prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
# -*- coding: utf-8 -*- """ Created on Wed Jun 20 20:51:01 2018 @author: SilverDoe """ ''' To Apply our own function or some other library’s function, pandas provide three important functions namely : 1. Table wise Function Application: pipe() 2. Row or Column Wise Function Application: apply() 3. Element wise Function Application: applymap() >> pipe() function performs the custom operation for the entire dataframe. >> apply() function performs the custom operation for either row wise or column wise. >> applymap() Function performs the specified operation for all the elements of the dataframe. ''' ''' ============== pipe() function ============================================''' # pipe() Function to add value 2 to the entire dataframe import pandas as pd def adder(adder1,adder2): return adder1+adder2 #Create a Dictionary of series d = {'Score_Math':
pd.Series([66,57,75,44,31,67,85,33,42,62,51,47])
pandas.Series
# Extract data import urllib.request from PyPDF2 import PdfFileReader import io #input/output import pandas as pd import tests # Set up the URL url = "https://www.normanok.gov/sites/default/files/documents/2021-03/2021-03-01_daily_incident_summary.pdf" # Set up the headers headers = {} headers['User-Agent'] = "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/88.0.4324.192 Safari/537.36" # Read the data from the url p0_data = urllib.request.urlopen(urllib.request.Request(url, headers=headers)).read() def test_extract(): # Change the byte type dataset. f = io.BytesIO(p0_data) # byte data ==> english # Send to PdfFileReader reader = PdfFileReader(f) # Get the number of pages in the document numPage = reader.getNumPages() # Empty DataFrame output = pd.DataFrame() # For loop for page loading for i in range(0, numPage, 1): # Get the list of the data points using the split by "\n" lst = reader.getPage(i).extractText().split("\n") if i == 10: lst[17:19]=[''.join(lst[17:19])] print(lst) # Print the page number print("Page Number: " + str(i)) # Get the number of data points within the page numberofdata = (len(lst)//5)*5 # Creat the lists for column 0, column 1, column 2, column 3 , column 4 for pattern saving and columns. lst0 = [] lst1 = [] lst2 = [] lst3 = [] lst4 = [] # Recognize the pattern and run the loop. for j in range(0, numberofdata, 1): if j % 5 == 0: lst0.append(lst[j]) elif j % 5 == 1: lst1.append(lst[j]) elif j % 5 == 2: lst2.append(lst[j]) elif j % 5 == 3: lst3.append(lst[j]) elif j % 5 == 4: lst4.append(lst[j]) # Create the list in list lst = [lst0, lst1, lst2, lst3, lst4] df = pd.DataFrame(lst).T # If it is the first page, then get the header from the first row of the dataframe if i == 0: df.columns = df.loc[0, :] df.columns.name = "" df = df.loc[1:].reset_index(drop = True) # If not, then get it from output dataframe. else: df.columns = output.columns df = df.reset_index(drop = True) # Stack the outcomes output =
pd.concat([output, df])
pandas.concat
# -*- coding:utf-8 -*- import math import phate import anndata import shutil import warnings import pickle import numpy as np import pandas as pd import seaborn as sns from scipy.spatial.distance import cdist from scipy.stats import wilcoxon, pearsonr from scipy.spatial import distance_matrix from sklearn.decomposition import PCA # from python_codes.train.train import train from python_codes.train.clustering import clustering from python_codes.train.pseudotime import pseudotime from python_codes.util.util import load_breast_cancer_data, preprocessing_data, save_features from python_codes.util.exchangeable_loom import write_exchangeable_loom warnings.filterwarnings("ignore") from python_codes.util.util import * from matplotlib import rcParams rcParams['font.family'] = 'sans-serif' rcParams['font.sans-serif'] = ['Arial','Roboto'] rcParams['savefig.dpi'] = 300 import matplotlib.pyplot as plt from mpl_toolkits.axes_grid1 import make_axes_locatable, inset_locator title_sz = 16 #################################### #----------Get Annotations---------# #################################### def get_adata_from_embeddings(args, sample_name, dataset="breast_cancer"): args.spatial = True output_dir = f'{args.output_dir}/{get_target_fp(args, dataset, sample_name)}' feature_fp = os.path.join(output_dir, "features.tsv") adata = sc.read_csv(feature_fp, delimiter="\t", first_column_names=None) return adata def get_clusters(args, sample_name, method="leiden", dataset="breast_cancer"): original_spatial = args.spatial args.spatial = True output_dir = f'{args.output_dir}/{get_target_fp(args, dataset, sample_name)}' pred_clusters = pd.read_csv(f"{output_dir}/{method}.tsv", header=None).values.flatten().astype(str) args.spatial = original_spatial cluster_color_dict = get_cluster_colors(args, sample_name) unique_cluster_dict = {cluster:cluster_color_dict[cluster]["abbr"] for cluster in cluster_color_dict.keys()} uniq_pred = np.unique(pred_clusters) for cid, cluster in enumerate(uniq_pred): pred_clusters[pred_clusters == cluster] = unique_cluster_dict[int(cluster)] return pred_clusters def get_cluster_colors_and_labels_original(): ann_dict = { 0: "Cancer 1", 1: "Immune:B/plasma", 2: "Adipose", 3: "Immune:APC/B/T cells", 4: "Cancer:Immune rich", 5: "Cancer 2", 6: "Cancer Connective" } color_dict = { 0: "#771122", 1: "#AA4488", 2: "#05C1BA", 3: "#F7E54A", 4: "#D55802", 5: "#137777", 6: "#124477" } return ann_dict, color_dict def get_cluster_colors(args, sample_name): fp = f'{args.dataset_dir}/Visium/Breast_Cancer/putative_cell_type_colors/{sample_name}.csv' df = pd.read_csv(fp) clusters = df["Cluster ID"].values.astype(int) annotations = df["Annotations"].values.astype(str) colors = df["Color"].values.astype(str) abbrs = df["Abbr"].values.astype(str) cur_dict = {} for cid, cluster in enumerate(clusters): cur_dict[cluster] = { "annotation" : annotations[cid], "color" : colors[cid], "abbr" : abbrs[cid] } return cur_dict def get_top_n_cluster_specific_genes(args, sample_name, method, dataset="breast_cancer", top_n=3): args.spatial = True output_dir = f'{args.output_dir}/{get_target_fp(args, dataset, sample_name)}' cluster_marker_genes_fp = f'{output_dir}/marker_genes_pval_gby_{method}.tsv' df =
pd.read_csv(cluster_marker_genes_fp, sep="\t")
pandas.read_csv
import numpy as np import pandas as pd import datetime as dt import os import zipfile from datetime import datetime, timedelta from urllib.parse import urlparse study_prefix = "U01" def get_user_id_from_filename(f): #Get user id from from file name return(f.split(".")[3]) def get_file_names_from_zip(z, file_type=None, prefix=study_prefix): #Extact file list file_list = list(z.filelist) if(filter is None): filtered = [f.filename for f in file_list if (prefix in f.filename) and (".csv" in f.filename)] else: filtered = [f.filename for f in file_list if (file_type in f.filename and prefix in f.filename)] return(filtered) def get_data_catalog(catalog_file, data_file, data_dir, dict_dir): dc=
pd.read_csv(catalog_file)
pandas.read_csv
# -*- coding: utf-8 -*- # pylint: disable=W0612,E1101 from datetime import datetime import operator import nose from functools import wraps import numpy as np import pandas as pd from pandas import Series, DataFrame, Index, isnull, notnull, pivot, MultiIndex from pandas.core.datetools import bday from pandas.core.nanops import nanall, nanany from pandas.core.panel import Panel from pandas.core.series import remove_na import pandas.core.common as com from pandas import compat from pandas.compat import range, lrange, StringIO, OrderedDict, signature from pandas import SparsePanel from pandas.util.testing import (assert_panel_equal, assert_frame_equal, assert_series_equal, assert_almost_equal, assert_produces_warning, ensure_clean, assertRaisesRegexp, makeCustomDataframe as mkdf, makeMixedDataFrame) import pandas.core.panel as panelm import pandas.util.testing as tm def ignore_sparse_panel_future_warning(func): """ decorator to ignore FutureWarning if we have a SparsePanel can be removed when SparsePanel is fully removed """ @wraps(func) def wrapper(self, *args, **kwargs): if isinstance(self.panel, SparsePanel): with assert_produces_warning(FutureWarning, check_stacklevel=False): return func(self, *args, **kwargs) else: return func(self, *args, **kwargs) return wrapper class PanelTests(object): panel = None def test_pickle(self): unpickled = self.round_trip_pickle(self.panel) assert_frame_equal(unpickled['ItemA'], self.panel['ItemA']) def test_rank(self): self.assertRaises(NotImplementedError, lambda: self.panel.rank()) def test_cumsum(self): cumsum = self.panel.cumsum() assert_frame_equal(cumsum['ItemA'], self.panel['ItemA'].cumsum()) def not_hashable(self): c_empty = Panel() c = Panel(Panel([[[1]]])) self.assertRaises(TypeError, hash, c_empty) self.assertRaises(TypeError, hash, c) class SafeForLongAndSparse(object): _multiprocess_can_split_ = True def test_repr(self): repr(self.panel) @ignore_sparse_panel_future_warning def test_copy_names(self): for attr in ('major_axis', 'minor_axis'): getattr(self.panel, attr).name = None cp = self.panel.copy() getattr(cp, attr).name = 'foo' self.assertIsNone(getattr(self.panel, attr).name) def test_iter(self): tm.equalContents(list(self.panel), self.panel.items) def test_count(self): f = lambda s: notnull(s).sum() self._check_stat_op('count', f, obj=self.panel, has_skipna=False) def test_sum(self): self._check_stat_op('sum', np.sum) def test_mean(self): self._check_stat_op('mean', np.mean) def test_prod(self): self._check_stat_op('prod', np.prod) def test_median(self): def wrapper(x): if isnull(x).any(): return np.nan return np.median(x) self._check_stat_op('median', wrapper) def test_min(self): self._check_stat_op('min', np.min) def test_max(self): self._check_stat_op('max', np.max) def test_skew(self): try: from scipy.stats import skew except ImportError: raise nose.SkipTest("no scipy.stats.skew") def this_skew(x): if len(x) < 3: return np.nan return skew(x, bias=False) self._check_stat_op('skew', this_skew) # def test_mad(self): # f = lambda x: np.abs(x - x.mean()).mean() # self._check_stat_op('mad', f) def test_var(self): def alt(x): if len(x) < 2: return np.nan return np.var(x, ddof=1) self._check_stat_op('var', alt) def test_std(self): def alt(x): if len(x) < 2: return np.nan return np.std(x, ddof=1) self._check_stat_op('std', alt) def test_sem(self): def alt(x): if len(x) < 2: return np.nan return np.std(x, ddof=1) / np.sqrt(len(x)) self._check_stat_op('sem', alt) # def test_skew(self): # from scipy.stats import skew # def alt(x): # if len(x) < 3: # return np.nan # return skew(x, bias=False) # self._check_stat_op('skew', alt) def _check_stat_op(self, name, alternative, obj=None, has_skipna=True): if obj is None: obj = self.panel # # set some NAs # obj.ix[5:10] = np.nan # obj.ix[15:20, -2:] = np.nan f = getattr(obj, name) if has_skipna: def skipna_wrapper(x): nona = remove_na(x) if len(nona) == 0: return np.nan return alternative(nona) def wrapper(x): return alternative(np.asarray(x)) for i in range(obj.ndim): result = f(axis=i, skipna=False) assert_frame_equal(result, obj.apply(wrapper, axis=i)) else: skipna_wrapper = alternative wrapper = alternative for i in range(obj.ndim): result = f(axis=i) if not tm._incompat_bottleneck_version(name): assert_frame_equal(result, obj.apply(skipna_wrapper, axis=i)) self.assertRaises(Exception, f, axis=obj.ndim) # Unimplemented numeric_only parameter. if 'numeric_only' in signature(f).args: self.assertRaisesRegexp(NotImplementedError, name, f, numeric_only=True) class SafeForSparse(object): _multiprocess_can_split_ = True @classmethod def assert_panel_equal(cls, x, y): assert_panel_equal(x, y) def test_get_axis(self): assert (self.panel._get_axis(0) is self.panel.items) assert (self.panel._get_axis(1) is self.panel.major_axis) assert (self.panel._get_axis(2) is self.panel.minor_axis) def test_set_axis(self): new_items = Index(np.arange(len(self.panel.items))) new_major = Index(np.arange(len(self.panel.major_axis))) new_minor = Index(np.arange(len(self.panel.minor_axis))) # ensure propagate to potentially prior-cached items too item = self.panel['ItemA'] self.panel.items = new_items if hasattr(self.panel, '_item_cache'): self.assertNotIn('ItemA', self.panel._item_cache) self.assertIs(self.panel.items, new_items) # TODO: unused? item = self.panel[0] # noqa self.panel.major_axis = new_major self.assertIs(self.panel[0].index, new_major) self.assertIs(self.panel.major_axis, new_major) # TODO: unused? item = self.panel[0] # noqa self.panel.minor_axis = new_minor self.assertIs(self.panel[0].columns, new_minor) self.assertIs(self.panel.minor_axis, new_minor) def test_get_axis_number(self): self.assertEqual(self.panel._get_axis_number('items'), 0) self.assertEqual(self.panel._get_axis_number('major'), 1) self.assertEqual(self.panel._get_axis_number('minor'), 2) def test_get_axis_name(self): self.assertEqual(self.panel._get_axis_name(0), 'items') self.assertEqual(self.panel._get_axis_name(1), 'major_axis') self.assertEqual(self.panel._get_axis_name(2), 'minor_axis') def test_get_plane_axes(self): # what to do here? index, columns = self.panel._get_plane_axes('items') index, columns = self.panel._get_plane_axes('major_axis') index, columns = self.panel._get_plane_axes('minor_axis') index, columns = self.panel._get_plane_axes(0) @ignore_sparse_panel_future_warning def test_truncate(self): dates = self.panel.major_axis start, end = dates[1], dates[5] trunced = self.panel.truncate(start, end, axis='major') expected = self.panel['ItemA'].truncate(start, end) assert_frame_equal(trunced['ItemA'], expected) trunced = self.panel.truncate(before=start, axis='major') expected = self.panel['ItemA'].truncate(before=start) assert_frame_equal(trunced['ItemA'], expected) trunced = self.panel.truncate(after=end, axis='major') expected = self.panel['ItemA'].truncate(after=end) assert_frame_equal(trunced['ItemA'], expected) # XXX test other axes def test_arith(self): self._test_op(self.panel, operator.add) self._test_op(self.panel, operator.sub) self._test_op(self.panel, operator.mul) self._test_op(self.panel, operator.truediv) self._test_op(self.panel, operator.floordiv) self._test_op(self.panel, operator.pow) self._test_op(self.panel, lambda x, y: y + x) self._test_op(self.panel, lambda x, y: y - x) self._test_op(self.panel, lambda x, y: y * x) self._test_op(self.panel, lambda x, y: y / x) self._test_op(self.panel, lambda x, y: y ** x) self._test_op(self.panel, lambda x, y: x + y) # panel + 1 self._test_op(self.panel, lambda x, y: x - y) # panel - 1 self._test_op(self.panel, lambda x, y: x * y) # panel * 1 self._test_op(self.panel, lambda x, y: x / y) # panel / 1 self._test_op(self.panel, lambda x, y: x ** y) # panel ** 1 self.assertRaises(Exception, self.panel.__add__, self.panel['ItemA']) @staticmethod def _test_op(panel, op): result = op(panel, 1) assert_frame_equal(result['ItemA'], op(panel['ItemA'], 1)) def test_keys(self): tm.equalContents(list(self.panel.keys()), self.panel.items) def test_iteritems(self): # Test panel.iteritems(), aka panel.iteritems() # just test that it works for k, v in self.panel.iteritems(): pass self.assertEqual(len(list(self.panel.iteritems())), len(self.panel.items)) @ignore_sparse_panel_future_warning def test_combineFrame(self): def check_op(op, name): # items df = self.panel['ItemA'] func = getattr(self.panel, name) result = func(df, axis='items') assert_frame_equal(result['ItemB'], op(self.panel['ItemB'], df)) # major xs = self.panel.major_xs(self.panel.major_axis[0]) result = func(xs, axis='major') idx = self.panel.major_axis[1] assert_frame_equal(result.major_xs(idx), op(self.panel.major_xs(idx), xs)) # minor xs = self.panel.minor_xs(self.panel.minor_axis[0]) result = func(xs, axis='minor') idx = self.panel.minor_axis[1] assert_frame_equal(result.minor_xs(idx), op(self.panel.minor_xs(idx), xs)) ops = ['add', 'sub', 'mul', 'truediv', 'floordiv'] if not compat.PY3: ops.append('div') # pow, mod not supported for SparsePanel as flex ops (for now) if not isinstance(self.panel, SparsePanel): ops.extend(['pow', 'mod']) else: idx = self.panel.minor_axis[1] with assertRaisesRegexp(ValueError, "Simple arithmetic.*scalar"): self.panel.pow(self.panel.minor_xs(idx), axis='minor') with assertRaisesRegexp(ValueError, "Simple arithmetic.*scalar"): self.panel.mod(self.panel.minor_xs(idx), axis='minor') for op in ops: try: check_op(getattr(operator, op), op) except: com.pprint_thing("Failing operation: %r" % op) raise if compat.PY3: try: check_op(operator.truediv, 'div') except: com.pprint_thing("Failing operation: %r" % 'div') raise @ignore_sparse_panel_future_warning def test_combinePanel(self): result = self.panel.add(self.panel) self.assert_panel_equal(result, self.panel * 2) @ignore_sparse_panel_future_warning def test_neg(self): self.assert_panel_equal(-self.panel, self.panel * -1) # issue 7692 def test_raise_when_not_implemented(self): p = Panel(np.arange(3 * 4 * 5).reshape(3, 4, 5), items=['ItemA', 'ItemB', 'ItemC'], major_axis=pd.date_range('20130101', periods=4), minor_axis=list('ABCDE')) d = p.sum(axis=1).ix[0] ops = ['add', 'sub', 'mul', 'truediv', 'floordiv', 'div', 'mod', 'pow'] for op in ops: with self.assertRaises(NotImplementedError): getattr(p, op)(d, axis=0) @ignore_sparse_panel_future_warning def test_select(self): p = self.panel # select items result = p.select(lambda x: x in ('ItemA', 'ItemC'), axis='items') expected = p.reindex(items=['ItemA', 'ItemC']) self.assert_panel_equal(result, expected) # select major_axis result = p.select(lambda x: x >= datetime(2000, 1, 15), axis='major') new_major = p.major_axis[p.major_axis >= datetime(2000, 1, 15)] expected = p.reindex(major=new_major) self.assert_panel_equal(result, expected) # select minor_axis result = p.select(lambda x: x in ('D', 'A'), axis=2) expected = p.reindex(minor=['A', 'D']) self.assert_panel_equal(result, expected) # corner case, empty thing result = p.select(lambda x: x in ('foo', ), axis='items') self.assert_panel_equal(result, p.reindex(items=[])) def test_get_value(self): for item in self.panel.items: for mjr in self.panel.major_axis[::2]: for mnr in self.panel.minor_axis: result = self.panel.get_value(item, mjr, mnr) expected = self.panel[item][mnr][mjr] assert_almost_equal(result, expected) @ignore_sparse_panel_future_warning def test_abs(self): result = self.panel.abs() result2 = abs(self.panel) expected = np.abs(self.panel) self.assert_panel_equal(result, expected) self.assert_panel_equal(result2, expected) df = self.panel['ItemA'] result = df.abs() result2 = abs(df) expected = np.abs(df) assert_frame_equal(result, expected) assert_frame_equal(result2, expected) s = df['A'] result = s.abs() result2 = abs(s) expected = np.abs(s) assert_series_equal(result, expected) assert_series_equal(result2, expected) self.assertEqual(result.name, 'A') self.assertEqual(result2.name, 'A') class CheckIndexing(object): _multiprocess_can_split_ = True def test_getitem(self): self.assertRaises(Exception, self.panel.__getitem__, 'ItemQ') def test_delitem_and_pop(self): expected = self.panel['ItemA'] result = self.panel.pop('ItemA') assert_frame_equal(expected, result) self.assertNotIn('ItemA', self.panel.items) del self.panel['ItemB'] self.assertNotIn('ItemB', self.panel.items) self.assertRaises(Exception, self.panel.__delitem__, 'ItemB') values = np.empty((3, 3, 3)) values[0] = 0 values[1] = 1 values[2] = 2 panel = Panel(values, lrange(3), lrange(3), lrange(3)) # did we delete the right row? panelc = panel.copy() del panelc[0] assert_frame_equal(panelc[1], panel[1]) assert_frame_equal(panelc[2], panel[2]) panelc = panel.copy() del panelc[1] assert_frame_equal(panelc[0], panel[0]) assert_frame_equal(panelc[2], panel[2]) panelc = panel.copy() del panelc[2] assert_frame_equal(panelc[1], panel[1]) assert_frame_equal(panelc[0], panel[0]) def test_setitem(self): # LongPanel with one item lp = self.panel.filter(['ItemA', 'ItemB']).to_frame() with tm.assertRaises(ValueError): self.panel['ItemE'] = lp # DataFrame df = self.panel['ItemA'][2:].filter(items=['A', 'B']) self.panel['ItemF'] = df self.panel['ItemE'] = df df2 = self.panel['ItemF'] assert_frame_equal(df, df2.reindex(index=df.index, columns=df.columns)) # scalar self.panel['ItemG'] = 1 self.panel['ItemE'] = True self.assertEqual(self.panel['ItemG'].values.dtype, np.int64) self.assertEqual(self.panel['ItemE'].values.dtype, np.bool_) # object dtype self.panel['ItemQ'] = 'foo' self.assertEqual(self.panel['ItemQ'].values.dtype, np.object_) # boolean dtype self.panel['ItemP'] = self.panel['ItemA'] > 0 self.assertEqual(self.panel['ItemP'].values.dtype, np.bool_) self.assertRaises(TypeError, self.panel.__setitem__, 'foo', self.panel.ix[['ItemP']]) # bad shape p = Panel(np.random.randn(4, 3, 2)) with tm.assertRaisesRegexp(ValueError, "shape of value must be \(3, 2\), " "shape of given object was \(4, 2\)"): p[0] = np.random.randn(4, 2) def test_setitem_ndarray(self): from pandas import date_range, datetools timeidx = date_range(start=datetime(2009, 1, 1), end=datetime(2009, 12, 31), freq=datetools.MonthEnd()) lons_coarse = np.linspace(-177.5, 177.5, 72) lats_coarse = np.linspace(-87.5, 87.5, 36) P = Panel(items=timeidx, major_axis=lons_coarse, minor_axis=lats_coarse) data = np.random.randn(72 * 36).reshape((72, 36)) key = datetime(2009, 2, 28) P[key] = data assert_almost_equal(P[key].values, data) def test_set_minor_major(self): # GH 11014 df1 = DataFrame(['a', 'a', 'a', np.nan, 'a', np.nan]) df2 = DataFrame([1.0, np.nan, 1.0, np.nan, 1.0, 1.0]) panel = Panel({'Item1': df1, 'Item2': df2}) newminor = notnull(panel.iloc[:, :, 0]) panel.loc[:, :, 'NewMinor'] = newminor assert_frame_equal(panel.loc[:, :, 'NewMinor'], newminor.astype(object)) newmajor = notnull(panel.iloc[:, 0, :]) panel.loc[:, 'NewMajor', :] = newmajor assert_frame_equal(panel.loc[:, 'NewMajor', :], newmajor.astype(object)) def test_major_xs(self): ref = self.panel['ItemA'] idx = self.panel.major_axis[5] xs = self.panel.major_xs(idx) result = xs['ItemA'] assert_series_equal(result, ref.xs(idx), check_names=False) self.assertEqual(result.name, 'ItemA') # not contained idx = self.panel.major_axis[0] - bday self.assertRaises(Exception, self.panel.major_xs, idx) def test_major_xs_mixed(self): self.panel['ItemD'] = 'foo' xs = self.panel.major_xs(self.panel.major_axis[0]) self.assertEqual(xs['ItemA'].dtype, np.float64) self.assertEqual(xs['ItemD'].dtype, np.object_) def test_minor_xs(self): ref = self.panel['ItemA'] idx = self.panel.minor_axis[1] xs = self.panel.minor_xs(idx) assert_series_equal(xs['ItemA'], ref[idx], check_names=False) # not contained self.assertRaises(Exception, self.panel.minor_xs, 'E') def test_minor_xs_mixed(self): self.panel['ItemD'] = 'foo' xs = self.panel.minor_xs('D') self.assertEqual(xs['ItemA'].dtype, np.float64) self.assertEqual(xs['ItemD'].dtype, np.object_) def test_xs(self): itemA = self.panel.xs('ItemA', axis=0) expected = self.panel['ItemA'] assert_frame_equal(itemA, expected) # get a view by default itemA_view = self.panel.xs('ItemA', axis=0) itemA_view.values[:] = np.nan self.assertTrue(np.isnan(self.panel['ItemA'].values).all()) # mixed-type yields a copy self.panel['strings'] = 'foo' result = self.panel.xs('D', axis=2) self.assertIsNotNone(result.is_copy) def test_getitem_fancy_labels(self): p = self.panel items = p.items[[1, 0]] dates = p.major_axis[::2] cols = ['D', 'C', 'F'] # all 3 specified assert_panel_equal(p.ix[items, dates, cols], p.reindex(items=items, major=dates, minor=cols)) # 2 specified assert_panel_equal(p.ix[:, dates, cols], p.reindex(major=dates, minor=cols)) assert_panel_equal(p.ix[items, :, cols], p.reindex(items=items, minor=cols)) assert_panel_equal(p.ix[items, dates, :], p.reindex(items=items, major=dates)) # only 1 assert_panel_equal(p.ix[items, :, :], p.reindex(items=items)) assert_panel_equal(p.ix[:, dates, :], p.reindex(major=dates)) assert_panel_equal(p.ix[:, :, cols], p.reindex(minor=cols)) def test_getitem_fancy_slice(self): pass def test_getitem_fancy_ints(self): p = self.panel # #1603 result = p.ix[:, -1, :] expected = p.ix[:, p.major_axis[-1], :] assert_frame_equal(result, expected) def test_getitem_fancy_xs(self): p = self.panel item = 'ItemB' date = p.major_axis[5] col = 'C' # get DataFrame # item assert_frame_equal(p.ix[item], p[item]) assert_frame_equal(p.ix[item, :], p[item]) assert_frame_equal(p.ix[item, :, :], p[item]) # major axis, axis=1 assert_frame_equal(p.ix[:, date], p.major_xs(date)) assert_frame_equal(p.ix[:, date, :], p.major_xs(date)) # minor axis, axis=2 assert_frame_equal(p.ix[:, :, 'C'], p.minor_xs('C')) # get Series assert_series_equal(p.ix[item, date], p[item].ix[date]) assert_series_equal(p.ix[item, date, :], p[item].ix[date]) assert_series_equal(p.ix[item, :, col], p[item][col]) assert_series_equal(p.ix[:, date, col], p.major_xs(date).ix[col]) def test_getitem_fancy_xs_check_view(self): item = 'ItemB' date = self.panel.major_axis[5] # make sure it's always a view NS = slice(None, None) # DataFrames comp = assert_frame_equal self._check_view(item, comp) self._check_view((item, NS), comp) self._check_view((item, NS, NS), comp) self._check_view((NS, date), comp) self._check_view((NS, date, NS), comp) self._check_view((NS, NS, 'C'), comp) # Series comp = assert_series_equal self._check_view((item, date), comp) self._check_view((item, date, NS), comp) self._check_view((item, NS, 'C'), comp) self._check_view((NS, date, 'C'), comp) def test_ix_setitem_slice_dataframe(self): a = Panel(items=[1, 2, 3], major_axis=[11, 22, 33], minor_axis=[111, 222, 333]) b = DataFrame(np.random.randn(2, 3), index=[111, 333], columns=[1, 2, 3]) a.ix[:, 22, [111, 333]] = b assert_frame_equal(a.ix[:, 22, [111, 333]], b) def test_ix_align(self): from pandas import Series b = Series(np.random.randn(10), name=0) b.sort() df_orig = Panel(np.random.randn(3, 10, 2)) df = df_orig.copy() df.ix[0, :, 0] = b assert_series_equal(df.ix[0, :, 0].reindex(b.index), b) df = df_orig.swapaxes(0, 1) df.ix[:, 0, 0] = b assert_series_equal(df.ix[:, 0, 0].reindex(b.index), b) df = df_orig.swapaxes(1, 2) df.ix[0, 0, :] = b assert_series_equal(df.ix[0, 0, :].reindex(b.index), b) def test_ix_frame_align(self): p_orig = tm.makePanel() df = p_orig.ix[0].copy() assert_frame_equal(p_orig['ItemA'], df) p = p_orig.copy() p.ix[0, :, :] = df assert_panel_equal(p, p_orig) p = p_orig.copy() p.ix[0] = df assert_panel_equal(p, p_orig) p = p_orig.copy() p.iloc[0, :, :] = df assert_panel_equal(p, p_orig) p = p_orig.copy() p.iloc[0] = df assert_panel_equal(p, p_orig) p = p_orig.copy() p.loc['ItemA'] = df assert_panel_equal(p, p_orig) p = p_orig.copy() p.loc['ItemA', :, :] = df assert_panel_equal(p, p_orig) p = p_orig.copy() p['ItemA'] = df assert_panel_equal(p, p_orig) p = p_orig.copy() p.ix[0, [0, 1, 3, 5], -2:] = df out = p.ix[0, [0, 1, 3, 5], -2:] assert_frame_equal(out, df.iloc[[0, 1, 3, 5], [2, 3]]) # GH3830, panel assignent by values/frame for dtype in ['float64', 'int64']: panel = Panel(np.arange(40).reshape((2, 4, 5)), items=['a1', 'a2'], dtype=dtype) df1 = panel.iloc[0] df2 = panel.iloc[1] tm.assert_frame_equal(panel.loc['a1'], df1) tm.assert_frame_equal(panel.loc['a2'], df2) # Assignment by Value Passes for 'a2' panel.loc['a2'] = df1.values tm.assert_frame_equal(panel.loc['a1'], df1) tm.assert_frame_equal(panel.loc['a2'], df1) # Assignment by DataFrame Ok w/o loc 'a2' panel['a2'] = df2 tm.assert_frame_equal(panel.loc['a1'], df1) tm.assert_frame_equal(panel.loc['a2'], df2) # Assignment by DataFrame Fails for 'a2' panel.loc['a2'] = df2 tm.assert_frame_equal(panel.loc['a1'], df1) tm.assert_frame_equal(panel.loc['a2'], df2) def _check_view(self, indexer, comp): cp = self.panel.copy() obj = cp.ix[indexer] obj.values[:] = 0 self.assertTrue((obj.values == 0).all()) comp(cp.ix[indexer].reindex_like(obj), obj) def test_logical_with_nas(self): d = Panel({'ItemA': {'a': [np.nan, False]}, 'ItemB': {'a': [True, True]}}) result = d['ItemA'] | d['ItemB'] expected = DataFrame({'a': [np.nan, True]}) assert_frame_equal(result, expected) # this is autodowncasted here result = d['ItemA'].fillna(False) | d['ItemB'] expected = DataFrame({'a': [True, True]})
assert_frame_equal(result, expected)
pandas.util.testing.assert_frame_equal
# -*- coding: utf-8 -*- """ Created on Tue Sep 14 10:59:05 2021 @author: franc """ import os import numpy as np import pandas as pd import matplotlib.pyplot as plt from pathlib import Path import json from collections import Counter, OrderedDict import math import torchtext from torchtext.data import get_tokenizer from googletrans import Translator # from deep_translator import GoogleTranslator # pip install googletrans==4.0.0rc1 import pickle # pip install pickle-mixin import nltk from nltk.stem import WordNetLemmatizer from nltk.corpus import wordnet as wn # python -m spacy download es_core_news_sm import spacy import fasttext.util import contractions import re # libreria de expresiones regulares import string # libreria de cadena de caracteres import itertools import sys sys.path.append("/tmp/TEST") from treetagger import TreeTagger import pathlib from scipy.spatial import distance from scipy.stats import kurtosis from scipy.stats import skew class NLPClass: def __init__(self): self.numero = 1 nltk.download('wordnet') def translations_dictionary(self, df_translate=None, path=""): ''' It appends to a dictionary different animals names in spanish and english languages. It adds them so that english animals names appear in WordNet synset. Parameters ---------- df_translate : pandas.dataframe, optional. If it's not None, the rows are appended. Otherwise it's initialized and then the rows are appended. The default is None. path : string, optional The path where to save the pickle file with the dictionary. Unless path is empty. The default is "". Returns ------- df_translate : pandas.dataframe. Pandas.dataframe with the new rows appended. ''' df_auxiliar = pd.DataFrame(columns=['spanish','english']) df_auxiliar = df_auxiliar.append(pd.DataFrame({'spanish': ["yaguareté"], 'english': ["jaguar"]}), ignore_index = True) df_auxiliar = df_auxiliar.append(pd.DataFrame({'spanish': ["llama"], 'english': ["llama"]}), ignore_index = True) df_auxiliar = df_auxiliar.append(pd.DataFrame({'spanish': ["picaflor"], 'english': ["hummingbird"]}), ignore_index = True) df_auxiliar = df_auxiliar.append(pd.DataFrame({'spanish': ["chita"], 'english': ["cheetah"]}), ignore_index = True) df_auxiliar = df_auxiliar.append(pd.DataFrame({'spanish': ["torcaza"], 'english': ["dove"]}), ignore_index = True) df_auxiliar = df_auxiliar.append(pd.DataFrame({'spanish': ["yacaré"], 'english': ["alligator"]}), ignore_index = True) df_auxiliar = df_auxiliar.append(pd.DataFrame({'spanish': ["corvina"], 'english': ["croaker"]}), ignore_index = True) df_auxiliar = df_auxiliar.append(pd.DataFrame({'spanish': ["vizcacha"], 'english': ["viscacha"]}), ignore_index = True) df_auxiliar = df_auxiliar.append(pd.DataFrame({'spanish': ["orca"], 'english': ["killer_whale"]}), ignore_index = True) df_auxiliar = df_auxiliar.append(pd.DataFrame({'spanish': ["barata"], 'english': ["german_cockroach"]}), ignore_index = True) df_auxiliar = df_auxiliar.append(pd.DataFrame({'spanish': ["coipo"], 'english': ["coypu"]}), ignore_index = True) df_auxiliar = df_auxiliar.append(pd.DataFrame({'spanish': ["cuncuna"], 'english': ["caterpillar"]}), ignore_index = True) df_auxiliar = df_auxiliar.append(pd.DataFrame({'spanish': ["carpincho"], 'english': ["capybara"]}), ignore_index = True) df_auxiliar = df_auxiliar.append(pd.DataFrame({'spanish': ["jote"], 'english': ["buzzard"]}), ignore_index = True) df_auxiliar = df_auxiliar.append(pd.DataFrame({'spanish': ["zorzal"], 'english': ["fieldfare"]}), ignore_index = True) df_auxiliar = df_auxiliar.append(pd.DataFrame({'spanish': ["guanaco"], 'english': ["guanaco"]}), ignore_index = True) df_auxiliar = df_auxiliar.append(pd.DataFrame({'spanish': ["pejerrey"], 'english': ["silverside"]}), ignore_index = True) df_auxiliar = df_auxiliar.append(pd.DataFrame({'spanish': ["mandril"], 'english': ["mandrill"]}), ignore_index = True) df_auxiliar = df_auxiliar.append(pd.DataFrame({'spanish': ["peludo"], 'english': ["armadillo"]}), ignore_index = True) df_auxiliar = df_auxiliar.append(pd.DataFrame({'spanish': ["chingue"], 'english': ["skunk"]}), ignore_index = True) df_auxiliar = df_auxiliar.append(pd.DataFrame({'spanish': ["guaren"], 'english': ["brown_rat"]}), ignore_index = True) df_auxiliar = df_auxiliar.append(pd.DataFrame({'spanish': ["cata"], 'english': ["budgerigar"]}), ignore_index = True) df_auxiliar = df_auxiliar.append(pd.DataFrame({'spanish': ["bonito"], 'english': ["atlantic_bonito"]}), ignore_index = True) df_auxiliar = df_auxiliar.append(pd.DataFrame({'spanish': ["cachalote"], 'english': ["sperm_whale"]}), ignore_index = True) df_auxiliar = df_auxiliar.append(pd.DataFrame({'spanish': ["morena"], 'english': ["moray_eels"]}), ignore_index = True) df_auxiliar = df_auxiliar.append(pd.DataFrame({'spanish': ["jaiba"], 'english': ["callinectes_sapidus"]}), ignore_index = True) df_auxiliar = df_auxiliar.append(pd.DataFrame({'spanish': ["cervatillo"], 'english': ["fawn"]}), ignore_index = True) df_auxiliar = df_auxiliar.append(pd.DataFrame({'spanish': ["mulita"], 'english': ["nine-banded_armadillo"]}), ignore_index = True) df_auxiliar = df_auxiliar.append(pd.DataFrame({'spanish': ["carpintero"], 'english': ["woodpecker"]}), ignore_index = True) df_auxiliar = df_auxiliar.append(pd.DataFrame({'spanish': ["centolla"], 'english': ["maja_squinado"]}), ignore_index = True) df_auxiliar = df_auxiliar.append(pd.DataFrame({'spanish': ["palometa"], 'english': ["pomfret"]}), ignore_index = True) df_auxiliar = df_auxiliar.append(pd.DataFrame({'spanish': ["suricata"], 'english': ["meerkat"]}), ignore_index = True) df_auxiliar = df_auxiliar.append(pd.DataFrame({'spanish': ["vampiro"], 'english': ["vampire_bats"]}), ignore_index = True) df_auxiliar = df_auxiliar.append(pd.DataFrame({'spanish': ["laucha"], 'english': ["mouse"]}), ignore_index = True) df_auxiliar = df_auxiliar.append(pd.DataFrame({'spanish': ["guanaco"], 'english': ["guanaco"]}), ignore_index = True) df_auxiliar = df_auxiliar.append(pd.DataFrame({'spanish': ["vicuña"], 'english': ["vicuna"]}), ignore_index = True) df_auxiliar = df_auxiliar.append(pd.DataFrame({'spanish': ["carancho"], 'english': ["caracara"]}), ignore_index = True) if df_translate is None: df_translate = df_auxiliar.copy(deep=True) else: for i,row in df_auxiliar.iterrows(): if row['spanish'] not in df_translate['spanish'].values: df_translate = df_translate.append(row) # df_translate = pd.concat([df_translate, df_auxiliar.ix[df_auxiliar._merge=='left_only', ['spanish']]]) if (path != ""): df_translate.to_pickle(path) return df_translate def tokenize_list(self, text_dataframe, tokenizer_type = "basic_english"): ''' It receives a list of strings and returns a list of string list where each string is a token obtained from apply the tokenizer_type. Parameters ---------- text_dataframe : string list A string list where each element has words separated by spaces. tokenizer_type : The kind of tokenizer to be applied. Basic_english applied by default. Other tokenizers could be: spacy, moses, toktok, revtok, subword. Returns ------- tokens : list of string list A list where each element is a list that contains tokens. ''' tokenizer = get_tokenizer(tokenizer_type) tokens = [tokenizer(x) if str(x)!="nan" else x for x in text_dataframe] return tokens def count_words(self, tokens, percentaje = 0): ''' It returns a word unique list extracted from tokens parameter and the number of times that each word appear in descendingly ordered. Parameters ---------- tokens : list of token list A list where each element is a token list. percentaje: int Int between 0 and 1. If it is 0, it doesn't print anything. If it is greater than 0, it prints by console how many of the most common words (in percentage) exceed the percentage passed by parameter. Returns ------- The word unique list and the number of times that each one appear. ''' words = Counter() for s in tokens: if str(s) != "nan": for w in s: words[w] += 1 sorted_words = OrderedDict(words.most_common()) if (percentaje>0): count_occurences = sum(words.values()) accumulated = 0 counter = 0 while accumulated < count_occurences * percentaje: accumulated += list(sorted_words.values())[counter] counter += 1 print(f"The {counter * 100 / len(words)}% most common words " f"account for the {accumulated * 100 / count_occurences}% of the occurrences") return list(sorted_words.keys()),list(sorted_words.values()) def join_horizontally_strings(self, df, column_list, separator = " "): ''' It takes each df dataframe row and joins the content of each column passed in *args separated by the separator parameter. Parameters ---------- df : pandas.dataframe Dataframe that contains the columns to join. *args : string The columns names to be joined. Returns ------- lista : list of strings A list where each row has the union between the different columns passed in * args separated by separator. ''' lista=[] contador = 0 for i, row in df.iterrows(): lista.append("") for column in column_list: lista[contador] = lista[contador] + row[column] + separator lista[contador] = lista[contador].rstrip() contador+=1 return lista def add_to_pickle_translation_file(self,path,words,lan_src = "spanish",lan_dest = "english"): ''' It check if the word is in path+"//translations.pkl", if it is not, it adds it to the file. Parameters ---------- path : string The path where the translation file is. words : list of strings List of words to obtain the translation. lan_src : string, optional DESCRIPTION. language in which each word of words is. The default is "spanish". lan_dest : string, optional language in which each word will be translated. The default is "english". Returns ------- None. ''' df_translation = self.read_pickle_translation_file(path) for i,word in enumerate(words): df_check = df_translation[(df_translation.word == word) & (df_translation.lan_src == lan_src) & (df_translation.lan_dest == lan_dest)] if len(df_check.index) == 0: print("Traduciendo " + word +": " + str(i) + "/" + str(len(words))) new_row = [word,self.translate([word],lan_src,lan_dest)[0].extra_data["parsed"],lan_src,lan_dest] df_length = len(df_translation) df_translation.loc[df_length] = new_row df_translation.to_pickle(path+"//translations.pkl") def read_pickle_translation_file(self,path): ''' Read pickle file with the all translations DataFrame. Parameters ---------- path : string Path where the picke file is. Returns ------- df_translation : pandas.DataFrame df with all the translations with the following structure: word|translation|lan_src|lan_dest| ''' try: df_translation = pd.read_pickle(path+"//translations.pkl") except (OSError, IOError): print("translation.pkl no encontrado") df_translation = pd.DataFrame(columns=['word','translation','lan_src','lan_dest']) return df_translation def translate(self, text, lan_src = 'spanish', lan_dest = 'english'): ''' It translates text from one language to another using googletrans. Parameters ---------- text : string list Strings to be translated. lan_src : string, optional. The language source. The default is 'es'. lan_dest : string, optional The language destiny. The default is 'en'. Returns ------- text_translate : translated_object list A list where each element is a translation from each text list element. ''' translator = Translator() translated_objects = [] for element in text: translated_objects.append(translator.translate(element, src=lan_src, dest=lan_dest)) return translated_objects def translate_checking_wordnet_and_hypernym(self, texts, df_translate = None, hypernym_check = '', len_src = 'spanish', len_dest = 'english'): ''' It receives a word list in len_src language and returns a dataframe with the original word list and its len_dest translation. If the original word doesn't have a translation that exists on WordNet synset or the hypernym_check on the hypernym tree, it returns "no_translation". Parameters ---------- texts : string list list with words to translate. df_translate : pandas.dataframe, optional A dataframe with two columns: len_src with words in len_src language and len_dest with words in len_dest language. If it's not None, the rows are appended. Otherwise it's initialized and then the rows are appended. The default is None hypernym_check : string, optional The synset to be checked if exists on translated hypernym tree. The default is "". len_src : string, optional Language source. The default is "spanish". len_dest : string, optional Language destiny. he default is "english". Returns ------- df_translate : pandas.dataframe Dataframe with two columns: len_src with words in len_src language and len_dest with words in len_dest language. ''' # If df_translate not exist, initialize it if df_translate is None: df_translate = pd.DataFrame(columns=[len_src,len_dest]) for text in texts: if text not in df_translate[len_src].to_list(): try: has_hyper = False iter_translates = -1 translation_object = self.translate([text]) # Get the translation_object with all posible translations while (not has_hyper): translated_synsets = [] while (len(translated_synsets)==0): iter_translates+=1 translated_word = translation_object[0].extra_data["parsed"][1][0][0][5][0][4][iter_translates][0].lower() # Extract a posible translation translated_synsets = wn.synsets(translated_word.replace(" ","_"),pos=wn.NOUN) translated_synsets = [x for x in translated_synsets if ".n." in x.name().lower()] # keep nouns only if hypernym_check != '': synset_with_hypernym, _ = self.get_synset_that_has_hypernym(translated_synsets, hypernym_check = hypernym_check) # check if hypernym_check is part of translated_synsets hypernym tree if len(synset_with_hypernym)>0: has_hyper = True else: has_hyper = True except: df2 =
pd.DataFrame({len_src: [text],len_dest: "no_translation"})
pandas.DataFrame
""" Implementation of Econometric measures of connectness and systemic risk in finance and insurance sectors by M.Billio, M.Getmansky, <NAME>, L.Pelizzon """ import pandas as pd import numpy as np from arch import arch_model from sklearn.decomposition import PCA from sklearn.preprocessing import StandardScaler from typing import Dict from itertools import combinations, product from scipy.stats import ttest_1samp from scipy.sparse.linalg import eigs from marketlearn.causality_network.sector_data import SectorPrice from marketlearn.causality_network.vector_ar.bivar import BiVariateVar from marketlearn.causality_network.graph import GraphAdMap # pylint: disable=invalid-name, undefined-loop-variable class CNet: """ Class Implements the granger causal flows in a complicated network """ class PreProcess: """ Nested Class to pre-process data before program start and create "sectors" attribute """ def __init__(self, start: str = "1999-12-31"): """ Constructor used to instantiate class :param start: (str) start date in format 'YYYY-MM-DD' """ self.start = start self.preprocess_sectors() self.transformed_data = None @staticmethod def _get_sectors() -> pd.DataFrame: """ Downloads the sector prices from SectorPrice :return: (pd.DataFrame) *? """ return SectorPrice().read() def preprocess_sectors(self): """ Preprocesses data by removing any NAs and create sectors attribute :return: (None) """ # pylint: disable=consider-iterating-dictionary sec = self._get_sectors() for k in sec.keys(): sec[k] = sec[k][sec[k].index >= self.start].dropna(axis=1) # Create the sectors attribute self.sectors = sec.copy() # Garbage collection sec = None def get(self) -> pd.DataFrame: """ Returns the sectors after preprocessing """ return self.sectors # --- main class definition def __init__(self, start: str): self.sectors = self.PreProcess(start=start).get() self.pca = PCA() self.sc = StandardScaler() self.lr = None self.ret1 = None self.ret2 = None self.errors = None self.transformed_data = None def risk_fraction(self, data: pd.DataFrame, n: int = 3): """ Computes the cumulative risk fraction of system see ref: formula (6) of main paper :param data: (pd.DataFrame) end of month prices shape = (n_samples, p_shares) :param n: (int) Number of principal components (3 by default) assumes user has chosen the best n :return: (float) """ # Store col names col_names = list(data) # Compute log returns data = np.log(1 + data.pct_change()) data = self.sc.fit_transform(data.dropna()) data = self.pca.fit_transform(data) self.transformed_data =
pd.DataFrame(data, columns=col_names)
pandas.DataFrame
import streamlit as st st.title('inspo-Book') st.header('Upload an item of clothing to find matching looks') st.subheader('<NAME>') st.subheader('Insight Data Science, Los Angeles') from PIL import * import cv2 ########################################################### ### uploading the image ### ########################################################### upload = st.file_uploader('Upload an picture of the item you are trying to match') if upload is not None: image1 = Image.open(upload) st.image(image1, caption='Uploaded Image.', width = 200) ##### User input of number of similar outfits to find number = st.number_input('How many similar outfits would you like to see?', value = 0, step = 1) ######################################################## ### importing libraries ######################################################## import pandas as pd import csv import seaborn as sns import warnings warnings.filterwarnings("ignore") from keras.models import load_model import os import pandas as pd from keras.preprocessing import image import matplotlib.pyplot as plt import matplotlib.image as mpimg plt.rcParams['axes.labelsize'] = 20 plt.rcParams['axes.titlesize'] = 20 import matplotlib.gridspec as gridspec from sklearn import metrics from sklearn.metrics import pairwise_distances from sklearn import datasets from sklearn import preprocessing from sklearn.cluster import KMeans from sklearn.decomposition import PCA from sklearn import preprocessing ########################################################### ### TF model ########################################################### ### User image identification and extraction # import keras import keras import keras_maskrcnn import keras_retinanet # import keras_retinanet from keras_maskrcnn import models from keras_maskrcnn.utils.visualization import draw_mask from keras_retinanet.utils.visualization import draw_box, draw_caption, draw_annotations from keras_retinanet.utils.image import read_image_bgr, preprocess_image, resize_image from keras_retinanet.utils.colors import label_color # import miscellaneous modules import matplotlib.pyplot as plt import cv2 import os import shutil import numpy as np import time import json # set tf backend to allow memory to grow, instead of claiming everything import tensorflow as tf def get_session(): config = tf.ConfigProto() config.gpu_options.allow_growth = True return tf.Session(config=config) # use this environment flag to change which GPU to use #os.environ["CUDA_VISIBLE_DEVICES"] = "1" # set the modified tf session as backend in keras keras.backend.tensorflow_backend.set_session(get_session()) ###################################################### ### User image identification and extraction # adjust this to point to your downloaded/trained model model_path = os.path.join('/home/ec2-user/inspo/', 'resnet50_modanet.h5') # load retinanet model model = models.load_model(model_path, backbone_name='resnet50') #print(model.summary()) # load label to names mapping for visualization purposes labels_to_names = {1: 'bag', 2: 'belt', 3: 'boots', 4: 'footwear', 5: 'outer', 6: 'dress', 7: 'sunglasses', 8: 'pants', 9: 'top', 10: 'shorts', 11: 'skirt', 12: 'headwear', 13: 'scarf/tie'} ####################################################### def cloth(input_imagefile): # load image image = read_image_bgr(input_imagefile) # copy to draw on draw = image.copy() draw = cv2.cvtColor(draw, cv2.COLOR_BGR2RGB) # preprocess image for network image = preprocess_image(image) image, scale = resize_image(image) # process image start = time.time() outputs = model.predict_on_batch(np.expand_dims(image, axis=0)) print("processing time: ", time.time() - start) boxes = outputs[-4][0] scores = outputs[-3][0] labels = outputs[-2][0] masks = outputs[-1][0] # correct for image scale boxes /= scale masks_dic={} boxes_dic={} labels_dic={} counter=0 # visualize detections for box, score, label, mask in zip(boxes, scores, labels, masks): if score < 0.5: break color = label_color(label) b = box.astype(int) draw_box(draw, b, color=color) mask = mask[:, :, label] draw_mask(draw, b, mask, color=label_color(label)) masks_dic[str(counter)]=mask boxes_dic[str(counter)]=box labels_dic[str(counter)]=label counter+=1 image = read_image_bgr(input_imagefile) # copy to draw on draw = image.copy() draw = cv2.cvtColor(draw, cv2.COLOR_BGR2RGB) # visualize detections items_dic={} counter=0 for box, mask2, label2 in zip(boxes_dic.values(), masks_dic.values(), labels_dic.values()): b = box.astype(int) # resize to fit the box mask2 = mask2.astype(np.float32) mask2 = cv2.resize(mask2, (b[2] - b[0], b[3] - b[1])) # binarize the mask1 mask2 = (mask2 > 0.5).astype(np.uint8) # draw the mask2 in the image mask2_image = np.zeros((draw.shape[0], draw.shape[1]), np.uint8) mask2_image[b[1]:b[3], b[0]:b[2]] = mask2 mask2 = mask2_image mask2 = (np.stack([mask2] * 3, axis = 2))*draw items_dic[str(counter)] = mask2 counter+=1 # newfileneame=input_imagefile.split("/")[4].split('.')[0] # plt.ioff() # plt.figure(figsize=(15, 15)) # plt.axis('off') # plt.imshow(mask2) #plt.savefig('/home/ec2-user/SageMaker/'+str(newfileneame)+'-masked-'+str(label2)+'.jpg',bbox_inches='tight', pad_inches=0) #plt.show() plt.close('all') return mask2, label2 ################################################################### mask1, label = cloth(upload) ######################################################################### from PIL import Image testimg = Image.fromarray(mask1, 'RGB') testimg = testimg.resize((224,224)) ##################################################################### # loading model file for AlexNEt an_model = load_model("/home/ec2-user/inspo/an-model.h5") ######################################################################3 #Loading the weights for AlexNet import tensorflow as tf an_model.layers[0].set_weights([tf.train.load_variable('/home/ec2-user/inspo/model.ckpt-5000', 'conv2d/kernel'), tf.train.load_variable('/home/ec2-user/inspo/model.ckpt-5000', 'conv2d/bias')]) an_model.layers[3].set_weights([tf.train.load_variable('/home/ec2-user/inspo/model.ckpt-5000', 'conv2d_1/kernel'), tf.train.load_variable('/home/ec2-user/inspo/model.ckpt-5000', 'conv2d_1/bias')]) an_model.layers[6].set_weights([tf.train.load_variable('/home/ec2-user/inspo/model.ckpt-5000', 'conv2d_2/kernel'), tf.train.load_variable('/home/ec2-user/inspo/model.ckpt-5000', 'conv2d_2/bias')]) an_model.layers[8].set_weights([tf.train.load_variable('/home/ec2-user/inspo/model.ckpt-5000', 'conv2d_3/kernel'), tf.train.load_variable('/home/ec2-user/inspo/model.ckpt-5000', 'conv2d_3/bias')]) an_model.layers[10].set_weights([tf.train.load_variable('/home/ec2-user/inspo/model.ckpt-5000', 'conv2d_4/kernel'), tf.train.load_variable('/home/ec2-user/inspo/model.ckpt-5000', 'conv2d_4/bias')]) an_model.layers[13].set_weights([tf.train.load_variable('/home/ec2-user/inspo/model.ckpt-5000', 'dense/kernel'), tf.train.load_variable('/home/ec2-user/inspo/model.ckpt-5000', 'dense/bias')]) an_model.layers[16].set_weights([tf.train.load_variable('/home/ec2-user/inspo/model.ckpt-5000', 'dense_1/kernel'), tf.train.load_variable('/home/ec2-user/inspo/model.ckpt-5000', 'dense_1/bias')]) ###################################################################### # Extracting features from user test using AlexNet INV3_feature_dic = {} INV3_feature_list=[] img_data = image.img_to_array(testimg) img_data = np.expand_dims(img_data, axis=0) #img_data = preprocess_input(img_data) INV3_feature = an_model.predict(img_data) feature_np = np.array(INV3_feature) testfeature = feature_np.flatten() ###################################################################3 features =
