting.session_id).scalar() target_no = 4 tres = db.session.query(Grouping.result).filter(Grouping.firer_id==firer_id).order_by(Grouping.datetimestamp.desc()).limit(5).all()[::-1] res=[] ten=[] tten=db.session.query(MPI.tendency_code).filter(MPI.firer_id==firer_id).order_by(MPI.datetimestamp.desc()).limit(5).all()[::-1] print(tres) for ele in tres: for ele2 in ele: print(type(ele2)) res.append(ele2) for ele3 in tten: for ele4 in ele3: print(type(ele4)) ten.append(ele4) service_id = db.session.query(Shooter.service_id).filter(Shooter.id==firer_id).scalar() rank_id=db.session.query(Shooter.rank_id).filter(Shooter.id==firer_id).scalar() rank=db.session.query(Rank.name).filter(Rank.id==rank_id).scalar() name = db.session.query(Shooter.name).filter(Shooter.id==firer_id).scalar() return render_template('pages/prediction_target_4.html', name = name, detail_no=detail_no, session_no=session_no, target_no=target_no, service_id=service_id, rank=rank, res=res, ten=ten) @app.route('/individual_score/target_5', methods=['GET', 'POST']) def individual_score_target_5(): firer_id =db.session.query(TShooting.target_5_id).scalar() detail_no =db.session.query(TShooting.detail_no).scalar() session_no =db.session.query(TShooting.session_id).scalar() target_no = 5 tres = db.session.query(Grouping.result).filter(Grouping.firer_id==firer_id).order_by(Grouping.datetimestamp.desc()).limit(5).all()[::-1] res=[] ten=[] tten=db.session.query(MPI.tendency_code).filter(MPI.firer_id==firer_id).order_by(MPI.datetimestamp.desc()).limit(5).all()[::-1] print(tres) for ele in tres: for ele2 in ele: print(type(ele2)) res.append(ele2) for ele3 in tten: for ele4 in ele3: print(type(ele4)) ten.append(ele4) service_id = db.session.query(Shooter.service_id).filter(Shooter.id==firer_id).scalar() rank_id=db.session.query(Shooter.rank_id).filter(Shooter.id==firer_id).scalar() rank=db.session.query(Rank.name).filter(Rank.id==rank_id).scalar() name = db.session.query(Shooter.name).filter(Shooter.id==firer_id).scalar() return render_template('pages/prediction_target_5.html', name = name, detail_no=detail_no, session_no=session_no, target_no=target_no, service_id=service_id, rank=rank, res=res, ten=ten) @app.route('/individual_score/target_6', methods=['GET', 'POST']) def individual_score_target_6(): firer_id =db.session.query(TShooting.target_6_id).scalar() detail_no =db.session.query(TShooting.detail_no).scalar() session_no =db.session.query(TShooting.session_id).scalar() target_no = 6 tres = db.session.query(Grouping.result).filter(Grouping.firer_id==firer_id).order_by(Grouping.datetimestamp.desc()).limit(5).all()[::-1] res=[] ten=[] tten=db.session.query(MPI.tendency_code).filter(MPI.firer_id==firer_id).order_by(MPI.datetimestamp.desc()).limit(5).all()[::-1] print(tres) for ele in tres: for ele2 in ele: print(type(ele2)) res.append(ele2) for ele3 in tten: for ele4 in ele3: print(type(ele4)) ten.append(ele4) service_id = db.session.query(Shooter.service_id).filter(Shooter.id==firer_id).scalar() rank_id=db.session.query(Shooter.rank_id).filter(Shooter.id==firer_id).scalar() rank=db.session.query(Rank.name).filter(Rank.id==rank_id).scalar() name = db.session.query(Shooter.name).filter(Shooter.id==firer_id).scalar() return render_template('pages/prediction_target_6.html', name = name, detail_no=detail_no, session_no=session_no, target_no=target_no, service_id=service_id, rank=rank, res=res, ten=ten) @app.route('/individual_score/target_7', methods=['GET', 'POST']) def individual_score_target_7(): firer_id =db.session.query(TShooting.target_7_id).scalar() detail_no =db.session.query(TShooting.detail_no).scalar() session_no =db.session.query(TShooting.session_id).scalar() target_no = 7 tres = db.session.query(Grouping.result).filter(Grouping.firer_id==firer_id).order_by(Grouping.datetimestamp.desc()).limit(5).all()[::-1] res=[] ten=[] tten=db.session.query(MPI.tendency_code).filter(MPI.firer_id==firer_id).order_by(MPI.datetimestamp.desc()).limit(5).all()[::-1] print(tres) for ele in tres: for ele2 in ele: print(type(ele2)) res.append(ele2) for ele3 in tten: for ele4 in ele3: print(type(ele4)) ten.append(ele4) service_id = db.session.query(Shooter.service_id).filter(Shooter.id==firer_id).scalar() rank_id=db.session.query(Shooter.rank_id).filter(Shooter.id==firer_id).scalar() rank=db.session.query(Rank.name).filter(Rank.id==rank_id).scalar() name = db.session.query(Shooter.name).filter(Shooter.id==firer_id).scalar() return render_template('pages/prediction_target_7.html', name = name, detail_no=detail_no, session_no=session_no, target_no=target_no, service_id=service_id, rank=rank, res=res, ten=ten) @app.route('/individual_score/target_8', methods=['GET', 'POST']) def individual_score_target_8(): firer_id =db.session.query(TShooting.target_8_id).scalar() detail_no =db.session.query(TShooting.detail_no).scalar() session_no =db.session.query(TShooting.session_id).scalar() target_no = 7 tres = db.session.query(Grouping.result).filter(Grouping.firer_id==firer_id).order_by(Grouping.datetimestamp.desc()).limit(5).all()[::-1] res=[] ten=[] tten=db.session.query(MPI.tendency_code).filter(MPI.firer_id==firer_id).order_by(MPI.datetimestamp.desc()).limit(5).all()[::-1] print(tres) for ele in tres: for ele2 in ele: print(type(ele2)) res.append(ele2) for ele3 in tten: for ele4 in ele3: print(type(ele4)) ten.append(ele4) service_id = db.session.query(Shooter.service_id).filter(Shooter.id==firer_id).scalar() rank_id=db.session.query(Shooter.rank_id).filter(Shooter.id==firer_id).scalar() rank=db.session.query(Rank.name).filter(Rank.id==rank_id).scalar() name = db.session.query(Shooter.name).filter(Shooter.id==firer_id).scalar() return render_template('pages/prediction_target_8.html', name = name, detail_no=detail_no, session_no=session_no, target_no=target_no, service_id=service_id, rank=rank, res=res, ten=ten) @app.route('/prediction_target_1/', methods=['GET', 'POST']) def prediction_target_1(): t1_x=0 t1_y=0 xmpi_j=0 ympi_j=0 gp=0 Tfirt_x_j=0 Tfirt_y_j=0 fin_x_1=0 fin_y_1=0 xmpi_inch = 0 ympi_inch = 0 result_1=None fir_tendency=None set_1_name = None set_1_army =None set_1_session_no = None set_1_detail_no=None set_1_id =None set_2_name = None set_2_army =None set_2_session_no = None set_2_detail_no=None set_2_id =None set_3_name = None set_3_army =None set_3_session_no = None set_3_detail_no=None set_3_id =None set_4_name = None set_4_army =None set_4_session_no = None set_4_detail_no=None set_4_id =None fir_tendency_1=None firer_id=None current_army_no=None current_firer_name=None current_session_no=None session_detail_no=None current_detail_no=None set_2_x=None set_2_y=None set_3_x=None set_3_y=None set_4_x=None set_4_y=None paper_ref=None sess=None res=None set_2_x_arr=[] set_2_y_arr=[] set_3_x_arr=[] set_3_y_arr=[] set_4_x_arr=[] set_4_y_arr=[] fin_x_arr_1=[] fin_y_arr_1=[] curdate=time.strftime("%Y-%m-%d") if request.method == 'POST': firer_id,sess,detail,p,u,q,t1_x,t1_y,xmpi,ympi,f,gp,Tfirt_x,Tfirt_y,fin_x_1,fin_y_1,result_1,fir_tendency_1=prediction_calculation_1() paper_ref=db.session.query(TPaper_ref.paper_ref).scalar() set_2_x=db.session.query(Firer_Details).filter(Firer_Details.date==curdate , Firer_Details.target_no==1 ,Firer_Details.set_no==2 , Firer_Details.session_id==sess).all() set_2_y=db.session.query(Firer_Details).filter(Firer_Details.date==curdate , Firer_Details.target_no==1 , Firer_Details.set_no==2 , Firer_Details.session_id==sess).all() for x_2 in set_2_x: set_2_x_arr.append(int(x_2.final_x)) for y_2 in set_2_y: set_2_y_arr.append(int(y_2.final_y)) set_3_x=db.session.query(Firer_Details).filter(Firer_Details.date==curdate , Firer_Details.target_no==1 , Firer_Details.set_no==3 , Firer_Details.session_id==sess).all() set_3_y=db.session.query(Firer_Details).filter(Firer_Details.date==curdate , Firer_Details.target_no==1 , Firer_Details.set_no==3 , Firer_Details.session_id==sess).all() for x_3 in set_3_x: set_3_x_arr.append(int(x_3.final_x)) for y_3 in set_3_y: set_3_y_arr.append(int(y_3.final_y)) print(set_3_x_arr) set_4_x=db.session.query(Firer_Details).filter(Firer_Details.date==curdate , Firer_Details.target_no==1 , Firer_Details.set_no==4 , Firer_Details.session_id==sess).all() set_4_y=db.session.query(Firer_Details).filter(Firer_Details.date==curdate , Firer_Details.target_no==1 , Firer_Details.set_no==4 , Firer_Details.session_id==sess).all() for x_4 in set_4_x: set_4_x_arr.append(int(x_4.final_x)) for y_4 in set_4_y: set_4_y_arr.append(int(y_4.final_y)) set_1_id = db.session.query(Firer_Details.firer_id).filter( Firer_Details.date==curdate, Firer_Details.target_no==1, Firer_Details.set_no==1 ).distinct().scalar() set_1_session_no=db.session.query(Firer_Details.session_id).filter( Firer_Details.date==curdate, Firer_Details.target_no==1, Firer_Details.set_no==1 ).distinct().scalar() set_1_detail_no=db.session.query(Firer_Details.detail_id).filter( Firer_Details.date==curdate, Firer_Details.target_no==1, Firer_Details.set_no==1 ).distinct().scalar() set_1_name=db.session.query(Shooter.name).filter( Shooter.id==set_1_id ).scalar() set_1_army=db.session.query(Shooter.service_id).filter(Shooter.id==set_1_id).scalar() set_2_id = db.session.query(Firer_Details.firer_id).filter( Firer_Details.date==curdate, Firer_Details.target_no==1, Firer_Details.set_no==2 ).distinct().scalar() set_2_session_no=db.session.query(Firer_Details.session_id).filter( Firer_Details.date==curdate, Firer_Details.target_no==1, Firer_Details.set_no==2 ).distinct().scalar() set_2_detail_no=db.session.query(Firer_Details.detail_id).filter( Firer_Details.date==curdate, Firer_Details.target_no==1, Firer_Details.set_no==2 ).distinct().scalar() print("set_2_detail_no") print(set_2_detail_no) print(set_2_detail_no) set_2_name=db.session.query(Shooter.name).filter( Shooter.id==set_2_id ).scalar() set_2_army=db.session.query(Shooter.service_id).filter(Shooter.id==set_2_id).scalar() set_3_id = db.session.query(Firer_Details.firer_id).filter( Firer_Details.date==curdate, Firer_Details.target_no==1, Firer_Details.set_no==3 ).distinct().scalar() set_3_session_no=db.session.query(Firer_Details.session_id).filter( Firer_Details.date==curdate, Firer_Details.target_no==1, Firer_Details.set_no==3 ).distinct().scalar() set_3_detail_no=db.session.query(Firer_Details.detail_id).filter( Firer_Details.date==curdate, Firer_Details.target_no==1, Firer_Details.set_no==3 ).distinct().scalar() set_3_name=db.session.query(Shooter.name).filter( Shooter.id==set_3_id ).scalar() set_3_army=db.session.query(Shooter.service_id).filter(Shooter.id==set_3_id).scalar() set_4_id = db.session.query(Firer_Details.firer_id).filter( Firer_Details.date==curdate, Firer_Details.target_no==1, Firer_Details.set_no==4 ).distinct().scalar() set_4_session_no=db.session.query(Firer_Details.session_id).filter( Firer_Details.date==curdate, Firer_Details.target_no==1, Firer_Details.set_no==4 ).distinct().scalar() set_4_detail_no=db.session.query(Firer_Details.detail_id).filter( Firer_Details.date==curdate, Firer_Details.target_no==1, Firer_Details.set_no==4 ).distinct().scalar() set_4_name=db.session.query(Shooter.name).filter( Shooter.id==set_4_id ).scalar() set_4_army=db.session.query(Shooter.service_id).filter(Shooter.id==set_4_id).scalar() current_firer_name = db.session.query(Shooter.name).filter(Shooter.id==firer_id).scalar() current_army_no = db.session.query(Shooter.service_id).filter(Shooter.id==firer_id).scalar() current_session_no=db.session.query(TShooting.session_id).filter(TShooting.target_1_id==firer_id).scalar() current_detail_no=db.session.query(TShooting.detail_no).filter(TShooting.target_1_id==firer_id).scalar() xmpi_inch = pixeltoinch(xmpi) ympi_inch = pixeltoinch(ympi) xmpi_j =pd.Series(xmpi_inch).to_json(orient='values') ympi_j =pd.Series(ympi_inch).to_json(orient='values') Tfirt_x_j =pd.Series(Tfirt_x).to_json(orient='values') Tfirt_y_j =pd.Series(Tfirt_y).to_json(orient='values') for x_1 in fin_x_1: fin_x_arr_1.append(int(x_1.final_x)) for y_1 in fin_y_1 : fin_y_arr_1.append(int(y_1.final_y)) return jsonify(x1=t1_x , y1=t1_y , xmpi1=Tfirt_x_j , ympi1=Tfirt_y_j, gp=gp, txf1=Tfirt_x_j, tyf1=Tfirt_y_j, fx1=fin_x_arr_1, fy1=fin_y_arr_1, result_1=result_1, fir_tendency_1=fir_tendency_1, set_1_name=set_1_name, current_firer_name=current_firer_name, set_1_army=set_1_army, current_army_no=current_army_no, set_1_session_no=set_1_session_no, current_session_no=current_session_no, set_1_detail_no=set_1_detail_no, current_detail_no=current_detail_no, set_2_x=set_2_x_arr, set_2_y=set_2_y_arr, set_2_name=set_2_name, set_2_army=set_2_army, set_2_detail_no=set_2_detail_no, set_2_session_no=set_2_session_no, set_3_x=set_3_x_arr, set_3_y=set_3_y_arr, set_3_name=set_3_name, set_3_army=set_3_army, set_3_session_no=set_3_session_no, set_3_detail_no=set_3_detail_no, set_4_x=set_4_x_arr, set_4_y=set_4_y_arr, set_4_name=set_4_name, set_4_army=set_4_army, set_4_session_no=set_4_session_no, set_4_detail_no=set_4_detail_no ) @app.route('/prediction_target_2/', methods=['GET', 'POST']) def prediction_target_2(): t1_x=0 t1_y=0 xmpi_j=0 ympi_j=0 gp=0 Tfirt_x_j=0 Tfirt_y_j=0 fin_x_1=0 fin_y_1=0 xmpi_inch = 0 ympi_inch = 0 result_1=None fir_tendency=None set_1_name = None set_1_army =None set_1_session_no = None set_1_detail_no=None set_1_id =None set_2_name = None set_2_army =None set_2_session_no = None set_2_detail_no=None set_2_id =None set_3_name = None set_3_army =None set_3_session_no = None set_3_detail_no=None set_3_id =None set_4_name = None set_4_army =None set_4_session_no = None set_4_detail_no=None set_4_id =None fir_tendency_1=None firer_id=None current_army_no=None current_firer_name=None current_session_no=None session_detail_no=None current_detail_no=None set_2_x=None set_2_y=None set_3_x=None set_3_y=None set_4_x=None set_4_y=None paper_ref=None sess=None res=None set_2_x_arr=[] set_2_y_arr=[] set_3_x_arr=[] set_3_y_arr=[] set_4_x_arr=[] set_4_y_arr=[] fin_x_arr_1=[] fin_y_arr_1=[] curdate=time.strftime("%Y-%m-%d") if request.method == 'POST': firer_id,sess,o,p,u,q,t1_x,t1_y,xmpi,ympi,f,gp,Tfirt_x,Tfirt_y,fin_x_1,fin_y_1,result_1,fir_tendency_1=prediction_calculation_2() paper_ref=db.session.query(TPaper_ref.paper_ref).scalar() set_2_x=db.session.query(T_Firer_Details).filter(T_Firer_Details.date==curdate , T_Firer_Details.target_no==2 ,T_Firer_Details.set_no==2 , T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess).all() set_2_y=db.session.query(T_Firer_Details).filter(T_Firer_Details.date==curdate , T_Firer_Details.target_no==2 , T_Firer_Details.set_no==2 , T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess).all() for x_2 in set_2_x: set_2_x_arr.append(int(x_2.final_x)) for y_2 in set_2_y: set_2_y_arr.append(int(y_2.final_y)) set_3_x=db.session.query(T_Firer_Details).filter(T_Firer_Details.date==curdate , T_Firer_Details.target_no==2 , T_Firer_Details.set_no==3 , T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess).all() set_3_y=db.session.query(T_Firer_Details).filter(T_Firer_Details.date==curdate , T_Firer_Details.target_no==2 , T_Firer_Details.set_no==3 , T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess).all() for x_3 in set_3_x: set_3_x_arr.append(int(x_3.final_x)) for y_3 in set_3_y: set_3_y_arr.append(int(y_3.final_y)) set_4_x=db.session.query(T_Firer_Details).filter(T_Firer_Details.date==curdate , T_Firer_Details.target_no==2 , T_Firer_Details.set_no==4 , T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess).all() set_4_y=db.session.query(T_Firer_Details).filter(T_Firer_Details.date==curdate , T_Firer_Details.target_no==2 , T_Firer_Details.set_no==4 ,T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess).all() for x_4 in set_4_x: set_4_x_arr.append(int(x_4.final_x)) for y_4 in set_4_y: set_4_y_arr.append(int(y_4.final_y)) set_1_id = db.session.query(T_Firer_Details.firer_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==2, T_Firer_Details.set_no==1, T_Firer_Details.paper_ref==paper_ref, T_Firer_Details.session_id==sess ).distinct().scalar() set_1_session_no=db.session.query(T_Firer_Details.session_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==2, T_Firer_Details.set_no==1, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_1_detail_no=db.session.query(T_Firer_Details.detail_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==2, T_Firer_Details.set_no==1, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_1_name=db.session.query(Shooter.name).filter( Shooter.id==set_1_id ).scalar() set_1_army=db.session.query(Shooter.service_id).filter(Shooter.id==set_1_id).scalar() set_2_id = db.session.query(T_Firer_Details.firer_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==2, T_Firer_Details.set_no==2, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_2_session_no=db.session.query(T_Firer_Details.session_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==2, T_Firer_Details.set_no==2, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_2_detail_no=db.session.query(T_Firer_Details.detail_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==2, T_Firer_Details.set_no==2, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_2_name=db.session.query(Shooter.name).filter( Shooter.id==set_2_id ).scalar() set_2_army=db.session.query(Shooter.service_id).filter(Shooter.id==set_2_id).scalar() set_3_id = db.session.query(T_Firer_Details.firer_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==2, T_Firer_Details.set_no==3, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_3_session_no=db.session.query(T_Firer_Details.session_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==2, T_Firer_Details.set_no==3, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_3_detail_no=db.session.query(T_Firer_Details.detail_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==2, T_Firer_Details.set_no==3, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_3_name=db.session.query(Shooter.name).filter( Shooter.id==set_3_id ).scalar() set_3_army=db.session.query(Shooter.service_id).filter(Shooter.id==set_3_id).scalar() set_4_id = db.session.query(T_Firer_Details.firer_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==2, T_Firer_Details.set_no==4, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_4_session_no=db.session.query(T_Firer_Details.session_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==2, T_Firer_Details.set_no==4, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_4_detail_no=db.session.query(T_Firer_Details.detail_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==2, T_Firer_Details.set_no==4, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_4_name=db.session.query(Shooter.name).filter( Shooter.id==set_4_id ).scalar() set_4_army=db.session.query(Shooter.service_id).filter(Shooter.id==set_4_id).scalar() current_firer_name = db.session.query(Shooter.name).filter(Shooter.id==firer_id).scalar() current_army_no = db.session.query(Shooter.service_id).filter(Shooter.id==firer_id).scalar() current_session_no=db.session.query(TShooting.session_id).filter(TShooting.target_1_id==firer_id).scalar() current_detail_no=db.session.query(TShooting.detail_no).filter(TShooting.target_1_id==firer_id).scalar() xmpi_inch = pixeltoinch(xmpi) ympi_inch = pixeltoinch(ympi) xmpi_j =pd.Series(xmpi_inch).to_json(orient='values') ympi_j =pd.Series(ympi_inch).to_json(orient='values') Tfirt_x_j =pd.Series(Tfirt_x).to_json(orient='values') Tfirt_y_j =pd.Series(Tfirt_y).to_json(orient='values') fin_x_arr_1=[] fin_y_arr_1=[] for x_1 in fin_x_1: fin_x_arr_1.append(int(x_1.final_x)) for y_1 in fin_y_1 : fin_y_arr_1.append(int(y_1.final_y)) return jsonify(x1=t1_x , y1=t1_y , xmpi1=Tfirt_x_j , ympi1=Tfirt_y_j, gp=gp, txf1=Tfirt_x_j, tyf1=Tfirt_y_j, fx1=fin_x_arr_1, fy1=fin_y_arr_1, result_1=result_1, fir_tendency_1=fir_tendency_1, set_1_name=set_1_name, current_firer_name=current_firer_name, set_1_army=set_1_army, current_army_no=current_army_no, set_1_session_no=set_1_session_no, current_session_no=current_session_no, set_1_detail_no=set_1_detail_no, current_detail_no=current_detail_no, set_2_x=set_2_x_arr, set_2_y=set_2_y_arr, set_2_name=set_2_name, set_2_army=set_2_army, set_2_detail_no=set_2_detail_no, set_2_session_no=set_2_session_no, set_3_x=set_3_x_arr, set_3_y=set_3_y_arr, set_3_name=set_3_name, set_3_army=set_3_army, set_3_session_no=set_3_session_no, set_3_detail_no=set_3_detail_no, set_4_x=set_4_x_arr, set_4_y=set_4_y_arr, set_4_name=set_4_name, set_4_army=set_4_army, set_4_session_no=set_4_session_no, set_4_detail_no=set_4_detail_no ) @app.route('/prediction_target_3/', methods=['GET', 'POST']) def prediction_target_3(): t1_x=0 t1_y=0 xmpi_j=0 ympi_j=0 gp=0 Tfirt_x_j=0 Tfirt_y_j=0 fin_x_1=0 fin_y_1=0 xmpi_inch = 0 ympi_inch = 0 result_1=None fir_tendency=None set_1_name = None set_1_army =None set_1_session_no = None set_1_detail_no=None set_1_id =None set_2_name = None set_2_army =None set_2_session_no = None set_2_detail_no=None set_2_id =None set_3_name = None set_3_army =None set_3_session_no = None set_3_detail_no=None set_3_id =None set_4_name = None set_4_army =None set_4_session_no = None set_4_detail_no=None set_4_id =None fir_tendency_1=None firer_id=None current_army_no=None current_firer_name=None current_session_no=None session_detail_no=None current_detail_no=None set_2_x=None set_2_y=None set_3_x=None set_3_y=None set_4_x=None set_4_y=None paper_ref=None sess=None res=None set_2_x_arr=[] set_2_y_arr=[] set_3_x_arr=[] set_3_y_arr=[] set_4_x_arr=[] set_4_y_arr=[] fin_x_arr_1=[] fin_y_arr_1=[] curdate=time.strftime("%Y-%m-%d") if request.method == 'POST': firer_id,sess,o,p,u,q,t1_x,t1_y,xmpi,ympi,f,gp,Tfirt_x,Tfirt_y,fin_x_1,fin_y_1,result_1,fir_tendency_1=prediction_calculation_3() paper_ref=db.session.query(TPaper_ref.paper_ref).scalar() set_2_x=db.session.query(T_Firer_Details).filter(T_Firer_Details.date==curdate , T_Firer_Details.target_no==3 ,T_Firer_Details.set_no==2 , T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess).all() set_2_y=db.session.query(T_Firer_Details).filter(T_Firer_Details.date==curdate , T_Firer_Details.target_no==3 , T_Firer_Details.set_no==2 , T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess).all() for x_2 in set_2_x: set_2_x_arr.append(int(x_2.final_x)) for y_2 in set_2_y: set_2_y_arr.append(int(y_2.final_y)) set_3_x=db.session.query(T_Firer_Details).filter(T_Firer_Details.date==curdate , T_Firer_Details.target_no==3 , T_Firer_Details.set_no==3 , T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess).all() set_3_y=db.session.query(T_Firer_Details).filter(T_Firer_Details.date==curdate , T_Firer_Details.target_no==3 , T_Firer_Details.set_no==3 , T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess).all() for x_3 in set_3_x: set_3_x_arr.append(int(x_3.final_x)) for y_2 in set_2_y: set_3_y_arr.append(int(y_3.final_y)) set_4_x=db.session.query(T_Firer_Details).filter(T_Firer_Details.date==curdate , T_Firer_Details.target_no==3 , T_Firer_Details.set_no==4 , T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess).all() set_4_y=db.session.query(T_Firer_Details).filter(T_Firer_Details.date==curdate , T_Firer_Details.target_no==3 , T_Firer_Details.set_no==4 ,T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess).all() for x_4 in set_4_x: set_4_x_arr.append(int(x_4.final_x)) for y_2 in set_2_y: set_4_y_arr.append(int(y_4.final_y)) set_1_id = db.session.query(T_Firer_Details.firer_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==3, T_Firer_Details.set_no==1, T_Firer_Details.paper_ref==paper_ref, T_Firer_Details.session_id==sess ).distinct().scalar() set_1_session_no=db.session.query(T_Firer_Details.session_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==3, T_Firer_Details.set_no==1, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_1_detail_no=db.session.query(T_Firer_Details.detail_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==3, T_Firer_Details.set_no==1, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_1_name=db.session.query(Shooter.name).filter( Shooter.id==set_1_id ).scalar() set_1_army=db.session.query(Shooter.service_id).filter(Shooter.id==set_1_id).scalar() set_2_id = db.session.query(T_Firer_Details.firer_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==3, T_Firer_Details.set_no==2, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_2_session_no=db.session.query(T_Firer_Details.session_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==3, T_Firer_Details.set_no==2, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_2_detail_no=db.session.query(T_Firer_Details.detail_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==3, T_Firer_Details.set_no==2, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_2_name=db.session.query(Shooter.name).filter( Shooter.id==set_2_id ).scalar() set_2_army=db.session.query(Shooter.service_id).filter(Shooter.id==set_2_id).scalar() set_3_id = db.session.query(T_Firer_Details.firer_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==3, T_Firer_Details.set_no==3, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_3_session_no=db.session.query(T_Firer_Details.session_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==3, T_Firer_Details.set_no==3, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_3_detail_no=db.session.query(T_Firer_Details.detail_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==3, T_Firer_Details.set_no==3, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_3_name=db.session.query(Shooter.name).filter( Shooter.id==set_3_id ).scalar() set_3_army=db.session.query(Shooter.service_id).filter(Shooter.id==set_3_id).scalar() set_4_id = db.session.query(T_Firer_Details.firer_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==3, T_Firer_Details.set_no==4, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_4_session_no=db.session.query(T_Firer_Details.session_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==3, T_Firer_Details.set_no==4, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_4_detail_no=db.session.query(T_Firer_Details.detail_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==3, T_Firer_Details.set_no==4, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_4_name=db.session.query(Shooter.name).filter( Shooter.id==set_4_id ).scalar() set_4_army=db.session.query(Shooter.service_id).filter(Shooter.id==set_4_id).scalar() current_firer_name = db.session.query(Shooter.name).filter(Shooter.id==firer_id).scalar() current_army_no = db.session.query(Shooter.service_id).filter(Shooter.id==firer_id).scalar() current_session_no=db.session.query(TShooting.session_id).filter(TShooting.target_1_id==firer_id).scalar() current_detail_no=db.session.query(TShooting.detail_no).filter(TShooting.target_1_id==firer_id).scalar() xmpi_inch = pixeltoinch(xmpi) ympi_inch = pixeltoinch(ympi) xmpi_j =pd.Series(xmpi_inch).to_json(orient='values') ympi_j =pd.Series(ympi_inch).to_json(orient='values') Tfirt_x_j =pd.Series(Tfirt_x).to_json(orient='values') Tfirt_y_j =pd.Series(Tfirt_y).to_json(orient='values') fin_x_arr_1=[] fin_y_arr_1=[] for x_1 in fin_x_1: fin_x_arr_1.append(int(x_1.final_x)) for y_1 in fin_y_1 : fin_y_arr_1.append(int(y_1.final_y)) return jsonify(x1=t1_x , y1=t1_y , xmpi1=Tfirt_x_j , ympi1=Tfirt_y_j, gp=gp, txf1=Tfirt_x_j, tyf1=Tfirt_y_j, fx1=fin_x_arr_1, fy1=fin_y_arr_1, result_1=result_1, fir_tendency_1=fir_tendency_1, set_1_name=set_1_name, current_firer_name=current_firer_name, set_1_army=set_1_army, current_army_no=current_army_no, set_1_session_no=set_1_session_no, current_session_no=current_session_no, set_1_detail_no=set_1_detail_no, current_detail_no=current_detail_no, set_2_x=set_2_x_arr, set_2_y=set_2_y_arr, set_2_name=set_2_name, set_2_army=set_2_army, set_2_detail_no=set_2_detail_no, set_2_session_no=set_2_session_no, set_3_x=set_3_x_arr, set_3_y=set_3_y_arr, set_3_name=set_3_name, set_3_army=set_3_army, set_3_session_no=set_3_session_no, set_3_detail_no=set_3_detail_no, set_4_x=set_4_x_arr, set_4_y=set_4_y_arr, set_4_name=set_4_name, set_4_army=set_4_army, set_4_session_no=set_4_session_no, set_4_detail_no=set_4_detail_no ) @app.route('/prediction_target_4/', methods=['GET', 'POST']) def prediction_target_4(): t1_x=0 t1_y=0 xmpi_j=0 ympi_j=0 gp=0 Tfirt_x_j=0 Tfirt_y_j=0 fin_x_1=0 fin_y_1=0 xmpi_inch = 0 ympi_inch = 0 result_1=None fir_tendency=None set_1_name = None set_1_army =None set_1_session_no = None set_1_detail_no=None set_1_id =None set_2_name = None set_2_army =None set_2_session_no = None set_2_detail_no=None set_2_id =None set_3_name = None set_3_army =None set_3_session_no = None set_3_detail_no=None set_3_id =None set_4_name = None set_4_army =None set_4_session_no = None set_4_detail_no=None set_4_id =None fir_tendency_1=None firer_id=None current_army_no=None current_firer_name=None current_session_no=None session_detail_no=None current_detail_no=None set_2_x=None set_2_y=None set_3_x=None set_3_y=None set_4_x=None set_4_y=None paper_ref=None sess=None res=None set_2_x_arr=[] set_2_y_arr=[] set_3_x_arr=[] set_3_y_arr=[] set_4_x_arr=[] set_4_y_arr=[] fin_x_arr_1=[] fin_y_arr_1=[] curdate=time.strftime("%Y-%m-%d") if request.method == 'POST': firer_id,sess,o,p,u,q,t1_x,t1_y,xmpi,ympi,f,gp,Tfirt_x,Tfirt_y,fin_x_1,fin_y_1,result_1,fir_tendency_1=prediction_calculation_4() paper_ref=db.session.query(TPaper_ref.paper_ref).scalar() set_2_x=db.session.query(T_Firer_Details).filter(T_Firer_Details.date==curdate , T_Firer_Details.target_no==4 ,T_Firer_Details.set_no==2 , T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess).all() set_2_y=db.session.query(T_Firer_Details).filter(T_Firer_Details.date==curdate , T_Firer_Details.target_no==4 , T_Firer_Details.set_no==2 , T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess).all() for x_2 in set_2_x: set_2_x_arr.append(int(x_2.final_x)) for y_2 in set_2_y: set_2_y_arr.append(int(y_2.final_y)) set_3_x=db.session.query(T_Firer_Details).filter(T_Firer_Details.date==curdate , T_Firer_Details.target_no==4 , T_Firer_Details.set_no==3 , T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess).all() set_3_y=db.session.query(T_Firer_Details).filter(T_Firer_Details.date==curdate , T_Firer_Details.target_no==4 , T_Firer_Details.set_no==3 , T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess).all() for x_3 in set_3_x: set_3_x_arr.append(int(x_3.final_x)) for y_3 in set_3_y: set_3_y_arr.append(int(y_3.final_y)) set_4_x=db.session.query(T_Firer_Details).filter(T_Firer_Details.date==curdate , T_Firer_Details.target_no==4 , T_Firer_Details.set_no==4 , T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess).all() set_4_y=db.session.query(T_Firer_Details).filter(T_Firer_Details.date==curdate , T_Firer_Details.target_no==4 , T_Firer_Details.set_no==4 ,T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess).all() for x_4 in set_4_x: set_4_x_arr.append(int(x_4.final_x)) for y_4 in set_4_y: set_4_y_arr.append(int(y_4.final_y)) set_1_id = db.session.query(T_Firer_Details.firer_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==4, T_Firer_Details.set_no==1, T_Firer_Details.paper_ref==paper_ref, T_Firer_Details.session_id==sess ).distinct().scalar() set_1_session_no=db.session.query(T_Firer_Details.session_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==4, T_Firer_Details.set_no==1, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_1_detail_no=db.session.query(T_Firer_Details.detail_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==4, T_Firer_Details.set_no==1, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_1_name=db.session.query(Shooter.name).filter( Shooter.id==set_1_id ).scalar() set_1_army=db.session.query(Shooter.service_id).filter(Shooter.id==set_1_id).scalar() set_2_id = db.session.query(T_Firer_Details.firer_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==4, T_Firer_Details.set_no==2, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_2_session_no=db.session.query(T_Firer_Details.session_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==4, T_Firer_Details.set_no==2, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_2_detail_no=db.session.query(T_Firer_Details.detail_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==4, T_Firer_Details.set_no==2, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_2_name=db.session.query(Shooter.name).filter( Shooter.id==set_2_id ).scalar() set_2_army=db.session.query(Shooter.service_id).filter(Shooter.id==set_2_id).scalar() set_3_id = db.session.query(T_Firer_Details.firer_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==4, T_Firer_Details.set_no==3, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_3_session_no=db.session.query(T_Firer_Details.session_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==4, T_Firer_Details.set_no==3, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_3_detail_no=db.session.query(T_Firer_Details.detail_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==4, T_Firer_Details.set_no==3, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_3_name=db.session.query(Shooter.name).filter( Shooter.id==set_3_id ).scalar() set_3_army=db.session.query(Shooter.service_id).filter(Shooter.id==set_3_id).scalar() set_4_id = db.session.query(T_Firer_Details.firer_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==4, T_Firer_Details.set_no==4, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_4_session_no=db.session.query(T_Firer_Details.session_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==4, T_Firer_Details.set_no==4, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_4_detail_no=db.session.query(T_Firer_Details.detail_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==4, T_Firer_Details.set_no==4, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_4_name=db.session.query(Shooter.name).filter( Shooter.id==set_4_id ).scalar() set_4_army=db.session.query(Shooter.service_id).filter(Shooter.id==set_4_id).scalar() current_firer_name = db.session.query(Shooter.name).filter(Shooter.id==firer_id).scalar() current_army_no = db.session.query(Shooter.service_id).filter(Shooter.id==firer_id).scalar() current_session_no=db.session.query(TShooting.session_id).filter(TShooting.target_1_id==firer_id).scalar() current_detail_no=db.session.query(TShooting.detail_no).filter(TShooting.target_1_id==firer_id).scalar() xmpi_inch = pixeltoinch(xmpi) ympi_inch = pixeltoinch(ympi) xmpi_j =pd.Series(xmpi_inch).to_json(orient='values') ympi_j =pd.Series(ympi_inch).to_json(orient='values') Tfirt_x_j =pd.Series(Tfirt_x).to_json(orient='values') Tfirt_y_j =pd.Series(Tfirt_y).to_json(orient='values') for x_1 in fin_x_1: fin_x_arr_1.append(int(x_1.final_x)) for y_1 in fin_y_1 : fin_y_arr_1.append(int(y_1.final_y)) return jsonify(x1=t1_x , y1=t1_y , xmpi1=Tfirt_x_j , ympi1=Tfirt_y_j, gp=gp, txf1=Tfirt_x_j, tyf1=Tfirt_y_j, fx1=fin_x_arr_1, fy1=fin_y_arr_1, result_1=result_1, fir_tendency_1=fir_tendency_1, set_1_name=set_1_name, current_firer_name=current_firer_name, set_1_army=set_1_army, current_army_no=current_army_no, set_1_session_no=set_1_session_no, current_session_no=current_session_no, set_1_detail_no=set_1_detail_no, current_detail_no=current_detail_no, set_2_x=set_2_x_arr, set_2_y=set_2_y_arr, set_2_name=set_2_name, set_2_army=set_2_army, set_2_detail_no=set_2_detail_no, set_2_session_no=set_2_session_no, set_3_x=set_3_x_arr, set_3_y=set_3_y_arr, set_3_name=set_3_name, set_3_army=set_3_army, set_3_session_no=set_3_session_no, set_3_detail_no=set_3_detail_no, set_4_x=set_4_x_arr, set_4_y=set_4_y_arr, set_4_name=set_4_name, set_4_army=set_4_army, set_4_session_no=set_4_session_no, set_4_detail_no=set_4_detail_no ) @app.route('/prediction_target_5/', methods=['GET', 'POST']) def prediction_target_5(): t1_x=0 t1_y=0 xmpi_j=0 ympi_j=0 gp=0 Tfirt_x_j=0 Tfirt_y_j=0 fin_x_1=0 fin_y_1=0 xmpi_inch = 0 ympi_inch = 0 result_1=None fir_tendency=None set_1_name = None set_1_army =None set_1_session_no = None set_1_detail_no=None set_1_id =None set_2_name = None set_2_army =None set_2_session_no = None set_2_detail_no=None set_2_id =None set_3_name = None set_3_army =None set_3_session_no = None set_3_detail_no=None set_3_id =None set_4_name = None set_4_army =None set_4_session_no = None set_4_detail_no=None set_4_id =None fir_tendency_1=None firer_id=None current_army_no=None current_firer_name=None current_session_no=None session_detail_no=None current_detail_no=None set_2_x=None set_2_y=None set_3_x=None set_3_y=None set_4_x=None set_4_y=None paper_ref=None sess=None res=None set_2_x_arr=[] set_2_y_arr=[] set_3_x_arr=[] set_3_y_arr=[] set_4_x_arr=[] set_4_y_arr=[] fin_x_arr_1=[] fin_y_arr_1=[] curdate=time.strftime("%Y-%m-%d") if request.method == 'POST': firer_id,sess,o,p,u,q,t1_x,t1_y,xmpi,ympi,f,gp,Tfirt_x,Tfirt_y,fin_x_1,fin_y_1,result_1,fir_tendency_1=prediction_calculation_5() paper_ref=db.session.query(TPaper_ref.paper_ref).scalar() set_2_x=db.session.query(T_Firer_Details).filter(T_Firer_Details.date==curdate , T_Firer_Details.target_no==5 ,T_Firer_Details.set_no==2 , T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess).all() set_2_y=db.session.query(T_Firer_Details).filter(T_Firer_Details.date==curdate , T_Firer_Details.target_no==5 , T_Firer_Details.set_no==2 , T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess).all() for x_2 in set_2_x: set_2_x_arr.append(int(x_2.final_x)) for y_2 in set_2_y: set_2_y_arr.append(int(y_2.final_y)) set_3_x=db.session.query(T_Firer_Details).filter(T_Firer_Details.date==curdate , T_Firer_Details.target_no==5 , T_Firer_Details.set_no==3 , T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess).all() set_3_y=db.session.query(T_Firer_Details).filter(T_Firer_Details.date==curdate , T_Firer_Details.target_no==5 , T_Firer_Details.set_no==3 , T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess).all() for x_3 in set_3_x: set_3_x_arr.append(int(x_3.final_x)) for y_3 in set_3_y: set_3_y_arr.append(int(y_3.final_y)) set_4_x=db.session.query(T_Firer_Details).filter(T_Firer_Details.date==curdate , T_Firer_Details.target_no==5 , T_Firer_Details.set_no==4 , T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess).all() set_4_y=db.session.query(T_Firer_Details).filter(T_Firer_Details.date==curdate , T_Firer_Details.target_no==5 , T_Firer_Details.set_no==4 ,T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess).all() for x_4 in set_4_x: set_4_x_arr.append(int(x_4.final_x)) for y_4 in set_4_y: set_4_y_arr.append(int(y_4.final_y)) set_1_id = db.session.query(T_Firer_Details.firer_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==5, T_Firer_Details.set_no==1, T_Firer_Details.paper_ref==paper_ref, T_Firer_Details.session_id==sess ).distinct().scalar() set_1_session_no=db.session.query(T_Firer_Details.session_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==5, T_Firer_Details.set_no==1, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_1_detail_no=db.session.query(T_Firer_Details.detail_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==5, T_Firer_Details.set_no==1, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_1_name=db.session.query(Shooter.name).filter( Shooter.id==set_1_id ).scalar() set_1_army=db.session.query(Shooter.service_id).filter(Shooter.id==set_1_id).scalar() set_2_id = db.session.query(T_Firer_Details.firer_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==5, T_Firer_Details.set_no==2, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_2_session_no=db.session.query(T_Firer_Details.session_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==5, T_Firer_Details.set_no==2, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_2_detail_no=db.session.query(T_Firer_Details.detail_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==5, T_Firer_Details.set_no==2, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_2_name=db.session.query(Shooter.name).filter( Shooter.id==set_2_id ).scalar() set_2_army=db.session.query(Shooter.service_id).filter(Shooter.id==set_2_id).scalar() set_3_id = db.session.query(T_Firer_Details.firer_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==5, T_Firer_Details.set_no==3, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_3_session_no=db.session.query(T_Firer_Details.session_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==5, T_Firer_Details.set_no==3, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_3_detail_no=db.session.query(T_Firer_Details.detail_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==5, T_Firer_Details.set_no==3, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_3_name=db.session.query(Shooter.name).filter( Shooter.id==set_3_id ).scalar() set_3_army=db.session.query(Shooter.service_id).filter(Shooter.id==set_3_id).scalar() set_4_id = db.session.query(T_Firer_Details.firer_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==5, T_Firer_Details.set_no==4, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_4_session_no=db.session.query(T_Firer_Details.session_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==5, T_Firer_Details.set_no==4, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_4_detail_no=db.session.query(T_Firer_Details.detail_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==5, T_Firer_Details.set_no==4, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_4_name=db.session.query(Shooter.name).filter( Shooter.id==set_4_id ).scalar() set_4_army=db.session.query(Shooter.service_id).filter(Shooter.id==set_4_id).scalar() current_firer_name = db.session.query(Shooter.name).filter(Shooter.id==firer_id).scalar() current_army_no = db.session.query(Shooter.service_id).filter(Shooter.id==firer_id).scalar() current_session_no=db.session.query(TShooting.session_id).filter(TShooting.target_1_id==firer_id).scalar() current_detail_no=db.session.query(TShooting.detail_no).filter(TShooting.target_1_id==firer_id).scalar() xmpi_inch = pixeltoinch(xmpi) ympi_inch = pixeltoinch(ympi) xmpi_j =pd.Series(xmpi_inch).to_json(orient='values') ympi_j =pd.Series(ympi_inch).to_json(orient='values') Tfirt_x_j =pd.Series(Tfirt_x).to_json(orient='values') Tfirt_y_j =pd.Series(Tfirt_y).to_json(orient='values') for x_1 in fin_x_1: fin_x_arr_1.append(int(x_1.final_x)) for y_1 in fin_y_1 : fin_y_arr_1.append(int(y_1.final_y)) return jsonify(x1=t1_x , y1=t1_y , xmpi1=Tfirt_x_j , ympi1=Tfirt_y_j, gp=gp, txf1=Tfirt_x_j, tyf1=Tfirt_y_j, fx1=fin_x_arr_1, fy1=fin_y_arr_1, result_1=result_1, fir_tendency_1=fir_tendency_1, set_1_name=set_1_name, current_firer_name=current_firer_name, set_1_army=set_1_army, current_army_no=current_army_no, set_1_session_no=set_1_session_no, current_session_no=current_session_no, set_1_detail_no=set_1_detail_no, current_detail_no=current_detail_no, set_2_x=set_2_x_arr, set_2_y=set_2_y_arr, set_2_name=set_2_name, set_2_army=set_2_army, set_2_detail_no=set_2_detail_no, set_2_session_no=set_2_session_no, set_3_x=set_3_x_arr, set_3_y=set_3_y_arr, set_3_name=set_3_name, set_3_army=set_3_army, set_3_session_no=set_3_session_no, set_3_detail_no=set_3_detail_no, set_4_x=set_4_x_arr, set_4_y=set_4_y_arr, set_4_name=set_4_name, set_4_army=set_4_army, set_4_session_no=set_4_session_no, set_4_detail_no=set_4_detail_no ) @app.route('/prediction_target_6/', methods=['GET', 'POST']) def prediction_target_6(): t1_x=0 t1_y=0 xmpi_j=0 ympi_j=0 gp=0 Tfirt_x_j=0 Tfirt_y_j=0 fin_x_1=0 fin_y_1=0 xmpi_inch = 0 ympi_inch = 0 result_1=None fir_tendency=None set_1_name = None set_1_army =None set_1_session_no = None set_1_detail_no=None set_1_id =None set_2_name = None set_2_army =None set_2_session_no = None set_2_detail_no=None set_2_id =None set_3_name = None set_3_army =None set_3_session_no = None set_3_detail_no=None set_3_id =None set_4_name = None set_4_army =None set_4_session_no = None set_4_detail_no=None set_4_id =None fir_tendency_1=None firer_id=None current_army_no=None current_firer_name=None current_session_no=None session_detail_no=None current_detail_no=None set_2_x=None set_2_y=None set_3_x=None set_3_y=None set_4_x=None set_4_y=None paper_ref=None sess=None res=None set_2_x_arr=[] set_2_y_arr=[] set_3_x_arr=[] set_3_y_arr=[] set_4_x_arr=[] set_4_y_arr=[] fin_x_arr_1=[] fin_y_arr_1=[] curdate=time.strftime("%Y-%m-%d") if request.method == 'POST': firer_id,sess,o,p,u,q,t1_x,t1_y,xmpi,ympi,f,gp,Tfirt_x,Tfirt_y,fin_x_1,fin_y_1,result_1,fir_tendency_1=prediction_calculation_6() paper_ref=db.session.query(TPaper_ref.paper_ref).scalar() set_2_x=db.session.query(T_Firer_Details).filter(T_Firer_Details.date==curdate , T_Firer_Details.target_no==6 ,T_Firer_Details.set_no==2 , T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess).all() set_2_y=db.session.query(T_Firer_Details).filter(T_Firer_Details.date==curdate , T_Firer_Details.target_no==6 , T_Firer_Details.set_no==2 , T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess).all() for x_2 in set_2_x: set_2_x_arr.append(int(x_2.final_x)) for y_2 in set_2_y: set_2_y_arr.append(int(y_2.final_y)) set_3_x=db.session.query(T_Firer_Details).filter(T_Firer_Details.date==curdate , T_Firer_Details.target_no==6 , T_Firer_Details.set_no==3 , T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess).all() set_3_y=db.session.query(T_Firer_Details).filter(T_Firer_Details.date==curdate , T_Firer_Details.target_no==6 , T_Firer_Details.set_no==3 , T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess).all() for x_3 in set_3_x: set_3_x_arr.append(int(x_3.final_x)) for y_3 in set_3_y: set_3_y_arr.append(int(y_3.final_y)) set_4_x=db.session.query(T_Firer_Details).filter(T_Firer_Details.date==curdate , T_Firer_Details.target_no==6 , T_Firer_Details.set_no==4 , T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess).all() set_4_y=db.session.query(T_Firer_Details).filter(T_Firer_Details.date==curdate , T_Firer_Details.target_no==6 , T_Firer_Details.set_no==4 ,T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess).all() for x_4 in set_4_x: set_4_x_arr.append(int(x_4.final_x)) for y_4 in set_4_y: set_4_y_arr.append(int(y_4.final_y)) set_1_id = db.session.query(T_Firer_Details.firer_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==6, T_Firer_Details.set_no==1, T_Firer_Details.paper_ref==paper_ref, T_Firer_Details.session_id==sess ).distinct().scalar() set_1_session_no=db.session.query(T_Firer_Details.session_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==6, T_Firer_Details.set_no==1, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_1_detail_no=db.session.query(T_Firer_Details.detail_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==6, T_Firer_Details.set_no==1, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_1_name=db.session.query(Shooter.name).filter( Shooter.id==set_1_id ).scalar() set_1_army=db.session.query(Shooter.service_id).filter(Shooter.id==set_1_id).scalar() set_2_id = db.session.query(T_Firer_Details.firer_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==6, T_Firer_Details.set_no==2, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_2_session_no=db.session.query(T_Firer_Details.session_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==6, T_Firer_Details.set_no==2, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_2_detail_no=db.session.query(T_Firer_Details.detail_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==6, T_Firer_Details.set_no==2, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_2_name=db.session.query(Shooter.name).filter( Shooter.id==set_2_id ).scalar() set_2_army=db.session.query(Shooter.service_id).filter(Shooter.id==set_2_id).scalar() set_3_id = db.session.query(T_Firer_Details.firer_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==6, T_Firer_Details.set_no==3, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_3_session_no=db.session.query(T_Firer_Details.session_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==6, T_Firer_Details.set_no==3, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_3_detail_no=db.session.query(T_Firer_Details.detail_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==6, T_Firer_Details.set_no==3, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_3_name=db.session.query(Shooter.name).filter( Shooter.id==set_3_id ).scalar() set_3_army=db.session.query(Shooter.service_id).filter(Shooter.id==set_3_id).scalar() set_4_id = db.session.query(T_Firer_Details.firer_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==6, T_Firer_Details.set_no==4, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_4_session_no=db.session.query(T_Firer_Details.session_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==6, T_Firer_Details.set_no==4, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_4_detail_no=db.session.query(T_Firer_Details.detail_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==6, T_Firer_Details.set_no==4, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_4_name=db.session.query(Shooter.name).filter( Shooter.id==set_4_id ).scalar() set_4_army=db.session.query(Shooter.service_id).filter(Shooter.id==set_4_id).scalar() current_firer_name = db.session.query(Shooter.name).filter(Shooter.id==firer_id).scalar() current_army_no = db.session.query(Shooter.service_id).filter(Shooter.id==firer_id).scalar() current_session_no=db.session.query(TShooting.session_id).filter(TShooting.target_1_id==firer_id).scalar() current_detail_no=db.session.query(TShooting.detail_no).filter(TShooting.target_1_id==firer_id).scalar() xmpi_inch = pixeltoinch(xmpi) ympi_inch = pixeltoinch(ympi) xmpi_j =pd.Series(xmpi_inch).to_json(orient='values') ympi_j =pd.Series(ympi_inch).to_json(orient='values') Tfirt_x_j =
pd.Series(Tfirt_x)
pandas.Series
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: percent # format_version: '1.3' # jupytext_version: 1.4.2 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # %% [markdown] # # P1 REST API # # - This Jupyter notebook is an example of how to access the RestAPI interface, described at: # https://doc.particle.one/ # %% [markdown] # # Credentials / Settings # %% # %load_ext autoreload # %autoreload 2 import json import os import pandas as pd import requests # %% # Enter your token here. # You can get your token by signing up at `www.particle.one`. # P1_API_TOKEN = "YOUR_TOKEN_HERE" # An example token is like: # P1_API_TOKEN = "e<PASSWORD>" P1_API_TOKEN = os.environ["P1_API_TOKEN"] print("P1_API_TOKEN=", P1_API_TOKEN) HEADERS = { "Authorization": f"Token {P1_API_TOKEN}", "Content-Type": "application/json", } # %% [markdown] # # Search query structure # # Search query is a Python `dict` with the following structure: # ```python # query = { # "text": "", # "commodity": [], # "business_category": "", # "country": [], # "frequency": [] # } # ``` # The fields are: # - `text`: string. Works as a filter. Free text. Everything that have no match with this phrase will be filtered out. # - `commodity`: list of strings. Works as a filter. You can find valid values in paragraph 7.1 of this notebook. # - `business_category`: string. Works as a filter. You can find valid values in paragraph 7.2 of this notebook. # - `country`: list of strings. Works as a filter. You can find valid values in paragraph 7.3 of this notebook. # - `frequency`: list of strings. Works as a filter. You can find valid values in paragraph 7.4 of this notebook. # # Combination of fields work with logical operator AND. # E.g. you will get all records that satisfy all filters. # # `text` **AND** `commodity` **AND** `business_category` **AND** `country` **AND** `frequency` # %% [markdown] # # Imports # %% [markdown] # # POST data-api/v1/search-count/ # Returns count for the given query. # %% # Build entrypoint url. base_url = "https://data.particle.one" count_url = os.path.join(base_url, "data-api/v1/search-count/") print("count_url=", count_url) # %% # Prepare query. query = { "text": "", "commodity": ["Corn"], "business_category": "", "country": [], "frequency": [], } payload = json.dumps(query) # %% # Perform query. response = requests.request("POST", count_url, headers=HEADERS, data=payload) data = json.loads(response.text.encode("utf8")) print("data=", data) # %% [markdown] # # POST data-api/v1/search/ # # - It returns the first chunk of the payload metadata for the given query, where a chunk is 1000 records. # - It also returns `scroll_id` to get the next portion of the data. # %% search_url = os.path.join(base_url, "data-api/v1/search/") print("search_url=", search_url) # %% # Prepare query. query = { "text": "Gas", "commodity": [], "business_category": "", "country": [], "frequency": [], } payload = json.dumps(query) # %% # Perform query. response = requests.request("POST", search_url, headers=HEADERS, data=payload) data = json.loads(response.text.encode("utf8")) print("data.keys()=", list(data.keys())) assert "detail" not in data, data print("total_count=", data["total_count"]) # Saving scroll_id for the next query. scroll_id = data["scroll_id"] print("scroll_id=", scroll_id) df = pd.DataFrame.from_records(data["rows"]) print("df.shape=", df.shape) print("df.head()=") display(df.head()) # %% [markdown] # # GET data-api/v1/search-scroll/?scroll_id= # %% # Build entrypoint url. # We use scroll id from the previous query. search_scroll_url = os.path.join( base_url, f"data-api/v1/search-scroll/?scroll_id={scroll_id}" ) print("search_scroll_url=", search_scroll_url) # %% # Perform query. response = requests.request("GET", search_scroll_url, headers=HEADERS) data = json.loads(response.text.encode("utf8")) print("data.keys()=", list(data.keys())) print("data['rows'][0]=", data["rows"][0]) df = pd.DataFrame.from_records(data["rows"]) print("df.shape=", df.shape) print("df.head()=") display(df.head()) # %% [markdown] # # GET data-api/v1/payload/?payload_id= # Returns payload for the given `payload_id` # %% # Build entrypoint url. # We use one of the `payload_id` from one of the previous queries. payload_id = "8f26ba4734df3a62352cce9d64987d64da54b400" payload_url = os.path.join( base_url, f"data-api/v1/payload/?payload_id={payload_id}" ) print("payload_url=", payload_url) # %% # Perform query. response = requests.request("GET", payload_url, headers=HEADERS) data = json.loads(response.text.encode("utf8")) print("data.keys()=", list(data.keys())) df =
pd.DataFrame.from_records(data["payload_data"])
pandas.DataFrame.from_records