pd.read_csv('/home/ec2-user/inspo/an_features.csv', index_col='names')
pandas.read_csv
import re import dash_core_components as dcc import dash_html_components as html import numpy as np import pandas as pd import plotly.express as px # from plotly.subplots import make_subplots import plotly.graph_objs as go from dash.dependencies import Input, Output, State from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor from .dash_config import DASH_CACHING from .helpers import clean_dataset, get_data_metadata, logger, bin_numeric TIMEOUT = 60 * 60 if DASH_CACHING else 1 def register_data_callbacks(app, cache): @app.callback( [ Output("scatterdiv", "children"), Output("dataloaded", "value"), Output("datatable", "data"), Output("datatable", "columns"), ], [ Input("url", "pathname"), Input("tableloaded", "children"), ], [State("datatable", "columns")], ) @cache.memoize(timeout=TIMEOUT) def entropy_scatter(url, tableloaded, existing_columns): existing_columns.append({"id": "Entropy", "name": "Entropy"}) logger.debug("Downloading data and calculate entropy") data_id = int(re.search(r"data/(\d+)", url).group(1)) df, meta_features, numerical_data, nominal_data = get_data_metadata(data_id) scatter_div = ( [ html.Div( [ html.H3("Scatter plot"), html.Div( dcc.Dropdown( id="dropdown1", options=[ {"label": i, "value": i} for i in numerical_data[:1000] ], multi=False, clearable=False, value=numerical_data[0], ), style={"width": "30%"}, ), html.Div( dcc.Dropdown( id="dropdown2", options=[ {"label": i, "value": i} for i in numerical_data[:1000] ], multi=False, clearable=False, value=numerical_data[1], ), style={"width": "30%"}, ), html.Div( dcc.Dropdown( id="dropdown3", options=[ {"label": i, "value": i} for i in nominal_data[:1000] ], multi=False, clearable=False, value=nominal_data[0], ), style={"width": "30%"}, ), html.Div(id="scatter_plot"), ] ) ] if len(numerical_data) > 1 and nominal_data else html.Div( id="Scatter Plot", children=[html.Div(html.P("No numerical-nominal combination found"))], ) ) logger.debug("Downloaded data and calculated entropy") return scatter_div, "loaded", meta_features.to_dict("records"), existing_columns # @app.callback( # Output('distribution', 'children'), # [Input('datatable', 'selected_rows'), # Input('radio1', 'value'), # Input('stack', 'value'), # Input('url', 'pathname'), # Input('dataloaded', 'value')], # [State('datatable', 'data')]) # def distribution_sub_plot(selected_row_indices, radio_value, # stack, url, data_loaded, rows): # if data_loaded is None: # return [] # data_id = int(re.search(r'data/(\d+)', url).group(1)) # try: # df = pd.read_pickle('cache/df' + str(data_id) + '.pkl') # except OSError: # return [] # meta_data = pd.DataFrame(rows) # print("distribution") # if len(selected_row_indices) != 0: # meta_data = meta_data.loc[selected_row_indices] # attributes = meta_data["Attribute"].values # types = meta_data["DataType"].values # # if len(attributes) == 0: # fig = make_subplots(rows=1, cols=1) # trace1 = go.Scatter(x=[0, 0, 0], y=[0, 0, 0]) # fig.append_trace(trace1, 1, 1) # else: # fig = make_subplots(rows=len(attributes), cols=1, # subplot_titles=attributes, # ) # i = 0 # for attribute in attributes: # show_legend = True if i == 0 else False # data = dist_plot(meta_data, attribute, types[i], # radio_value, data_id, show_legend, df) # i = i + 1 # for trace in data: # fig.append_trace(trace, i, 1) # # fig['layout'].update(hovermode='closest', # height=300 + (len(attributes) * 100), # barmode=stack, # font=dict(size=11)) # for i in fig['layout']['annotations']: # i['font']['size'] = 11 # #print(fig['layout']) # return html.Div(dcc.Graph(figure=fig), id="graph1") @app.callback( Output("table-graph", "children"), [ Input("datatable", "data"), Input("datatable", "selected_rows"), Input("url", "pathname"), Input("radio1", "value"), Input("stack", "value"), Input("dataloaded", "value"), ], ) @cache.memoize(timeout=TIMEOUT) def plot_table(rows, selected_row_indices, url, radio, stack, dataloaded): # If dataset is not downloaded yet if dataloaded is None: return [] logger.debug("loading pickle to create dist plot") # If pickle file is present data_id = int(re.search(r"data/(\d+)", url).group(1)) try: df = pd.read_pickle("cache/df" + str(data_id) + ".pkl") except OSError: return [] # Get selected rows from table meta_data = pd.DataFrame(rows) if len(selected_row_indices) != 0: meta_data = meta_data.loc[selected_row_indices] else: return "no selected rows" # Create distribution plots and align them as a table graph children = [] for index, row in meta_data.iterrows(): attribute = row["Attribute"] col1 = html.P(row["Attribute"]) show_legend = True if index == 0 else False data = dist_plot( meta_data, attribute, row["DataType"], radio, data_id, show_legend, df ) fig = go.Figure(data=data) fig["layout"].update( hovermode="closest", height=300, barmode=stack, font=dict(size=9) ) col2 = dcc.Graph(figure=fig) children.append(generate_metric_row(col1, col2)) out = html.Div( className="metric-rows", style={"overflowY": "scroll", "height": "500px", "marginBottom": "50px"}, children=children, ) logger.debug("distribution plot created") return out @app.callback( [Output("fi", "children"), Output("hidden", "value")], [Input("url", "pathname"), Input("dataloaded", "value")], [State("datatable", "data")], ) @cache.memoize(timeout=TIMEOUT) def feature_importance(url, dataloaded, rows): # If dataset is not loaded if dataloaded is None: return [], "No file" # Get dataset if pickle exists data_id = int(re.search(r"data/(\d+)", url).group(1)) try: df = pd.read_pickle("cache/df" + str(data_id) + ".pkl") except OSError: return [], "No file" # Get table of metadata meta_data =
pd.DataFrame(rows)
pandas.DataFrame
from __future__ import print_function, absolute_import import unittest, math import pandas as pd import numpy as np from . import * class T(base_pandas_extensions_tester.BasePandasExtensionsTester): def test_concat(self): df = pd.DataFrame({'c_1':['a', 'b', 'c'], 'c_2': ['d', 'e', 'f']}) df.engineer('concat(c_1, c_2)') self.assertTrue(np.array_equal(df['c_concat(c_1,c_2)'].values, np.array(['ad', 'be', 'cf'], 'object'))) def test_concat_3_cols(self): df = pd.DataFrame({'c_1':['a', 'b', 'c'], 'c_2': ['d', 'e', 'f'], 'c_3': ['h', 'i', 'j']}) df.engineer('concat(c_3, c_1, c_2)') self.assertTrue(np.array_equal(df['c_concat(c_3,c_1,c_2)'].values, np.array(['had', 'ibe', 'jcf'], 'object'))) def test_concat_with_numerical_col(self): df = pd.DataFrame({'c_1':['a', 'b', 'c'], 'n_2': [1, 2, 3]}) df.engineer('concat(c_1,n_2)') self.assertTrue(np.array_equal(df['c_concat(c_1,n_2)'].values, np.array(['a1', 'b2', 'c3'], 'object'))) def test_concat_with_numerical_col_3_cols(self): df = pd.DataFrame({'c_1':['a', 'b', 'c'], 'n_2': [1, 2, 3], 'n_3': [4, 5, 6]}) df.engineer('concat(n_3,c_1,n_2)') self.assertTrue(np.array_equal(df['c_concat(n_3,c_1,n_2)'].values, np.array(['4a1', '5b2', '6c3'], 'object'))) def test_multiplication(self): df = pd.DataFrame({'c_1':['a', 'b', 'c'], 'n_2': [1, 2, 3], 'n_3': [4, 5, 6], 'n_4': [7, 8, 9]}) df.engineer('mult(n_2, n_3)') self.assertTrue(np.array_equal(df['n_mult(n_2,n_3)'].values, np.array([4, 10, 18], long))) def test_multiplication_3_cols(self): df = pd.DataFrame({'c_1':['a', 'b', 'c'], 'n_2': [1, 2, 3], 'n_3': [4, 5, 6], 'n_4': [7, 8, 9]}) df.engineer('mult(n_2, n_3, n_4)') self.assertTrue(np.array_equal(df['n_mult(n_2,n_3,n_4)'].values, np.array([4*7, 80, 18*9], long))) def test_square_on_whole_data_frame(self): df = pd.DataFrame({'c_1':['a', 'b', 'c'], 'n_2': [1, 2, 3], 'n_3': [4, 5, 6], 'n_4': [7, 8, 9]}) df.engineer('pow(2)') np.testing.assert_array_equal(df.values, np.array([ ['a', 1, 4, 7, 1*1, 4*4, 7*7], ['b', 2, 5, 8, 2*2, 5*5, 8*8], ['c', 3, 6, 9, 3*3, 6*6, 9*9], ], 'object')) def test_square_on_cols(self): df = pd.DataFrame({'c_1':['a', 'b', 'c'], 'n_2': [1, 2, 3], 'n_3': [4, 5, 6], 'n_4': [7, 8, 9]}) df.engineer('pow(n_3, 2)') np.testing.assert_array_equal(df.values, np.array([ ['a', 1, 4, 7, 4*4], ['b', 2, 5, 8, 5*5], ['c', 3, 6, 9, 6*6], ], 'object')) def test_log_on_whole_data_frame(self): df = pd.DataFrame({'c_1':['a', 'b', 'c'], 'n_2': [1, 2, 3], 'n_3': [4, 5, 6], 'n_4': [7, 8, 9]}) df.engineer('lg()') self.assertTrue(np.array_equal(df.values, np.array([ ['a', 1, 4, 7, math.log(1), math.log(4), math.log(7)], ['b', 2, 5, 8, math.log(2), math.log(5), math.log(8)], ['c', 3, 6, 9, math.log(3), math.log(6), math.log(9)], ], 'object'))) def test_log_on_cols(self): df = pd.DataFrame({'c_1':['a', 'b', 'c'], 'n_2': [1, 2, 3], 'n_3': [4, 5, 6], 'n_4': [7, 8, 9]}) df.engineer('lg(n_3)') self.assertTrue(np.array_equal(df.values, np.array([ ['a', 1, 4, 7, math.log(4)], ['b', 2, 5, 8, math.log(5)], ['c', 3, 6, 9, math.log(6)], ], 'object'))) def test_sqrt_on_whole_data_frame(self): df = pd.DataFrame({'c_1':['a', 'b', 'c'], 'n_2': [1, 2, 3], 'n_3': [4, 5, 6], 'n_4': [7, 8, 9]}) df.engineer('sqrt()') self.assertTrue(np.array_equal(df.values, np.array([ ['a', 1, 4, 7, math.sqrt(1), math.sqrt(4), math.sqrt(7)], ['b', 2, 5, 8, math.sqrt(2), math.sqrt(5), math.sqrt(8)], ['c', 3, 6, 9, math.sqrt(3), math.sqrt(6), math.sqrt(9)], ], 'object'))) def test_sqrt_on_cols(self): df = pd.DataFrame({'c_1':['a', 'b', 'c'], 'n_2': [1, 2, 3], 'n_3': [4, 5, 6], 'n_4': [7, 8, 9]}) df.engineer('sqrt(n_3)') self.assertTrue(np.array_equal(df.values, np.array([ ['a', 1, 4, 7, math.sqrt(4)], ['b', 2, 5, 8, math.sqrt(5)], ['c', 3, 6, 9, math.sqrt(6)], ], 'object'))) def test_rolling_sum_on_single_col(self): df = pd.DataFrame({'n_1': [10, 12, 13, 15, 2, 12, 34]}) col = 'rolling_sum(n_1,3)' df.engineer(col) np.testing.assert_array_equal([np.nan, np.nan, 35, 40, 30, 29, 48], df['n_' + col]) def test_rolling_mean_on_single_col(self): df = pd.DataFrame({'n_1': [10, 12, 13, 15, 2, 12, 34]}) col = 'rolling_mean(n_1,3)' df.engineer(col) np.testing.assert_allclose([np.nan, np.nan, 11.66, 13.33, 10, 9.66, 16], df['n_' + col], rtol=1e-3) def test_rolling_median_on_single_col(self): df = pd.DataFrame({'n_1': [10, 12, 13, 15, 2, 12, 34]}) col = 'rolling_median(n_1,3)' df.engineer(col) np.testing.assert_array_equal([np.nan, np.nan, 12, 13, 13, 12, 12], df['n_' + col]) def test_rolling_min_on_single_col(self): df = pd.DataFrame({'n_1': [10, 12, 13, 15, 2, 12, 34]}) col = 'rolling_min(n_1,3)' df.engineer(col) np.testing.assert_array_equal([np.nan, np.nan, 10, 12, 2, 2, 2], df['n_' + col]) def test_rolling_max_on_single_col(self): df = pd.DataFrame({'n_1': [10, 12, 13, 15, 2, 12, 34]}) col = 'rolling_max(n_1,3)' df.engineer(col) np.testing.assert_array_equal([np.nan, np.nan, 13, 15, 15, 15, 34], df['n_' + col]) def test_rolling_std_on_single_col(self): df = pd.DataFrame({'n_1': [10, 12, 13, 15, 2, 12, 34]}) col = 'rolling_std(n_1,3)' df.engineer(col) np.testing.assert_allclose([np.nan, np.nan, 1.528, 1.528, 7, 6.807, 16.371], df['n_' + col], rtol=1e-3) def test_rolling_var_on_single_col(self): df = pd.DataFrame({'n_1': [10, 12, 13, 15, 2, 12, 34]}) col = 'rolling_var(n_1,3)' df.engineer(col) np.testing.assert_allclose([np.nan, np.nan, 2.333, 2.333, 49, 46.333, 268], df['n_' + col], rtol=1e-3) # Multiple Columns def test_rolling_sum_on_multi_cols(self): df = pd.DataFrame({'n_1': [10, 12, 13, 15, 2, 12, 34], 'n_2': [1, 2, 3, 5, 2, 2, 4]}) col = 'rolling_sum(3)' df.engineer(col) np.testing.assert_array_equal([np.nan, np.nan, 35, 40, 30, 29, 48], df['n_rolling_sum(n_1,3)']) np.testing.assert_array_equal([np.nan, np.nan, 6, 10, 10, 9, 8], df['n_rolling_sum(n_2,3)']) def test_rolling_mean_on_multi_cols(self): df = pd.DataFrame({'n_1': [10, 12, 13, 15, 2, 12, 34], 'n_2': [1, 2, 3, 5, 2, 2, 4]}) col = 'rolling_mean(3)' df.engineer(col) np.testing.assert_allclose([np.nan, np.nan, 11.66, 13.33, 10, 9.66, 16], df['n_rolling_mean(n_1,3)'], rtol=1e-3) np.testing.assert_allclose([np.nan, np.nan, 2, 3.333, 3.333, 3, 2.666], df['n_rolling_mean(n_2,3)'], rtol=1e-3) def test_rolling_median_on_multi_cols(self): df = pd.DataFrame({'n_1': [10, 12, 13, 15, 2, 12, 34], 'n_2': [1, 2, 3, 5, 2, 2, 4]}) col = 'rolling_median(3)' df.engineer(col) np.testing.assert_array_equal([np.nan, np.nan, 12, 13, 13, 12, 12], df['n_rolling_median(n_1,3)']) np.testing.assert_array_equal([np.nan, np.nan, 2, 3, 3, 2, 2], df['n_rolling_median(n_2,3)']) def test_rolling_min_on_multi_cols(self): df = pd.DataFrame({'n_1': [10, 12, 13, 15, 2, 12, 34], 'n_2': [1, 2, 3, 5, 2, 2, 4]}) col = 'rolling_min(3)' df.engineer(col) np.testing.assert_array_equal([np.nan, np.nan, 10, 12, 2, 2, 2], df['n_rolling_min(n_1,3)']) np.testing.assert_array_equal([np.nan, np.nan, 1, 2, 2, 2, 2], df['n_rolling_min(n_2,3)']) def test_rolling_max_on_multi_cols(self): df =
pd.DataFrame({'n_1': [10, 12, 13, 15, 2, 12, 34], 'n_2': [1, 2, 3, 5, 2, 2, 4]})
pandas.DataFrame
# -*- coding:utf-8 -*- """ 股票技术指标接口 Created on 2018/07/26 @author: Wangzili @group : ** @contact: <EMAIL> 所有指标中参数df为通过get_k_data获取的股票数据 """ import pandas as pd import numpy as np import itertools def ma(df, n=10): """ 移动平均线 Moving Average MA(N)=(第1日收盘价+第2日收盘价—+……+第N日收盘价)/N """ pv = pd.DataFrame() pv['date'] = df['date'] pv['v'] = df.close.rolling(n).mean() return pv def _ma(series, n): """ 移动平均 """ return series.rolling(n).mean() def md(df, n=10): """ 移动标准差 STD=S(CLOSE,N)=[∑(CLOSE-MA(CLOSE,N))^2/N]^0.5 """ _md = pd.DataFrame() _md['date'] = df.date _md["md"] = df.close.rolling(n).std(ddof=0) return _md def _md(series, n): """ 标准差MD """ return series.rolling(n).std(ddof=0) # 有时候会用ddof=1 def ema(df, n=12): """ 指数平均数指标 Exponential Moving Average 今日EMA(N)=2/(N+1)×今日收盘价+(N-1)/(N+1)×昨日EMA(N) EMA(X,N)=[2×X+(N-1)×EMA(ref(X),N]/(N+1) """ _ema = pd.DataFrame() _ema['date'] = df['date'] _ema['ema'] = df.close.ewm(ignore_na=False, span=n, min_periods=0, adjust=False).mean() return _ema def _ema(series, n): """ 指数平均数 """ return series.ewm(ignore_na=False, span=n, min_periods=0, adjust=False).mean() def macd(df, n=12, m=26, k=9): """ 平滑异同移动平均线(Moving Average Convergence Divergence) 今日EMA(N)=2/(N+1)×今日收盘价+(N-1)/(N+1)×昨日EMA(N) DIFF= EMA(N1)- EMA(N2) DEA(DIF,M)= 2/(M+1)×DIF +[1-2/(M+1)]×DEA(REF(DIF,1),M) MACD(BAR)=2×(DIF-DEA) return: osc: MACD bar / OSC 差值柱形图 DIFF - DEM diff: 差离值 dea: 讯号线 """ _macd = pd.DataFrame() _macd['date'] = df['date'] _macd['diff'] = _ema(df.close, n) - _ema(df.close, m) _macd['dea'] = _ema(_macd['diff'], k) _macd['macd'] = _macd['diff'] - _macd['dea'] return _macd def kdj(df, n=9): """ 随机指标KDJ N日RSV=(第N日收盘价-N日内最低价)/(N日内最高价-N日内最低价)×100% 当日K值=2/3前1日K值+1/3×当日RSV=SMA(RSV,M1) 当日D值=2/3前1日D值+1/3×当日K= SMA(K,M2) 当日J值=3 ×当日K值-2×当日D值 """ _kdj = pd.DataFrame() _kdj['date'] = df['date'] rsv = (df.close - df.low.rolling(n).min()) / (df.high.rolling(n).max() - df.low.rolling(n).min()) * 100 _kdj['k'] = sma(rsv, 3) _kdj['d'] = sma(_kdj.k, 3) _kdj['j'] = 3 * _kdj.k - 2 * _kdj.d return _kdj def rsi(df, n=6): """ 相对强弱指标(Relative Strength Index,简称RSI LC= REF(CLOSE,1) RSI=SMA(MAX(CLOSE-LC,0),N,1)/SMA(ABS(CLOSE-LC),N1,1)×100 SMA(C,N,M)=M/N×今日收盘价+(N-M)/N×昨日SMA(N) """ # pd.set_option('display.max_rows', 1000) _rsi = pd.DataFrame() _rsi['date'] = df['date'] px = df.close - df.close.shift(1) px[px < 0] = 0 _rsi['rsi'] = sma(px, n) / sma((df['close'] - df['close'].shift(1)).abs(), n) * 100 # def tmax(x): # if x < 0: # x = 0 # return x # _rsi['rsi'] = sma((df['close'] - df['close'].shift(1)).apply(tmax), n) / sma((df['close'] - df['close'].shift(1)).abs(), n) * 100 return _rsi def vrsi(df, n=6): """ 量相对强弱指标 VRSI=SMA(最大值(成交量-REF(成交量,1),0),N,1)/SMA(ABS((成交量-REF(成交量,1),N,1)×100% """ _vrsi = pd.DataFrame() _vrsi['date'] = df['date'] px = df['volume'] - df['volume'].shift(1) px[px < 0] = 0 _vrsi['vrsi'] = sma(px, n) / sma((df['volume'] - df['volume'].shift(1)).abs(), n) * 100 return _vrsi def boll(df, n=26, k=2): """ 布林线指标BOLL boll(26,2) MID=MA(N) 标准差MD=根号[∑(CLOSE-MA(CLOSE,N))^2/N] UPPER=MID+k×MD LOWER=MID-k×MD """ _boll = pd.DataFrame() _boll['date'] = df.date _boll['mid'] = _ma(df.close, n) _mdd = _md(df.close, n) _boll['up'] = _boll.mid + k * _mdd _boll['low'] = _boll.mid - k * _mdd return _boll def bbiboll(df, n=10, k=3): """ BBI多空布林线 bbiboll(10,3) BBI={MA(3)+ MA(6)+ MA(12)+ MA(24)}/4 标准差MD=根号[∑(BBI-MA(BBI,N))^2/N] UPR= BBI+k×MD DWN= BBI-k×MD """ # pd.set_option('display.max_rows', 1000) _bbiboll = pd.DataFrame() _bbiboll['date'] = df.date _bbiboll['bbi'] = (_ma(df.close, 3) + _ma(df.close, 6) + _ma(df.close, 12) + _ma(df.close, 24)) / 4 _bbiboll['md'] = _md(_bbiboll.bbi, n) _bbiboll['upr'] = _bbiboll.bbi + k * _bbiboll.md _bbiboll['dwn'] = _bbiboll.bbi - k * _bbiboll.md return _bbiboll def wr(df, n=14): """ 威廉指标 w&r WR=[最高值(最高价,N)-收盘价]/[最高值(最高价,N)-最低值(最低价,N)]×100% """ _wr = pd.DataFrame() _wr['date'] = df['date'] higest = df.high.rolling(n).max() _wr['wr'] = (higest - df.close) / (higest - df.low.rolling(n).min()) * 100 return _wr def bias(df, n=12): """ 乖离率 bias bias=[(当日收盘价-12日平均价)/12日平均价]×100% """ _bias = pd.DataFrame() _bias['date'] = df.date _mav = df.close.rolling(n).mean() _bias['bias'] = (np.true_divide((df.close - _mav), _mav)) * 100 # _bias["bias"] = np.vectorize(lambda x: round(Decimal(x), 4))(BIAS) return _bias def asi(df, n=5): """ 振动升降指标(累计震动升降因子) ASI # 同花顺给出的公式不完整就不贴出来了 """ _asi = pd.DataFrame() _asi['date'] = df.date _m = pd.DataFrame() _m['a'] = (df.high - df.close.shift()).abs() _m['b'] = (df.low - df.close.shift()).abs() _m['c'] = (df.high - df.low.shift()).abs() _m['d'] = (df.close.shift() - df.open.shift()).abs() _m['r'] = _m.apply(lambda x: x.a + 0.5 * x.b + 0.25 * x.d if max(x.a, x.b, x.c) == x.a else ( x.b + 0.5 * x.a + 0.25 * x.d if max(x.a, x.b, x.c) == x.b else x.c + 0.25 * x.d ), axis=1) _m['x'] = df.close - df.close.shift() + 0.5 * (df.close - df.open) + df.close.shift() - df.open.shift() _m['k'] = np.maximum(_m.a, _m.b) _asi['si'] = 16 * (_m.x / _m.r) * _m.k _asi["asi"] = _ma(_asi.si, n) return _asi def vr_rate(df, n=26): """ 成交量变异率 vr or vr_rate VR=(AVS+1/2CVS)/(BVS+1/2CVS)×100 其中: AVS:表示N日内股价上涨成交量之和 BVS:表示N日内股价下跌成交量之和 CVS:表示N日内股价不涨不跌成交量之和 """ _vr = pd.DataFrame() _vr['date'] = df['date'] _m = pd.DataFrame() _m['volume'] = df.volume _m['cs'] = df.close - df.close.shift(1) _m['avs'] = _m.apply(lambda x: x.volume if x.cs > 0 else 0, axis=1) _m['bvs'] = _m.apply(lambda x: x.volume if x.cs < 0 else 0, axis=1) _m['cvs'] = _m.apply(lambda x: x.volume if x.cs == 0 else 0, axis=1) _vr["vr"] = (_m.avs.rolling(n).sum() + 1 / 2 * _m.cvs.rolling(n).sum() ) / (_m.bvs.rolling(n).sum() + 1 / 2 * _m.cvs.rolling(n).sum()) * 100 return _vr def vr(df, n=5): """ 开市后平均每分钟的成交量与过去5个交易日平均每分钟成交量之比 量比:=V/REF(MA(V,5),1); 涨幅:=(C-REF(C,1))/REF(C,1)*100; 1)量比大于1.8,涨幅小于2%,现价涨幅在0—2%之间,在盘中选股的 选股:量比>1.8 AND 涨幅>0 AND 涨幅<2; """ _vr = pd.DataFrame() _vr['date'] = df.date _vr['vr'] = df.volume / _ma(df.volume, n).shift(1) _vr['rr'] = (df.close - df.close.shift(1)) / df.close.shift(1) * 100 return _vr def arbr(df, n=26): """ 人气意愿指标 arbr(26) N日AR=N日内(H-O)之和除以N日内(O-L)之和 其中,H为当日最高价,L为当日最低价,O为当日开盘价,N为设定的时间参数,一般原始参数日设定为26日 N日BR=N日内(H-CY)之和除以N日内(CY-L)之和 其中,H为当日最高价,L为当日最低价,CY为前一交易日的收盘价,N为设定的时间参数,一般原始参数日设定为26日。 """ _arbr = pd.DataFrame() _arbr['date'] = df.date _arbr['ar'] = (df.high - df.open).rolling(n).sum() / (df.open - df.low).rolling(n).sum() * 100 _arbr['br'] = (df.high - df.close.shift(1)).rolling(n).sum() / (df.close.shift() - df.low).rolling(n).sum() * 100 return _arbr def dpo(df, n=20, m=6): """ 区间震荡线指标 dpo(20,6) DPO=CLOSE-MA(CLOSE, N/2+1) MADPO=MA(DPO,M) """ _dpo = pd.DataFrame() _dpo['date'] = df['date'] _dpo['dpo'] = df.close - _ma(df.close, int(n / 2 + 1)) _dpo['dopma'] = _ma(_dpo.dpo, m) return _dpo def trix(df, n=12, m=20): """ 三重指数平滑平均 TRIX(12) TR= EMA(EMA(EMA(CLOSE,N),N),N),即进行三次平滑处理 TRIX=(TR-昨日TR)/ 昨日TR×100 TRMA=MA(TRIX,M) """ _trix = pd.DataFrame() _trix['date'] = df.date tr = _ema(_ema(_ema(df.close, n), n), n) _trix['trix'] = (tr - tr.shift()) / tr.shift() * 100 _trix['trma'] = _ma(_trix.trix, m) return _trix def bbi(df): """ 多空指数 BBI(3,6,12,24) BBI=(3日均价+6日均价+12日均价+24日均价)/4 """ _bbi = pd.DataFrame() _bbi['date'] = df['date'] _bbi['bbi'] = (_ma(df.close, 3) + _ma(df.close, 6) + _ma(df.close, 12) + _ma(df.close, 24)) / 4 return _bbi def mtm(df, n=6, m=5): """ 动力指标 MTM(6,5) MTM(N日)=C-REF(C,N)式中,C=当日的收盘价,REF(C,N)=N日前的收盘价;N日是只计算交易日期,剔除掉节假日。 MTMMA(MTM,N1)= MA(MTM,N1) N表示间隔天数,N1表示天数 """ _mtm = pd.DataFrame() _mtm['date'] = df.date _mtm['mtm'] = df.close - df.close.shift(n) _mtm['mtmma'] = _ma(_mtm.mtm, m) return _mtm def obv(df): """ 能量潮 On Balance Volume 多空比率净额= [(收盘价-最低价)-(最高价-收盘价)] ÷( 最高价-最低价)×V # 同花顺貌似用的下面公式 主公式:当日OBV=前一日OBV+今日成交量 1.基期OBV值为0,即该股上市的第一天,OBV值为0 2.若当日收盘价>上日收盘价,则当日OBV=前一日OBV+今日成交量 3.若当日收盘价<上日收盘价,则当日OBV=前一日OBV-今日成交量 4.若当日收盘价=上日收盘价,则当日OBV=前一日OBV """ _obv = pd.DataFrame() _obv["date"] = df['date'] # tmp = np.true_divide(((df.close - df.low) - (df.high - df.close)), (df.high - df.low)) # _obv['obvv'] = tmp * df.volume # _obv["obv"] = _obv.obvv.expanding(1).sum() / 100 _m = pd.DataFrame() _m['date'] = df.date _m['cs'] = df.close - df.close.shift() _m['v'] = df.volume _m['vv'] = _m.apply(lambda x: x.v if x.cs > 0 else (-x.v if x.cs < 0 else 0), axis=1) _obv['obv'] = _m.vv.expanding(1).sum() return _obv def cci(df, n=14): """ 顺势指标 TYP:=(HIGH+LOW+CLOSE)/3 CCI:=(TYP-MA(TYP,N))/(0.015×AVEDEV(TYP,N)) """ _cci = pd.DataFrame() _cci["date"] = df['date'] typ = (df.high + df.low + df.close) / 3 _cci['cci'] = ((typ - typ.rolling(n).mean()) / (0.015 * typ.rolling(min_periods=1, center=False, window=n).apply( lambda x: np.fabs(x - x.mean()).mean()))) return _cci def priceosc(df, n=12, m=26): """ 价格振动指数 PRICEOSC=(MA(C,12)-MA(C,26))/MA(C,12) * 100 """ _c = pd.DataFrame() _c['date'] = df['date'] man = _ma(df.close, n) _c['osc'] = (man - _ma(df.close, m)) / man * 100 return _c def sma(a, n, m=1): """ 平滑移动指标 Smooth Moving Average """ ''' # 方法一,此方法有缺陷 _sma = [] for index, value in enumerate(a): if index == 0 or pd.isna(value) or np.isnan(value): tsma = 0 else: # Y=(M*X+(N-M)*Y')/N tsma = (m * value + (n - m) * tsma) / n _sma.append(tsma) return pd.Series(_sma) ''' ''' # 方法二 results = np.nan_to_num(a).copy() # FIXME this is very slow for i in range(1, len(a)): results[i] = (m * results[i] + (n - m) * results[i - 1]) / n # results[i] = ((n - 1) * results[i - 1] + results[i]) / n # return results ''' # b = np.nan_to_num(a).copy() # return ((n - m) * a.shift(1) + m * a) / n a = a.fillna(0) b = a.ewm(min_periods=0, ignore_na=False, adjust=False, alpha=m/n).mean() return b def dbcd(df, n=5, m=16, t=76): """ 异同离差乖离率 dbcd(5,16,76) BIAS=(C-MA(C,N))/MA(C,N) DIF=(BIAS-REF(BIAS,M)) DBCD=SMA(DIF,T,1) =(1-1/T)×SMA(REF(DIF,1),T,1)+ 1/T×DIF MM=MA(DBCD,5) """ _dbcd = pd.DataFrame() _dbcd['date'] = df.date man = _ma(df.close, n) _bias = (df.close - man) / man _dif = _bias - _bias.shift(m) _dbcd['dbcd'] = sma(_dif, t) _dbcd['mm'] = _ma(_dbcd.dbcd, n) return _dbcd def roc(df, n=12, m=6): """ 变动速率 roc(12,6) ROC=(今日收盘价-N日前的收盘价)/ N日前的收盘价×100% ROCMA=MA(ROC,M) ROC:(CLOSE-REF(CLOSE,N))/REF(CLOSE,N)×100 ROCMA:MA(ROC,M) """ _roc = pd.DataFrame() _roc['date'] = df['date'] _roc['roc'] = (df.close - df.close.shift(n))/df.close.shift(n) * 100 _roc['rocma'] = _ma(_roc.roc, m) return _roc def vroc(df, n=12): """ 量变动速率 VROC=(当日成交量-N日前的成交量)/ N日前的成交量×100% """ _vroc = pd.DataFrame() _vroc['date'] = df['date'] _vroc['vroc'] = (df.volume - df.volume.shift(n)) / df.volume.shift(n) * 100 return _vroc def cr(df, n=26): """ 能量指标 CR=∑(H-PM)/∑(PM-L)×100 PM:上一交易日中价((最高、最低、收盘价的均值) H:当天最高价 L:当天最低价 """ _cr = pd.DataFrame() _cr['date'] = df.date # pm = ((df['high'] + df['low'] + df['close']) / 3).shift(1) pm = (df[['high', 'low', 'close']]).mean(axis=1).shift(1) _cr['cr'] = (df.high - pm).rolling(n).sum()/(pm - df.low).rolling(n).sum() * 100 return _cr def psy(df, n=12): """ 心理指标 PSY(12) PSY=N日内上涨天数/N×100 PSY:COUNT(CLOSE>REF(CLOSE,1),N)/N×100 MAPSY=PSY的M日简单移动平均 """ _psy = pd.DataFrame() _psy['date'] = df.date p = df.close - df.close.shift() p[p <= 0] = np.nan _psy['psy'] = p.rolling(n).count() / n * 100 return _psy def wad(df, n=30): """ 威廉聚散指标 WAD(30) TRL=昨日收盘价与今日最低价中价格最低者;TRH=昨日收盘价与今日最高价中价格最高者 如果今日的收盘价>昨日的收盘价,则今日的A/D=今日的收盘价-今日的TRL 如果今日的收盘价<昨日的收盘价,则今日的A/D=今日的收盘价-今日的TRH 如果今日的收盘价=昨日的收盘价,则今日的A/D=0 WAD=今日的A/D+昨日的WAD;MAWAD=WAD的M日简单移动平均 """ def dmd(x): if x.c > 0: y = x.close - x.trl elif x.c < 0: y = x.close - x.trh else: y = 0 return y _wad = pd.DataFrame() _wad['date'] = df['date'] _ad = pd.DataFrame() _ad['trl'] = np.minimum(df.low, df.close.shift(1)) _ad['trh'] = np.maximum(df.high, df.close.shift(1)) _ad['c'] = df.close - df.close.shift() _ad['close'] = df.close _ad['ad'] = _ad.apply(dmd, axis=1) _wad['wad'] = _ad.ad.expanding(1).sum() _wad['mawad'] = _ma(_wad.wad, n) return _wad def mfi(df, n=14): """ 资金流向指标 mfi(14) MF=TYP×成交量;TYP:当日中价((最高、最低、收盘价的均值) 如果当日TYP>昨日TYP,则将当日的MF值视为当日PMF值。而当日NMF值=0 如果当日TYP<=昨日TYP,则将当日的MF值视为当日NMF值。而当日PMF值=0 MR=∑PMF/∑NMF MFI=100-(100÷(1+MR)) """ _mfi = pd.DataFrame() _mfi['date'] = df.date _m = pd.DataFrame() _m['typ'] = df[['high', 'low', 'close']].mean(axis=1) _m['mf'] = _m.typ * df.volume _m['typ_shift'] = _m.typ - _m.typ.shift(1) _m['pmf'] = _m.apply(lambda x: x.mf if x.typ_shift > 0 else 0, axis=1) _m['nmf'] = _m.apply(lambda x: x.mf if x.typ_shift <= 0 else 0, axis=1) # _mfi['mfi'] = 100 - (100 / (1 + _m.pmf.rolling(n).sum() / _m.nmf.rolling(n).sum())) _m['mr'] = _m.pmf.rolling(n).sum() / _m.nmf.rolling(n).sum() _mfi['mfi'] = 100 * _m.mr / (1 + _m.mr) # 同花顺自己给出的公式和实际用的公式不一样,真操蛋,浪费两个小时时间 return _mfi def pvt(df): """ pvt 量价趋势指标 pvt 如果设x=(今日收盘价—昨日收盘价)/昨日收盘价×当日成交量, 那么当日PVT指标值则为从第一个交易日起每日X值的累加。 """ _pvt = pd.DataFrame() _pvt['date'] = df.date x = (df.close - df.close.shift(1)) / df.close.shift(1) * df.volume _pvt['pvt'] = x.expanding(1).sum() return _pvt def wvad(df, n=24, m=6): """ # 算法是对的,同花顺计算wvad用的n=6 威廉变异离散量 wvad(24,6) WVAD=N1日的∑ {(当日收盘价-当日开盘价)/(当日最高价-当日最低价)×成交量} MAWVAD=MA(WVAD,N2) """ _wvad = pd.DataFrame() _wvad['date'] = df.date # _wvad['wvad'] = (np.true_divide((df.close - df.open), (df.high - df.low)) * df.volume).rolling(n).sum() _wvad['wvad'] = (np.true_divide((df.close - df.open), (df.high - df.low)) * df.volume).rolling(n).sum() _wvad['mawvad'] = _ma(_wvad.wvad, m) return _wvad def cdp(df): """ 逆势操作 cdp CDP=(最高价+最低价+收盘价)/3 # 同花顺实际用的(H+L+2*c)/4 AH=CDP+(前日最高价-前日最低价) NH=CDP×2-最低价 NL=CDP×2-最高价 AL=CDP-(前日最高价-前日最低价) """ _cdp = pd.DataFrame() _cdp['date'] = df.date # _cdp['cdp'] = (df.high + df.low + df.close * 2).shift(1) / 4 _cdp['cdp'] = df[['high', 'low', 'close', 'close']].shift().mean(axis=1) _cdp['ah'] = _cdp.cdp + (df.high.shift(1) - df.low.shift()) _cdp['al'] = _cdp.cdp - (df.high.shift(1) - df.low.shift()) _cdp['nh'] = _cdp.cdp * 2 - df.low.shift(1) _cdp['nl'] = _cdp.cdp * 2 - df.high.shift(1) return _cdp def env(df, n=14): """ ENV指标 ENV(14) Upper=MA(CLOSE,N)×1.06 LOWER= MA(CLOSE,N)×0.94 """ _env = pd.DataFrame() _env['date'] = df.date _env['up'] = df.close.rolling(n).mean() * 1.06 _env['low'] = df.close.rolling(n).mean() * 0.94 return _env def mike(df, n=12): """ 麦克指标 mike(12) 初始价(TYP)=(当日最高价+当日最低价+当日收盘价)/3 HV=N日内区间最高价 LV=N日内区间最低价 初级压力线(WR)=TYP×2-LV 中级压力线(MR)=TYP+HV-LV 强力压力线(SR)=2×HV-LV 初级支撑线(WS)=TYP×2-HV 中级支撑线(MS)=TYP-HV+LV 强力支撑线(SS)=2×LV-HV """ _mike = pd.DataFrame() _mike['date'] = df.date typ = df[['high', 'low', 'close']].mean(axis=1) hv = df.high.rolling(n).max() lv = df.low.rolling(n).min() _mike['wr'] = typ * 2 - lv _mike['mr'] = typ + hv - lv _mike['sr'] = 2 * hv - lv _mike['ws'] = typ * 2 - hv _mike['ms'] = typ - hv + lv _mike['ss'] = 2 * lv - hv return _mike def vma(df, n=5): """ 量简单移动平均 VMA(5) VMA=MA(volume,N) VOLUME表示成交量;N表示天数 """ _vma = pd.DataFrame() _vma['date'] = df.date _vma['vma'] = _ma(df.volume, n) return _vma def vmacd(df, qn=12, sn=26, m=9): """ 量指数平滑异同平均 vmacd(12,26,9) 今日EMA(N)=2/(N+1)×今日成交量+(N-1)/(N+1)×昨日EMA(N) DIFF= EMA(N1)- EMA(N2) DEA(DIF,M)= 2/(M+1)×DIF +[1-2/(M+1)]×DEA(REF(DIF,1),M) MACD(BAR)=2×(DIF-DEA) """ _vmacd = pd.DataFrame() _vmacd['date'] = df.date _vmacd['diff'] = _ema(df.volume, qn) - _ema(df.volume, sn) _vmacd['dea'] = _ema(_vmacd['diff'], m) # TODO: 不能用_vmacd.diff, 不知道为什么 _vmacd['macd'] = (_vmacd['diff'] - _vmacd['dea']) return _vmacd def vosc(df, n=12, m=26): """ 成交量震荡 vosc(12,26) VOSC=(MA(VOLUME,SHORT)- MA(VOLUME,LONG))/MA(VOLUME,SHORT)×100 """ _c = pd.DataFrame() _c['date'] = df['date'] _c['osc'] = (_ma(df.volume, n) - _ma(df.volume, m)) / _ma(df.volume, n) * 100 return _c def tapi(df, n=6): """ # TODO: 由于get_k_data返回数据中没有amount,可以用get_h_data中amount,算法是正确的 加权指数成交值 tapi(6) TAPI=每日成交总值/当日加权指数=a/PI;A表示每日的成交金额,PI表示当天的股价指数即指收盘价 """ _tapi = pd.DataFrame() # _tapi['date'] = df.date _tapi['tapi'] = df.amount / df.close _tapi['matapi'] = _ma(_tapi.tapi, n) return _tapi def vstd(df, n=10): """ 成交量标准差 vstd(10) VSTD=STD(Volume,N)=[∑(Volume-MA(Volume,N))^2/N]^0.5 """ _vstd = pd.DataFrame() _vstd['date'] = df.date _vstd['vstd'] = df.volume.rolling(n).std(ddof=1) return _vstd def adtm(df, n=23, m=8): """ 动态买卖气指标 adtm(23,8) 如果开盘价≤昨日开盘价,DTM=0 如果开盘价>昨日开盘价,DTM=(最高价-开盘价)和(开盘价-昨日开盘价)的较大值 如果开盘价≥昨日开盘价,DBM=0 如果开盘价<昨日开盘价,DBM=(开盘价-最低价) STM=DTM在N日内的和 SBM=DBM在N日内的和 如果STM > SBM,ADTM=(STM-SBM)/STM 如果STM < SBM , ADTM = (STM-SBM)/SBM 如果STM = SBM,ADTM=0 ADTMMA=MA(ADTM,M) """ _adtm = pd.DataFrame() _adtm['date'] = df.date _m = pd.DataFrame() _m['cc'] = df.open - df.open.shift(1) _m['ho'] = df.high - df.open _m['ol'] = df.open - df.low _m['dtm'] = _m.apply(lambda x: max(x.ho, x.cc) if x.cc > 0 else 0, axis=1) _m['dbm'] = _m.apply(lambda x: x.ol if x.cc < 0 else 0, axis=1) _m['stm'] = _m.dtm.rolling(n).sum() _m['sbm'] = _m.dbm.rolling(n).sum() _m['ss'] = _m.stm - _m.sbm _adtm['adtm'] = _m.apply(lambda x: x.ss / x.stm if x.ss > 0 else (x.ss / x.sbm if x.ss < 0 else 0), axis=1) _adtm['adtmma'] = _ma(_adtm.adtm, m) return _adtm def mi(df, n=12): """ 动量指标 mi(12) A=CLOSE-REF(CLOSE,N) MI=SMA(A,N,1) """ _mi = pd.DataFrame() _mi['date'] = df.date _mi['mi'] = sma(df.close - df.close.shift(n), n) return _mi def micd(df, n=3, m=10, k=20): """ 异同离差动力指数 micd(3,10,20) MI=CLOSE-ref(CLOSE,1)AMI=SMA(MI,N1,1) DIF=MA(ref(AMI,1),N2)-MA(ref(AMI,1),N3) MICD=SMA(DIF,10,1) """ _micd =
pd.DataFrame()
pandas.DataFrame
import numpy as np import pandas as pd import matplotlib.pyplot as plt import re ''' Perform "eco-exceedance" analysis for functional flow data on the Merced River and produce figures ''' def eco_endpoints(ffc_data, rh_data): # define the eco endpoints. 5-95th of control. table of endpoints for each ffm for model_index, model in enumerate(ffc_data): model['ffc_metrics'] = model['ffc_metrics'].apply(pd.to_numeric, errors='coerce') if model['gage_id'] == 'SACSMA_CTR_T0P0S0E0I0': control = ffc_data[model_index]['ffc_metrics'] metrics = ffc_data[0]['ffc_metrics'].index eco_5 = [] eco_95 = [] eco_min = [] eco_max = [] for metric in metrics: eco_5.append(np.nanquantile(control.loc[metric], 0.05)) eco_95.append(np.nanquantile(control.loc[metric], 0.95)) eco_min.append(np.nanmin(control.loc[metric])) eco_max.append(np.nanmax(control.loc[metric])) endpoints = pd.DataFrame(data=[eco_5, eco_95, eco_min, eco_max, metrics], index = ['eco_5', 'eco_95', 'eco_min', 'eco_max', 'metrics']) endpoints = endpoints.transpose() endpoints = endpoints.set_index(keys='metrics') # define hydrograph trace to overlay in plot for model_index, model in enumerate(rh_data): if model['name'] == 'SACSMA_CTR_T0P0S0E0I0': model['data'] = model['data'].apply(pd.to_numeric, errors='coerce') hydrograph_ctrl = model['data']['1979'] def eco_endpoints_plot(ffc_data, endpoints, hydrograph_ctrl): fig, ax = plt.subplots() tim_metric = 'FA_Tim' # FA_Tim, SP_Tim, Wet_Tim, DS_Tim mag_metric = 'FA_Mag' # FA_Mag, SP_Mag, Wet_BFL_Mag_50, DS_Mag_50 param = 'Seasonal intensity' season = 'Fall Pulse eco-exceedance' # Fall Pulse, Spring Recession, Wet Season, Dry Season eco-exceedance for model in ffc_data: plt_color = 'grey' colors_dict_temp = {'1':'mistyrose', '2':'lightcoral', '3':'crimson', '4':'firebrick', '5':'darkred'} colors_dict_precip = {'-30':'darkred', '-20':'crimson', '-10':'lightcoral', '10':'dodgerblue', '20':'blue', '30':'darkblue'} colors_dict_int = {'1':'#D9FFBF', '2':'#85CC6F', '3':'#6AB155', '4':'green', '5':'darkgreen'} # for key in enumerate(colors_dict_int): # import pdb; pdb.set_trace() if model['gage_id'].find('OAT') >= 0: # check if it is an OAT model if model['gage_id'][10] == 'T': plt_marker = 'o' plt_color_key = model['gage_id'].split('_')[2][1] plt_color = colors_dict_temp[plt_color_key] plt_label = 'temperature' elif model['gage_id'][10] == 'P': plt_marker = '^' plt_color_key = re.findall(r'P([0-9.-]*[0-9]+)', model['gage_id'])[0] plt_color = colors_dict_precip[plt_color_key] plt_label = 'precipitation volume' elif model['gage_id'][10] == 'S': plt_marker = 'p' plt_color_key = re.findall(r'S([0-9.-]*[0-9]+)', model['gage_id'])[0] plt_color = colors_dict_int[plt_color_key] plt_label = 'seasonal variability' elif model['gage_id'][10] == 'E': plt_marker = 'X' plt_color_key = re.findall(r'E([0-9.-]*[0-9]+)', model['gage_id'])[0] plt_color = colors_dict_int[plt_color_key] plt_label = 'event intensity' elif model['gage_id'][10] == 'I': plt_marker = 'd' plt_color_key = re.findall(r'I([0-9.-]*[0-9]+)', model['gage_id'])[0] plt_color = colors_dict_int[plt_color_key] plt_label = 'interannual variability' elif model['gage_id'].find('EXT') >= 0: plt_marker = 'o' plt_color = 'black' plt_label = 'extreme end scenarios' elif model['gage_id'].find('MID') >= 0: plt_marker = 'o' plt_color = 'grey' plt_label = 'mid-range scenarios' elif model['gage_id'].find('CTR') >= 0: continue # import pdb; pdb.set_trace() x = model['ffc_metrics'].loc[tim_metric] y = model['ffc_metrics'].loc[mag_metric] # ax.scatter(x, y, color=plt_color, marker = plt_marker, alpha=0.3, label = plt_label) if model['gage_id'] in ('SACSMA_OATT_T5P0S0E0I0', 'SACSMA_OATP_T0P30S0E0I0', 'SACSMA_OATS_T0P0S5E0I0', 'SACSMA_OATE_T0P0S0E5I0',\ 'SACSMA_OATI_T0P0S0E0I5', 'SACSMA_EXT_T0P30S5E5I5', 'SACSMA_MID_T3.4P3.4I1.7'): ax.scatter(x, y, color=plt_color, marker = plt_marker, alpha=0.5, label = plt_label) else: ax.scatter(x, y, color=plt_color, marker = plt_marker, alpha=0.5) # add min/max endpoints plt.vlines(endpoints['eco_5'][tim_metric], ymin=endpoints['eco_5'][mag_metric], ymax=endpoints['eco_95'][mag_metric], color='black') plt.vlines(endpoints['eco_95'][tim_metric], ymin=endpoints['eco_5'][mag_metric], ymax=endpoints['eco_95'][mag_metric], color='black') plt.hlines(endpoints['eco_5'][mag_metric], xmin=endpoints['eco_5'][tim_metric], xmax=endpoints['eco_95'][tim_metric], label='10-90% control', color='black') plt.hlines(endpoints['eco_95'][mag_metric], xmin=endpoints['eco_5'][tim_metric], xmax=endpoints['eco_95'][tim_metric], color='black') plt.vlines(endpoints['eco_min'][tim_metric], ymin=endpoints['eco_min'][mag_metric], ymax=endpoints['eco_max'][mag_metric], alpha=0.5, linestyles='dashed', color='black') plt.vlines(endpoints['eco_max'][tim_metric], ymin=endpoints['eco_min'][mag_metric], ymax=endpoints['eco_max'][mag_metric], alpha=0.5, linestyles='dashed', color='black') plt.hlines(endpoints['eco_min'][mag_metric], xmin=endpoints['eco_min'][tim_metric], xmax=endpoints['eco_max'][tim_metric], label='Full range control', alpha=0.5, linestyles='dashed', color='black') plt.hlines(endpoints['eco_max'][mag_metric], xmin=endpoints['eco_min'][tim_metric], xmax=endpoints['eco_max'][tim_metric], alpha=0.5, linestyles='dashed', color='black') # add hydrograph trace over top plt.plot(hydrograph_ctrl, color='goldenrod', linewidth=2) month_ticks = [0,32,60,91,121,152,182,213,244,274,305,335] month_labels = ['Oct', 'Nov', 'Dec', 'Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep'] plt.xticks(month_ticks, month_labels) plt.yticks() ax.set_ylabel('Flow (cfs)') plt.title(season) ax.legend(loc='upper right') # legend on for Fall Pulse plt.yscale('symlog', linthreshy=10000) # use this for spring and fall plots plt.ylim([-200, 120000]) # -200,120000 for fall pulse, -200,170000 for spring, -200, 15000 for wet, -200, 9000 for dry plt.xlim([-10,380]) # -10,380 for fall/spring/wet/dry plt.savefig('data_outputs/plots/eco_exceedance/fall_pulse.pdf', dpi=1200) plt.show() plots = eco_endpoints_plot(ffc_data, endpoints, hydrograph_ctrl) # For each model, determine %exceedance over eco endpoints. (for each metric) model_name = [] total_exceedance = [] annual_metrics = [] fall_pulse = [] wet_season = [] peak_flows = [] spring_recession = [] dry_season = [] metrics = metrics.drop(['Peak_5', 'Peak_10', 'Peak_Dur_2', 'Peak_Dur_5', 'Peak_Dur_10', 'Peak_Fre_2', 'Peak_Fre_5', 'Peak_Fre_10', 'Std', 'DS_No_Flow']) for model_index, model in enumerate(ffc_data): # enter model name into table model_name.append(model['gage_id']) # create a dict/table and fill with control-based eco limits for each metric - done! endpoints. # create a dict/table and fill with calc eco exceedance for each metric of model dict = {} for metric in metrics: count = 0 for val in model['ffc_metrics'].loc[metric]: if val < endpoints['eco_min'][metric] or val > endpoints['eco_max'][metric]: count += 1 dict[metric] = count/len(model['ffc_metrics'].loc[metric]) total_exceedance.append(sum(dict.values()) / len(dict) * 100) annual_metrics.append(sum([dict['Avg'], dict['CV']]) / 2 * 100) fall_pulse.append(sum([dict['FA_Mag'], dict['FA_Dur'], dict['FA_Tim']]) / 3 * 100) wet_season.append(sum([dict['Wet_BFL_Mag_10'], dict['Wet_BFL_Mag_50'], dict['Wet_Tim'], dict['Wet_BFL_Dur']]) / 4 * 100) peak_flows.append(dict['Peak_2'] * 100) spring_recession.append(sum([dict['SP_Mag'], dict['SP_Tim'], dict['SP_Dur'], dict['SP_ROC']]) / 4 * 100) dry_season.append(sum([dict['DS_Mag_50'], dict['DS_Mag_90'], dict['DS_Tim'], dict['DS_Dur_WS']]) / 4 * 100) data = {'model_name':model_name, 'total_exceedance':total_exceedance, 'annual_metrics':annual_metrics, 'fall_pulse':fall_pulse, \ 'wet_season':wet_season, 'peak_flows':peak_flows, 'spring_recession':spring_recession, 'dry_season':dry_season} df =
pd.DataFrame(data)
pandas.DataFrame
#!/usr/bin/env python3 """ Prep sam compare data for Bayesian Machine Logic: * group df by sample, * only keep samples with more than 2 reps * summarize columns * filtering * calculate: * total_reads_counted * both total * g1_total * g2 total * ase total * for each rep, if APN > input then * flag_APN = 1 (flag_APN = 0 if APN < input, flag_APN = -1 if APN < 0) * if flag_APN = 1 for at least 1 of the reps the * flag_analyze = 1 * merge reps together """ import argparse import os import pandas as pd import numpy as np from functools import reduce DEBUG = False def getOptions(): parser = argparse.ArgumentParser(description="Return best row in blast scores file") parser.add_argument( "-o", "--output", dest="output", action="store", required=True, help="Output directory for filtered ase counts", ) parser.add_argument( "-collection_identifiers", "--collection_identifiers", dest="collection_identifiers", action="store", required=True, help="Input original names [Required]", ) parser.add_argument( "-collection_filenames", "--collection_filenames", dest="collection_filenames", action="store", required=True, help="Input galaxy names [Required]", ) parser.add_argument( "-d", "--design", dest="design", action="store", required=True, help="Design file", ) parser.add_argument( "-p1", "--parent1", dest="parent1", action="store", required=True, help="Column containing parent 1 genome, G1", ) parser.add_argument( "-p2", "--parent2", dest="parent2", action="store", required=True, help="Column containing parent 2 genome, G2", ) parser.add_argument( "-s", "--sampleCol", dest="sampleCol", action="store", required=True, help="Column containing sample names, no rep info", ) parser.add_argument( "-id", "--sampleIDCol", dest="sampleIDCol", action="store", required=True, help="Column containing sampleID names, has rep info", ) parser.add_argument( "-a", "--apn", dest="apn", action="store", required=True, type=int, help="APN (average per nucleotide) value for flagging a feature as found and analyzable", ) parser.add_argument( "--debug", action="store_true", default=False, help="Print debugging output" ) args = parser.parse_args() return args def main(): """Main Function""" args = getOptions() global DEBUG if args.debug: DEBUG = True identifiers = [i.strip() for i in args.collection_identifiers.split(",")] filenames = [i.strip() for i in args.collection_filenames.split(",")] input_dict = dict(zip(identifiers, filenames)) # Read in design file as dataframe (as a TSV file) df_design =
pd.read_table(args.design, header=0)
pandas.read_table
""" This modules contains utility functions for data manipulation and plotting of results and data """ import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.metrics import r2_score import torch ####################################################### # Data Utilities ####################################################### def load_trained_model(previous_model, model, optimizer): checkpoint = torch.load(previous_model) start_epoch = checkpoint['epoch'] model.load_state_dict(checkpoint['state_dict']) optimizer.load_state_dict(checkpoint['optimizer']) model.eval() return model, optimizer def save_trained_model(save_path, epoch, model, optimizer, train_loss, test_loss): save_dict = { 'epoch': epoch, 'state_dict': model.state_dict(), # 'train_losses': train_loss # 'test_losses': [pce_test_loss, voc_test_loss, # jsc_test_loss, ff_test_loss] 'optimizer': optimizer.state_dict() } torch.save(save_dict, save_path) return def df_MinMax_normalize(dataframe): df = dataframe normed_df =
pd.DataFrame()
pandas.DataFrame
import collections import json import os from datetime import time import random from tqdm import tqdm from main import cvtCsvDataframe import pickle import numpy as np import pandas as pd import random import networkx as nx import time from main import FPGrowth from shopping import Shopping, Cell import main # QoL for display pd.set_option('display.max_columns', 30) def encodeData(): df = pd.read_csv('products.txt', delimiter="\t") dataHere = df['Nome'].str.strip() indexes = [x for x in range(0,len(dataHere))] df['ID'] = indexes #print(data.to_numpy()) return df products = encodeData() ''' It is suppose to simulate N amount of shopping trips given test wishlists and staminas. 1 - Create a shopping with the given configuration 2 - Generate N random wishlists and their stamina 3 - Simulate each one and save the results 4 - Analyse the supermarket profit ''' class SoS: def __init__(self, configuration, staminaDistr,explanations): self.shoppingClass = Shopping([23,21],configuration) #self.shoppingClass.changeShoppingConfig(configuration) self.shopping = self.shoppingClass.shopping self.staminaDistr = staminaDistr self.explanations = explanations self.auxNeighbors = self.getAuxNeighbors() self.auxNeighborsPrimary = self.getAuxNeighborsPrimary() data, explanations = cvtCsvDataframe(pd.read_csv("data.csv"), pd.read_csv("explanations.csv")) mergedReceiptExplanations = pd.merge(data, explanations, on='receiptID', how='outer') self.boughtAndWishlist = mergedReceiptExplanations[['PRODUCTS', 'WISHLIST']].to_numpy() def generateCustomers(self, samples): ''' :return: Returns a sample of random customers with stamina and wishlist ''' customers = [] wishlists = list(self.explanations['WISHLIST'].to_numpy()) randomWishlists = random.sample(wishlists,samples) staminas = self.staminaDistr.sample(samples) for i, j in zip(randomWishlists,staminas): customers.append((i,int(j))) return customers def findNeighbors(self, currentCell, typeSearch): ''' :param currentCell: Current cell to search :param typeSearch: Type of search 1 - Halls 2- Shelves :return: Return the neighbors ''' neighbors = [] try: #If there are neighbors in the top if currentCell[0] > 0: #Get the top neighbor neighbors.append(self.shopping[currentCell[0] - 1][currentCell[1]].id) #If there are neighbors on the left if currentCell[1] > 0: neighbors.append(self.shopping[currentCell[0]][currentCell[1] - 1].id) #If there are neighbors on the right if currentCell[1] < self.shopping.shape[1]: neighbors.append(self.shopping[currentCell[0]][currentCell[1] + 1].id) #If there are neighbors on the bottom if currentCell[0] < self.shopping.shape[0]: neighbors.append(self.shopping[currentCell[0] + 1][currentCell[1]].id) except: pass aux = [] if typeSearch == 1: notToAdd = [1,461,483,23] for i in neighbors: if i not in self.shoppingClass.config and i not in notToAdd: aux.append(i) else: notToAdd = [1, 461, 483, 23] for i in neighbors: if i in self.shoppingClass.config and i not in notToAdd: aux.append(i) return aux def findClosestProduct(self, item): ''' :param item: Receives an item to search for :return: Returns the closest product path there is ''' size = self.shopping.shape allPathsToItem = [] for j in range(size[1]): for i in range(size[0]): if self.shopping[i][j].product == item: pathsToThisCell = self.auxNeighborsPrimary[f"[{i},{j}]"] for s in pathsToThisCell: allPathsToItem.append(s) pathsLenght = [] paths = [] for possiblePath in allPathsToItem: paths.append(nx.dijkstra_path(self.shoppingClass.graphShopping, self.shoppingClass.entrance, possiblePath)) pathsLenght.append(len(nx.dijkstra_path(self.shoppingClass.graphShopping, self.shoppingClass.entrance, possiblePath))) #Return the minimium path return paths[np.argmin(pathsLenght)] def getAuxNeighborsPrimary(self): aux = {} size = self.shopping.shape for j in range(size[1]): for i in range(size[0]): aux[f"[{i},{j}]"] = self.findNeighbors([i, j], 1) return aux def getAuxNeighbors(self): aux = {} size = self.shopping.shape for j in range(size[1]): for i in range(size[0]): aux[f"[{i},{j}]"] = self.findNeighbors([i, j], 2) return aux def getCellProducts(self, cell): size = self.shopping.shape for j in range(size[1]): for i in range(size[0]): if self.shopping[i][j].id == cell: cells = self.auxNeighbors[f"[{i},{j}]"] products = [] for c in cells: products.append(self.shoppingClass.productsAux[c]) return products def getProbabilityOfPicking(self, product): #Check if the file already exists if os.path.exists("probabilityBuy.p"): probToBuy = pickle.load(open("probabilityBuy.p","rb")) #Otherwise write it else: # organize_data() # Read the csv file and convert it to a well formatted dataframe aux = {} #For each receipt for p in tqdm(self.boughtAndWishlist): #go through the products bought for i in p[0]: if i not in list(aux.keys()): aux[i] = {'NotIn': 0, 'Counter':0} #Increase counter aux[i]['Counter'] += 1 #If the product bought is not in the wishlist if i not in p[1]: #Increase counter of times that the product was bought and was not in the wishlist aux[i]['NotIn'] += 1 probToBuy = {} for k in aux: probToBuy[k] = aux[k]['NotIn'] / aux[k]['Counter'] pickle.dump(probToBuy,open("probabilityBuy.p","wb")) #Reutrn the respective probability return probToBuy[product] def simulateCustomers(self,customers): ''' :param customers: Receives a list of customers :return: Returns the simulation results ''' sales = [] #For each customer for customer in tqdm(customers): currentWishlist = customer[0] currentWishlist.reverse() currentStamina = customer[1] productsBought = [] #print(f"Customer wishlist: {currentWishlist}") #While the customer still has products the wants and still has stamina keep the simulation while len(currentWishlist) > 0 and currentStamina > 0: item = currentWishlist[0] #print(f"Looking for {products.loc[products['ID'] == item, 'Nome'].iloc[0]}") closest = self.findClosestProduct(item) #print(f"Found {products.loc[products['ID'] == item, 'Nome'].iloc[0]} on cell {closest[-1]}") for cell in range(len(closest)): #print(f"I am on cell {closest[cell]}") prodcutsCloseToCell = self.getCellProducts(closest[cell]) for prod in prodcutsCloseToCell: #If the product is in the wishlist then buy it if prod in currentWishlist: #print(f"Found {products.loc[products['ID'] == prod, 'Nome'].iloc[0]} which was in my wishlist, so I bought it.") #Remove it from the wishlist currentWishlist.remove(prod) productsBought.append(prod) #Otherwise calculate the probability of buying it else: #Probability of this product being picked without being in the wishlist prob = self.getProbabilityOfPicking(prod) #Random probability randomProb = random.uniform(0,1) #If it is bought if randomProb <= prob: productsBought.append(prod) #print(f"Felt like buying {products.loc[products['ID'] == prod, 'Nome'].iloc[0]}, so I bought it.") currentStamina -= 1 #print(f"Current stamina : {currentStamina}") #Scenarios that the person leaves the shopping if currentStamina <= 0: #print("I got tired!") break elif len(currentWishlist) <= 0: #print("Bought everything!") break sales.append(productsBought) return sales def evaluateShoppingCost(self, sales): ''' :param sales: Receives a list of sales from customers :return: Return the calcualte profit for those sales ''' totalProfit = 0 for sale in tqdm(sales): for product in sale: totalProfit += (products.loc[products['ID'] == product, 'Preço'].iloc[0] / products.loc[products['ID'] == product, '<NAME>'].iloc[0]) return totalProfit def generateSimulator(config): #QoL for display pd.set_option('display.max_columns', 30) data, explanations = main.cvtCsvDataframe(pd.read_csv("data.csv"),