from six import string_types, text_type, PY2 from docassemble.webapp.core.models import MachineLearning from docassemble.base.core import DAObject, DAList, DADict from docassemble.webapp.db_object import db from sqlalchemy import or_, and_ from sklearn.datasets import load_iris from sklearn.ensemble import RandomForestClassifier import pandas as pd from pandas.api.types import CategoricalDtype import numpy as np import re import random import codecs from io import open if PY2: import cPickle as pickle else: import pickle import datetime import os import yaml import json import sys from pattern.vector import count, KNN, SVM, stem, PORTER, words, Document from docassemble.base.logger import logmessage from docassemble.webapp.backend import get_info_from_file_reference from docassemble.webapp.fixpickle import fix_pickle_obj import docassemble.base.functions learners = dict() svms = dict() lastmodtime = dict() reset_counter = dict() class MachineLearningEntry(DAObject): """An entry in the machine learning system""" def classify(self, dependent=None): """Sets the dependent variable of the machine learning entry""" if dependent is not None: self.dependent = dependent self.ml.set_dependent_by_id(self.id, self.dependent) return self def save(self): """Saves the entry to the data set. The independent variable must be defined in order to save.""" args = dict(independent=self.independent) if hasattr(self, 'dependent'): args['dependent'] = self.dependent if hasattr(self, 'key'): args['key'] = self.key if hasattr(self, 'id'): args['id'] = self.id if hasattr(self, 'info') and self.info is not None: args['info'] = self.info self.ml._save_entry(**args) return self def predict(self, probabilities=False): """Returns predictions for this entry's independent variable.""" return self.ml.predict(self.independent, probabilities=probabilities) class MachineLearner(object): """Base class for machine learning objects""" def __init__(self, *pargs, **kwargs): if len(pargs) > 0: if ':' in pargs[0]: raise Exception("MachineLearner: you cannot use a colon in a machine learning name") question = docassemble.base.functions.get_current_question() if question is not None: self.group_id = question.interview.get_ml_store() + ':' + pargs[0] else: self.group_id = pargs[0] if len(pargs) > 1: self.initial_file = pargs[1] if 'group_id' in kwargs: self.group_id = kwargs['group_id'] if 'initial_file' in kwargs: self.initial_file = kwargs['initial_file'] if kwargs.get('use_initial_file', False): question = docassemble.base.functions.get_current_question() if question is not None: self.initial_file = question.interview.get_ml_store() self.reset_counter = 0 def reset(self): self.reset_counter += 1 def _initialize(self, reset=False): if hasattr(self, 'initial_file'): self.start_from_file(self.initial_file) if hasattr(self, 'group_id') and (self.group_id not in lastmodtime or reset): lastmodtime[self.group_id] = datetime.datetime(year=1970, month=1, day=1) reset_counter = self.reset_counter def export_training_set(self, output_format='json', key=None): self._initialize() output = list() for entry in self.classified_entries(key=key): the_entry = dict(independent=entry.independent, dependent=entry.dependent) if entry.info is not None: the_entry['info'] = entry.info output.append(the_entry) if output_format == 'json': return json.dumps(output, sort_keys=True, indent=4) elif output_format == 'yaml': return yaml.safe_dump(output, default_flow_style=False) else: raise Exception("Unknown output format " + str(output_format)) def dependent_in_use(self, key=None): in_use = set() if key is None: query = db.session.query(MachineLearning.dependent).filter(MachineLearning.group_id == self.group_id).group_by(MachineLearning.dependent) else: query = db.session.query(MachineLearning.dependent).filter(and_(MachineLearning.group_id == self.group_id, MachineLearning.key == key)).group_by(MachineLearning.dependent) for record in query: if record.dependent is not None: in_use.add(fix_pickle_obj(codecs.decode(bytearray(record.dependent, encoding='utf-8'), 'base64'))) return sorted(in_use) def is_empty(self): existing_entry = MachineLearning.query.filter_by(group_id=self.group_id).first() if existing_entry is None: return True return False def start_from_file(self, fileref): #logmessage("Starting from file " + str(fileref)) existing_entry = MachineLearning.query.filter_by(group_id=self.group_id).first() if existing_entry is not None: return file_info = get_info_from_file_reference(fileref, folder='sources') if 'fullpath' not in file_info or file_info['fullpath'] is None or not os.path.exists(file_info['fullpath']): return #raise Exception("File reference " + str(fileref) + " is invalid") with open(file_info['fullpath'], 'rU', encoding='utf-8') as fp: content = fp.read() if 'mimetype' in file_info and file_info['mimetype'] == 'application/json': aref = json.loads(content) elif 'extension' in file_info and file_info['extension'].lower() in ['yaml', 'yml']: aref = yaml.load(content, Loader=yaml.FullLoader) if type(aref) is dict and hasattr(self, 'group_id'): the_group_id = re.sub(r'.*:', '', self.group_id) if the_group_id in aref: aref = aref[the_group_id] if type(aref) is list: nowtime = datetime.datetime.utcnow() for entry in aref: if 'independent' in entry: new_entry = MachineLearning(group_id=self.group_id, independent=codecs.encode(pickle.dumps(entry['independent']), 'base64').decode(), dependent=codecs.encode(pickle.dumps(entry.get('dependent', None)), 'base64').decode(), modtime=nowtime, create_time=nowtime, active=True, key=entry.get('key', None), info=codecs.encode(pickle.dumps(entry['info']), 'base64').decode() if entry.get('info', None) is not None else None) db.session.add(new_entry) db.session.commit() def add_to_training_set(self, independent, dependent, key=None, info=None): self._initialize() nowtime = datetime.datetime.utcnow() new_entry = MachineLearning(group_id=self.group_id, independent=codecs.encode(pickle.dumps(independent), 'base64').decode(), dependent=codecs.encode(pickle.dumps(dependent), 'base64').decode(), info=codecs.encode(pickle.dumps(info), 'base64').decode() if info is not None else None, create_time=nowtime, modtime=nowtime, active=True, key=key) db.session.add(new_entry) db.session.commit() return new_entry.id def save_for_classification(self, indep, key=None, info=None): self._initialize() if key is None: existing_entry = MachineLearning.query.filter_by(group_id=self.group_id, dependent=None, independent=codecs.encode(pickle.dumps(indep), 'base64').decode()).first() else: existing_entry = MachineLearning.query.filter_by(group_id=self.group_id, key=key, independent=codecs.encode(pickle.dumps(indep), 'base64').decode()).first() if existing_entry is not None: logmessage("entry is already there") return existing_entry.id new_entry = MachineLearning(group_id=self.group_id, independent=codecs.encode(pickle.dumps(indep), 'base64').decode(), create_time=datetime.datetime.utcnow(), active=False, key=key, info=codecs.encode(pickle.dumps(info), 'base64').decode() if info is not None else None) db.session.add(new_entry) db.session.commit() return new_entry.id def retrieve_by_id(self, the_id): self._initialize() existing_entry = MachineLearning.query.filter_by(group_id=self.group_id, id=the_id).first() if existing_entry is None: raise Exception("There was no entry in the database for id " + str(the_id) + " with group id " + str(self.group_id)) if existing_entry.dependent: dependent = fix_pickle_obj(codecs.decode(bytearray(existing_entry.dependent, encoding='utf-8'), 'base64')) return MachineLearningEntry(ml=self, id=existing_entry.id, independent=fix_pickle_obj(codecs.decode(bytearray(existing_entry.independent, encoding='utf-8'), 'base64')), dependent=dependent, create_time=existing_entry.create_time, key=existing_entry.key, info=fix_pickle_obj(codecs.decode(bytearray(existing_entry.info, encoding='utf-8'), 'base64')) if existing_entry.info is not None else None) else: return MachineLearningEntry(ml=self, id=existing_entry.id, independent=fix_pickle_obj(codecs.decode(bytearray(existing_entry.independent, encoding='utf-8'), 'base64')), create_time=existing_entry.create_time, key=existing_entry.key, info=fix_pickle_obj(codecs.decode(bytearray(existing_entry.info, encoding='utf-8'), 'base64')) if existing_entry.info is not None else None) def one_unclassified_entry(self, key=None): self._initialize() if key is None: entry = MachineLearning.query.filter_by(group_id=self.group_id, active=False).order_by(MachineLearning.id).first() else: entry = MachineLearning.query.filter_by(group_id=self.group_id, key=key, active=False).order_by(MachineLearning.id).first() if entry is None: return None return MachineLearningEntry(ml=self, id=entry.id, independent=fix_pickle_obj(codecs.decode(bytearray(entry.independent, encoding='utf-8'), 'base64')), create_time=entry.create_time, key=entry.key, info=fix_pickle_obj(codecs.decode(bytearray(entry.info, encoding='utf-8'), 'base64')) if entry.info is not None else None)._set_instance_name_for_method() def new_entry(self, **kwargs): return MachineLearningEntry(ml=self, **kwargs)._set_instance_name_for_method() def unclassified_entries(self, key=None): self._initialize() results = DAList()._set_instance_name_for_method() results.gathered = True if key is None: query = MachineLearning.query.filter_by(group_id=self.group_id, active=False).order_by(MachineLearning.id).all() else: query = MachineLearning.query.filter_by(group_id=self.group_id, key=key, active=False).order_by(MachineLearning.id).all() for entry in query: results.appendObject(MachineLearningEntry, ml=self, id=entry.id, independent=fix_pickle_obj(codecs.decode(bytearray(entry.independent, encoding='utf-8'), 'base64')), create_time=entry.create_time, key=entry.key, info=fix_pickle_obj(codecs.decode(bytearray(entry.info, encoding='utf-8'), 'base64')) if entry.info is not None else None) return results def classified_entries(self, key=None): self._initialize() results = DAList() results.gathered = True results.set_random_instance_name() if key is None: query = MachineLearning.query.filter_by(group_id=self.group_id, active=True).order_by(MachineLearning.id).all() else: query = MachineLearning.query.filter_by(group_id=self.group_id, active=True, key=key).order_by(MachineLearning.id).all() for entry in query: results.appendObject(MachineLearningEntry, ml=self, id=entry.id, independent=fix_pickle_obj(codecs.decode(bytearray(entry.independent, encoding='utf-8'), 'base64')), dependent=fix_pickle_obj(codecs.decode(bytearray(entry.dependent, encoding='utf-8'), 'base64')), info=fix_pickle_obj(codecs.decode(bytearray(entry.info, encoding='utf-8'), 'base64')) if entry.info is not None else None, create_time=entry.create_time, key=entry.key) return results def _save_entry(self, **kwargs): self._initialize() the_id = kwargs.get('id', None) need_to_reset = False if the_id is None: the_entry = MachineLearning(group_id=self.group_id) existing = False else: the_entry = MachineLearning.query.filter_by(group_id=self.group_id, id=the_id).first() existing = True if the_entry is None: raise Exception("There was no entry in the database for id " + str(the_id) + " with group id " + str(self.group_id)) if 'dependent' in kwargs: if existing and the_entry.dependent is not None and the_entry.dependent != kwargs['dependent']: need_to_reset = True the_entry.dependent = codecs.encode(pickle.dumps(kwargs['dependent']), 'base64').decode() the_entry.active = True if 'independent' in kwargs: if existing and the_entry.independent is not None and the_entry.independent != kwargs['independent']: need_to_reset = True the_entry.independent = codecs.encode(pickle.dumps(kwargs['independent']), 'base64').decode() if 'key' in kwargs: the_entry.key = kwargs['key'] if 'info' in kwargs: the_entry.info = codecs.encode(pickle.dumps(kwargs['info']), 'base64').decode() the_entry.modtime = datetime.datetime.utcnow() if not existing: db.session.add(the_entry) db.session.commit() if need_to_reset: self.reset() def set_dependent_by_id(self, the_id, the_dependent): self._initialize() existing_entry = MachineLearning.query.filter_by(group_id=self.group_id, id=the_id).with_for_update().first() if existing_entry is None: db.session.commit() raise Exception("There was no entry in the database for id " + str(the_id) + " with group id " + str(self.group_id)) existing_entry.dependent = codecs.encode(pickle.dumps(the_dependent), 'base64').decode() existing_entry.modtime = datetime.datetime.utcnow() existing_entry.active = True db.session.commit() def delete_by_id(self, the_id): self._initialize() MachineLearning.query.filter_by(group_id=self.group_id, id=the_id).delete() db.session.commit() self.reset() def delete_by_key(self, key): self._initialize() MachineLearning.query.filter_by(group_id=self.group_id, key=key).delete() db.session.commit() self.reset() def save(self): db.session.commit() def _train_from_db(self): #logmessage("Doing train_from_db") self._initialize() nowtime = datetime.datetime.utcnow() success = False for record in MachineLearning.query.filter(and_(MachineLearning.group_id == self.group_id, MachineLearning.active == True, MachineLearning.modtime > lastmodtime[self.group_id])).all(): #logmessage("Training...") self._train(fix_pickle_obj(codecs.decode(bytearray(record.independent, encoding='utf-8'), 'base64')), fix_pickle_obj(codecs.decode(bytearray(record.dependent, encoding='utf-8'), 'base64'))) success = True lastmodtime[self.group_id] = nowtime return success def delete_training_set(self): self._initialize() MachineLearning.query.filter_by(group_id=self.group_id).all().delete() db.session.commit() def _train(self, indep, depend): pass def _predict(self, indep): pass class SimpleTextMachineLearner(MachineLearner): """A class used to interact with the machine learning system, using the K Nearest Neighbors method""" def _learner(self): return KNN() def _initialize(self): """Initializes a fresh machine learner.""" if self.group_id not in reset_counter or self.reset_counter != reset_counter[self.group_id]: need_to_reset = True if hasattr(self, 'group_id') and (self.group_id not in learners or need_to_reset): learners[self.group_id] = self._learner() return super(SimpleTextMachineLearner, self)._initialize(reset=need_to_reset) def _train(self, indep, depend): """Trains the machine learner given an independent variable and a corresponding dependent variable.""" if indep is None: return the_text = re.sub(r'[\n\r]+', r' ', indep).lower() learners[self.group_id].train(Document(the_text.lower(), stemmer=PORTER), depend) def predict(self, indep, probabilities=False): """Returns a list of predicted dependent variables for a given independent variable.""" indep = re.sub(r'[\n\r]+', r' ', indep).lower() if not self._train_from_db(): return list() probs = dict() for key, value in learners[self.group_id].classify(Document(indep.lower(), stemmer=PORTER), discrete=False).items(): probs[key] = value if not len(probs): single_result = learners[self.group_id].classify(Document(indep.lower(), stemmer=PORTER)) if single_result is not None: probs[single_result] = 1.0 if probabilities: return [(x, probs[x]) for x in sorted(probs.keys(), key=probs.get, reverse=True)] else: return sorted(probs.keys(), key=probs.get, reverse=True) def confusion_matrix(self, key=None, output_format=None, split=False): """Returns a confusion matrix for the model based on splitting the data set randomly into two pieces, training on one and testing on the other""" if split: list_of_dependent = self.dependent_in_use(key=key) else: list_of_dependent = [None] output = '' matrices = dict() for current_dep in list_of_dependent: testing_set = list() model = self._learner() for record in self.classified_entries(key=key): if split: dep_result = str(record.dependent == current_dep) else: dep_result = record.dependent if random.random() < 0.5: model.train(Document(record.independent.lower(), stemmer=PORTER), dep_result) else: testing_set.append((Document(record.independent.lower(), stemmer=PORTER), dep_result)) matrix = model.confusion_matrix(documents=testing_set) matrices[current_dep] = matrix if output_format == 'html': if split: output += '<h4>' + current_dep + "</h4>" vals = matrix.keys() output += '<table class="table table-bordered"><thead><tr><td></td><td></td><td style="text-align: center" colspan="' + str(len(vals)) + '">Actual</td></tr><tr><th></th><th></th>' first = True for val in vals: output += '<th>' + val + '</th>' output += '</tr></thead><tbody>' for val_a in vals: output += '<tr>' if first: output += '<td style="text-align: right; vertical-align: middle;" rowspan="' + str(len(vals)) + '">Predicted</td>' first = False output += '<th>' + val_a + '</th>' for val_b in vals: output += '<td>' + str(matrix[val_b].get(val_a, 0)) + '</td>' output += '</tr>' output += '</tbody></table>' #output += "\n\n`" + str(matrix) + "`" # output += '<ul>' # for document, actual in testing_set: # predicted = model.classify(document) # output += '<li>Predicted: ' + predicted + '; Actual: ' + actual + '</li>' # output += '</ul>' if output_format == 'html': return output if split: ret_val = matrices else: ret_val = matrices[None] if output_format == 'json': return json.dumps(ret_val, sort_keys=True, indent=4) if output_format == 'yaml': return yaml.safe_dump(ret_val, default_flow_style=False) if output_format is None: return ret_val return ret_val def reset(self): """Clears the cache of the machine learner""" return super(SimpleTextMachineLearner, self).reset() def delete_training_set(self): """Deletes all of the training data in the database""" return super(SimpleTextMachineLearner, self).delete_training_set() def delete_by_key(self, key): """Deletes all of the training data in the database that was added with a given key""" return super(SimpleTextMachineLearner, self).delete_training_set(key) def delete_by_id(self, the_id): """Deletes the entry in the training data with the given ID""" return super(SimpleTextMachineLearner, self).delete_by_id(the_id) def set_dependent_by_id(self, the_id, depend): """Sets the dependent variable for the entry in the training data with the given ID""" return super(SimpleTextMachineLearner, self).set_dependent_by_id(the_id, depend) def classified_entries(self, key=None): """Returns a list of entries in the data that have been classified.""" return super(SimpleTextMachineLearner, self).classified_entries(key=key) def unclassified_entries(self, key=None): """Returns a list of entries in the data that have not yet been classified.""" return super(SimpleTextMachineLearner, self).unclassified_entries(key=key) def one_unclassified_entry(self, key=None): """Returns the first entry in the data that has not yet been classified, or None if all entries have been classified.""" return super(SimpleTextMachineLearner, self).one_unclassified_entry(key=key) def retrieve_by_id(self, the_id): """Returns the entry in the data that has the given ID.""" return super(SimpleTextMachineLearner, self).retrieve_by_id(the_id) def save_for_classification(self, indep, key=None, info=None): """Creates a not-yet-classified entry in the data for the given independent variable and returns the ID of the entry.""" return super(SimpleTextMachineLearner, self).save_for_classification(indep, key=key, info=info) def add_to_training_set(self, indep, depend, key=None, info=None): """Creates an entry in the data for the given independent and dependent variable and returns the ID of the entry.""" return super(SimpleTextMachineLearner, self).add_to_training_set(indep, depend, key=key, info=info) def is_empty(self): """Returns True if no data have been defined, otherwise returns False.""" return super(SimpleTextMachineLearner, self).is_empty() def dependent_in_use(self, key=None): """Returns a sorted list of unique dependent variables in the data.""" return super(SimpleTextMachineLearner, self).dependent_in_use(key=key) def export_training_set(self, output_format='json'): """Returns the classified entries in the data as JSON or YAML.""" return super(SimpleTextMachineLearner, self).export_training_set(output_format=output_format) def new_entry(self, **kwargs): """Creates a new entry in the data.""" return super(SimpleTextMachineLearner, self).new_entry(**kwargs) class SVMMachineLearner(SimpleTextMachineLearner): """Machine Learning object using the Symmetric Vector Machine method""" def _learner(self): return SVM(extension='libsvm') class RandomForestMachineLearner(MachineLearner): def _learner(self): return RandomForestClassifier(n_jobs=2) def feature_importances(self): """Returns the importances of each of the features""" if not self._train_from_db(): return list() return learners[self.group_id]['learner'].feature_importances_ def _initialize(self): """Initializes a fresh machine learner.""" if self.group_id not in reset_counter or self.reset_counter != reset_counter[self.group_id]: need_to_reset = True if hasattr(self, 'group_id') and (self.group_id not in learners or need_to_reset): learners[self.group_id] = dict(learner=self._learner(), dep_type=None, indep_type=dict(), indep_categories=dict(), dep_categories=None) return super(RandomForestMachineLearner, self)._initialize(reset=need_to_reset) def _train_from_db(self): #logmessage("Doing train_from_db") self._initialize() nowtime = datetime.datetime.utcnow() success = False data = list() depend_data = list() for record in MachineLearning.query.filter(and_(MachineLearning.group_id == self.group_id, MachineLearning.active == True, MachineLearning.modtime > lastmodtime[self.group_id])).all(): indep_var = fix_pickle_obj(codecs.decode(bytearray(record.independent, encoding='utf-8'), 'base64')) depend_var = fix_pickle_obj(codecs.decode(bytearray(record.dependent, encoding='utf-8'), 'base64')) if type(depend_var) is str: depend_var = text_type(depend_var) if learners[self.group_id]['dep_type'] is not None: if type(depend_var) is not learners[self.group_id]['dep_type']: if type(depend_var) is int and learners[self.group_id]['dep_type'] is float: depend_var = float(depend_var) elif type(depend_var) is float and learners[self.group_id]['dep_type'] is int: learners[self.group_id]['dep_type'] = float else: raise Exception("RandomForestMachineLearner: dependent variable type was not consistent") else: if not isinstance(depend_var, (string_types, int, bool, float)): raise Exception("RandomForestMachineLearner: dependent variable type for key " + repr(key) + " was not a standard variable type") learners[self.group_id]['dep_type'] = type(depend_var) depend_data.append(depend_var) if isinstance(indep_var, DADict): indep_var = indep_var.elements if type(indep_var) is not dict: raise Exception("RandomForestMachineLearner: independent variable was not a dictionary") for key, val in indep_var.items(): if type(val) is str: val = text_type(val) if key in learners[self.group_id]['indep_type']: if type(val) is not learners[self.group_id]['indep_type'][key]: if type(val) is int and learners[self.group_id]['indep_type'][key] is float: val = float(val) elif type(val) is float and learners[self.group_id]['indep_type'][key] is int: learners[self.group_id]['indep_type'][key] = float else: raise Exception("RandomForestMachineLearner: independent variable type for key " + repr(key) + " was not consistent") else: if not isinstance(val, (string_types, int, bool, float)): raise Exception("RandomForestMachineLearner: independent variable type for key " + repr(key) + " was not a standard variable type") learners[self.group_id]['indep_type'][key] = type(val) data.append(indep_var) success = True if success: df =
pd.DataFrame(data)
pandas.DataFrame
import os import warnings import contextlib import tempfile import zipfile from typing import Iterable import logging import pandas as pd from .base import BaseEndpoint from ..models.odata import Series, Task logger = logging.getLogger(__name__) @contextlib.contextmanager def _with_dir_path(dir_path=None): # prepare dir_path if dir_path is None: temp_dir = tempfile.TemporaryDirectory() dir_path = temp_dir.name else: temp_dir, dir_path = None, dir_path # call function try: yield dir_path finally: # cleanup if temp_dir is not None: temp_dir.cleanup() class SeriesEndpoint(BaseEndpoint): def select_data( self, series: Iterable[Series], start=None, end=None, resample=None, dropna=None, closed=None, resample_rule=None, convention=None, start_mode=None, utc_now=None, max_acceptable_delay=None, max_rows_nb=None, clock=None, with_tags=None, unfilter=None, return_df=True ): # prepare tsdb pks otsdb_pks = [se.otsdb_pk for se in series] # check not empty if len(otsdb_pks) == 0: raise ValueError("series must at least contain one series, none was found") # prepare params params = dict() for k in ( "start", "end", "resample", "dropna", "closed", "resample_rule", "convention", "start_mode", "utc_now", "max_acceptable_delay", "max_rows_nb", "clock", "with_tags", "unfilter" ): v = locals()[k] if v is not None: params[k] = v # perform request series_data = self.client.rest_client.list_action( "odata/series", "post", "multi_select", params=params, data={"otsdb_pk": otsdb_pks} ) # see if response was cut (1e6 is max number of points return by backend) max_points_per_series = int(1e6) // len(otsdb_pks) for se_dict in series_data.values(): if len(se_dict["index"]) == max_points_per_series: warnings.warn( "You requested more data than allowed on the platform (maximum number of points: 1.000.000).\n" f"This caused the series returned here to be cut to a maximum of {max_points_per_series} points.\n" "To get the full results, please launch an export (recommended) or split your current request into " "several smaller requests (query a smaller number of series at a time, " "or use the start and end arguments)", stacklevel=2 ) break if not return_df: return series_data # parse to data frame df_data = {} for pk, se_dict in series_data.items(): se = pd.Series(se_dict["data"], se_dict["index"]) df_data[se_dict["name"]] = se df =
pd.DataFrame(df_data)
pandas.DataFrame