pd.read_csv("explanations.csv")
pandas.read_csv
from numpy.linalg.linalg import eig import pandas as pd import matplotlib.pyplot as plt from sklearn.preprocessing import StandardScaler engdata = pd.read_csv("./engdata.txt") pdata = engdata.loc[:, ["Age", "Salary"]] pdata = pdata.drop_duplicates() scaler = StandardScaler() scaler = scaler.fit(pdata) transformed = pd.DataFrame(scaler.transform(pdata), columns=["Age", "Salary"]) plt.scatter(pdata.Age, pdata.Salary) plt.xlabel("Age") plt.ylabel("Salary") plt.show() plt.scatter(transformed.Age, transformed.Salary) plt.xlabel("Age") plt.ylabel("Salary") plt.show() data_sample = pdata.sample(n=150, random_state=1, replace=True) plt.scatter(pdata.Age, pdata.Salary) plt.xlabel("Age") plt.ylabel("Salary") plt.show() plt.scatter(data_sample.Age, data_sample.Salary) plt.xlabel("Age") plt.ylabel("Salary") plt.show() discAge =
pd.cut(pdata.Age, [0, 10, 20, 30, 40, 50, 60, 70, 80])
pandas.cut
# -*- coding: utf-8 -*- from __future__ import print_function from datetime import datetime, timedelta import functools import itertools import numpy as np import numpy.ma as ma import numpy.ma.mrecords as mrecords from numpy.random import randn import pytest from pandas.compat import ( PY3, PY36, OrderedDict, is_platform_little_endian, lmap, long, lrange, lzip, range, zip) from pandas.core.dtypes.cast import construct_1d_object_array_from_listlike from pandas.core.dtypes.common import is_integer_dtype import pandas as pd from pandas import ( Categorical, DataFrame, Index, MultiIndex, Series, Timedelta, Timestamp, compat, date_range, isna) from pandas.tests.frame.common import TestData import pandas.util.testing as tm MIXED_FLOAT_DTYPES = ['float16', 'float32', 'float64'] MIXED_INT_DTYPES = ['uint8', 'uint16', 'uint32', 'uint64', 'int8', 'int16', 'int32', 'int64'] class TestDataFrameConstructors(TestData): def test_constructor(self): df = DataFrame() assert len(df.index) == 0 df = DataFrame(data={}) assert len(df.index) == 0 def test_constructor_mixed(self): index, data = tm.getMixedTypeDict() # TODO(wesm), incomplete test? indexed_frame = DataFrame(data, index=index) # noqa unindexed_frame = DataFrame(data) # noqa assert self.mixed_frame['foo'].dtype == np.object_ def test_constructor_cast_failure(self): foo = DataFrame({'a': ['a', 'b', 'c']}, dtype=np.float64) assert foo['a'].dtype == object # GH 3010, constructing with odd arrays df = DataFrame(np.ones((4, 2))) # this is ok df['foo'] = np.ones((4, 2)).tolist() # this is not ok pytest.raises(ValueError, df.__setitem__, tuple(['test']), np.ones((4, 2))) # this is ok df['foo2'] = np.ones((4, 2)).tolist() def test_constructor_dtype_copy(self): orig_df = DataFrame({ 'col1': [1.], 'col2': [2.], 'col3': [3.]}) new_df = pd.DataFrame(orig_df, dtype=float, copy=True) new_df['col1'] = 200. assert orig_df['col1'][0] == 1. def test_constructor_dtype_nocast_view(self): df = DataFrame([[1, 2]]) should_be_view = DataFrame(df, dtype=df[0].dtype) should_be_view[0][0] = 99 assert df.values[0, 0] == 99 should_be_view = DataFrame(df.values, dtype=df[0].dtype) should_be_view[0][0] = 97 assert df.values[0, 0] == 97 def test_constructor_dtype_list_data(self): df = DataFrame([[1, '2'], [None, 'a']], dtype=object) assert df.loc[1, 0] is None assert df.loc[0, 1] == '2' def test_constructor_list_frames(self): # see gh-3243 result = DataFrame([DataFrame([])]) assert result.shape == (1, 0) result = DataFrame([DataFrame(dict(A=lrange(5)))]) assert isinstance(result.iloc[0, 0], DataFrame) def test_constructor_mixed_dtypes(self): def _make_mixed_dtypes_df(typ, ad=None): if typ == 'int': dtypes = MIXED_INT_DTYPES arrays = [np.array(np.random.rand(10), dtype=d) for d in dtypes] elif typ == 'float': dtypes = MIXED_FLOAT_DTYPES arrays = [np.array(np.random.randint( 10, size=10), dtype=d) for d in dtypes] zipper = lzip(dtypes, arrays) for d, a in zipper: assert(a.dtype == d) if ad is None: ad = dict() ad.update({d: a for d, a in zipper}) return DataFrame(ad) def _check_mixed_dtypes(df, dtypes=None): if dtypes is None: dtypes = MIXED_FLOAT_DTYPES + MIXED_INT_DTYPES for d in dtypes: if d in df: assert(df.dtypes[d] == d) # mixed floating and integer coexinst in the same frame df = _make_mixed_dtypes_df('float') _check_mixed_dtypes(df) # add lots of types df = _make_mixed_dtypes_df('float', dict(A=1, B='foo', C='bar')) _check_mixed_dtypes(df) # GH 622 df = _make_mixed_dtypes_df('int') _check_mixed_dtypes(df) def test_constructor_complex_dtypes(self): # GH10952 a = np.random.rand(10).astype(np.complex64) b = np.random.rand(10).astype(np.complex128) df = DataFrame({'a': a, 'b': b}) assert a.dtype == df.a.dtype assert b.dtype == df.b.dtype def test_constructor_dtype_str_na_values(self, string_dtype): # https://github.com/pandas-dev/pandas/issues/21083 df = DataFrame({'A': ['x', None]}, dtype=string_dtype) result = df.isna() expected = DataFrame({"A": [False, True]}) tm.assert_frame_equal(result, expected) assert df.iloc[1, 0] is None df = DataFrame({'A': ['x', np.nan]}, dtype=string_dtype) assert np.isnan(df.iloc[1, 0]) def test_constructor_rec(self): rec = self.frame.to_records(index=False) if PY3: # unicode error under PY2 rec.dtype.names = list(rec.dtype.names)[::-1] index = self.frame.index df = DataFrame(rec) tm.assert_index_equal(df.columns, pd.Index(rec.dtype.names)) df2 = DataFrame(rec, index=index) tm.assert_index_equal(df2.columns, pd.Index(rec.dtype.names)) tm.assert_index_equal(df2.index, index) rng = np.arange(len(rec))[::-1] df3 = DataFrame(rec, index=rng, columns=['C', 'B']) expected = DataFrame(rec, index=rng).reindex(columns=['C', 'B']) tm.assert_frame_equal(df3, expected) def test_constructor_bool(self): df = DataFrame({0: np.ones(10, dtype=bool), 1: np.zeros(10, dtype=bool)}) assert df.values.dtype == np.bool_ def test_constructor_overflow_int64(self): # see gh-14881 values = np.array([2 ** 64 - i for i in range(1, 10)], dtype=np.uint64) result = DataFrame({'a': values}) assert result['a'].dtype == np.uint64 # see gh-2355 data_scores = [(6311132704823138710, 273), (2685045978526272070, 23), (8921811264899370420, 45), (long(17019687244989530680), 270), (long(9930107427299601010), 273)] dtype = [('uid', 'u8'), ('score', 'u8')] data = np.zeros((len(data_scores),), dtype=dtype) data[:] = data_scores df_crawls = DataFrame(data) assert df_crawls['uid'].dtype == np.uint64 @pytest.mark.parametrize("values", [np.array([2**64], dtype=object), np.array([2**65]), [2**64 + 1], np.array([-2**63 - 4], dtype=object), np.array([-2**64 - 1]), [-2**65 - 2]]) def test_constructor_int_overflow(self, values): # see gh-18584 value = values[0] result = DataFrame(values) assert result[0].dtype == object assert result[0][0] == value def test_constructor_ordereddict(self): import random nitems = 100 nums = lrange(nitems) random.shuffle(nums) expected = ['A%d' % i for i in nums] df = DataFrame(OrderedDict(zip(expected, [[0]] * nitems))) assert expected == list(df.columns) def test_constructor_dict(self): frame = DataFrame({'col1': self.ts1, 'col2': self.ts2}) # col2 is padded with NaN assert len(self.ts1) == 30 assert len(self.ts2) == 25 tm.assert_series_equal(self.ts1, frame['col1'], check_names=False) exp = pd.Series(np.concatenate([[np.nan] * 5, self.ts2.values]), index=self.ts1.index, name='col2') tm.assert_series_equal(exp, frame['col2']) frame = DataFrame({'col1': self.ts1, 'col2': self.ts2}, columns=['col2', 'col3', 'col4']) assert len(frame) == len(self.ts2) assert 'col1' not in frame assert isna(frame['col3']).all() # Corner cases assert len(DataFrame({})) == 0 # mix dict and array, wrong size - no spec for which error should raise # first with pytest.raises(ValueError): DataFrame({'A': {'a': 'a', 'b': 'b'}, 'B': ['a', 'b', 'c']}) # Length-one dict micro-optimization frame = DataFrame({'A': {'1': 1, '2': 2}}) tm.assert_index_equal(frame.index, pd.Index(['1', '2'])) # empty dict plus index idx = Index([0, 1, 2]) frame = DataFrame({}, index=idx) assert frame.index is idx # empty with index and columns idx = Index([0, 1, 2]) frame = DataFrame({}, index=idx, columns=idx) assert frame.index is idx assert frame.columns is idx assert len(frame._series) == 3 # with dict of empty list and Series frame = DataFrame({'A': [], 'B': []}, columns=['A', 'B']) tm.assert_index_equal(frame.index, Index([], dtype=np.int64)) # GH 14381 # Dict with None value frame_none = DataFrame(dict(a=None), index=[0]) frame_none_list = DataFrame(dict(a=[None]), index=[0]) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): assert frame_none.get_value(0, 'a') is None with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): assert frame_none_list.get_value(0, 'a') is None tm.assert_frame_equal(frame_none, frame_none_list) # GH10856 # dict with scalar values should raise error, even if columns passed msg = 'If using all scalar values, you must pass an index' with pytest.raises(ValueError, match=msg): DataFrame({'a': 0.7}) with pytest.raises(ValueError, match=msg): DataFrame({'a': 0.7}, columns=['a']) @pytest.mark.parametrize("scalar", [2, np.nan, None, 'D']) def test_constructor_invalid_items_unused(self, scalar): # No error if invalid (scalar) value is in fact not used: result = DataFrame({'a': scalar}, columns=['b']) expected = DataFrame(columns=['b']) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("value", [2, np.nan, None, float('nan')]) def test_constructor_dict_nan_key(self, value): # GH 18455 cols = [1, value, 3] idx = ['a', value] values = [[0, 3], [1, 4], [2, 5]] data = {cols[c]: Series(values[c], index=idx) for c in range(3)} result = DataFrame(data).sort_values(1).sort_values('a', axis=1) expected = DataFrame(np.arange(6, dtype='int64').reshape(2, 3), index=idx, columns=cols) tm.assert_frame_equal(result, expected) result = DataFrame(data, index=idx).sort_values('a', axis=1) tm.assert_frame_equal(result, expected) result = DataFrame(data, index=idx, columns=cols) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("value", [np.nan, None, float('nan')]) def test_constructor_dict_nan_tuple_key(self, value): # GH 18455 cols = Index([(11, 21), (value, 22), (13, value)]) idx = Index([('a', value), (value, 2)]) values = [[0, 3], [1, 4], [2, 5]] data = {cols[c]: Series(values[c], index=idx) for c in range(3)} result = (DataFrame(data) .sort_values((11, 21)) .sort_values(('a', value), axis=1)) expected = DataFrame(np.arange(6, dtype='int64').reshape(2, 3), index=idx, columns=cols) tm.assert_frame_equal(result, expected) result = DataFrame(data, index=idx).sort_values(('a', value), axis=1) tm.assert_frame_equal(result, expected) result = DataFrame(data, index=idx, columns=cols) tm.assert_frame_equal(result, expected) @pytest.mark.skipif(not PY36, reason='Insertion order for Python>=3.6') def test_constructor_dict_order_insertion(self): # GH19018 # initialization ordering: by insertion order if python>= 3.6 d = {'b': self.ts2, 'a': self.ts1} frame = DataFrame(data=d) expected = DataFrame(data=d, columns=list('ba')) tm.assert_frame_equal(frame, expected) @pytest.mark.skipif(PY36, reason='order by value for Python<3.6') def test_constructor_dict_order_by_values(self): # GH19018 # initialization ordering: by value if python<3.6 d = {'b': self.ts2, 'a': self.ts1} frame = DataFrame(data=d) expected = DataFrame(data=d, columns=list('ab')) tm.assert_frame_equal(frame, expected) def test_constructor_multi_index(self): # GH 4078 # construction error with mi and all-nan frame tuples = [(2, 3), (3, 3), (3, 3)] mi = MultiIndex.from_tuples(tuples) df = DataFrame(index=mi, columns=mi) assert pd.isna(df).values.ravel().all() tuples = [(3, 3), (2, 3), (3, 3)] mi = MultiIndex.from_tuples(tuples) df = DataFrame(index=mi, columns=mi) assert pd.isna(df).values.ravel().all() def test_constructor_error_msgs(self): msg = "Empty data passed with indices specified." # passing an empty array with columns specified. with pytest.raises(ValueError, match=msg): DataFrame(np.empty(0), columns=list('abc')) msg = "Mixing dicts with non-Series may lead to ambiguous ordering." # mix dict and array, wrong size with pytest.raises(ValueError, match=msg): DataFrame({'A': {'a': 'a', 'b': 'b'}, 'B': ['a', 'b', 'c']}) # wrong size ndarray, GH 3105 msg = r"Shape of passed values is \(3, 4\), indices imply \(3, 3\)" with pytest.raises(ValueError, match=msg): DataFrame(np.arange(12).reshape((4, 3)), columns=['foo', 'bar', 'baz'], index=pd.date_range('2000-01-01', periods=3)) # higher dim raise exception with pytest.raises(ValueError, match='Must pass 2-d input'): DataFrame(np.zeros((3, 3, 3)), columns=['A', 'B', 'C'], index=[1]) # wrong size axis labels msg = ("Shape of passed values " r"is \(3, 2\), indices " r"imply \(3, 1\)") with pytest.raises(ValueError, match=msg): DataFrame(np.random.rand(2, 3), columns=['A', 'B', 'C'], index=[1]) msg = ("Shape of passed values " r"is \(3, 2\), indices " r"imply \(2, 2\)") with pytest.raises(ValueError, match=msg): DataFrame(np.random.rand(2, 3), columns=['A', 'B'], index=[1, 2]) msg = ("If using all scalar " "values, you must pass " "an index") with pytest.raises(ValueError, match=msg): DataFrame({'a': False, 'b': True}) def test_constructor_with_embedded_frames(self): # embedded data frames df1 = DataFrame({'a': [1, 2, 3], 'b': [3, 4, 5]}) df2 = DataFrame([df1, df1 + 10]) df2.dtypes str(df2) result = df2.loc[0, 0] tm.assert_frame_equal(result, df1) result = df2.loc[1, 0] tm.assert_frame_equal(result, df1 + 10) def test_constructor_subclass_dict(self): # Test for passing dict subclass to constructor data = {'col1': tm.TestSubDict((x, 10.0 * x) for x in range(10)), 'col2': tm.TestSubDict((x, 20.0 * x) for x in range(10))} df = DataFrame(data) refdf = DataFrame({col: dict(compat.iteritems(val)) for col, val in compat.iteritems(data)}) tm.assert_frame_equal(refdf, df) data = tm.TestSubDict(compat.iteritems(data)) df = DataFrame(data) tm.assert_frame_equal(refdf, df) # try with defaultdict from collections import defaultdict data = {} self.frame['B'][:10] = np.nan for k, v in compat.iteritems(self.frame): dct = defaultdict(dict) dct.update(v.to_dict()) data[k] = dct frame = DataFrame(data) tm.assert_frame_equal(self.frame.sort_index(), frame) def test_constructor_dict_block(self): expected = np.array([[4., 3., 2., 1.]]) df = DataFrame({'d': [4.], 'c': [3.], 'b': [2.], 'a': [1.]}, columns=['d', 'c', 'b', 'a']) tm.assert_numpy_array_equal(df.values, expected) def test_constructor_dict_cast(self): # cast float tests test_data = { 'A': {'1': 1, '2': 2}, 'B': {'1': '1', '2': '2', '3': '3'}, } frame = DataFrame(test_data, dtype=float) assert len(frame) == 3 assert frame['B'].dtype == np.float64 assert frame['A'].dtype == np.float64 frame = DataFrame(test_data) assert len(frame) == 3 assert frame['B'].dtype == np.object_ assert frame['A'].dtype == np.float64 # can't cast to float test_data = { 'A': dict(zip(range(20), tm.makeStringIndex(20))), 'B': dict(zip(range(15), randn(15))) } frame = DataFrame(test_data, dtype=float) assert len(frame) == 20 assert frame['A'].dtype == np.object_ assert frame['B'].dtype == np.float64 def test_constructor_dict_dont_upcast(self): d = {'Col1': {'Row1': 'A String', 'Row2': np.nan}} df = DataFrame(d) assert isinstance(df['Col1']['Row2'], float) dm = DataFrame([[1, 2], ['a', 'b']], index=[1, 2], columns=[1, 2]) assert isinstance(dm[1][1], int) def test_constructor_dict_of_tuples(self): # GH #1491 data = {'a': (1, 2, 3), 'b': (4, 5, 6)} result = DataFrame(data) expected = DataFrame({k: list(v) for k, v in compat.iteritems(data)}) tm.assert_frame_equal(result, expected, check_dtype=False) def test_constructor_dict_multiindex(self): def check(result, expected): return tm.assert_frame_equal(result, expected, check_dtype=True, check_index_type=True, check_column_type=True, check_names=True) d = {('a', 'a'): {('i', 'i'): 0, ('i', 'j'): 1, ('j', 'i'): 2}, ('b', 'a'): {('i', 'i'): 6, ('i', 'j'): 5, ('j', 'i'): 4}, ('b', 'c'): {('i', 'i'): 7, ('i', 'j'): 8, ('j', 'i'): 9}} _d = sorted(d.items()) df = DataFrame(d) expected = DataFrame( [x[1] for x in _d], index=MultiIndex.from_tuples([x[0] for x in _d])).T expected.index = MultiIndex.from_tuples(expected.index) check(df, expected) d['z'] = {'y': 123., ('i', 'i'): 111, ('i', 'j'): 111, ('j', 'i'): 111} _d.insert(0, ('z', d['z'])) expected = DataFrame( [x[1] for x in _d], index=Index([x[0] for x in _d], tupleize_cols=False)).T expected.index = Index(expected.index, tupleize_cols=False) df = DataFrame(d) df = df.reindex(columns=expected.columns, index=expected.index) check(df, expected) def test_constructor_dict_datetime64_index(self): # GH 10160 dates_as_str = ['1984-02-19', '1988-11-06', '1989-12-03', '1990-03-15'] def create_data(constructor): return {i: {constructor(s): 2 * i} for i, s in enumerate(dates_as_str)} data_datetime64 = create_data(np.datetime64) data_datetime = create_data(lambda x: datetime.strptime(x, '%Y-%m-%d')) data_Timestamp = create_data(Timestamp) expected = DataFrame([{0: 0, 1: None, 2: None, 3: None}, {0: None, 1: 2, 2: None, 3: None}, {0: None, 1: None, 2: 4, 3: None}, {0: None, 1: None, 2: None, 3: 6}], index=[Timestamp(dt) for dt in dates_as_str]) result_datetime64 = DataFrame(data_datetime64) result_datetime = DataFrame(data_datetime) result_Timestamp = DataFrame(data_Timestamp) tm.assert_frame_equal(result_datetime64, expected) tm.assert_frame_equal(result_datetime, expected) tm.assert_frame_equal(result_Timestamp, expected) def test_constructor_dict_timedelta64_index(self): # GH 10160 td_as_int = [1, 2, 3, 4] def create_data(constructor): return {i: {constructor(s): 2 * i} for i, s in enumerate(td_as_int)} data_timedelta64 = create_data(lambda x: np.timedelta64(x, 'D')) data_timedelta = create_data(lambda x: timedelta(days=x)) data_Timedelta = create_data(lambda x: Timedelta(x, 'D')) expected = DataFrame([{0: 0, 1: None, 2: None, 3: None}, {0: None, 1: 2, 2: None, 3: None}, {0: None, 1: None, 2: 4, 3: None}, {0: None, 1: None, 2: None, 3: 6}], index=[Timedelta(td, 'D') for td in td_as_int]) result_timedelta64 = DataFrame(data_timedelta64) result_timedelta = DataFrame(data_timedelta) result_Timedelta = DataFrame(data_Timedelta) tm.assert_frame_equal(result_timedelta64, expected) tm.assert_frame_equal(result_timedelta, expected) tm.assert_frame_equal(result_Timedelta, expected) def test_constructor_period(self): # PeriodIndex a = pd.PeriodIndex(['2012-01', 'NaT', '2012-04'], freq='M') b = pd.PeriodIndex(['2012-02-01', '2012-03-01', 'NaT'], freq='D') df = pd.DataFrame({'a': a, 'b': b}) assert df['a'].dtype == a.dtype assert df['b'].dtype == b.dtype # list of periods df = pd.DataFrame({'a': a.astype(object).tolist(), 'b': b.astype(object).tolist()}) assert df['a'].dtype == a.dtype assert df['b'].dtype == b.dtype def test_nested_dict_frame_constructor(self): rng = pd.period_range('1/1/2000', periods=5) df = DataFrame(randn(10, 5), columns=rng) data = {} for col in df.columns: for row in df.index: with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): data.setdefault(col, {})[row] = df.get_value(row, col) result = DataFrame(data, columns=rng) tm.assert_frame_equal(result, df) data = {} for col in df.columns: for row in df.index: with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): data.setdefault(row, {})[col] = df.get_value(row, col) result = DataFrame(data, index=rng).T tm.assert_frame_equal(result, df) def _check_basic_constructor(self, empty): # mat: 2d matrix with shape (3, 2) to input. empty - makes sized # objects mat = empty((2, 3), dtype=float) # 2-D input frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2]) assert len(frame.index) == 2 assert len(frame.columns) == 3 # 1-D input frame = DataFrame(empty((3,)), columns=['A'], index=[1, 2, 3]) assert len(frame.index) == 3 assert len(frame.columns) == 1 # cast type frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2], dtype=np.int64) assert frame.values.dtype == np.int64 # wrong size axis labels msg = r'Shape of passed values is \(3, 2\), indices imply \(3, 1\)' with pytest.raises(ValueError, match=msg): DataFrame(mat, columns=['A', 'B', 'C'], index=[1]) msg = r'Shape of passed values is \(3, 2\), indices imply \(2, 2\)' with pytest.raises(ValueError, match=msg): DataFrame(mat, columns=['A', 'B'], index=[1, 2]) # higher dim raise exception with pytest.raises(ValueError, match='Must pass 2-d input'): DataFrame(empty((3, 3, 3)), columns=['A', 'B', 'C'], index=[1]) # automatic labeling frame = DataFrame(mat) tm.assert_index_equal(frame.index, pd.Index(lrange(2))) tm.assert_index_equal(frame.columns, pd.Index(lrange(3))) frame = DataFrame(mat, index=[1, 2]) tm.assert_index_equal(frame.columns, pd.Index(lrange(3))) frame = DataFrame(mat, columns=['A', 'B', 'C']) tm.assert_index_equal(frame.index, pd.Index(lrange(2))) # 0-length axis frame = DataFrame(empty((0, 3))) assert len(frame.index) == 0 frame = DataFrame(empty((3, 0))) assert len(frame.columns) == 0 def test_constructor_ndarray(self): self._check_basic_constructor(np.ones) frame = DataFrame(['foo', 'bar'], index=[0, 1], columns=['A']) assert len(frame) == 2 def test_constructor_maskedarray(self): self._check_basic_constructor(ma.masked_all) # Check non-masked values mat = ma.masked_all((2, 3), dtype=float) mat[0, 0] = 1.0 mat[1, 2] = 2.0 frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2]) assert 1.0 == frame['A'][1] assert 2.0 == frame['C'][2] # what is this even checking?? mat = ma.masked_all((2, 3), dtype=float) frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2]) assert np.all(~np.asarray(frame == frame)) def test_constructor_maskedarray_nonfloat(self): # masked int promoted to float mat = ma.masked_all((2, 3), dtype=int) # 2-D input frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2]) assert len(frame.index) == 2 assert len(frame.columns) == 3 assert np.all(~np.asarray(frame == frame)) # cast type frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2], dtype=np.float64) assert frame.values.dtype == np.float64 # Check non-masked values mat2 = ma.copy(mat) mat2[0, 0] = 1 mat2[1, 2] = 2 frame = DataFrame(mat2, columns=['A', 'B', 'C'], index=[1, 2]) assert 1 == frame['A'][1] assert 2 == frame['C'][2] # masked np.datetime64 stays (use NaT as null) mat = ma.masked_all((2, 3), dtype='M8[ns]') # 2-D input frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2]) assert len(frame.index) == 2 assert len(frame.columns) == 3 assert isna(frame).values.all() # cast type frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2], dtype=np.int64) assert frame.values.dtype == np.int64 # Check non-masked values mat2 = ma.copy(mat) mat2[0, 0] = 1 mat2[1, 2] = 2 frame = DataFrame(mat2, columns=['A', 'B', 'C'], index=[1, 2]) assert 1 == frame['A'].view('i8')[1] assert 2 == frame['C'].view('i8')[2] # masked bool promoted to object mat = ma.masked_all((2, 3), dtype=bool) # 2-D input frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2]) assert len(frame.index) == 2 assert len(frame.columns) == 3 assert np.all(~np.asarray(frame == frame)) # cast type frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2], dtype=object) assert frame.values.dtype == object # Check non-masked values mat2 = ma.copy(mat) mat2[0, 0] = True mat2[1, 2] = False frame = DataFrame(mat2, columns=['A', 'B', 'C'], index=[1, 2]) assert frame['A'][1] is True assert frame['C'][2] is False def test_constructor_mrecarray(self): # Ensure mrecarray produces frame identical to dict of masked arrays # from GH3479 assert_fr_equal = functools.partial(tm.assert_frame_equal, check_index_type=True, check_column_type=True, check_frame_type=True) arrays = [ ('float', np.array([1.5, 2.0])), ('int', np.array([1, 2])), ('str', np.array(['abc', 'def'])), ] for name, arr in arrays[:]: arrays.append(('masked1_' + name, np.ma.masked_array(arr, mask=[False, True]))) arrays.append(('masked_all', np.ma.masked_all((2,)))) arrays.append(('masked_none', np.ma.masked_array([1.0, 2.5], mask=False))) # call assert_frame_equal for all selections of 3 arrays for comb in itertools.combinations(arrays, 3): names, data = zip(*comb) mrecs = mrecords.fromarrays(data, names=names) # fill the comb comb = {k: (v.filled() if hasattr(v, 'filled') else v) for k, v in comb} expected = DataFrame(comb, columns=names) result = DataFrame(mrecs) assert_fr_equal(result, expected) # specify columns expected = DataFrame(comb, columns=names[::-1]) result = DataFrame(mrecs, columns=names[::-1]) assert_fr_equal(result, expected) # specify index expected = DataFrame(comb, columns=names, index=[1, 2]) result = DataFrame(mrecs, index=[1, 2]) assert_fr_equal(result, expected) def test_constructor_corner_shape(self): df = DataFrame(index=[]) assert df.values.shape == (0, 0) @pytest.mark.parametrize("data, index, columns, dtype, expected", [ (None, lrange(10), ['a', 'b'], object, np.object_), (None, None, ['a', 'b'], 'int64', np.dtype('int64')), (None, lrange(10), ['a', 'b'], int, np.dtype('float64')), ({}, None, ['foo', 'bar'], None, np.object_), ({'b': 1}, lrange(10), list('abc'), int, np.dtype('float64')) ]) def test_constructor_dtype(self, data, index, columns, dtype, expected): df = DataFrame(data, index, columns, dtype) assert df.values.dtype == expected def test_constructor_scalar_inference(self): data = {'int': 1, 'bool': True, 'float': 3., 'complex': 4j, 'object': 'foo'} df = DataFrame(data, index=np.arange(10)) assert df['int'].dtype == np.int64 assert df['bool'].dtype == np.bool_ assert df['float'].dtype == np.float64 assert df['complex'].dtype == np.complex128 assert df['object'].dtype == np.object_ def test_constructor_arrays_and_scalars(self): df = DataFrame({'a': randn(10), 'b': True}) exp = DataFrame({'a': df['a'].values, 'b': [True] * 10}) tm.assert_frame_equal(df, exp) with pytest.raises(ValueError, match='must pass an index'): DataFrame({'a': False, 'b': True}) def test_constructor_DataFrame(self): df = DataFrame(self.frame) tm.assert_frame_equal(df, self.frame) df_casted = DataFrame(self.frame, dtype=np.int64) assert df_casted.values.dtype == np.int64 def test_constructor_more(self): # used to be in test_matrix.py arr = randn(10) dm = DataFrame(arr, columns=['A'], index=np.arange(10)) assert dm.values.ndim == 2 arr = randn(0) dm = DataFrame(arr) assert dm.values.ndim == 2 assert dm.values.ndim == 2 # no data specified dm = DataFrame(columns=['A', 'B'], index=np.arange(10)) assert dm.values.shape == (10, 2) dm = DataFrame(columns=['A', 'B']) assert dm.values.shape == (0, 2) dm = DataFrame(index=np.arange(10)) assert dm.values.shape == (10, 0) # can't cast mat = np.array(['foo', 'bar'], dtype=object).reshape(2, 1) with pytest.raises(ValueError, match='cast'): DataFrame(mat, index=[0, 1], columns=[0], dtype=float) dm = DataFrame(DataFrame(self.frame._series)) tm.assert_frame_equal(dm, self.frame) # int cast dm = DataFrame({'A': np.ones(10, dtype=int), 'B': np.ones(10, dtype=np.float64)}, index=np.arange(10)) assert len(dm.columns) == 2 assert dm.values.dtype == np.float64 def test_constructor_empty_list(self): df = DataFrame([], index=[]) expected = DataFrame(index=[]) tm.assert_frame_equal(df, expected) # GH 9939 df = DataFrame([], columns=['A', 'B']) expected = DataFrame({}, columns=['A', 'B']) tm.assert_frame_equal(df, expected) # Empty generator: list(empty_gen()) == [] def empty_gen(): return yield df = DataFrame(empty_gen(), columns=['A', 'B']) tm.assert_frame_equal(df, expected) def test_constructor_list_of_lists(self): # GH #484 df = DataFrame(data=[[1, 'a'], [2, 'b']], columns=["num", "str"]) assert is_integer_dtype(df['num']) assert df['str'].dtype == np.object_ # GH 4851 # list of 0-dim ndarrays expected = DataFrame({0: np.arange(10)}) data = [np.array(x) for x in range(10)] result = DataFrame(data) tm.assert_frame_equal(result, expected) def test_constructor_sequence_like(self): # GH 3783 # collections.Squence like class DummyContainer(compat.Sequence): def __init__(self, lst): self._lst = lst def __getitem__(self, n): return self._lst.__getitem__(n) def __len__(self, n): return self._lst.__len__() lst_containers = [DummyContainer([1, 'a']), DummyContainer([2, 'b'])] columns = ["num", "str"] result = DataFrame(lst_containers, columns=columns) expected = DataFrame([[1, 'a'], [2, 'b']], columns=columns) tm.assert_frame_equal(result, expected, check_dtype=False) # GH 4297 # support Array import array result = DataFrame({'A': array.array('i', range(10))}) expected = DataFrame({'A': list(range(10))}) tm.assert_frame_equal(result, expected, check_dtype=False) expected = DataFrame([list(range(10)), list(range(10))]) result = DataFrame([array.array('i', range(10)), array.array('i', range(10))]) tm.assert_frame_equal(result, expected, check_dtype=False) def test_constructor_iterable(self): # GH 21987 class Iter(): def __iter__(self): for i in range(10): yield [1, 2, 3] expected = DataFrame([[1, 2, 3]] * 10) result = DataFrame(Iter()) tm.assert_frame_equal(result, expected) def test_constructor_iterator(self): expected = DataFrame([list(range(10)), list(range(10))]) result = DataFrame([range(10), range(10)]) tm.assert_frame_equal(result, expected) def test_constructor_generator(self): # related #2305 gen1 = (i for i in range(10)) gen2 = (i for i in range(10)) expected = DataFrame([list(range(10)), list(range(10))]) result = DataFrame([gen1, gen2]) tm.assert_frame_equal(result, expected) gen = ([i, 'a'] for i in range(10)) result = DataFrame(gen) expected = DataFrame({0: range(10), 1: 'a'}) tm.assert_frame_equal(result, expected, check_dtype=False) def test_constructor_list_of_dicts(self): data = [OrderedDict([['a', 1.5], ['b', 3], ['c', 4], ['d', 6]]), OrderedDict([['a', 1.5], ['b', 3], ['d', 6]]), OrderedDict([['a', 1.5], ['d', 6]]), OrderedDict(), OrderedDict([['a', 1.5], ['b', 3], ['c', 4]]), OrderedDict([['b', 3], ['c', 4], ['d', 6]])] result = DataFrame(data) expected = DataFrame.from_dict(dict(zip(range(len(data)), data)), orient='index') tm.assert_frame_equal(result, expected.reindex(result.index)) result = DataFrame([{}]) expected = DataFrame(index=[0]) tm.assert_frame_equal(result, expected) def test_constructor_ordered_dict_preserve_order(self): # see gh-13304 expected = DataFrame([[2, 1]], columns=['b', 'a']) data = OrderedDict() data['b'] = [2] data['a'] = [1] result = DataFrame(data) tm.assert_frame_equal(result, expected) data = OrderedDict() data['b'] = 2 data['a'] = 1 result = DataFrame([data]) tm.assert_frame_equal(result, expected) def test_constructor_ordered_dict_conflicting_orders(self): # the first dict element sets the ordering for the DataFrame, # even if there are conflicting orders from subsequent ones row_one = OrderedDict() row_one['b'] = 2 row_one['a'] = 1 row_two = OrderedDict() row_two['a'] = 1 row_two['b'] = 2 row_three = {'b': 2, 'a': 1} expected = DataFrame([[2, 1], [2, 1]], columns=['b', 'a']) result = DataFrame([row_one, row_two]) tm.assert_frame_equal(result, expected) expected = DataFrame([[2, 1], [2, 1], [2, 1]], columns=['b', 'a']) result = DataFrame([row_one, row_two, row_three]) tm.assert_frame_equal(result, expected) def test_constructor_list_of_series(self): data = [OrderedDict([['a', 1.5], ['b', 3.0], ['c', 4.0]]), OrderedDict([['a', 1.5], ['b', 3.0], ['c', 6.0]])] sdict = OrderedDict(zip(['x', 'y'], data)) idx = Index(['a', 'b', 'c']) # all named data2 = [Series([1.5, 3, 4], idx, dtype='O', name='x'), Series([1.5, 3, 6], idx, name='y')] result = DataFrame(data2) expected = DataFrame.from_dict(sdict, orient='index') tm.assert_frame_equal(result, expected) # some unnamed data2 = [Series([1.5, 3, 4], idx, dtype='O', name='x'), Series([1.5, 3, 6], idx)] result = DataFrame(data2) sdict = OrderedDict(zip(['x', 'Unnamed 0'], data)) expected = DataFrame.from_dict(sdict, orient='index') tm.assert_frame_equal(result.sort_index(), expected) # none named data = [OrderedDict([['a', 1.5], ['b', 3], ['c', 4], ['d', 6]]), OrderedDict([['a', 1.5], ['b', 3], ['d', 6]]), OrderedDict([['a', 1.5], ['d', 6]]), OrderedDict(), OrderedDict([['a', 1.5], ['b', 3], ['c', 4]]), OrderedDict([['b', 3], ['c', 4], ['d', 6]])] data = [Series(d) for d in data] result = DataFrame(data) sdict = OrderedDict(zip(range(len(data)), data)) expected = DataFrame.from_dict(sdict, orient='index') tm.assert_frame_equal(result, expected.reindex(result.index)) result2 = DataFrame(data, index=np.arange(6)) tm.assert_frame_equal(result, result2) result = DataFrame([Series({})]) expected = DataFrame(index=[0]) tm.assert_frame_equal(result, expected) data = [OrderedDict([['a', 1.5], ['b', 3.0], ['c', 4.0]]), OrderedDict([['a', 1.5], ['b', 3.0], ['c', 6.0]])] sdict = OrderedDict(zip(range(len(data)), data)) idx = Index(['a', 'b', 'c']) data2 = [Series([1.5, 3, 4], idx, dtype='O'), Series([1.5, 3, 6], idx)] result = DataFrame(data2) expected = DataFrame.from_dict(sdict, orient='index') tm.assert_frame_equal(result, expected) def test_constructor_list_of_series_aligned_index(self): series = [pd.Series(i, index=['b', 'a', 'c'], name=str(i)) for i in range(3)] result = pd.DataFrame(series) expected = pd.DataFrame({'b': [0, 1, 2], 'a': [0, 1, 2], 'c': [0, 1, 2]}, columns=['b', 'a', 'c'], index=['0', '1', '2']) tm.assert_frame_equal(result, expected) def test_constructor_list_of_derived_dicts(self): class CustomDict(dict): pass d = {'a': 1.5, 'b': 3} data_custom = [CustomDict(d)] data = [d] result_custom = DataFrame(data_custom) result = DataFrame(data) tm.assert_frame_equal(result, result_custom) def test_constructor_ragged(self): data = {'A': randn(10), 'B': randn(8)} with pytest.raises(ValueError, match='arrays must all be same length'): DataFrame(data) def test_constructor_scalar(self): idx = Index(lrange(3)) df = DataFrame({"a": 0}, index=idx) expected = DataFrame({"a": [0, 0, 0]}, index=idx) tm.assert_frame_equal(df, expected, check_dtype=False) def test_constructor_Series_copy_bug(self): df = DataFrame(self.frame['A'], index=self.frame.index, columns=['A']) df.copy() def test_constructor_mixed_dict_and_Series(self): data = {} data['A'] = {'foo': 1, 'bar': 2, 'baz': 3} data['B'] = Series([4, 3, 2, 1], index=['bar', 'qux', 'baz', 'foo']) result = DataFrame(data) assert result.index.is_monotonic # ordering ambiguous, raise exception with pytest.raises(ValueError, match='ambiguous ordering'): DataFrame({'A': ['a', 'b'], 'B': {'a': 'a', 'b': 'b'}}) # this is OK though result = DataFrame({'A': ['a', 'b'], 'B': Series(['a', 'b'], index=['a', 'b'])}) expected = DataFrame({'A': ['a', 'b'], 'B': ['a', 'b']}, index=['a', 'b']) tm.assert_frame_equal(result, expected) def test_constructor_tuples(self): result = DataFrame({'A': [(1, 2), (3, 4)]}) expected = DataFrame({'A': Series([(1, 2), (3, 4)])}) tm.assert_frame_equal(result, expected) def test_constructor_namedtuples(self): # GH11181 from collections import namedtuple named_tuple = namedtuple("Pandas", list('ab')) tuples = [named_tuple(1, 3), named_tuple(2, 4)] expected = DataFrame({'a': [1, 2], 'b': [3, 4]}) result = DataFrame(tuples) tm.assert_frame_equal(result, expected) # with columns expected = DataFrame({'y': [1, 2], 'z': [3, 4]}) result = DataFrame(tuples, columns=['y', 'z']) tm.assert_frame_equal(result, expected) def test_constructor_orient(self): data_dict = self.mixed_frame.T._series recons = DataFrame.from_dict(data_dict, orient='index') expected = self.mixed_frame.sort_index() tm.assert_frame_equal(recons, expected) # dict of sequence a = {'hi': [32, 3, 3], 'there': [3, 5, 3]} rs = DataFrame.from_dict(a, orient='index') xp = DataFrame.from_dict(a).T.reindex(list(a.keys())) tm.assert_frame_equal(rs, xp) def test_from_dict_columns_parameter(self): # GH 18529 # Test new columns parameter for from_dict that was added to make # from_items(..., orient='index', columns=[...]) easier to replicate result = DataFrame.from_dict(OrderedDict([('A', [1, 2]), ('B', [4, 5])]), orient='index', columns=['one', 'two']) expected = DataFrame([[1, 2], [4, 5]], index=['A', 'B'], columns=['one', 'two']) tm.assert_frame_equal(result, expected) msg = "cannot use columns parameter with orient='columns'" with pytest.raises(ValueError, match=msg): DataFrame.from_dict(dict([('A', [1, 2]), ('B', [4, 5])]), orient='columns', columns=['one', 'two']) with pytest.raises(ValueError, match=msg): DataFrame.from_dict(dict([('A', [1, 2]), ('B', [4, 5])]), columns=['one', 'two']) def test_constructor_Series_named(self): a = Series([1, 2, 3], index=['a', 'b', 'c'], name='x') df = DataFrame(a) assert df.columns[0] == 'x' tm.assert_index_equal(df.index, a.index) # ndarray like arr = np.random.randn(10) s = Series(arr, name='x') df = DataFrame(s) expected = DataFrame(dict(x=s)) tm.assert_frame_equal(df, expected) s = Series(arr, index=range(3, 13)) df = DataFrame(s) expected = DataFrame({0: s}) tm.assert_frame_equal(df, expected) pytest.raises(ValueError, DataFrame, s, columns=[1, 2]) # #2234 a = Series([], name='x') df = DataFrame(a) assert df.columns[0] == 'x' # series with name and w/o s1 = Series(arr, name='x') df = DataFrame([s1, arr]).T expected = DataFrame({'x': s1, 'Unnamed 0': arr}, columns=['x', 'Unnamed 0']) tm.assert_frame_equal(df, expected) # this is a bit non-intuitive here; the series collapse down to arrays df = DataFrame([arr, s1]).T expected = DataFrame({1: s1, 0: arr}, columns=[0, 1]) tm.assert_frame_equal(df, expected) def test_constructor_Series_named_and_columns(self): # GH 9232 validation s0 = Series(range(5), name=0) s1 = Series(range(5), name=1) # matching name and column gives standard frame tm.assert_frame_equal(pd.DataFrame(s0, columns=[0]), s0.to_frame()) tm.assert_frame_equal(pd.DataFrame(s1, columns=[1]), s1.to_frame()) # non-matching produces empty frame assert pd.DataFrame(s0, columns=[1]).empty assert pd.DataFrame(s1, columns=[0]).empty def test_constructor_Series_differently_indexed(self): # name s1 = Series([1, 2, 3], index=['a', 'b', 'c'], name='x') # no name s2 = Series([1, 2, 3], index=['a', 'b', 'c']) other_index = Index(['a', 'b']) df1 = DataFrame(s1, index=other_index) exp1 = DataFrame(s1.reindex(other_index)) assert df1.columns[0] == 'x' tm.assert_frame_equal(df1, exp1) df2 = DataFrame(s2, index=other_index) exp2 = DataFrame(s2.reindex(other_index)) assert df2.columns[0] == 0 tm.assert_index_equal(df2.index, other_index) tm.assert_frame_equal(df2, exp2) def test_constructor_manager_resize(self): index = list(self.frame.index[:5]) columns = list(self.frame.columns[:3]) result = DataFrame(self.frame._data, index=index, columns=columns) tm.assert_index_equal(result.index, Index(index)) tm.assert_index_equal(result.columns, Index(columns)) def test_constructor_from_items(self): items = [(c, self.frame[c]) for c in self.frame.columns] with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): recons = DataFrame.from_items(items) tm.assert_frame_equal(recons, self.frame) # pass some columns with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): recons = DataFrame.from_items(items, columns=['C', 'B', 'A']) tm.assert_frame_equal(recons, self.frame.loc[:, ['C', 'B', 'A']]) # orient='index' row_items = [(idx, self.mixed_frame.xs(idx)) for idx in self.mixed_frame.index] with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): recons = DataFrame.from_items(row_items, columns=self.mixed_frame.columns, orient='index') tm.assert_frame_equal(recons, self.mixed_frame) assert recons['A'].dtype == np.float64 msg = "Must pass columns with orient='index'" with pytest.raises(TypeError, match=msg): with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): DataFrame.from_items(row_items, orient='index') # orient='index', but thar be tuples arr = construct_1d_object_array_from_listlike( [('bar', 'baz')] * len(self.mixed_frame)) self.mixed_frame['foo'] = arr row_items = [(idx, list(self.mixed_frame.xs(idx))) for idx in self.mixed_frame.index] with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): recons = DataFrame.from_items(row_items, columns=self.mixed_frame.columns, orient='index') tm.assert_frame_equal(recons, self.mixed_frame) assert isinstance(recons['foo'][0], tuple) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): rs = DataFrame.from_items([('A', [1, 2, 3]), ('B', [4, 5, 6])], orient='index', columns=['one', 'two', 'three']) xp = DataFrame([[1, 2, 3], [4, 5, 6]], index=['A', 'B'], columns=['one', 'two', 'three']) tm.assert_frame_equal(rs, xp) def test_constructor_from_items_scalars(self): # GH 17312 msg = (r'The value in each \(key, value\) ' 'pair must be an array, Series, or dict') with pytest.raises(ValueError, match=msg): with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): DataFrame.from_items([('A', 1), ('B', 4)]) msg = (r'The value in each \(key, value\) ' 'pair must be an array, Series, or dict') with pytest.raises(ValueError, match=msg): with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): DataFrame.from_items([('A', 1), ('B', 2)], columns=['col1'], orient='index') def test_from_items_deprecation(self): # GH 17320 with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): DataFrame.from_items([('A', [1, 2, 3]), ('B', [4, 5, 6])]) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): DataFrame.from_items([('A', [1, 2, 3]), ('B', [4, 5, 6])], columns=['col1', 'col2', 'col3'], orient='index') def test_constructor_mix_series_nonseries(self): df = DataFrame({'A': self.frame['A'], 'B': list(self.frame['B'])}, columns=['A', 'B']) tm.assert_frame_equal(df, self.frame.loc[:, ['A', 'B']]) msg = 'does not match index length' with pytest.raises(ValueError, match=msg): DataFrame({'A': self.frame['A'], 'B': list(self.frame['B'])[:-2]}) def test_constructor_miscast_na_int_dtype(self): df = DataFrame([[np.nan, 1], [1, 0]], dtype=np.int64) expected = DataFrame([[np.nan, 1], [1, 0]]) tm.assert_frame_equal(df, expected) def test_constructor_column_duplicates(self): # it works! #2079 df = DataFrame([[8, 5]], columns=['a', 'a']) edf = DataFrame([[8, 5]]) edf.columns = ['a', 'a'] tm.assert_frame_equal(df, edf) idf = DataFrame.from_records([(8, 5)], columns=['a', 'a']) tm.assert_frame_equal(idf, edf) pytest.raises(ValueError, DataFrame.from_dict, OrderedDict([('b', 8), ('a', 5), ('a', 6)])) def test_constructor_empty_with_string_dtype(self): # GH 9428 expected = DataFrame(index=[0, 1], columns=[0, 1], dtype=object) df = DataFrame(index=[0, 1], columns=[0, 1], dtype=str) tm.assert_frame_equal(df, expected) df = DataFrame(index=[0, 1], columns=[0, 1], dtype=np.str_) tm.assert_frame_equal(df, expected) df = DataFrame(index=[0, 1], columns=[0, 1], dtype=np.unicode_) tm.assert_frame_equal(df, expected) df = DataFrame(index=[0, 1], columns=[0, 1], dtype='U5') tm.assert_frame_equal(df, expected) def test_constructor_single_value(self): # expecting single value upcasting here df = DataFrame(0., index=[1, 2, 3], columns=['a', 'b', 'c']) tm.assert_frame_equal(df, DataFrame(np.zeros(df.shape).astype('float64'), df.index, df.columns)) df = DataFrame(0, index=[1, 2, 3], columns=['a', 'b', 'c']) tm.assert_frame_equal(df, DataFrame(np.zeros(df.shape).astype('int64'), df.index, df.columns)) df = DataFrame('a', index=[1, 2], columns=['a', 'c']) tm.assert_frame_equal(df, DataFrame(np.array([['a', 'a'], ['a', 'a']], dtype=object), index=[1, 2], columns=['a', 'c'])) pytest.raises(ValueError, DataFrame, 'a', [1, 2]) pytest.raises(ValueError, DataFrame, 'a', columns=['a', 'c']) msg = 'incompatible data and dtype' with pytest.raises(TypeError, match=msg): DataFrame('a', [1, 2], ['a', 'c'], float) def test_constructor_with_datetimes(self): intname = np.dtype(np.int_).name floatname = np.dtype(np.float_).name datetime64name = np.dtype('M8[ns]').name objectname = np.dtype(np.object_).name # single item df = DataFrame({'A': 1, 'B': 'foo', 'C': 'bar', 'D': Timestamp("20010101"), 'E': datetime(2001, 1, 2, 0, 0)}, index=np.arange(10)) result = df.get_dtype_counts() expected = Series({'int64': 1, datetime64name: 2, objectname: 2}) result.sort_index() expected.sort_index() tm.assert_series_equal(result, expected) # check with ndarray construction ndim==0 (e.g. we are passing a ndim 0 # ndarray with a dtype specified) df = DataFrame({'a': 1., 'b': 2, 'c': 'foo', floatname: np.array(1., dtype=floatname), intname: np.array(1, dtype=intname)}, index=np.arange(10)) result = df.get_dtype_counts() expected = {objectname: 1} if intname == 'int64': expected['int64'] = 2 else: expected['int64'] = 1 expected[intname] = 1 if floatname == 'float64': expected['float64'] = 2 else: expected['float64'] = 1 expected[floatname] = 1 result = result.sort_index() expected = Series(expected).sort_index() tm.assert_series_equal(result, expected) # check with ndarray construction ndim>0 df = DataFrame({'a': 1., 'b': 2, 'c': 'foo', floatname: np.array([1.] * 10, dtype=floatname), intname: np.array([1] * 10, dtype=intname)}, index=np.arange(10)) result = df.get_dtype_counts() result = result.sort_index() tm.assert_series_equal(result, expected) # GH 2809 ind = date_range(start="2000-01-01", freq="D", periods=10) datetimes = [ts.to_pydatetime() for ts in ind] datetime_s = Series(datetimes) assert datetime_s.dtype == 'M8[ns]' df = DataFrame({'datetime_s': datetime_s}) result = df.get_dtype_counts() expected = Series({datetime64name: 1}) result = result.sort_index() expected = expected.sort_index() tm.assert_series_equal(result, expected) # GH 2810 ind = date_range(start="2000-01-01", freq="D", periods=10) datetimes = [ts.to_pydatetime() for ts in ind] dates = [ts.date() for ts in ind] df = DataFrame({'datetimes': datetimes, 'dates': dates}) result = df.get_dtype_counts() expected = Series({datetime64name: 1, objectname: 1}) result = result.sort_index() expected = expected.sort_index() tm.assert_series_equal(result, expected) # GH 7594 # don't coerce tz-aware import pytz tz = pytz.timezone('US/Eastern') dt = tz.localize(datetime(2012, 1, 1)) df = DataFrame({'End Date': dt}, index=[0]) assert df.iat[0, 0] == dt tm.assert_series_equal(df.dtypes, Series( {'End Date': 'datetime64[ns, US/Eastern]'})) df = DataFrame([{'End Date': dt}]) assert df.iat[0, 0] == dt tm.assert_series_equal(df.dtypes, Series( {'End Date': 'datetime64[ns, US/Eastern]'})) # tz-aware (UTC and other tz's) # GH 8411 dr = date_range('20130101', periods=3) df = DataFrame({'value': dr}) assert df.iat[0, 0].tz is None dr = date_range('20130101', periods=3, tz='UTC') df = DataFrame({'value': dr}) assert str(df.iat[0, 0].tz) == 'UTC' dr = date_range('20130101', periods=3, tz='US/Eastern') df = DataFrame({'value': dr}) assert str(df.iat[0, 0].tz) == 'US/Eastern' # GH 7822 # preserver an index with a tz on dict construction i = date_range('1/1/2011', periods=5, freq='10s', tz='US/Eastern') expected = DataFrame( {'a': i.to_series(keep_tz=True).reset_index(drop=True)}) df = DataFrame() df['a'] = i tm.assert_frame_equal(df, expected) df = DataFrame({'a': i}) tm.assert_frame_equal(df, expected) # multiples i_no_tz = date_range('1/1/2011', periods=5, freq='10s') df = DataFrame({'a': i, 'b': i_no_tz}) expected = DataFrame({'a': i.to_series(keep_tz=True) .reset_index(drop=True), 'b': i_no_tz}) tm.assert_frame_equal(df, expected) def test_constructor_datetimes_with_nulls(self): # gh-15869 for arr in [np.array([None, None, None, None, datetime.now(), None]), np.array([None, None, datetime.now(), None])]: result = DataFrame(arr).get_dtype_counts() expected = Series({'datetime64[ns]': 1}) tm.assert_series_equal(result, expected) def test_constructor_for_list_with_dtypes(self): # TODO(wesm): unused intname = np.dtype(np.int_).name # noqa floatname = np.dtype(np.float_).name # noqa datetime64name = np.dtype('M8[ns]').name objectname = np.dtype(np.object_).name # test list of lists/ndarrays df = DataFrame([np.arange(5) for x in range(5)]) result = df.get_dtype_counts() expected = Series({'int64': 5}) df = DataFrame([np.array(np.arange(5), dtype='int32') for x in range(5)]) result = df.get_dtype_counts() expected = Series({'int32': 5}) # overflow issue? (we always expecte int64 upcasting here) df = DataFrame({'a': [2 ** 31, 2 ** 31 + 1]}) result = df.get_dtype_counts() expected = Series({'int64': 1}) tm.assert_series_equal(result, expected) # GH #2751 (construction with no index specified), make sure we cast to # platform values df = DataFrame([1, 2]) result = df.get_dtype_counts() expected = Series({'int64': 1}) tm.assert_series_equal(result, expected) df = DataFrame([1., 2.]) result = df.get_dtype_counts() expected = Series({'float64': 1}) tm.assert_series_equal(result, expected) df = DataFrame({'a': [1, 2]}) result = df.get_dtype_counts() expected = Series({'int64': 1}) tm.assert_series_equal(result, expected) df = DataFrame({'a': [1., 2.]}) result = df.get_dtype_counts() expected = Series({'float64': 1}) tm.assert_series_equal(result, expected) df = DataFrame({'a': 1}, index=lrange(3)) result = df.get_dtype_counts() expected = Series({'int64': 1}) tm.assert_series_equal(result, expected) df = DataFrame({'a': 1.}, index=lrange(3)) result = df.get_dtype_counts() expected = Series({'float64': 1}) tm.assert_series_equal(result, expected) # with object list df = DataFrame({'a': [1, 2, 4, 7], 'b': [1.2, 2.3, 5.1, 6.3], 'c': list('abcd'), 'd': [datetime(2000, 1, 1) for i in range(4)], 'e': [1., 2, 4., 7]}) result = df.get_dtype_counts() expected = Series( {'int64': 1, 'float64': 2, datetime64name: 1, objectname: 1}) result = result.sort_index() expected = expected.sort_index() tm.assert_series_equal(result, expected) def test_constructor_frame_copy(self): cop = DataFrame(self.frame, copy=True) cop['A'] = 5 assert (cop['A'] == 5).all() assert not (self.frame['A'] == 5).all() def test_constructor_ndarray_copy(self): df = DataFrame(self.frame.values) self.frame.values[5] = 5 assert (df.values[5] == 5).all() df = DataFrame(self.frame.values, copy=True) self.frame.values[6] = 6 assert not (df.values[6] == 6).all() def test_constructor_series_copy(self): series = self.frame._series df = DataFrame({'A': series['A']}) df['A'][:] = 5 assert not (series['A'] == 5).all() def test_constructor_with_nas(self): # GH 5016 # na's in indices def check(df): for i in range(len(df.columns)): df.iloc[:, i] indexer = np.arange(len(df.columns))[isna(df.columns)] # No NaN found -> error if len(indexer) == 0: def f(): df.loc[:, np.nan] pytest.raises(TypeError, f) # single nan should result in Series elif len(indexer) == 1: tm.assert_series_equal(df.iloc[:, indexer[0]], df.loc[:, np.nan]) # multiple nans should result in DataFrame else: tm.assert_frame_equal(df.iloc[:, indexer], df.loc[:, np.nan]) df = DataFrame([[1, 2, 3], [4, 5, 6]], index=[1, np.nan]) check(df) df = DataFrame([[1, 2, 3], [4, 5, 6]], columns=[1.1, 2.2, np.nan]) check(df) df = DataFrame([[0, 1, 2, 3], [4, 5, 6, 7]], columns=[np.nan, 1.1, 2.2, np.nan]) check(df) df = DataFrame([[0.0, 1, 2, 3.0], [4, 5, 6, 7]], columns=[np.nan, 1.1, 2.2, np.nan]) check(df) # GH 21428 (non-unique columns) df = DataFrame([[0.0, 1, 2, 3.0], [4, 5, 6, 7]], columns=[np.nan, 1, 2, 2]) check(df) def test_constructor_lists_to_object_dtype(self): # from #1074 d = DataFrame({'a': [np.nan, False]}) assert d['a'].dtype == np.object_ assert not d['a'][1] def test_constructor_categorical(self): # GH8626 # dict creation df = DataFrame({'A': list('abc')}, dtype='category') expected = Series(list('abc'), dtype='category', name='A') tm.assert_series_equal(df['A'], expected) # to_frame s = Series(list('abc'), dtype='category') result = s.to_frame() expected = Series(list('abc'), dtype='category', name=0) tm.assert_series_equal(result[0], expected) result = s.to_frame(name='foo') expected = Series(list('abc'), dtype='category', name='foo') tm.assert_series_equal(result['foo'], expected) # list-like creation df = DataFrame(list('abc'), dtype='category') expected = Series(list('abc'), dtype='category', name=0) tm.assert_series_equal(df[0], expected) # ndim != 1 df = DataFrame([Categorical(list('abc'))]) expected = DataFrame({0: Series(list('abc'), dtype='category')}) tm.assert_frame_equal(df, expected) df = DataFrame([Categorical(list('abc')), Categorical(list('abd'))]) expected = DataFrame({0: Series(list('abc'), dtype='category'), 1: Series(list('abd'), dtype='category')}, columns=[0, 1]) tm.assert_frame_equal(df, expected) # mixed df = DataFrame([Categorical(list('abc')), list('def')]) expected = DataFrame({0: Series(list('abc'), dtype='category'), 1: list('def')}, columns=[0, 1]) tm.assert_frame_equal(df, expected) # invalid (shape) pytest.raises(ValueError, lambda: DataFrame([Categorical(list('abc')), Categorical(list('abdefg'))])) # ndim > 1 pytest.raises(NotImplementedError, lambda: Categorical(np.array([list('abcd')]))) def test_constructor_categorical_series(self): items = [1, 2, 3, 1] exp = Series(items).astype('category') res = Series(items, dtype='category') tm.assert_series_equal(res, exp) items = ["a", "b", "c", "a"] exp = Series(items).astype('category') res = Series(items, dtype='category') tm.assert_series_equal(res, exp) # insert into frame with different index # GH 8076 index = date_range('20000101', periods=3) expected = Series(Categorical(values=[np.nan, np.nan, np.nan], categories=['a', 'b', 'c'])) expected.index = index expected = DataFrame({'x': expected}) df = DataFrame( {'x': Series(['a', 'b', 'c'], dtype='category')}, index=index) tm.assert_frame_equal(df, expected) def test_from_records_to_records(self): # from numpy documentation arr = np.zeros((2,), dtype=('i4,f4,a10')) arr[:] = [(1, 2., 'Hello'), (2, 3., "World")] # TODO(wesm): unused frame = DataFrame.from_records(arr) # noqa index = pd.Index(np.arange(len(arr))[::-1]) indexed_frame = DataFrame.from_records(arr, index=index) tm.assert_index_equal(indexed_frame.index, index) # without names, it should go to last ditch arr2 = np.zeros((2, 3)) tm.assert_frame_equal(DataFrame.from_records(arr2), DataFrame(arr2)) # wrong length msg = r'Shape of passed values is \(3, 2\), indices imply \(3, 1\)' with pytest.raises(ValueError, match=msg): DataFrame.from_records(arr, index=index[:-1]) indexed_frame = DataFrame.from_records(arr, index='f1') # what to do? records = indexed_frame.to_records() assert len(records.dtype.names) == 3 records = indexed_frame.to_records(index=False) assert len(records.dtype.names) == 2 assert 'index' not in records.dtype.names def test_from_records_nones(self): tuples = [(1, 2, None, 3), (1, 2, None, 3), (None, 2, 5, 3)] df = DataFrame.from_records(tuples, columns=['a', 'b', 'c', 'd']) assert np.isnan(df['c'][0]) def test_from_records_iterator(self): arr = np.array([(1.0, 1.0, 2, 2), (3.0, 3.0, 4, 4), (5., 5., 6, 6), (7., 7., 8, 8)], dtype=[('x', np.float64), ('u', np.float32), ('y', np.int64), ('z', np.int32)]) df = DataFrame.from_records(iter(arr), nrows=2) xp = DataFrame({'x': np.array([1.0, 3.0], dtype=np.float64), 'u': np.array([1.0, 3.0], dtype=np.float32), 'y': np.array([2, 4], dtype=np.int64), 'z': np.array([2, 4], dtype=np.int32)}) tm.assert_frame_equal(df.reindex_like(xp), xp) # no dtypes specified here, so just compare with the default arr = [(1.0, 2), (3.0, 4), (5., 6), (7., 8)] df = DataFrame.from_records(iter(arr), columns=['x', 'y'], nrows=2) tm.assert_frame_equal(df, xp.reindex(columns=['x', 'y']), check_dtype=False) def test_from_records_tuples_generator(self): def tuple_generator(length): for i in range(length): letters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' yield (i, letters[i % len(letters)], i / length) columns_names = ['Integer', 'String', 'Float'] columns = [[i[j] for i in tuple_generator( 10)] for j in range(len(columns_names))] data = {'Integer': columns[0], 'String': columns[1], 'Float': columns[2]} expected = DataFrame(data, columns=columns_names) generator = tuple_generator(10) result = DataFrame.from_records(generator, columns=columns_names) tm.assert_frame_equal(result, expected) def test_from_records_lists_generator(self): def list_generator(length): for i in range(length): letters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' yield [i, letters[i % len(letters)], i / length] columns_names = ['Integer', 'String', 'Float'] columns = [[i[j] for i in list_generator( 10)] for j in range(len(columns_names))] data = {'Integer': columns[0], 'String': columns[1], 'Float': columns[2]} expected = DataFrame(data, columns=columns_names) generator = list_generator(10) result = DataFrame.from_records(generator, columns=columns_names) tm.assert_frame_equal(result, expected) def test_from_records_columns_not_modified(self): tuples = [(1, 2, 3), (1, 2, 3), (2, 5, 3)] columns = ['a', 'b', 'c'] original_columns = list(columns) df = DataFrame.from_records(tuples, columns=columns, index='a') # noqa assert columns == original_columns def test_from_records_decimal(self): from decimal import Decimal tuples = [(Decimal('1.5'),), (Decimal('2.5'),), (None,)] df = DataFrame.from_records(tuples, columns=['a']) assert df['a'].dtype == object df = DataFrame.from_records(tuples, columns=['a'], coerce_float=True) assert df['a'].dtype == np.float64 assert np.isnan(df['a'].values[-1]) def test_from_records_duplicates(self): result = DataFrame.from_records([(1, 2, 3), (4, 5, 6)], columns=['a', 'b', 'a']) expected = DataFrame([(1, 2, 3), (4, 5, 6)], columns=['a', 'b', 'a']) tm.assert_frame_equal(result, expected) def test_from_records_set_index_name(self): def create_dict(order_id): return {'order_id': order_id, 'quantity': np.random.randint(1, 10), 'price': np.random.randint(1, 10)} documents = [create_dict(i) for i in range(10)] # demo missing data documents.append({'order_id': 10, 'quantity': 5}) result = DataFrame.from_records(documents, index='order_id') assert result.index.name == 'order_id' # MultiIndex result = DataFrame.from_records(documents, index=['order_id', 'quantity']) assert result.index.names == ('order_id', 'quantity') def test_from_records_misc_brokenness(self): # #2179 data = {1: ['foo'], 2: ['bar']} result = DataFrame.from_records(data, columns=['a', 'b']) exp = DataFrame(data, columns=['a', 'b']) tm.assert_frame_equal(result, exp) # overlap in index/index_names data = {'a': [1, 2, 3], 'b': [4, 5, 6]} result = DataFrame.from_records(data, index=['a', 'b', 'c']) exp = DataFrame(data, index=['a', 'b', 'c']) tm.assert_frame_equal(result, exp) # GH 2623 rows = [] rows.append([datetime(2010, 1, 1), 1]) rows.append([datetime(2010, 1, 2), 'hi']) # test col upconverts to obj df2_obj = DataFrame.from_records(rows, columns=['date', 'test']) results = df2_obj.get_dtype_counts() expected = Series({'datetime64[ns]': 1, 'object': 1}) rows = [] rows.append([datetime(2010, 1, 1), 1]) rows.append([datetime(2010, 1, 2), 1]) df2_obj = DataFrame.from_records(rows, columns=['date', 'test']) results = df2_obj.get_dtype_counts().sort_index() expected = Series({'datetime64[ns]': 1, 'int64': 1}) tm.assert_series_equal(results, expected) def test_from_records_empty(self): # 3562 result = DataFrame.from_records([], columns=['a', 'b', 'c']) expected = DataFrame(columns=['a', 'b', 'c']) tm.assert_frame_equal(result, expected) result = DataFrame.from_records([], columns=['a', 'b', 'b']) expected = DataFrame(columns=['a', 'b', 'b']) tm.assert_frame_equal(result, expected) def test_from_records_empty_with_nonempty_fields_gh3682(self): a = np.array([(1, 2)], dtype=[('id', np.int64), ('value', np.int64)]) df = DataFrame.from_records(a, index='id') tm.assert_index_equal(df.index, Index([1], name='id')) assert df.index.name == 'id' tm.assert_index_equal(df.columns, Index(['value'])) b = np.array([], dtype=[('id', np.int64), ('value', np.int64)]) df = DataFrame.from_records(b, index='id') tm.assert_index_equal(df.index, Index([], name='id')) assert df.index.name == 'id' def test_from_records_with_datetimes(self): # this may fail on certain platforms because of a numpy issue # related GH6140 if not is_platform_little_endian(): pytest.skip("known failure of test on non-little endian") # construction with a null in a recarray # GH 6140 expected = DataFrame({'EXPIRY': [datetime(2005, 3, 1, 0, 0), None]}) arrdata = [np.array([datetime(2005, 3, 1, 0, 0), None])] dtypes = [('EXPIRY', '<M8[ns]')] try: recarray = np.core.records.fromarrays(arrdata, dtype=dtypes) except (ValueError): pytest.skip("known failure of numpy rec array creation") result = DataFrame.from_records(recarray) tm.assert_frame_equal(result, expected) # coercion should work too arrdata = [np.array([datetime(2005, 3, 1, 0, 0), None])] dtypes = [('EXPIRY', '<M8[m]')] recarray = np.core.records.fromarrays(arrdata, dtype=dtypes) result = DataFrame.from_records(recarray) tm.assert_frame_equal(result, expected) def test_from_records_sequencelike(self): df = DataFrame({'A': np.array(np.random.randn(6), dtype=np.float64), 'A1': np.array(np.random.randn(6), dtype=np.float64), 'B': np.array(np.arange(6), dtype=np.int64), 'C': ['foo'] * 6, 'D': np.array([True, False] * 3, dtype=bool), 'E': np.array(np.random.randn(6), dtype=np.float32), 'E1': np.array(np.random.randn(6), dtype=np.float32), 'F': np.array(np.arange(6), dtype=np.int32)}) # this is actually tricky to create the recordlike arrays and # have the dtypes be intact blocks = df._to_dict_of_blocks() tuples = [] columns = [] dtypes = [] for dtype, b in compat.iteritems(blocks): columns.extend(b.columns) dtypes.extend([(c, np.dtype(dtype).descr[0][1]) for c in b.columns]) for i in range(len(df.index)): tup = [] for _, b in compat.iteritems(blocks): tup.extend(b.iloc[i].values) tuples.append(tuple(tup)) recarray = np.array(tuples, dtype=dtypes).view(np.recarray) recarray2 = df.to_records() lists = [list(x) for x in tuples] # tuples (lose the dtype info) result = (DataFrame.from_records(tuples, columns=columns) .reindex(columns=df.columns)) # created recarray and with to_records recarray (have dtype info) result2 = (DataFrame.from_records(recarray, columns=columns) .reindex(columns=df.columns)) result3 = (DataFrame.from_records(recarray2, columns=columns) .reindex(columns=df.columns)) # list of tupels (no dtype info) result4 = (DataFrame.from_records(lists, columns=columns) .reindex(columns=df.columns)) tm.assert_frame_equal(result, df, check_dtype=False) tm.assert_frame_equal(result2, df) tm.assert_frame_equal(result3, df) tm.assert_frame_equal(result4, df, check_dtype=False) # tuples is in the order of the columns result = DataFrame.from_records(tuples) tm.assert_index_equal(result.columns, pd.Index(lrange(8))) # test exclude parameter & we are casting the results here (as we don't # have dtype info to recover) columns_to_test = [columns.index('C'), columns.index('E1')] exclude = list(set(range(8)) - set(columns_to_test)) result = DataFrame.from_records(tuples, exclude=exclude) result.columns = [columns[i] for i in sorted(columns_to_test)] tm.assert_series_equal(result['C'], df['C']) tm.assert_series_equal(result['E1'], df['E1'].astype('float64')) # empty case result = DataFrame.from_records([], columns=['foo', 'bar', 'baz']) assert len(result) == 0 tm.assert_index_equal(result.columns, pd.Index(['foo', 'bar', 'baz'])) result = DataFrame.from_records([]) assert len(result) == 0 assert len(result.columns) == 0 def test_from_records_dictlike(self): # test the dict methods df = DataFrame({'A': np.array(np.random.randn(6), dtype=np.float64), 'A1': np.array(np.random.randn(6), dtype=np.float64), 'B': np.array(np.arange(6), dtype=np.int64), 'C': ['foo'] * 6, 'D': np.array([True, False] * 3, dtype=bool), 'E': np.array(np.random.randn(6), dtype=np.float32), 'E1': np.array(np.random.randn(6), dtype=np.float32), 'F': np.array(np.arange(6), dtype=np.int32)}) # columns is in a different order here than the actual items iterated # from the dict blocks = df._to_dict_of_blocks() columns = [] for dtype, b in compat.iteritems(blocks): columns.extend(b.columns) asdict = {x: y for x, y in compat.iteritems(df)} asdict2 = {x: y.values for x, y in compat.iteritems(df)} # dict of series & dict of ndarrays (have dtype info) results = [] results.append(DataFrame.from_records( asdict).reindex(columns=df.columns)) results.append(DataFrame.from_records(asdict, columns=columns) .reindex(columns=df.columns)) results.append(DataFrame.from_records(asdict2, columns=columns) .reindex(columns=df.columns)) for r in results: tm.assert_frame_equal(r, df) def test_from_records_with_index_data(self): df = DataFrame(np.random.randn(10, 3), columns=['A', 'B', 'C']) data = np.random.randn(10) df1 = DataFrame.from_records(df, index=data) tm.assert_index_equal(df1.index, Index(data)) def test_from_records_bad_index_column(self): df = DataFrame(np.random.randn(10, 3), columns=['A', 'B', 'C']) # should pass df1 = DataFrame.from_records(df, index=['C']) tm.assert_index_equal(df1.index, Index(df.C)) df1 = DataFrame.from_records(df, index='C') tm.assert_index_equal(df1.index, Index(df.C)) # should fail pytest.raises(ValueError, DataFrame.from_records, df, index=[2]) pytest.raises(KeyError, DataFrame.from_records, df, index=2) def test_from_records_non_tuple(self): class Record(object): def __init__(self, *args): self.args = args def __getitem__(self, i): return self.args[i] def __iter__(self): return iter(self.args) recs = [Record(1, 2, 3), Record(4, 5, 6), Record(7, 8, 9)] tups = lmap(tuple, recs) result = DataFrame.from_records(recs) expected = DataFrame.from_records(tups) tm.assert_frame_equal(result, expected) def test_from_records_len0_with_columns(self): # #2633 result = DataFrame.from_records([], index='foo', columns=['foo', 'bar']) expected = Index(['bar']) assert len(result) == 0 assert result.index.name == 'foo' tm.assert_index_equal(result.columns, expected) def test_to_frame_with_falsey_names(self): # GH 16114 result = Series(name=0).to_frame().dtypes expected = Series({0: np.float64}) tm.assert_series_equal(result, expected) result = DataFrame(Series(name=0)).dtypes tm.assert_series_equal(result, expected) @pytest.mark.parametrize('dtype', [None, 'uint8', 'category']) def test_constructor_range_dtype(self, dtype): # GH 16804 expected = DataFrame({'A': [0, 1, 2, 3, 4]}, dtype=dtype or 'int64') result = DataFrame({'A': range(5)}, dtype=dtype) tm.assert_frame_equal(result, expected) def test_frame_from_list_subclass(self): # GH21226 class List(list): pass expected = DataFrame([[1, 2, 3], [4, 5, 6]]) result = DataFrame(List([List([1, 2, 3]), List([4, 5, 6])])) tm.assert_frame_equal(result, expected) class TestDataFrameConstructorWithDatetimeTZ(TestData): def test_from_dict(self): # 8260 # support datetime64 with tz idx = Index(date_range('20130101', periods=3, tz='US/Eastern'), name='foo') dr = date_range('20130110', periods=3) # construction df = DataFrame({'A': idx, 'B': dr}) assert df['A'].dtype, 'M8[ns, US/Eastern' assert df['A'].name == 'A' tm.assert_series_equal(df['A'], Series(idx, name='A')) tm.assert_series_equal(df['B'], Series(dr, name='B')) def test_from_index(self): # from index idx2 = date_range('20130101', periods=3, tz='US/Eastern', name='foo') df2 = DataFrame(idx2) tm.assert_series_equal(df2['foo'],
Series(idx2, name='foo')
pandas.Series
import numpy as np import pytest import pandas as pd from pandas import ( DataFrame, lreshape, melt, wide_to_long, ) import pandas._testing as tm class TestMelt: def setup_method(self, method): self.df = tm.makeTimeDataFrame()[:10] self.df["id1"] = (self.df["A"] > 0).astype(np.int64) self.df["id2"] = (self.df["B"] > 0).astype(np.int64) self.var_name = "var" self.value_name = "val" self.df1 = DataFrame( [ [1.067683, -1.110463, 0.20867], [-1.321405, 0.368915, -1.055342], [-0.807333, 0.08298, -0.873361], ] ) self.df1.columns = [list("ABC"), list("abc")] self.df1.columns.names = ["CAP", "low"] def test_top_level_method(self): result = melt(self.df) assert result.columns.tolist() == ["variable", "value"] def test_method_signatures(self): tm.assert_frame_equal(self.df.melt(), melt(self.df)) tm.assert_frame_equal( self.df.melt(id_vars=["id1", "id2"], value_vars=["A", "B"]), melt(self.df, id_vars=["id1", "id2"], value_vars=["A", "B"]), ) tm.assert_frame_equal( self.df.melt(var_name=self.var_name, value_name=self.value_name), melt(self.df, var_name=self.var_name, value_name=self.value_name), ) tm.assert_frame_equal(self.df1.melt(col_level=0), melt(self.df1, col_level=0)) def test_default_col_names(self): result = self.df.melt() assert result.columns.tolist() == ["variable", "value"] result1 = self.df.melt(id_vars=["id1"]) assert result1.columns.tolist() == ["id1", "variable", "value"] result2 = self.df.melt(id_vars=["id1", "id2"]) assert result2.columns.tolist() == ["id1", "id2", "variable", "value"] def test_value_vars(self): result3 = self.df.melt(id_vars=["id1", "id2"], value_vars="A") assert len(result3) == 10 result4 = self.df.melt(id_vars=["id1", "id2"], value_vars=["A", "B"]) expected4 = DataFrame( { "id1": self.df["id1"].tolist() * 2, "id2": self.df["id2"].tolist() * 2, "variable": ["A"] * 10 + ["B"] * 10, "value": (self.df["A"].tolist() + self.df["B"].tolist()), }, columns=["id1", "id2", "variable", "value"], )
tm.assert_frame_equal(result4, expected4)
pandas._testing.assert_frame_equal
from datetime import datetime, timedelta import inspect import numpy as np import pytest from pandas.core.dtypes.common import ( is_categorical_dtype, is_interval_dtype, is_object_dtype, ) from pandas import ( Categorical, DataFrame, DatetimeIndex, Index, IntervalIndex, MultiIndex, RangeIndex, Series, Timestamp, cut, date_range, to_datetime, ) import pandas.util.testing as tm @pytest.mark.filterwarnings("ignore:Sparse:FutureWarning") class TestDataFrameAlterAxes: def test_set_index_directly(self, float_string_frame): df = float_string_frame idx = Index(np.arange(len(df))[::-1]) df.index = idx tm.assert_index_equal(df.index, idx) with pytest.raises(ValueError, match="Length mismatch"): df.index = idx[::2] def test_set_index(self, float_string_frame): df = float_string_frame idx = Index(np.arange(len(df))[::-1]) df = df.set_index(idx) tm.assert_index_equal(df.index, idx) with pytest.raises(ValueError, match="Length mismatch"): df.set_index(idx[::2]) def test_set_index_cast(self): # issue casting an index then set_index df = DataFrame( {"A": [1.1, 2.2, 3.3], "B": [5.0, 6.1, 7.2]}, index=[2010, 2011, 2012] ) df2 = df.set_index(df.index.astype(np.int32)) tm.assert_frame_equal(df, df2) # A has duplicate values, C does not @pytest.mark.parametrize("keys", ["A", "C", ["A", "B"], ("tuple", "as", "label")]) @pytest.mark.parametrize("inplace", [True, False]) @pytest.mark.parametrize("drop", [True, False]) def test_set_index_drop_inplace(self, frame_of_index_cols, drop, inplace, keys): df = frame_of_index_cols if isinstance(keys, list): idx = MultiIndex.from_arrays([df[x] for x in keys], names=keys) else: idx = Index(df[keys], name=keys) expected = df.drop(keys, axis=1) if drop else df expected.index = idx if inplace: result = df.copy() result.set_index(keys, drop=drop, inplace=True) else: result = df.set_index(keys, drop=drop) tm.assert_frame_equal(result, expected) # A has duplicate values, C does not @pytest.mark.parametrize("keys", ["A", "C", ["A", "B"], ("tuple", "as", "label")]) @pytest.mark.parametrize("drop", [True, False]) def test_set_index_append(self, frame_of_index_cols, drop, keys): df = frame_of_index_cols keys = keys if isinstance(keys, list) else [keys] idx = MultiIndex.from_arrays( [df.index] + [df[x] for x in keys], names=[None] + keys ) expected = df.drop(keys, axis=1) if drop else df.copy() expected.index = idx result = df.set_index(keys, drop=drop, append=True) tm.assert_frame_equal(result, expected) # A has duplicate values, C does not @pytest.mark.parametrize("keys", ["A", "C", ["A", "B"], ("tuple", "as", "label")]) @pytest.mark.parametrize("drop", [True, False]) def test_set_index_append_to_multiindex(self, frame_of_index_cols, drop, keys): # append to existing multiindex df = frame_of_index_cols.set_index(["D"], drop=drop, append=True) keys = keys if isinstance(keys, list) else [keys] expected = frame_of_index_cols.set_index(["D"] + keys, drop=drop, append=True) result = df.set_index(keys, drop=drop, append=True) tm.assert_frame_equal(result, expected) def test_set_index_after_mutation(self): # GH1590 df = DataFrame({"val": [0, 1, 2], "key": ["<KEY>"]}) expected = DataFrame({"val": [1, 2]}, Index(["b", "c"], name="key")) df2 = df.loc[df.index.map(lambda indx: indx >= 1)] result = df2.set_index("key") tm.assert_frame_equal(result, expected) # MultiIndex constructor does not work directly on Series -> lambda # Add list-of-list constructor because list is ambiguous -> lambda # also test index name if append=True (name is duplicate here for B) @pytest.mark.parametrize( "box", [ Series, Index, np.array, list, lambda x: [list(x)], lambda x: MultiIndex.from_arrays([x]), ], ) @pytest.mark.parametrize( "append, index_name", [(True, None), (True, "B"), (True, "test"), (False, None)] ) @pytest.mark.parametrize("drop", [True, False]) def test_set_index_pass_single_array( self, frame_of_index_cols, drop, append, index_name, box ): df = frame_of_index_cols df.index.name = index_name key = box(df["B"]) if box == list: # list of strings gets interpreted as list of keys msg = "['one', 'two', 'three', 'one', 'two']" with pytest.raises(KeyError, match=msg): df.set_index(key, drop=drop, append=append) else: # np.array/list-of-list "forget" the name of B name_mi = getattr(key, "names", None) name = [getattr(key, "name", None)] if name_mi is None else name_mi result = df.set_index(key, drop=drop, append=append) # only valid column keys are dropped # since B is always passed as array above, nothing is dropped expected = df.set_index(["B"], drop=False, append=append) expected.index.names = [index_name] + name if append else name tm.assert_frame_equal(result, expected) # MultiIndex constructor does not work directly on Series -> lambda # also test index name if append=True (name is duplicate here for A & B) @pytest.mark.parametrize( "box", [Series, Index, np.array, list, lambda x: MultiIndex.from_arrays([x])] ) @pytest.mark.parametrize( "append, index_name", [(True, None), (True, "A"), (True, "B"), (True, "test"), (False, None)], ) @pytest.mark.parametrize("drop", [True, False]) def test_set_index_pass_arrays( self, frame_of_index_cols, drop, append, index_name, box ): df = frame_of_index_cols df.index.name = index_name keys = ["A", box(df["B"])] # np.array/list "forget" the name of B names = ["A", None if box in [np.array, list, tuple, iter] else "B"] result = df.set_index(keys, drop=drop, append=append) # only valid column keys are dropped # since B is always passed as array above, only A is dropped, if at all expected = df.set_index(["A", "B"], drop=False, append=append) expected = expected.drop("A", axis=1) if drop else expected expected.index.names = [index_name] + names if append else names tm.assert_frame_equal(result, expected) # MultiIndex constructor does not work directly on Series -> lambda # We also emulate a "constructor" for the label -> lambda # also test index name if append=True (name is duplicate here for A) @pytest.mark.parametrize( "box2", [ Series, Index, np.array, list, iter, lambda x: MultiIndex.from_arrays([x]), lambda x: x.name, ], ) @pytest.mark.parametrize( "box1", [ Series, Index, np.array, list, iter, lambda x: MultiIndex.from_arrays([x]), lambda x: x.name, ], ) @pytest.mark.parametrize( "append, index_name", [(True, None), (True, "A"), (True, "test"), (False, None)] ) @pytest.mark.parametrize("drop", [True, False]) def test_set_index_pass_arrays_duplicate( self, frame_of_index_cols, drop, append, index_name, box1, box2 ): df = frame_of_index_cols df.index.name = index_name keys = [box1(df["A"]), box2(df["A"])] result = df.set_index(keys, drop=drop, append=append) # if either box is iter, it has been consumed; re-read keys = [box1(df["A"]), box2(df["A"])] # need to adapt first drop for case that both keys are 'A' -- # cannot drop the same column twice; # use "is" because == would give ambiguous Boolean error for containers first_drop = ( False if (keys[0] is "A" and keys[1] is "A") else drop # noqa: F632 ) # to test against already-tested behaviour, we add sequentially, # hence second append always True; must wrap keys in list, otherwise # box = list would be interpreted as keys expected = df.set_index([keys[0]], drop=first_drop, append=append) expected = expected.set_index([keys[1]], drop=drop, append=True) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("append", [True, False]) @pytest.mark.parametrize("drop", [True, False]) def test_set_index_pass_multiindex(self, frame_of_index_cols, drop, append): df = frame_of_index_cols keys = MultiIndex.from_arrays([df["A"], df["B"]], names=["A", "B"]) result = df.set_index(keys, drop=drop, append=append) # setting with a MultiIndex will never drop columns expected = df.set_index(["A", "B"], drop=False, append=append) tm.assert_frame_equal(result, expected) def test_set_index_verify_integrity(self, frame_of_index_cols): df = frame_of_index_cols with pytest.raises(ValueError, match="Index has duplicate keys"): df.set_index("A", verify_integrity=True) # with MultiIndex with pytest.raises(ValueError, match="Index has duplicate keys"): df.set_index([df["A"], df["A"]], verify_integrity=True) @pytest.mark.parametrize("append", [True, False]) @pytest.mark.parametrize("drop", [True, False]) def test_set_index_raise_keys(self, frame_of_index_cols, drop, append): df = frame_of_index_cols with pytest.raises(KeyError, match="['foo', 'bar', 'baz']"): # column names are A-E, as well as one tuple df.set_index(["foo", "bar", "baz"], drop=drop, append=append) # non-existent key in list with arrays with pytest.raises(KeyError, match="X"): df.set_index([df["A"], df["B"], "X"], drop=drop, append=append) msg = "[('foo', 'foo', 'foo', 'bar', 'bar')]" # tuples always raise KeyError with pytest.raises(KeyError, match=msg): df.set_index(tuple(df["A"]), drop=drop, append=append) # also within a list with pytest.raises(KeyError, match=msg): df.set_index(["A", df["A"], tuple(df["A"])], drop=drop, append=append) @pytest.mark.parametrize("append", [True, False]) @pytest.mark.parametrize("drop", [True, False]) @pytest.mark.parametrize("box", [set], ids=["set"]) def test_set_index_raise_on_type(self, frame_of_index_cols, box, drop, append): df = frame_of_index_cols msg = 'The parameter "keys" may be a column key, .*' # forbidden type, e.g. set with pytest.raises(TypeError, match=msg): df.set_index(box(df["A"]), drop=drop, append=append) # forbidden type in list, e.g. set with pytest.raises(TypeError, match=msg): df.set_index(["A", df["A"], box(df["A"])], drop=drop, append=append) # MultiIndex constructor does not work directly on Series -> lambda @pytest.mark.parametrize( "box", [Series, Index, np.array, iter, lambda x: MultiIndex.from_arrays([x])], ids=["Series", "Index", "np.array", "iter", "MultiIndex"], ) @pytest.mark.parametrize("length", [4, 6], ids=["too_short", "too_long"]) @pytest.mark.parametrize("append", [True, False]) @pytest.mark.parametrize("drop", [True, False]) def test_set_index_raise_on_len( self, frame_of_index_cols, box, length, drop, append ): # GH 24984 df = frame_of_index_cols # has length 5 values = np.random.randint(0, 10, (length,)) msg = "Length mismatch: Expected 5 rows, received array of length.*" # wrong length directly with pytest.raises(ValueError, match=msg): df.set_index(box(values), drop=drop, append=append) # wrong length in list with pytest.raises(ValueError, match=msg): df.set_index(["A", df.A, box(values)], drop=drop, append=append) def test_set_index_custom_label_type(self): # GH 24969 class Thing: def __init__(self, name, color): self.name = name self.color = color def __str__(self): return "<Thing {self.name!r}>".format(self=self) # necessary for pretty KeyError __repr__ = __str__ thing1 = Thing("One", "red") thing2 = Thing("Two", "blue") df = DataFrame({thing1: [0, 1], thing2: [2, 3]}) expected = DataFrame({thing1: [0, 1]}, index=Index([2, 3], name=thing2)) # use custom label directly result = df.set_index(thing2) tm.assert_frame_equal(result, expected) # custom label wrapped in list result = df.set_index([thing2]) tm.assert_frame_equal(result, expected) # missing key thing3 = Thing("Three", "pink") msg = "<Thing 'Three'>" with pytest.raises(KeyError, match=msg): # missing label directly df.set_index(thing3) with pytest.raises(KeyError, match=msg): # missing label in list df.set_index([thing3]) def test_set_index_custom_label_hashable_iterable(self): # GH 24969 # actual example discussed in GH 24984 was e.g. for shapely.geometry # objects (e.g. a collection of Points) that can be both hashable and # iterable; using frozenset as a stand-in for testing here class Thing(frozenset): # need to stabilize repr for KeyError (due to random order in sets) def __repr__(self): tmp = sorted(list(self)) # double curly brace prints one brace in format string return "frozenset({{{}}})".format(", ".join(map(repr, tmp))) thing1 = Thing(["One", "red"]) thing2 = Thing(["Two", "blue"]) df = DataFrame({thing1: [0, 1], thing2: [2, 3]}) expected = DataFrame({thing1: [0, 1]}, index=Index([2, 3], name=thing2)) # use custom label directly result = df.set_index(thing2) tm.assert_frame_equal(result, expected) # custom label wrapped in list result = df.set_index([thing2]) tm.assert_frame_equal(result, expected) # missing key thing3 = Thing(["Three", "pink"]) msg = r"frozenset\(\{'Three', 'pink'\}\)" with pytest.raises(KeyError, match=msg): # missing label directly df.set_index(thing3) with pytest.raises(KeyError, match=msg): # missing label in list df.set_index([thing3]) def test_set_index_custom_label_type_raises(self): # GH 24969 # purposefully inherit from something unhashable class Thing(set): def __init__(self, name, color): self.name = name self.color = color def __str__(self): return "<Thing {self.name!r}>".format(self=self) thing1 = Thing("One", "red") thing2 = Thing("Two", "blue") df = DataFrame([[0, 2], [1, 3]], columns=[thing1, thing2]) msg = 'The parameter "keys" may be a column key, .*' with pytest.raises(TypeError, match=msg): # use custom label directly df.set_index(thing2) with pytest.raises(TypeError, match=msg): # custom label wrapped in list df.set_index([thing2]) def test_construction_with_categorical_index(self): ci = tm.makeCategoricalIndex(10) ci.name = "B" # with Categorical df = DataFrame({"A": np.random.randn(10), "B": ci.values}) idf = df.set_index("B") tm.assert_index_equal(idf.index, ci) # from a CategoricalIndex df = DataFrame({"A": np.random.randn(10), "B": ci}) idf = df.set_index("B") tm.assert_index_equal(idf.index, ci) # round-trip idf = idf.reset_index().set_index("B") tm.assert_index_equal(idf.index, ci) def test_set_index_cast_datetimeindex(self): df = DataFrame( { "A": [datetime(2000, 1, 1) + timedelta(i) for i in range(1000)], "B": np.random.randn(1000), } ) idf = df.set_index("A") assert isinstance(idf.index, DatetimeIndex) def test_convert_dti_to_series(self): # don't cast a DatetimeIndex WITH a tz, leave as object # GH 6032 idx = DatetimeIndex( to_datetime(["2013-1-1 13:00", "2013-1-2 14:00"]), name="B" ).tz_localize("US/Pacific") df = DataFrame(np.random.randn(2, 1), columns=["A"]) expected = Series( np.array( [ Timestamp("2013-01-01 13:00:00-0800", tz="US/Pacific"), Timestamp("2013-01-02 14:00:00-0800", tz="US/Pacific"), ], dtype="object", ), name="B", ) # convert index to series result = Series(idx) tm.assert_series_equal(result, expected) # assign to frame df["B"] = idx result = df["B"] tm.assert_series_equal(result, expected) # convert to series while keeping the timezone result = idx.to_series(keep_tz=True, index=[0, 1]) tm.assert_series_equal(result, expected) # convert to utc with tm.assert_produces_warning(FutureWarning): df["B"] = idx.to_series(keep_tz=False, index=[0, 1]) result = df["B"] comp = Series(DatetimeIndex(expected.values).tz_localize(None), name="B") tm.assert_series_equal(result, comp) with tm.assert_produces_warning(FutureWarning) as m: result = idx.to_series(index=[0, 1]) tm.assert_series_equal(result, expected.dt.tz_convert(None)) msg = ( "The default of the 'keep_tz' keyword in " "DatetimeIndex.to_series will change to True in a future " "release." ) assert msg in str(m[0].message) with tm.assert_produces_warning(FutureWarning): result = idx.to_series(keep_tz=False, index=[0, 1]) tm.assert_series_equal(result, expected.dt.tz_convert(None)) # list of datetimes with a tz df["B"] = idx.to_pydatetime() result = df["B"] tm.assert_series_equal(result, expected) # GH 6785 # set the index manually import pytz df = DataFrame([{"ts": datetime(2014, 4, 1, tzinfo=pytz.utc), "foo": 1}]) expected = df.set_index("ts") df.index = df["ts"] df.pop("ts") tm.assert_frame_equal(df, expected) def test_reset_index_tz(self, tz_aware_fixture): # GH 3950 # reset_index with single level tz = tz_aware_fixture idx = date_range("1/1/2011", periods=5, freq="D", tz=tz, name="idx") df = DataFrame({"a": range(5), "b": ["A", "B", "C", "D", "E"]}, index=idx) expected = DataFrame( { "idx": [ datetime(2011, 1, 1), datetime(2011, 1, 2), datetime(2011, 1, 3), datetime(2011, 1, 4), datetime(2011, 1, 5), ], "a": range(5), "b": ["A", "B", "C", "D", "E"], }, columns=["idx", "a", "b"], ) expected["idx"] = expected["idx"].apply(lambda d: Timestamp(d, tz=tz)) tm.assert_frame_equal(df.reset_index(), expected) def test_set_index_timezone(self): # GH 12358 # tz-aware Series should retain the tz idx = to_datetime(["2014-01-01 10:10:10"], utc=True).tz_convert("Europe/Rome") df = DataFrame({"A": idx}) assert df.set_index(idx).index[0].hour == 11 assert DatetimeIndex(Series(df.A))[0].hour == 11 assert df.set_index(df.A).index[0].hour == 11 def test_set_index_dst(self): di = date_range("2006-10-29 00:00:00", periods=3, freq="H", tz="US/Pacific") df = DataFrame(data={"a": [0, 1, 2], "b": [3, 4, 5]}, index=di).reset_index() # single level res = df.set_index("index") exp = DataFrame( data={"a": [0, 1, 2], "b": [3, 4, 5]}, index=Index(di, name="index") ) tm.assert_frame_equal(res, exp) # GH 12920 res = df.set_index(["index", "a"]) exp_index = MultiIndex.from_arrays([di, [0, 1, 2]], names=["index", "a"]) exp = DataFrame({"b": [3, 4, 5]}, index=exp_index) tm.assert_frame_equal(res, exp) def test_reset_index_with_intervals(self): idx = IntervalIndex.from_breaks(np.arange(11), name="x") original = DataFrame({"x": idx, "y": np.arange(10)})[["x", "y"]] result = original.set_index("x") expected = DataFrame({"y": np.arange(10)}, index=idx) tm.assert_frame_equal(result, expected) result2 = result.reset_index() tm.assert_frame_equal(result2, original) def test_set_index_multiindexcolumns(self): columns = MultiIndex.from_tuples([("foo", 1), ("foo", 2), ("bar", 1)]) df = DataFrame(np.random.randn(3, 3), columns=columns) result = df.set_index(df.columns[0]) expected = df.iloc[:, 1:] expected.index = df.iloc[:, 0].values expected.index.names = [df.columns[0]] tm.assert_frame_equal(result, expected) def test_set_index_empty_column(self): # GH 1971 df = DataFrame( [ {"a": 1, "p": 0}, {"a": 2, "m": 10}, {"a": 3, "m": 11, "p": 20}, {"a": 4, "m": 12, "p": 21}, ], columns=("a", "m", "p", "x"), ) result = df.set_index(["a", "x"]) expected = df[["m", "p"]] expected.index = MultiIndex.from_arrays([df["a"], df["x"]], names=["a", "x"]) tm.assert_frame_equal(result, expected) def test_set_columns(self, float_string_frame): cols = Index(np.arange(len(float_string_frame.columns))) float_string_frame.columns = cols with pytest.raises(ValueError, match="Length mismatch"): float_string_frame.columns = cols[::2] def test_dti_set_index_reindex(self): # GH 6631 df = DataFrame(np.random.random(6)) idx1 = date_range("2011/01/01", periods=6, freq="M", tz="US/Eastern") idx2 = date_range("2013", periods=6, freq="A", tz="Asia/Tokyo") df = df.set_index(idx1) tm.assert_index_equal(df.index, idx1) df = df.reindex(idx2) tm.assert_index_equal(df.index, idx2) # GH 11314 # with tz index = date_range( datetime(2015, 10, 1), datetime(2015, 10, 1, 23), freq="H", tz="US/Eastern" ) df = DataFrame(np.random.randn(24, 1), columns=["a"], index=index) new_index = date_range( datetime(2015, 10, 2), datetime(2015, 10, 2, 23), freq="H", tz="US/Eastern" ) result = df.set_index(new_index) assert result.index.freq == index.freq # Renaming def test_rename(self, float_frame): mapping = {"A": "a", "B": "b", "C": "c", "D": "d"} renamed = float_frame.rename(columns=mapping) renamed2 = float_frame.rename(columns=str.lower) tm.assert_frame_equal(renamed, renamed2) tm.assert_frame_equal( renamed2.rename(columns=str.upper), float_frame, check_names=False ) # index data = {"A": {"foo": 0, "bar": 1}} # gets sorted alphabetical df = DataFrame(data) renamed = df.rename(index={"foo": "bar", "bar": "foo"}) tm.assert_index_equal(renamed.index, Index(["foo", "bar"])) renamed = df.rename(index=str.upper) tm.assert_index_equal(renamed.index, Index(["BAR", "FOO"])) # have to pass something with pytest.raises(TypeError, match="must pass an index to rename"): float_frame.rename() # partial columns renamed = float_frame.rename(columns={"C": "foo", "D": "bar"}) tm.assert_index_equal(renamed.columns, Index(["A", "B", "foo", "bar"])) # other axis renamed = float_frame.T.rename(index={"C": "foo", "D": "bar"}) tm.assert_index_equal(renamed.index, Index(["A", "B", "foo", "bar"])) # index with name index = Index(["foo", "bar"], name="name") renamer = DataFrame(data, index=index) renamed = renamer.rename(index={"foo": "bar", "bar": "foo"}) tm.assert_index_equal(renamed.index, Index(["bar", "foo"], name="name")) assert renamed.index.name == renamer.index.name def test_rename_axis_inplace(self, float_frame): # GH 15704 expected = float_frame.rename_axis("foo") result = float_frame.copy() no_return = result.rename_axis("foo", inplace=True) assert no_return is None tm.assert_frame_equal(result, expected) expected = float_frame.rename_axis("bar", axis=1) result = float_frame.copy() no_return = result.rename_axis("bar", axis=1, inplace=True) assert no_return is None tm.assert_frame_equal(result, expected) def test_rename_axis_raises(self): # https://github.com/pandas-dev/pandas/issues/17833 df = DataFrame({"A": [1, 2], "B": [1, 2]}) with pytest.raises(ValueError, match="Use `.rename`"): df.rename_axis(id, axis=0) with pytest.raises(ValueError, match="Use `.rename`"): df.rename_axis({0: 10, 1: 20}, axis=0) with pytest.raises(ValueError, match="Use `.rename`"): df.rename_axis(id, axis=1) with pytest.raises(ValueError, match="Use `.rename`"): df["A"].rename_axis(id) def test_rename_axis_mapper(self): # GH 19978 mi = MultiIndex.from_product([["a", "b", "c"], [1, 2]], names=["ll", "nn"]) df = DataFrame( {"x": [i for i in range(len(mi))], "y": [i * 10 for i in range(len(mi))]}, index=mi, ) # Test for rename of the Index object of columns result = df.rename_axis("cols", axis=1) tm.assert_index_equal(result.columns, Index(["x", "y"], name="cols")) # Test for rename of the Index object of columns using dict result = result.rename_axis(columns={"cols": "new"}, axis=1) tm.assert_index_equal(result.columns, Index(["x", "y"], name="new")) # Test for renaming index using dict result = df.rename_axis(index={"ll": "foo"}) assert result.index.names == ["foo", "nn"] # Test for renaming index using a function result = df.rename_axis(index=str.upper, axis=0) assert result.index.names == ["LL", "NN"] # Test for renaming index providing complete list result = df.rename_axis(index=["foo", "goo"]) assert result.index.names == ["foo", "goo"] # Test for changing index and columns at same time sdf = df.reset_index().set_index("nn").drop(columns=["ll", "y"]) result = sdf.rename_axis(index="foo", columns="meh") assert result.index.name == "foo" assert result.columns.name == "meh" # Test different error cases with pytest.raises(TypeError, match="Must pass"): df.rename_axis(index="wrong") with pytest.raises(ValueError, match="Length of names"): df.rename_axis(index=["wrong"]) with pytest.raises(TypeError, match="bogus"): df.rename_axis(bogus=None) @pytest.mark.parametrize( "kwargs, rename_index, rename_columns", [ ({"mapper": None, "axis": 0}, True, False), ({"mapper": None, "axis": 1}, False, True), ({"index": None}, True, False), ({"columns": None}, False, True), ({"index": None, "columns": None}, True, True), ({}, False, False), ], ) def test_rename_axis_none(self, kwargs, rename_index, rename_columns): # GH 25034 index = Index(list("abc"), name="foo") columns = Index(["col1", "col2"], name="bar") data = np.arange(6).reshape(3, 2) df = DataFrame(data, index, columns) result = df.rename_axis(**kwargs) expected_index = index.rename(None) if rename_index else index expected_columns = columns.rename(None) if rename_columns else columns expected = DataFrame(data, expected_index, expected_columns) tm.assert_frame_equal(result, expected) def test_rename_multiindex(self): tuples_index = [("foo1", "bar1"), ("foo2", "bar2")] tuples_columns = [("fizz1", "buzz1"), ("fizz2", "buzz2")] index = MultiIndex.from_tuples(tuples_index, names=["foo", "bar"]) columns = MultiIndex.from_tuples(tuples_columns, names=["fizz", "buzz"]) df = DataFrame([(0, 0), (1, 1)], index=index, columns=columns) # # without specifying level -> across all levels renamed = df.rename( index={"foo1": "foo3", "bar2": "bar3"}, columns={"fizz1": "fizz3", "buzz2": "buzz3"}, ) new_index = MultiIndex.from_tuples( [("foo3", "bar1"), ("foo2", "bar3")], names=["foo", "bar"] ) new_columns = MultiIndex.from_tuples( [("fizz3", "buzz1"), ("fizz2", "buzz3")], names=["fizz", "buzz"] ) tm.assert_index_equal(renamed.index, new_index) tm.assert_index_equal(renamed.columns, new_columns) assert renamed.index.names == df.index.names assert renamed.columns.names == df.columns.names # # with specifying a level (GH13766) # dict new_columns = MultiIndex.from_tuples( [("fizz3", "buzz1"), ("fizz2", "buzz2")], names=["fizz", "buzz"] ) renamed = df.rename(columns={"fizz1": "fizz3", "buzz2": "buzz3"}, level=0) tm.assert_index_equal(renamed.columns, new_columns) renamed = df.rename(columns={"fizz1": "fizz3", "buzz2": "buzz3"}, level="fizz") tm.assert_index_equal(renamed.columns, new_columns) new_columns = MultiIndex.from_tuples( [("fizz1", "buzz1"), ("fizz2", "buzz3")], names=["fizz", "buzz"] ) renamed = df.rename(columns={"fizz1": "fizz3", "buzz2": "buzz3"}, level=1) tm.assert_index_equal(renamed.columns, new_columns) renamed = df.rename(columns={"fizz1": "fizz3", "buzz2": "buzz3"}, level="buzz") tm.assert_index_equal(renamed.columns, new_columns) # function func = str.upper new_columns = MultiIndex.from_tuples( [("FIZZ1", "buzz1"), ("FIZZ2", "buzz2")], names=["fizz", "buzz"] ) renamed = df.rename(columns=func, level=0) tm.assert_index_equal(renamed.columns, new_columns) renamed = df.rename(columns=func, level="fizz") tm.assert_index_equal(renamed.columns, new_columns) new_columns = MultiIndex.from_tuples( [("fizz1", "BUZZ1"), ("fizz2", "BUZZ2")], names=["fizz", "buzz"] ) renamed = df.rename(columns=func, level=1) tm.assert_index_equal(renamed.columns, new_columns) renamed = df.rename(columns=func, level="buzz") tm.assert_index_equal(renamed.columns, new_columns) # index new_index = MultiIndex.from_tuples( [("foo3", "bar1"), ("foo2", "bar2")], names=["foo", "bar"] ) renamed = df.rename(index={"foo1": "foo3", "bar2": "bar3"}, level=0) tm.assert_index_equal(renamed.index, new_index) def test_rename_nocopy(self, float_frame): renamed = float_frame.rename(columns={"C": "foo"}, copy=False) renamed["foo"] = 1.0 assert (float_frame["C"] == 1.0).all() def test_rename_inplace(self, float_frame): float_frame.rename(columns={"C": "foo"}) assert "C" in float_frame assert "foo" not in float_frame c_id = id(float_frame["C"]) float_frame = float_frame.copy() float_frame.rename(columns={"C": "foo"}, inplace=True) assert "C" not in float_frame assert "foo" in float_frame assert id(float_frame["foo"]) != c_id def test_rename_bug(self): # GH 5344 # rename set ref_locs, and set_index was not resetting df =
DataFrame({0: ["foo", "bar"], 1: ["bah", "bas"], 2: [1, 2]})
pandas.DataFrame
from sqlalchemy import create_engine import pandas as pd import os csv_data = pd.read_csv('./assets/ks-projects-201801.csv') df =
pd.DataFrame(csv_data)
pandas.DataFrame
import pytest, pandas from os import remove from datetime import date from patentpy.utility import get_date_tues from patentpy.convert_txt import convert_txt_to_df from patentpy.acquire import get_bulk_patent_data ### TEST_GET_BULK_PATENT_DATA ### # test generic; should return true and create/append to csv file. def test_get_bulk_patent_data(): # run func x2 and see if csv formatted version == df version df = get_bulk_patent_data([i for i in range (2001, 2006, 2)], [1 for i in range(0, 3)]) get_bulk_patent_data([i for i in range (2001, 2006, 2)], [1 for i in range(0, 3)], "test.csv") df_from_csv =
pandas.read_csv("test.csv")
pandas.read_csv
import baostock as bs import pandas as pd import datetime import time from sqlalchemy import create_engine def download_data(date): # 获取指定日期的指数、股票数据 stock_rs = bs.query_all_stock(date) stock_df = stock_rs.get_data() data_df =
pd.DataFrame()
pandas.DataFrame
from collections import OrderedDict from datetime import timedelta import numpy as np import pytest from pandas.core.dtypes.dtypes import CategoricalDtype, DatetimeTZDtype import pandas as pd from pandas import ( Categorical, DataFrame, Series, Timedelta, Timestamp, _np_version_under1p14, concat, date_range, option_context, ) from pandas.core.arrays import integer_array import pandas.util.testing as tm def _check_cast(df, v): """ Check if all dtypes of df are equal to v """ assert all(s.dtype.name == v for _, s in df.items()) class TestDataFrameDataTypes: def test_concat_empty_dataframe_dtypes(self): df = DataFrame(columns=list("abc")) df["a"] = df["a"].astype(np.bool_) df["b"] = df["b"].astype(np.int32) df["c"] = df["c"].astype(np.float64) result = pd.concat([df, df]) assert result["a"].dtype == np.bool_ assert result["b"].dtype == np.int32 assert result["c"].dtype == np.float64 result = pd.concat([df, df.astype(np.float64)]) assert result["a"].dtype == np.object_ assert result["b"].dtype == np.float64 assert result["c"].dtype == np.float64 def test_empty_frame_dtypes_ftypes(self): empty_df = pd.DataFrame() tm.assert_series_equal(empty_df.dtypes, pd.Series(dtype=np.object)) # GH 26705 - Assert .ftypes is deprecated with tm.assert_produces_warning(FutureWarning): tm.assert_series_equal(empty_df.ftypes, pd.Series(dtype=np.object)) nocols_df = pd.DataFrame(index=[1, 2, 3]) tm.assert_series_equal(nocols_df.dtypes, pd.Series(dtype=np.object)) # GH 26705 - Assert .ftypes is deprecated with tm.assert_produces_warning(FutureWarning): tm.assert_series_equal(nocols_df.ftypes, pd.Series(dtype=np.object)) norows_df = pd.DataFrame(columns=list("abc")) tm.assert_series_equal( norows_df.dtypes, pd.Series(np.object, index=list("abc")) ) # GH 26705 - Assert .ftypes is deprecated with tm.assert_produces_warning(FutureWarning): tm.assert_series_equal( norows_df.ftypes, pd.Series("object:dense", index=list("abc")) ) norows_int_df = pd.DataFrame(columns=list("abc")).astype(np.int32) tm.assert_series_equal( norows_int_df.dtypes, pd.Series(np.dtype("int32"), index=list("abc")) ) # GH 26705 - Assert .ftypes is deprecated with tm.assert_produces_warning(FutureWarning): tm.assert_series_equal( norows_int_df.ftypes, pd.Series("int32:dense", index=list("abc")) ) odict = OrderedDict df = pd.DataFrame(odict([("a", 1), ("b", True), ("c", 1.0)]), index=[1, 2, 3]) ex_dtypes = pd.Series( odict([("a", np.int64), ("b", np.bool), ("c", np.float64)]) ) ex_ftypes = pd.Series( odict([("a", "int64:dense"), ("b", "bool:dense"), ("c", "float64:dense")]) ) tm.assert_series_equal(df.dtypes, ex_dtypes) # GH 26705 - Assert .ftypes is deprecated with tm.assert_produces_warning(FutureWarning): tm.assert_series_equal(df.ftypes, ex_ftypes) # same but for empty slice of df tm.assert_series_equal(df[:0].dtypes, ex_dtypes) # GH 26705 - Assert .ftypes is deprecated with tm.assert_produces_warning(FutureWarning): tm.assert_series_equal(df[:0].ftypes, ex_ftypes) def test_datetime_with_tz_dtypes(self): tzframe = DataFrame( { "A": date_range("20130101", periods=3), "B": date_range("20130101", periods=3, tz="US/Eastern"), "C": date_range("20130101", periods=3, tz="CET"), } ) tzframe.iloc[1, 1] = pd.NaT tzframe.iloc[1, 2] = pd.NaT result = tzframe.dtypes.sort_index() expected = Series( [ np.dtype("datetime64[ns]"), DatetimeTZDtype("ns", "US/Eastern"), DatetimeTZDtype("ns", "CET"), ], ["A", "B", "C"], ) tm.assert_series_equal(result, expected) def test_dtypes_are_correct_after_column_slice(self): # GH6525 df = pd.DataFrame(index=range(5), columns=list("abc"), dtype=np.float_) odict = OrderedDict tm.assert_series_equal( df.dtypes, pd.Series(odict([("a", np.float_), ("b", np.float_), ("c", np.float_)])), ) tm.assert_series_equal( df.iloc[:, 2:].dtypes, pd.Series(odict([("c", np.float_)])) ) tm.assert_series_equal( df.dtypes, pd.Series(odict([("a", np.float_), ("b", np.float_), ("c", np.float_)])), ) def test_select_dtypes_include_using_list_like(self): df = DataFrame( { "a": list("abc"), "b": list(range(1, 4)), "c": np.arange(3, 6).astype("u1"), "d": np.arange(4.0, 7.0, dtype="float64"), "e": [True, False, True], "f": pd.Categorical(list("abc")), "g": pd.date_range("20130101", periods=3), "h": pd.date_range("20130101", periods=3, tz="US/Eastern"), "i": pd.date_range("20130101", periods=3, tz="CET"), "j": pd.period_range("2013-01", periods=3, freq="M"), "k": pd.timedelta_range("1 day", periods=3), } ) ri = df.select_dtypes(include=[np.number]) ei = df[["b", "c", "d", "k"]] tm.assert_frame_equal(ri, ei) ri = df.select_dtypes(include=[np.number], exclude=["timedelta"]) ei = df[["b", "c", "d"]] tm.assert_frame_equal(ri, ei) ri = df.select_dtypes(include=[np.number, "category"], exclude=["timedelta"]) ei = df[["b", "c", "d", "f"]] tm.assert_frame_equal(ri, ei) ri = df.select_dtypes(include=["datetime"]) ei = df[["g"]] tm.assert_frame_equal(ri, ei) ri = df.select_dtypes(include=["datetime64"]) ei = df[["g"]]