""" This package will create the simplified comix matrix needed by simple_network_sim basing itself in the following data: - The CoMix matrix: https://cmmid.github.io/topics/covid19/reports/20200327_comix_social_contacts.xlsx - The Scottish demographics (NRS): ftp://boydorr.gla.ac.uk/scrc/human/demographics/scotland/data/demographics.h5 - The England & Wales demographics (ONS): https://www.nomisweb.co.uk/api/v01/dataset/NM_2010_1.data.csv (the data was aggregated into the wales_england_pop.csv file) Python requirements: - pandas - xlrd - h5py How to run this module: Assuming you have your environment setup with conda, this script can be run with ``` python comix_downsampler.py ``` That will generate a file called mixing-matrix.csv. That file can then be copied into `sample_input_files/mixing-matrix/1/data.csv` inside the simple network sim model (https://github.com/ScottishCovidResponse/simple_network_sim) """ import io import urllib.request from ftplib import FTP from typing import NamedTuple, List import h5py import numpy as np import pandas as pd ContactsTable = pd.DataFrame ComixTable = pd.DataFrame class Data(NamedTuple): """ All data needed to do the downsampling """ comix: ComixTable population: pd.Series def main(): data = download() contacts = comix_to_contacts(data.comix, _aggregate_pop_full_comix(data.population, data.comix)) contacts = split_17_years_old(contacts, data.population) contacts = collapse_columns(contacts, ["[0,5)", "[5,17)"], "[0,17)") contacts = collapse_columns(contacts, ["17", "[18,30)", "[30,40)", "[40,50)", "[50,60)", "[60,70)"], "[17,70)") # The 70+ entry is already what we want comix = contacts_to_comix(contacts, _aggregate_pop_simplified_comix(data.population, contacts)) _flatten(comix).to_csv("mixing-matrix.csv", index=False) def collapse_columns(df: ContactsTable, names: List[str], new_name: str) -> ContactsTable: """ This function assumes that df has both columns and indexes identified by the same `names`. They will all be added together to create a new column and row named `new_name`. Eg.: >>> df = ContactsTable(pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6], "c": [7, 8, 9]}, index=list("abc"))) >>> collapse_columns(df, ["a", "b"], "a'") a' c a' 12 15 c 9 9 :param df: a contacts table type table. That means it's a upper triangle matrix :param names: name of the columns and indexes to aggregate :param new_name: name of the new column and row that will be created :return: A dataframe with collapsed columns and indexes """ if not names: raise ValueError("Names must be a non-empty list") missing_columns = set(names) - set(df.columns) if missing_columns: raise ValueError(f"Names mismatch: {missing_columns}") if not all(df.columns == df.index): raise ValueError("Indexes and columns must match") agg = df.copy() agg[names[0]] = df[names].sum(axis=1) agg = agg.rename({names[0]: new_name}, axis=1) agg = agg.drop(columns=names[1:]) agg.loc[names[0]] = agg.loc[names].sum() agg = agg.rename({names[0]: new_name}, axis=0) agg = agg.drop(index=names[1:]) return ContactsTable(agg) def comix_to_contacts(comix: ComixTable, agg: pd.DataFrame) -> ContactsTable: """ Converts the CoMix matrix to a matrix of contacts (total number of contacts rather than averages). Although the CoMix matrix is not symmetric, the contacts matrix should be. That will not always happen given the population we have. Therefore, we average out both triangles and return a upper triangular matrix """ contacts = comix * agg # Now we are averaging out the triangles so the matrix becomes symmetric averaged = (np.tril(contacts).T + np.triu(contacts)) / 2 return ContactsTable(pd.DataFrame(averaged, columns=comix.columns, index=comix.index)) def contacts_to_comix(contacts: ContactsTable, agg: pd.DataFrame) -> ComixTable: """ Converts a matrix of contacts to the CoMix matrix """ contacts = pd.DataFrame(contacts.T + np.triu(contacts, k=1), columns=contacts.columns, index=contacts.index) return ComixTable(contacts / agg) def split_17_years_old(contacts: ContactsTable, pop: pd.Series) -> ContactsTable: """ The original CoMix matrix has the ranges [0,5) and [5,18) ranges, whereas we need it to be [0,17). Adding two columns together is a simple operation, but we must first need to move the 17 year olds out of [5,18) into the [18,30) range and rename the ranges. Based the age stratified population, this function will move a number of contacts proportional to the proportion of 17 year olds in the [5,18) population :param contacts: The upper triangular contact matrix :param pop: age stratified population series :return: """ age_groups = list(contacts.columns) proportion_17 = pop[17] / pop[5:17].sum() contacts = contacts.copy() contacts["17"] = contacts["[5,18)"] * proportion_17 contacts.loc["17"] = contacts.loc["[5,18)"] * proportion_17 # special case contacts["17"]["17"] = contacts["[5,18)"]["[5,18)"] * proportion_17 ** 2 # The following two lines will calculate contacts["[5,17)"]["[5,17)"] twice contacts["[5,17)"] = contacts["[5,18)"] * (1 - proportion_17) contacts.loc["[5,17)"] = contacts.loc["[5,18)"] * (1 - proportion_17) # this will fix that contacts["[5,17)"]["[5,17)"] = contacts["[5,18)"]["[5,18)"] * (1 - proportion_17) # special cases contacts.loc["[5,17)", "17"] = contacts.loc["[5,18)", "[5,18)"] * (1 - proportion_17) * proportion_17 contacts.loc["17", "[5,17)"] = 0.0 # reorder the table columns and indexes age_groups.insert(age_groups.index("[18,30)"), "17") age_groups[age_groups.index("[5,18)")] = "[5,17)" return ContactsTable(contacts.loc[age_groups, age_groups]) def download() -> Data: """ Downloads the CoMix matrix and the population data :return: Data object with all the needed data for the downsampling """ return Data(comix=download_comix(), population=download_nrs() + download_ons()) def download_comix() -> ComixTable: """ Downloads the CoMix matrix from an external source :return: the original comix table """ filename, _ = urllib.request.urlretrieve( "https://cmmid.github.io/topics/covid19/reports/20200327_comix_social_contacts.xlsx" ) df = pd.read_excel(filename, sheet_name="All_contacts_imputed") return ComixTable(df.set_index("Unnamed: 0")) def download_nrs() -> pd.Series: """ Downloads NRS data from the university's FTP :return: Population series, indexed by age """ ftp = FTP("boydorr.gla.ac.uk") ftp.set_pasv(False) ftp.login() buf = io.BytesIO() ftp.retrbinary("RETR scrc/human/demographics/scotland/data/demographics.h5", buf.write) h5 = h5py.File(buf, "r") people = h5["hb"]["1year"]["persons"] ages = [int(s.replace(b"AGE", b"").replace(b"+", b"")) for s in people["Dimension_2_names"]] # df: columns are the locations (Dimension 1) and the rows are the ages df = pd.DataFrame(people["array"], index=ages, columns=list(people["Dimension_1_names"])).T # We don't care about the locations, so just add them up return df.sum() def download_ons() -> pd.Series: """ Downlads ONS data from university's FTP :return: Population series, indexed by age """ # TODO: This data is not yet integrated into SCRCdata. Below are the steps to generate it: # # The bash script below was used to scrape all the data from upstream (takes ~5 hours to finish): # set -ex # # offset=0 # step=24000 # while true; do # curl -H 'Accept-Encoding: deflate, gzip;q=1.0, *;q=0.5' -s "https://www.nomisweb.co.uk/api/v01/dataset/NM_2010_1.data.csv?measures=20100&time=latest&gender=0&geography=TYPE299&RecordLimit=$step&RecordOffset=$offset" > NM_2010_1.$offset.csv.gz # if [ $(zcat "NM_2010_1.$offset.csv.gz" | wc -l) -lt $step ]; then # break # fi # offset=$(( offset + step )) # done # # After running that, a bit of bash processing is still required. First, we need to decompress it # $ for x in *gz; do gunzip $x; done # Then we need to remove the header # $ head -1 NM_2010_1.0.csv > header # $ for x in *.csv; do sed -i 1d $x; done # Aggregate them all into a single file # cat header $(for x in $(ls -1 *.csv | sed 's/NM_2010_1.//' | sort -n); do echo NM_2010_1.$x; done) > NM_2010_1.csv # Finally, this will need dask, if you don't have enough memory: # >>> import dask.dataframe as dd # >>> df = dd.read_csv("NM_2010_1.csv") # >>> tot = df[df.C_AGE.isin(list(range(101,192)))].groupby("C_AGE").OBS_VALUE.sum().compute() # >>> tot.index = list(range(0,91) # >>> tot.to_frame("POPULATION").to_csv("wales_england_pop.csv", index_label="AGE") # That's the csv file we are reading below df = pd.read_csv("wales_england_pop.csv", index_col="AGE") return df.POPULATION def _aggregate_pop_full_comix(pop: pd.Series, target: pd.DataFrame) -> pd.DataFrame: """ Aggregates the population matrix based on the CoMix table. :param pop: 1-year based population :param target: target dataframe we will want to multiply or divide with :return: Retuns a dataframe that can be multiplied with the comix matrix to get a table of contacts or it can be used to divide the contacts table to get the CoMix back """ agg = pd.DataFrame( { "[0,5)": [pop[:5].sum()], "[5,18)": [pop[5:18].sum()], "[18,30)": [pop[18:30].sum()], "[30,40)": [pop[30:40].sum()], "[40,50)": [pop[40:50].sum()], "[50,60)": [pop[50:60].sum()], "[60,70)": [pop[60:70].sum()], "70+": [pop[70:].sum()], } ) return pd.concat([agg] * len(target.columns)).set_index(target.index).T def _aggregate_pop_simplified_comix(pop: pd.Series, target: pd.DataFrame) -> pd.DataFrame: """ Aggregates the population matrix based on the CoMix table. :param pop: 1-year based population :param target: target dataframe we will want to multiply or divide with :return: Retuns a dataframe that can be multiplied with the comix matrix to get a table of contacts or it can be used to divide the contacts table to get the CoMix back """ agg = pd.DataFrame({"[0,17)": [pop[:17].sum()], "[17,70)": [pop[17:69].sum()], "70+": [pop[70:].sum()]}) return pd.concat([agg] * len(target.columns)).set_index(target.index).T def _flatten(comix: ComixTable): rows = [] for source, columns in comix.iterrows(): for target, mixing in columns.iteritems(): rows.append({"source": source, "target": target, "mixing": mixing}) return
pd.DataFrame(rows)
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Tue Jun 12 08:47:38 2018 @author: cenv0574 """ import os import json import pandas as pd import geopandas as gpd from itertools import product def load_config(): # Define current directory and data directory config_path = os.path.realpath( os.path.join(os.path.dirname(__file__), '..', '..', '..', 'config.json') ) with open(config_path, 'r') as config_fh: config = json.load(config_fh) return config def load_table(data_path): vnm_IO_path = os.path.join(data_path,"INPUT-OUTPUT TABLE 2012","IO Table 2012 English.xlsx") return pd.read_excel(vnm_IO_path,sheet_name='IO_clean',index_col=0) def load_sectors(data_path): vnm_IO_path = os.path.join(data_path,"INPUT-OUTPUT TABLE 2012","IO Table 2012 English.xlsx") vnmIO_rowcol = pd.read_excel(vnm_IO_path,sheet_name='SectorName') return vnmIO_rowcol def get_final_sector_classification(): return ['secA','secB','secC','secD','secE','secF','secG','secH','secI'] def map_sectors(vnm_IO_rowcol): row_only = vnm_IO_rowcol[vnm_IO_rowcol['mapped'].str.contains("row") | vnm_IO_rowcol['mapped'].str.contains("sec") ] col_only = vnm_IO_rowcol[vnm_IO_rowcol['mapped'].str.contains("col") | vnm_IO_rowcol['mapped'].str.contains("sec") ] return dict(zip(row_only.code,row_only.mapped)),dict(zip(col_only.code,col_only.mapped)) def aggregate_table(vnm_IO,vnm_IO_rowcol,in_million=True): sectors = get_final_sector_classification() #aggregate table mapper_row,mapper_col = map_sectors(vnm_IO_rowcol) vnm_IO.index = vnm_IO.index.map(mapper_row.get) vnm_IO.columns = vnm_IO.columns.to_series().map(mapper_col) aggregated = vnm_IO.groupby(vnm_IO.index,axis=0).sum().groupby(vnm_IO.columns, axis=1).sum() aggregated = aggregated.reindex(sectors+['col1','col2','col3'],axis='columns') aggregated = aggregated.reindex(sectors+['row1','row2','row3'],axis='index') if in_million == True: return aggregated/1000000 else: return aggregated def is_balanced(io_table): row = io_table.sum(axis=0) col = io_table.sum(axis=1) if ((row-col).sum() < 1): print('Table is balanced') def load_provincial_stats(data_path): prov_path = os.path.join(data_path,'Vietnam_boundaries','boundaries_stats','province_level_stats.shp') return gpd.read_file(prov_path) def estimate_gva(regions,in_million=True): if in_million == True: return list(((regions.pro_nfirm*regions.laborcost)+(regions.pro_nfirm*regions.capital))/1000000) else: return list(((regions.pro_nfirm*regions.laborcost)+(regions.pro_nfirm*regions.capital))) def create_proxies(data_path,notrade=False,own_production_ratio=0.9,min_rice=True): provinces = load_provincial_stats(data_path) provinces.name_eng = provinces.name_eng.apply(lambda x: x.replace(' ','_').replace('-','_')) od_table = load_od(data_path,min_rice=min_rice) create_indices(data_path,provinces,write_to_csv=True) create_regional_proxy(data_path,provinces,write_to_csv=True) create_sector_proxies(data_path,provinces,write_to_csv=True) create_zero_proxies(data_path,od_table,notrade=notrade,write_to_csv=True) if notrade == False: create_level14_proxies(data_path,od_table,own_production_ratio,write_to_csv=True) def create_regional_proxy(data_path,regions,write_to_csv=True): regions['raw_gva'] = estimate_gva(regions) #regions['pro_nfirm']*regions['laborcost'] + regions['pro_nfirm']*regions['capital'] subset = regions.loc[:,['name_eng','raw_gva']] subset['year'] = 2010 subset['raw_gva'] = subset.raw_gva.apply(int)/(subset['raw_gva'].sum(axis='index')) subset = subset[['year','name_eng','raw_gva']] subset.columns = ['year','id','gdp'] if write_to_csv == True: csv_path = os.path.join(data_path,'IO_analysis','MRIO_TABLE','proxy_reg_vnm.csv') subset.to_csv(csv_path,index=False) def create_indices(data_path,provinces,write_to_csv=True): # prepare index and cols region_names = list(provinces.name_eng) rowcol_names = list(load_sectors(data_path)['mapped'].unique()) rows = [x for x in rowcol_names if (x.startswith('sec') | x.startswith('row'))]*len(region_names) region_names_list = [item for sublist in [[x]*12 for x in region_names] for item in sublist] indices = pd.DataFrame([region_names_list,rows]).T indices.columns = ['region','sector'] indices['sector'] = indices['sector'].apply(lambda x: x.replace('row','other')) if write_to_csv == True: csv_path = os.path.join(data_path,'IO_analysis','MRIO_TABLE','indices_mrio.csv') indices.to_csv(csv_path,index=False) def create_sector_proxies(data_path,regions,write_to_csv=True): #list of sectors sector_list = get_final_sector_classification() #get own sector classification for region file map_dict = map_sect_vnm_to_eng() regions=regions.rename(columns = map_dict) # get sectoral gva based on proportion of firms in the region sector_shares = regions[sector_list].multiply(regions['raw_gva'],axis='index') sector_shares.index = regions.name_eng for sector in sector_list+['other1','other2','other3']: if sector in ['other1','other2','other3']: subset = pd.DataFrame(sector_shares.sum(axis='columns')).divide(pd.DataFrame(sector_shares.sum(axis='columns')).sum(axis='index')) subset.columns = [sector] else: subset = pd.DataFrame(sector_shares.loc[:,sector]).divide(pd.DataFrame(sector_shares.loc[:,sector]).sum(axis='index')) subset.reset_index(inplace=True,drop=False) subset['year'] = 2010 subset['sector'] = sector+str(1) subset[sector] = subset[sector].apply(lambda x: round(x,7)) subset = subset[['year','sector','name_eng',sector]] subset.columns = ['year','sector','region','gdp'] if write_to_csv == True: csv_path = os.path.join(data_path,'IO_analysis','MRIO_TABLE','proxy_{}.csv'.format(sector)) subset.to_csv(csv_path,index=False) def get_trade_value(x,sum_use,sector,own_production_ratio=0.9): if x.Destination == x.Origin: try: return list(sum_use.loc[(sum_use['region'] == x.Destination) & (sum_use['sector'] == sector)]['value'])[0]*own_production_ratio except: return 1 elif x.gdp == 0: return 0 else: try: return list(sum_use.loc[(sum_use['region'] == x.Destination) & (sum_use['sector'] == sector)]['value'])[0]*(1-own_production_ratio)*x.ratio except: return 0 def create_level14_proxies(data_path,od_table,own_production_ratio=0.9,write_to_csv=True): # get sector list sector_list_ini = get_final_sector_classification()+['other1','other2','other3'] sector_list = [x+str(1) for x in sector_list_ini] od_table.loc[od_table['Destination'] == od_table['Origin'],'gdp'] = 10 od_sum = pd.DataFrame(od_table.groupby(['Destination','Origin']).sum().sum(axis=1)) od_sum['ratio'] = od_sum.groupby(level=0).apply(lambda x: x / float(x.sum())) od_sum.reset_index(inplace=True) od_sum.columns = ['Destination','Origin','gdp','ratio'] df_pretable = pd.read_csv(os.path.join(data_path,'IO_analysis','MRIO_TABLE','notrade_trade.csv'),index_col=[0,1],header=[0,1]) df_pretable = df_pretable.iloc[:,:567] sum_use = df_pretable.sum(axis=1) sum_use = pd.DataFrame(sum_use*0.1) sum_use.reset_index(inplace=True) sum_use.columns = ['region','sector','value'] combine = [] for sector in sector_list: if sector[:-1] in ['other1','other2','other3']: subset = od_sum.copy() subset['year'] = 2010 subset['sector'] = sector subset['gdp'] = 0 subset.drop('ratio',axis=1,inplace=True) combine.append(subset) else: subset = od_sum.copy() subset = subset.loc[od_sum.gdp != 0] subset['year'] = 2010 subset['sector'] = sector subset['gdp'] = subset.apply(lambda x: get_trade_value(x,sum_use,sector[:-1],own_production_ratio),axis=1) #subset['gdp'].apply(lambda x: round(x,2)) subset.drop('ratio',axis=1,inplace=True) combine.append(subset) all_ = pd.concat(combine) final_sub = all_[['year','sector','Origin','Destination','gdp']] final_sub.columns = ['year','sector','region','region','gdp'] if write_to_csv == True: csv_path = os.path.join(data_path,'IO_analysis','MRIO_TABLE','proxy_trade14_{}.csv'.format(sector[:-1])) final_sub.to_csv(csv_path,index=False) def create_zero_proxies(data_path,od_table,notrade=False,write_to_csv=True): # get sector list sector_list = get_final_sector_classification()+['other1','other2','other3'] sector_list = [x+str(1) for x in sector_list] #map sectors to be the same mapper = map_regions() od_table['Destination'] = od_table['Destination'].apply(lambda x: mapper[x]) od_table['Origin'] = od_table['Origin'].apply(lambda x: mapper[x]) od_table = od_table.loc[od_table['Destination'] != od_table['Origin']] od_sum = pd.DataFrame(od_table.groupby(['Destination','Origin']).sum().sum(axis=1)) od_sum.reset_index(inplace=True) od_sum.columns = ['Destination','Origin','gdp'] if notrade == True: od_sum['gdp'] = 0 for sector in sector_list: if sector[:-1] in ['other1','other2','other3']: subset = od_sum.copy() subset['year'] = 2010 subset['sector'] = sector subset['gdp'] = 0 combine = [] for sector2 in sector_list: sub_subset = subset.copy() sub_subset['subsector'] = sector2 combine.append(sub_subset) else: subset = od_sum.copy() if notrade == False: subset = subset.loc[od_sum.gdp == 0] subset['year'] = 2010 subset['sector'] = sector subset['gdp'] = 0 combine = [] for sector2 in sector_list: sub_subset = subset.copy() sub_subset['subsector'] = sector2 combine.append(sub_subset) all_ = pd.concat(combine) final_sub = all_[['year','sector','Origin','subsector','Destination','gdp']] final_sub.columns = ['year','sector','region','sector','region','gdp'] if write_to_csv == True: csv_path = os.path.join(data_path,'IO_analysis','MRIO_TABLE','proxy_trade_{}.csv'.format(sector[:-1])) final_sub.to_csv(csv_path,index=False) def load_output(data_path,provinces,notrade=True): # prepare index and cols region_names = list(provinces.name_eng) rowcol_names = list(load_sectors(data_path)['mapped'].unique()) rows = [x for x in rowcol_names if (x.startswith('sec') | x.startswith('row'))]*len(region_names) cols = [x for x in rowcol_names if (x.startswith('sec') | x.startswith('col'))]*len(region_names) region_names_list = [item for sublist in [[x]*12 for x in region_names] for item in sublist] index_mi = pd.MultiIndex.from_arrays([region_names_list,rows], names=('region', 'row')) column_mi = pd.MultiIndex.from_arrays([region_names_list,cols], names=('region', 'col')) # read output if notrade == True: output_path = os.path.join(data_path,'IO_analysis','MRIO_TABLE','output_notrade.csv') else: output_path = os.path.join(data_path,'IO_analysis','MRIO_TABLE','output.csv') output_df = pd.read_csv(output_path,header=None) output_df.index = index_mi output_df.columns = column_mi # create predefined index and col, which is easier to read sector_only = [x for x in rowcol_names if x.startswith('sec')]*len(region_names) col_only = [x for x in rowcol_names if x.startswith('col')]*len(region_names) region_col = [item for sublist in [[x]*9 for x in region_names] for item in sublist] + [item for sublist in [[x]*3 for x in region_names] for item in sublist] column_mi_reorder = pd.MultiIndex.from_arrays([region_col,sector_only+col_only], names=('region', 'col')) #sum va and imports tax_sub = output_df.loc[output_df.index.get_level_values(1)=='row1'].sum(axis='index') import_ = output_df.loc[output_df.index.get_level_values(1)=='row2'].sum(axis='index') valueA = output_df.loc[output_df.index.get_level_values(1)=='row3'].sum(axis='index') output_new = pd.concat([output_df.loc[~output_df.index.get_level_values(1).isin(['row1','row2','row3'])],
pd.DataFrame(tax_sub)
pandas.DataFrame
#!python3 # -*- coding:utf-8 -*- import os import numpy as np import pandas as pd ''' This source code is a sample of using pandas library. Series and DataFrame. ''' # Series Object: It's one dimension object. # It's not ndarray, list, and other sequense object. print("make instance of Series") ser =
pd.Series([10,20,30,40])
pandas.Series
""" A class to carry localization data. """ import copy import logging import time import warnings from itertools import accumulate import numpy as np import pandas as pd from google.protobuf import json_format, text_format try: from scipy.spatial import QhullError except ImportError: from scipy.spatial.qhull import QhullError # needed for Python 3.7 import locan.data.hulls from locan import locdata_id # is required to use locdata_id as global variable from locan.constants import PROPERTY_KEYS, PropertyKey from locan.data import metadata_pb2 from locan.data.metadata_utils import _modify_meta, metadata_to_formatted_string from locan.data.region import Region, RoiRegion __all__ = ["LocData"] logger = logging.getLogger(__name__) class LocData: """ This class carries localization data, aggregated properties and meta data. Data consist of individual elements being either localizations or other `LocData` objects. Both, localizations and `Locdata` objects have properties. Properties come from the original data or are added by analysis procedures. Parameters ---------- references : LocData, list(LocData), None A `LocData` reference or an array with references to `LocData` objects referring to the selected localizations in dataset. dataframe : pandas.DataFrame, None Dataframe with localization data. indices : slice object, list(int), None Indices for dataframe in references that makes up the data. `indices` refers to index label, not position. meta : locan.data.metadata_pb2.Metadata, dictionary Metadata about the current dataset and its history. Attributes ---------- references : LocData, list(LocData), None A LocData reference or an array with references to LocData objects referring to the selected localizations in dataframe. dataframe : pandas.DataFrame, None Dataframe with localization data. indices : slice object, list(int), None Indices for dataframe in references that makes up the data. meta : locan.data.metadata_pb2.Metadata Metadata about the current dataset and its history. properties : pandas.DataFrame List of properties generated from data. coordinate_labels : list of str The available coordinate properties. dimension : int Number of coordinates available for each localization (i.e. size of `coordinate_labels`). """ count = 0 """int: A counter for counting LocData instantiations (class attribute).""" def __init__( self, references=None, dataframe=pd.DataFrame(), indices=None, meta=None ): self.__class__.count += 1 self.references = references self.dataframe = dataframe self.indices = indices self.meta = metadata_pb2.Metadata() self.properties = {} # regions and hulls self._region = None self._bounding_box = None self._oriented_bounding_box = None self._convex_hull = None self._alpha_shape = None self._inertia_moments = None self.coordinate_labels = sorted( list( set(self.data.columns).intersection( {"position_x", "position_y", "position_z"} ) ) ) self.dimension = len(self.coordinate_labels) self._update_properties() # meta global locdata_id locdata_id += 1 self.meta.identifier = str(locdata_id) self.meta.creation_time.GetCurrentTime() self.meta.source = metadata_pb2.DESIGN self.meta.state = metadata_pb2.RAW self.meta.element_count = len(self.data.index) if "frame" in self.data.columns: self.meta.frame_count = len(self.data["frame"].unique()) if meta is None: pass elif isinstance(meta, dict): for key, value in meta.items(): setattr(self.meta, key, value) else: self.meta.MergeFrom(meta) def _update_properties(self): self.properties["localization_count"] = len(self.data.index) # property for mean spatial coordinates (centroids) self.properties.update(dict(self.data[self.coordinate_labels].mean())) self.bounding_box # update self._bounding_box def __del__(self): """Updating the counter upon deletion of class instance.""" self.__class__.count -= 1 def __len__(self): """Return the length of data, i.e. the number of elements (localizations or collection elements).""" return len(self.data.index) def __getstate__(self): """Modify pickling behavior.""" # Copy the object's state from self.__dict__ to avoid modifying the original state. state = self.__dict__.copy() # Serialize the unpicklable protobuf entries. json_string = json_format.MessageToJson( self.meta, including_default_value_fields=False ) state["meta"] = json_string return state def __setstate__(self, state): """Modify pickling behavior.""" # Restore instance attributes. self.__dict__.update(state) # Restore protobuf class for meta attribute self.meta = metadata_pb2.Metadata() self.meta = json_format.Parse(state["meta"], self.meta) def __copy__(self): """ Create a shallow copy of locdata (keeping all references) with the following exceptions: (i) The class variable `count` is increased for the copied LocData object. (ii) Metadata keeps the original meta.creation_time while meta.modification_time and meta.history is updated. """ new_locdata = LocData(self.references, self.dataframe, self.indices, meta=None) new_locdata._region = self._region # meta meta_ = _modify_meta( self, new_locdata, function_name="LocData.copy", parameter=None, meta=None ) new_locdata.meta = meta_ return new_locdata def __deepcopy__(self, memodict=None): """ Create a deep copy of locdata (including all references) with the following exceptions: (i) The class variable `count` is increased for all deepcopied LocData objects. (ii) Metadata keeps the original meta.creation_time while meta.modification_time and meta.history is updated. """ if memodict is None: memodict = {} new_locdata = LocData( copy.deepcopy(self.references, memodict), copy.deepcopy(self.dataframe, memodict), copy.deepcopy(self.indices, memodict), meta=None, ) new_locdata._region = self._region # meta meta_ = _modify_meta( self, new_locdata, function_name="LocData.deepcopy", parameter=None, meta=None, ) new_locdata.meta = meta_ return new_locdata @property def bounding_box(self): """Hull object: Return an object representing the axis-aligned minimal bounding box.""" if self._bounding_box is None: try: self._bounding_box = locan.data.hulls.BoundingBox(self.coordinates) self.properties["region_measure_bb"] = self._bounding_box.region_measure if self._bounding_box.region_measure: self.properties["localization_density_bb"] = ( self.properties["localization_count"] / self._bounding_box.region_measure ) if self._bounding_box.subregion_measure: self.properties[ "subregion_measure_bb" ] = self._bounding_box.subregion_measure except ValueError: warnings.warn( "Properties related to bounding box could not be computed.", UserWarning, ) return self._bounding_box @property def convex_hull(self): """Hull object: Return an object representing the convex hull of all localizations.""" if self._convex_hull is None: try: self._convex_hull = locan.data.hulls.ConvexHull(self.coordinates) self.properties["region_measure_ch"] = self._convex_hull.region_measure if self._convex_hull.region_measure: self.properties["localization_density_ch"] = ( self.properties["localization_count"] / self._convex_hull.region_measure ) except (TypeError, QhullError): warnings.warn( "Properties related to convex hull could not be computed.", UserWarning, ) return self._convex_hull @property def oriented_bounding_box(self): """Hull object: Return an object representing the oriented minimal bounding box.""" if self._oriented_bounding_box is None: try: self._oriented_bounding_box = locan.data.hulls.OrientedBoundingBox( self.coordinates ) self.properties[ "region_measure_obb" ] = self._oriented_bounding_box.region_measure if self._oriented_bounding_box.region_measure: self.properties["localization_density_obb"] = ( self.properties["localization_count"] / self._oriented_bounding_box.region_measure ) self.properties["orientation_obb"] = self._oriented_bounding_box.angle self.properties[ "circularity_obb" ] = self._oriented_bounding_box.elongation except TypeError: warnings.warn( "Properties related to oriented bounding box could not be computed.", UserWarning, ) return self._oriented_bounding_box @property def alpha_shape(self): """Hull object: Return an object representing the alpha-shape of all localizations.""" return self._alpha_shape def update_alpha_shape(self, alpha): """Compute the alpha shape for specific `alpha` and update `self.alpha_shape`. Parameters ---------- alpha : float Alpha parameter specifying a unique alpha complex. Returns ------- LocData The modified object """ try: if self._alpha_shape is None: self._alpha_shape = locan.data.hulls.AlphaShape( points=self.coordinates, alpha=alpha ) else: self._alpha_shape.alpha = alpha self.properties["region_measure_as"] = self._alpha_shape.region_measure try: self.properties["localization_density_as"] = ( self._alpha_shape.n_points_alpha_shape / self._alpha_shape.region_measure ) except ZeroDivisionError: self.properties["localization_density_as"] = float("nan") except TypeError: warnings.warn( "Properties related to alpha shape could not be computed.", UserWarning ) return self def update_alpha_shape_in_references(self, alpha): """ Compute the alpha shape for each element in `locdata.references` and update `locdata.dataframe`. Returns ------- LocData The modified object """ if isinstance(self.references, list): for reference in self.references: reference.update_alpha_shape(alpha=alpha) new_df = pd.DataFrame( [reference.properties for reference in self.references] ) new_df.index = self.data.index self.dataframe.update(new_df) new_columns = [ column for column in new_df.columns if column