tm.assert_frame_equal(ri, ei)
pandas.util.testing.assert_frame_equal
# -*- coding: utf-8 -*- # pylint: disable=W0612,E1101 from datetime import datetime import operator import nose from functools import wraps import numpy as np import pandas as pd from pandas import Series, DataFrame, Index, isnull, notnull, pivot, MultiIndex from pandas.core.datetools import bday from pandas.core.nanops import nanall, nanany from pandas.core.panel import Panel from pandas.core.series import remove_na import pandas.core.common as com from pandas import compat from pandas.compat import range, lrange, StringIO, OrderedDict, signature from pandas import SparsePanel from pandas.util.testing import (assert_panel_equal, assert_frame_equal, assert_series_equal, assert_almost_equal, assert_produces_warning, ensure_clean, assertRaisesRegexp, makeCustomDataframe as mkdf, makeMixedDataFrame) import pandas.core.panel as panelm import pandas.util.testing as tm def ignore_sparse_panel_future_warning(func): """ decorator to ignore FutureWarning if we have a SparsePanel can be removed when SparsePanel is fully removed """ @wraps(func) def wrapper(self, *args, **kwargs): if isinstance(self.panel, SparsePanel): with assert_produces_warning(FutureWarning, check_stacklevel=False): return func(self, *args, **kwargs) else: return func(self, *args, **kwargs) return wrapper class PanelTests(object): panel = None def test_pickle(self): unpickled = self.round_trip_pickle(self.panel) assert_frame_equal(unpickled['ItemA'], self.panel['ItemA']) def test_rank(self): self.assertRaises(NotImplementedError, lambda: self.panel.rank()) def test_cumsum(self): cumsum = self.panel.cumsum() assert_frame_equal(cumsum['ItemA'], self.panel['ItemA'].cumsum()) def not_hashable(self): c_empty = Panel() c = Panel(Panel([[[1]]])) self.assertRaises(TypeError, hash, c_empty) self.assertRaises(TypeError, hash, c) class SafeForLongAndSparse(object): _multiprocess_can_split_ = True def test_repr(self): repr(self.panel) @ignore_sparse_panel_future_warning def test_copy_names(self): for attr in ('major_axis', 'minor_axis'): getattr(self.panel, attr).name = None cp = self.panel.copy() getattr(cp, attr).name = 'foo' self.assertIsNone(getattr(self.panel, attr).name) def test_iter(self): tm.equalContents(list(self.panel), self.panel.items) def test_count(self): f = lambda s: notnull(s).sum() self._check_stat_op('count', f, obj=self.panel, has_skipna=False) def test_sum(self): self._check_stat_op('sum', np.sum) def test_mean(self): self._check_stat_op('mean', np.mean) def test_prod(self): self._check_stat_op('prod', np.prod) def test_median(self): def wrapper(x): if isnull(x).any(): return np.nan return np.median(x) self._check_stat_op('median', wrapper) def test_min(self): self._check_stat_op('min', np.min) def test_max(self): self._check_stat_op('max', np.max) def test_skew(self): try: from scipy.stats import skew except ImportError: raise nose.SkipTest("no scipy.stats.skew") def this_skew(x): if len(x) < 3: return np.nan return skew(x, bias=False) self._check_stat_op('skew', this_skew) # def test_mad(self): # f = lambda x: np.abs(x - x.mean()).mean() # self._check_stat_op('mad', f) def test_var(self): def alt(x): if len(x) < 2: return np.nan return np.var(x, ddof=1) self._check_stat_op('var', alt) def test_std(self): def alt(x): if len(x) < 2: return np.nan return np.std(x, ddof=1) self._check_stat_op('std', alt) def test_sem(self): def alt(x): if len(x) < 2: return np.nan return np.std(x, ddof=1) / np.sqrt(len(x)) self._check_stat_op('sem', alt) # def test_skew(self): # from scipy.stats import skew # def alt(x): # if len(x) < 3: # return np.nan # return skew(x, bias=False) # self._check_stat_op('skew', alt) def _check_stat_op(self, name, alternative, obj=None, has_skipna=True): if obj is None: obj = self.panel # # set some NAs # obj.ix[5:10] = np.nan # obj.ix[15:20, -2:] = np.nan f = getattr(obj, name) if has_skipna: def skipna_wrapper(x): nona = remove_na(x) if len(nona) == 0: return np.nan return alternative(nona) def wrapper(x): return alternative(np.asarray(x)) for i in range(obj.ndim): result = f(axis=i, skipna=False) assert_frame_equal(result, obj.apply(wrapper, axis=i)) else: skipna_wrapper = alternative wrapper = alternative for i in range(obj.ndim): result = f(axis=i) if not tm._incompat_bottleneck_version(name): assert_frame_equal(result, obj.apply(skipna_wrapper, axis=i)) self.assertRaises(Exception, f, axis=obj.ndim) # Unimplemented numeric_only parameter. if 'numeric_only' in signature(f).args: self.assertRaisesRegexp(NotImplementedError, name, f, numeric_only=True) class SafeForSparse(object): _multiprocess_can_split_ = True @classmethod def assert_panel_equal(cls, x, y): assert_panel_equal(x, y) def test_get_axis(self): assert (self.panel._get_axis(0) is self.panel.items) assert (self.panel._get_axis(1) is self.panel.major_axis) assert (self.panel._get_axis(2) is self.panel.minor_axis) def test_set_axis(self): new_items = Index(np.arange(len(self.panel.items))) new_major = Index(np.arange(len(self.panel.major_axis))) new_minor = Index(np.arange(len(self.panel.minor_axis))) # ensure propagate to potentially prior-cached items too item = self.panel['ItemA'] self.panel.items = new_items if hasattr(self.panel, '_item_cache'): self.assertNotIn('ItemA', self.panel._item_cache) self.assertIs(self.panel.items, new_items) # TODO: unused? item = self.panel[0] # noqa self.panel.major_axis = new_major self.assertIs(self.panel[0].index, new_major) self.assertIs(self.panel.major_axis, new_major) # TODO: unused? item = self.panel[0] # noqa self.panel.minor_axis = new_minor self.assertIs(self.panel[0].columns, new_minor) self.assertIs(self.panel.minor_axis, new_minor) def test_get_axis_number(self): self.assertEqual(self.panel._get_axis_number('items'), 0) self.assertEqual(self.panel._get_axis_number('major'), 1) self.assertEqual(self.panel._get_axis_number('minor'), 2) def test_get_axis_name(self): self.assertEqual(self.panel._get_axis_name(0), 'items') self.assertEqual(self.panel._get_axis_name(1), 'major_axis') self.assertEqual(self.panel._get_axis_name(2), 'minor_axis') def test_get_plane_axes(self): # what to do here? index, columns = self.panel._get_plane_axes('items') index, columns = self.panel._get_plane_axes('major_axis') index, columns = self.panel._get_plane_axes('minor_axis') index, columns = self.panel._get_plane_axes(0) @ignore_sparse_panel_future_warning def test_truncate(self): dates = self.panel.major_axis start, end = dates[1], dates[5] trunced = self.panel.truncate(start, end, axis='major') expected = self.panel['ItemA'].truncate(start, end) assert_frame_equal(trunced['ItemA'], expected) trunced = self.panel.truncate(before=start, axis='major') expected = self.panel['ItemA'].truncate(before=start) assert_frame_equal(trunced['ItemA'], expected) trunced = self.panel.truncate(after=end, axis='major') expected = self.panel['ItemA'].truncate(after=end) assert_frame_equal(trunced['ItemA'], expected) # XXX test other axes def test_arith(self): self._test_op(self.panel, operator.add) self._test_op(self.panel, operator.sub) self._test_op(self.panel, operator.mul) self._test_op(self.panel, operator.truediv) self._test_op(self.panel, operator.floordiv) self._test_op(self.panel, operator.pow) self._test_op(self.panel, lambda x, y: y + x) self._test_op(self.panel, lambda x, y: y - x) self._test_op(self.panel, lambda x, y: y * x) self._test_op(self.panel, lambda x, y: y / x) self._test_op(self.panel, lambda x, y: y ** x) self._test_op(self.panel, lambda x, y: x + y) # panel + 1 self._test_op(self.panel, lambda x, y: x - y) # panel - 1 self._test_op(self.panel, lambda x, y: x * y) # panel * 1 self._test_op(self.panel, lambda x, y: x / y) # panel / 1 self._test_op(self.panel, lambda x, y: x ** y) # panel ** 1 self.assertRaises(Exception, self.panel.__add__, self.panel['ItemA']) @staticmethod def _test_op(panel, op): result = op(panel, 1) assert_frame_equal(result['ItemA'], op(panel['ItemA'], 1)) def test_keys(self): tm.equalContents(list(self.panel.keys()), self.panel.items) def test_iteritems(self): # Test panel.iteritems(), aka panel.iteritems() # just test that it works for k, v in self.panel.iteritems(): pass self.assertEqual(len(list(self.panel.iteritems())), len(self.panel.items)) @ignore_sparse_panel_future_warning def test_combineFrame(self): def check_op(op, name): # items df = self.panel['ItemA'] func = getattr(self.panel, name) result = func(df, axis='items') assert_frame_equal(result['ItemB'], op(self.panel['ItemB'], df)) # major xs = self.panel.major_xs(self.panel.major_axis[0]) result = func(xs, axis='major') idx = self.panel.major_axis[1] assert_frame_equal(result.major_xs(idx), op(self.panel.major_xs(idx), xs)) # minor xs = self.panel.minor_xs(self.panel.minor_axis[0]) result = func(xs, axis='minor') idx = self.panel.minor_axis[1] assert_frame_equal(result.minor_xs(idx), op(self.panel.minor_xs(idx), xs)) ops = ['add', 'sub', 'mul', 'truediv', 'floordiv'] if not compat.PY3: ops.append('div') # pow, mod not supported for SparsePanel as flex ops (for now) if not isinstance(self.panel, SparsePanel): ops.extend(['pow', 'mod']) else: idx = self.panel.minor_axis[1] with assertRaisesRegexp(ValueError, "Simple arithmetic.*scalar"): self.panel.pow(self.panel.minor_xs(idx), axis='minor') with assertRaisesRegexp(ValueError, "Simple arithmetic.*scalar"): self.panel.mod(self.panel.minor_xs(idx), axis='minor') for op in ops: try: check_op(getattr(operator, op), op) except: com.pprint_thing("Failing operation: %r" % op) raise if compat.PY3: try: check_op(operator.truediv, 'div') except: com.pprint_thing("Failing operation: %r" % 'div') raise @ignore_sparse_panel_future_warning def test_combinePanel(self): result = self.panel.add(self.panel) self.assert_panel_equal(result, self.panel * 2) @ignore_sparse_panel_future_warning def test_neg(self): self.assert_panel_equal(-self.panel, self.panel * -1) # issue 7692 def test_raise_when_not_implemented(self): p = Panel(np.arange(3 * 4 * 5).reshape(3, 4, 5), items=['ItemA', 'ItemB', 'ItemC'], major_axis=pd.date_range('20130101', periods=4), minor_axis=list('ABCDE')) d = p.sum(axis=1).ix[0] ops = ['add', 'sub', 'mul', 'truediv', 'floordiv', 'div', 'mod', 'pow'] for op in ops: with self.assertRaises(NotImplementedError): getattr(p, op)(d, axis=0) @ignore_sparse_panel_future_warning def test_select(self): p = self.panel # select items result = p.select(lambda x: x in ('ItemA', 'ItemC'), axis='items') expected = p.reindex(items=['ItemA', 'ItemC']) self.assert_panel_equal(result, expected) # select major_axis result = p.select(lambda x: x >= datetime(2000, 1, 15), axis='major') new_major = p.major_axis[p.major_axis >= datetime(2000, 1, 15)] expected = p.reindex(major=new_major) self.assert_panel_equal(result, expected) # select minor_axis result = p.select(lambda x: x in ('D', 'A'), axis=2) expected = p.reindex(minor=['A', 'D']) self.assert_panel_equal(result, expected) # corner case, empty thing result = p.select(lambda x: x in ('foo', ), axis='items') self.assert_panel_equal(result, p.reindex(items=[])) def test_get_value(self): for item in self.panel.items: for mjr in self.panel.major_axis[::2]: for mnr in self.panel.minor_axis: result = self.panel.get_value(item, mjr, mnr) expected = self.panel[item][mnr][mjr] assert_almost_equal(result, expected) @ignore_sparse_panel_future_warning def test_abs(self): result = self.panel.abs() result2 = abs(self.panel) expected = np.abs(self.panel) self.assert_panel_equal(result, expected) self.assert_panel_equal(result2, expected) df = self.panel['ItemA'] result = df.abs() result2 = abs(df) expected = np.abs(df) assert_frame_equal(result, expected) assert_frame_equal(result2, expected) s = df['A'] result = s.abs() result2 = abs(s) expected = np.abs(s) assert_series_equal(result, expected) assert_series_equal(result2, expected) self.assertEqual(result.name, 'A') self.assertEqual(result2.name, 'A') class CheckIndexing(object): _multiprocess_can_split_ = True def test_getitem(self): self.assertRaises(Exception, self.panel.__getitem__, 'ItemQ') def test_delitem_and_pop(self): expected = self.panel['ItemA'] result = self.panel.pop('ItemA') assert_frame_equal(expected, result) self.assertNotIn('ItemA', self.panel.items) del self.panel['ItemB'] self.assertNotIn('ItemB', self.panel.items) self.assertRaises(Exception, self.panel.__delitem__, 'ItemB') values = np.empty((3, 3, 3)) values[0] = 0 values[1] = 1 values[2] = 2 panel = Panel(values, lrange(3), lrange(3), lrange(3)) # did we delete the right row? panelc = panel.copy() del panelc[0] assert_frame_equal(panelc[1], panel[1]) assert_frame_equal(panelc[2], panel[2]) panelc = panel.copy() del panelc[1] assert_frame_equal(panelc[0], panel[0]) assert_frame_equal(panelc[2], panel[2]) panelc = panel.copy() del panelc[2] assert_frame_equal(panelc[1], panel[1]) assert_frame_equal(panelc[0], panel[0]) def test_setitem(self): # LongPanel with one item lp = self.panel.filter(['ItemA', 'ItemB']).to_frame() with tm.assertRaises(ValueError): self.panel['ItemE'] = lp # DataFrame df = self.panel['ItemA'][2:].filter(items=['A', 'B']) self.panel['ItemF'] = df self.panel['ItemE'] = df df2 = self.panel['ItemF'] assert_frame_equal(df, df2.reindex(index=df.index, columns=df.columns)) # scalar self.panel['ItemG'] = 1 self.panel['ItemE'] = True self.assertEqual(self.panel['ItemG'].values.dtype, np.int64) self.assertEqual(self.panel['ItemE'].values.dtype, np.bool_) # object dtype self.panel['ItemQ'] = 'foo' self.assertEqual(self.panel['ItemQ'].values.dtype, np.object_) # boolean dtype self.panel['ItemP'] = self.panel['ItemA'] > 0 self.assertEqual(self.panel['ItemP'].values.dtype, np.bool_) self.assertRaises(TypeError, self.panel.__setitem__, 'foo', self.panel.ix[['ItemP']]) # bad shape p = Panel(np.random.randn(4, 3, 2)) with tm.assertRaisesRegexp(ValueError, "shape of value must be \(3, 2\), " "shape of given object was \(4, 2\)"): p[0] = np.random.randn(4, 2) def test_setitem_ndarray(self): from pandas import date_range, datetools timeidx = date_range(start=datetime(2009, 1, 1), end=datetime(2009, 12, 31), freq=datetools.MonthEnd()) lons_coarse = np.linspace(-177.5, 177.5, 72) lats_coarse = np.linspace(-87.5, 87.5, 36) P = Panel(items=timeidx, major_axis=lons_coarse, minor_axis=lats_coarse) data = np.random.randn(72 * 36).reshape((72, 36)) key = datetime(2009, 2, 28) P[key] = data assert_almost_equal(P[key].values, data) def test_set_minor_major(self): # GH 11014 df1 = DataFrame(['a', 'a', 'a', np.nan, 'a', np.nan]) df2 = DataFrame([1.0, np.nan, 1.0, np.nan, 1.0, 1.0]) panel = Panel({'Item1': df1, 'Item2': df2}) newminor = notnull(panel.iloc[:, :, 0]) panel.loc[:, :, 'NewMinor'] = newminor assert_frame_equal(panel.loc[:, :, 'NewMinor'], newminor.astype(object)) newmajor = notnull(panel.iloc[:, 0, :]) panel.loc[:, 'NewMajor', :] = newmajor assert_frame_equal(panel.loc[:, 'NewMajor', :], newmajor.astype(object)) def test_major_xs(self): ref = self.panel['ItemA'] idx = self.panel.major_axis[5] xs = self.panel.major_xs(idx) result = xs['ItemA'] assert_series_equal(result, ref.xs(idx), check_names=False) self.assertEqual(result.name, 'ItemA') # not contained idx = self.panel.major_axis[0] - bday self.assertRaises(Exception, self.panel.major_xs, idx) def test_major_xs_mixed(self): self.panel['ItemD'] = 'foo' xs = self.panel.major_xs(self.panel.major_axis[0]) self.assertEqual(xs['ItemA'].dtype, np.float64) self.assertEqual(xs['ItemD'].dtype, np.object_) def test_minor_xs(self): ref = self.panel['ItemA'] idx = self.panel.minor_axis[1] xs = self.panel.minor_xs(idx) assert_series_equal(xs['ItemA'], ref[idx], check_names=False) # not contained self.assertRaises(Exception, self.panel.minor_xs, 'E') def test_minor_xs_mixed(self): self.panel['ItemD'] = 'foo' xs = self.panel.minor_xs('D') self.assertEqual(xs['ItemA'].dtype, np.float64) self.assertEqual(xs['ItemD'].dtype, np.object_) def test_xs(self): itemA = self.panel.xs('ItemA', axis=0) expected = self.panel['ItemA'] assert_frame_equal(itemA, expected) # get a view by default itemA_view = self.panel.xs('ItemA', axis=0) itemA_view.values[:] = np.nan self.assertTrue(np.isnan(self.panel['ItemA'].values).all()) # mixed-type yields a copy self.panel['strings'] = 'foo' result = self.panel.xs('D', axis=2) self.assertIsNotNone(result.is_copy) def test_getitem_fancy_labels(self): p = self.panel items = p.items[[1, 0]] dates = p.major_axis[::2] cols = ['D', 'C', 'F'] # all 3 specified assert_panel_equal(p.ix[items, dates, cols], p.reindex(items=items, major=dates, minor=cols)) # 2 specified assert_panel_equal(p.ix[:, dates, cols], p.reindex(major=dates, minor=cols)) assert_panel_equal(p.ix[items, :, cols], p.reindex(items=items, minor=cols)) assert_panel_equal(p.ix[items, dates, :], p.reindex(items=items, major=dates)) # only 1 assert_panel_equal(p.ix[items, :, :], p.reindex(items=items)) assert_panel_equal(p.ix[:, dates, :], p.reindex(major=dates)) assert_panel_equal(p.ix[:, :, cols], p.reindex(minor=cols)) def test_getitem_fancy_slice(self): pass def test_getitem_fancy_ints(self): p = self.panel # #1603 result = p.ix[:, -1, :] expected = p.ix[:, p.major_axis[-1], :] assert_frame_equal(result, expected) def test_getitem_fancy_xs(self): p = self.panel item = 'ItemB' date = p.major_axis[5] col = 'C' # get DataFrame # item assert_frame_equal(p.ix[item], p[item]) assert_frame_equal(p.ix[item, :], p[item]) assert_frame_equal(p.ix[item, :, :], p[item]) # major axis, axis=1 assert_frame_equal(p.ix[:, date], p.major_xs(date)) assert_frame_equal(p.ix[:, date, :], p.major_xs(date)) # minor axis, axis=2 assert_frame_equal(p.ix[:, :, 'C'], p.minor_xs('C')) # get Series assert_series_equal(p.ix[item, date], p[item].ix[date]) assert_series_equal(p.ix[item, date, :], p[item].ix[date]) assert_series_equal(p.ix[item, :, col], p[item][col]) assert_series_equal(p.ix[:, date, col], p.major_xs(date).ix[col]) def test_getitem_fancy_xs_check_view(self): item = 'ItemB' date = self.panel.major_axis[5] # make sure it's always a view NS = slice(None, None) # DataFrames comp = assert_frame_equal self._check_view(item, comp) self._check_view((item, NS), comp) self._check_view((item, NS, NS), comp) self._check_view((NS, date), comp) self._check_view((NS, date, NS), comp) self._check_view((NS, NS, 'C'), comp) # Series comp = assert_series_equal self._check_view((item, date), comp) self._check_view((item, date, NS), comp) self._check_view((item, NS, 'C'), comp) self._check_view((NS, date, 'C'), comp) def test_ix_setitem_slice_dataframe(self): a = Panel(items=[1, 2, 3], major_axis=[11, 22, 33], minor_axis=[111, 222, 333]) b = DataFrame(np.random.randn(2, 3), index=[111, 333], columns=[1, 2, 3]) a.ix[:, 22, [111, 333]] = b assert_frame_equal(a.ix[:, 22, [111, 333]], b) def test_ix_align(self): from pandas import Series b = Series(np.random.randn(10), name=0) b.sort() df_orig = Panel(np.random.randn(3, 10, 2)) df = df_orig.copy() df.ix[0, :, 0] = b assert_series_equal(df.ix[0, :, 0].reindex(b.index), b) df = df_orig.swapaxes(0, 1) df.ix[:, 0, 0] = b assert_series_equal(df.ix[:, 0, 0].reindex(b.index), b) df = df_orig.swapaxes(1, 2) df.ix[0, 0, :] = b assert_series_equal(df.ix[0, 0, :].reindex(b.index), b) def test_ix_frame_align(self): p_orig = tm.makePanel() df = p_orig.ix[0].copy() assert_frame_equal(p_orig['ItemA'], df) p = p_orig.copy() p.ix[0, :, :] = df assert_panel_equal(p, p_orig) p = p_orig.copy() p.ix[0] = df assert_panel_equal(p, p_orig) p = p_orig.copy() p.iloc[0, :, :] = df assert_panel_equal(p, p_orig) p = p_orig.copy() p.iloc[0] = df assert_panel_equal(p, p_orig) p = p_orig.copy() p.loc['ItemA'] = df assert_panel_equal(p, p_orig) p = p_orig.copy() p.loc['ItemA', :, :] = df assert_panel_equal(p, p_orig) p = p_orig.copy() p['ItemA'] = df assert_panel_equal(p, p_orig) p = p_orig.copy() p.ix[0, [0, 1, 3, 5], -2:] = df out = p.ix[0, [0, 1, 3, 5], -2:] assert_frame_equal(out, df.iloc[[0, 1, 3, 5], [2, 3]]) # GH3830, panel assignent by values/frame for dtype in ['float64', 'int64']: panel = Panel(np.arange(40).reshape((2, 4, 5)), items=['a1', 'a2'], dtype=dtype) df1 = panel.iloc[0] df2 = panel.iloc[1] tm.assert_frame_equal(panel.loc['a1'], df1) tm.assert_frame_equal(panel.loc['a2'], df2) # Assignment by Value Passes for 'a2' panel.loc['a2'] = df1.values tm.assert_frame_equal(panel.loc['a1'], df1) tm.assert_frame_equal(panel.loc['a2'], df1) # Assignment by DataFrame Ok w/o loc 'a2' panel['a2'] = df2 tm.assert_frame_equal(panel.loc['a1'], df1) tm.assert_frame_equal(panel.loc['a2'], df2) # Assignment by DataFrame Fails for 'a2' panel.loc['a2'] = df2 tm.assert_frame_equal(panel.loc['a1'], df1) tm.assert_frame_equal(panel.loc['a2'], df2) def _check_view(self, indexer, comp): cp = self.panel.copy() obj = cp.ix[indexer] obj.values[:] = 0 self.assertTrue((obj.values == 0).all()) comp(cp.ix[indexer].reindex_like(obj), obj) def test_logical_with_nas(self): d = Panel({'ItemA': {'a': [np.nan, False]}, 'ItemB': {'a': [True, True]}}) result = d['ItemA'] | d['ItemB'] expected = DataFrame({'a': [np.nan, True]}) assert_frame_equal(result, expected) # this is autodowncasted here result = d['ItemA'].fillna(False) | d['ItemB'] expected = DataFrame({'a': [True, True]}) assert_frame_equal(result, expected) def test_neg(self): # what to do? assert_panel_equal(-self.panel, -1 * self.panel) def test_invert(self): assert_panel_equal(-(self.panel < 0), ~(self.panel < 0)) def test_comparisons(self): p1 = tm.makePanel() p2 = tm.makePanel() tp = p1.reindex(items=p1.items + ['foo']) df = p1[p1.items[0]] def test_comp(func): # versus same index result = func(p1, p2) self.assert_numpy_array_equal(result.values, func(p1.values, p2.values)) # versus non-indexed same objs self.assertRaises(Exception, func, p1, tp) # versus different objs self.assertRaises(Exception, func, p1, df) # versus scalar result3 = func(self.panel, 0) self.assert_numpy_array_equal(result3.values, func(self.panel.values, 0)) test_comp(operator.eq) test_comp(operator.ne) test_comp(operator.lt) test_comp(operator.gt) test_comp(operator.ge) test_comp(operator.le) def test_get_value(self): for item in self.panel.items: for mjr in self.panel.major_axis[::2]: for mnr in self.panel.minor_axis: result = self.panel.get_value(item, mjr, mnr) expected = self.panel[item][mnr][mjr] assert_almost_equal(result, expected) with tm.assertRaisesRegexp(TypeError, "There must be an argument for each axis"): self.panel.get_value('a') def test_set_value(self): for item in self.panel.items: for mjr in self.panel.major_axis[::2]: for mnr in self.panel.minor_axis: self.panel.set_value(item, mjr, mnr, 1.) assert_almost_equal(self.panel[item][mnr][mjr], 1.) # resize res = self.panel.set_value('ItemE', 'foo', 'bar', 1.5) tm.assertIsInstance(res, Panel) self.assertIsNot(res, self.panel) self.assertEqual(res.get_value('ItemE', 'foo', 'bar'), 1.5) res3 = self.panel.set_value('ItemE', 'foobar', 'baz', 5) self.assertTrue(com.is_float_dtype(res3['ItemE'].values)) with tm.assertRaisesRegexp(TypeError, "There must be an argument for each axis" " plus the value provided"): self.panel.set_value('a') _panel = tm.makePanel() tm.add_nans(_panel) class TestPanel(tm.TestCase, PanelTests, CheckIndexing, SafeForLongAndSparse, SafeForSparse): _multiprocess_can_split_ = True @classmethod def assert_panel_equal(cls, x, y): assert_panel_equal(x, y) def setUp(self): self.panel = _panel.copy() self.panel.major_axis.name = None self.panel.minor_axis.name = None self.panel.items.name = None def test_panel_warnings(self): with tm.assert_produces_warning(FutureWarning): shifted1 = self.panel.shift(lags=1) with tm.assert_produces_warning(False): shifted2 = self.panel.shift(periods=1) tm.assert_panel_equal(shifted1, shifted2) with tm.assert_produces_warning(False): shifted3 = self.panel.shift() tm.assert_panel_equal(shifted1, shifted3) def test_constructor(self): # with BlockManager wp = Panel(self.panel._data) self.assertIs(wp._data, self.panel._data) wp = Panel(self.panel._data, copy=True) self.assertIsNot(wp._data, self.panel._data) assert_panel_equal(wp, self.panel) # strings handled prop wp = Panel([[['foo', 'foo', 'foo', ], ['foo', 'foo', 'foo']]]) self.assertEqual(wp.values.dtype, np.object_) vals = self.panel.values # no copy wp = Panel(vals) self.assertIs(wp.values, vals) # copy wp = Panel(vals, copy=True) self.assertIsNot(wp.values, vals) # GH #8285, test when scalar data is used to construct a Panel # if dtype is not passed, it should be inferred value_and_dtype = [(1, 'int64'), (3.14, 'float64'), ('foo', np.object_)] for (val, dtype) in value_and_dtype: wp = Panel(val, items=range(2), major_axis=range(3), minor_axis=range(4)) vals = np.empty((2, 3, 4), dtype=dtype) vals.fill(val) assert_panel_equal(wp, Panel(vals, dtype=dtype)) # test the case when dtype is passed wp = Panel(1, items=range(2), major_axis=range(3), minor_axis=range(4), dtype='float32') vals = np.empty((2, 3, 4), dtype='float32') vals.fill(1) assert_panel_equal(wp, Panel(vals, dtype='float32')) def test_constructor_cast(self): zero_filled = self.panel.fillna(0) casted = Panel(zero_filled._data, dtype=int) casted2 = Panel(zero_filled.values, dtype=int) exp_values = zero_filled.values.astype(int) assert_almost_equal(casted.values, exp_values) assert_almost_equal(casted2.values, exp_values) casted = Panel(zero_filled._data, dtype=np.int32) casted2 = Panel(zero_filled.values, dtype=np.int32) exp_values = zero_filled.values.astype(np.int32) assert_almost_equal(casted.values, exp_values) assert_almost_equal(casted2.values, exp_values) # can't cast data = [[['foo', 'bar', 'baz']]] self.assertRaises(ValueError, Panel, data, dtype=float) def test_constructor_empty_panel(self): empty = Panel() self.assertEqual(len(empty.items), 0) self.assertEqual(len(empty.major_axis), 0) self.assertEqual(len(empty.minor_axis), 0) def test_constructor_observe_dtype(self): # GH #411 panel = Panel(items=lrange(3), major_axis=lrange(3), minor_axis=lrange(3), dtype='O') self.assertEqual(panel.values.dtype, np.object_) def test_constructor_dtypes(self): # GH #797 def _check_dtype(panel, dtype): for i in panel.items: self.assertEqual(panel[i].values.dtype.name, dtype) # only nan holding types allowed here for dtype in ['float64', 'float32', 'object']: panel = Panel(items=lrange(2), major_axis=lrange(10), minor_axis=lrange(5), dtype=dtype) _check_dtype(panel, dtype) for dtype in ['float64', 'float32', 'int64', 'int32', 'object']: panel = Panel(np.array(np.random.randn(2, 10, 5), dtype=dtype), items=lrange(2), major_axis=lrange(10), minor_axis=lrange(5), dtype=dtype) _check_dtype(panel, dtype) for dtype in ['float64', 'float32', 'int64', 'int32', 'object']: panel = Panel(np.array(np.random.randn(2, 10, 5), dtype='O'), items=lrange(2), major_axis=lrange(10), minor_axis=lrange(5), dtype=dtype) _check_dtype(panel, dtype) for dtype in ['float64', 'float32', 'int64', 'int32', 'object']: panel = Panel(np.random.randn(2, 10, 5), items=lrange( 2), major_axis=lrange(10), minor_axis=lrange(5), dtype=dtype) _check_dtype(panel, dtype) for dtype in ['float64', 'float32', 'int64', 'int32', 'object']: df1 = DataFrame(np.random.randn(2, 5), index=lrange(2), columns=lrange(5)) df2 = DataFrame(np.random.randn(2, 5), index=lrange(2), columns=lrange(5)) panel = Panel.from_dict({'a': df1, 'b': df2}, dtype=dtype) _check_dtype(panel, dtype) def test_constructor_fails_with_not_3d_input(self): with tm.assertRaisesRegexp(ValueError, "The number of dimensions required is 3"): Panel(np.random.randn(10, 2)) def test_consolidate(self): self.assertTrue(self.panel._data.is_consolidated()) self.panel['foo'] = 1. self.assertFalse(self.panel._data.is_consolidated()) panel = self.panel.consolidate() self.assertTrue(panel._data.is_consolidated()) def test_ctor_dict(self): itema = self.panel['ItemA'] itemb = self.panel['ItemB'] d = {'A': itema, 'B': itemb[5:]} d2 = {'A': itema._series, 'B': itemb[5:]._series} d3 = {'A': None, 'B': DataFrame(itemb[5:]._series), 'C': DataFrame(itema._series)} wp = Panel.from_dict(d) wp2 = Panel.from_dict(d2) # nested Dict # TODO: unused? wp3 = Panel.from_dict(d3) # noqa self.assertTrue(wp.major_axis.equals(self.panel.major_axis)) assert_panel_equal(wp, wp2) # intersect wp = Panel.from_dict(d, intersect=True) self.assertTrue(wp.major_axis.equals(itemb.index[5:])) # use constructor assert_panel_equal(Panel(d), Panel.from_dict(d)) assert_panel_equal(Panel(d2), Panel.from_dict(d2)) assert_panel_equal(Panel(d3), Panel.from_dict(d3)) # a pathological case d4 = {'A': None, 'B': None} # TODO: unused? wp4 = Panel.from_dict(d4) # noqa assert_panel_equal(Panel(d4), Panel(items=['A', 'B'])) # cast dcasted = dict((k, v.reindex(wp.major_axis).fillna(0)) for k, v in compat.iteritems(d)) result = Panel(dcasted, dtype=int) expected = Panel(dict((k, v.astype(int)) for k, v in compat.iteritems(dcasted))) assert_panel_equal(result, expected) result = Panel(dcasted, dtype=np.int32) expected = Panel(dict((k, v.astype(np.int32)) for k, v in compat.iteritems(dcasted))) assert_panel_equal(result, expected) def test_constructor_dict_mixed(self): data = dict((k, v.values) for k, v in self.panel.iteritems()) result = Panel(data) exp_major = Index(np.arange(len(self.panel.major_axis))) self.assertTrue(result.major_axis.equals(exp_major)) result = Panel(data, items=self.panel.items, major_axis=self.panel.major_axis, minor_axis=self.panel.minor_axis) assert_panel_equal(result, self.panel) data['ItemC'] = self.panel['ItemC'] result = Panel(data) assert_panel_equal(result, self.panel) # corner, blow up data['ItemB'] = data['ItemB'][:-1] self.assertRaises(Exception, Panel, data) data['ItemB'] = self.panel['ItemB'].values[:, :-1] self.assertRaises(Exception, Panel, data) def test_ctor_orderedDict(self): keys = list(set(np.random.randint(0, 5000, 100)))[ :50] # unique random int keys d = OrderedDict([(k, mkdf(10, 5)) for k in keys]) p = Panel(d) self.assertTrue(list(p.items) == keys) p = Panel.from_dict(d) self.assertTrue(list(p.items) == keys) def test_constructor_resize(self): data = self.panel._data items = self.panel.items[:-1] major = self.panel.major_axis[:-1] minor = self.panel.minor_axis[:-1] result = Panel(data, items=items, major_axis=major, minor_axis=minor) expected = self.panel.reindex(items=items, major=major, minor=minor) assert_panel_equal(result, expected) result = Panel(data, items=items, major_axis=major) expected = self.panel.reindex(items=items, major=major) assert_panel_equal(result, expected) result = Panel(data, items=items) expected = self.panel.reindex(items=items) assert_panel_equal(result, expected) result = Panel(data, minor_axis=minor) expected = self.panel.reindex(minor=minor) assert_panel_equal(result, expected) def test_from_dict_mixed_orient(self): df = tm.makeDataFrame() df['foo'] = 'bar' data = {'k1': df, 'k2': df} panel = Panel.from_dict(data, orient='minor') self.assertEqual(panel['foo'].values.dtype, np.object_) self.assertEqual(panel['A'].values.dtype, np.float64) def test_constructor_error_msgs(self): def testit(): Panel(np.random.randn(3, 4, 5), lrange(4), lrange(5), lrange(5)) assertRaisesRegexp(ValueError, "Shape of passed values is \(3, 4, 5\), " "indices imply \(4, 5, 5\)", testit) def testit(): Panel(np.random.randn(3, 4, 5), lrange(5), lrange(4), lrange(5)) assertRaisesRegexp(ValueError, "Shape of passed values is \(3, 4, 5\), " "indices imply \(5, 4, 5\)", testit) def testit(): Panel(np.random.randn(3, 4, 5), lrange(5), lrange(5), lrange(4)) assertRaisesRegexp(ValueError, "Shape of passed values is \(3, 4, 5\), " "indices imply \(5, 5, 4\)", testit) def test_conform(self): df = self.panel['ItemA'][:-5].filter(items=['A', 'B']) conformed = self.panel.conform(df) assert (conformed.index.equals(self.panel.major_axis)) assert (conformed.columns.equals(self.panel.minor_axis)) def test_convert_objects(self): # GH 4937 p = Panel(dict(A=dict(a=['1', '1.0']))) expected = Panel(dict(A=dict(a=[1, 1.0]))) result = p._convert(numeric=True, coerce=True) assert_panel_equal(result, expected) def test_dtypes(self): result = self.panel.dtypes expected = Series(np.dtype('float64'), index=self.panel.items) assert_series_equal(result, expected) def test_apply(self): # GH1148 # ufunc applied = self.panel.apply(np.sqrt) self.assertTrue(assert_almost_equal(applied.values, np.sqrt( self.panel.values))) # ufunc same shape result = self.panel.apply(lambda x: x * 2, axis='items') expected = self.panel * 2 assert_panel_equal(result, expected) result = self.panel.apply(lambda x: x * 2, axis='major_axis') expected = self.panel * 2 assert_panel_equal(result, expected) result = self.panel.apply(lambda x: x * 2, axis='minor_axis') expected = self.panel * 2 assert_panel_equal(result, expected) # reduction to DataFrame result = self.panel.apply(lambda x: x.dtype, axis='items') expected = DataFrame(np.dtype('float64'), index=self.panel.major_axis, columns=self.panel.minor_axis) assert_frame_equal(result, expected) result = self.panel.apply(lambda x: x.dtype, axis='major_axis') expected = DataFrame(np.dtype('float64'), index=self.panel.minor_axis, columns=self.panel.items) assert_frame_equal(result, expected) result = self.panel.apply(lambda x: x.dtype, axis='minor_axis') expected = DataFrame(np.dtype('float64'), index=self.panel.major_axis, columns=self.panel.items) assert_frame_equal(result, expected) # reductions via other dims expected = self.panel.sum(0) result = self.panel.apply(lambda x: x.sum(), axis='items') assert_frame_equal(result, expected) expected = self.panel.sum(1) result = self.panel.apply(lambda x: x.sum(), axis='major_axis') assert_frame_equal(result, expected) expected = self.panel.sum(2) result = self.panel.apply(lambda x: x.sum(), axis='minor_axis') assert_frame_equal(result, expected) # pass kwargs result = self.panel.apply(lambda x, y: x.sum() + y, axis='items', y=5) expected = self.panel.sum(0) + 5 assert_frame_equal(result, expected) def test_apply_slabs(self): # same shape as original result = self.panel.apply(lambda x: x * 2, axis=['items', 'major_axis']) expected = (self.panel * 2).transpose('minor_axis', 'major_axis', 'items') assert_panel_equal(result, expected) result = self.panel.apply(lambda x: x * 2, axis=['major_axis', 'items']) assert_panel_equal(result, expected) result = self.panel.apply(lambda x: x * 2, axis=['items', 'minor_axis']) expected = (self.panel * 2).transpose('major_axis', 'minor_axis', 'items') assert_panel_equal(result, expected) result = self.panel.apply(lambda x: x * 2, axis=['minor_axis', 'items']) assert_panel_equal(result, expected) result = self.panel.apply(lambda x: x * 2, axis=['major_axis', 'minor_axis']) expected = self.panel * 2 assert_panel_equal(result, expected) result = self.panel.apply(lambda x: x * 2, axis=['minor_axis', 'major_axis']) assert_panel_equal(result, expected) # reductions result = self.panel.apply(lambda x: x.sum(0), axis=[ 'items', 'major_axis' ]) expected = self.panel.sum(1).T assert_frame_equal(result, expected) result = self.panel.apply(lambda x: x.sum(1), axis=[ 'items', 'major_axis' ]) expected = self.panel.sum(0) assert_frame_equal(result, expected) # transforms f = lambda x: ((x.T - x.mean(1)) / x.std(1)).T # make sure that we don't trigger any warnings with tm.assert_produces_warning(False): result = self.panel.apply(f, axis=['items', 'major_axis']) expected = Panel(dict([(ax, f(self.panel.loc[:, :, ax])) for ax in self.panel.minor_axis])) assert_panel_equal(result, expected) result = self.panel.apply(f, axis=['major_axis', 'minor_axis']) expected = Panel(dict([(ax, f(self.panel.loc[ax])) for ax in self.panel.items])) assert_panel_equal(result, expected) result = self.panel.apply(f, axis=['minor_axis', 'items']) expected = Panel(dict([(ax, f(self.panel.loc[:, ax])) for ax in self.panel.major_axis])) assert_panel_equal(result, expected) # with multi-indexes # GH7469 index = MultiIndex.from_tuples([('one', 'a'), ('one', 'b'), ( 'two', 'a'), ('two', 'b')]) dfa = DataFrame(np.array(np.arange(12, dtype='int64')).reshape( 4, 3), columns=list("ABC"), index=index) dfb = DataFrame(np.array(np.arange(10, 22, dtype='int64')).reshape( 4, 3), columns=list("ABC"), index=index) p = Panel({'f': dfa, 'g': dfb}) result = p.apply(lambda x: x.sum(), axis=0) # on windows this will be in32 result = result.astype('int64') expected = p.sum(0) assert_frame_equal(result, expected) def test_apply_no_or_zero_ndim(self): # GH10332 self.panel = Panel(np.random.rand(5, 5, 5)) result_int = self.panel.apply(lambda df: 0, axis=[1, 2]) result_float = self.panel.apply(lambda df: 0.0, axis=[1, 2]) result_int64 = self.panel.apply(lambda df: np.int64(0), axis=[1, 2]) result_float64 = self.panel.apply(lambda df: np.float64(0.0), axis=[1, 2]) expected_int = expected_int64 = Series([0] * 5) expected_float = expected_float64 = Series([0.0] * 5) assert_series_equal(result_int, expected_int) assert_series_equal(result_int64, expected_int64) assert_series_equal(result_float, expected_float) assert_series_equal(result_float64, expected_float64) def test_reindex(self): ref = self.panel['ItemB'] # items result = self.panel.reindex(items=['ItemA', 'ItemB']) assert_frame_equal(result['ItemB'], ref) # major new_major = list(self.panel.major_axis[:10]) result = self.panel.reindex(major=new_major) assert_frame_equal(result['ItemB'], ref.reindex(index=new_major)) # raise exception put both major and major_axis self.assertRaises(Exception, self.panel.reindex, major_axis=new_major, major=new_major) # minor new_minor = list(self.panel.minor_axis[:2]) result = self.panel.reindex(minor=new_minor) assert_frame_equal(result['ItemB'], ref.reindex(columns=new_minor)) # this ok result = self.panel.reindex() assert_panel_equal(result, self.panel) self.assertFalse(result is self.panel) # with filling smaller_major = self.panel.major_axis[::5] smaller = self.panel.reindex(major=smaller_major) larger = smaller.reindex(major=self.panel.major_axis, method='pad') assert_frame_equal(larger.major_xs(self.panel.major_axis[1]), smaller.major_xs(smaller_major[0])) # don't necessarily copy result = self.panel.reindex(major=self.panel.major_axis, copy=False) assert_panel_equal(result, self.panel) self.assertTrue(result is self.panel) def test_reindex_multi(self): # with and without copy full reindexing result = self.panel.reindex(items=self.panel.items, major=self.panel.major_axis, minor=self.panel.minor_axis, copy=False) self.assertIs(result.items, self.panel.items) self.assertIs(result.major_axis, self.panel.major_axis) self.assertIs(result.minor_axis, self.panel.minor_axis) result = self.panel.reindex(items=self.panel.items, major=self.panel.major_axis, minor=self.panel.minor_axis, copy=False) assert_panel_equal(result, self.panel) # multi-axis indexing consistency # GH 5900 df = DataFrame(np.random.randn(4, 3)) p = Panel({'Item1': df}) expected = Panel({'Item1': df}) expected['Item2'] = np.nan items = ['Item1', 'Item2'] major_axis = np.arange(4) minor_axis = np.arange(3) results = [] results.append(p.reindex(items=items, major_axis=major_axis, copy=True)) results.append(p.reindex(items=items, major_axis=major_axis, copy=False)) results.append(p.reindex(items=items, minor_axis=minor_axis, copy=True)) results.append(p.reindex(items=items, minor_axis=minor_axis, copy=False)) results.append(p.reindex(items=items, major_axis=major_axis, minor_axis=minor_axis, copy=True)) results.append(p.reindex(items=items, major_axis=major_axis, minor_axis=minor_axis, copy=False)) for i, r in enumerate(results): assert_panel_equal(expected, r) def test_reindex_like(self): # reindex_like smaller = self.panel.reindex(items=self.panel.items[:-1], major=self.panel.major_axis[:-1], minor=self.panel.minor_axis[:-1]) smaller_like = self.panel.reindex_like(smaller) assert_panel_equal(smaller, smaller_like) def test_take(self): # axis == 0 result = self.panel.take([2, 0, 1], axis=0) expected = self.panel.reindex(items=['ItemC', 'ItemA', 'ItemB']) assert_panel_equal(result, expected) # axis >= 1 result = self.panel.take([3, 0, 1, 2], axis=2) expected = self.panel.reindex(minor=['D', 'A', 'B', 'C']) assert_panel_equal(result, expected) # neg indicies ok expected = self.panel.reindex(minor=['D', 'D', 'B', 'C']) result = self.panel.take([3, -1, 1, 2], axis=2) assert_panel_equal(result, expected) self.assertRaises(Exception, self.panel.take, [4, 0, 1, 2], axis=2) def test_sort_index(self): import random ritems = list(self.panel.items) rmajor = list(self.panel.major_axis) rminor = list(self.panel.minor_axis) random.shuffle(ritems) random.shuffle(rmajor) random.shuffle(rminor) random_order = self.panel.reindex(items=ritems) sorted_panel = random_order.sort_index(axis=0) assert_panel_equal(sorted_panel, self.panel) # descending random_order = self.panel.reindex(items=ritems) sorted_panel = random_order.sort_index(axis=0, ascending=False) assert_panel_equal(sorted_panel, self.panel.reindex(items=self.panel.items[::-1])) random_order = self.panel.reindex(major=rmajor) sorted_panel = random_order.sort_index(axis=1) assert_panel_equal(sorted_panel, self.panel) random_order = self.panel.reindex(minor=rminor) sorted_panel = random_order.sort_index(axis=2) assert_panel_equal(sorted_panel, self.panel) def test_fillna(self): filled = self.panel.fillna(0) self.assertTrue(np.isfinite(filled.values).all()) filled = self.panel.fillna(method='backfill') assert_frame_equal(filled['ItemA'], self.panel['ItemA'].fillna(method='backfill')) panel = self.panel.copy() panel['str'] = 'foo' filled = panel.fillna(method='backfill') assert_frame_equal(filled['ItemA'], panel['ItemA'].fillna(method='backfill')) empty = self.panel.reindex(items=[]) filled = empty.fillna(0) assert_panel_equal(filled, empty) self.assertRaises(ValueError, self.panel.fillna) self.assertRaises(ValueError, self.panel.fillna, 5, method='ffill') self.assertRaises(TypeError, self.panel.fillna, [1, 2]) self.assertRaises(TypeError, self.panel.fillna, (1, 2)) # limit not implemented when only value is specified p = Panel(np.random.randn(3, 4, 5)) p.iloc[0:2, 0:2, 0:2] = np.nan self.assertRaises(NotImplementedError, lambda: p.fillna(999, limit=1)) def test_ffill_bfill(self): assert_panel_equal(self.panel.ffill(), self.panel.fillna(method='ffill')) assert_panel_equal(self.panel.bfill(), self.panel.fillna(method='bfill')) def test_truncate_fillna_bug(self): # #1823 result = self.panel.truncate(before=None, after=None, axis='items') # it works! result.fillna(value=0.0) def test_swapaxes(self): result = self.panel.swapaxes('items', 'minor') self.assertIs(result.items, self.panel.minor_axis) result = self.panel.swapaxes('items', 'major') self.assertIs(result.items, self.panel.major_axis) result = self.panel.swapaxes('major', 'minor') self.assertIs(result.major_axis, self.panel.minor_axis) panel = self.panel.copy() result = panel.swapaxes('major', 'minor') panel.values[0, 0, 1] = np.nan expected = panel.swapaxes('major', 'minor') assert_panel_equal(result, expected) # this should also work result = self.panel.swapaxes(0, 1) self.assertIs(result.items, self.panel.major_axis) # this works, but return a copy result = self.panel.swapaxes('items', 'items') assert_panel_equal(self.panel, result) self.assertNotEqual(id(self.panel), id(result)) def test_transpose(self): result = self.panel.transpose('minor', 'major', 'items') expected = self.panel.swapaxes('items', 'minor') assert_panel_equal(result, expected) # test kwargs result = self.panel.transpose(items='minor', major='major', minor='items') expected = self.panel.swapaxes('items', 'minor') assert_panel_equal(result, expected) # text mixture of args result = self.panel.transpose('minor', major='major', minor='items') expected = self.panel.swapaxes('items', 'minor') assert_panel_equal(result, expected) result = self.panel.transpose('minor', 'major', minor='items') expected = self.panel.swapaxes('items', 'minor') assert_panel_equal(result, expected) # duplicate axes with tm.assertRaisesRegexp(TypeError, 'not enough/duplicate arguments'): self.panel.transpose('minor', maj='major', minor='items') with tm.assertRaisesRegexp(ValueError, 'repeated axis in transpose'): self.panel.transpose('minor', 'major', major='minor', minor='items') result = self.panel.transpose(2, 1, 0) assert_panel_equal(result, expected) result = self.panel.transpose('minor', 'items', 'major') expected = self.panel.swapaxes('items', 'minor') expected = expected.swapaxes('major', 'minor') assert_panel_equal(result, expected) result = self.panel.transpose(2, 0, 1) assert_panel_equal(result, expected) self.assertRaises(ValueError, self.panel.transpose, 0, 0, 1) def test_transpose_copy(self): panel = self.panel.copy() result = panel.transpose(2, 0, 1, copy=True) expected = panel.swapaxes('items', 'minor') expected = expected.swapaxes('major', 'minor') assert_panel_equal(result, expected) panel.values[0, 1, 1] = np.nan self.assertTrue(notnull(result.values[1, 0, 1])) @ignore_sparse_panel_future_warning def test_to_frame(self): # filtered filtered = self.panel.to_frame() expected = self.panel.to_frame().dropna(how='any') assert_frame_equal(filtered, expected) # unfiltered unfiltered = self.panel.to_frame(filter_observations=False) assert_panel_equal(unfiltered.to_panel(), self.panel) # names self.assertEqual(unfiltered.index.names, ('major', 'minor')) # unsorted, round trip df = self.panel.to_frame(filter_observations=False) unsorted = df.take(np.random.permutation(len(df))) pan = unsorted.to_panel() assert_panel_equal(pan, self.panel) # preserve original index names df = DataFrame(np.random.randn(6, 2), index=[['a', 'a', 'b', 'b', 'c', 'c'], [0, 1, 0, 1, 0, 1]], columns=['one', 'two']) df.index.names = ['foo', 'bar'] df.columns.name = 'baz' rdf = df.to_panel().to_frame() self.assertEqual(rdf.index.names, df.index.names) self.assertEqual(rdf.columns.names, df.columns.names) def test_to_frame_mixed(self): panel = self.panel.fillna(0) panel['str'] = 'foo' panel['bool'] = panel['ItemA'] > 0 lp = panel.to_frame() wp = lp.to_panel() self.assertEqual(wp['bool'].values.dtype, np.bool_) # Previously, this was mutating the underlying index and changing its # name assert_frame_equal(wp['bool'], panel['bool'], check_names=False) # GH 8704 # with categorical df = panel.to_frame() df['category'] = df['str'].astype('category') # to_panel # TODO: this converts back to object p = df.to_panel() expected = panel.copy() expected['category'] = 'foo' assert_panel_equal(p, expected) def test_to_frame_multi_major(self): idx = MultiIndex.from_tuples([(1, 'one'), (1, 'two'), (2, 'one'), ( 2, 'two')]) df = DataFrame([[1, 'a', 1], [2, 'b', 1], [3, 'c', 1], [4, 'd', 1]], columns=['A', 'B', 'C'], index=idx) wp = Panel({'i1': df, 'i2': df}) expected_idx = MultiIndex.from_tuples( [ (1, 'one', 'A'), (1, 'one', 'B'), (1, 'one', 'C'), (1, 'two', 'A'), (1, 'two', 'B'), (1, 'two', 'C'), (2, 'one', 'A'), (2, 'one', 'B'), (2, 'one', 'C'), (2, 'two', 'A'), (2, 'two', 'B'), (2, 'two', 'C') ], names=[None, None, 'minor']) expected = DataFrame({'i1': [1, 'a', 1, 2, 'b', 1, 3, 'c', 1, 4, 'd', 1], 'i2': [1, 'a', 1, 2, 'b', 1, 3, 'c', 1, 4, 'd', 1]}, index=expected_idx) result = wp.to_frame() assert_frame_equal(result, expected) wp.iloc[0, 0].iloc[0] = np.nan # BUG on setting. GH #5773 result = wp.to_frame() assert_frame_equal(result, expected[1:]) idx = MultiIndex.from_tuples([(1, 'two'), (1, 'one'), (2, 'one'), ( np.nan, 'two')]) df = DataFrame([[1, 'a', 1], [2, 'b', 1], [3, 'c', 1], [4, 'd', 1]], columns=['A', 'B', 'C'], index=idx) wp = Panel({'i1': df, 'i2': df}) ex_idx = MultiIndex.from_tuples([(1, 'two', 'A'), (1, 'two', 'B'), (1, 'two', 'C'), (1, 'one', 'A'), (1, 'one', 'B'), (1, 'one', 'C'), (2, 'one', 'A'), (2, 'one', 'B'), (2, 'one', 'C'), (np.nan, 'two', 'A'), (np.nan, 'two', 'B'), (np.nan, 'two', 'C')], names=[None, None, 'minor']) expected.index = ex_idx result = wp.to_frame() assert_frame_equal(result, expected) def test_to_frame_multi_major_minor(self): cols = MultiIndex(levels=[['C_A', 'C_B'], ['C_1', 'C_2']], labels=[[0, 0, 1, 1], [0, 1, 0, 1]]) idx = MultiIndex.from_tuples([(1, 'one'), (1, 'two'), (2, 'one'), ( 2, 'two'), (3, 'three'), (4, 'four')]) df = DataFrame([[1, 2, 11, 12], [3, 4, 13, 14], ['a', 'b', 'w', 'x'], ['c', 'd', 'y', 'z'], [-1, -2, -3, -4], [-5, -6, -7, -8]], columns=cols, index=idx) wp = Panel({'i1': df, 'i2': df}) exp_idx = MultiIndex.from_tuples( [(1, 'one', 'C_A', 'C_1'), (1, 'one', 'C_A', 'C_2'), (1, 'one', 'C_B', 'C_1'), (1, 'one', 'C_B', 'C_2'), (1, 'two', 'C_A', 'C_1'), (1, 'two', 'C_A', 'C_2'), (1, 'two', 'C_B', 'C_1'), (1, 'two', 'C_B', 'C_2'), (2, 'one', 'C_A', 'C_1'), (2, 'one', 'C_A', 'C_2'), (2, 'one', 'C_B', 'C_1'), (2, 'one', 'C_B', 'C_2'), (2, 'two', 'C_A', 'C_1'), (2, 'two', 'C_A', 'C_2'), (2, 'two', 'C_B', 'C_1'), (2, 'two', 'C_B', 'C_2'), (3, 'three', 'C_A', 'C_1'), (3, 'three', 'C_A', 'C_2'), (3, 'three', 'C_B', 'C_1'), (3, 'three', 'C_B', 'C_2'), (4, 'four', 'C_A', 'C_1'), (4, 'four', 'C_A', 'C_2'), (4, 'four', 'C_B', 'C_1'), (4, 'four', 'C_B', 'C_2')], names=[None, None, None, None]) exp_val = [[1, 1], [2, 2], [11, 11], [12, 12], [3, 3], [4, 4], [13, 13], [14, 14], ['a', 'a'], ['b', 'b'], ['w', 'w'], ['x', 'x'], ['c', 'c'], ['d', 'd'], ['y', 'y'], ['z', 'z'], [-1, -1], [-2, -2], [-3, -3], [-4, -4], [-5, -5], [-6, -6], [-7, -7], [-8, -8]] result = wp.to_frame() expected = DataFrame(exp_val, columns=['i1', 'i2'], index=exp_idx) assert_frame_equal(result, expected) def test_to_frame_multi_drop_level(self): idx = MultiIndex.from_tuples([(1, 'one'), (2, 'one'), (2, 'two')]) df = DataFrame({'A': [np.nan, 1, 2]}, index=idx) wp = Panel({'i1': df, 'i2': df}) result = wp.to_frame() exp_idx = MultiIndex.from_tuples([(2, 'one', 'A'), (2, 'two', 'A')], names=[None, None, 'minor']) expected = DataFrame({'i1': [1., 2], 'i2': [1., 2]}, index=exp_idx) assert_frame_equal(result, expected) def test_to_panel_na_handling(self): df = DataFrame(np.random.randint(0, 10, size=20).reshape((10, 2)), index=[[0, 0, 0, 0, 0, 0, 1, 1, 1, 1], [0, 1, 2, 3, 4, 5, 2, 3, 4, 5]]) panel = df.to_panel() self.assertTrue(isnull(panel[0].ix[1, [0, 1]]).all()) def test_to_panel_duplicates(self): # #2441 df = DataFrame({'a': [0, 0, 1], 'b': [1, 1, 1], 'c': [1, 2, 3]}) idf = df.set_index(['a', 'b']) assertRaisesRegexp(ValueError, 'non-uniquely indexed', idf.to_panel) def test_panel_dups(self): # GH 4960 # duplicates in an index # items data = np.random.randn(5, 100, 5) no_dup_panel = Panel(data, items=list("ABCDE")) panel = Panel(data, items=list("AACDE")) expected = no_dup_panel['A'] result = panel.iloc[0] assert_frame_equal(result, expected) expected = no_dup_panel['E'] result = panel.loc['E'] assert_frame_equal(result, expected) expected = no_dup_panel.loc[['A', 'B']] expected.items = ['A', 'A'] result = panel.loc['A'] assert_panel_equal(result, expected) # major data = np.random.randn(5, 5, 5) no_dup_panel = Panel(data, major_axis=list("ABCDE")) panel = Panel(data, major_axis=list("AACDE")) expected = no_dup_panel.loc[:, 'A'] result = panel.iloc[:, 0] assert_frame_equal(result, expected) expected = no_dup_panel.loc[:, 'E'] result = panel.loc[:, 'E'] assert_frame_equal(result, expected) expected = no_dup_panel.loc[:, ['A', 'B']] expected.major_axis = ['A', 'A'] result = panel.loc[:, 'A'] assert_panel_equal(result, expected) # minor data = np.random.randn(5, 100, 5) no_dup_panel = Panel(data, minor_axis=list("ABCDE")) panel = Panel(data, minor_axis=list("AACDE")) expected = no_dup_panel.loc[:, :, 'A'] result = panel.iloc[:, :, 0] assert_frame_equal(result, expected) expected = no_dup_panel.loc[:, :, 'E'] result = panel.loc[:, :, 'E'] assert_frame_equal(result, expected) expected = no_dup_panel.loc[:, :, ['A', 'B']] expected.minor_axis = ['A', 'A'] result = panel.loc[:, :, 'A'] assert_panel_equal(result, expected) def test_filter(self): pass def test_compound(self): compounded = self.panel.compound() assert_series_equal(compounded['ItemA'], (1 + self.panel['ItemA']).product(0) - 1, check_names=False) def test_shift(self): # major idx = self.panel.major_axis[0] idx_lag = self.panel.major_axis[1] shifted = self.panel.shift(1) assert_frame_equal(self.panel.major_xs(idx), shifted.major_xs(idx_lag)) # minor idx = self.panel.minor_axis[0] idx_lag = self.panel.minor_axis[1] shifted = self.panel.shift(1, axis='minor') assert_frame_equal(self.panel.minor_xs(idx), shifted.minor_xs(idx_lag)) # items idx = self.panel.items[0] idx_lag = self.panel.items[1] shifted = self.panel.shift(1, axis='items') assert_frame_equal(self.panel[idx], shifted[idx_lag]) # negative numbers, #2164 result = self.panel.shift(-1) expected = Panel(dict((i, f.shift(-1)[:-1]) for i, f in self.panel.iteritems())) assert_panel_equal(result, expected) # mixed dtypes #6959 data = [('item ' + ch, makeMixedDataFrame()) for ch in list('abcde')] data = dict(data) mixed_panel = Panel.from_dict(data, orient='minor') shifted = mixed_panel.shift(1) assert_series_equal(mixed_panel.dtypes, shifted.dtypes) def test_tshift(self): # PeriodIndex ps = tm.makePeriodPanel() shifted = ps.tshift(1) unshifted = shifted.tshift(-1)
assert_panel_equal(unshifted, ps)