in self.dataframe.columns ] new_df.drop(columns=new_columns, inplace=True, errors="ignore") self.dataframe = pd.concat([self.dataframe, new_df], axis=1) return self @property def inertia_moments(self): """Inertia moments are returned as computed by :func:`locan.data.properties.inertia_moments`.""" if self._inertia_moments is None: try: self._inertia_moments = locan.data.properties.inertia_moments( self.coordinates ) self.properties["orientation_im"] = self._inertia_moments.orientation self.properties["circularity_im"] = self._inertia_moments.eccentricity except TypeError: warnings.warn( "Properties related to inertia_moments could not be computed.", UserWarning, ) return self._inertia_moments def update_inertia_moments_in_references(self): """ Compute inertia_moments for each element in locdata.references and update locdata.dataframe. Returns ------- LocData The modified object """ if isinstance(self.references, list): for reference in self.references: reference.inertia_moments # request property to update new_df = pd.DataFrame( [reference.properties for reference in self.references] ) new_df.index = self.data.index self.dataframe.update(new_df) new_columns = [ column for column in new_df.columns if column in self.dataframe.columns ] new_df.drop(columns=new_columns, inplace=True, errors="ignore") self.dataframe = pd.concat([self.dataframe, new_df], axis=1) return self @property def region(self): """RoiRegion object: Return the region that supports all localizations.""" return self._region @region.setter def region(self, region): if region is not None: if region.dimension != self.dimension: raise TypeError( "Region dimension and coordinates dimension must be identical." ) elif len(self) != len(region.contains(self.coordinates)): logger.warning("Not all coordinates are within region.") if isinstance(region, (Region, RoiRegion)) or region is None: self._region = region elif isinstance( region, dict ): # legacy code to deal with deprecated RoiLegacy_0 region_ = RoiRegion(**region) if region_ is not None: if region_.dimension != self.dimension: raise TypeError( "Region dimension and coordinates dimension must be identical." ) elif len(self) != len(region_.contains(self.coordinates)): logger.warning("Not all coordinates are within region.") self._region = region_ else: raise TypeError # property for region measures if self._region is not None: if self._region.region_measure: self.properties["region_measure"] = self._region.region_measure self.properties["localization_density"] = ( self.meta.element_count / self._region.region_measure ) if self._region.subregion_measure: self.properties["subregion_measure"] = self._region.subregion_measure @property def data(self): """pandas.DataFrame: Return all elements either copied from the reference or referencing the current dataframe. """ if isinstance(self.references, LocData): # we refer to the localization data by its index label, not position # in other words we decided not to use iloc but loc # df = self.references.data.loc[self.indices] ... but this does not work in pandas. # also see: # https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#deprecate-loc-reindex-listlike try: df = self.references.data.loc[self.indices] except KeyError: df = self.references.data.loc[ self.references.data.index.intersection(self.indices) ] df = pd.merge( df, self.dataframe, left_index=True, right_index=True, how="outer" ) return df else: return self.dataframe @property def coordinates(self): """ndarray: Return all coordinate values. """ return self.data[self.coordinate_labels].values @property def centroid(self): """ndarray: Return coordinate values of the centroid (being the property values for all coordinate labels).""" return np.array( [ self.properties[coordinate_label] for coordinate_label in self.coordinate_labels ] ) @classmethod def from_dataframe(cls, dataframe=pd.DataFrame(), meta=None): """ Create new LocData object from pandas.DataFrame with localization data. Parameters ---------- dataframe : pandas.DataFrame Localization data. meta : locan.data.metadata_pb2.Metadata Metadata about the current dataset and its history. Returns ------- LocData A new LocData instance with dataframe representing the concatenated data. """ dataframe = dataframe meta_ = metadata_pb2.Metadata() meta_.source = metadata_pb2.DESIGN meta_.state = metadata_pb2.RAW meta_.history.add(name="LocData.from_dataframe") if meta is None: pass elif isinstance(meta, dict): for key, value in meta.items(): setattr(meta_, key, value) else: meta_.MergeFrom(meta) return cls(dataframe=dataframe, meta=meta_) @classmethod def from_coordinates(cls, coordinates=(), coordinate_labels=None, meta=None): """ Create new LocData object from a sequence of localization coordinates. Parameters ---------- coordinates : sequence of tuples with shape (n_loclizations, dimension) Sequence of tuples with localization coordinates coordinate_labels : sequence of str The available coordinate properties. meta : locan.data.metadata_pb2.Metadata Metadata about the current dataset and its history. Returns ------- LocData A new LocData instance with dataframe representing the concatenated data. """ if np.size(coordinates): dimension = len(coordinates[0]) if coordinate_labels is None: coordinate_labels = ["position_x", "position_y", "position_z"][ 0:dimension ] else: if all(cl in PROPERTY_KEYS for cl in coordinate_labels): coordinate_labels = coordinate_labels else: raise ValueError( "The given coordinate_labels are not standard property keys." ) dataframe = pd.DataFrame.from_records( data=coordinates, columns=coordinate_labels ) else: dataframe = pd.DataFrame() meta_ = metadata_pb2.Metadata() meta_.source = metadata_pb2.DESIGN meta_.state = metadata_pb2.RAW meta_.history.add(name="LocData.from_coordinates") if meta is None: pass elif isinstance(meta, dict): for key, value in meta.items(): setattr(meta_, key, value) else: meta_.MergeFrom(meta) return cls(dataframe=dataframe, meta=meta_) @classmethod def from_selection(cls, locdata, indices=slice(0, None), meta=None): """ Create new LocData object from selected elements in another `LocData`. Parameters ---------- locdata : LocData Locdata object from which to select elements. indices : slice object, list(int), None Index labels for elements in locdata that make up the new data. Note that contrary to usual python slices, both the start and the stop are included (see pandas documentation). `Indices` refer to index value not position in list. meta : locan.data.metadata_pb2.Metadata Metadata about the current dataset and its history. Returns ------- LocData A new LocData instance with dataframe representing the selected data. Note ---- No error is raised if indices do not exist in locdata. """ references = locdata indices = indices meta_ = metadata_pb2.Metadata() meta_.CopyFrom(locdata.meta) try: meta_.ClearField("identifier") except ValueError: pass try: meta_.ClearField("element_count") except ValueError: pass try: meta_.ClearField("frame_count") except ValueError: pass meta_.modification_time.GetCurrentTime() meta_.state = metadata_pb2.MODIFIED meta_.ancestor_identifiers.append(locdata.meta.identifier) meta_.history.add(name="LocData.from_selection") if meta is None: pass elif isinstance(meta, dict): for key, value in meta.items(): setattr(meta_, key, value) else: meta_.MergeFrom(meta) new_locdata = cls(references=references, indices=indices, meta=meta_) new_locdata.region = references.region return new_locdata @classmethod def from_collection(cls, locdatas, meta=None): """ Create new LocData object by collecting LocData objects. Parameters ---------- locdatas : list of LocData Locdata objects to collect. meta : locan.data.metadata_pb2.Metadata Metadata about the current dataset and its history. Returns ------- LocData A new LocData instance with dataframe representing the concatenated data. """ references = locdatas dataframe = pd.DataFrame([ref.properties for ref in references]) meta_ = metadata_pb2.Metadata() meta_.source = metadata_pb2.DESIGN meta_.state = metadata_pb2.RAW meta_.ancestor_identifiers[:] = [ref.meta.identifier for ref in references] meta_.history.add(name="LocData.from_collection") if meta is None: pass elif isinstance(meta, dict): for key, value in meta.items(): setattr(meta_, key, value) else: meta_.MergeFrom(meta) return cls(references=references, dataframe=dataframe, meta=meta_) @classmethod def concat(cls, locdatas, meta=None): """ Concatenate LocData objects. Parameters ---------- locdatas : list of LocData Locdata objects to concatenate. meta : locan.data.metadata_pb2.Metadata Metadata about the current dataset and its history. Returns ------- LocData A new LocData instance with dataframe representing the concatenated data. """ dataframe = pd.concat([i.data for i in locdatas], ignore_index=True, sort=False) # concatenate references also if None references = [] for locdata in locdatas: try: references.extend(locdata.references) except TypeError: references.append(locdata.references) # check if all elements are None if not any(references): references = None meta_ = metadata_pb2.Metadata() meta_.creation_time.GetCurrentTime() meta_.source = metadata_pb2.DESIGN meta_.state = metadata_pb2.MODIFIED meta_.ancestor_identifiers[:] = [dat.meta.identifier for dat in locdatas] meta_.history.add(name="concat") if meta is None: pass elif isinstance(meta, dict): for key, value in meta.items(): setattr(meta_, key, value) else: meta_.MergeFrom(meta) return cls(references=references, dataframe=dataframe, meta=meta_) @classmethod def from_chunks( cls, locdata, chunks=None, chunk_size=None, n_chunks=None, order="successive", drop=False, meta=None, ): """ Divide locdata in chunks of localization elements. Parameters ---------- locdatas : list of LocData Locdata objects to concatenate. chunks : list[tuples] Localization chunks as defined by a list of index-tuples chunk_size : int, None Number of localizations per chunk. One of `chunk_size` or `n_chunks` must be different from None. n_chunks : int, None Number of chunks. One of `chunk_size` or `n_chunks` must be different from None. order : str The order in which to select localizations. One of 'successive' or 'alternating'. drop : bool If True the last chunk will be eliminated if it has fewer localizations than the other chunks. meta : locan.data.metadata_pb2.Metadata Metadata about the current dataset and its history. Returns ------- LocData A new LocData instance with references and dataframe elements representing the individual chunks. """ n_nones = sum(element is None for element in [chunks, chunk_size, n_chunks]) if n_nones != 2: raise ValueError( "One and only one of `chunks`, `chunk_size` or `n_chunks` must be different from None." ) elif chunks is not None: index_lists = list(chunks) else: if chunk_size is not None: if (len(locdata) % chunk_size) == 0: n_chunks = len(locdata) // chunk_size else: n_chunks = len(locdata) // chunk_size + 1 else: # if n_chunks is not None if (len(locdata) % n_chunks) == 0: chunk_size = len(locdata) // n_chunks else: chunk_size = len(locdata) // (n_chunks - 1) if order == "successive": if (len(locdata) % chunk_size) == 0: chunk_sizes = [chunk_size] * n_chunks else: chunk_sizes = [chunk_size] * (n_chunks - 1) + [ (len(locdata) % chunk_size) ] cum_chunk_sizes = list(accumulate(chunk_sizes)) cum_chunk_sizes.insert(0, 0) index_lists = [ locdata.data.index[slice(lower, upper)] for lower, upper in zip(cum_chunk_sizes[:-1], cum_chunk_sizes[1:]) ] elif order == "alternating": index_lists = [ locdata.data.index[slice(i_chunk, None, n_chunks)] for i_chunk in range(n_chunks) ] else: raise ValueError(f"The order {order} is not implemented.") if drop and len(index_lists) > 1 and len(index_lists[-1]) < len(index_lists[0]): index_lists = index_lists[:-1] references = [ LocData.from_selection(locdata=locdata, indices=index_list) for index_list in index_lists ] dataframe = pd.DataFrame([ref.properties for ref in references]) meta_ = metadata_pb2.Metadata() meta_.creation_time.GetCurrentTime() meta_.source = metadata_pb2.DESIGN meta_.state = metadata_pb2.RAW meta_.ancestor_identifiers[:] = [ref.meta.identifier for ref in references] meta_.history.add(name="LocData.chunks") if meta is None: pass elif isinstance(meta, dict): for key, value in meta.items(): setattr(meta_, key, value) else: meta_.MergeFrom(meta) return cls(references=references, dataframe=dataframe, meta=meta_) def reset(self, reset_index=False): """ Reset hulls and properties. This is needed after the dataframe attribute has been modified in place. Note ---- Should be used with care because metadata is not updated accordingly. The region property is not changed. Better to just re-instantiate with `LocData.from_dataframe()` or use `locdata.update()`. Parameters ---------- reset_index : Bool Flag indicating if the index is reset to integer values. If True the previous index values are discarded. Returns ------- LocData The modified object """ if reset_index is True: self.dataframe.reset_index(drop=True, inplace=True) self.properties = {} self._bounding_box = None self._oriented_bounding_box = None self._convex_hull = None self._alpha_shape = None self._update_properties() return self def update(self, dataframe, reset_index=False, meta=None): """ Update the dataframe attribute in place. Use this function rather than setting locdata.dataframe directly in order to automatically update the attributes for dimension, coordinate_labels, hulls, properties, and metadata. Parameters ---------- dataframe : pandas.DataFrame, None Dataframe with localization data. reset_index : Bool Flag indicating if the index is reset to integer values. If True the previous index values are discarded. meta : locan.data.metadata_pb2.Metadata Metadata about the current dataset and its history. Returns ------- LocData The modified object """ local_parameter = locals() del local_parameter[ "dataframe" ] # dataframe is obvious and possibly large and should not be repeated in meta. if self.references is not None: self.reduce(reset_index=reset_index) logger.warning( "LocData.reduce() was applied since self.references was not None." ) self.dataframe = dataframe self.coordinate_labels = sorted( list( set(self.data.columns).intersection( {"position_x", "position_y", "position_z"} ) ) ) self.dimension = len(self.coordinate_labels) self.reset(reset_index=reset_index) # update hulls and properties # update meta self.meta.modification_time.GetCurrentTime() self.meta.state = metadata_pb2.MODIFIED self.meta.history.add(name="LocData.update", parameter=str(local_parameter)) self.meta.element_count = len(self.data.index) if "frame" in self.data.columns: self.meta.frame_count = len(self.data["frame"].unique()) if meta is None: pass elif isinstance(meta, dict): for key, value in meta.items(): setattr(self.meta, key, value) else: self.meta.MergeFrom(meta) return self def reduce(self, reset_index=False): """ Clean up references. This includes to update `Locdata.dataframe` and set `LocData.references` and `LocData.indices` to None. Parameters ---------- reset_index : Bool Flag indicating if the index is reset to integer values. If True the previous index values are discarded. Returns ------- LocData The modified object """ if self.references is None: pass elif isinstance(self.references, (LocData, list)): self.dataframe = self.data self.indices = None self.references = None else: raise ValueError("references has undefined value.") if reset_index is True: self.dataframe.reset_index(drop=True, inplace=True) return self def update_convex_hulls_in_references(self): """ Compute the convex hull for each element in locdata.references and update locdata.dataframe. Returns ------- LocData The modified object """ if isinstance(self.references, list): for reference in self.references: reference.convex_hull # request property to update reference._convex_hull new_df = pd.DataFrame( [reference.properties for reference in self.references] ) new_df.index = self.data.index self.dataframe.update(new_df) new_columns = [ column for column in new_df.columns if column in self.dataframe.columns ] new_df.drop(columns=new_columns, inplace=True, errors="ignore") self.dataframe = pd.concat([self.dataframe, new_df], axis=1) return self def update_oriented_bounding_box_in_references(self): """ Compute the oriented bounding box for each element in locdata.references and update locdata.dataframe. Returns ------- LocData The modified object """ if isinstance(self.references, list): for reference in self.references: reference.oriented_bounding_box # request property to update reference._convex_hull new_df = pd.DataFrame( [reference.properties for reference in self.references] ) new_df.index = self.data.index self.dataframe.update(new_df) new_columns = [ column for column in new_df.columns if column in self.dataframe.columns ] new_df.drop(columns=new_columns, inplace=True, errors="ignore") self.dataframe =
pd.concat([self.dataframe, new_df], axis=1)
pandas.concat
import baostock as bs import pandas as pd import numpy as np from IPython import embed class Data_Reader(): """ reading the data from the file """ def __init__(self, file="stock.csv"): self.file = file self.code_list = [] self.data = None def read_data(self, file="stock.csv"): data_list = np.array(
pd.read_csv(file, encoding="gbk")
pandas.read_csv
import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import numpy as np def pyscript_diseases(): # measels measlesdf = pd.read_csv('https://docs.google.com/spreadsheets/d/1ogMiFRnX-N4lp1cqI0N22F9K9fFVVFfCWxw4T6W2iVw/export?format=csv&id') measlesdf['Total Measles Cases'] = measlesdf.sum(axis=1) total_cases = measlesdf total_measles_cases = total_cases.loc[:, 'Country':'2018'] final_total_measles = total_measles_cases.sort_values(by='2018', ascending=False) final_total_measles = final_total_measles.rename(columns = {final_total_measles.columns[0]: "country", final_total_measles.columns[1]: "confirmed_cases" }) final_total_measles = final_total_measles[final_total_measles.confirmed_cases != 0] countriesdf = pd.read_csv("Data/countries.csv", encoding = "ISO-8859-1") final_total_measles = pd.merge(final_total_measles, countriesdf, how = 'left', on = 'country') measles_json = final_total_measles.to_json(orient='records') # COVID-19 corona_data =
pd.read_csv("Data/COVID-19.csv")
pandas.read_csv
import os import unittest from builtins import range import matplotlib import mock import numpy as np import pandas as pd import root_numpy from mock import MagicMock, patch, mock_open import six from numpy.testing import assert_array_equal from pandas.util.testing import assert_frame_equal import ROOT from PyAnalysisTools.AnalysisTools import MLHelper as mh from PyAnalysisTools.base import InvalidInputError from PyAnalysisTools.base.FileHandle import FileHandle if six.PY2: builtin = '__builtin__' else: builtin = 'builtins' cwd = os.path.dirname(__file__) ROOT.gROOT.SetBatch(True) class TestMLHelpers(unittest.TestCase): def setUp(self): pass def tearDown(self): pass def test_print_classification(self): model = MagicMock() model.predict_classes = MagicMock(return_value=[1]) mh.print_classification(model, 1, [2], 3, [4]) @mock.patch.object(matplotlib.pyplot, 'savefig', lambda x: None) def test_plot_scoring(self): class Object(object): pass history = Object() history.history = {'foo': [(100, 100), (200, 200)]} history.history['val_foo'] = history.history['foo'] mh.plot_scoring(history, 'foo', ['foo'], 'foo') class TestMLConfig(unittest.TestCase): def test_ctor_default(self): self.assertRaises(KeyError, mh.MLConfig) def test_ctor(self): cfg = mh.MLConfig(branch_name='foo', variable_list=[], selection=None) self.assertEqual('foo', cfg.score_name) self.assertEqual([], cfg.varset) self.assertIsNone(cfg.scaler) self.assertIsNone(cfg.scale_algo) self.assertIsNone(cfg.selection) def test_equality(self): cfg = mh.MLConfig(branch_name='foo', variable_list=[], selection=None) cfg2 = mh.MLConfig(branch_name='foo', variable_list=[], selection=None) self.assertEqual(cfg, cfg2) def test_inequality(self): cfg = mh.MLConfig(branch_name='foo', variable_list=[], selection=None) cfg2 = mh.MLConfig(branch_name='bar', variable_list=[], selection=None) self.assertNotEqual(cfg, cfg2) def test_inequality_scaler(self): scaler = mh.DataScaler() cfg = mh.MLConfig(branch_name='foo', variable_list=[], selection=None, scaler=scaler) cfg2 = mh.MLConfig(branch_name='bar', variable_list=[], selection=None) self.assertNotEqual(cfg, cfg2) self.assertNotEqual(cfg2, cfg) def test_inequality_scaler_algo(self): scaler_def = mh.DataScaler() scaler = mh.DataScaler('foo') cfg = mh.MLConfig(branch_name='foo', variable_list=[], selection=None, scaler=scaler) cfg2 = mh.MLConfig(branch_name='bar', variable_list=[], selection=None, scaler=scaler_def) self.assertNotEqual(cfg, cfg2) self.assertNotEqual(cfg2, cfg) def test_inequality_type(self): cfg = mh.MLConfig(branch_name='foo', variable_list=[], selection=None) self.assertNotEqual(cfg, 5.) def test_handle_ctor(self): handle = mh.MLConfigHandle(branch_name='foo', variable_list=[], selection=None) cfg = mh.MLConfig(branch_name='foo', variable_list=[], selection=None) self.assertEqual(cfg, handle.config) self.assertEqual('.', handle.output_path) self.assertEqual('./ml_config_summary.pkl', handle.file_name) def test_print(self): handle = mh.MLConfig(branch_name='foo', variable_list=['foo'], selection=['bar']) print_out = 'Attached ML branch foo was created with the following configuration \nvariables: \n\t foo\n' \ 'selection: \n\t bar\nscaler: None\n' self.assertEqual(print_out, handle.__str__()) class TestRootNumpyConverter(unittest.TestCase): def test_ctor(self): converter = mh.Root2NumpyConverter(['foo']) self.assertEqual(['foo'], converter.branches) def test_ctor_no_list(self): converter = mh.Root2NumpyConverter('foo') self.assertEqual(['foo'], converter.branches) def test_merge(self): arr1 = np.array([1, 2]) arr2 = np.array([3, 4]) arr3 = np.array([5, 6]) arr4 = np.array([7, 8]) converter = mh.Root2NumpyConverter('foo') data, labels = converter.merge([arr1, arr2], [arr3, arr4]) np.testing.assert_array_equal(np.array([i+1 for i in range(8)]), data) np.testing.assert_array_equal(np.array([1]*4+[0]*4), labels) @patch.object(root_numpy, 'tree2array', lambda x, **kwargs: (x, kwargs)) def test_convert(self): converter = mh.Root2NumpyConverter(['foo']) data = converter.convert_to_array(None, 'sel', 1000) self.assertIsNone(data[0]) self.assertEqual({'branches': ['foo'], 'selection': 'sel', 'start': 0, 'stop': 1000}, data[1]) class TestTrainingReader(unittest.TestCase): def test_default_ctor(self): reader = mh.TrainingReader() self.assertEqual('', reader.mode) self.assertFalse(reader.numpy_input) @mock.patch.object(pd, 'read_json', lambda _: None) @patch(builtin + ".open", new_callable=mock_open) def test_ctor_json(self, _): reader = mh.TrainingReader(input_file_list=['foo.json']) self.assertEqual('pandas', reader.mode) self.assertFalse(reader.numpy_input) self.assertEqual({'foo.json': None}, reader.data) def test_ctor_numpy_list(self): reader = mh.TrainingReader(input_file=['foo.npy', 'bar.npy']) self.assertEqual('', reader.mode) self.assertTrue(reader.numpy_input) def test_ctor_numpy(self): reader = mh.TrainingReader(input_file='foo.npy', signal_tree_names=['sig'], bkg_tree_names=['bkg']) self.assertEqual('', reader.mode) self.assertFalse(reader.numpy_input) self.assertEqual(['sig'], reader.signal_tree_names) self.assertEqual(['bkg'], reader.bkg_tree_names) def test_parse_tree_names(self): reader = mh.TrainingReader(input_file='foo.npy', signal_tree_names=['sig'], bkg_tree_names=['bkg']) sig_train, bkg_train, sig_eval, bkg_eval = reader.parse_tree_names() self.assertEqual(['train_sig'], sig_train) self.assertEqual(['eval_sig'], sig_eval) self.assertEqual(['train_bkg'], bkg_train) self.assertEqual(['eval_bkg'], bkg_eval) @mock.patch.object(FileHandle, 'get_object_by_name', lambda _, x: x) def test_get_trees(self): reader = mh.TrainingReader(input_file='foo.npy', signal_tree_names=['sig'], bkg_tree_names=['bkg']) sig_train, bkg_train, sig_eval, bkg_eval = reader.get_trees() self.assertEqual(['train_sig'], sig_train) self.assertEqual(['eval_sig'], sig_eval) self.assertEqual(['train_bkg'], bkg_train) self.assertEqual(['eval_bkg'], bkg_eval) def test_prepare_data(self): reader = mh.TrainingReader() reader.mode = 'pandas' reader.data = {'_foo': pd.DataFrame({'var1': [1., 2.]}), '_bar': pd.DataFrame({'var1': [3., 4.]})} cfg = mh.MLTrainConfig(signals=['foo'], backgrounds=['bar']) signal, bkg, labels = reader.prepare_data(cfg) assert_frame_equal(
pd.DataFrame({'var1': [1., 2.]})
pandas.DataFrame
# -*- coding: utf-8 -*- """ HornMT_Dataset_Preparation Created on Mon Dec 12 01:25:16 2021 @author: <NAME> """ # Import libs import pandas as pd # Load HornMT dataset file_path = '/data/HornMT.xlsx' HornMT = pd.read_excel(file_path) #HornMT.head(1) # Preprocess the dataframe eng = pd.DataFrame(HornMT['eng']) aaf = pd.DataFrame(HornMT['aaf']) amh = pd.DataFrame(HornMT['amh']) orm = pd.DataFrame(HornMT['orm']) som = pd.DataFrame(HornMT['som']) tir =
pd.DataFrame(HornMT['tir'])
pandas.DataFrame
from datetime import timedelta from functools import partial from operator import attrgetter import dateutil import numpy as np import pytest import pytz from pandas._libs.tslibs import OutOfBoundsDatetime, conversion import pandas as pd from pandas import ( DatetimeIndex, Index, Timestamp, date_range, datetime, offsets, to_datetime) from pandas.core.arrays import DatetimeArray, period_array import pandas.util.testing as tm class TestDatetimeIndex(object): @pytest.mark.parametrize('dt_cls', [DatetimeIndex, DatetimeArray._from_sequence]) def test_freq_validation_with_nat(self, dt_cls): # GH#11587 make sure we get a useful error message when generate_range # raises msg = ("Inferred frequency None from passed values does not conform " "to passed frequency D") with pytest.raises(ValueError, match=msg): dt_cls([pd.NaT, pd.Timestamp('2011-01-01')], freq='D') with pytest.raises(ValueError, match=msg): dt_cls([pd.NaT, pd.Timestamp('2011-01-01').value], freq='D') def test_categorical_preserves_tz(self): # GH#18664 retain tz when going DTI-->Categorical-->DTI # TODO: parametrize over DatetimeIndex/DatetimeArray # once CategoricalIndex(DTA) works dti = pd.DatetimeIndex( [pd.NaT, '2015-01-01', '1999-04-06 15:14:13', '2015-01-01'], tz='US/Eastern') ci = pd.CategoricalIndex(dti) carr = pd.Categorical(dti) cser = pd.Series(ci) for obj in [ci, carr, cser]: result = pd.DatetimeIndex(obj) tm.assert_index_equal(result, dti) def test_dti_with_period_data_raises(self): # GH#23675 data = pd.PeriodIndex(['2016Q1', '2016Q2'], freq='Q') with pytest.raises(TypeError, match="PeriodDtype data is invalid"): DatetimeIndex(data) with pytest.raises(TypeError, match="PeriodDtype data is invalid"): to_datetime(data) with pytest.raises(TypeError, match="PeriodDtype data is invalid"): DatetimeIndex(period_array(data)) with pytest.raises(TypeError, match="PeriodDtype data is invalid"): to_datetime(period_array(data)) def test_dti_with_timedelta64_data_deprecation(self): # GH#23675 data = np.array([0], dtype='m8[ns]') with tm.assert_produces_warning(FutureWarning): result = DatetimeIndex(data) assert result[0] == Timestamp('1970-01-01') with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): result = to_datetime(data) assert result[0] == Timestamp('1970-01-01') with tm.assert_produces_warning(FutureWarning): result = DatetimeIndex(pd.TimedeltaIndex(data)) assert result[0] == Timestamp('1970-01-01') with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): result = to_datetime(pd.TimedeltaIndex(data)) assert result[0] == Timestamp('1970-01-01') def test_construction_caching(self): df = pd.DataFrame({'dt': pd.date_range('20130101', periods=3), 'dttz': pd.date_range('20130101', periods=3, tz='US/Eastern'), 'dt_with_null': [pd.Timestamp('20130101'), pd.NaT, pd.Timestamp('20130103')], 'dtns': pd.date_range('20130101', periods=3, freq='ns')}) assert df.dttz.dtype.tz.zone == 'US/Eastern' @pytest.mark.parametrize('kwargs', [ {'tz': 'dtype.tz'}, {'dtype': 'dtype'}, {'dtype': 'dtype', 'tz': 'dtype.tz'}]) def test_construction_with_alt(self, kwargs, tz_aware_fixture): tz = tz_aware_fixture i = pd.date_range('20130101', periods=5, freq='H', tz=tz) kwargs = {key: attrgetter(val)(i) for key, val in kwargs.items()} result = DatetimeIndex(i, **kwargs) tm.assert_index_equal(i, result) @pytest.mark.parametrize('kwargs', [ {'tz': 'dtype.tz'}, {'dtype': 'dtype'}, {'dtype': 'dtype', 'tz': 'dtype.tz'}]) def test_construction_with_alt_tz_localize(self, kwargs, tz_aware_fixture): tz = tz_aware_fixture i = pd.date_range('20130101', periods=5, freq='H', tz=tz) kwargs = {key: attrgetter(val)(i) for key, val in kwargs.items()} if str(tz) in ('UTC', 'tzutc()'): warn = None else: warn = FutureWarning with tm.assert_produces_warning(warn, check_stacklevel=False): result = DatetimeIndex(i.tz_localize(None).asi8, **kwargs) expected = DatetimeIndex(i, **kwargs) tm.assert_index_equal(result, expected) # localize into the provided tz i2 = DatetimeIndex(i.tz_localize(None).asi8, tz='UTC') expected = i.tz_localize(None).tz_localize('UTC') tm.assert_index_equal(i2, expected) # incompat tz/dtype pytest.raises(ValueError, lambda: DatetimeIndex( i.tz_localize(None).asi8, dtype=i.dtype, tz='US/Pacific')) def test_construction_index_with_mixed_timezones(self): # gh-11488: no tz results in DatetimeIndex result = Index([Timestamp('2011-01-01'), Timestamp('2011-01-02')], name='idx') exp = DatetimeIndex([Timestamp('2011-01-01'), Timestamp('2011-01-02')], name='idx') tm.assert_index_equal(result, exp, exact=True) assert isinstance(result, DatetimeIndex) assert result.tz is None # same tz results in DatetimeIndex result = Index([Timestamp('2011-01-01 10:00', tz='Asia/Tokyo'), Timestamp('2011-01-02 10:00', tz='Asia/Tokyo')], name='idx') exp = DatetimeIndex( [Timestamp('2011-01-01 10:00'), Timestamp('2011-01-02 10:00') ], tz='Asia/Tokyo', name='idx') tm.assert_index_equal(result, exp, exact=True) assert isinstance(result, DatetimeIndex) assert result.tz is not None assert result.tz == exp.tz # same tz results in DatetimeIndex (DST) result = Index([Timestamp('2011-01-01 10:00', tz='US/Eastern'), Timestamp('2011-08-01 10:00', tz='US/Eastern')], name='idx') exp = DatetimeIndex([Timestamp('2011-01-01 10:00'), Timestamp('2011-08-01 10:00')], tz='US/Eastern', name='idx') tm.assert_index_equal(result, exp, exact=True) assert isinstance(result, DatetimeIndex) assert result.tz is not None assert result.tz == exp.tz # Different tz results in Index(dtype=object) result = Index([Timestamp('2011-01-01 10:00'), Timestamp('2011-01-02 10:00', tz='US/Eastern')], name='idx') exp = Index([Timestamp('2011-01-01 10:00'), Timestamp('2011-01-02 10:00', tz='US/Eastern')], dtype='object', name='idx') tm.assert_index_equal(result, exp, exact=True) assert not isinstance(result, DatetimeIndex) result = Index([Timestamp('2011-01-01 10:00', tz='Asia/Tokyo'), Timestamp('2011-01-02 10:00', tz='US/Eastern')], name='idx') exp = Index([Timestamp('2011-01-01 10:00', tz='Asia/Tokyo'), Timestamp('2011-01-02 10:00', tz='US/Eastern')], dtype='object', name='idx') tm.assert_index_equal(result, exp, exact=True) assert not isinstance(result, DatetimeIndex) # length = 1 result = Index([Timestamp('2011-01-01')], name='idx') exp = DatetimeIndex([Timestamp('2011-01-01')], name='idx') tm.assert_index_equal(result, exp, exact=True) assert isinstance(result, DatetimeIndex) assert result.tz is None # length = 1 with tz result = Index( [Timestamp('2011-01-01 10:00', tz='Asia/Tokyo')], name='idx') exp = DatetimeIndex([Timestamp('2011-01-01 10:00')], tz='Asia/Tokyo', name='idx') tm.assert_index_equal(result, exp, exact=True) assert isinstance(result, DatetimeIndex) assert result.tz is not None assert result.tz == exp.tz def test_construction_index_with_mixed_timezones_with_NaT(self): # see gh-11488 result = Index([pd.NaT, Timestamp('2011-01-01'), pd.NaT, Timestamp('2011-01-02')], name='idx') exp = DatetimeIndex([pd.NaT, Timestamp('2011-01-01'), pd.NaT, Timestamp('2011-01-02')], name='idx') tm.assert_index_equal(result, exp, exact=True) assert isinstance(result, DatetimeIndex) assert result.tz is None # Same tz results in DatetimeIndex result = Index([pd.NaT, Timestamp('2011-01-01 10:00', tz='Asia/Tokyo'), pd.NaT, Timestamp('2011-01-02 10:00', tz='Asia/Tokyo')], name='idx') exp = DatetimeIndex([pd.NaT, Timestamp('2011-01-01 10:00'), pd.NaT, Timestamp('2011-01-02 10:00')], tz='Asia/Tokyo', name='idx') tm.assert_index_equal(result, exp, exact=True) assert isinstance(result, DatetimeIndex) assert result.tz is not None assert result.tz == exp.tz # same tz results in DatetimeIndex (DST) result = Index([Timestamp('2011-01-01 10:00', tz='US/Eastern'), pd.NaT, Timestamp('2011-08-01 10:00', tz='US/Eastern')], name='idx') exp = DatetimeIndex([Timestamp('2011-01-01 10:00'), pd.NaT, Timestamp('2011-08-01 10:00')], tz='US/Eastern', name='idx') tm.assert_index_equal(result, exp, exact=True) assert isinstance(result, DatetimeIndex) assert result.tz is not None assert result.tz == exp.tz # different tz results in Index(dtype=object) result = Index([pd.NaT, Timestamp('2011-01-01 10:00'), pd.NaT, Timestamp('2011-01-02 10:00', tz='US/Eastern')], name='idx') exp = Index([pd.NaT, Timestamp('2011-01-01 10:00'), pd.NaT, Timestamp('2011-01-02 10:00', tz='US/Eastern')], dtype='object', name='idx') tm.assert_index_equal(result, exp, exact=True) assert not isinstance(result, DatetimeIndex) result = Index([pd.NaT, Timestamp('2011-01-01 10:00', tz='Asia/Tokyo'), pd.NaT, Timestamp('2011-01-02 10:00', tz='US/Eastern')], name='idx') exp = Index([pd.NaT, Timestamp('2011-01-01 10:00', tz='Asia/Tokyo'), pd.NaT, Timestamp('2011-01-02 10:00', tz='US/Eastern')], dtype='object', name='idx') tm.assert_index_equal(result, exp, exact=True) assert not isinstance(result, DatetimeIndex) # all NaT result = Index([pd.NaT, pd.NaT], name='idx') exp = DatetimeIndex([pd.NaT, pd.NaT], name='idx') tm.assert_index_equal(result, exp, exact=True) assert isinstance(result, DatetimeIndex) assert result.tz is None # all NaT with tz result = Index([pd.NaT, pd.NaT], tz='Asia/Tokyo', name='idx') exp = DatetimeIndex([pd.NaT, pd.NaT], tz='Asia/Tokyo', name='idx') tm.assert_index_equal(result, exp, exact=True) assert isinstance(result, DatetimeIndex) assert result.tz is not None assert result.tz == exp.tz def test_construction_dti_with_mixed_timezones(self): # GH 11488 (not changed, added explicit tests) # no tz results in DatetimeIndex result = DatetimeIndex( [Timestamp('2011-01-01'), Timestamp('2011-01-02')], name='idx') exp = DatetimeIndex( [Timestamp('2011-01-01'), Timestamp('2011-01-02')], name='idx') tm.assert_index_equal(result, exp, exact=True) assert isinstance(result, DatetimeIndex) # same tz results in DatetimeIndex result = DatetimeIndex([Timestamp('2011-01-01 10:00', tz='Asia/Tokyo'), Timestamp('2011-01-02 10:00', tz='Asia/Tokyo')], name='idx') exp = DatetimeIndex([Timestamp('2011-01-01 10:00'), Timestamp('2011-01-02 10:00')], tz='Asia/Tokyo', name='idx') tm.assert_index_equal(result, exp, exact=True) assert isinstance(result, DatetimeIndex) # same tz results in DatetimeIndex (DST) result = DatetimeIndex([Timestamp('2011-01-01 10:00', tz='US/Eastern'), Timestamp('2011-08-01 10:00', tz='US/Eastern')], name='idx') exp = DatetimeIndex([Timestamp('2011-01-01 10:00'), Timestamp('2011-08-01 10:00')], tz='US/Eastern', name='idx') tm.assert_index_equal(result, exp, exact=True) assert isinstance(result, DatetimeIndex) # tz mismatch affecting to tz-aware raises TypeError/ValueError with pytest.raises(ValueError): DatetimeIndex([Timestamp('2011-01-01 10:00', tz='Asia/Tokyo'), Timestamp('2011-01-02 10:00', tz='US/Eastern')], name='idx') msg = 'cannot be converted to datetime64' with pytest.raises(ValueError, match=msg): DatetimeIndex([Timestamp('2011-01-01 10:00'), Timestamp('2011-01-02 10:00', tz='US/Eastern')], tz='Asia/Tokyo', name='idx') with pytest.raises(ValueError): DatetimeIndex([Timestamp('2011-01-01 10:00', tz='Asia/Tokyo'), Timestamp('2011-01-02 10:00', tz='US/Eastern')], tz='US/Eastern', name='idx') with pytest.raises(ValueError, match=msg): # passing tz should results in DatetimeIndex, then mismatch raises # TypeError Index([pd.NaT, Timestamp('2011-01-01 10:00'), pd.NaT, Timestamp('2011-01-02 10:00', tz='US/Eastern')], tz='Asia/Tokyo', name='idx') def test_construction_base_constructor(self): arr = [pd.Timestamp('2011-01-01'), pd.NaT, pd.Timestamp('2011-01-03')] tm.assert_index_equal(pd.Index(arr), pd.DatetimeIndex(arr)) tm.assert_index_equal(pd.Index(np.array(arr)), pd.DatetimeIndex(np.array(arr))) arr = [np.nan, pd.NaT, pd.Timestamp('2011-01-03')] tm.assert_index_equal(pd.Index(arr), pd.DatetimeIndex(arr)) tm.assert_index_equal(pd.Index(np.array(arr)), pd.DatetimeIndex(np.array(arr))) def test_construction_outofbounds(self): # GH 13663 dates = [datetime(3000, 1, 1), datetime(4000, 1, 1), datetime(5000, 1, 1), datetime(6000, 1, 1)] exp = Index(dates, dtype=object) # coerces to object tm.assert_index_equal(Index(dates), exp) with pytest.raises(OutOfBoundsDatetime): # can't create DatetimeIndex DatetimeIndex(dates) def test_construction_with_ndarray(self): # GH 5152 dates = [datetime(2013, 10, 7), datetime(2013, 10, 8), datetime(2013, 10, 9)] data = DatetimeIndex(dates, freq=pd.offsets.BDay()).values result = DatetimeIndex(data, freq=pd.offsets.BDay()) expected = DatetimeIndex(['2013-10-07', '2013-10-08', '2013-10-09'], freq='B') tm.assert_index_equal(result, expected) def test_verify_integrity_deprecated(self): # GH#23919 with tm.assert_produces_warning(FutureWarning): DatetimeIndex(['1/1/2000'], verify_integrity=False) def test_range_kwargs_deprecated(self): # GH#23919 with tm.assert_produces_warning(FutureWarning): DatetimeIndex(start='1/1/2000', end='1/10/2000', freq='D') def test_integer_values_and_tz_deprecated(self): # GH-24559 values = np.array([946684800000000000]) with tm.assert_produces_warning(FutureWarning): result = DatetimeIndex(values, tz='US/Central') expected = pd.DatetimeIndex(['2000-01-01T00:00:00'], tz="US/Central") tm.assert_index_equal(result, expected) # but UTC is *not* deprecated. with tm.assert_produces_warning(None): result = DatetimeIndex(values, tz='UTC') expected = pd.DatetimeIndex(['2000-01-01T00:00:00'], tz="US/Central") def test_constructor_coverage(self): rng = date_range('1/1/2000', periods=10.5) exp = date_range('1/1/2000', periods=10) tm.assert_index_equal(rng, exp) msg = 'periods must be a number, got foo' with pytest.raises(TypeError, match=msg): date_range(start='1/1/2000', periods='foo', freq='D') with pytest.raises(ValueError): with tm.assert_produces_warning(FutureWarning): DatetimeIndex(start='1/1/2000', end='1/10/2000') with pytest.raises(TypeError): DatetimeIndex('1/1/2000') # generator expression gen = (datetime(2000, 1, 1) + timedelta(i) for i in range(10)) result = DatetimeIndex(gen) expected = DatetimeIndex([datetime(2000, 1, 1) + timedelta(i) for i in range(10)]) tm.assert_index_equal(result, expected) # NumPy string array strings = np.array(['2000-01-01', '2000-01-02', '2000-01-03']) result = DatetimeIndex(strings) expected = DatetimeIndex(strings.astype('O')) tm.assert_index_equal(result, expected) from_ints = DatetimeIndex(expected.asi8) tm.assert_index_equal(from_ints, expected) # string with NaT strings = np.array(['2000-01-01', '2000-01-02', 'NaT']) result = DatetimeIndex(strings) expected = DatetimeIndex(strings.astype('O')) tm.assert_index_equal(result, expected) from_ints = DatetimeIndex(expected.asi8) tm.assert_index_equal(from_ints, expected) # non-conforming pytest.raises(ValueError, DatetimeIndex, ['2000-01-01', '2000-01-02', '2000-01-04'], freq='D') pytest.raises(ValueError, date_range, start='2011-01-01', freq='b') pytest.raises(ValueError, date_range, end='2011-01-01', freq='B') pytest.raises(ValueError, date_range, periods=10, freq='D') @pytest.mark.parametrize('freq', ['AS', 'W-SUN']) def test_constructor_datetime64_tzformat(self, freq): # see GH#6572: ISO 8601 format results in pytz.FixedOffset idx = date_range('2013-01-01T00:00:00-05:00', '2016-01-01T23:59:59-05:00', freq=freq) expected = date_range('2013-01-01T00:00:00', '2016-01-01T23:59:59', freq=freq, tz=pytz.FixedOffset(-300)) tm.assert_index_equal(idx, expected) # Unable to use `US/Eastern` because of DST expected_i8 = date_range('2013-01-01T00:00:00', '2016-01-01T23:59:59', freq=freq, tz='America/Lima') tm.assert_numpy_array_equal(idx.asi8, expected_i8.asi8) idx = date_range('2013-01-01T00:00:00+09:00', '2016-01-01T23:59:59+09:00', freq=freq) expected = date_range('2013-01-01T00:00:00', '2016-01-01T23:59:59', freq=freq, tz=pytz.FixedOffset(540)) tm.assert_index_equal(idx, expected) expected_i8 = date_range('2013-01-01T00:00:00', '2016-01-01T23:59:59', freq=freq, tz='Asia/Tokyo') tm.assert_numpy_array_equal(idx.asi8, expected_i8.asi8) # Non ISO 8601 format results in dateutil.tz.tzoffset idx = date_range('2013/1/1 0:00:00-5:00', '2016/1/1 23:59:59-5:00', freq=freq) expected = date_range('2013-01-01T00:00:00', '2016-01-01T23:59:59', freq=freq, tz=pytz.FixedOffset(-300)) tm.assert_index_equal(idx, expected) # Unable to use `US/Eastern` because of DST expected_i8 = date_range('2013-01-01T00:00:00', '2016-01-01T23:59:59', freq=freq, tz='America/Lima') tm.assert_numpy_array_equal(idx.asi8, expected_i8.asi8) idx = date_range('2013/1/1 0:00:00+9:00', '2016/1/1 23:59:59+09:00', freq=freq) expected = date_range('2013-01-01T00:00:00', '2016-01-01T23:59:59', freq=freq, tz=pytz.FixedOffset(540)) tm.assert_index_equal(idx, expected) expected_i8 = date_range('2013-01-01T00:00:00', '2016-01-01T23:59:59', freq=freq, tz='Asia/Tokyo') tm.assert_numpy_array_equal(idx.asi8, expected_i8.asi8) def test_constructor_dtype(self): # passing a dtype with a tz should localize idx = DatetimeIndex(['2013-01-01', '2013-01-02'], dtype='datetime64[ns, US/Eastern]') expected = DatetimeIndex(['2013-01-01', '2013-01-02'] ).tz_localize('US/Eastern') tm.assert_index_equal(idx, expected) idx = DatetimeIndex(['2013-01-01', '2013-01-02'], tz='US/Eastern') tm.assert_index_equal(idx, expected) # if we already have a tz and its not the same, then raise idx = DatetimeIndex(['2013-01-01', '2013-01-02'], dtype='datetime64[ns, US/Eastern]') pytest.raises(ValueError, lambda: DatetimeIndex(idx, dtype='datetime64[ns]')) # this is effectively trying to convert tz's pytest.raises(TypeError, lambda: DatetimeIndex(idx, dtype='datetime64[ns, CET]')) pytest.raises(ValueError, lambda: DatetimeIndex( idx, tz='CET', dtype='datetime64[ns, US/Eastern]')) result = DatetimeIndex(idx, dtype='datetime64[ns, US/Eastern]') tm.assert_index_equal(idx, result) def test_constructor_name(self): idx = date_range(start='2000-01-01', periods=1, freq='A', name='TEST') assert idx.name == 'TEST' def test_000constructor_resolution(self): # 2252 t1 = Timestamp((1352934390 * 1000000000) + 1000000 + 1000 + 1) idx = DatetimeIndex([t1]) assert idx.nanosecond[0] == t1.nanosecond def test_disallow_setting_tz(self): # GH 3746 dti = DatetimeIndex(['2010'], tz='UTC') with pytest.raises(AttributeError): dti.tz = pytz.timezone('US/Pacific') @pytest.mark.parametrize('tz', [ None, 'America/Los_Angeles', pytz.timezone('America/Los_Angeles'), Timestamp('2000', tz='America/Los_Angeles').tz]) def test_constructor_start_end_with_tz(self, tz): # GH 18595 start = Timestamp('2013-01-01 06:00:00', tz='America/Los_Angeles') end = Timestamp('2013-01-02 06:00:00', tz='America/Los_Angeles') result = date_range(freq='D', start=start, end=end, tz=tz) expected = DatetimeIndex(['2013-01-01 06:00:00', '2013-01-02 06:00:00'], tz='America/Los_Angeles') tm.assert_index_equal(result, expected) # Especially assert that the timezone is consistent for pytz assert pytz.timezone('America/Los_Angeles') is result.tz @pytest.mark.parametrize('tz', ['US/Pacific', 'US/Eastern', 'Asia/Tokyo']) def test_constructor_with_non_normalized_pytz(self, tz): # GH 18595 non_norm_tz = Timestamp('2010', tz=tz).tz result = DatetimeIndex(['2010'], tz=non_norm_tz) assert pytz.timezone(tz) is result.tz def test_constructor_timestamp_near_dst(self): # GH 20854 ts = [Timestamp('2016-10-30 03:00:00+0300', tz='Europe/Helsinki'), Timestamp('2016-10-30 03:00:00+0200', tz='Europe/Helsinki')] result = DatetimeIndex(ts) expected = DatetimeIndex([ts[0].to_pydatetime(), ts[1].to_pydatetime()]) tm.assert_index_equal(result, expected) # TODO(GH-24559): Remove the xfail for the tz-aware case. @pytest.mark.parametrize('klass', [Index, DatetimeIndex]) @pytest.mark.parametrize('box', [ np.array, partial(np.array, dtype=object), list]) @pytest.mark.parametrize('tz, dtype', [ pytest.param('US/Pacific', 'datetime64[ns, US/Pacific]', marks=[pytest.mark.xfail(), pytest.mark.filterwarnings( "ignore:\\n Passing:FutureWarning")]), [None, 'datetime64[ns]'], ]) def test_constructor_with_int_tz(self, klass, box, tz, dtype): # GH 20997, 20964 ts = Timestamp('2018-01-01', tz=tz) result = klass(box([ts.value]), dtype=dtype) expected = klass([ts]) assert result == expected # This is the desired future behavior @pytest.mark.xfail(reason="Future behavior", strict=False) @pytest.mark.filterwarnings("ignore:\\n Passing:FutureWarning") def test_construction_int_rountrip(self, tz_naive_fixture): # GH 12619 # TODO(GH-24559): Remove xfail tz = tz_naive_fixture result = 1293858000000000000 expected = DatetimeIndex([1293858000000000000], tz=tz).asi8[0] assert result == expected def test_construction_from_replaced_timestamps_with_dst(self): # GH 18785 index = pd.date_range(pd.Timestamp(2000, 1, 1), pd.Timestamp(2005, 1, 1), freq='MS', tz='Australia/Melbourne') test = pd.DataFrame({'data': range(len(index))}, index=index) test = test.resample('Y').mean() result = pd.DatetimeIndex([x.replace(month=6, day=1) for x in test.index]) expected = pd.DatetimeIndex(['2000-06-01 00:00:00', '2001-06-01 00:00:00', '2002-06-01 00:00:00', '2003-06-01 00:00:00', '2004-06-01 00:00:00', '2005-06-01 00:00:00'], tz='Australia/Melbourne') tm.assert_index_equal(result, expected) def test_construction_with_tz_and_tz_aware_dti(self): # GH 23579 dti = date_range('2016-01-01', periods=3, tz='US/Central') with pytest.raises(TypeError): DatetimeIndex(dti, tz='Asia/Tokyo') def test_construction_with_nat_and_tzlocal(self): tz = dateutil.tz.tzlocal() result = DatetimeIndex(['2018', 'NaT'], tz=tz) expected = DatetimeIndex([Timestamp('2018', tz=tz), pd.NaT]) tm.assert_index_equal(result, expected) class TestTimeSeries(object): def test_dti_constructor_preserve_dti_freq(self): rng = date_range('1/1/2000', '1/2/2000', freq='5min') rng2 = DatetimeIndex(rng) assert rng.freq == rng2.freq def test_dti_constructor_years_only(self, tz_naive_fixture): tz = tz_naive_fixture # GH 6961 rng1 = date_range('2014', '2015', freq='M', tz=tz) expected1 = date_range('2014-01-31', '2014-12-31', freq='M', tz=tz) rng2 = date_range('2014', '2015', freq='MS', tz=tz) expected2 = date_range('2014-01-01', '2015-01-01', freq='MS', tz=tz) rng3 = date_range('2014', '2020', freq='A', tz=tz) expected3 = date_range('2014-12-31', '2019-12-31', freq='A', tz=tz) rng4 = date_range('2014', '2020', freq='AS', tz=tz) expected4 = date_range('2014-01-01', '2020-01-01', freq='AS', tz=tz) for rng, expected in [(rng1, expected1), (rng2, expected2), (rng3, expected3), (rng4, expected4)]: tm.assert_index_equal(rng, expected) def test_dti_constructor_small_int(self, any_int_dtype): # see gh-13721 exp = DatetimeIndex(['1970-01-01 00:00:00.00000000', '1970-01-01 00:00:00.00000001', '1970-01-01 00:00:00.00000002']) arr = np.array([0, 10, 20], dtype=any_int_dtype) tm.assert_index_equal(DatetimeIndex(arr), exp) def test_ctor_str_intraday(self): rng =
DatetimeIndex(['1-1-2000 00:00:01'])
pandas.DatetimeIndex
''' MIT License Copyright (c) 2020 <NAME> Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ''' """ Los productos que salen del reporte diario son: 3 4 5 7 8 9 10 11 12 13 14 17 20 23 24 26 27 30 36 """ import pandas as pd from utils import * from shutil import copyfile from os import listdir from os.path import isfile, join from datetime import datetime import numpy as np def prod4(fte, producto): print('Generando producto 4') now = datetime.now() today = now.strftime("%Y-%m-%d") output = producto + today + '-CasosConfirmados-totalRegional.csv' df = pd.read_csv(fte, quotechar='"', sep=',', thousands=r'.', decimal=",") df.rename(columns={'Unnamed: 0': 'Region'}, inplace=True) if 'Unnamed: 7' in df.columns: df.drop(columns=['Unnamed: 7'], inplace=True) df_obj = df.select_dtypes(['object']) df[df_obj.columns] = df_obj.apply(lambda x: x.str.strip()) regionName(df) df.at[16, 'Region'] = 'Total' # texttract reconoce 0 como o df.replace({'O': 0}, inplace=True) numeric_columns = [x for x in df.columns if x != 'Region'] for i in numeric_columns: df[i] = df[i].astype(str) #df[i] = df[i].replace({r'\.': ''}, regex=True) df[i] = df[i].replace({r'\,': '.'}, regex=True) df.to_csv(output, index=False) def prod5(fte, producto): print('Generando producto 5') # necesito series a nivel nacional por fecha: # Casos nuevos con sintomas # Casos totales # Casos recuperados #ya no se reporta # Fallecidos # Casos activos # Casos nuevos sin sintomas now = datetime.now() timestamp = now.strftime("%Y-%m-%d") timestamp_dia_primero = now.strftime("%d-%m-%Y") a = pd.read_csv(fte + 'CasosConfirmados.csv') a['Fecha'] = timestamp a = a[a['Region'] == 'Total'] print(a.to_string()) #las columnas son : # Casos totales acumulados Casos nuevos totales Casos nuevos con sintomas Casos nuevos sin sintomas* Fallecidos totales % Total Fecha a.rename(columns={'Casos totales acumulados': 'Casos totales', 'Casos nuevos totales': 'Casos nuevos totales', 'Casos nuevos con sintomas': 'Casos nuevos con sintomas', 'Casos nuevos sin sintomas*': 'Casos nuevos sin sintomas', 'Fallecidos totales': 'Fallecidos'}, inplace=True) #Faltan casos activos: prod 5 esta ahora en el reporte diario, hay que migrar para alla casos_confirmados_totales = pd.read_csv('../input/ReporteDiario/CasosConfirmadosTotales.csv') today_row = (casos_confirmados_totales[casos_confirmados_totales['Fecha'] == timestamp_dia_primero]) a['Casos activos'] = today_row['Casos activos'].values ## esto es estandar totales = pd.read_csv(producto) #print(totales.columns[1:]) # add Casos nuevos totales = Casos nuevos con sintomas + Casos nuevos sin sintomas for eachColumn in totales.columns[1:]: print('Checking if Casos nuevos totales is fine on ' + eachColumn) #print(totales.index[totales['Fecha'] == 'Casos nuevos con sintomas'].values[0]) #print(totales.at[totales.index[totales['Fecha'] == 'Casos nuevos con sintomas'].values[0], eachColumn]) rowConSintomas = totales.index[totales['Fecha'] == 'Casos nuevos con sintomas'].values[0] rowSinSintomas = totales.index[totales['Fecha'] == 'Casos nuevos sin sintomas'].values[0] rowCasosNuevosTotales = totales.index[totales['Fecha'] == 'Casos nuevos totales'].values[0] #print('row con ' + str(rowConSintomas)) #print('row sin ' + str(rowSinSintomas)) #print('expected is ' + str(totales.at[rowConSintomas, eachColumn]) + ' + ' + str(totales.at[rowSinSintomas, eachColumn])) #check for NaN if not np.isnan(totales.at[rowConSintomas, eachColumn]) and not np.isnan(totales.at[rowSinSintomas, eachColumn]): expectedTotal = totales.at[rowConSintomas, eachColumn] + totales.at[rowSinSintomas, eachColumn] elif not np.isnan(totales.at[rowConSintomas, eachColumn]) and np.isnan(totales.at[rowSinSintomas, eachColumn]): expectedTotal = totales.at[rowConSintomas, eachColumn] elif np.isnan(totales.at[rowConSintomas, eachColumn]) and not np.isnan(totales.at[rowSinSintomas, eachColumn]): expectedTotal = totales.at[rowSinSintomas, eachColumn] registeredTotal = totales.at[rowCasosNuevosTotales, eachColumn] if registeredTotal != expectedTotal: print('Casos nuevos totales debería ser ' + str(expectedTotal) + ' pero es ' + str(registeredTotal)) #print(totales.at[rowCasosNuevosTotales, eachColumn]) totales.at[rowCasosNuevosTotales, eachColumn] = expectedTotal #print(totales.at[rowCasosNuevosTotales, eachColumn]) #print(totales.to_string()) #normalizamos headers #expectedHeaders=['Casos nuevos con sintomas', 'Casos totales', 'Casos recuperados', 'Fallecidos', # 'Casos activos', 'Casos nuevos sin sintomas', 'Casos totales acumulados', 'Casos nuevos totales'] emptyrow = [] * len(totales.columns) if 'Casos nuevos con sintomas' not in totales['Fecha'].values: totales['Fecha'][0] = 'Casos nuevos con sintomas' if 'Casos nuevos sin sintomas' not in totales['Fecha'].values: ax = ['Casos nuevos sin sintomas'] bx = [''] * (len(totales.columns) - 1) ax.extend(bx) row = pd.DataFrame([ax], columns=totales.columns) aux = pd.concat([totales, row], ignore_index=True) totales = aux #totales['Fecha'][len(totales['Fecha']) + 1] = 'Casos nuevos sin sintomas' if 'Casos totales' not in totales['Fecha'].values: print('Casos totales not found') ax = ['Casos totales'] bx = [''] * (len(totales.columns) - 1) ax.extend(bx) row = pd.DataFrame([ax], columns=totales.columns) aux = pd.concat([totales, row], ignore_index=True) totales = aux if 'Casos nuevos totales' not in totales['Fecha'].values: ax = ['Casos nuevos totales'] bx = [''] * (len(totales.columns) - 1) ax.extend(bx) row = pd.DataFrame([ax], columns=totales.columns) aux = pd.concat([totales, row], ignore_index=True) totales = aux #print(totales) #print(totales['Fecha']) #print(str(a['Fecha'].values[0]) + ' is in ' + str(totales.columns)) if (a['Fecha'].values[0]) in totales.columns: print(a['Fecha'] + ' ya esta en el dataframe. No actualizamos') return else: #print(totales.iloc[:, 0]) newColumn=[] #Need to add new rows to totales: for eachValue in totales.iloc[:, 0]: print('each values is ' + eachValue) if eachValue in a.columns: print((a[eachValue].values)) newColumn.append(str(a[eachValue].values[0])) else: #print('appending ""') newColumn.append('') print(newColumn) totales[timestamp] = newColumn totales.to_csv(producto, index=False) totales_t = totales.transpose() totales_t.to_csv(producto.replace('.csv', '_T.csv'), header=False) #print(totales.to_string()) totales.rename(columns={'Fecha': 'Dato'}, inplace=True) identifiers = ['Dato'] variables = [x for x in totales.columns if x not in identifiers] df_std = pd.melt(totales, id_vars=identifiers, value_vars=variables, var_name='Fecha', value_name='Total') df_std.to_csv(producto.replace('.csv', '_std.csv'), index=False) def prod3_13_14_26_27(fte): onlyfiles = [f for f in listdir(fte) if isfile(join(fte, f))] cumulativoCasosNuevos = pd.DataFrame({'Region': [], 'Casos nuevos': []}) cumulativoCasosTotales = pd.DataFrame({'Region': [], 'Casos totales': []}) cumulativoFallecidos = pd.DataFrame({'Region': [], 'Fallecidos': []}) casosNuevosConSintomas = pd.DataFrame({'Region': [], 'Fecha': []}) casosNuevosSinSintomas = pd.DataFrame({'Region': [], 'Fecha': []}) onlyfiles.sort() onlyfiles.remove('README.md') for eachfile in onlyfiles: print('processing ' + eachfile) date = eachfile.replace("-CasosConfirmados-totalRegional", "").replace(".csv", "") dataframe = pd.read_csv(fte + eachfile) # sanitize headers #print(eachfile) dataframe.rename(columns={'Región': 'Region'}, inplace=True) dataframe.rename(columns={'Casos nuevos': 'Casos nuevos'}, inplace=True) dataframe.rename(columns={' Casos nuevos': 'Casos nuevos'}, inplace=True) dataframe.rename(columns={'Casos nuevos totales': 'Casos nuevos'}, inplace=True) dataframe.rename(columns={'Casos nuevos totales ': 'Casos nuevos'}, inplace=True) dataframe.rename(columns={'Casos nuevos totales': 'Casos nuevos'}, inplace=True) dataframe.rename(columns={'Casos totales': 'Casos totales'}, inplace=True) dataframe.rename(columns={' Casos