pandas.util.testing.assert_panel_equal
# -*- coding: utf-8 -*- """ Create the economic tables required to run the MRIA model. """ import numpy as np import pandas as pd class io_basic(object): """ This is the class object **io_basic** which is used to set up the table. """ def __init__(self, name, filepath, list_regions): """ Creation of a the object instance, specify the file path and sectors to include. Parameters - *self* - **io_basic** class object - name - string name for the **io_basic** class - filepath - string path name to location of IO table - list_regions - list of regions to include Output - *self*.name - string name of the model in the **io_basic** class - *self*.file - filepath in the **MRIA_IO** class - *self*.regions - list of regions in the **MRIA_IO** class - *self*.total_regions - Integer of total amount of regions in the **io_basic** class """ self.name = name self.file = filepath self.regions = list_regions self.total_regions = len(list_regions) def load_labels(self): """ Load all labels for the **io_basic** class. Parameters - *self* - **io_basic** class object Output - *self*.FD_labels - labels for Final Demand columns in the **io_basic** class - *self*.FD_cat - labels for Final Demand categories in the **io_basic** class - *self*.Exp_labels - labels for Export columns in the **io_basic** class - *self*.T_labels - region and sector labels for Z-matrix in the **io_basic** class - *self*.VA_labels - labels for Value Added in the **io_basic** class - *self*.sectors - labels for the sectors in the **io_basic** class """ if 'xls' in self.file: FD_labels = pd.read_excel(self.file, sheet_name="labels_FD", names=['reg', 'tfd'], header=None) Exp_labels = pd.read_excel(self.file, sheet_name="labels_ExpROW", names=[ 'export'], header=None) T_labels = pd.read_excel(self.file, sheet_name="labels_T", header=None, names=['reg', 'ind']) VA_labels = pd.read_excel(self.file, sheet_name="labels_VA", names=[ 'Import', 'ValueA'], header=None) if len(self.regions) == 0: self.regions = list(T_labels['reg'].unique()) self.total_regions = len(self.regions) self.FD_labels = FD_labels self.FD_cat = list(self.FD_labels['tfd'].unique()) self.Exp_labels = Exp_labels self.T_labels = T_labels self.VA_labels = VA_labels self.sectors = list(T_labels['ind'].unique()) def load_all_data(self): """ Load all data for the **io_basic** class. Parameters - *self* - **io_basic** class object Output - *self*.FD_data - pandas Dataframe of Final Demand in the **io_basic** class - *self*.T_data - pandas Dataframe of Z matrix in the **io_basic** class - *self*.VA_data - pandas Dataframe of Value Added in the **io_basic** class - *self*.ImpROW_data - pandas Dataframe of import from the Rest of the World in the **io_basic** class - *self*.ExpROW_data - pandas Dataframe of exports to the Rest of The World in the **io_basic** class """ try: self.FD_labels is None except: self.load_labels() #LOAD DATA FD_data =
pd.read_excel(self.file, sheet_name="FD", header=None)
pandas.read_excel
import pandas as pd import numpy as np import pytest from .conftest import DATA_DIR, assert_series_equal from numpy.testing import assert_allclose from pvlib import temperature, tools from pvlib._deprecation import pvlibDeprecationWarning @pytest.fixture def sapm_default(): return temperature.TEMPERATURE_MODEL_PARAMETERS['sapm'][ 'open_rack_glass_glass'] def test_sapm_cell(sapm_default): default = temperature.sapm_cell(900, 20, 5, sapm_default['a'], sapm_default['b'], sapm_default['deltaT']) assert_allclose(default, 43.509, 3) def test_sapm_module(sapm_default): default = temperature.sapm_module(900, 20, 5, sapm_default['a'], sapm_default['b']) assert_allclose(default, 40.809, 3) def test_sapm_cell_from_module(sapm_default): default = temperature.sapm_cell_from_module(50, 900, sapm_default['deltaT']) assert_allclose(default, 50 + 900 / 1000 * sapm_default['deltaT']) def test_sapm_ndarray(sapm_default): temps = np.array([0, 10, 5]) irrads = np.array([0, 500, 0]) winds = np.array([10, 5, 0]) cell_temps = temperature.sapm_cell(irrads, temps, winds, sapm_default['a'], sapm_default['b'], sapm_default['deltaT']) module_temps = temperature.sapm_module(irrads, temps, winds, sapm_default['a'], sapm_default['b']) expected_cell = np.array([0., 23.06066166, 5.]) expected_module = np.array([0., 21.56066166, 5.]) assert_allclose(expected_cell, cell_temps, 3) assert_allclose(expected_module, module_temps, 3) def test_sapm_series(sapm_default): times = pd.date_range(start='2015-01-01', end='2015-01-02', freq='12H') temps = pd.Series([0, 10, 5], index=times) irrads = pd.Series([0, 500, 0], index=times) winds = pd.Series([10, 5, 0], index=times) cell_temps = temperature.sapm_cell(irrads, temps, winds, sapm_default['a'], sapm_default['b'], sapm_default['deltaT']) module_temps = temperature.sapm_module(irrads, temps, winds, sapm_default['a'], sapm_default['b']) expected_cell =
pd.Series([0., 23.06066166, 5.], index=times)
pandas.Series
from collections import OrderedDict from datetime import timedelta import numpy as np import pytest from pandas.core.dtypes.dtypes import CategoricalDtype, DatetimeTZDtype import pandas as pd from pandas import ( Categorical, DataFrame, Series, Timedelta, Timestamp, _np_version_under1p14, concat, date_range, option_context, ) from pandas.core.arrays import integer_array import pandas.util.testing as tm def _check_cast(df, v): """ Check if all dtypes of df are equal to v """ assert all(s.dtype.name == v for _, s in df.items()) class TestDataFrameDataTypes: def test_concat_empty_dataframe_dtypes(self): df = DataFrame(columns=list("abc")) df["a"] = df["a"].astype(np.bool_) df["b"] = df["b"].astype(np.int32) df["c"] = df["c"].astype(np.float64) result = pd.concat([df, df]) assert result["a"].dtype == np.bool_ assert result["b"].dtype == np.int32 assert result["c"].dtype == np.float64 result = pd.concat([df, df.astype(np.float64)]) assert result["a"].dtype == np.object_ assert result["b"].dtype == np.float64 assert result["c"].dtype == np.float64 def test_empty_frame_dtypes_ftypes(self): empty_df = pd.DataFrame() tm.assert_series_equal(empty_df.dtypes, pd.Series(dtype=np.object)) # GH 26705 - Assert .ftypes is deprecated with tm.assert_produces_warning(FutureWarning): tm.assert_series_equal(empty_df.ftypes, pd.Series(dtype=np.object)) nocols_df = pd.DataFrame(index=[1, 2, 3]) tm.assert_series_equal(nocols_df.dtypes, pd.Series(dtype=np.object)) # GH 26705 - Assert .ftypes is deprecated with tm.assert_produces_warning(FutureWarning): tm.assert_series_equal(nocols_df.ftypes, pd.Series(dtype=np.object)) norows_df = pd.DataFrame(columns=list("abc")) tm.assert_series_equal( norows_df.dtypes, pd.Series(np.object, index=list("abc")) ) # GH 26705 - Assert .ftypes is deprecated with tm.assert_produces_warning(FutureWarning): tm.assert_series_equal( norows_df.ftypes, pd.Series("object:dense", index=list("abc")) ) norows_int_df = pd.DataFrame(columns=list("abc")).astype(np.int32) tm.assert_series_equal( norows_int_df.dtypes, pd.Series(np.dtype("int32"), index=list("abc")) ) # GH 26705 - Assert .ftypes is deprecated with tm.assert_produces_warning(FutureWarning): tm.assert_series_equal( norows_int_df.ftypes, pd.Series("int32:dense", index=list("abc")) ) odict = OrderedDict df = pd.DataFrame(odict([("a", 1), ("b", True), ("c", 1.0)]), index=[1, 2, 3]) ex_dtypes = pd.Series( odict([("a", np.int64), ("b", np.bool), ("c", np.float64)]) ) ex_ftypes = pd.Series( odict([("a", "int64:dense"), ("b", "bool:dense"), ("c", "float64:dense")]) ) tm.assert_series_equal(df.dtypes, ex_dtypes) # GH 26705 - Assert .ftypes is deprecated with tm.assert_produces_warning(FutureWarning): tm.assert_series_equal(df.ftypes, ex_ftypes) # same but for empty slice of df tm.assert_series_equal(df[:0].dtypes, ex_dtypes) # GH 26705 - Assert .ftypes is deprecated with tm.assert_produces_warning(FutureWarning): tm.assert_series_equal(df[:0].ftypes, ex_ftypes) def test_datetime_with_tz_dtypes(self): tzframe = DataFrame( { "A": date_range("20130101", periods=3), "B": date_range("20130101", periods=3, tz="US/Eastern"), "C": date_range("20130101", periods=3, tz="CET"), } ) tzframe.iloc[1, 1] = pd.NaT tzframe.iloc[1, 2] = pd.NaT result = tzframe.dtypes.sort_index() expected = Series( [ np.dtype("datetime64[ns]"), DatetimeTZDtype("ns", "US/Eastern"), DatetimeTZDtype("ns", "CET"), ], ["A", "B", "C"], ) tm.assert_series_equal(result, expected) def test_dtypes_are_correct_after_column_slice(self): # GH6525 df = pd.DataFrame(index=range(5), columns=list("abc"), dtype=np.float_) odict = OrderedDict tm.assert_series_equal( df.dtypes, pd.Series(odict([("a", np.float_), ("b", np.float_), ("c", np.float_)])), ) tm.assert_series_equal( df.iloc[:, 2:].dtypes, pd.Series(odict([("c", np.float_)])) ) tm.assert_series_equal( df.dtypes, pd.Series(odict([("a", np.float_), ("b", np.float_), ("c", np.float_)])), ) def test_select_dtypes_include_using_list_like(self): df = DataFrame( { "a": list("abc"), "b": list(range(1, 4)), "c": np.arange(3, 6).astype("u1"), "d": np.arange(4.0, 7.0, dtype="float64"), "e": [True, False, True], "f": pd.Categorical(list("abc")), "g": pd.date_range("20130101", periods=3), "h": pd.date_range("20130101", periods=3, tz="US/Eastern"), "i": pd.date_range("20130101", periods=3, tz="CET"), "j": pd.period_range("2013-01", periods=3, freq="M"), "k": pd.timedelta_range("1 day", periods=3), } ) ri = df.select_dtypes(include=[np.number]) ei = df[["b", "c", "d", "k"]] tm.assert_frame_equal(ri, ei) ri = df.select_dtypes(include=[np.number], exclude=["timedelta"]) ei = df[["b", "c", "d"]] tm.assert_frame_equal(ri, ei) ri = df.select_dtypes(include=[np.number, "category"], exclude=["timedelta"]) ei = df[["b", "c", "d", "f"]] tm.assert_frame_equal(ri, ei) ri = df.select_dtypes(include=["datetime"]) ei = df[["g"]] tm.assert_frame_equal(ri, ei) ri = df.select_dtypes(include=["datetime64"]) ei = df[["g"]] tm.assert_frame_equal(ri, ei) ri = df.select_dtypes(include=["datetimetz"]) ei = df[["h", "i"]] tm.assert_frame_equal(ri, ei) with pytest.raises(NotImplementedError, match=r"^$"): df.select_dtypes(include=["period"]) def test_select_dtypes_exclude_using_list_like(self): df = DataFrame( { "a": list("abc"), "b": list(range(1, 4)), "c": np.arange(3, 6).astype("u1"), "d": np.arange(4.0, 7.0, dtype="float64"), "e": [True, False, True], } ) re = df.select_dtypes(exclude=[np.number]) ee = df[["a", "e"]] tm.assert_frame_equal(re, ee) def test_select_dtypes_exclude_include_using_list_like(self): df = DataFrame( { "a": list("abc"), "b": list(range(1, 4)), "c": np.arange(3, 6).astype("u1"), "d": np.arange(4.0, 7.0, dtype="float64"), "e": [True, False, True], "f": pd.date_range("now", periods=3).values, } ) exclude = (np.datetime64,) include = np.bool_, "integer" r = df.select_dtypes(include=include, exclude=exclude) e = df[["b", "c", "e"]] tm.assert_frame_equal(r, e) exclude = ("datetime",) include = "bool", "int64", "int32" r = df.select_dtypes(include=include, exclude=exclude) e = df[["b", "e"]] tm.assert_frame_equal(r, e) def test_select_dtypes_include_using_scalars(self): df = DataFrame( { "a": list("abc"), "b": list(range(1, 4)), "c": np.arange(3, 6).astype("u1"), "d": np.arange(4.0, 7.0, dtype="float64"), "e": [True, False, True], "f": pd.Categorical(list("abc")), "g": pd.date_range("20130101", periods=3), "h": pd.date_range("20130101", periods=3, tz="US/Eastern"), "i": pd.date_range("20130101", periods=3, tz="CET"), "j": pd.period_range("2013-01", periods=3, freq="M"), "k": pd.timedelta_range("1 day", periods=3), } ) ri = df.select_dtypes(include=np.number) ei = df[["b", "c", "d", "k"]] tm.assert_frame_equal(ri, ei) ri = df.select_dtypes(include="datetime") ei = df[["g"]] tm.assert_frame_equal(ri, ei) ri = df.select_dtypes(include="datetime64") ei = df[["g"]] tm.assert_frame_equal(ri, ei) ri = df.select_dtypes(include="category") ei = df[["f"]] tm.assert_frame_equal(ri, ei) with pytest.raises(NotImplementedError, match=r"^$"): df.select_dtypes(include="period") def test_select_dtypes_exclude_using_scalars(self): df = DataFrame( { "a": list("abc"), "b": list(range(1, 4)), "c": np.arange(3, 6).astype("u1"), "d": np.arange(4.0, 7.0, dtype="float64"), "e": [True, False, True], "f": pd.Categorical(list("abc")), "g": pd.date_range("20130101", periods=3), "h": pd.date_range("20130101", periods=3, tz="US/Eastern"), "i": pd.date_range("20130101", periods=3, tz="CET"), "j": pd.period_range("2013-01", periods=3, freq="M"), "k": pd.timedelta_range("1 day", periods=3), } ) ri = df.select_dtypes(exclude=np.number) ei = df[["a", "e", "f", "g", "h", "i", "j"]] tm.assert_frame_equal(ri, ei) ri = df.select_dtypes(exclude="category") ei = df[["a", "b", "c", "d", "e", "g", "h", "i", "j", "k"]] tm.assert_frame_equal(ri, ei) with pytest.raises(NotImplementedError, match=r"^$"): df.select_dtypes(exclude="period") def test_select_dtypes_include_exclude_using_scalars(self): df = DataFrame( { "a": list("abc"), "b": list(range(1, 4)), "c": np.arange(3, 6).astype("u1"), "d": np.arange(4.0, 7.0, dtype="float64"), "e": [True, False, True], "f": pd.Categorical(list("abc")), "g": pd.date_range("20130101", periods=3), "h": pd.date_range("20130101", periods=3, tz="US/Eastern"), "i": pd.date_range("20130101", periods=3, tz="CET"), "j": pd.period_range("2013-01", periods=3, freq="M"), "k": pd.timedelta_range("1 day", periods=3), } ) ri = df.select_dtypes(include=np.number, exclude="floating") ei = df[["b", "c", "k"]] tm.assert_frame_equal(ri, ei) def test_select_dtypes_include_exclude_mixed_scalars_lists(self): df = DataFrame( { "a": list("abc"), "b": list(range(1, 4)), "c": np.arange(3, 6).astype("u1"), "d": np.arange(4.0, 7.0, dtype="float64"), "e": [True, False, True], "f": pd.Categorical(list("abc")), "g": pd.date_range("20130101", periods=3), "h": pd.date_range("20130101", periods=3, tz="US/Eastern"), "i": pd.date_range("20130101", periods=3, tz="CET"), "j": pd.period_range("2013-01", periods=3, freq="M"), "k": pd.timedelta_range("1 day", periods=3), } ) ri = df.select_dtypes(include=np.number, exclude=["floating", "timedelta"]) ei = df[["b", "c"]] tm.assert_frame_equal(ri, ei) ri = df.select_dtypes(include=[np.number, "category"], exclude="floating") ei = df[["b", "c", "f", "k"]]
tm.assert_frame_equal(ri, ei)
pandas.util.testing.assert_frame_equal
import os import sys import glob import numpy as np import pandas as pd from cooler import Cooler import matplotlib import matplotlib.pyplot as plt import h5py import seaborn as sns import shelve from collections import defaultdict, Iterable # cooler_path = '/net/levsha/share/lab/dekkerU54/new_files/' # cooler_paths = ['/net/levsha/share/lab/U54/2019_mapping_hg38/U54_matrix/cooler_library/', # '/net/levsha/share/lab/U54/2019_mapping_hg38/U54_deep/cooler_library_group/'] # dot_paths = ['/net/levsha/share/lab/U54/2019_mapping_hg38/U54_matrix/snakedots/', # '/net/levsha/share/lab/U54/2019_mapping_hg38/U54_deep/snakedots/'] # analysis_path = '/net/levsha/share/sameer/U54/hic_matrix/' # db_path = '/net/levsha/share/sameer/U54/hic_matrix/metadata/U54_matrix_info' hela_chroms = ['chr4', 'chr14', 'chr17', 'chr18', 'chr20', 'chr21'] class Database: def __init__(self, db_path): self.db_path = db_path if os.path.exists(f'{db_path}.dat'): with shelve.open(db_path, flag='r') as db: self.metadata = db['metadata'] self.cooler_paths = db['cooler_paths'] self.analysis_path = db['analysis_path'] self.dot_paths = db['dot_paths'] keys = list(db.keys()) keys.remove('metadata') keys.remove('cooler_paths') keys.remove('analysis_path') keys.remove('dot_paths') self.keys = keys else: self.metadata = None self.keys = [] self.cooler_paths = '' self.analysis_path = '' self.dot_paths = '' def create_dataset(self, table, cool_paths, analysis_path, dot_paths): if os.path.exists(f'{self.db_path}.dat'): print(f'Database already exists at {self.db_path}') raise FileExistsError else: assert np.all([s in table.columns for s in ['lib_name', 'celltype', 'xlink', 'enzyme', 'cycle', 'seq']]), 'table does not contain the required columns' with shelve.open(self.db_path, flag='n') as db: db['cooler_paths'] = cool_paths self.cooler_paths = cool_paths db['analysis_path'] = analysis_path self.analysis_path = analysis_path db['dot_paths'] = dot_paths self.dot_paths = dot_paths db['metadata'] = table self.metadata = table def get_tables(self, keys=None): if self.metadata is None: print('Database not initialized') raise else: result = self.metadata if keys is None: return result elif isinstance(keys, str): keys = [keys] with shelve.open(self.db_path, flag='r') as db: for key in keys: assert key in self.keys, "Key not found in database" df = db[key] result = result.merge(df, on='lib_name', how='outer') return result def add_table(self, key, table): assert 'lib_name' in table.columns, "Please pass table with lib_names columns in it" table_lib_names = table['lib_name'].values with shelve.open(self.db_path, flag='w') as db: assert key not in self.keys, "Key already exists. If you wish to modify this, please use modify_table() method" meta_lib_names = db['metadata']['lib_name'].values assert np.all(meta_lib_names == table_lib_names), 'List of libraries does not match those in metadata' db[key] = table self.keys.append(key) def remove_table(self, key): bad_keys = ['metadata', 'cooler_paths', 'analysis_path', 'dot_paths'] assert key not in bad_keys, f"The following keys should not be deleted: {bad_keys}" with shelve.open(self.db_path, flag='w') as db: assert key in self.keys, "Key not found in database" del db[key] self.keys.remove(key) def modify_table(self, key, new_table): assert 'lib_name' in new_table.columns, "Please pass table with lib_names columns in it" table_lib_names = new_table['lib_name'].values meta_lib_names = self.metadata['lib_name'].values assert np.all(meta_lib_names == table_lib_names), 'List of libraries does not match those in metadata' with shelve.open(self.db_path, flag='w') as db: assert key in self.keys, "Key not found in database. If you want to add a table, please use add_table() method" del db[key] db[key] = new_table def get_coolers(self, table, res=1000000): names = table['lib_name'].values cool_dict = defaultdict(list) for name in names: if name not in self.metadata['lib_name'].values: print(f'Name: {name} not found in metadata. Skipping') continue cool_dict['lib_name'].append(name) flag = True for cpath in self.cooler_paths: if f'{name}.hg38.mapq_30.1000.mcool' in os.listdir(cpath): flag = False cool = Cooler(cpath+f'{name}.hg38.mapq_30.1000.mcool::/resolutions/{res}') cool_dict[f'cooler_{res}'].append(cool) if flag: print(f'Cooler not found matching {name}. Appending np.nan to appropriate row') cool_dict[f'cooler_{res}'].append(np.nan) df = pd.DataFrame(cool_dict) df = table.copy(deep=True).merge(df, on='lib_name', how='outer') return df def get_eigendecomps(self, table, res=1000000, subdir='eigdecomp/'): comp_path = self.analysis_path+f'{subdir}/{res}/' if not os.path.isdir(comp_path): print(f'{comp_path} is not a valid directory') raise names = table['lib_name'].values keys = ['lams', 'vectors'] comp_dict = defaultdict(list) for name in names: if name not in self.metadata['lib_name'].values: print(f'Name: {name} not found in metadata. Skipping') continue comp_dict['lib_name'].append(name) for k in keys: if f'{name}.hdf5' in os.listdir(comp_path): comp_dict[f'{k}_{res}'].append( pd.read_hdf(comp_path+f'{name}.hdf5', key=k)) else: comp_dict[f'{k}_{res}'].append(np.nan) df = pd.DataFrame(comp_dict) df = table.copy(deep=True).merge(df, on='lib_name', how='outer') return df def get_scalings(self, table, subdir='scalings/global/', trans=False): scale_path = self.analysis_path+subdir if not os.path.isdir(scale_path): print(f'{scale_path} is not a valid directory') raise names = data['lib_name'].values if trans: keys = ['scaling','trans_lvl'] else: keys = ['scaling'] scale_dict = defaultdict(list) for name in names: if name not in self.metadata['lib_name'].values: print(f'Name: {name} not found in metadata. Skipping') continue scale_dict['lib_name'].append(name) if f'{name}.hdf5' in os.listdir(scale_path): scale_dict['scaling'].append(Scaling(scale_path+f'{name}.hdf5', keys)) else: scale_dict['scaling'].append(np.nan) df = pd.DataFrame(scale_dict) df = data.copy(deep=True).merge(df, on='lib_name', how='outer') return df def get_pileups(self, table, subdir='pileup/dots/5000/', col_name='dots'): pileup_path = self.analysis_path+subdir if not os.path.isdir(pileup_path): print(f'{pileup_path} is not a valid directory') raise names = table['lib_name'].values pileup_dict = defaultdict(list) for name in names: if name not in self.metadata['lib_name'].values: print(f'Name: {name} not found in metadata. Skipping') continue pileup_dict['lib_name'].append(name) pileup_dict[col_name].append(Pileup(pileup_path, f'{name}.npy')) df =
pd.DataFrame(pileup_dict)
pandas.DataFrame
import pandas as pd # Baca file sample_csv.csv df = pd.read_csv("https://storage.googleapis.com/dqlab-dataset/sample_csv.csv") # Tampilkan tipe data print("Tipe data df:\n", df.dtypes) # Ubah tipe data kolom quantity menjadi tipe data numerik float df["quantity"] =
pd.to_numeric(df["quantity"], downcast="float")
pandas.to_numeric
import pandas as pd import math def combination_generator(): dfA = pd.read_csv('A_feature.csv', header=0) dfB = pd.read_csv('B_feature.csv', header=0) dfX =
pd.read_csv('X_feature.csv', header=0)
pandas.read_csv
# -*- coding: utf-8 -*- """ Small analysis of Estonian kennelshows using Bernese mountain dogs data from kennelliit.ee and CatBoost algorithm """ import matplotlib.pyplot as plt import pandas as pd import numpy as np from catboost import CatBoostRegressor, CatBoostClassifier, Pool, cv from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score from sklearn import metrics import seaborn as sns # load and join all data to a single frame df_2019 = pd.read_csv('dogshows_bernese_est_2019.csv') df_2018 = pd.read_csv('dogshows_bernese_est_2018.csv') df_2017 = pd.read_csv('dogshows_bernese_est_2017.csv') df_2016 = pd.read_csv('dogshows_bernese_est_2016.csv') df_2015 = pd.read_csv('dogshows_bernese_est_2015.csv') df_2014 = pd.read_csv('dogshows_bernese_est_2014.csv') df_2013 = pd.read_csv('dogshows_bernese_est_2013.csv') frames = [df_2019, df_2018, df_2017, df_2016, df_2015, df_2014, df_2013] df =
pd.concat(frames, join='inner')
pandas.concat
import numpy as np import pandas as pd import os, errno import datetime import uuid import itertools import yaml import subprocess import scipy.sparse as sp from scipy.spatial.distance import squareform from sklearn.decomposition.nmf import non_negative_factorization from sklearn.cluster import KMeans from sklearn.metrics import silhouette_score from sklearn.utils import sparsefuncs from fastcluster import linkage from scipy.cluster.hierarchy import leaves_list import matplotlib.pyplot as plt import scanpy as sc def save_df_to_npz(obj, filename): np.savez_compressed(filename, data=obj.values, index=obj.index.values, columns=obj.columns.values) def save_df_to_text(obj, filename): obj.to_csv(filename, sep='\t') def load_df_from_npz(filename): with np.load(filename, allow_pickle=True) as f: obj = pd.DataFrame(**f) return obj def check_dir_exists(path): """ Checks if directory already exists or not and creates it if it doesn't """ try: os.makedirs(path) except OSError as exception: if exception.errno != errno.EEXIST: raise def worker_filter(iterable, worker_index, total_workers): return (p for i,p in enumerate(iterable) if (i-worker_index)%total_workers==0) def fast_euclidean(mat): D = mat.dot(mat.T) squared_norms = np.diag(D).copy() D *= -2.0 D += squared_norms.reshape((-1,1)) D += squared_norms.reshape((1,-1)) D = np.sqrt(D) D[D < 0] = 0 return squareform(D, checks=False) def fast_ols_all_cols(X, Y): pinv = np.linalg.pinv(X) beta = np.dot(pinv, Y) return(beta) def fast_ols_all_cols_df(X,Y): beta = fast_ols_all_cols(X, Y) beta = pd.DataFrame(beta, index=X.columns, columns=Y.columns) return(beta) def var_sparse_matrix(X): mean = np.array(X.mean(axis=0)).reshape(-1) Xcopy = X.copy() Xcopy.data **= 2 var = np.array(Xcopy.mean(axis=0)).reshape(-1) - (mean**2) return(var) def get_highvar_genes_sparse(expression, expected_fano_threshold=None, minimal_mean=0.01, numgenes=None): # Find high variance genes within those cells gene_mean = np.array(expression.mean(axis=0)).astype(float).reshape(-1) E2 = expression.copy(); E2.data **= 2; gene2_mean = np.array(E2.mean(axis=0)).reshape(-1) gene_var = pd.Series(gene2_mean - (gene_mean**2)) del(E2) gene_mean = pd.Series(gene_mean) gene_fano = gene_var / gene_mean # Find parameters for expected fano line top_genes = gene_mean.sort_values(ascending=False)[:20].index A = (np.sqrt(gene_var)/gene_mean)[top_genes].min() w_mean_low, w_mean_high = gene_mean.quantile([0.10, 0.90]) w_fano_low, w_fano_high = gene_fano.quantile([0.10, 0.90]) winsor_box = ((gene_fano > w_fano_low) & (gene_fano < w_fano_high) & (gene_mean > w_mean_low) & (gene_mean < w_mean_high)) fano_median = gene_fano[winsor_box].median() B = np.sqrt(fano_median) gene_expected_fano = (A**2)*gene_mean + (B**2) fano_ratio = (gene_fano/gene_expected_fano) # Identify high var genes if numgenes is not None: highvargenes = fano_ratio.sort_values(ascending=False).index[:numgenes] high_var_genes_ind = fano_ratio.index.isin(highvargenes) T=None else: if not expected_fano_threshold: T = (1. + gene_counts_fano[winsor_box].std()) else: T = expected_fano_threshold high_var_genes_ind = (fano_ratio > T) & (gene_counts_mean > minimal_mean) gene_counts_stats = pd.DataFrame({ 'mean': gene_mean, 'var': gene_var, 'fano': gene_fano, 'expected_fano': gene_expected_fano, 'high_var': high_var_genes_ind, 'fano_ratio': fano_ratio }) gene_fano_parameters = { 'A': A, 'B': B, 'T':T, 'minimal_mean': minimal_mean, } return(gene_counts_stats, gene_fano_parameters) def get_highvar_genes(input_counts, expected_fano_threshold=None, minimal_mean=0.01, numgenes=None): # Find high variance genes within those cells gene_counts_mean = pd.Series(input_counts.mean(axis=0).astype(float)) gene_counts_var = pd.Series(input_counts.var(ddof=0, axis=0).astype(float)) gene_counts_fano = pd.Series(gene_counts_var/gene_counts_mean) # Find parameters for expected fano line top_genes = gene_counts_mean.sort_values(ascending=False)[:20].index A = (np.sqrt(gene_counts_var)/gene_counts_mean)[top_genes].min() w_mean_low, w_mean_high = gene_counts_mean.quantile([0.10, 0.90]) w_fano_low, w_fano_high = gene_counts_fano.quantile([0.10, 0.90]) winsor_box = ((gene_counts_fano > w_fano_low) & (gene_counts_fano < w_fano_high) & (gene_counts_mean > w_mean_low) & (gene_counts_mean < w_mean_high)) fano_median = gene_counts_fano[winsor_box].median() B = np.sqrt(fano_median) gene_expected_fano = (A**2)*gene_counts_mean + (B**2) fano_ratio = (gene_counts_fano/gene_expected_fano) # Identify high var genes if numgenes is not None: highvargenes = fano_ratio.sort_values(ascending=False).index[:numgenes] high_var_genes_ind = fano_ratio.index.isin(highvargenes) T=None else: if not expected_fano_threshold: T = (1. + gene_counts_fano[winsor_box].std()) else: T = expected_fano_threshold high_var_genes_ind = (fano_ratio > T) & (gene_counts_mean > minimal_mean) gene_counts_stats = pd.DataFrame({ 'mean': gene_counts_mean, 'var': gene_counts_var, 'fano': gene_counts_fano, 'expected_fano': gene_expected_fano, 'high_var': high_var_genes_ind, 'fano_ratio': fano_ratio }) gene_fano_parameters = { 'A': A, 'B': B, 'T':T, 'minimal_mean': minimal_mean, } return(gene_counts_stats, gene_fano_parameters) def compute_tpm(input_counts): """ Default TPM normalization """ tpm = input_counts.copy() sc.pp.normalize_per_cell(tpm, counts_per_cell_after=1e6) return(tpm) class cNMF(): def __init__(self, output_dir=".", name=None): """ Parameters ---------- output_dir : path, optional (default=".") Output directory for analysis files. name : string, optional (default=None) A name for this analysis. Will be prefixed to all output files. If set to None, will be automatically generated from date (and random string). """ self.output_dir = output_dir if name is None: now = datetime.datetime.now() rand_hash = uuid.uuid4().hex[:6] name = '%s_%s' % (now.strftime("%Y_%m_%d"), rand_hash) self.name = name self.paths = None def _initialize_dirs(self): if self.paths is None: # Check that output directory exists, create it if needed. check_dir_exists(self.output_dir) check_dir_exists(os.path.join(self.output_dir, self.name)) check_dir_exists(os.path.join(self.output_dir, self.name, 'cnmf_tmp')) self.paths = { 'normalized_counts' : os.path.join(self.output_dir, self.name, 'cnmf_tmp', self.name+'.norm_counts.h5ad'), 'nmf_replicate_parameters' : os.path.join(self.output_dir, self.name, 'cnmf_tmp', self.name+'.nmf_params.df.npz'), 'nmf_run_parameters' : os.path.join(self.output_dir, self.name, 'cnmf_tmp', self.name+'.nmf_idvrun_params.yaml'), 'nmf_genes_list' : os.path.join(self.output_dir, self.name, self.name+'.overdispersed_genes.txt'), 'tpm' : os.path.join(self.output_dir, self.name, 'cnmf_tmp', self.name+'.tpm.h5ad'), 'tpm_stats' : os.path.join(self.output_dir, self.name, 'cnmf_tmp', self.name+'.tpm_stats.df.npz'), 'iter_spectra' : os.path.join(self.output_dir, self.name, 'cnmf_tmp', self.name+'.spectra.k_%d.iter_%d.df.npz'), 'iter_usages' : os.path.join(self.output_dir, self.name, 'cnmf_tmp', self.name+'.usages.k_%d.iter_%d.df.npz'), 'merged_spectra': os.path.join(self.output_dir, self.name, 'cnmf_tmp', self.name+'.spectra.k_%d.merged.df.npz'), 'local_density_cache': os.path.join(self.output_dir, self.name, 'cnmf_tmp', self.name+'.local_density_cache.k_%d.merged.df.npz'), 'consensus_spectra': os.path.join(self.output_dir, self.name, 'cnmf_tmp', self.name+'.spectra.k_%d.dt_%s.consensus.df.npz'), 'consensus_spectra__txt': os.path.join(self.output_dir, self.name, self.name+'.spectra.k_%d.dt_%s.consensus.txt'), 'consensus_usages': os.path.join(self.output_dir, self.name, 'cnmf_tmp',self.name+'.usages.k_%d.dt_%s.consensus.df.npz'), 'consensus_usages__txt': os.path.join(self.output_dir, self.name, self.name+'.usages.k_%d.dt_%s.consensus.txt'), 'consensus_stats': os.path.join(self.output_dir, self.name, 'cnmf_tmp', self.name+'.stats.k_%d.dt_%s.df.npz'), 'clustering_plot': os.path.join(self.output_dir, self.name, self.name+'.clustering.k_%d.dt_%s.png'), 'gene_spectra_score': os.path.join(self.output_dir, self.name, 'cnmf_tmp', self.name+'.gene_spectra_score.k_%d.dt_%s.df.npz'), 'gene_spectra_score__txt': os.path.join(self.output_dir, self.name, self.name+'.gene_spectra_score.k_%d.dt_%s.txt'), 'gene_spectra_tpm': os.path.join(self.output_dir, self.name, 'cnmf_tmp', self.name+'.gene_spectra_tpm.k_%d.dt_%s.df.npz'), 'gene_spectra_tpm__txt': os.path.join(self.output_dir, self.name, self.name+'.gene_spectra_tpm.k_%d.dt_%s.txt'), 'k_selection_plot' : os.path.join(self.output_dir, self.name, self.name+'.k_selection.png'), 'k_selection_stats' : os.path.join(self.output_dir, self.name, self.name+'.k_selection_stats.df.npz'), } def get_norm_counts(self, counts, tpm, high_variance_genes_filter = None, num_highvar_genes = None ): """ Parameters ---------- counts : anndata.AnnData Scanpy AnnData object (cells x genes) containing raw counts. Filtered such that no genes or cells with 0 counts tpm : anndata.AnnData Scanpy AnnData object (cells x genes) containing tpm normalized data matching counts high_variance_genes_filter : np.array, optional (default=None) A pre-specified list of genes considered to be high-variance. Only these genes will be used during factorization of the counts matrix. Must match the .var index of counts and tpm. If set to None, high-variance genes will be automatically computed, using the parameters below. num_highvar_genes : int, optional (default=None) Instead of providing an array of high-variance genes, identify this many most overdispersed genes for filtering Returns ------- normcounts : anndata.AnnData, shape (cells, num_highvar_genes) A counts matrix containing only the high variance genes and with columns (genes)normalized to unit variance """ if high_variance_genes_filter is None: ## Get list of high-var genes if one wasn't provided if sp.issparse(tpm.X): (gene_counts_stats, gene_fano_params) = get_highvar_genes_sparse(tpm.X, numgenes=num_highvar_genes) else: (gene_counts_stats, gene_fano_params) = get_highvar_genes(np.array(tpm.X), numgenes=num_highvar_genes) high_variance_genes_filter = list(tpm.var.index[gene_counts_stats.high_var.values]) ## Subset out high-variance genes norm_counts = counts[:, high_variance_genes_filter] ## Scale genes to unit variance if sp.issparse(tpm.X): sc.pp.scale(norm_counts, zero_center=False) if np.isnan(norm_counts.X.data).sum() > 0: print('Warning NaNs in normalized counts matrix') else: norm_counts.X /= norm_counts.X.std(axis=0, ddof=1) if np.isnan(norm_counts.X).sum().sum() > 0: print('Warning NaNs in normalized counts matrix') ## Save a \n-delimited list of the high-variance genes used for factorization open(self.paths['nmf_genes_list'], 'w').write('\n'.join(high_variance_genes_filter)) ## Check for any cells that have 0 counts of the overdispersed genes zerocells = norm_counts.X.sum(axis=1)==0 if zerocells.sum()>0: examples = norm_counts.obs.index[zerocells] print('Warning: %d cells have zero counts of overdispersed genes. E.g. %s' % (zerocells.sum(), examples[0])) print('Consensus step may not run when this is the case') return(norm_counts) def save_norm_counts(self, norm_counts): self._initialize_dirs() sc.write(self.paths['normalized_counts'], norm_counts) def get_nmf_iter_params(self, ks, n_iter = 100, random_state_seed = None, beta_loss = 'kullback-leibler'): """ Create a DataFrame with parameters for NMF iterations. Parameters ---------- ks : integer, or list-like. Number of topics (components) for factorization. Several values can be specified at the same time, which will be run independently. n_iter : integer, optional (defailt=100) Number of iterations for factorization. If several ``k`` are specified, this many iterations will be run for each value of ``k``. random_state_seed : int or None, optional (default=None) Seed for sklearn random state. """ if type(ks) is int: ks = [ks] # Remove any repeated k values, and order. k_list = sorted(set(list(ks))) n_runs = len(ks)* n_iter np.random.seed(seed=random_state_seed) nmf_seeds = np.random.randint(low=1, high=(2**32)-1, size=n_runs) replicate_params = [] for i, (k, r) in enumerate(itertools.product(k_list, range(n_iter))): replicate_params.append([k, r, nmf_seeds[i]]) replicate_params = pd.DataFrame(replicate_params, columns = ['n_components', 'iter', 'nmf_seed']) _nmf_kwargs = dict( alpha=0.0, l1_ratio=0.0, beta_loss=beta_loss, solver='mu', tol=1e-4, max_iter=400, regularization=None, init='random' ) ## Coordinate descent is faster than multiplicative update but only works for frobenius if beta_loss == 'frobenius': _nmf_kwargs['solver'] = 'cd' return(replicate_params, _nmf_kwargs) def save_nmf_iter_params(self, replicate_params, run_params): self._initialize_dirs() save_df_to_npz(replicate_params, self.paths['nmf_replicate_parameters']) with open(self.paths['nmf_run_parameters'], 'w') as F: yaml.dump(run_params, F) def _nmf(self, X, nmf_kwargs): """ Parameters ---------- X : pandas.DataFrame, Normalized counts dataFrame to be factorized. nmf_kwargs : dict, Arguments to be passed to ``non_negative_factorization`` """ (usages, spectra, niter) = non_negative_factorization(X, **nmf_kwargs) return(spectra, usages) def run_nmf(self, worker_i=1, total_workers=1, ): """ Iteratively run NMF with prespecified parameters. Use the `worker_i` and `total_workers` parameters for parallelization. Generic kwargs for NMF are loaded from self.paths['nmf_run_parameters'], defaults below:: ``non_negative_factorization`` default arguments: alpha=0.0 l1_ratio=0.0 beta_loss='kullback-leibler' solver='mu' tol=1e-4, max_iter=200 regularization=None init='random' random_state, n_components are both set by the prespecified self.paths['nmf_replicate_parameters']. Parameters ---------- norm_counts : pandas.DataFrame, Normalized counts dataFrame to be factorized. (Output of ``normalize_counts``) run_params : pandas.DataFrame, Parameters for NMF iterations. (Output of ``prepare_nmf_iter_params``) """ self._initialize_dirs() run_params = load_df_from_npz(self.paths['nmf_replicate_parameters']) norm_counts = sc.read(self.paths['normalized_counts']) _nmf_kwargs = yaml.load(open(self.paths['nmf_run_parameters']), Loader=yaml.FullLoader) jobs_for_this_worker = worker_filter(range(len(run_params)), worker_i, total_workers) for idx in jobs_for_this_worker: p = run_params.iloc[idx, :] print('[Worker %d]. Starting task %d.' % (worker_i, idx)) _nmf_kwargs['random_state'] = p['nmf_seed'] _nmf_kwargs['n_components'] = p['n_components'] (spectra, usages) = self._nmf(norm_counts.X, _nmf_kwargs) spectra = pd.DataFrame(spectra, index=np.arange(1, _nmf_kwargs['n_components']+1), columns=norm_counts.var.index) save_df_to_npz(spectra, self.paths['iter_spectra'] % (p['n_components'], p['iter'])) def combine_nmf(self, k, remove_individual_iterations=False): run_params = load_df_from_npz(self.paths['nmf_replicate_parameters']) print('Combining factorizations for k=%d.'%k) self._initialize_dirs() combined_spectra = None n_iter = sum(run_params.n_components==k) run_params_subset = run_params[run_params.n_components==k].sort_values('iter') spectra_labels = [] for i,p in run_params_subset.iterrows(): spectra = load_df_from_npz(self.paths['iter_spectra'] % (p['n_components'], p['iter'])) if combined_spectra is None: combined_spectra = np.zeros((n_iter, k, spectra.shape[1])) combined_spectra[p['iter'], :, :] = spectra.values for t in range(k): spectra_labels.append('iter%d_topic%d'%(p['iter'], t+1)) combined_spectra = combined_spectra.reshape(-1, combined_spectra.shape[-1]) combined_spectra = pd.DataFrame(combined_spectra, columns=spectra.columns, index=spectra_labels) save_df_to_npz(combined_spectra, self.paths['merged_spectra']%k) return combined_spectra def consensus(self, k, density_threshold_str='0.5', local_neighborhood_size = 0.30,show_clustering = False, skip_density_and_return_after_stats = False, close_clustergram_fig=True): merged_spectra = load_df_from_npz(self.paths['merged_spectra']%k) norm_counts = sc.read(self.paths['normalized_counts']) if skip_density_and_return_after_stats: density_threshold_str = '2' density_threshold_repl = density_threshold_str.replace('.', '_') density_threshold = float(density_threshold_str) n_neighbors = int(local_neighborhood_size * merged_spectra.shape[0]/k) # Rescale topics such to length of 1. l2_spectra = (merged_spectra.T/np.sqrt((merged_spectra**2).sum(axis=1))).T if not skip_density_and_return_after_stats: # Compute the local density matrix (if not previously cached) topics_dist = None if os.path.isfile(self.paths['local_density_cache'] % k): local_density = load_df_from_npz(self.paths['local_density_cache'] % k) else: # first find the full distance matrix topics_dist = squareform(fast_euclidean(l2_spectra.values)) # partition based on the first n neighbors partitioning_order = np.argpartition(topics_dist, n_neighbors+1)[:, :n_neighbors+1] # find the mean over those n_neighbors (excluding self, which has a distance of 0) distance_to_nearest_neighbors = topics_dist[np.arange(topics_dist.shape[0])[:, None], partitioning_order] local_density = pd.DataFrame(distance_to_nearest_neighbors.sum(1)/(n_neighbors), columns=['local_density'], index=l2_spectra.index) save_df_to_npz(local_density, self.paths['local_density_cache'] % k) del(partitioning_order) del(distance_to_nearest_neighbors) density_filter = local_density.iloc[:, 0] < density_threshold l2_spectra = l2_spectra.loc[density_filter, :] kmeans_model = KMeans(n_clusters=k, n_init=10, random_state=1) kmeans_model.fit(l2_spectra) kmeans_cluster_labels = pd.Series(kmeans_model.labels_+1, index=l2_spectra.index) # Find median usage for each gene across cluster median_spectra = l2_spectra.groupby(kmeans_cluster_labels).median() # Normalize median spectra to probability distributions. median_spectra = (median_spectra.T/median_spectra.sum(1)).T # Compute the silhouette score stability = silhouette_score(l2_spectra.values, kmeans_cluster_labels, metric='euclidean') # Obtain the reconstructed count matrix by re-fitting the usage matrix and computing the dot product: usage.dot(spectra) refit_nmf_kwargs = yaml.load(open(self.paths['nmf_run_parameters']), Loader=yaml.FullLoader) refit_nmf_kwargs.update(dict( n_components = k, H = median_spectra.values, update_H = False )) _, rf_usages = self._nmf(norm_counts.X, nmf_kwargs=refit_nmf_kwargs) rf_usages = pd.DataFrame(rf_usages, index=norm_counts.obs.index, columns=median_spectra.index) rf_pred_norm_counts = rf_usages.dot(median_spectra) # Compute prediction error as a frobenius norm if sp.issparse(norm_counts.X): prediction_error = ((norm_counts.X.todense() - rf_pred_norm_counts)**2).sum().sum() else: prediction_error = ((norm_counts.X - rf_pred_norm_counts)**2).sum().sum() consensus_stats = pd.DataFrame([k, density_threshold, stability, prediction_error], index = ['k', 'local_density_threshold', 'stability', 'prediction_error'], columns = ['stats']) if skip_density_and_return_after_stats: return consensus_stats save_df_to_npz(median_spectra, self.paths['consensus_spectra']%(k, density_threshold_repl)) save_df_to_npz(rf_usages, self.paths['consensus_usages']%(k, density_threshold_repl)) save_df_to_npz(consensus_stats, self.paths['consensus_stats']%(k, density_threshold_repl)) save_df_to_text(median_spectra, self.paths['consensus_spectra__txt']%(k, density_threshold_repl)) save_df_to_text(rf_usages, self.paths['consensus_usages__txt']%(k, density_threshold_repl)) # Compute gene-scores for each GEP by regressing usage on Z-scores of TPM tpm = sc.read(self.paths['tpm']) tpm_stats = load_df_from_npz(self.paths['tpm_stats']) if sp.issparse(tpm.X): norm_tpm = (np.array(tpm.X.todense()) - tpm_stats['__mean'].values) / tpm_stats['__std'].values else: norm_tpm = (tpm.X - tpm_stats['__mean'].values) / tpm_stats['__std'].values usage_coef = fast_ols_all_cols(rf_usages.values, norm_tpm) usage_coef = pd.DataFrame(usage_coef, index=rf_usages.columns, columns=tpm.var.index) save_df_to_npz(usage_coef, self.paths['gene_spectra_score']%(k, density_threshold_repl)) save_df_to_text(usage_coef, self.paths['gene_spectra_score__txt']%(k, density_threshold_repl)) # Convert spectra to TPM units, and obtain results for all genes by running last step of NMF # with usages fixed and TPM as the input matrix norm_usages = rf_usages.div(rf_usages.sum(axis=1), axis=0) refit_nmf_kwargs.update(dict( H = norm_usages.T.values, )) _, spectra_tpm = self._nmf(tpm.X.T, nmf_kwargs=refit_nmf_kwargs) spectra_tpm = pd.DataFrame(spectra_tpm.T, index=rf_usages.columns, columns=tpm.var.index) save_df_to_npz(spectra_tpm, self.paths['gene_spectra_tpm']%(k, density_threshold_repl)) save_df_to_text(spectra_tpm, self.paths['gene_spectra_tpm__txt']%(k, density_threshold_repl)) if show_clustering: if topics_dist is None: topics_dist = squareform(fast_euclidean(l2_spectra.values)) # (l2_spectra was already filtered using the density filter) else: # (but the previously computed topics_dist was not!) topics_dist = topics_dist[density_filter.values, :][:, density_filter.values] spectra_order = [] for cl in sorted(set(kmeans_cluster_labels)): cl_filter = kmeans_cluster_labels==cl if cl_filter.sum() > 1: cl_dist = squareform(topics_dist[cl_filter, :][:, cl_filter]) cl_dist[cl_dist < 0] = 0 #Rarely get floating point arithmetic issues cl_link = linkage(cl_dist, 'average') cl_leaves_order = leaves_list(cl_link) spectra_order += list(np.where(cl_filter)[0][cl_leaves_order]) else: ## Corner case where a component only has one element spectra_order += list(np.where(cl_filter)[0]) from matplotlib import gridspec import matplotlib.pyplot as plt width_ratios = [0.5, 9, 0.5, 4, 1] height_ratios = [0.5, 9] fig = plt.figure(figsize=(sum(width_ratios), sum(height_ratios))) gs = gridspec.GridSpec(len(height_ratios), len(width_ratios), fig, 0.01, 0.01, 0.98, 0.98, height_ratios=height_ratios, width_ratios=width_ratios, wspace=0, hspace=0) dist_ax = fig.add_subplot(gs[1,1], xscale='linear', yscale='linear', xticks=[], yticks=[],xlabel='', ylabel='', frameon=True) D = topics_dist[spectra_order, :][:, spectra_order] dist_im = dist_ax.imshow(D, interpolation='none', cmap='viridis', aspect='auto', rasterized=True) left_ax = fig.add_subplot(gs[1,0], xscale='linear', yscale='linear', xticks=[], yticks=[], xlabel='', ylabel='', frameon=True) left_ax.imshow(kmeans_cluster_labels.values[spectra_order].reshape(-1, 1), interpolation='none', cmap='Spectral', aspect='auto', rasterized=True) top_ax = fig.add_subplot(gs[0,1], xscale='linear', yscale='linear', xticks=[], yticks=[], xlabel='', ylabel='', frameon=True) top_ax.imshow(kmeans_cluster_labels.values[spectra_order].reshape(1, -1), interpolation='none', cmap='Spectral', aspect='auto', rasterized=True) hist_gs = gridspec.GridSpecFromSubplotSpec(3, 1, subplot_spec=gs[1, 3], wspace=0, hspace=0) hist_ax = fig.add_subplot(hist_gs[0,0], xscale='linear', yscale='linear', xlabel='', ylabel='', frameon=True, title='Local density histogram') hist_ax.hist(local_density.values, bins=np.linspace(0, 1, 50)) hist_ax.yaxis.tick_right() xlim = hist_ax.get_xlim() ylim = hist_ax.get_ylim() if density_threshold < xlim[1]: hist_ax.axvline(density_threshold, linestyle='--', color='k') hist_ax.text(density_threshold + 0.02, ylim[1] * 0.95, 'filtering\nthreshold\n\n', va='top') hist_ax.set_xlim(xlim) hist_ax.set_xlabel('Mean distance to k nearest neighbors\n\n%d/%d (%.0f%%) spectra above threshold\nwere removed prior to clustering'%(sum(~density_filter), len(density_filter), 100*(~density_filter).mean())) fig.savefig(self.paths['clustering_plot']%(k, density_threshold_repl), dpi=250) if close_clustergram_fig: plt.close(fig) def k_selection_plot(self, close_fig=True): ''' Borrowed from <NAME>. 2013 Deciphering Mutational Signatures publication in Cell Reports ''' run_params = load_df_from_npz(self.paths['nmf_replicate_parameters']) stats = [] for k in sorted(set(run_params.n_components)): stats.append(self.consensus(k, skip_density_and_return_after_stats=True).stats) stats = pd.DataFrame(stats) stats.reset_index(drop = True, inplace = True) save_df_to_npz(stats, self.paths['k_selection_stats']) fig = plt.figure(figsize=(6, 4)) ax1 = fig.add_subplot(111) ax2 = ax1.twinx() ax1.plot(stats.k, stats.stability, 'o-', color='b') ax1.set_ylabel('Stability', color='b', fontsize=15) for tl in ax1.get_yticklabels(): tl.set_color('b') #ax1.set_xlabel('K', fontsize=15) ax2.plot(stats.k, stats.prediction_error, 'o-', color='r') ax2.set_ylabel('Error', color='r', fontsize=15) for tl in ax2.get_yticklabels(): tl.set_color('r') ax1.set_xlabel('Number of Components', fontsize=15) ax1.grid('on') plt.tight_layout() fig.savefig(self.paths['k_selection_plot'], dpi=250) if close_fig: plt.close(fig) if __name__=="__main__": """ Example commands for now: output_dir="/Users/averes/Projects/Melton/Notebooks/2018/07-2018/cnmf_test/" python cnmf.py prepare --output-dir $output_dir \ --name test --counts /Users/averes/Projects/Melton/Notebooks/2018/07-2018/cnmf_test/test_data.df.npz \ -k 6 7 8 9 --n-iter 5 python cnmf.py factorize --name test --output-dir $output_dir THis can be parallelized as such: python cnmf.py factorize --name test --output-dir $output_dir --total-workers 2 --worker-index WORKER_INDEX (where worker_index starts with 0) python cnmf.py combine --name test --output-dir $output_dir python cnmf.py consensus --name test --output-dir $output_dir """ import sys, argparse parser = argparse.ArgumentParser() parser.add_argument('command', type=str, choices=['prepare', 'factorize', 'combine', 'consensus', 'k_selection_plot']) parser.add_argument('--name', type=str, help='[all] Name for analysis. All output will be placed in [output-dir]/[name]/...', nargs='?', default='cNMF') parser.add_argument('--output-dir', type=str, help='[all] Output directory. All output will be placed in [output-dir]/[name]/...', nargs='?', default='.') parser.add_argument('-c', '--counts', type=str, help='[prepare] Input (cell x gene) counts matrix as df.npz or tab delimited text file') parser.add_argument('-k', '--components', type=int, help='[prepare] Numper of components (k) for matrix factorization. Several can be specified with "-k 8 9 10"', nargs='+') parser.add_argument('-n', '--n-iter', type=int, help='[prepare] Numper of factorization replicates', default=100) parser.add_argument('--total-workers', type=int, help='[all] Total number of workers to distribute jobs to', default=1) parser.add_argument('--seed', type=int, help='[prepare] Seed for pseudorandom number generation', default=None) parser.add_argument('--genes-file', type=str, help='[prepare] File containing a list of genes to include, one gene per line. Must match column labels of counts matrix.', default=None) parser.add_argument('--numgenes', type=int, help='[prepare] Number of high variance genes to use for matrix factorization.', default=2000) parser.add_argument('--tpm', type=str, help='[prepare] Pre-computed (cell x gene) TPM values as df.npz or tab separated txt file. If not provided TPM will be calculated automatically', default=None) parser.add_argument('--beta-loss', type=str, choices=['frobenius', 'kullback-leibler', 'itakura-saito'], help='[prepare] Loss function for NMF.', default='frobenius') parser.add_argument('--densify', dest='densify', help='[prepare] Treat the input data as non-sparse', action='store_true', default=False) parser.add_argument('--worker-index', type=int, help='[factorize] Index of current worker (the first worker should have index 0)', default=0) parser.add_argument('--local-density-threshold', type=str, help='[consensus] Threshold for the local density filtering. This string must convert to a float >0 and <=2', default='0.5') parser.add_argument('--local-neighborhood-size', type=float, help='[consensus] Fraction of the number of replicates to use as nearest neighbors for local density filtering', default=0.30) parser.add_argument('--show-clustering', dest='show_clustering', help='[consensus] Produce a clustergram figure summarizing the spectra clustering', action='store_true') args = parser.parse_args() cnmf_obj = cNMF(output_dir=args.output_dir, name=args.name) cnmf_obj._initialize_dirs() if args.command == 'prepare': if args.counts.endswith('.h5ad'): input_counts = sc.read(args.counts) else: ## Load txt or compressed dataframe and convert to scanpy object if args.counts.endswith('.npz'): input_counts = load_df_from_npz(args.counts) else: input_counts = pd.read_csv(args.counts, sep='\t', index_col=0) if args.densify: input_counts = sc.AnnData(X=input_counts.values, obs=pd.DataFrame(index=input_counts.index), var=pd.DataFrame(index=input_counts.columns)) else: input_counts = sc.AnnData(X=sp.csr_matrix(input_counts.values), obs=pd.DataFrame(index=input_counts.index), var=pd.DataFrame(index=input_counts.columns)) if sp.issparse(input_counts.X) & args.densify: input_counts.X = np.array(input_counts.X.todense()) if args.tpm is None: tpm = compute_tpm(input_counts) sc.write(cnmf_obj.paths['tpm'], tpm) elif args.tpm.endswith('.h5ad'): subprocess.call('cp %s %s' % (args.tpm, cnmf_obj.paths['tpm']), shell=True) tpm = sc.read(cnmf_obj.paths['tpm']) else: if args.tpm.endswith('.npz'): tpm = load_df_from_npz(args.tpm) else: tpm = pd.read_csv(args.tpm, sep='\t', index_col=0) if args.densify: tpm = sc.AnnData(X=tpm.values, obs=pd.DataFrame(index=tpm.index), var=