totales': 'Casos totales'}, inplace=True) dataframe.rename(columns={'Casos totales acumulados': 'Casos totales'}, inplace=True) dataframe.rename(columns={'Casos totales acumulados ': 'Casos totales'}, inplace=True) dataframe.rename(columns={'Casos totales acumulados': 'Casos totales'}, inplace=True) dataframe.rename(columns={' Casos fallecidos': 'Fallecidos'}, inplace=True) dataframe.rename(columns={'Fallecidos totales ': 'Fallecidos'}, inplace=True) dataframe.rename(columns={'Fallecidos totales': 'Fallecidos'}, inplace=True) dataframe.rename(columns={'Casos nuevos con síntomas': 'Casos nuevos con sintomas'}, inplace=True) dataframe.rename(columns={' Casos nuevos con síntomas': 'Casos nuevos con sintomas'}, inplace=True) dataframe.rename(columns={'Casos nuevos con síntomas': 'Casos nuevos con sintomas'}, inplace=True) dataframe.rename(columns={'Casos nuevos con sintomas': 'Casos nuevos con sintomas'}, inplace=True) dataframe.rename(columns={' Casos nuevos con sintomas': 'Casos nuevos con sintomas'}, inplace=True) dataframe.rename(columns={'Casos nuevos con sintomas': 'Casos nuevos con sintomas'}, inplace=True) dataframe.rename(columns={'Casos nuevos con sintomas ': 'Casos nuevos con sintomas'}, inplace=True) dataframe.rename(columns={'Casos nuevos sin síntomas': 'Casos nuevos sin sintomas'}, inplace=True) dataframe.rename(columns={' Casos nuevos sin síntomas': 'Casos nuevos sin sintomas'}, inplace=True) dataframe.rename(columns={'Casos nuevos sin síntomas': 'Casos nuevos sin sintomas'}, inplace=True) dataframe.rename(columns={'Casos nuevos sin síntomas*': 'Casos nuevos sin sintomas'}, inplace=True) dataframe.rename(columns={' Casos nuevos sin síntomas*': 'Casos nuevos sin sintomas'}, inplace=True) dataframe.rename(columns={'Casos nuevos sin síntomas*': 'Casos nuevos sin sintomas'}, inplace=True) dataframe.rename(columns={'Casos nuevos sin sintomas': 'Casos nuevos sin sintomas'}, inplace=True) dataframe.rename(columns={' Casos nuevos sin sintomas': 'Casos nuevos sin sintomas'}, inplace=True) dataframe.rename(columns={'Casos nuevos sin sintomas': 'Casos nuevos sin sintomas'}, inplace=True) dataframe.rename(columns={'Casos nuevos sin sintomas*': 'Casos nuevos sin sintomas'}, inplace=True) dataframe.rename(columns={' Casos nuevos sin sintomas*': 'Casos nuevos sin sintomas'}, inplace=True) dataframe.rename(columns={'Casos nuevos sin sintomas*': 'Casos nuevos sin sintomas'}, inplace=True) dataframe.rename(columns={'Casos nuevos sin sintomas* ': 'Casos nuevos sin sintomas'}, inplace=True) if cumulativoCasosNuevos['Region'].empty: cumulativoCasosNuevos[['Region', 'Casos nuevos']] = dataframe[['Region', 'Casos nuevos']] cumulativoCasosNuevos.rename(columns={'Casos nuevos': date}, inplace=True) cumulativoCasosTotales[['Region', 'Casos totales']] = dataframe[['Region', 'Casos totales']] cumulativoCasosTotales.rename(columns={'Casos totales': date}, inplace=True) else: print(dataframe.columns) cumulativoCasosNuevos[date] = dataframe['Casos nuevos'] cumulativoCasosTotales[date] = dataframe['Casos totales'] if 'Fallecidos' in dataframe.columns: if cumulativoFallecidos['Region'].empty: cumulativoFallecidos[['Region', 'Fallecidos']] = dataframe[['Region', 'Fallecidos']] cumulativoFallecidos.rename(columns={'Fallecidos': date}, inplace=True) else: cumulativoFallecidos[date] = dataframe['Fallecidos'] if 'Casos nuevos con sintomas' in dataframe.columns: if casosNuevosConSintomas['Region'].empty: casosNuevosConSintomas[['Region', 'Fecha']] = dataframe[['Region', 'Casos nuevos con sintomas']] casosNuevosConSintomas.rename(columns={'Fecha': date}, inplace=True) else: casosNuevosConSintomas[date] = dataframe['Casos nuevos con sintomas'] else: date2 = (pd.to_datetime(date)).strftime('%Y-%m-%d') if date2 < '2020-04-29': if casosNuevosConSintomas['Region'].empty: casosNuevosConSintomas[['Region', 'Fecha']] = dataframe[['Region','Casos nuevos']] casosNuevosConSintomas.rename(columns={'Fecha': date}, inplace=True) else: casosNuevosConSintomas[date] = dataframe['Casos nuevos'] if 'Casos nuevos sin sintomas' in dataframe.columns: if casosNuevosSinSintomas['Region'].empty: casosNuevosSinSintomas[['Region', 'Fecha']] = dataframe[['Region', 'Casos nuevos sin sintomas']] casosNuevosSinSintomas.rename(columns={'Fecha': date}, inplace=True) else: casosNuevosSinSintomas[date] = dataframe['Casos nuevos sin sintomas'] # estandarizar nombres de regiones regionName(cumulativoCasosNuevos) regionName(cumulativoCasosTotales) regionName(cumulativoFallecidos) regionName(casosNuevosConSintomas) regionName(casosNuevosSinSintomas) cumulativoCasosNuevos_T = cumulativoCasosNuevos.transpose() cumulativoCasosTotales_T = cumulativoCasosTotales.transpose() cumulativoFallecidos_T = cumulativoFallecidos.transpose() casosNuevosConSintomas_T = casosNuevosConSintomas.transpose() casosNuevosSinSintomas_T = casosNuevosSinSintomas.transpose() #### PRODUCTO 3 cumulativoCasosTotales.to_csv('../output/producto3/CasosTotalesCumulativo.csv', index=False) cumulativoCasosTotales_T.to_csv('../output/producto3/CasosTotalesCumulativo_T.csv', header=False) identifiers = ['Region'] variables = [x for x in cumulativoCasosTotales.columns if x not in identifiers] df_std = pd.melt(cumulativoCasosTotales, id_vars=identifiers, value_vars=variables, var_name='Fecha', value_name='Total') df_std.to_csv('../output/producto3/CasosTotalesCumulativo_std.csv', index=False) #### PRODUCTO 13 cumulativoCasosNuevos.to_csv('../output/producto13/CasosNuevosCumulativo.csv', index=False) cumulativoCasosNuevos_T.to_csv('../output/producto13/CasosNuevosCumulativo_T.csv', header=False) identifiers = ['Region'] variables = [x for x in cumulativoCasosTotales.columns if x not in identifiers] df_std = pd.melt(cumulativoCasosNuevos, id_vars=identifiers, value_vars=variables, var_name='Fecha', value_name='Total') df_std.to_csv('../output/producto13/CasosNuevosCumulativo_std.csv', index=False) #### PRODUCTO 14 cumulativoFallecidos.to_csv('../output/producto14/FallecidosCumulativo.csv', index=False) cumulativoFallecidos_T.to_csv('../output/producto14/FallecidosCumulativo_T.csv', header=False) identifiers = ['Region'] variables = [x for x in cumulativoFallecidos.columns if x not in identifiers] df_std = pd.melt(cumulativoFallecidos, id_vars=identifiers, value_vars=variables, var_name='Fecha', value_name='Total') df_std.to_csv('../output/producto14/FallecidosCumulativo_std.csv', index=False) #### PRODUCTO 26 casosNuevosConSintomas.to_csv('../output/producto26/CasosNuevosConSintomas.csv', index=False) casosNuevosConSintomas_T.to_csv('../output/producto26/CasosNuevosConSintomas_T.csv', header=False) identifiers = ['Region'] variables = [x for x in casosNuevosConSintomas.columns if x not in identifiers] df_std = pd.melt(casosNuevosConSintomas, id_vars=identifiers, value_vars=variables, var_name='Fecha', value_name='Casos confirmados') df_std.to_csv('../output/producto26/CasosNuevosConSintomas_std.csv', index=False) #### PRODUCTO 27 casosNuevosSinSintomas.to_csv('../output/producto27/CasosNuevosSinSintomas.csv', index=False) casosNuevosSinSintomas_T.to_csv('../output/producto27/CasosNuevosSinSintomas_T.csv', header=False) identifiers = ['Region'] variables = [x for x in casosNuevosSinSintomas.columns if x not in identifiers] df_std = pd.melt(casosNuevosSinSintomas, id_vars=identifiers, value_vars=variables, var_name='Fecha', value_name='Casos confirmados') df_std.to_csv('../output/producto27/CasosNuevosSinSintomas_std.csv', index=False) def prod7_8(fte, producto): df = pd.read_csv(fte, dtype={'Codigo region': object}) regionName(df) df = df.replace('-', '', regex=True) df_t = df.T df.to_csv(producto + '.csv', index=False) df_t.to_csv(producto + '_T.csv', header=False) identifiers = ['Region', 'Codigo region', 'Poblacion'] variables = [x for x in df.columns if x not in identifiers] df_std = pd.melt(df, id_vars=identifiers, value_vars=variables, var_name='fecha', value_name='numero') df_std.to_csv(producto + '_std.csv', index=False) def prod9_10(fte, producto): copyfile(fte, producto + '.csv') HospitalizadosUCIEtario_T = transpone_csv(producto + '.csv') HospitalizadosUCIEtario_T.to_csv(producto + '_T.csv', header=False) df =
pd.read_csv(fte)
pandas.read_csv
# coding: utf-8 # In[6]: import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt # # 权利数据5right.csv提取特征 # 1. 企业拥有权利的个数,RIGHT_CNT # 2. 企业拥有权利类型的个数,RIGHT_TYPE_CNT # 3. 企业拥有权利类型的比例,RIGHT_TYPE_RATE # 4. 第一个获得的权利的类型,RIGHT_FIRST_TYPECODE # 5. 最后一个获得的权利的类型,RIGHT_END_TYPECODE # 6. 获得最多的权利的类型,RIGHT_TYPECODE_MUCHID # # 7. 第一个权利申请日期, RIGHT_FIRST_ASK_TIME # 8. 第一个权利富于日期, RIGHT_FIRST_FB_TIME # 9. 最后一个权利申请日期, RIGHT_END_ASK_TIME # 10. 最后一个权利富于日期, RIGHT_END_FB_TIME # # 11. 第一个权利申请日期和权利富于日期的差值,RIGHT_FIRST_ASK_FB_DIFF # 12. 最后一个权利申请日期和权利富于日期的差值,RIGHT_END_ASK_FB_DIFF # 13. 第一个和最后一个权利申请日期的差值,RIGHT_FIRST_END_ASK_DIFF # 14. 第一个和最后一个权利富于日期的差值,RIGHT_FIRST_END_FB_DIFF # 15. 第一个申请和最后一个权利富于日期的差值,RIGHT_FIRST_ASK_END_FB_DIFF # # 16. 第一个权利的申请日期和公司注册时间的差值,RIGHT_FIRST_ASK_RGYEAR_DIFF # 17. 第一个权利的富于日期和公司注册时间的差值,RIGHT_FIRST_FB_RGYEAR_DIFF # 18. 最后一个权利的申请日期和公司注册时间的差值,RIGHT_END_ASK_RGYEAR_DIFF # 19. 最后一个权利的富于日期和公司注册时间的差值,RIGHT_END_FB_RGYEAR_DIFF # # 20. 第一个权利的申请日期和公司第一个变动时间的差值,RIGHT_FIRST_ASK_FIRST_CHANGE_DIFF # 21. 第一个权利的富于日期和公司第一个变动时间的差值,RIGHT_FIRST_FB_FIRST_CHANGE_DIFF # 22. 最后一个权利的申请日期和公司第一个变动时间的差值,RIGHT_END_ASK_FIRST_CHANGE_DIFF # 23. 最后一个权利的富于日期和公司第一个变动时间的差值,RIGHT_END_FB_FIRST_CHANGE_DIFF # # 24. 第一个权利的申请日期和公司最后一个变动时间的差值,RIGHT_FIRST_ASK_END_CHANGE_DIFF # 25. 第一个权利的富于日期和公司最后一个变动时间的差值,RIGHT_FIRST_FB_END_CHANGE_DIFF # 26. 最后一个权利的申请日期和公司最后一个变动时间的差值,RIGHT_END_ASK_END_CHANGE_DIFF # 27. 最后一个权利的富于日期和公司最后一个变动时间的差值,RIGHT_END_FB_END_CHANGE_DIFF # # --------------------------------------------------------------------------------------------------- # 28. 企业权利的个数占所有权利个数平均值的比例。RIGHT_CNT_ALL_RATE # # 29. 企业对应的大类HY的平均权利的个数,RIGHT_HY_CNT_AVG # 30. 企业对应大类HY的平均权利个数占所有权利平均个数的比例,RIGHT_HY_CNT_ALL_RATE # 31. 企业权利的个数占其对应的大类HY的平均值的比例,RIGHT_CNT_HY_RATE # # ------------------------------------------------------------------------------------------------- # # 29. 企业对应的大类ETYPE的平均权利的个数,RIGHT_ETYPE_CNT_AVG # 30. 企业对应大类ETYPE的平均权利个数占所有权利平均个数的比例,RIGHT_ETYPE_CNT_ALL_RATE # 31. 企业权利的个数占其对应的大类ETYPE的平均值的比例,RIGHT_CNT_ETYPE_RATE # # 添加对应的最大值的特征 # # 复赛新特征,滑动窗口系列的特征,时间段是1年,2年,3年,5年,计算在最近k[1,2,3,5]年之后的数据,主要是个数和次数。 # 时间是开始是2017-08之前的k年 # 1. 之前k年的变更时间的个数。 # RIGHT_K_OPEN_CNT, RIGHT_K_CLOSE_CNT # # In[7]: df_all = pd.read_csv("../data/alldata/df_data1234.csv") df_right = pd.read_csv("../data/public/5right.csv") # In[8]: # df_all.info() # df_all.head() # In[9]: # df_right.info() # df_right.head() df_right = df_right.sort_values(['ASKDATE','FBDATE']) # In[10]: # set(df_right['RIGHTTYPE']) def settime(x): y = int(x[:x.find('-')]) m = int(x[x.find('-')+1:]) m+=2 y = y+int(m/12) if m%12 == 0: m = 12 else: m = m%12 if(m<10): return str(y)+"-0"+str(m) return str(y)+"-"+str(m) df_right.loc[df_right[df_right['RIGHTTYPE']==11][df_right['FBDATE'].isnull()].index,'FBDATE'] = df_right[df_right['RIGHTTYPE']==11][df_right['FBDATE'].isnull()]['ASKDATE'] df_right.loc[df_right[df_right['RIGHTTYPE']==40][df_right['FBDATE'].isnull()].index,'FBDATE'] = df_right[df_right['RIGHTTYPE']==40][df_right['FBDATE'].isnull()]['ASKDATE'].apply(settime) df_right.loc[df_right[df_right['RIGHTTYPE']==50][df_right['FBDATE'].isnull()].index,'FBDATE'] = df_right[df_right['RIGHTTYPE']==50][df_right['FBDATE'].isnull()]['ASKDATE'].apply(settime) # In[11]: EIDS = set(df_right['EID']) len(EIDS) # In[12]: columns = df_right.columns df_xright = pd.DataFrame(columns=columns) # print(columns) # In[13]: k = 0 for EID in EIDS: if k%3000 == 0: print('第%d次处理--------->',k) k+=1 tmp = df_right[df_right['EID'] == EID] row = [EID,tmp['RIGHTTYPE'].values,tmp['TYPECODE'].values,tmp['ASKDATE'].values,tmp['FBDATE'].values] df_xright = df_xright.append(
pd.Series(row,columns)
pandas.Series
# Copyright (c) 2016. Mount Sinai School of Medicine # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import collections import logging import pandas EXPECTED_COLUMNS = [ "source", "contig", "interbase_start", "interbase_end", "allele", "count", ] def allele_support_df(loci, sources): """ Returns a DataFrame of allele counts for all given loci in the read sources """ return pandas.DataFrame( allele_support_rows(loci, sources), columns=EXPECTED_COLUMNS) def allele_support_rows(loci, sources): for source in sources: logging.info("Reading from: %s (%s)" % (source.name, source.filename)) for locus in loci: grouped = dict(source.pileups([locus]).group_by_allele(locus)) if grouped: items = grouped.items() else: items = [("N" * (locus.end - locus.start), None)] for (allele, group) in items: d = collections.OrderedDict([ ("source", source.name), ("contig", locus.contig), ("interbase_start", str(locus.start)), ("interbase_end", str(locus.end)), ("allele", allele), ("count", group.num_reads() if group is not None else 0), ]) yield pandas.Series(d) def variant_support(variants, allele_support_df, ignore_missing=False): ''' Collect the read evidence support for the given variants. Parameters ---------- variants : iterable of varcode.Variant allele_support_df : dataframe Allele support dataframe, as output by the varlens-allele-support tool. It should have columns: source, contig, interbase_start, interbase_end, allele. The remaining columns are interpreted as read counts of various subsets of reads (e.g. all reads, non-duplicate reads, etc.) ignore_missing : boolean If True, then varaints with no allele counts will be interpreted as having 0 depth. If False, then an exception will be raised if any variants have no allele counts. Returns ---------- A pandas.Panel4D frame with these axes: labels (axis=0) : the type of read being counted, i.e. the read count fields in allele_support_df. items (axis=1) : the type of measurement (num_alt, num_ref, num_other, total_depth, alt_fraction, any_alt_fraction) major axis (axis=2) : the variants minor axis (axis=3) : the sources ''' missing = [ c for c in EXPECTED_COLUMNS if c not in allele_support_df.columns ] if missing: raise ValueError("Missing columns: %s" % " ".join(missing)) # Ensure our start and end fields are ints. allele_support_df[["interbase_start", "interbase_end"]] = ( allele_support_df[["interbase_start", "interbase_end"]].astype(int)) sources = sorted(allele_support_df["source"].unique()) allele_support_dict = collections.defaultdict(dict) for (i, row) in allele_support_df.iterrows(): key = ( row['source'], row.contig, row.interbase_start, row.interbase_end) allele_support_dict[key][row.allele] = row["count"] # We want an exception on bad lookups, so convert to a regular dict. allele_support_dict = dict(allele_support_dict) dataframe_dicts = collections.defaultdict( lambda: collections.defaultdict(list)) for variant in variants: for source in sources: key = (source, variant.contig, variant.start - 1, variant.end) try: alleles = allele_support_dict[key] except KeyError: message = ( "No allele counts in source %s for variant %s" % ( source, str(variant))) if ignore_missing: logging.warning(message) alleles = {} else: raise ValueError(message) alt = alleles.get(variant.alt, 0) ref = alleles.get(variant.ref, 0) total = sum(alleles.values()) other = total - alt - ref dataframe_dicts["num_alt"][source].append(alt) dataframe_dicts["num_ref"][source].append(ref) dataframe_dicts["num_other"][source].append(other) dataframe_dicts["total_depth"][source].append(total) dataframe_dicts["alt_fraction"][source].append( float(alt) / max(1, total)) dataframe_dicts["any_alt_fraction"][source].append( float(alt + other) / max(1, total)) dataframes = dict( (label, pandas.DataFrame(value, index=variants)) for (label, value) in dataframe_dicts.items()) return
pandas.Panel(dataframes)
pandas.Panel
import datetime as dt import os import unittest import numpy as np import pandas as pd import devicely class SpacelabsTestCase(unittest.TestCase): READ_PATH = "tests/SpaceLabs_test_data/spacelabs.abp" WRITE_PATH = "tests/SpaceLabs_test_data/spacelabs_written.abp" def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.expected_subject = "000002" timestamps = pd.to_datetime([ "1.1.99 17:03", "1.1.99 17:05", "1.1.99 17:07", "1.1.99 17:09", "1.1.99 17:11", "1.1.99 17:13", "1.1.99 17:25", "1.1.99 17:28", "1.1.99 17:31", "1.1.99 17:34", "1.1.99 17:36", "1.1.99 17:39", "1.1.99 23:42", "1.1.99 23:59", "1.2.99 00:01", ]) self.expected_data = pd.DataFrame({ "timestamp": timestamps, "date": timestamps.map(lambda timestamp: timestamp.date()), "time": timestamps.map(lambda timestamp: timestamp.time()), "SYS(mmHg)": [11, 142, 152, 151, 145, 3, 4, 164, 154, 149, 153, 148, 148, 148, 148], "DIA(mmHg)": [0, 118, 112, 115, 110, 0, 0, 119, 116, 119, 118, 114, 114, 114, 114], "ACC_x": [0, 99, 95, 96, 91, 0, 0, 95, 95, 98, 96, 93, 93, 93, 93], "ACC_y": [0, 61, 61, 61, 59, 0, 0, 63, 63, 63, 60, 62, 62, 62, 62], "ACC_z": 15 * [np.nan], "error": ["EB", np.nan, np.nan, np.nan, np.nan, "EB", "EB", np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan], }) self.expected_metadata = { "PATIENTINFO": { "DOB": "16.09.1966", "RACE": "native american" }, "REPORTINFO": { "PHYSICIAN": "Dr. <NAME>", "NURSETECH": "admin", "STATUS": "NOTCONFIRMED", "CALIPERSUMMARY": { "COUNT": "0" }, }, } def setUp(self): self.spacelabs_reader = devicely.SpacelabsReader(self.READ_PATH) def test_read(self): # Tests if a basic reading operation. pd.testing.assert_frame_equal(self.spacelabs_reader.data, self.expected_data) self.assertEqual(self.spacelabs_reader.subject, self.expected_subject) self.assertEqual(self.spacelabs_reader.metadata, self.expected_metadata) def test_deidentify(self): # Tests if the SpacelabsReader.deidentify method removes all patient metadata. self.spacelabs_reader.deidentify() self.assertEqual(self.spacelabs_reader.subject, "") self.assertEqual( self.spacelabs_reader.metadata, { "PATIENTINFO": { "DOB": "", "RACE": "" }, "REPORTINFO": { "PHYSICIAN": "", "NURSETECH": "", "STATUS": "", "CALIPERSUMMARY": { "COUNT": "" }, }, }, ) def test_write(self): # Tests the SpacelabsReader.write operation by writing, reading again and comparing the old and new signals. self.spacelabs_reader.write(self.WRITE_PATH) new_reader = devicely.SpacelabsReader(self.WRITE_PATH) pd.testing.assert_frame_equal(new_reader.data, self.spacelabs_reader.data) self.assertEqual(new_reader.metadata, self.spacelabs_reader.metadata) self.assertEqual(new_reader.subject, self.spacelabs_reader.subject) os.remove(self.WRITE_PATH) def test_random_timeshift(self): earliest_possible_shifted_time_col = pd.to_datetime([ '1997-01-01 17:03:00', '1997-01-01 17:05:00', '1997-01-01 17:07:00', '1997-01-01 17:09:00', '1997-01-01 17:11:00', '1997-01-01 17:13:00', '1997-01-01 17:25:00', '1997-01-01 17:28:00', '1997-01-01 17:31:00', '1997-01-01 17:34:00', '1997-01-01 17:36:00', '1997-01-01 17:39:00', '1997-01-01 23:42:00', '1997-01-01 23:59:00', '1997-01-02 00:01:00' ]) latest_possible_shifted_time_col = pd.to_datetime([ '1998-12-02 17:03:00', '1998-12-02 17:05:00', '1998-12-02 17:07:00', '1998-12-02 17:09:00', '1998-12-02 17:11:00', '1998-12-02 17:13:00', '1998-12-02 17:25:00', '1998-12-02 17:28:00', '1998-12-02 17:31:00', '1998-12-02 17:34:00', '1998-12-02 17:36:00', '1998-12-02 17:39:00', '1998-12-02 23:42:00', '1998-12-02 23:59:00', '1998-12-03 00:01:00' ]) old_timestamp_column = self.spacelabs_reader.data["timestamp"].copy() self.spacelabs_reader.timeshift() new_timestamp_column = self.spacelabs_reader.data["timestamp"] self.assertTrue((earliest_possible_shifted_time_col <= new_timestamp_column).all()) self.assertTrue((new_timestamp_column <= latest_possible_shifted_time_col).all()) new_date_column = self.spacelabs_reader.data["date"] new_time_column = self.spacelabs_reader.data["time"] testing_timestamp_column = pd.Series([ dt.datetime.combine(new_date_column[i], new_time_column[i]) for i in range(len(self.spacelabs_reader.data)) ]) pd.testing.assert_series_equal(new_timestamp_column, testing_timestamp_column, check_names=False) def test_drop_EB(self): # The drop_EB method should make timestamp the index column and remove all rows with 'EB' entries in the error column. self.expected_data.drop(index=[0, 5, 6], inplace=True) self.expected_data.set_index("timestamp", inplace=True) self.spacelabs_reader.drop_EB() pd.testing.assert_frame_equal(self.spacelabs_reader.data, self.expected_data) # When run again, drop_EB should not do anythin. self.spacelabs_reader.drop_EB() pd.testing.assert_frame_equal(self.spacelabs_reader.data, self.expected_data) def test_set_window_column(self): self.spacelabs_reader.set_window(dt.timedelta(seconds=30), "bfill") window_start = pd.to_datetime("1.1.99 17:02:30") window_end = pd.to_datetime("1.1.99 17:03:00") self.assertEqual(window_start, self.spacelabs_reader.data.loc[0, "window_start"]) self.assertEqual(window_end, self.spacelabs_reader.data.loc[0, "window_end"]) self.spacelabs_reader.set_window(dt.timedelta(seconds=30), "bffill") window_start = pd.to_datetime("1.1.99 17:02:45") window_end = pd.to_datetime("1.1.99 17:03:15") self.assertEqual(window_start, self.spacelabs_reader.data.loc[0, "window_start"]) self.assertEqual(window_end, self.spacelabs_reader.data.loc[0, "window_end"]) self.spacelabs_reader.set_window(dt.timedelta(seconds=30), "ffill") window_start = pd.to_datetime("1.1.99 17:03:00") window_end = pd.to_datetime("1.1.99 17:03:30") self.assertEqual(window_start, self.spacelabs_reader.data.loc[0, "window_start"]) self.assertEqual(window_end, self.spacelabs_reader.data.loc[0, "window_end"]) def test_set_window_index(self): self.spacelabs_reader.drop_EB() self.spacelabs_reader.set_window(dt.timedelta(seconds=30), "bfill") window_start = pd.to_datetime("1.1.99 17:04:30") window_end =
pd.to_datetime("1.1.99 17:05:00")
pandas.to_datetime
import os import types import pandas as pd import data_go_kr as dgk def category_from_url(url:str) -> str: return os.path.basename( os.path.dirname(url) ) for k,v in dgk.api.__dict__.items(): if isinstance(v, types.ModuleType): print(k,v) lst_name = [] lst_desc = [] lst_url = [] lst_cat = [] lst_flag = [] for k,v in dgk.api.__dict__.items(): if isinstance(v, types.ModuleType): print(k) print(' ', v.SVC_DESC) print(' ', v.SVC_URL) print(' ', category_from_url(v.SVC_URL) ) lst_name.append(k) lst_desc.append(v.SVC_DESC) lst_url.append(v.SVC_URL) lst_cat.append(category_from_url(v.SVC_URL) ) lst_flag.append(v.SVC_FLAG) # print(k) # print(k) df = pd.DataFrame( { 'cat': lst_cat, 'name' : lst_name, 'desc' : lst_desc, 'url' : lst_url, 'flag' : lst_flag }) # df = df.sort_values(by=['cat', 'name'] ) # df = df.sort_values(by=['url', 'name'] ) # df.style.set_properties(**{'text-align': 'left'}) # df.style.set_properties(**{'text-align': 'left'}).set_table_styles([ dict(selector='th', props=[('text-align', 'left')] ) ])
pd.set_option('display.colheader_justify', 'left')
pandas.set_option
#!/usr/bin/env python3 """tests.compare.compare.py: Auxiliary variables for tests.compare""" import pandas as pd from exfi.io.read_bed import read_bed3 from exfi.io.bed import BED3_COLS, BED3_DTYPES from exfi.compare import \ TP_DF_COLS, TP_DF_DTYPES, \ STATS_COLS, STATS_DTYPES BED3_EMPTY_FN = "tests/compare/empty.bed" BED3_TRUE_FN = "tests/compare/true.bed" BED3_PRED_FN = "tests/compare/pred.bed" BED3_EMPTY = read_bed3(BED3_EMPTY_FN) BED3_TRUE = read_bed3(BED3_TRUE_FN) BED3_PRED = read_bed3(BED3_PRED_FN) TP_DF = pd.DataFrame( data=[ ['ENSDART00000000004', '474', '542', 'ENSDART00000000004', '474', '542', '68'], ['ENSDART00000000004', '542', '1311', 'ENSDART00000000004', '542', '1311', '769'], ['ENSDART00000000004', '1413', '2475', 'ENSDART00000000004', '1413', '2476', '1062'], ['ENSDART00000000005', '0', '1655', 'ENSDART00000000005', '0', '1656', '1655'], ['ENSDART00000000005', '1656', '1812', 'ENSDART00000000005', '1656', '1813', '156'], ['ENSDART00000000005', '1812', '1949', 'ENSDART00000000005', '1813', '1950', '136'], ['ENSDART00000000005', '2289', '2603', 'ENSDART00000000005', '2290', '2604', '313'] ] ) FP_DF = pd.DataFrame( data=[ ['ENSDART00000000004', '0', '47'], ['ENSDART00000000004', '45', '240'], ['ENSDART00000000004', '239', '339'], ['ENSDART00000000004', '338', '474'], ['ENSDART00000000004', '1310', '1414'], ['ENSDART00000000005', '1948', '2101'], ['ENSDART00000000005', '2100', '2207'], ['ENSDART00000000005', '2205', '2292'] ] ) FN_DF = pd.DataFrame( data=[ ['ENSDART00000000004', '0', '48'], ['ENSDART00000000004', '48', '241'], ['ENSDART00000000004', '241', '340'], ['ENSDART00000000004', '340', '474'], ['ENSDART00000000004', '1311', '1413'], ['ENSDART00000000005', '1950', '2102'], ['ENSDART00000000005', '2102', '2206'], ['ENSDART00000000005', '2206', '2290'] ] ) TRUE_POSITIVES = TP_DF\ .rename(columns={i: j for i, j in enumerate(TP_DF_COLS)})\ .astype(dtype=TP_DF_DTYPES)\ .drop(columns=6) FALSE_POSITIVES = FP_DF\ .rename(columns={i: j for i, j in enumerate(BED3_COLS)})\ .astype(BED3_DTYPES) FALSE_NEGATIVES = FN_DF\ .rename(columns={i: j for i, j in enumerate(BED3_COLS)})\ .astype(BED3_DTYPES) CLASSIFICATION_EMPTY = { 'true_positives': pd.DataFrame(columns=TP_DF_COLS)\ .astype(dtype=TP_DF_DTYPES), 'false_positives': pd.DataFrame(columns=BED3_COLS)\ .astype(dtype=BED3_DTYPES), 'false_negatives':
pd.DataFrame(columns=BED3_COLS)
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Fri Nov 10 11:56:35 2017 @author: Madhav.L """ import pandas as pd from sklearn import tree from sklearn import model_selection import io import pydot import os os.environ["PATH"] += os.pathsep + 'D:/datascience/graphviz-2.38/release/bin/' #returns current working directory os.getcwd() #changes working directory os.chdir("D:/datascience/titanic/") titanic_train = pd.read_csv("train.csv") print(type(titanic_train)) #EDA titanic_train.shape titanic_train.info() #Apply one hot encoding titanic_train1 = pd.get_dummies(titanic_train, columns=['Pclass', 'Sex', 'Embarked']) X_train = titanic_train1.drop(['PassengerId','Age','Cabin','Ticket', 'Name','Survived'], 1) y_train = titanic_train['Survived'] dt1 = tree.DecisionTreeClassifier() #Apply K-fold technicque and find out the Cross Validation(CV) score. cv_scores1 = model_selection.cross_val_score(dt1, X_train, y_train, cv=10) print(cv_scores1) #Return type is a [List] of 10 scores. print(cv_scores1.mean()) #Find out the mean of CV scores dt1.fit(X_train,y_train) print(dt1.score(X_train,y_train)) titanic_test =
pd.read_csv("test.csv")
pandas.read_csv
import csv import os import re import numpy as np import pandas as pd from functools import reduce from modules.classes.item_id_parser import ItemIDParser def map_dict(elem, dictionary): if elem in dictionary: return dictionary[elem] else: return np.nan def create_time_feature(series, window_size): """ Transform time string of format "DD:MM:YY HH:MM:SS" into "DD:MM:YY {Number}" Parameters ---------- series: object The time strings as series window_size: int Number of hours for one time step Returns ------- Transformed time strings """ # Timestring is of format time_strings = series.astype('str').str.split(' ') # After splitting it is of format: "DD:MM:YY" and "HH:MM:SS" # Extract the HH and divide them by window_size to get the portion of the day this hour lies in # Then add it to the day part of the string return time_strings.apply(lambda x: f'{x[0]}_' + str(int(int(x[1].split(':')[0]) / window_size))) class MimicParser(object): """ This class processes a MIMIC database into a single file """ def __init__(self, mimic_folder_path, folder, file_name, id_column, label_column, mimic_version=4): if mimic_version == 4: id_column = id_column.lower() label_column = label_column.lower() elif mimic_version == 3: id_column = id_column.upper() label_column = label_column.upper() else: raise Exception(f"Unsupported Mimic Version: {mimic_version}") self.mimic_version = mimic_version self.mimic_folder_path = mimic_folder_path self.output_folder = f'{mimic_folder_path}/{folder}' self.base_file_name = file_name self.standard_path = f'{self.output_folder}/{self.base_file_name}' self.pid = ItemIDParser(mimic_folder_path, id_column, label_column) if not os.path.exists(self.output_folder): os.makedirs(self.output_folder) # Output paths for the files produced by methods below self.rt_path = self.standard_path + '_0_reduced' self.cdb_path = self.standard_path + '_1_24hrs_blocks' self.aac_path = self.standard_path + '_2_p_admissions' self.apc_path = self.standard_path + '_3_p_patients' self.ap_path = self.standard_path + '_4_p_scripts' self.aii_path = self.standard_path + '_5_p_icds' self.an_path = self.standard_path + '_6_p_notes' def reduce_total(self): """ Filters out rows from CHARTEVENTS.csv that are not feature relevant """ feature_relevant_columns = ['subject_id', 'hadm_id', 'itemid', 'charttime', 'value', 'valuenum'] if self.mimic_version == 3: feature_relevant_columns += ['icustay_id'] elif self.mimic_version == 4: feature_relevant_columns += ['stay_id'] feature_dict = self.pid.get_feature_dictionary() chunksize = 10000000 mode = 'w' header = True print('Start processing df') for i, df_chunk in enumerate( pd.read_csv(self.mimic_folder_path + '/CHARTEVENTS.csv', iterator=True, chunksize=chunksize)): print(f'\rChunk number: {i}', end='') df_chunk.columns = df_chunk.columns.str.lower() df = df_chunk[df_chunk['itemid'].isin(reduce(lambda x, y: x.union(y), feature_dict.values()))] df = df.dropna(inplace=False, axis=0, subset=feature_relevant_columns) if i == 1: mode = 'a' header = None df.to_csv(self.rt_path + '.csv', index=False, columns=feature_relevant_columns, header=header, mode=mode) print(f"\r Finished reducing chart events") def create_day_blocks(self, window_size, create_statistics=False): """ Create the time feature as well as optionally std, min and max Parameters ---------- window_size: int Number of hours for one time step create_statistics: bool Whether or not to create std, min and max columns Returns ------- Dict of subject ID and day """ reversed_feature_dict = self.pid.get_reversed_feature_dictionary() df = pd.read_csv(self.rt_path + '.csv') print("Loaded df") # create time feature df['chartday'] = create_time_feature(df['charttime'], window_size) print("New feature chartday") df['hadmid_day'] = df['hadm_id'].astype('str') + '_' + df['chartday'] print("New feature hadmid_day") df['features'] = df['itemid'].apply(lambda x: reversed_feature_dict[x]) print("New feature features") hadm_dict = dict(zip(df['hadmid_day'], df['subject_id'])) df2 = pd.pivot_table(df, index='hadmid_day', columns='features', values='valuenum', fill_value=np.nan) print("Start statistics") if create_statistics: df3 = pd.pivot_table(df, index='hadmid_day', columns='features', values='valuenum', aggfunc=lambda x: np.std(x), fill_value=0) df3.columns = ["{0}_std".format(i) for i in list(df2.columns)] print("std finished") df4 = pd.pivot_table(df, index='hadmid_day', columns='features', values='valuenum', aggfunc=np.amin, fill_value=np.nan) df4.columns = ["{0}_min".format(i) for i in list(df2.columns)] print("min finished") df5 = pd.pivot_table(df, index='hadmid_day', columns='features', values='valuenum', aggfunc=np.amax, fill_value=np.nan) df5.columns = ["{0}_max".format(i) for i in list(df2.columns)] print("max finished") df2 = pd.concat([df2, df3, df4, df5], axis=1) df2.columns = df2.columns.str.lower() if 'tobacco' in df2.columns: df2['tobacco'].apply(lambda x: np.around(x)) df2 = df2.drop(['tobacco_std', 'tobacco_min', 'tobacco_max'], axis=1, errors='ignore') df2 = df2.drop(['daily weight_std', 'daily weight_min', 'daily weight_max'], axis=1, errors='ignore') rel_columns = [i for i in list(df2.columns) if '_' not in i] for col in rel_columns: if len(np.unique(df2[col])[np.isfinite(np.unique(df2[col]))]) <= 2: print(col) df2 = df2.drop([col + '_std', col + '_min', col + '_max'], axis=1, errors='ignore') for i in list(df2.columns): df2[i][df2[i] > df2[i].quantile(.95)] = df2[i].median() df2[i].fillna(df2[i].median(), inplace=True) df2['hadmid_day'] = df2.index if 'pt' in df2.columns: df2['inr'] = df2['inr'] + df2['pt'] df2['inr_std'] = df2['inr_std'] + df2['pt_std'] df2['inr_min'] = df2['inr_min'] + df2['pt_min'] df2['inr_max'] = df2['inr_max'] + df2['pt_max'] df2 = df2.drop(['pt', 'pt_std', 'pt_min', 'pt_max'], axis=1, errors='ignore') df2.dropna(thresh=int(0.75 * len(df2.columns)), axis=0, inplace=True) df2.to_csv(self.cdb_path + '.csv', index=False) print("Created Dayblocks") return hadm_dict def add_admissions_columns(self): """ Add admission time """ df = pd.read_csv(f'{self.mimic_folder_path}/ADMISSIONS.csv') df.columns = df.columns.str.lower() admittime_dict = dict(zip(df['hadm_id'], df['admittime'])) file_name = self.cdb_path + '.csv' df_shard = pd.read_csv(file_name) df_shard['hadm_id'] = df_shard['hadmid_day'].str.split('_').apply(lambda x: x[0]) df_shard['hadm_id'] = df_shard['hadm_id'].astype('int') df_shard['admittime'] = df_shard['hadm_id'].apply(lambda x: map_dict(x, admittime_dict)) df_shard.to_csv(self.aac_path + '.csv', index=False) print("Added Admittime") def add_patient_columns(self, hadm_dict): """ Add gender columns Parameters ---------- hadm_dict: dict Dict of subject ID and day """ df = pd.read_csv(self.mimic_folder_path + '/PATIENTS.csv') df.columns = df.columns.str.lower() gender_dict = dict(zip(df['subject_id'], df['gender'])) df_shard = pd.read_csv(self.aac_path + '.csv') df_shard['subject_id'] = df_shard['hadmid_day'].apply(lambda x: map_dict(x, hadm_dict)) df_shard['admityear'] = df_shard['admittime'].str.split('-').apply(lambda x: x[0]).astype('int') df_shard['gender'] = df_shard['subject_id'].apply(lambda x: map_dict(x, gender_dict)) if 'dob' in df.columns: dob_dict = dict(zip(df['subject_id'], df['dob'])) df_shard['dob'] = df_shard['subject_id'].apply(lambda x: map_dict(x, dob_dict)) df_shard['yob'] = df_shard['dob'].str.split('-').apply(lambda x: x[0]).astype('int') # Date of birth replaced by anchor_age df_shard['age'] = df_shard['admityear'].subtract(df_shard['yob']) gender_dummied = pd.get_dummies(df_shard['gender'], drop_first=True) gender_dummied.rename(columns={'M': 'Male', 'F': 'Female'}) columns = list(df_shard.columns) columns.remove('gender') df_shard =
pd.concat([df_shard[columns], gender_dummied], axis=1)
pandas.concat
import json from pathlib import Path from itertools import repeat from collections import OrderedDict import pandas as pd import os import warnings def check_input(text_list): """ 检查预测的输入list :param text_list: :return: """ # 一个str的话,转list if isinstance(text_list, str): text_list = [text_list, ] # 处理前,文本个数、最大长度 len_ = len(text_list) max_len_ = max([len(i) for i in text_list]) # 去长度为0 text_list = [i for i in text_list if len(i) != 0] # 取长度最大256 for idx, text in enumerate(text_list): if len(text) > 256: text_list[idx] = text[:256] # 提醒 if len(text_list) == 0: raise NotImplementedError("输入的文本全部为空, 长度为0!") if len(text_list) < len_: warnings.warn("输入的文本中有长度为0的句子, 它们将被忽略掉!") # print("输入的文本中有长度为0的句子, 它们将被忽略掉!") if max_len_ > 256: warnings.warn("输入的文本中有长度大于256的句子, 它们将被截断掉!") # print("输入的文本中有长度大于256的句子, 它们将被截断掉!") return text_list def write_csv(text_list): """ 将输入的预测list写为csv,会覆盖原来的csv :param text_list: :return: """ df = pd.DataFrame({'label': {}, 'review': {}}) for idx, val in enumerate(text_list): # 2,代表暂无分类 new_line = [str(2), val] df.loc[idx] = new_line df.to_csv("data/prediction/text_list.csv", index=False) def delete_temp_file(file_path): """ 删除预测list产生的,文本嵌入pkl、词向量pkl :return: """ if os.path.exists(file_path): os.remove(file_path) else: print("The file \'" + file_path + "\' does not exist.") def ensure_dir(dirname): """ 确保目录存在,不存在的话创建目录 """ dirname = Path(dirname) if not dirname.is_dir(): dirname.mkdir(parents=True, exist_ok=False) def read_json(filename): """ 读取json :param filename: 文件路径 :return: json.loads() """ # Path(),PurePath subclass that can make system calls. filename = Path(filename) """ ========= =============================================================== Character Meaning --------- --------------------------------------------------------------- 'r' open for reading (default) 'w' open for writing, truncating the file first 'x' create a new file and open it for writing 'a' open for writing, appending to the end of the file if it exists 'b' binary mode 't' text mode (default) '+' open a disk file for updating (reading and writing) 'U' universal newline mode (deprecated) ========= =============================================================== """ # rt模式下,r读取文本时,t会自动把\r\n转换成\n.(文本模式) with filename.open('rt') as handle: # 返回一个json.loads(),OrderedDict类型的,有序字典? # object_hook=,用object_hook这种类对象返回 """ json.load(),加载python json格式文件 json.loads(),解码python json格式 """ return json.load(handle, object_hook=OrderedDict) def write_json(content, filename): """ 写一个json(不一定是新的) :param content: 内容,json :param filename: 文件路径和名 :return: json.loads() """ filename = Path(filename) # wt,“写+文本”模式 with filename.open('wt') as handle: # indent,缩进 json.dump(content, handle, indent=4, sort_keys=False) def inf_loop(data_loader): """ 让传进来的data_loader可以一直重复循环里面的data,信息循环 wrapper function for endless data loader. :param data_loader: :return: data_loader里面的loader里面的一项 """ # repeat(),一直重复返回迭代对象 for loader in repeat(data_loader): # 迭代返回loader里面的data yield from loader class MetricTracker: """ 作一个度量工具对象(只用来记录度量结果) """ def __init__(self, *keys, writer=None): # 写对象 self.writer = writer # 数据对象(pd.DataFrame), # 行:keys,即accuracy、f1、auc # 列:[总量, 个数, 平均] self._data =
pd.DataFrame(index=keys, columns=['total', 'counts', 'average'])
pandas.DataFrame
# %% from datetime import datetime, timedelta from pathlib import Path import random import pandas as pd # %% data = pd.read_csv("../data/base2020.csv", sep=";") # %% def report(state, date, last_date, last_state, age, sex): if last_state is not None: events.append(dict( from_state=last_state, to_state=state, age=age, sex=sex, days=(date - last_date).days if not pd.isna(last_date) else 0, )) return date, state # %% events = [] for i,r in data.iterrows(): # NOTA: NO HAY SEXO EN LOS DATOS!!!! sex = random.choice(["M", "F"]) age = r["Edad2020"] date = pd.NaT state = None symptoms_date = pd.to_datetime(r['FIS2020'], format="%m/%d/%Y", errors="coerce") hospital_date = pd.to_datetime(r['Fingreso2020'], format="%m/%d/%Y", errors="coerce") confirm_date = pd.to_datetime(r['F.Conf2020'], format="%m/%d/%Y", errors="coerce") uci_enter_date = pd.to_datetime(r['FechaingresoUCI3112'], format="%m/%d/%Y", errors="coerce") uci_exit_date = pd.to_datetime(r['FechaegresoUTI'], format="%m/%d/%Y", errors="coerce") release_date = pd.to_datetime(r['FechaAltaN'], format="%m/%d/%Y", errors="coerce") if
pd.isna(confirm_date)
pandas.isna
# Author: <NAME>, PhD # # Email: <EMAIL> # # # Ref: https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html # Ref: https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.jaccard.html#scipy.spatial.distance.jaccard # Ref: https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.pdist.html # Ref: https://sourceforge.net/p/rdkit/mailman/message/24426410/ # Ref: https://python-graph-gallery.com/197-available-color-palettes-with-matplotlib/ # Ref: https://stackoverflow.com/questions/57568311/matplotlib-scatter-issue-with-python-3-x # Ref: https://www.science-emergence.com/Articles/How-to-create-a-scatter-plot-with-several-colors-in-matplotlib-/ # Ref: https://www.pluralsight.com/guides/choosing-color-palettes # Ref: https://www.nceas.ucsb.edu/~frazier/RSpatialGuides/colorPaletteCheatsheet.pdf # Ref: https://htmlcolorcodes.com/color-picker/ # #1179B0 # #F58C30 # #74BB5A # #BC412C # #795B9A # #764A0C # #D37DB5 # #7A7A7A # #B8C449 import matplotlib matplotlib.use('agg') import matplotlib.pyplot as plt import seaborn as sns import sys import pandas as pd import rdkit from rdkit import Chem from rdkit.Chem import AllChem from scaffold_keys import smiles2bmscaffold, smiles2scaffoldkey, sk_distance #import matplotlib #matplotlib.use('agg') #import matplotlib.pyplot as plt #import seaborn as sns import numpy as np from sklearn.manifold import TSNE import math from knn import get_mol, get_fingerprint, is_valid def read_data(fname): df = pd.read_csv(fname, sep ='\t') return (df) def tr_expand_coords (df, source_col, id_col, delimiter): df_orig = df df = df[source_col].str.split(delimiter, expand = True) nr_cols = len (df.columns) columns = [] for i in range (nr_cols): columns.append('Dim_' + str(i + 1)) df.columns = columns df = df.astype('int32') #df[id_col] = df_orig[id_col] df = pd.concat([df_orig, df], axis = 1) return (df) def get_coordinates (hc, bucket_id): # print (bucket_id) coordinates = [] coordinates = hc.coordinates_from_distance(bucket_id - 1) coordinate_str = '' nr_dim = len (coordinates) for i in range(nr_dim): coordinate_str += str(coordinates[i]) + ';' coordinate_str = coordinate_str[:-1] return (coordinate_str) def to_bitstring (fp): fpstr = 'NA' try: fpstr = fp.ToBitString() except: fpstr = 'NA' return (fpstr) def fp_gen_with_errohandling (mol): fp = None try: fp = AllChem.GetMorganFingerprintAsBitVect(mol, radius = 3, nBits = 2048) except: fp = None return (fp) def generate_fp (df): df['is_valid'] = df.apply (lambda x: is_valid(x['Structure']), axis = 1) df = df[df['is_valid'] == True].copy() df['mol'] = df.apply(lambda x: get_mol (x['Structure']), axis = 1) print (df.dtypes) print(df.columns) print (df.head) df['fp'] = df.apply (lambda x: fp_gen_with_errohandling(x['mol']), axis = 1) print (df.columns) df = df[df['fp'] != None].copy() df['fp_str'] = df.apply (lambda x: to_bitstring(x['fp']), axis = 1) df = df[df['fp_str'] != 'NA'].copy() return (df) def get_fp_np_array (fps): first = True fpl = 0 all_fp = [] fp_array = [] for i in range(len(fps)): fp_array = [] fp = fps[i] if first: fpl = len(fp) first = False else: if len(fp) != fpl: print ('[ERROR] Fingerprint length mismatch. Terminating ...') sys.exit (-1) for j in range(len(fp)): fp_array.append(int(fp[j])) all_fp.append(fp_array) all_fp = np.array(all_fp) return (all_fp) def embed_compounds (df, tsne_model): df = generate_fp (df) print (df.head) X = list(df['fp_str']) X = get_fp_np_array (X) #print (X) X_embedded = tsne_model.fit_transform(X) print (X_embedded) ids = list(df['ID']) df_embedded =
pd.DataFrame ({'ID': ids, 'Dim_1': X_embedded[:,0], 'Dim_2': X_embedded[:,1]})
pandas.DataFrame
from matplotlib import pyplot as plt import matplotlib.ticker as mtick import pandas as pd import json from matplotlib import rcParams # Plots the qualifier statistics for the LC-QuAD 2.0 dataset and Wikidata line_width = 2 font_size = 15 rcParams.update({"figure.autolayout": True}) with open("./results/datasets_stats/results_lcquad2.0.json") as f: data = json.load(f) count_dict_lc_quad: dict = data["count_dict"] sorted_lc_quad = sorted(count_dict_lc_quad.items(), key=lambda x: int(x[0])) with open("./scripts/output.json") as f: data = json.load(f) count_dict_wikidata: dict = data["items"]["claims_counter"] sorted_wikidata = sorted(count_dict_wikidata.items(), key=lambda x: int(x[0])) x = [int(item[0]) for item in sorted_lc_quad] y = [int(item[1]) for item in sorted_lc_quad] y = [item / sum(y) * 100 for item in y] panda_data = {x[idx]: [y[idx]] for idx in range(6)} panda_data["> 5"] = sum(y[6:]) df_lc_quad =
pd.DataFrame(panda_data, index=["LC-QuAD 2.0"])
pandas.DataFrame
#!/usr/bin/env python #ADAPTED FROM #https://github.com/bio-ontology-research-group/deepgoplus/blob/master/evaluate_deepgoplus.py import numpy as np import pandas as pd import click as ck from sklearn.metrics import classification_report from sklearn.metrics.pairwise import cosine_similarity import sys from collections import deque import time import logging from sklearn.metrics import roc_curve, auc, matthews_corrcoef from scipy.spatial import distance from scipy import sparse import math #from utils2 import FUNC_DICT, Ontology, NAMESPACES from matplotlib import pyplot as plt #copied from utils.py from collections import deque, Counter import warnings #import pandas as pd #import numpy as np #from xml.etree import ElementTree as ET #import math BIOLOGICAL_PROCESS = 'GO:0008150' MOLECULAR_FUNCTION = 'GO:0003674' CELLULAR_COMPONENT = 'GO:0005575' FUNC_DICT = { 'cc': CELLULAR_COMPONENT, 'mf': MOLECULAR_FUNCTION, 'bp': BIOLOGICAL_PROCESS} NAMESPACES = { 'cc': 'cellular_component', 'mf': 'molecular_function', 'bp': 'biological_process' } EXP_CODES = set([ 'EXP', 'IDA', 'IPI', 'IMP', 'IGI', 'IEP', 'TAS', 'IC',]) # 'HTP', 'HDA', 'HMP', 'HGI', 'HEP']) CAFA_TARGETS = set([ '10090', '223283', '273057', '559292', '85962', '10116', '224308', '284812', '7227', '9606', '160488', '237561', '321314', '7955', '99287', '170187', '243232', '3702', '83333', '208963', '243273', '44689', '8355']) def is_cafa_target(org): return org in CAFA_TARGETS def is_exp_code(code): return code in EXP_CODES class Ontology(object): def __init__(self, filename='data/go.obo', with_rels=False): self.ont = self.load(filename, with_rels) self.ic = None def has_term(self, term_id): return term_id in self.ont def calculate_ic(self, annots): cnt = Counter() for x in annots: cnt.update(x) self.ic = {} for go_id, n in cnt.items(): parents = self.get_parents(go_id) if len(parents) == 0: min_n = n else: min_n = min([cnt[x] for x in parents]) self.ic[go_id] = math.log(min_n / n, 2) def get_ic(self, go_id): if self.ic is None: raise Exception('Not yet calculated') if go_id not in self.ic: return 0.0 return self.ic[go_id] def load(self, filename, with_rels): ont = dict() obj = None with open(filename, 'r') as f: for line in f: line = line.strip() if not line: continue if line == '[Term]': if obj is not None: ont[obj['id']] = obj obj = dict() obj['is_a'] = list() obj['part_of'] = list() obj['regulates'] = list() obj['alt_ids'] = list() obj['is_obsolete'] = False continue elif line == '[Typedef]': obj = None else: if obj is None: continue l = line.split(": ") if l[0] == 'id': obj['id'] = l[1] elif l[0] == 'alt_id': obj['alt_ids'].append(l[1]) elif l[0] == 'namespace': obj['namespace'] = l[1] elif l[0] == 'is_a': obj['is_a'].append(l[1].split(' ! ')[0]) elif with_rels and l[0] == 'relationship': it = l[1].split() # add all types of relationships obj['is_a'].append(it[1]) elif l[0] == 'name': obj['name'] = l[1] elif l[0] == 'is_obsolete' and l[1] == 'true': obj['is_obsolete'] = True if obj is not None: ont[obj['id']] = obj for term_id in list(ont.keys()): for t_id in ont[term_id]['alt_ids']: ont[t_id] = ont[term_id] if ont[term_id]['is_obsolete']: del ont[term_id] for term_id, val in ont.items(): if 'children' not in val: val['children'] = set() for p_id in val['is_a']: if p_id in ont: if 'children' not in ont[p_id]: ont[p_id]['children'] = set() ont[p_id]['children'].add(term_id) return ont def get_anchestors(self, term_id): if term_id not in self.ont: return set() term_set = set() q = deque() q.append(term_id) while(len(q) > 0): t_id = q.popleft() if t_id not in term_set: term_set.add(t_id) for parent_id in self.ont[t_id]['is_a']: if parent_id in self.ont: q.append(parent_id) return term_set def get_parents(self, term_id): if term_id not in self.ont: return set() term_set = set() for parent_id in self.ont[term_id]['is_a']: if parent_id in self.ont: term_set.add(parent_id) return term_set def get_namespace_terms(self, namespace): terms = set() for go_id, obj in self.ont.items(): if obj['namespace'] == namespace: terms.add(go_id) return terms def get_namespace(self, term_id): return self.ont[term_id]['namespace'] def get_term_set(self, term_id): if term_id not in self.ont: return set() term_set = set() q = deque() q.append(term_id) while len(q) > 0: t_id = q.popleft() if t_id not in term_set: term_set.add(t_id) for ch_id in self.ont[t_id]['children']: q.append(ch_id) return term_set def evaluate_deepgoplus(train_data_file, test_data_file, terms_file, diamond_scores_file, gofile, ont, preds=None, export=False,evaluate=True,verbose=False): go_rels = Ontology(gofile, with_rels=True) if(isinstance(terms_file,list) or isinstance(terms_file,np.ndarray)): terms = terms_file else: terms_df = pd.read_pickle(terms_file) terms = terms_df['terms'].values.flatten() terms_dict = {v: i for i, v in enumerate(terms)} train_df = pd.read_pickle(train_data_file) test_df = pd.read_pickle(test_data_file) annotations = train_df['annotations'].values annotations = list(map(lambda x: set(x), annotations)) test_annotations = test_df['annotations'].values test_annotations = list(map(lambda x: set(x), test_annotations)) go_rels.calculate_ic(annotations + test_annotations) # Print IC values of terms ics = {} for term in terms: ics[term] = go_rels.get_ic(term) prot_index = {} for i, row in enumerate(train_df.itertuples()): prot_index[row.proteins] = i # BLAST Similarity (Diamond) diamond_scores = {} with open(diamond_scores_file) as f: for line in f: it = line.strip().split() if it[0] not in diamond_scores: diamond_scores[it[0]] = {} diamond_scores[it[0]][it[1]] = float(it[2]) blast_preds = [] for i, row in enumerate(test_df.itertuples()): annots = {} prot_id = row.proteins # BlastKNN if prot_id in diamond_scores: sim_prots = diamond_scores[prot_id] allgos = set() total_score = 0.0 for p_id, score in sim_prots.items(): allgos |= annotations[prot_index[p_id]] total_score += score allgos = list(sorted(allgos)) sim = np.zeros(len(allgos), dtype=np.float32) for j, go_id in enumerate(allgos): s = 0.0 for p_id, score in sim_prots.items(): if go_id in annotations[prot_index[p_id]]: s += score sim[j] = s / total_score ind = np.argsort(-sim) for go_id, score in zip(allgos, sim): annots[go_id] = score blast_preds.append(annots) # DeepGOPlus go_set = go_rels.get_namespace_terms(NAMESPACES[ont]) go_set.remove(FUNC_DICT[ont]) labels = test_df['annotations'].values labels = list(map(lambda x: set(filter(lambda y: y in go_set, x)), labels)) # print(len(go_set)) deep_preds = [] alphas = {NAMESPACES['mf']: 0.55, NAMESPACES['bp']: 0.59, NAMESPACES['cc']: 0.46} for i, row in enumerate(test_df.itertuples()): annots_dict = blast_preds[i].copy() for go_id in annots_dict: annots_dict[go_id] *= alphas[go_rels.get_namespace(go_id)] for j, score in enumerate(row.preds if preds is None else preds[i]): go_id = terms[j] score *= 1 - alphas[go_rels.get_namespace(go_id)] if go_id in annots_dict: annots_dict[go_id] += score else: annots_dict[go_id] = score deep_preds.append(annots_dict) if(export): export_cafa(test_df,deep_preds,"DeepGOPlus_1_all.txt") if(evaluate): print("Evaluating scores") compute_prmetrics(labels,deep_preds,go_rels,ont=ont,verbose=verbose) #aucs = compute_roc(labels,deep_preds) #print("aucs:",aucs) #print("mean aucs(predicted):",np.mean(aucs)) #print("mean aucs(all):",(np.sum(aucs)+(len(test_annotations)-len(aucs))*0.5)/len(test_annotations)) def evaluate(train_data_file, test_data_file, terms_file, gofile, ont, preds=None, propagate_scores=False,export=False,evaluate=True,verbose=False): ''' train_data_file: path to train_data.pkl test_data_file: path to test_data.pkl terms_file: path to terms.pkl or just a list or nparray of labels ''' go_rels = Ontology(gofile, with_rels=True) if(isinstance(terms_file,list) or isinstance(terms_file,np.ndarray)): terms = terms_file else: terms_df =
pd.read_pickle(terms_file)
pandas.read_pickle
""" This module contains transformers that apply string functions. """ import pandas as pd from tubular.base import BaseTransformer class SeriesStrMethodTransformer(BaseTransformer): """Tranformer that applies a pandas.Series.str method. Transformer assigns the output of the method to a new column. It is possible to supply other key word arguments to the transform method, which will be passed to the pandas.Series.str method being called. Be aware it is possible to supply incompatible arguments to init that will only be identified when transform is run. This is because there are many combinations of method, input and output sizes. Additionally some methods may only work as expected when called in transform with specific key word arguments. Parameters ---------- new_column_name : str The name of the column to be assigned to the output of running the pd.Series.str in transform. pd_method_name : str The name of the pandas.Series.str method to call. columns : str Column to apply the transformer to. If a str is passed this is put into a list. Value passed in columns is saved in the columns attribute on the object. Note this has no default value so the user has to specify the columns when initialising the transformer. This is avoid likely when the user forget to set columns, in this case all columns would be picked up when super transform runs. pd_method_kwargs : dict, default = {} A dictionary of keyword arguments to be passed to the pd.Series.str method when it is called. **kwargs Arbitrary keyword arguments passed onto BaseTransformer.__init__(). Attributes ---------- new_column_name : str The name of the column or columns to be assigned to the output of running the pd.Series.str in transform. pd_method_name : str The name of the pd.Series.str method to call. """ def __init__( self, new_column_name, pd_method_name, columns, pd_method_kwargs={}, **kwargs ): if type(columns) is list: if len(columns) > 1: raise ValueError( f"columns arg should contain only 1 column name but got {len(columns)}" ) super().__init__(columns=columns, **kwargs) if type(new_column_name) is not str: raise TypeError( f"unexpected type ({type(new_column_name)}) for new_column_name, must be str" ) if type(pd_method_name) is not str: raise TypeError( f"unexpected type ({type(pd_method_name)}) for pd_method_name, expecting str" ) if type(pd_method_kwargs) is not dict: raise TypeError( f"pd_method_kwargs should be a dict but got type {type(pd_method_kwargs)}" ) else: for i, k in enumerate(pd_method_kwargs.keys()): if not type(k) is str: raise TypeError( f"unexpected type ({type(k)}) for pd_method_kwargs key in position {i}, must be str" ) self.new_column_name = new_column_name self.pd_method_name = pd_method_name self.pd_method_kwargs = pd_method_kwargs try: ser =
pd.Series(["a"])
pandas.Series
import pandas as pd import numpy as np import matplotlib.pyplot as plt INPUT_DIR = "~/data/query-result/" OUTPUT_DIR = "~/data/summary-stats/" RES_LIST = ['cpu', 'mem', 'net_send', 'net_receive', 'disk_read', 'disk_write'] METRIC_LIST = ['_util_per_instance_95p', '_util_per_instance_max', '_util_per_pool', '_util_per_pod'] COST_MAP = {'action-classify': 0.248, 'action-gke': 1.22, 'db': 0.663, 'db-preempt': 0.663, 'druid-preempt': 0.663, 'druid-ssd-preempt': 0.704, 'mixed': 0.248, 'mixed-preempt': 0.248, 'nginx': 0.266, 'ping-gke': 0.69} PERCENTILES = [.5, .95, .99] END_TIME = 1514995200917 #END_TIME = 1515028900917 class StatsAggregator(object): def __init__(self, metric_name): self.metric_name = metric_name def get_csv_list(self, res_list, data_dir): csv_list = {} for res in res_list: csv_file = data_dir + res + self.metric_name + ".csv" csv_list[res] = csv_file print("Constructed list of csv filess:", csv_list) return csv_list def process_csv(self, res, csvfile, outfile): df = pd.read_csv(csvfile, sep=',') summary_df =
pd.DataFrame()
pandas.DataFrame
import pandas as pd from geopy.distance import great_circle #filter and drop duplcates rows data = pd.read_csv("AllStudent.csv") data = data.filter(['N°Ins','Adresse']).drop_duplicates() data.fillna("other", inplace=True)
pd.DataFrame(data)
pandas.DataFrame
import unittest import numpy as np import pandas as pd from pyalink.alink import * class TestPinyi(unittest.TestCase): def run_segment(self): # -*- coding=UTF-8 -*- data = np.array([ [0, u'二手旧书:医学电磁成像'], [1, u'二手美国文学选读( 下册 )李宜燮南开大学出版社 9787310003969'], [2, u'二手正版图解象棋入门/谢恩思主编/华龄出版社'], [3, u'二手中国糖尿病文献索引'], [4, u'二手郁达夫文集( 国内版 )全十二册馆藏书'] ]) df =
pd.DataFrame({"id": data[:, 0], "text": data[:, 1]})
pandas.DataFrame