pd.DataFrame(index=tpm.columns)
pandas.DataFrame
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Created on Wed Nov 15 10:31:23 2017 @author: robertmarsland """ import numpy as np import matplotlib.pyplot as plt import pandas as pd import subprocess import os import pickle import datetime from sklearn.decomposition import PCA StateData = ['ACI', 'ACII', 'CIATP', 'CIIATP', 'pU', 'pT', 'pD', 'pS'] def FormatPath(folder): if folder==None: folder='' else: if folder != '': if folder[-1] != '/': folder = folder+'/' return folder def LoadData(name, folder = None, suffix = '.dat'): folder = FormatPath(folder) col_ind = list(range(22)) del col_ind[5] return
pd.read_table(folder+name+suffix,index_col=0,usecols=col_ind)
pandas.read_table
from bs4 import BeautifulSoup as BS from selenium import webdriver from selenium.common.exceptions import NoSuchElementException, \ TimeoutException, StaleElementReferenceException from selenium.webdriver.common.action_chains import ActionChains from selenium.webdriver.common.by import By from selenium.webdriver.firefox.options import Options as FirefoxOptions from selenium.webdriver.support import expected_conditions as EC from selenium.webdriver.support.ui import Select from selenium.webdriver.support.ui import WebDriverWait from FIR_logging import logger import os import time import pandas as pd # base function # Some constants: URL = r'http://www.mhpolice.maharashtra.gov.in/Citizen/MH/PublishedFIRs.aspx' Download_Directory = r'/home/sangharshmanuski/Documents/mha_FIRs/raw_footage/raw_footage_after_beed' COLUMNS = ['Sr.No.', 'State', 'District', 'Police Station', 'Year', 'FIR No.', 'Registration Date', 'FIR No', 'Sections'] ALL_Districts = ['NAGPUR RURAL'] # other functions def district_selection(name): dist_list = Select(driver.find_element_by_css_selector( "#ContentPlaceHolder1_ddlDistrict")) names = [o.get_attribute("text") for o in dist_list.options if o.get_attribute("text") not in ( 'Select')] if name not in names: logger.info(f"{name} is not in list") return False dist_list.select_by_visible_text(name) time.sleep(6) def police_station(ps): # select particular police station police_station_list = Select(driver.find_element_by_css_selector( "#ContentPlaceHolder1_ddlPoliceStation")) name = ps police_station_list.select_by_visible_text(name) time.sleep(3) def enter_date(date, date_plus_one): # enters start as well as end dates with "action chains." WebDriverWait(driver, 160).until( EC.presence_of_element_located((By.CSS_SELECTOR, '#ContentPlaceHolder1_txtDateOfRegistrationFrom'))) from_date_field = driver.find_element_by_css_selector( '#ContentPlaceHolder1_txtDateOfRegistrationFrom') to_date_field = driver.find_element_by_css_selector( '#ContentPlaceHolder1_txtDateOfRegistrationTo') ActionChains(driver).click(from_date_field).send_keys( date).move_to_element(to_date_field).click().send_keys( date_plus_one).perform() logger.info(f'date entered: {date}') def search(): driver.find_element_by_css_selector('#ContentPlaceHolder1_btnSearch').click() def number_of_records(): """captures the text indicating number of records. converts it to integer. if 0 returns and appends name of district to the list if page is not loaded. it tries one more time for 15 secs.""" if driver.find_elements_by_css_selector("#ContentPlaceHolder1_gdvDeadBody_lblNoRowsFound").is_displayed: return False time_counter = 1 while time_counter < 8: try: records_number = driver.find_element_by_css_selector( '#ContentPlaceHolder1_lbltotalrecord').text if records_number == '': time.sleep(1) continue else: records_number = int(records_number) if records_number != 0: logger.info(f"{district}: {records_number}") return records_number else: logger.info(f"no records @ {district}") return False except (NoSuchElementException, TimeoutException, StaleElementReferenceException): logger.info("page is not loaded") time_counter += 1 continue def extract_table_current(name, single): # entire table of record to be taken to the list. soup = BS(driver.page_source, 'html.parser') main_table = soup.find("table", {"id": "ContentPlaceHolder1_gdvDeadBody"}) time_counter = 1 while main_table is None: if time_counter < 6: logger.info(f"the table did not load @ {name}") time.sleep(1) time_counter += 1 else: logger.info(f"the table did not load @ {name}." f"stopped trying") return links_for_pages = driver.find_elements_by_css_selector('.gridPager a') rows = main_table.find_all("tr") if links_for_pages is None: for row in rows: time.sleep(8) if '...' not in row.text: cells = row.find_all('td') cells = cells[0:9] # drop the last column # store data in list single.append([cell.text for cell in cells]) else: for row in rows[0:(len(rows)) - 2]: time.sleep(6) cells = row.find_all('td') cells = cells[0:9] # drop the last column # store data in list single.append([cell.text for cell in cells]) def check_the_act(page): # check for PoA in table. soup = BS(page, 'html') rows = soup.find_all('//*[@id="ContentPlaceHolder1_gdvDeadBody"]//tr') for row in rows: cell = row.find_all("td") text = cell[0].text if "मुंबई दारूबंदी अधिनियम" in text: submit = driver.find_elements_by_tag_name("input") submit.click() def next_page(name, data): # check if any link to next page is available # iterate every page. try: driver.find_element_by_css_selector('.gridPager a') except NoSuchElementException: return False links_for_pages = driver.find_elements_by_css_selector('.gridPager a') for page in range(len(links_for_pages)): # new list, to by pass stale element exception links_for_pages_new = driver.find_elements_by_css_selector('.gridPager a') # do not click on link for new page slot if links_for_pages_new[page].text != '...': links_for_pages_new[page].click() # if this can be replaced with some other wait method to save the time time.sleep(5) extract_table_current(name, data) def second_page_slot(): # find specific link for going to page 11 and click. try: link_for_page_slot = driver.find_element_by_link_text('...') link_for_page_slot.click() except NoSuchElementException: return False # main code page_data = [] for district in ALL_Districts: b = "07" c = "2020" district_directory = os.path.join(Download_Directory, f'{district}{b}{c}') if not os.path.exists(district_directory): os.mkdir(district_directory) for i in range(1, 30): options = FirefoxOptions() #options.add_argument("--headless") options.add_argument("--private-window") driver = webdriver.Firefox(options=options) driver.get(URL) driver.refresh() view = Select(driver.find_element_by_css_selector( '#ContentPlaceHolder1_ucRecordView_ddlPageSize')) view.select_by_value('50') # entering date and assuring that 01 to 09 is entered correctly if i < 10: i_i = i + 1 i = f'{str("0")}{str(i)}' if i_i < 10: i_i = f'{str("0")}{str(i_i)}' else: i_i = i + 1 date_from = str(i) + b + c date_to = str(i_i) + b + c enter_date(date_from, date_to) # select district district_selection(district) time.sleep(3) police_station("NARKHED") # start the search search() time.sleep(5) if not number_of_records(): continue extract_table_current(district, page_data) if not next_page(district, page_data): district_data =
pd.DataFrame(page_data, columns=COLUMNS)
pandas.DataFrame
from predict import * from control import * from operator import add import pandas as pd from statistics import stdev, mean def plotPredictionMC(runs, episodes, everyVisit, save): val = np.zeros((4,62,10)) for i in range(runs): v = MonteCarlo(basicPolicy, episodes, everyVisit) val += v plot(np.divide(val, runs), 'mc'+('e-' if everyVisit else 'f-')+str(runs) if save else None) def plotPredictionTD(runs, episodes, k, save): val = np.zeros((4,62,10)) for i in range(runs): v = TD(basicPolicy, episodes, 0.7, 0.1, k) val += v plot(np.divide(val, runs), 'td-'+str(k)+'-'+str(episodes) if save else None) def plotRewards(algos, runs, episodes): df =
pd.DataFrame()
pandas.DataFrame
import lightgbm as lgb import numpy as np import pandas as pd import sklearn.ensemble as ensemble import sklearn.linear_model as linear_model import sklearn.model_selection as model_selection import sklearn.svm as svm import sklearn.tree as tree import xgboost as xgboost from utils.misc import get_display_time # Keep randomness same np.random.seed(2210) class EstimatorSelectHelper: # Code derived and changed accordingly from below # https://github.com/davidsbatista/machine-learning-notebooks/blob/master/hyperparameter-across-models.ipynb def __init__(self, models): self.models = models self.keys = models.keys() self.search_grid = {} self.df_val_score = None def fit(self, X, y, **grid_kwargs): for model_key in self.keys: # Check the model and param_grid model = self.models[model_key][0] param_grid = self.models[model_key][1] # Call GridSearchCV on the model and param_grid print(f"Running GridSearchCV for {model_key}") grid = model_selection.GridSearchCV(model, param_grid, **grid_kwargs) grid.fit(X, y) self.search_grid[model_key] = grid return self def val_score(self, sort_by='mean_val_score'): frames = [] for name, grid in self.search_grid.items(): frame = pd.DataFrame(grid.cv_results_) frame = frame.filter(regex='^(?!.*param_).*$') frame['estimator'] = len(frame) * [name] frames.append(frame) df_val_score = pd.concat(frames) df_val_score = df_val_score.reset_index() df_val_score = df_val_score.drop(['rank_test_score', 'index'], 1) # columns = ['estimator'] + df.columns.tolist().remove('estimator') # Keep required columns df_val_score.rename(columns={'mean_test_score': 'mean_val_score', 'std_test_score': 'std_val_score'}, inplace=True) keep_columns = [ "estimator", "mean_val_score", "std_val_score", "mean_fit_time", "mean_score_time", "params", ] df_val_score = df_val_score[keep_columns].sort_values([sort_by], ascending=False) self.df_val_score = df_val_score return self.df_val_score class RegressionSelectHelper(EstimatorSelectHelper): def __init__(self, models): super().__init__(models) self.df_test_score = None def fit(self, X, y, **grid_kwargs): super().fit(X, y, **grid_kwargs) def val_score(self, sort_by='mean_val_score'): return super().val_score(sort_by) def test_score(self, X_test, y_test, sort_by=['mean_squared_error']): test_scores = [] for key, model in self.search_grid.items(): y_pred = model.predict(X_test) import sklearn.metrics as sm mse = sm.mean_squared_error(y_test, y_pred) mae = sm.mean_absolute_error(y_test, y_pred) r2 = sm.r2_score(y_test, y_pred) test_scores.append([key, model.best_params_, mse, mae, r2]) test_score_columns = ['estimator', 'params', 'mean_squared_error', 'mean_absolute_error', 'r2_score', 'jacobian_score'] self.df_test_score = pd.DataFrame(test_scores, columns=test_score_columns).reset_index(drop=True) return self.df_test_score class ClassifierSelectHelper(EstimatorSelectHelper): def __init__(self, models): super().__init__(models) self.df_test_score = None def fit(self, x, y, **grid_kwargs): super().fit(x, y, **grid_kwargs) def val_score(self, sort_by='mean_val_score'): return super().val_score(sort_by) def test_score(self, x_test, y_test, sort_by=None): if sort_by is None: sort_by = ['precision'] test_scores = [] for key, model in self.search_grid.items(): y_pred = model.predict(x_test) import sklearn.metrics as sm accuracy = sm.accuracy_score(y_test, y_pred) precision = sm.precision_score(y_test, y_pred) recall = sm.recall_score(y_test, y_pred) f1_score = sm.f1_score(y_test, y_pred) roc_auc = sm.roc_auc_score(y_test, y_pred) log_loss = sm.log_loss(y_test, y_pred) test_scores.append([key, model.best_params_, accuracy, precision, recall, f1_score, roc_auc, log_loss]) test_score_columns = ['estimator', 'params', 'accuracy', 'precision', 'recall', 'f1-score', 'roc_auc', 'log_loss'] self.df_test_score = pd.DataFrame(test_scores, columns=test_score_columns) self.df_test_score = self.df_test_score.sort_values(by=sort_by, ascending=False).reset_index(drop=True) return self.df_test_score def evaluate_classifiers(X_train, y_train, X_test, y_test, is_binary=False, cv=5, sort_by=['f1-score']): """ Perform raw evaluation of the Classifer Models on the given data and return the Validation and Test Score results """ models = { 'DecisionTreeClassifier': (tree.DecisionTreeClassifier(), {}), 'SVM': (svm.SVC(), {}), 'RandomForestClassifier': (ensemble.RandomForestClassifier(), {}), 'LightGBMClassifier': (lgb.LGBMClassifier(), {}), 'AdaBoostClassifier': (ensemble.AdaBoostClassifier(), {}), 'GradinetBoostingClassifier': (ensemble.GradientBoostingClassifier(), {}), 'XGBClassifier': (xgboost.XGBClassifier(verbose=0, silent=True), {}), } # LogisticRegression if is_binary: models.update({'LogisticRegression': (linear_model.LogisticRegression(), {})}) if len(X_train) > 10000: models.update({'SGDClassifier': (linear_model.SGDClassifier(), {})}) select = ClassifierSelectHelper(models) select.fit(X_train, y_train, cv=cv, verbose=0) df_val_score = select.val_score(sort_by='mean_val_score') df_test_score = select.test_score(X_test, y_test, sort_by=sort_by) search_grid = select.search_grid return df_val_score, df_test_score, search_grid # TODO : will be depricated with fine_tune in model_builder def fine_tune_classifier(model_name, x_train, y_train, cv=5, verbose=0, randomized=False): model, param_grid = None, None if model_name == 'xgb': model = xgboost.XGBClassifier(verbose=verbose) param_grid = { "learning_rate": [0.05, 0.10, 0.15, 0.20, 0.25, 0.30], "max_depth": [3, 4, 5, 6, 8, 10, 12, 15], "min_child_weight": [1, 3, 5, 7], "gamma": [0.0, 0.1, 0.2, 0.3, 0.4], "colsample_bytree": [0.3, 0.4, 0.5, 0.7] } elif model_name == 'rf': model = ensemble.RandomForestClassifier() param_grid = {'n_estimators': [10, 25], 'max_features': [5, 10], 'max_depth': [10, 50, None], 'bootstrap': [True, False]} elif model_name == 'lr': model = linear_model.LogisticRegression() param_grid = { "solver": ["newton-cg", "lbfgs", "liblinear"], "penalty": ['l1', 'l2'], "C": [100, 10, 1, 0.1, 0.01], } elif model_name == 'ada': model = ensemble.AdaBoostClassifier() param_grid = { "learning_rate": [0.05, 0.10, 0.15, 0.20, 0.25, 0.30], "n_estimators": [0, 50, 100, 500] } elif model_name == 'gb': model = ensemble.GradientBoostingClassifier param_grid = {} elif model_name == 'lgb': model = lgb.LGBMClassifier() param_grid = {} elif model_name == 'svm': model = svm.SVC() param_grid = { "C": [0.1, 1, 10, 100, 1000], "gamma": [1, 0.1, 0.01, 0.001, 0.0001], "kernel": ["rbf", 'linear', 'sigmoid'], } elif model_name == 'dt': model = tree.DecisionTreeClassifier() param_grid = {} elif model_name == 'sgd': model = linear_model.SGDClassifier() param_grid = {} return fine_tune_model(model, param_grid, x_train, y_train, cv, verbose, randomized) # from time import perf_counter # # start_time = perf_counter() # # grid_search = None # if randomized: # print(f"Performing Randomized search for {type(model).__name__}...") # grid_search = model_selection.RandomizedSearchCV(model, param_grid, cv=cv, verbose=verbose, n_jobs=-1) # else: # print(f"Performing Grid search for {type(model).__name__}...") # grid_search = model_selection.GridSearchCV(model, param_grid, cv=cv, verbose=verbose, n_jobs=-1) # # # Start fine tuning of the model # grid_search.fit(x_train, y_train) # time_taken = round(perf_counter() - start_time, 2) # print(f"Time elapsed(s) : {get_display_time(time_taken)} | score : {grid_search.best_score_:.2}") # print(f"Best parameters : {grid_search.best_params_} ") # return grid_search.best_estimator_ # TODO : will be depricated with fine_tune in model_builder def fine_tune_model(model, param_grid, x_train, y_train, cv=5, verbose=0, randomized=False): """ Fine Tune a given Model by using GridSearchCV/RandomizedSearchCV with the Passed parameter grid :param model: Estimator Model :param param_grid: Parameters grid :param x_train: Train dataset :param y_train: Train target :param cv: No. of cross validations, default 5 :param verbose: verbose, default 0 :param randomized: default False, if True, randomized search to be used :return: """ from time import perf_counter start_time = perf_counter() grid_search = None if randomized: print(f"Performing Randomized search for {type(model).__name__}...") grid_search = model_selection.RandomizedSearchCV(model, param_grid, cv=cv, verbose=verbose, n_jobs=-1) else: print(f"Performing Grid search for {type(model).__name__}...") grid_search = model_selection.GridSearchCV(model, param_grid, cv=cv, verbose=verbose, n_jobs=-1) # Start fine tuning of the model grid_search.fit(x_train, y_train) time_taken = round(perf_counter() - start_time, 2) print(f"Time elapsed : {get_display_time(time_taken)} | score : {grid_search.best_score_:.2}") print(f"Best parameters : {grid_search.best_params_} ") return grid_search.best_estimator_ # def train_models(X, y, cv, models, problem_type='classification', scoring=['accuracy', 'precision']): # for name, model in models.items(): # model.fit(X, y) # np.random.seed(2210) # scores = model_selection.cross_validate(model, X, y, scoring=scoring, cv=cv, n_jobs=-1, verbose=0) # print("%0.2f accuracy with a standard deviation of %0.2f" % (scores.mean(), scores.std())) # # # Export the model # joblib.dump(model, f"models/{name}.pkl") # joblib.dump(X.columns, f"models/{name}_columns.pkl") # # if problem_type == 'classification': # select = ClassifierSelectHelper(models) # select.fit(X_train, y_train, cv=cv, verbose=0) # df_score, search_grid = select.score_summary(X_test, y_test, sort_by=scoring) # return df_score, search_grid # else: # select = RegressionSelectHelper() # select.fit(X_train, y_train, cv=cv, verbose=0) # df_score, search_grid = select.test_score(X_test, y_test, sort_by=scoring) # return df_score, search_grid FOLD_MAPPPING = { 0: [1, 2, 3, 4], 1: [0, 2, 3, 4], 2: [0, 1, 3, 4], 3: [0, 1, 2, 4], 4: [0, 1, 2, 3] } # def train_models_with_folds(fold, df, target_col, drop_columns, models, # problem_type='classification', score='accuracy'): # """ # Train the model on the given fold. Dataframe has a column having fold number # :param fold: Fold number raning from 0 to 5 # :param df: DataFrame # :param target_col: Target column # :param drop_columns: Columns to drop # :param models: Model to train on # :param problem_type: Problem type # :param score: score used for evaluation # """ # import dispatcher # # train_df = df[df.kfold.isin(FOLD_MAPPPING.get(fold))].reset_index(drop=True) # valid_df = df[df.kfold == fold].reset_index(drop=True) # # train_df = train_df.drop(drop_columns + target_col, axis=1) # valid_df = valid_df.drop(drop_columns + target_col, axis=1) # # y_train = train_df[target_col].values # y_valid = valid_df[target_col].values # # for name, model in models.items(): # model.fit(train_df) # # if problem_type == 'classification': # from metrics import ClassificationMetrics # dispatcher.MODELS[model] # preds = model.predict_proba(valid_df)[:, 1] # metric = ClassificationMetrics() # print(metric(score, y_valid, preds)) # else: # from metrics import RegressionMetrics # preds = model.predict(valid_df) # metric = RegressionMetrics() # print(metric(score, y_valid, preds)) # # # Export the model # joblib.dump(model, f"models/{model}_{fold}.pkl") # joblib.dump(train_df.columns, f"models/{model}_{fold}_columns.pkl") if __name__ == '__main__': df =
pd.read_csv('data.csv')
pandas.read_csv
import dash import dash_html_components as html import dash_core_components as dcc import plotly.graph_objs as go import dash_daq as daq import dash_table import datetime from datetime import datetime as dt from datetime import timedelta import dateutil.relativedelta import pandas as pd import numpy as np import warnings warnings.filterwarnings("ignore") # from UsedFunctions import * #====================================================================================== Connecting to DB import pyodbc cnxn = pyodbc.connect("Driver={SQL Server Native Client 11.0};" "Server=;" "Database=;" "Uid=;" "Pwd=;" "MARS_Connection=Yes;") cnxn1 = pyodbc.connect("Driver={SQL Server Native Client 11.0};" "Server=;" "Database=;" "Uid=;" "Pwd=;" "MARS_Connection=Yes;") #====================================================================================== Collecting the global data #------------ Map TrueCodes = pd.read_csv(r'data\CountryCodes.csv') drop_box = [] drop_box.append('All') for country in TrueCodes.Entity.values: drop_box.append(country) countries = pd.read_csv('data/CC.csv', keep_default_na=False) prices = pd.read_csv('data/PriceChangeLog.csv', keep_default_na=False) df_sub = pd.read_csv('data/country_data.csv') #-------------------------------------------------------------------- Data: Retention cohort_android = pd.read_sql_query('EXEC DS_GetRetentionAndroidData', cnxn1) cohort_android_transpose = cohort_android.set_index('Registration Period').T cohort_ios = pd.read_sql_query('EXEC DS_GetRetentionIOSData', cnxn1) cohort_ios_transpose = cohort_ios.set_index('Registration Period').T #====================================================================================== Activity colors colors = dict(red = '#d62728', #brick red orange = '#ff7f0e',#safety orange pink = '#e377c2',#raspberry yogurt pink green = '#2ca02c',#cooked asparagus green purple = '#9467bd',#muted purple blue = '#1f77b4',#muted blue blue_teal = '#17becf', #blue-teal brown = '#8c564b',#chestnut brown gray = '#7f7f7f',#middle gray yellow = '#bcbd22', #curry yellow-green ) map_colorscale = [ [0, "#08519c"], [0.5, "#6baed6"], [1, "#9ecae1"] ] activity_color = {'Lesson': 'red', 'User Lesson': 'orange', 'Q&A': 'purple', 'User Post': 'green', 'Code': 'blue', 'Quiz': 'brown', 'Contest': 'brown', 'Profile': 'pink', 'Own Profile': 'yellow', 'Private Codes': 'blue_teal'} design_colors = { 'page_bg': '#0f2331', 'chart_bg': '#0e2e43', 'chart_box_bg': '#0e2e43', 'box_borders': '#143756', 'Android': '#5ab4ac', 'iOS': '#d8b365', 'Web': '#f5f5f5', 'text': '#eaf5fc', 'title': '#eaf5fc', 'chart_axis_legends': '#a1aba0', 'chart_inside_lines': '#334d61' } design_padding = { 'level_1': '5px', 'level_2': '0 20' } date_format = 'MMM Do, YY' title_size = 20 dcc_graph_height = 350 design_padding = { 'level_1': '5px' } box_shadow = '0px 0px 0px 2px rgb(20, 55, 86)' #====================================================================================== The Dash app app = dash.Dash(__name__) external_css = ["https://cdnjs.cloudflare.com/ajax/libs/normalize/7.0.0/normalize.min.css", "https://cdnjs.cloudflare.com/ajax/libs/skeleton/2.0.4/skeleton.min.css", "//fonts.googleapis.com/css?family=Raleway:400,300,600", 'https://codepen.io/plotly/pen/YEYMBZ.css', "https://maxcdn.bootstrapcdn.com/font-awesome/4.7.0/css/font-awesome.min.css", 'https://codepen.io/chriddyp/pen/bWLwgP.css'] for css in external_css: app.css.append_css({"external_url": css}) # ------------------------------------------------------------------------------------- Used Fnctions def get_country_code(country_name): country_code = TrueCodes.loc[TrueCodes.Entity == country_name, ['rand']].values[0][0] return str(country_code) def get_funnel(start_date, end_date, platform, country=None): if country: subscriptions = pd.read_sql_query( 'exec DS_Funnel @StartDate = \'' + start_date + '\', ' + '@EndDate = \'' + end_date + '\', ' + '@Platform = \'' + platform + '\',' + '@Country = \'' + country + '\'', cnxn) else: subscriptions = pd.read_sql_query( 'exec DS_Funnel @StartDate = \'' + start_date + '\', ' + '@EndDate = \'' + end_date + '\', ' + '@Platform = ' + platform + ' ', cnxn) subs = [] subs.append(int(subscriptions.loc[subscriptions.CountryCode.notnull(), ['TotalSignups']].sum())) subs.append(int(subscriptions.loc[subscriptions.CountryCode.notnull(), ['TotalSubs']].sum())) subs.append(int(subscriptions.loc[subscriptions.CountryCode.notnull(), ['MonthlyOld']].sum()) + \ int(subscriptions.loc[subscriptions.CountryCode.notnull(), ['MonthlyNew']].sum()) + \ int(subscriptions.loc[subscriptions.CountryCode.notnull(), ['AnnualOld']].sum()) + \ int(subscriptions.loc[subscriptions.CountryCode.notnull(), ['AnnualNew']].sum())) text = [] for i in range(len(subs)): if i == 0: text.append('#: ' + str(subs[i])) else: subs[0] = subs[0] if subs[0] != 0 else 1 text.append('#: ' + str(subs[i]) + ' <br> ' + '%: ' + str(np.round(subs[i] / subs[0] * 100, 3))) # if platform == '1122': # subs[0] = subs[0] / 10 # subs[1] = subs[1] * 2 # subs[2] = subs[2] * 6 # else: # subs[0] = subs[0] / 20 # subs[1] = subs[1] * 2 # subs[2] = subs[2] * 4 return subs, text def price_finder(row): country_code, platform, created_date, sub_type = row[['CountryCode', 'Platform', 'CreatedDate', 'SubscriptionType']].values return prices[prices.CC == country_code][prices.Platform == platform][prices.Subscription_type == sub_type][prices.StartDate < created_date][prices.EndDate >= created_date].Price.values[0] def subs_table_constructor(subs, prices, countries, signups): subs['CountryCode'] = subs['CountryCode'].apply(lambda x: x.upper()) signups['CountryCode'] = signups['CountryCode'].apply(lambda x: x.upper()) subs['CountryCode'] = subs['CountryCode'].replace(np.nan, 'NA', regex=True) signups['CountryCode'] = signups['CountryCode'].replace(np.nan, 'NA', regex=True) subs["SubscriptionType"] = subs["SubscriptionType"].map({'sololearn_pro_test': "monthly", 'sololearn_pro_annual': "annual", 'sololearn_pro_monthly': "monthly"}) prices["StartDate"] = pd.to_datetime(prices["StartDate"], dayfirst=True) prices["EndDate"] = pd.to_datetime(prices["EndDate"], dayfirst=True) subs["SubscriptionStartDate"] = pd.to_datetime(subs["SubscriptionStartDate"], dayfirst=True) subs["SubscriptionEndDate"] = pd.to_datetime(subs["SubscriptionEndDate"], dayfirst=True) subs['Paid'] = np.where((subs.SubscriptionEndDate - subs.SubscriptionStartDate) > datetime.timedelta(days=5), 1, 0) subs['Annual'] = np.where((subs.SubscriptionType == "annual") & (subs.Paid == 1), 1, 0) subs['Monthly'] = np.where((subs.SubscriptionType == "monthly") & (subs.Paid == 1), 1, 0) subs["Price"] = subs.apply(price_finder, axis=1) subs["Revenue"] = subs.Price * subs.Paid subs_df = subs.groupby("CountryCode").agg({'Platform': 'count', "Paid": 'sum', "Monthly": 'sum', "Annual": 'sum', "Revenue": 'sum'}) subs_df.rename(columns={'Platform': 'TotalSubs'}, inplace = True) final_df = pd.merge(pd.merge(countries, signups), subs_df, on="CountryCode") final_df["Revenue_per_user"] = final_df.Revenue / final_df.NumberOfSignups final_df["Cancel_rate"] = 1 - final_df.Paid / final_df.TotalSubs final_df = final_df.round(3) return final_df table_new = dash_table.DataTable( id='table_new', columns= [ # {'name': 'CountryCode', 'id': 'CountryCode'}, {'name': 'Country', 'id': 'Country'}, {'name': 'NumberOfSignups', 'id': 'NumberOfSignups'}, {'name': 'TotalSubs', 'id': 'TotalSubs'}, {'name': 'Paid', 'id': 'Paid'}, {'name': 'Monthly', 'id': 'Monthly'}, {'name': 'Annual', 'id': 'Annual'}, {'name': 'Revenue', 'id': 'Revenue'}, {'name': 'Revenue_per_user', 'id': 'Revenue_per_user'}, {'name': 'Cancel_rate', 'id': 'Cancel_rate'}], filtering=True, sorting=True, style_as_list_view=True, style_header={ 'backgroundColor': 'white', 'fontWeight': 'bold' }, style_cell_conditional=[ { 'if': {'row_index': 'odd'}, 'backgroundColor': 'rgb(238, 238, 238)' }, { 'if': {'column_id': 'Country'}, 'width': '20%'}, { 'if': {'column_id': 'NumberOfSignups'}, 'width': '10%'}, { 'if': {'column_id': 'TotalSubs'}, 'width': '10%'}, { 'if': {'column_id': 'Paid'}, 'width': '10%'}, { 'if': {'column_id': 'Monthly'}, 'width': '10%'}, { 'if': {'column_id': 'Annual'}, 'width': '10%'}, { 'if': {'column_id': 'Revenue'}, 'width': '10%'}, { 'if': {'column_id': 'Revenue_per_user'}, 'width': '10%'}, { 'if': {'column_id': 'Cancel_rate'}, 'width': '10%'}, ], n_fixed_rows=1, # style_cell={'width': '150px'}, style_table={ 'maxHeight': '500', 'overflowY': 'scroll' }, # style_data_conditional=[ # { # 'if': { # 'column_id': 'Number of Solar Plants', # # 'filter': '{Number of Solar Plants} > 3.9' # }, # 'backgroundColor': '#3D9970', # 'color': 'white', # } # ] ) # table_old = dash_table.DataTable( # id='table_old', # columns= [ # # {'name': 'CountryCode', 'id': 'CountryCode'}, # {'name': 'Country', 'id': 'Country'}, # {'name': 'NumberOfSignups', 'id': 'NumberOfSignups'}, # {'name': 'TotalSubs', 'id': 'TotalSubs'}, # {'name': 'Paid', 'id': 'Paid'}, # {'name': 'Monthly', 'id': 'Monthly'}, # {'name': 'Annual', 'id': 'Annual'}, # {'name': 'Revenue', 'id': 'Revenue'}, # {'name': 'Revenue_per_user', 'id': 'Revenue_per_user'}, # {'name': 'Cancel_rate', 'id': 'Cancel_rate'}], # filtering=True, # sorting=True, # style_as_list_view=True, # style_header={ # 'backgroundColor': 'white', # 'fontWeight': 'bold' # }, # style_cell_conditional=[ # { # 'if': {'row_index': 'odd'}, # 'backgroundColor': 'rgb(238, 238, 238)' # } # ], # n_fixed_rows=1, # # style_cell={'width': '150px'}, # style_table={ # 'maxHeight': '250', # 'overflowY': 'scroll' # }, # # style_data_conditional=[ # # { # # 'if': { # # 'column_id': 'Number of Solar Plants', # # # 'filter': '{Number of Solar Plants} > 3.9' # # }, # # 'backgroundColor': '#3D9970', # # 'color': 'white', # # } # # ] # ) #------------------------------------------------------------------------------------Toggle switch div0_1 = html.Div([ daq.ToggleSwitch( id='toggle-switch-1', value=False, size=50, label={ 'label': 'Activate Filterign by Date', 'style': { 'backgroundColor': design_colors['page_bg'], 'color' : design_colors['text'], 'size' : 50 } }, labelPosition='bottom', color = '#5ab4ac' ) ]) div0_2 = html.Div([ daq.ToggleSwitch( id='toggle-switch-2', value=False, size=50, label={ 'label': 'Activate Filtering by Platform and Country', 'style': { 'backgroundColor': design_colors['page_bg'], 'color' : design_colors['text'], 'size' : 50 } }, labelPosition='bottom', color = '#5ab4ac' ) ]) #====================================================================================== HTML Divs #-------------------------------------------------------------------- Sign-ups div1_1 = html.Div([ dcc.DatePickerRange( id='sign-ups-date-picker-range', min_date_allowed=dt(2014, 1, 1), max_date_allowed=dt.now(), end_date=dt.now(), start_date=dt.now() - dateutil.relativedelta.relativedelta(days=3), display_format=date_format, style={'display': 'none'} )] ) div1_2 = html.Div([ dcc.Graph(id='sign-ups-barplot-container') ], style={'width': '28%', 'display': 'inline-block', 'padding': design_padding['level_1']} ) div1_3 = html.Div([ dcc.Graph(id='sign-ups-map-container') ], style={'width': '55%', 'display': 'inline-block', 'padding': design_padding['level_1']} ) div1_4 = html.Div([ dcc.Graph(id='top-countries-container') ], style={'width': '17%', 'display': 'inline-block', 'padding': design_padding['level_1']} ) #-------------------------------------------------------------------- Retention div2_1 = html.Div([ dcc.RadioItems( id='platform_retention', options=[ {'label': 'IOS', 'value': 'ios'}, {'label': 'Android', 'value': 'android'} ], value='android', # textfont = dict(color = 'red'), labelStyle={'display': 'inline-block', 'color' : design_colors['text']}, style={'display': 'none'} ) ] ) div2_2 = html.Div([ dcc.Graph(id='retention-heatmap-container') ], style={'width': '50%', 'display': 'inline-block', 'padding': design_padding['level_1']} ) div2_3 = html.Div([ dcc.Graph(id='retention-curve-container') ], style={'width': '50%', 'display': 'inline-block', 'padding': design_padding['level_1']} ) div2 = html.Div([ # html.Div([html.H1("Retention summary")], className="row gs-header gs-text-header", style={'float': 'center'}), div2_1, div2_2, div2_3 ], style={ 'borderBottom': 'thin lightgrey solid', 'backgroundColor': design_colors['page_bg'], 'padding': design_padding['level_1'], 'display': 'inline-block', 'width': '100%'} ) #-------------------------------------------------------------------- Active users & by platform div4_1_1 = html.Div([ dcc.DatePickerRange( id='activity-picker-range', min_date_allowed=dt(2014, 1, 1), max_date_allowed=dt.now(), end_date=dt.now(), start_date=dt.now() - dateutil.relativedelta.relativedelta(days=3), display_format='MMM Do, YY', style={'display': 'none'} ) ] ) div4_2 = html.Div([ dcc.Graph(id='activity-container') ], style={'width': '50%', 'display': 'inline-block', 'padding': design_padding['level_1']} ) div4_3 = html.Div([ dcc.Graph(id='activity-pie-container') ], style={'width': '50%', 'display': 'inline-block', 'padding': design_padding['level_1']} ) div4 = html.Div([ div4_1_1, div4_2, div4_3 ], style={ 'backgroundColor': design_colors['page_bg'], 'padding': design_padding['level_1'], 'display': 'inline-block', 'width': '67%'} ) #-------------------------------------------------------------------- Consumption Venn diagram div7_1_1 = html.Div([ dcc.DatePickerRange( id='venn-picker-range', min_date_allowed=dt(2014, 1, 1), max_date_allowed=dt.now(), end_date=dt.now(), start_date=dt.now() - dateutil.relativedelta.relativedelta(days=3), display_format='MMM Do, YY', style={'display': 'none'} )] ) div7_2 = html.Div([ dcc.Graph(id='consumption-Venn-container') ], style={'width': '100%', 'display': 'inline-block'} ) div7 = html.Div([ div7_1_1, div7_2, ], style={ 'backgroundColor': design_colors['page_bg'], 'padding': '0px 5px 0px 0px', 'display': 'inline-block', 'width': '33%'} ) #-------------------------------------------------------------------- Creation div5_1_1 = html.Div([ dcc.DatePickerRange( id='creation-picker-range', min_date_allowed=dt(2014, 1, 1), max_date_allowed=dt.now(), end_date=dt.now(), start_date=dt.now() - dateutil.relativedelta.relativedelta(days=3), display_format='MMM Do, YY', style={'display': 'none'} ) ]) div5_1_2 = html.Div([ dcc.RadioItems( id='platform_creation', options=[ {'label': 'iOS', 'value': 'ios'}, {'label': 'Android', 'value': 'android'}, {'label': 'Total', 'value': 'total'}, ], value='total', labelStyle={'display': 'inline-block', 'color': design_colors['text']}, style={'display': 'none'} ) ]) div5_3 = html.Div([ dcc.Graph(id='creation_objects-container') ], style={'width': '33.6%', 'display': 'inline-block', 'padding': design_padding['level_1']} ) #-------------------------------------------------------------------- Consumption div6_2 = html.Div([ dcc.Graph(id='consumption_objects-container') ], style={'width': '33%', 'display': 'inline-block', 'padding': design_padding['level_1']} ) div6_3 = html.Div([ dcc.Graph(id='consumption_average_amount-container') ], style={'width': '33%', 'display': 'inline-block', 'padding': design_padding['level_1']} ) #------------------------------------------------------------------- Funnel div8 = html.Div([ dcc.DatePickerRange( id='old_date_picker_funnel_barplot', min_date_allowed=dt(2014, 1, 1), max_date_allowed=dt.now(), end_date=dt.now() - dateutil.relativedelta.relativedelta(days=3), start_date=dt.now() - dateutil.relativedelta.relativedelta(days=6), display_format='MMM Do, YY', style={'display': 'none'} ), dcc.DatePickerRange( id='new_date_picker_funnel_barplot', min_date_allowed=dt(2014, 1, 1), max_date_allowed=dt.now(), end_date=dt.now(), start_date=dt.now() - dateutil.relativedelta.relativedelta(days=3), display_format='MMM Do, YY', style={'display': 'none'} ), dcc.RadioItems( id='platform_funnel_barplot', options=[ {'label': 'Android', 'value': '1114'}, {'label': 'iOS', 'value': '1122'} ], value='1122', labelStyle={'display': 'inline-block', 'color': design_colors['text']}, style={'display': 'none'} ), dcc.Dropdown( id='country_funnel_barplot', options=[{'label':opt, 'value':opt} for opt in drop_box], value = drop_box[0], style={'display': 'none'} ), html.Div([ dcc.Graph(id='funnel-container_barplot', style={'height': 500}) ], style={'width': '100%', 'display': 'inline-block', 'padding': design_padding['level_1']} ) ], style={ 'borderBottom': 'thin lightgrey solid', 'backgroundColor': design_colors['page_bg'], 'padding': design_padding['level_1'], 'display': 'inline-block', 'width': '34%'} ) # div3_1_1 = html.Div([ # dcc.DatePickerRange( # id='funnel-picker-range', # min_date_allowed=dt(2014, 1, 1), # max_date_allowed=dt.now(), # end_date=dt.now(), # start_date=dt.now() - dateutil.relativedelta.relativedelta(days=3), # display_format='MMM Do, YY', # style={'display': 'none'} # ) # ] # ) # div3_1_2 = html.Div([ # dcc.RadioItems( # id='platform_funnel', # options=[ # {'label': 'IOS', 'value': 'ios'}, # {'label': 'Android', 'value': 'android'} # ], # value='android', # labelStyle={'display': 'inline-block', 'color': design_colors['text']}, # style={'display': 'none'} # ) # ]) # div3_2 = html.Div([ # dcc.Graph(id='funnel-container') # ], # style={'width': '100%', 'display': 'inline-block', 'padding': design_padding['level_1']} # ) # div3 = html.Div([ # div3_1_1, # div3_1_2, # div3_2, # ], # style={ # 'borderBottom': 'thin lightgrey solid', # 'backgroundColor': design_colors['page_bg'], # 'padding': design_padding['level_1'], # 'display': 'inline-block', # 'width': '50%'} # ) #------------------------- Layout of the tables div9_1 = html.Div([dcc.DatePickerRange( id='table_new-date-picker', min_date_allowed=dt(2014, 1, 1), max_date_allowed=dt.now(), end_date=dt(2019, 4, 1), start_date=dt(2019, 4, 1) - dateutil.relativedelta.relativedelta(weeks=1), display_format='MMM Do, YY', style={'display': 'none'} ), dcc.RadioItems( id='table_new_platform', options=[ {'label': 'Android', 'value': '1114'}, {'label': 'iOS', 'value': '1122'} ], value='1122', labelStyle={'display': 'inline-block', 'color': 'white'}, style={'display': 'none'} ), table_new ], style = {'padding': design_padding['level_1'], 'width': '66%' } ) # div9_2 = html.Div([ # dcc.DatePickerRange( # id='table_old-date-picker', # min_date_allowed=dt(2014, 1, 1), # max_date_allowed=dt.now(), # end_date=dt(2019, 4, 1), # start_date=dt(2019, 4, 1) - dateutil.relativedelta.relativedelta(weeks=1), # display_format='MMM Do, YY', # style={'display': 'none'} # ), # dcc.RadioItems( # id='table_old_platform', # options=[ # {'label': 'Android', 'value': '1114'}, # {'label': 'iOS', 'value': '1122'} # ], # value='1114', # labelStyle={'display': 'inline-block', 'color': 'white'}, # style={'display': 'none'} # ), # table_old # ], # style={'padding': design_padding['level_1'], # 'width': '50%' # } # ) div9 = html.Div([ div8, div9_1, # div9_2 ], style = {'backgroundColor': '#0e2e43', 'display': 'flex', 'flex-direction': 'row', 'padding': '0px 5px 0px 5px', } ) div_img = html.Div([ html.Div([ html.Div([ html.H5('Messenger') ],style={'size': title_size, 'color': design_colors['title'], 'text-align': "center" }), html.Img(src=app.get_asset_url('image_messenger.png'), style={ 'width': '100%' }) ], style={ 'padding': design_padding['level_1'], 'width': '33.333%', 'display': 'inline-block' }), html.Div([ html.Div([ html.H5('Comments') ],style={'size': title_size, 'color': design_colors['title'], 'text-align': "center" }), html.Img(src=app.get_asset_url('image_comment.png'), style={ 'width': '100%' }) ], style={ 'padding': design_padding['level_1'], 'width': '33.333%', 'display': 'inline-block' }), html.Div([ html.Div([ html.H5('Discussion') ],style={'size': title_size, 'color': design_colors['title'], 'text-align': "center" }), html.Img(src=app.get_asset_url('image_discussion.png'), style={ 'width': '100%' }) ], style={ 'padding': design_padding['level_1'], 'width': '33.333%', 'display': 'inline-block' }) ]) #====================================================================================== Combining HTML Divs into the layout form app.layout = html.Div([ div0_2, div0_1, div1_1, div1_2, div1_3, div1_4, div4, div7, div5_1_1, div5_1_2, div5_3, div6_2, div6_3, div2_1, div2_2, div2_3, # div3, # div8, # div_img_1, # div_img_2, # div_img_3, div_img, div9 ], style={'backgroundColor': '#0f2331'} ) #====================================================================================== Callbacks @app.callback( dash.dependencies.Output(component_id='sign-ups-date-picker-range', component_property='style'), [dash.dependencies.Input(component_id='toggle-switch-1', component_property='value')]) def show_hide_element(visibility_state): if visibility_state: return {'display': 'block'} else: return {'display': 'none'} # @app.callback( # dash.dependencies.Output(component_id='funnel-picker-range', component_property='style'), # [dash.dependencies.Input(component_id='toggle-switch-1', component_property='value')]) # def show_hide_element(visibility_state): # if visibility_state: # return {'display': 'block'} # else: # return {'display': 'none'} @app.callback( dash.dependencies.Output(component_id='activity-picker-range', component_property='style'), [dash.dependencies.Input(component_id='toggle-switch-1', component_property='value')]) def show_hide_element(visibility_state): if visibility_state: return {'display': 'block'} else: return {'display': 'none'} @app.callback( dash.dependencies.Output(component_id='venn-picker-range', component_property='style'), [dash.dependencies.Input(component_id='toggle-switch-1', component_property='value')]) def show_hide_element(visibility_state): if visibility_state: return {'display': 'block'} else: return {'display': 'none'} @app.callback( dash.dependencies.Output(component_id='creation-picker-range', component_property='style'), [dash.dependencies.Input(component_id='toggle-switch-1', component_property='value')]) def show_hide_element(visibility_state): if visibility_state: return {'display': 'block'} else: return {'display': 'none'} @app.callback( dash.dependencies.Output(component_id='platform_retention', component_property='style'), [dash.dependencies.Input(component_id='toggle-switch-2', component_property='value')]) def show_hide_element(visibility_state): if visibility_state: return {'display': 'block'} else: return {'display': 'none'} # @app.callback( # dash.dependencies.Output(component_id='platform_funnel', component_property='style'), # [dash.dependencies.Input(component_id='toggle-switch-2', component_property='value')]) # def show_hide_element(visibility_state): # if visibility_state: # return {'display': 'block'} # else: # return {'display': 'none'} @app.callback( dash.dependencies.Output(component_id='platform_creation', component_property='style'), [dash.dependencies.Input(component_id='toggle-switch-2', component_property='value')]) def show_hide_element(visibility_state): if visibility_state: return {'display': 'block'} else: return {'display': 'none'} @app.callback( dash.dependencies.Output(component_id='new_date_picker_funnel_barplot', component_property='style'), [dash.dependencies.Input(component_id='toggle-switch-1', component_property='value')]) def show_hide_element(visibility_state): if visibility_state: return {'display': 'block'} else: return {'display': 'none'} @app.callback( dash.dependencies.Output(component_id='old_date_picker_funnel_barplot', component_property='style'), [dash.dependencies.Input(component_id='toggle-switch-1', component_property='value')]) def show_hide_element(visibility_state): if visibility_state: return {'display': 'block'} else: return {'display': 'none'} @app.callback( dash.dependencies.Output(component_id='platform_funnel_barplot', component_property='style'), [dash.dependencies.Input(component_id='toggle-switch-2', component_property='value')]) def show_hide_element(visibility_state): if visibility_state: return {'display': 'block'} else: return {'display': 'none'} @app.callback( dash.dependencies.Output(component_id='country_funnel_barplot', component_property='style'), [dash.dependencies.Input(component_id='toggle-switch-2', component_property='value')]) def show_hide_element(visibility_state): if visibility_state: return {'display': 'block'} else: return {'display': 'none'} @app.callback( dash.dependencies.Output(component_id='table_new-date-picker', component_property='style'), [dash.dependencies.Input(component_id='toggle-switch-1', component_property='value')]) def show_hide_element(visibility_state): if visibility_state: return {'display': 'block'} else: return {'display': 'none'} # @app.callback( # dash.dependencies.Output(component_id='table_old-date-picker', component_property='style'), # [dash.dependencies.Input(component_id='toggle-switch-1', component_property='value')]) # def show_hide_element(visibility_state): # if visibility_state: # return {'display': 'block'} # else: # return {'display': 'none'} @app.callback( dash.dependencies.Output(component_id='table_new_platform', component_property='style'), [dash.dependencies.Input(component_id='toggle-switch-2', component_property='value')]) def show_hide_element(visibility_state): if visibility_state: return {'display': 'block'} else: return {'display': 'none'} # @app.callback( # dash.dependencies.Output(component_id='table_old_platform', component_property='style'), # [dash.dependencies.Input(component_id='toggle-switch-2', component_property='value')]) # def show_hide_element(visibility_state): # if visibility_state: # return {'display': 'block'} # else: # return {'display': 'none'} #-------------------------------------------------------------------- Sign-ups #------------------- 1_2 Bar Plot @app.callback( dash.dependencies.Output('sign-ups-barplot-container', 'figure'), [dash.dependencies.Input('sign-ups-date-picker-range', 'start_date'), dash.dependencies.Input('sign-ups-date-picker-range', 'end_date'), dash.dependencies.Input('toggle-switch-1', 'value')]) def update_barplot(start_date, end_date, is_live): start_date = str(start_date)[:10] end_date = str(end_date)[:10] if is_live == False: signups = pd.read_csv(r'data\signups.csv') signups.drop(columns=['Unnamed: 0'], inplace=True) signups['Date'] = pd.to_datetime(signups['Date']) else: signups = pd.read_sql_query('EXEC DS_GetStatistics\''+start_date+'\',\''+end_date+'\'', cnxn) signups['Date'] = pd.to_datetime(signups['Date']) return { 'data': [ go.Bar(x =signups['Date'], y=signups['signups_android'], name ="Android", marker = dict(color=design_colors['Android']) ), go.Bar(x =signups['Date'], y=signups['signups_ios'], name ="iOS", marker = dict(color=design_colors['iOS']) ), go.Bar(x =signups['Date'], y=signups['signups_web'], name ="Web", marker = dict(color=design_colors['Web']) ) ], 'layout' : { 'barmode': 'stack', 'paper_bgcolor': design_colors['chart_box_bg'], 'plot_bgcolor': design_colors['chart_bg'], 'xaxis': { 'showgrid': False, 'tickfont': dict(color=design_colors['chart_axis_legends']), 'gridcolor': design_colors['chart_inside_lines'], 'tickformat': '%b %d', }, 'yaxis': { 'showgrid': True, 'tickfont': dict(color=design_colors['chart_axis_legends']), 'gridcolor': design_colors['chart_inside_lines'] }, 'margin': go.layout.Margin( l=50, r=50, b=50, t=50, # pad=20 ), "title": '<b>Signups<b>', 'titlefont' : dict( size=title_size, color=design_colors['title'] ), 'legend': dict(font=dict(color=design_colors['text'])) } } #------------------- 1_3 Map @app.callback( dash.dependencies.Output('sign-ups-map-container', 'figure'), [dash.dependencies.Input('sign-ups-date-picker-range', 'start_date'), dash.dependencies.Input('sign-ups-date-picker-range', 'end_date'), dash.dependencies.Input('toggle-switch-1', 'value')]) def update_map(start_date, end_date, is_live): start_date = str(start_date)[:10] end_date = str(end_date)[:10] if is_live: SignupsPerCountry = pd.read_sql_query('EXEC DS_GetCountryCodesForMap @RegisterStartDate = \''+start_date+'\', @RegisterEndDate = \''+end_date+'\'', cnxn) else: SignupsPerCountry = pd.read_csv(r'data\SignupsPerCountry.csv') SignupsPerCountry.drop(columns=['Unnamed: 0'], inplace=True) merged =
pd.merge(SignupsPerCountry, TrueCodes, left_on='CountryCode', right_on='rand', how='right')
pandas.merge
import pandas as pd import ast # ==================================== # # Movie Network Generator # # ==================================== # # Movie Features # 순번 영화명 감독 제작사 수입사 배급사 개봉일 영화유형 영화형태 # 국적 전국스크린수 전국매출액 전국관객수 서울매출액 서울관객수 장르 등급 영화구분 # + 주연, 조연 def load_data(): movies_df = pd.read_excel("./data/dataset.xlsx") movies = movies_df.as_matrix() return movies def load_dataset(): movie_actor_df = pd.read_csv('./data/movie_actor_utf16.csv', encoding='utf-16') # movie_actor_df = pd.read_csv('./data/movie_actor_crawled.csv', encoding='utf-16') dataset = [] main_actor_series = movie_actor_df['main_actor'] sub_actor_series = movie_actor_df['sub_actor'] # main_actor_series = movie_actor_df['lead_role'] # sub_actor_series = movie_actor_df['supp_role'] for i in range(movie_actor_df.shape[0]): row = [] row.append(movie_actor_df.ix[i].values[0]) row.append(movie_actor_df.ix[i].values[1]) row.append(movie_actor_df.ix[i].values[2]) row.append(ast.literal_eval(main_actor_series[i])) row.append(ast.literal_eval(sub_actor_series[i])) dataset.append(row) return dataset def generate_actor_network(dataset, output_path): movie_actor_df = pd.DataFrame(columns=['vertex1', 'vertex2'], index=None) index = 0; # for i in range(len(dataset)): for i in range(100): for j in range(len(dataset[i][3])): for k in range(j+1, len(dataset[i][3])): movie_actor_df.loc[index] = [dataset[i][3][j], dataset[i][3][k]] index = index + 1 # movie_actor_df.to_csv("./out/network.csv", encoding='utf-16', index=False) movie_actor_df.to_csv(output_path, index=False) def generate_actor_genre_network(data, dataset, output_path): movie_actor_genre_df = pd.DataFrame(columns=['vertex1', 'vertex2', 'vertex3'], index=None) index = 0; # for i in range(len(dataset)): for i in range(100): # handling 1 person 2 role actors = set(); for j in range(len(dataset[i][3])): actors.add(dataset[i][3][j]) actors_list = list(actors) for j in range(len(actors_list)): for k in range(j+1, len(actors_list)): movie_actor_genre_df.loc[index] = [actors_list[j], actors_list[k], data[i][15]] index = index + 1 # for j in range(len(dataset[i][3])): # for k in range(j+1, len(dataset[i][3])): # movie_actor_genre_df.loc[index] = [dataset[i][3][j], dataset[i][3][k], data[i][15]] # index = index + 1 # movie_actor_df.to_csv("./out/network.csv", encoding='utf-16', index=False) movie_actor_genre_df.to_csv(output_path, index=False) ################################################################ def generate_actor_genre_information(data, dataset, output_path): movie_actor_genre_df =
pd.DataFrame(columns=['actor', 'genre'], index=None)
pandas.DataFrame
import pandas as pd import numpy as np import requests from fake_useragent import UserAgent import io import os import time import json import demjson from datetime import datetime import ssl ssl._create_default_https_context = ssl._create_unverified_context # Main Economic Indicators: https://alfred.stlouisfed.org/release?rid=205 url = { "fred_econ": "https://fred.stlouisfed.org/graph/fredgraph.csv?", "philfed": "https://www.philadelphiafed.org/surveys-and-data/real-time-data-research/", "chicagofed": "https://www.chicagofed.org/~/media/publications/", "OECD": "https://stats.oecd.org/sdmx-json/data/DP_LIVE/" } def date_transform(df, format_origin, format_after): return_list = [] for i in range(0, len(df)): return_list.append(datetime.strptime(df[i], format_origin).strftime(format_after)) return return_list def gdp_quarterly(startdate="1947-01-01", enddate="2021-01-01"): """ Full Name: <NAME>omestic Product Description: Billions of Dollars, Quarterly, Seasonally Adjusted Annual Rate Return: pd.DataFrame """ tmp_url = url["fred_econ"] ua = UserAgent(verify_ssl=False) request_header = {"User-Agent": ua.random} request_params = { "id": "GDP", "cosd": "{}".format(startdate), "coed": "{}".format(enddate) } r = requests.get(tmp_url, params=request_params, headers=request_header) data_text = r.content df = pd.read_csv(io.StringIO(data_text.decode('utf-8'))) df.columns = ["Date", "GDP"] df["Date"] = pd.to_datetime(df["Date"], format = "%Y-%m-%d") df["GDP"] = df["GDP"].astype(float) return df def gdpc1_quarterly(startdate="1947-01-01", enddate="2021-01-01"): """ Full Name: Real Gross Domestic Product Description: Billions of Chained 2012 Dollars, Quarterly, Seasonally Adjusted Annual Rate Return: pd.DataFrame """ tmp_url = url["fred_econ"] ua = UserAgent(verify_ssl=False) request_header = {"User-Agent": ua.random} request_params = { "id": "GDPC1", "cosd": "{}".format(startdate), "coed": "{}".format(enddate) } r = requests.get(tmp_url, params=request_params, headers=request_header) data_text = r.content df = pd.read_csv(io.StringIO(data_text.decode('utf-8'))) return df def oecd_gdp_monthly(startdate="1947-01-01", enddate="2021-01-01"): """ Full Name: Real Gross Domestic Product Description: Billions of Chained 2012 Dollars, Quarterly, Seasonally Adjusted Annual Rate Return: pd.DataFrame """ tmp_url = url["fred_econ"] ua = UserAgent(verify_ssl=False) request_header = {"User-Agent": ua.random} request_params = { "id": "USALORSGPNOSTSAM", "cosd": "{}".format(startdate), "coed": "{}".format(enddate) } r = requests.get(tmp_url, params=request_params, headers=request_header) data_text = r.content df = pd.read_csv(io.StringIO(data_text.decode('utf-8'))) return df def payems_monthly(startdate="1939-01-01", enddate="2021-01-01"): """ Full Name: All Employees, Total Nonfarm Description: Thousands of Persons,Seasonally Adjusted, Monthly Return: pd.DataFrame """ tmp_url = url["fred_econ"] ua = UserAgent(verify_ssl=False) request_header = {"User-Agent": ua.random} request_params = { "id": "PAYEMS", "cosd": "{}".format(startdate), "coed": "{}".format(enddate) } r = requests.get(tmp_url, params=request_params, headers=request_header) data_text = r.content df = pd.read_csv(io.StringIO(data_text.decode('utf-8'))) df.columns = ["Date", "Payems"] df["Date"] = pd.to_datetime(df["Date"], format = "%Y-%m-%d") df["Payems"] = df["Payems"].astype(float) return df def ppi(): tmp_url = url["fred_econ"] + "bgcolor=%23e1e9f0&chart_type=line&drp=0&fo=open%20sans&graph_bgcolor=%23ffffff&height=450&mode=fred&recession_bars=on&txtcolor=%23444444&ts=12&tts=12&width=968&nt=0&thu=0&trc=0&show_legend=yes&show_axis_titles=yes&show_tooltip=yes&id=PPIACO,PCUOMFGOMFG&scale=left,left&cosd=1913-01-01,1984-12-01&coed=2021-04-01,2021-04-01&line_color=%234572a7,%23aa4643&link_values=false,false&line_style=solid,solid&mark_type=none,none&mw=3,3&lw=2,2&ost=-99999,-99999&oet=99999,99999&mma=0,0&fml=a,a&fq=Monthly,Monthly&fam=avg,avg&fgst=lin,lin&fgsnd=2020-02-01,2020-02-01&line_index=1,2&transformation=lin,lin&vintage_date=2021-06-10,2021-06-10&revision_date=2021-06-10,2021-06-10&nd=1913-01-01,1984-12-01" ua = UserAgent(verify_ssl=False) request_header = {"User-Agent": ua.random} r = requests.get(tmp_url, headers=request_header) data_text = r.content df = pd.read_csv(io.StringIO(data_text.decode('utf-8'))) df["DATE"] = pd.to_datetime(df["DATE"], format="%Y-%m-%d") #df = df[list(df.columns[1:])].replace(".", np.nan).astype(float) name_list = { "PPIACO": "Producer Price Index by Commodity: All Commodities", "PCUOMFGOMFG": "Producer Price Index by Industry: Total Manufacturing Industries" } df.replace(".", np.nan, inplace = True) df.columns = ["Date", "PPI_C", "PPI_I"] df["Date"] = pd.to_datetime(df["Date"], format = "%Y-%m-%d") df[["PPI_C", "PPI_I"]] = df[["PPI_C", "PPI_I"]].astype(float) return df def pmi(): t = time.time() res = requests.get( f"https://cdn.jin10.com/dc/reports/dc_usa_ism_pmi_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}" ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国ISM制造业PMI报告"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "28", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df.name = "usa_ism_pmi" temp_df = temp_df.astype("float") PMI_I = pd.DataFrame() PMI_I["Date"] = pd.to_datetime(temp_df.index, format = "%Y-%m-%d") PMI_I["ISM_PMI_I"] = np.array(temp_df).astype(float) t = time.time() res = requests.get( f"https://cdn.jin10.com/dc/reports/dc_usa_ism_non_pmi_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}" ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国ISM非制造业PMI报告"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "29", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df.name = "usa_ism_non_pmi" temp_df = temp_df.astype("float") PMI_NI = pd.DataFrame() PMI_NI["Date"] = pd.to_datetime(temp_df.index, format = "%Y-%m-%d") PMI_NI["ISM_PMI_NI"] = np.array(temp_df).astype(float) PMI = pd.merge_asof(PMI_I, PMI_NI, on = "Date") return PMI def unrate(startdate="1948-01-01", enddate="2021-01-01"): """ Full Name: Unemployment Rate: Aged 15-64: All Persons for the United States Description: Percent, Seasonally Adjusted, Monthly, Quarterly and Annually Return: pd.DataFrame """ tmp_url = url["fred_econ"] ua = UserAgent(verify_ssl=False) request_header = {"User-Agent": ua.random} request_params = { "id": "LRUN64TTUSM156S", "cosd": "{}".format(startdate), "coed": "{}".format(enddate) } r = requests.get(tmp_url, params=request_params, headers=request_header) data_text = r.content df_monthly = pd.read_csv(io.StringIO(data_text.decode('utf-8'))) df_monthly["DATE"] = pd.to_datetime(df_monthly["DATE"], format="%Y-%m-%d") ua = UserAgent(verify_ssl=False) request_header = {"User-Agent": ua.random} request_params = { "id": "LRUN64TTUSQ156S", "cosd": "{}".format(startdate), "coed": "{}".format(enddate) } r = requests.get(tmp_url, params=request_params, headers=request_header) data_text = r.content df_quarterly = pd.read_csv(io.StringIO(data_text.decode('utf-8'))) df_quarterly["DATE"] = pd.to_datetime( df_quarterly["DATE"], format="%Y-%m-%d") ua = UserAgent(verify_ssl=False) request_header = {"User-Agent": ua.random} request_params = { "id": "LRUN64TTUSA156S", "cosd": "{}".format(startdate), "coed": "{}".format(enddate) } r = requests.get(tmp_url, params=request_params, headers=request_header) data_text = r.content df_annually = pd.read_csv(io.StringIO(data_text.decode('utf-8'))) df_annually["DATE"] = pd.to_datetime( df_annually["DATE"], format="%Y-%m-%d") df = pd.merge_asof( df_monthly, df_quarterly, on="DATE", direction="backward") df = pd.merge_asof(df, df_annually, on="DATE", direction="backward") df.columns = ["Date", "UR_Monthly", "UR_Quarterly", "UR_Annually"] return df def erate(startdate="1955-01-01", enddate="2021-01-01"): """ Full Name: Employment Rate: Aged 25-54: All Persons for the United States Description: Percent,Seasonally Adjusted, Monthly, Quarterly and Annually Return: pd.DataFrame """ tmp_url = url["fred_econ"] ua = UserAgent(verify_ssl=False) request_header = {"User-Agent": ua.random} request_params = { "id": "LREM25TTUSM156S", "cosd": "{}".format(startdate), "coed": "{}".format(enddate) } r = requests.get(tmp_url, params=request_params, headers=request_header) data_text = r.content df_monthly = pd.read_csv(io.StringIO(data_text.decode('utf-8'))) df_monthly["DATE"] = pd.to_datetime(df_monthly["DATE"], format="%Y-%m-%d") ua = UserAgent(verify_ssl=False) request_header = {"User-Agent": ua.random} request_params = { "id": "LREM25TTUSQ156S", "cosd": "{}".format(startdate), "coed": "{}".format(enddate) } r = requests.get(tmp_url, params=request_params, headers=request_header) data_text = r.content df_quarterly = pd.read_csv(io.StringIO(data_text.decode('utf-8'))) df_quarterly["DATE"] = pd.to_datetime( df_quarterly["DATE"], format="%Y-%m-%d") ua = UserAgent(verify_ssl=False) request_header = {"User-Agent": ua.random} request_params = { "id": "LREM25TTUSA156S", "cosd": "{}".format(startdate), "coed": "{}".format(enddate) } r = requests.get(tmp_url, params=request_params, headers=request_header) data_text = r.content df_annually = pd.read_csv(io.StringIO(data_text.decode('utf-8'))) df_annually["DATE"] = pd.to_datetime( df_annually["DATE"], format="%Y-%m-%d") df = pd.merge_asof( df_monthly, df_quarterly, on="DATE", direction="backward") df = pd.merge_asof(df, df_annually, on="DATE", direction="backward") df.columns = ["Date", "ER_Monthly", "ER_Quarterly", "ER_Annually"] def pce_monthly(startdate="1959-01-01", enddate="2021-01-01"): """ Full Name: PCE Description: Percent, Monthly, Seasonally Adjusted Return: pd.DataFrame """ tmp_url = url["fred_econ"] ua = UserAgent(verify_ssl=False) request_header = {"User-Agent": ua.random} request_params = { "id": "PCE", "cosd": "{}".format(startdate), "coed": "{}".format(enddate) } r = requests.get(tmp_url, params=request_params, headers=request_header) data_text = r.content df = pd.read_csv(io.StringIO(data_text.decode('utf-8'))) return df def cpi(startdate="1960-01-01", enddate="2021-01-01"): """ Full Name: Consumer Price Index: Total All Items for the United States Description: Percent, Monthly, Quarterly and Annually, Seasonally Adjusted Return: pd.DataFrame """ tmp_url = url["fred_econ"] ua = UserAgent(verify_ssl=False) request_header = {"User-Agent": ua.random} request_params = { "id": "CPALTT01USM661S", "cosd": "{}".format(startdate), "coed": "{}".format(enddate) } r = requests.get(tmp_url, params=request_params, headers=request_header) data_text = r.content df_monthly = pd.read_csv(io.StringIO(data_text.decode('utf-8'))) df_monthly["DATE"] = pd.to_datetime(df_monthly["DATE"], format="%Y-%m-%d") ua = UserAgent(verify_ssl=False) request_header = {"User-Agent": ua.random} request_params = { "id": "CPALTT01USQ661S", "cosd": "{}".format(startdate), "coed": "{}".format(enddate) } r = requests.get(tmp_url, params=request_params, headers=request_header) data_text = r.content df_quarterly = pd.read_csv(io.StringIO(data_text.decode('utf-8'))) df_quarterly["DATE"] = pd.to_datetime( df_quarterly["DATE"], format="%Y-%m-%d") ua = UserAgent(verify_ssl=False) request_header = {"User-Agent": ua.random} request_params = { "id": "CPALTT01USA661S", "cosd": "{}".format(startdate), "coed": "{}".format(enddate) } r = requests.get(tmp_url, params=request_params, headers=request_header) data_text = r.content df_annually = pd.read_csv(io.StringIO(data_text.decode('utf-8'))) df_annually["DATE"] = pd.to_datetime( df_annually["DATE"], format="%Y-%m-%d") df = pd.merge_asof( df_monthly, df_quarterly, on="DATE", direction="backward") df = pd.merge_asof(df, df_annually, on="DATE", direction="backward") df.columns = ["Date", "CPI_Monthly", "CPI_Quarterly", "CPI_Annually"] df["Date"] = pd.to_datetime(df["Date"], format = "%Y-%m-%d") df[["CPI_Monthly", "CPI_Quarterly", "CPI_Annually"]] = df[["CPI_Monthly", "CPI_Quarterly", "CPI_Annually"]].astype(float) return df def m1(startdate="1960-01-01", enddate="2021-01-01"): """ Full Name: Consumer Price Index: M3 for the United States Description: Growth Rate Previous Period, Monthly, Quarterly and Annually, Seasonally Adjusted Return: pd.DataFrame """ tmp_url = url["fred_econ"] ua = UserAgent(verify_ssl=False) request_header = {"User-Agent": ua.random} request_params = { "id": "WM1NS", "cosd": "{}".format(startdate), "coed": "{}".format(enddate) } r = requests.get(tmp_url, params=request_params, headers=request_header) data_text = r.content df_weekly = pd.read_csv(io.StringIO(data_text.decode('utf-8'))) df_weekly["DATE"] = pd.to_datetime(df_weekly["DATE"], format="%Y-%m-%d") ua = UserAgent(verify_ssl=False) request_header = {"User-Agent": ua.random} request_params = { "id": "MANMM101USM657S", "cosd": "{}".format(startdate), "coed": "{}".format(enddate) } r = requests.get(tmp_url, params=request_params, headers=request_header) data_text = r.content df_monthly = pd.read_csv(io.StringIO(data_text.decode('utf-8'))) df_monthly["DATE"] = pd.to_datetime(df_monthly["DATE"], format="%Y-%m-%d") ua = UserAgent(verify_ssl=False) request_header = {"User-Agent": ua.random} request_params = { "id": "MANMM101USQ657S", "cosd": "{}".format(startdate), "coed": "{}".format(enddate) } r = requests.get(tmp_url, params=request_params, headers=request_header) data_text = r.content df_quarterly = pd.read_csv(io.StringIO(data_text.decode('utf-8'))) df_quarterly["DATE"] = pd.to_datetime( df_quarterly["DATE"], format="%Y-%m-%d") ua = UserAgent(verify_ssl=False) request_header = {"User-Agent": ua.random} request_params = { "id": "MANMM101USA657S", "cosd": "{}".format(startdate), "coed": "{}".format(enddate) } r = requests.get(tmp_url, params=request_params, headers=request_header) data_text = r.content df_annually = pd.read_csv(io.StringIO(data_text.decode('utf-8'))) df_annually["DATE"] = pd.to_datetime( df_annually["DATE"], format="%Y-%m-%d") df = pd.merge_asof(df_weekly, df_monthly, on="DATE", direction="backward") df = pd.merge_asof(df, df_quarterly, on="DATE", direction="backward") df = pd.merge_asof(df, df_annually, on="DATE", direction="backward") df.columns = [ "Date", "M1_Weekly", "M1_Monthly", "M1_Quarterly", "M1_Annually"] return df def m2(startdate="1960-01-01", enddate="2021-01-01"): """ Full Name: <NAME> Description: Seasonally Adjusted, Weekly, Monthly, Quarterly and Annually, Seasonally Adjusted Return: pd.DataFrame """ tmp_url = url["fred_econ"] ua = UserAgent(verify_ssl=False) request_header = {"User-Agent": ua.random} request_params = { "id": "WM2NS", "cosd": "{}".format(startdate), "coed": "{}".format(enddate) } r = requests.get(tmp_url, params=request_params, headers=request_header) data_text = r.content df_weekly = pd.read_csv(io.StringIO(data_text.decode('utf-8'))) df_weekly["DATE"] = pd.to_datetime(df_weekly["DATE"], format="%Y-%m-%d") ua = UserAgent(verify_ssl=False) request_header = {"User-Agent": ua.random} request_params = { "id": "M2SL", "cosd": "{}".format(startdate), "coed": "{}".format(enddate) } r = requests.get(tmp_url, params=request_params, headers=request_header) data_text = r.content df_monthly = pd.read_csv(io.StringIO(data_text.decode('utf-8'))) df_monthly["DATE"] = pd.to_datetime(df_monthly["DATE"], format="%Y-%m-%d") df = pd.merge_asof(df_weekly, df_monthly, on="DATE", direction="backward") df.columns = ["Date", "M2_Weekly", "M2_Monthly"] return df def m3(startdate="1960-01-01", enddate="2021-01-01"): """ Full Name: Consumer Price Index: M3 for the United States Description: Growth Rate Previous Period, Monthly, Quarterly and Annually, Seasonally Adjusted Return: pd.DataFrame """ tmp_url = url["fred_econ"] ua = UserAgent(verify_ssl=False) request_header = {"User-Agent": ua.random} request_params = { "id": "MABMM301USM657S", "cosd": "{}".format(startdate), "coed": "{}".format(enddate) } r = requests.get(tmp_url, params=request_params, headers=request_header) data_text = r.content df_monthly = pd.read_csv(io.StringIO(data_text.decode('utf-8'))) df_monthly["DATE"] = pd.to_datetime(df_monthly["DATE"], format="%Y-%m-%d") ua = UserAgent(verify_ssl=False) request_header = {"User-Agent": ua.random} request_params = { "id": "MABMM301USQ657S", "cosd": "{}".format(startdate), "coed": "{}".format(enddate) } r = requests.get(tmp_url, params=request_params, headers=request_header) data_text = r.content df_quarterly = pd.read_csv(io.StringIO(data_text.decode('utf-8'))) df_quarterly["DATE"] = pd.to_datetime( df_quarterly["DATE"], format="%Y-%m-%d") ua = UserAgent(verify_ssl=False) request_header = {"User-Agent": ua.random} request_params = { "id": "MABMM301USA657S", "cosd": "{}".format(startdate), "coed": "{}".format(enddate) } r = requests.get(tmp_url, params=request_params, headers=request_header) data_text = r.content df_annually = pd.read_csv(io.StringIO(data_text.decode('utf-8'))) df_annually["DATE"] = pd.to_datetime( df_annually["DATE"], format="%Y-%m-%d") df = pd.merge_asof( df_monthly, df_quarterly, on="DATE", direction="backward") df = pd.merge_asof(df, df_annually, on="DATE", direction="backward") df.columns = ["Date", "M3_Monthly", "M3_Quarterly", "M3_Annually"] return df def ltgby_10(startdate="1955-01-01", enddate="2021-01-01"): """ Full Name: Long-Term Government Bond Yields: 10-year: Main (Including Benchmark) for the United States Description: Percent,Not Seasonally Adjusted, Monthly, Quarterly and Annually Return: pd.DataFrame """ tmp_url = url["fred_econ"] ua = UserAgent(verify_ssl=False) request_header = {"User-Agent": ua.random} request_params = { "id": "IRLTLT01USM156N", "cosd": "{}".format(startdate), "coed": "{}".format(enddate) } r = requests.get(tmp_url, params=request_params, headers=request_header) data_text = r.content df_monthly = pd.read_csv(io.StringIO(data_text.decode('utf-8'))) df_monthly["DATE"] = pd.to_datetime(df_monthly["DATE"], format="%Y-%m-%d") ua = UserAgent(verify_ssl=False) request_header = {"User-Agent": ua.random} request_params = { "id": "IRLTLT01USQ156N", "cosd": "{}".format(startdate), "coed": "{}".format(enddate) } r = requests.get(tmp_url, params=request_params, headers=request_header) data_text = r.content df_quarterly = pd.read_csv(io.StringIO(data_text.decode('utf-8'))) df_quarterly["DATE"] = pd.to_datetime( df_quarterly["DATE"], format="%Y-%m-%d") ua = UserAgent(verify_ssl=False) request_header = {"User-Agent": ua.random} request_params = { "id": "IRLTLT01USA156N", "cosd": "{}".format(startdate), "coed": "{}".format(enddate) } r = requests.get(tmp_url, params=request_params, headers=request_header) data_text = r.content df_annually = pd.read_csv(io.StringIO(data_text.decode('utf-8'))) df_annually["DATE"] = pd.to_datetime( df_annually["DATE"], format="%Y-%m-%d") df = pd.merge_asof( df_monthly, df_quarterly, on="DATE", direction="backward") df = pd.merge_asof(df, df_annually, on="DATE", direction="backward") df.columns = ["Date", "ltgby_Monthly", "ltgby_Quarterly", "ltgby_Annually"] return df def gdp_ipd(startdate="1955-01-01", enddate="2021-01-01"): """ Full Name: Long-<NAME>: 10-year: Main (Including Benchmark) for the United States Description: Percent,Not Seasonally Adjusted, Monthly, Quarterly and Annually Return: pd.DataFrame """ tmp_url = url["fred_econ"] ua = UserAgent(verify_ssl=False) request_header = {"User-Agent": ua.random} request_params = { "id": "USAGDPDEFQISMEI", "cosd": "{}".format(startdate), "coed": "{}".format(enddate) } r = requests.get(tmp_url, params=request_params, headers=request_header) data_text = r.content df_quarterly = pd.read_csv(io.StringIO(data_text.decode('utf-8'))) df_quarterly["DATE"] = pd.to_datetime( df_quarterly["DATE"], format="%Y-%m-%d") ua = UserAgent(verify_ssl=False) request_header = {"User-Agent": ua.random} request_params = { "id": "USAGDPDEFAISMEI", "cosd": "{}".format(startdate), "coed": "{}".format(enddate) } r = requests.get(tmp_url, params=request_params, headers=request_header) data_text = r.content df_annually = pd.read_csv(io.StringIO(data_text.decode('utf-8'))) df_annually["DATE"] = pd.to_datetime( df_annually["DATE"], format="%Y-%m-%d") df = pd.merge_asof( df_quarterly, df_annually, on="DATE", direction="backward") df.columns = ["Date", "gdp_ipd_Quarterly", "gdp_ipd_Annually"] return df def cci(startdate="1955-01-01", enddate="2021-01-01"): """ Full Name: Consumer Opinion Surveys: Confidence Indicators: Composite Indicators: OECD Indicator for the United States Description: Normalised (Normal=100), Seasonally Adjusted, Monthly Return: pd.DataFrame """ tmp_url = url["fred_econ"] ua = UserAgent(verify_ssl=False) request_header = {"User-Agent": ua.random} request_params = { "id": "CSCICP03USM665S", "cosd": "{}".format(startdate), "coed": "{}".format(enddate) } r = requests.get(tmp_url, params=request_params, headers=request_header) data_text = r.content df = pd.read_csv(io.StringIO(data_text.decode('utf-8'))) df.columns = ["Date", "CCI_Monthly"] df["Date"] = pd.to_datetime(df["Date"], format = "%Y-%m-%d") return df def bci(startdate="1955-01-01", enddate="2021-01-01"): """ Full Name: Business confidence index OECD Indicator for the United States Description: Normalised (Normal=100), Seasonally Adjusted, Monthly Return: pd.DataFrame """ tmp_url = url["fred_econ"] ua = UserAgent(verify_ssl=False) request_header = {"User-Agent": ua.random} request_params = { "id": "BSCICP03USM665S", "cosd": "{}".format(startdate), "coed": "{}".format(enddate) } r = requests.get(tmp_url, params=request_params, headers=request_header) data_text = r.content df = pd.read_csv(io.StringIO(data_text.decode('utf-8'))) df.columns = ["Date", "BCI_Annually"] df["Date"] = pd.to_datetime(df["Date"], format = "%Y-%m-%d") return df def ibr_3(startdate="1965-01-01", enddate="2021-01-01"): """ Full Name: 3-Month or 90-day Rates and Yields: Interbank Rates for the United States Description: Percent, Not Seasonally Adjusted, Monthly and Quarterly """ tmp_url = url["fred_econ"] ua = UserAgent(verify_ssl=False) request_header = {"User-Agent": ua.random} request_params = { "id": "IR3TIB01USM156N", "cosd": "{}".format(startdate), "coed": "{}".format(enddate) } r = requests.get(tmp_url, params=request_params, headers=request_header) data_text = r.content df_monthly = pd.read_csv(io.StringIO(data_text.decode('utf-8'))) df_monthly["DATE"] = pd.to_datetime(df_monthly["DATE"], format="%Y-%m-%d") ua = UserAgent(verify_ssl=False) request_header = {"User-Agent": ua.random} request_params = { "id": "IR3TIB01USQ156N", "cosd": "{}".format(startdate), "coed": "{}".format(enddate) } r = requests.get(tmp_url, params=request_params, headers=request_header) data_text = r.content df_quarterly = pd.read_csv(io.StringIO(data_text.decode('utf-8'))) df_quarterly["DATE"] = pd.to_datetime( df_quarterly["DATE"], format="%Y-%m-%d") df = pd.merge_asof( df_quarterly, df_quarterly, on="DATE", direction="backward") df.columns = ["Date", "ibr3_Monthly", "ibr3_Quarterly"] def gfcf_3(startdate="1965-01-01", enddate="2021-01-01"): """ Full Name: Gross Fixed Capital Formation in United States Description: United States Dollars,Not Seasonally Adjusted, Quarterly and Annually """ tmp_url = url["fred_econ"] ua = UserAgent(verify_ssl=False) request_header = {"User-Agent": ua.random} request_params = { "id": "USAGFCFQDSMEI", "cosd": "{}".format(startdate), "coed": "{}".format(enddate) } r = requests.get(tmp_url, params=request_params, headers=request_header) data_text = r.content df_quarterly = pd.read_csv(io.StringIO(data_text.decode('utf-8'))) df_quarterly["DATE"] = pd.to_datetime( df_quarterly["DATE"], format="%Y-%m-%d") ua = UserAgent(verify_ssl=False) request_header = {"User-Agent": ua.random} request_params = { "id": "USAGFCFADSMEI", "cosd": "{}".format(startdate), "coed": "{}".format(enddate) } r = requests.get(tmp_url, params=request_params, headers=request_header) data_text = r.content df_annually = pd.read_csv(io.StringIO(data_text.decode('utf-8'))) df_annually["DATE"] = pd.to_datetime( df_annually["DATE"], format="%Y-%m-%d") df = pd.merge_asof( df_quarterly, df_quarterly, on="DATE", direction="backward") df.columns = ["Date", "ibr3_Monthly", "ibr3_Annually"] return df def pfce(startdate="1955-01-01", enddate="2021-01-01"): """ Full Name: Private Final Consumption Expenditure in United States """ tmp_url = url["fred_econ"] ua = UserAgent(verify_ssl=False) request_header = {"User-Agent": ua.random} request_params = { "id": "USAPFCEQDSMEI", "cosd": "{}".format(startdate), "coed": "{}".format(enddate) } r = requests.get(tmp_url, params=request_params, headers=request_header) data_text = r.content df_quarterly = pd.read_csv(io.StringIO(data_text.decode('utf-8'))) df_quarterly["DATE"] = pd.to_datetime( df_quarterly["DATE"], format="%Y-%m-%d") ua = UserAgent(verify_ssl=False) request_header = {"User-Agent": ua.random} request_params = { "id": "USAPFCEADSMEI", "cosd": "{}".format(startdate), "coed": "{}".format(enddate) } r = requests.get(tmp_url, params=request_params, headers=request_header) data_text = r.content df_annually = pd.read_csv(io.StringIO(data_text.decode('utf-8'))) df_annually["DATE"] = pd.to_datetime( df_annually["DATE"], format="%Y-%m-%d") df = pd.merge_asof( df_quarterly, df_annually, on="DATE", direction="backward") df.columns = ["Date", "PFCE_Quarterly", "PFCE_Annually"] return df def tlp(startdate="1955-01-01", enddate="2021-01-01"): """ Full Name: Early Estimate of Quarterly ULC Indicators: Total Labor Productivity for the United States Description: Growth Rate Previous Period,Seasonally Adjusted, Quarterly and YoY Return: pd.DataFrame """ tmp_url = url["fred_econ"] ua = UserAgent(verify_ssl=False) request_header = {"User-Agent": ua.random} request_params = { "id": "ULQELP01USQ657S", "cosd": "{}".format(startdate), "coed": "{}".format(enddate) } r = requests.get(tmp_url, params=request_params, headers=request_header) data_text = r.content df_quarterly = pd.read_csv(io.StringIO(data_text.decode('utf-8'))) df_quarterly["DATE"] = pd.to_datetime( df_quarterly["DATE"], format="%Y-%m-%d") ua = UserAgent(verify_ssl=False) request_header = {"User-Agent": ua.random} request_params = { "id": "ULQELP01USQ659S", "cosd": "{}".format(startdate), "coed": "{}".format(enddate) } r = requests.get(tmp_url, params=request_params, headers=request_header) data_text = r.content df_annually = pd.read_csv(io.StringIO(data_text.decode('utf-8'))) df_annually["DATE"] = pd.to_datetime( df_annually["DATE"], format="%Y-%m-%d") df = pd.merge_asof( df_quarterly, df_annually, on="DATE", direction="backward") df.columns = ["Date", "PFCE_Quarterly", "PFCE_Quarterly_YoY"] return df def rt(startdate="1955-01-01", enddate="2021-01-01"): """ Full Name:Total Retail Trade in United States Description: Monthly and Anually Return: pd.DataFrame """ tmp_url = url["fred_econ"] ua = UserAgent(verify_ssl=False) request_header = {"User-Agent": ua.random} request_params = { "id": "USASARTMISMEI", "cosd": "{}".format(startdate), "coed": "{}".format(enddate) } r = requests.get(tmp_url, params=request_params, headers=request_header) data_text = r.content df_monthly = pd.read_csv(io.StringIO(data_text.decode('utf-8'))) df_monthly["DATE"] = pd.to_datetime(df_monthly["DATE"], format="%Y-%m-%d") request_header = {"User-Agent": ua.random} request_params = { "id": "USASARTAISMEI", "cosd": "{}".format(startdate), "coed": "{}".format(enddate) } r = requests.get(tmp_url, params=request_params, headers=request_header) data_text = r.content df_annually = pd.read_csv(io.StringIO(data_text.decode('utf-8'))) df_annually["DATE"] = pd.to_datetime( df_annually["DATE"], format="%Y-%m-%d") df = pd.merge_asof( df_monthly, df_annually, on="DATE", direction="backward") df.columns = ["Date", "RT_Quarterly", "RT_Annually"] return df def bir(startdate="2003-01-01", enddate="2021-01-01"): """ Full Name:Total Retail Trade in United States Description: Monthly and Anually Return: pd.DataFrame """ tmp_url = url["fred_econ"] ua = UserAgent(verify_ssl=False) request_header = {"User-Agent": ua.random} request_params = { "id": "T5YIE", "cosd": "{}".format(startdate), "coed": "{}".format(enddate) } r = requests.get(tmp_url, params=request_params, headers=request_header) data_text = r.content df_5y = pd.read_csv(io.StringIO(data_text.decode('utf-8'))) df_5y["DATE"] = pd.to_datetime(df_5y["DATE"], format="%Y-%m-%d") request_header = {"User-Agent": ua.random} request_params = { "id": "T10YIE", "cosd": "{}".format(startdate), "coed": "{}".format(enddate) } r = requests.get(tmp_url, params=request_params, headers=request_header) data_text = r.content df_10y = pd.read_csv(io.StringIO(data_text.decode('utf-8'))) df_10y["DATE"] = pd.to_datetime(df_10y["DATE"], format="%Y-%m-%d") df = pd.merge_asof(df_5y, df_10y, on="DATE", direction="backward") df.columns = ["Date", "BIR_5y", "BIR_10y"] return df def adsbci(): """ An index designed to track real business conditions at high observation frequency """ ua = UserAgent(verify_ssl=False) request_header = {"User-Agent": ua.random} tmp_url = url["philfed"] + "ads" r = requests.get(tmp_url, headers=request_header) file = open("ads_temp.xls", "wb") file.write(r.content) file.close() df = pd.read_excel("ads_temp.xls") df.columns = ["Date", "ADS_Index"] df['Date'] = pd.to_datetime(df["Date"], format="%Y:%m:%d") os.remove("ads_temp.xls") return df def pci(): """ Tracks the degree of political disagreement among U.S. politicians at the federal level, Monthly """ df = pd.read_excel( "https://www.philadelphiafed.org/-/media/frbp/assets/data-visualizations/partisan-conflict.xlsx") df["Date"] = df["Year"].astype(str) + df["Month"] df["Date"] = pd.to_datetime(df["Date"], format="%Y%B") df = df.drop(["Year", "Month"], axis=1) df = df[["Date", "Partisan Conflict"]] return df def inflation_nowcasting(): ua = UserAgent(verify_ssl=False) request_header = {"User-Agent": ua.random} tmp_url = "https://www.clevelandfed.org/~/media/files/charting/%20nowcast_quarter.json" r = requests.get(tmp_url, headers=request_header) tmp_df = pd.DataFrame(demjson.decode(r.text)) df = pd.DataFrame() for i in range(0, len(tmp_df)): date = tmp_df['chart'][i]['subcaption'][:4] + "/" + \ pd.DataFrame(tmp_df["dataset"][i][0]['data'])['tooltext'].str.extract(r"\b(0?[1-9]|1[0-2])/(0?[1-9]|[12][0-9]|3[01])\b")[0] + "/" + \ pd.DataFrame(tmp_df["dataset"][i][0]['data'])['tooltext'].str.extract(r"\b(0?[1-9]|1[0-2])/(0?[1-9]|[12][0-9]|3[01])\b")[1] CPI_I = pd.DataFrame( (pd.DataFrame(tmp_df["dataset"][i])['data'])[0])["value"] C_CPI_I = pd.DataFrame( (pd.DataFrame(tmp_df["dataset"][i])['data'])[1])["value"] PCE_I = pd.DataFrame( (pd.DataFrame(tmp_df["dataset"][i])['data'])[2])["value"] C_PCE_I = pd.DataFrame( (pd.DataFrame(tmp_df["dataset"][i])['data'])[3])["value"] A_CPI_I = pd.DataFrame( (pd.DataFrame(tmp_df["dataset"][i])['data'])[4])["value"] A_C_CPI_I = pd.DataFrame( (pd.DataFrame(tmp_df["dataset"][i])['data'])[5])["value"] A_PCE_I = pd.DataFrame( (pd.DataFrame(tmp_df["dataset"][i])['data'])[6])["value"] A_C_PCE_I = pd.DataFrame( (pd.DataFrame(tmp_df["dataset"][i])['data'])[7])["value"] tmp_df2 = pd.DataFrame({"Date": date, "CPI_I": CPI_I, "C_CPI_I": C_CPI_I, "PCE_I": PCE_I, "C_PCE_I": C_PCE_I, "A_CPI_I": A_CPI_I, "A_C_CPI_I": A_C_CPI_I, "A_PCE_I": A_PCE_I, "A_C_PCE_I": A_C_PCE_I}) df = pd.concat([df, tmp_df2], axis=0) df.reset_index(drop=True, inplace=True) df.replace('', np.nan, inplace=True) return df def bbki(): tmp_url = url["chicagofed"] + "bbki/bbki-monthly-data-series-csv.csv" df =
pd.read_csv(tmp_url)
pandas.read_csv
# -*- coding: utf-8 -*- """ Created on Tue Mar 27 05:13:39 2018 @author: IvanA """ from selenium import webdriver from selenium.common.exceptions import NoSuchElementException from selenium.common.exceptions import ElementNotVisibleException from selenium.common.exceptions import StaleElementReferenceException from selenium.common.exceptions import WebDriverException #from click.exceptions import ClickException import pandas as pd import csv import urllib from urllib import parse from urllib import request from urllib import robotparser from datetime import datetime import time import re import lxml.html from lxml.cssselect import CSSSelector import sys from pathlib import Path def main(): # webdriver hay que cambiarlo para ajustarlo try: driver = webdriver.Chrome('C:\\Users\\ivana\\Documents\\Tools\\chromedriver.exe') except: print('Hay que indicar el path correcto del chromedriver.exe') exit else: seed_url = 'http://www.aena.es' user_agent='wswp' url = 'http://www.aena.es/csee/Satellite/infovuelos/es/' historicalcsv = 'informaciondevuelosacumulado.csv' try: dfhistorical_data = gethistorycsv(historicalcsv) rp = get_robots(seed_url) if rp.can_fetch(user_agent, url): dfvuelos = obtain_links(url,driver) dfnewdata = loop_through_links(rp, user_agent, dfvuelos, dfhistorical_data) except: print('Error en función main') finally: writerecordtocsv(dfnewdata,historicalcsv) driver.close() def writerecordtocsv(dfnewdata,historicalcsv): """Escribe los registros nuevos al archivo histórico""" #comprueba si el df está vacío if not dfnewdata.empty: myfile = Path(historicalcsv) if myfile.exists(): with open(historicalcsv,'a', newline='') as originalfile: filewriter = csv.writer(originalfile) #escribe al archivo histórico todos los registros del df for ix, row in dfnewdata.iterrows(): filewriter.writerow(row) else: with open(historicalcsv,'w', newline='') as originalfile: filewriter = csv.writer(originalfile) #escribe al archivo histórico todos los registros del df for ix, row in dfnewdata.iterrows(): filewriter.writerow(row) def gethistorycsv(historicalcsv): """Lee el archivo histórico de los vuelos en un dataframe que será utilizado más tarde para comprobar si la información de un vuelo ya se ha obtenido previamente""" myfile = Path(historicalcsv) if myfile.exists(): colnames = ['fecha','vuelo', 'horaplaneada','horareal'] dfhistoricalcsv = pd.read_csv(historicalcsv,header=None, names=colnames) else: dfhistoricalcsv = pd.DataFrame(columns=['fecha','vuelo','horaplaneada','horareal']) dfhistoricalcsv.set_index(['fecha','vuelo']) return dfhistoricalcsv def obtain_links(url,driver): """Obtiene los links destino para hacer el data scrape""" print('Abre página origen: ' , url) driver.get(url) elem = driver.find_element_by_xpath( './/input[@id="pagename"]' '/preceding-sibling::input[@type="hidden"]') driver.execute_script(''' var elem = arguments[0]; var value = arguments[1]; elem.value = value; ''', elem, 'L') print('Rellena los campos para hacer el crawling al aeropuerto de Madrid') #pone los parámetros para pasar a la página de vuelos a Madrid driver.find_element_by_id('origin_ac').send_keys('MADRID-BARAJAS A<NAME> (MAD )') driver.find_element_by_id('destiny_ac').clear() driver.find_element_by_id('destiny_ac').send_keys('Escribe origen') #Como hay dos botones de lupa se usa find_elements en vez de find_element #y se elige el segundo botón lupa con [1] driver.find_elements_by_class_name('btnLupa')[1].click() dfvuelos =
pd.DataFrame(columns=['vuelo','paginaweb'])
pandas.DataFrame
import json from typing import Tuple, Union import pandas as pd import numpy as np import re import os from tableone import TableOne from collections import defaultdict from io import StringIO from .gene_patterns import * import plotly.express as px import pypeta from pypeta import Peta from pypeta import filter_description class SampleIdError(RuntimeError): def __init__(self, sample_id: str, message: str): self.sample_id = sample_id self.message = message class NotNumericSeriesError(RuntimeError): def __init__(self, message: str): self.message = message class UnknowSelectionTypeError(RuntimeError): def __init__(self, message: str): self.message = message class NotInColumnError(RuntimeError): def __init__(self, message: str): self.message = message class GenesRelationError(RuntimeError): def __init__(self, message: str): self.message = message class VariantUndefinedError(RuntimeError): def __init__(self, message: str): self.message = message class ListsUnEqualLengthError(RuntimeError): def __init__(self, message: str): self.message = message class DatetimeFormatError(RuntimeError): def __init__(self, message: str): self.message = message class CDx_Data(): """[summary] """ def __init__(self, mut_df: pd.DataFrame = None, cli_df: pd.DataFrame = None, cnv_df: pd.DataFrame = None, sv_df: pd.DataFrame = None, json_str: str = None): """Constructor method with DataFrames Args: mut_df (pd.DataFrame, optional): SNV and InDel info. Defaults to None. cli_df (pd.DataFrame, optional): Clinical info. Defaults to None. cnv_df (pd.DataFrame, optional): CNV info. Defaults to None. sv_df (pd.DataFrame, optional): SV info. Defaults to None. """ self.json_str = json_str self.mut = mut_df self.cnv = cnv_df self.sv = sv_df if not cli_df is None: self.cli = cli_df self.cli = self._infer_datetime_columns() else: self._set_cli() self.crosstab = self.get_crosstab() def __len__(self): return 0 if self.cli is None else len(self.cli) def __getitem__(self, n): return self.select_by_sample_ids([self.cli.sampleId.iloc[n]]) def __sub__(self, cdx): if self.cli is None and cdx.cli is None: return CDx_Data() cli = None if self.cli is None and cdx.cli is None else pd.concat( [self.cli, cdx.cli]).drop_duplicates(keep=False) mut = None if self.mut is None and cdx.mut is None else pd.concat( [self.mut, cdx.mut]).drop_duplicates(keep=False) cnv = None if self.cnv is None and cdx.cnv is None else pd.concat( [self.cnv, cdx.cnv]).drop_duplicates(keep=False) sv = None if self.sv is None and cdx.sv is None else pd.concat( [self.sv, cdx.sv]).drop_duplicates(keep=False) return CDx_Data(cli_df=cli, mut_df=mut, cnv_df=cnv, sv_df=sv) def __add__(self, cdx): if self.cli is None and cdx.cli is None: return CDx_Data() cli = pd.concat([self.cli, cdx.cli]).drop_duplicates() mut = pd.concat([self.mut, cdx.mut]).drop_duplicates() cnv = pd.concat([self.cnv, cdx.cnv]).drop_duplicates() sv = pd.concat([self.sv, cdx.sv]).drop_duplicates() return CDx_Data(cli_df=cli, mut_df=mut, cnv_df=cnv, sv_df=sv) def from_PETA(self, token: str, json_str: str, host='https://peta.bgi.com/api'): """Retrieve CDx data from BGI-PETA database. Args: token (str): Effective token for BGI-PETA database json_str (str): The json format restrictions communicating to the database """ self.json_str = json_str peta = Peta(token=token, host=host) peta.set_data_restriction_from_json_string(json_str) # peta.fetch_clinical_data() does`not process dtype inference correctly, do manully. #self.cli = peta.fetch_clinical_data() self.cli = pd.read_csv( StringIO(peta.fetch_clinical_data().to_csv(None, index=False))) self.mut = peta.fetch_mutation_data() self.cnv = peta.fetch_cnv_data() self.sv = peta.fetch_sv_data() # dedup for the same sampleId in different studyIds, discard the duplicated ones from all tables cli_original = self.cli self.cli = self.cli.drop_duplicates('sampleId') if (len(self.cli) < len(cli_original)): print('Duplicated sampleId exists, drop duplicates and go on') undup_tuple = [(x, y) for x, y in zip(self.cli.sampleId, self.cli.studyId)] self.sv = self.sv[self.sv.apply( lambda x: (x['Tumor_Sample_Barcode'], x['studyId']) in undup_tuple, axis=1)].drop_duplicates() self.cnv = self.cnv[self.cnv.apply( lambda x: (x['Tumor_Sample_Barcode'], x['studyId']) in undup_tuple, axis=1)].drop_duplicates() self.mut = self.mut[self.mut.apply( lambda x: (x['Tumor_Sample_Barcode'], x['studyId']) in undup_tuple, axis=1)].drop_duplicates() # time series self.cli = self._infer_datetime_columns() self.crosstab = self.get_crosstab() return filter_description(json_str) def filter_description(self): """retrun filter description when data load from PETA Returns: str: description """ return filter_description(self.json_str) if self.json_str else None def from_file(self, mut_f: str = None, cli_f: str = None, cnv_f: str = None, sv_f: str = None): """Get CDx data from files. Args: mut_f (str, optional): File as NCBI MAF format contains SNV and InDel. Defaults to None. cli_f (str, optional): File name contains clinical info. Defaults to None. cnv_f (str, optional): File name contains CNV info. Defaults to None. sv_f (str, optional): File name contains SV info. Defaults to None. """ if not mut_f is None: self.mut = pd.read_csv(mut_f, sep='\t') if not cnv_f is None: self.cnv = pd.read_csv(cnv_f, sep='\t') if not sv_f is None: self.sv = pd.read_csv(sv_f, sep='\t') if not cli_f is None: self.cli = pd.read_csv(cli_f, sep='\t') else: self._set_cli() self.cli = self._infer_datetime_columns() self.crosstab = self.get_crosstab() def to_tsvs(self, path: str = './'): """Write CDx_Data properties to 4 seprated files Args: path (str, optional): Path to write files. Defaults to './'. """ if not self.cli is None: self.cli.to_csv(os.path.join(path, 'sample_info.txt'), index=None, sep='\t') if not self.mut is None: self.mut.to_csv(os.path.join(path, 'mut_info.txt'), index=None, sep='\t') if not self.cnv is None: self.cnv.to_csv(os.path.join(path, 'cnv_info.txt'), index=None, sep='\t') if not self.sv is None: self.sv.to_csv(os.path.join(path, 'fusion_info.txt'), index=None, sep='\t') def to_excel(self, filename: str = './output.xlsx'): """Write CDx_Data properties to excel file Args: filename (str, optional): target filename. Defaults to './output.xlsx'. """ if not filename.endswith('xlsx'): filename = filename + '.xlsx' with pd.ExcelWriter(filename) as ew: if not self.cli is None: self.cli.to_excel(ew, sheet_name='clinical', index=None) if not self.mut is None: self.mut.to_excel(ew, sheet_name='mutations', index=None) if not self.cnv is None: self.cnv.to_excel(ew, sheet_name='cnv', index=None) if not self.sv is None: self.sv.to_excel(ew, sheet_name='sv', index=None) def _set_cli(self): """Set the cli attribute, generate a void DataFrame when it is not specified. """ sample_id_series = [] if not self.mut is None: sample_id_series.append( self.mut['Tumor_Sample_Barcode'].drop_duplicates()) if not self.cnv is None: sample_id_series.append( self.cnv['Tumor_Sample_Barcode'].drop_duplicates()) if not self.sv is None: sample_id_series.append( self.sv['Tumor_Sample_Barcode'].drop_duplicates()) if len(sample_id_series) > 0: self.cli = pd.DataFrame({ 'sampleId': pd.concat(sample_id_series) }).drop_duplicates() else: self.cli = None def _infer_datetime_columns(self) -> pd.DataFrame: """To infer the datetime_columns and astype to datetime64 format Returns: pd.DataFrame: CDx.cli dataframe """ cli = self.cli for column in cli.columns: if column.endswith('DATE'): try: cli[column] = pd.to_datetime(cli[column]) except Exception as e: raise DatetimeFormatError( f'{column} column end with "DATE" can not be transformed to datetime format' ) return cli def get_crosstab(self) -> pd.DataFrame: """Generate a Gene vs. Sample_id cross table. Raises: SampleIdError: Sample id from the mut, cnv or sv which not exsits in the cli table. Returns: pd.DataFrame: CDx_Data. """ # 这里cli表中不允许存在相同的样本编号。会造成crosstab的列中存在重复,引入Series的boolen值无法处理的问题 if (self.cli is None) or (len(self.cli) == 0): return pd.DataFrame([]) sub_dfs = [] # cli cli_crosstab = self.cli.copy().set_index('sampleId').T cli_crosstab['track_type'] = 'CLINICAL' sub_dfs.append(cli_crosstab) # mut. represent by cHgvs, joined by '|' for mulitple hit if (not self.mut is None) and (len(self.mut) != 0): mut_undup = self.mut[[ 'Hugo_Symbol', 'Tumor_Sample_Barcode', 'HGVSp_Short' ]].groupby([ 'Hugo_Symbol', 'Tumor_Sample_Barcode' ])['HGVSp_Short'].apply(lambda x: '|'.join(x)).reset_index() mut_crosstab = mut_undup.pivot('Hugo_Symbol', 'Tumor_Sample_Barcode', 'HGVSp_Short') mut_crosstab['track_type'] = 'MUTATIONS' sub_dfs.append(mut_crosstab) # cnv. represent by gain or loss. at first use the virtual column "copy_Num" if (not self.cnv is None) and (len(self.cnv) != 0): cnv_undup = self.cnv[[ 'Hugo_Symbol', 'Tumor_Sample_Barcode', 'status' ]].groupby([ 'Hugo_Symbol', 'Tumor_Sample_Barcode' ])['status'].apply(lambda x: '|'.join(x)).reset_index() cnv_crosstab = cnv_undup.pivot('Hugo_Symbol', 'Tumor_Sample_Barcode', 'status') cnv_crosstab['track_type'] = 'CNV' sub_dfs.append(cnv_crosstab) # sv. represent by gene1 and gene2 combination. explode one record into 2 lines. if (not self.sv is None) and (len(self.sv) != 0): sv_undup = pd.concat([ self.sv, self.sv.rename(columns={ 'gene1': 'gene2', 'gene2': 'gene1' }) ])[['gene1', 'Tumor_Sample_Barcode', 'gene2']].groupby([ 'gene1', 'Tumor_Sample_Barcode' ])['gene2'].apply(lambda x: '|'.join(x)).reset_index() sv_crosstab = sv_undup.pivot('gene1', 'Tumor_Sample_Barcode', 'gene2') sv_crosstab['track_type'] = 'FUSION' sub_dfs.append(sv_crosstab) # pandas does not support reindex with duplicated index, so turn into multiIndex crosstab = pd.concat(sub_dfs) crosstab = crosstab.set_index('track_type', append=True) crosstab = crosstab.swaplevel() return crosstab #如何构建通用的选择接口,通过变异、基因、癌种等进行选择,并支持“或”和“且”的逻辑运算 #该接口至关重要,对变异入选条件的选择会影响到crosstab, #选择后返回一个新的CDX_Data对象 def select(self, conditions: dict = {}, update=True): """A universe interface to select data via different conditions. Args: conditions (dict, optional): Each key represent one column`s name of the CDx_Data attributes. Defaults to {}. update (bool, optional): [description]. Defaults to True. """ return self # 数据选择的辅助函数 def _numeric_selector(self, ser: pd.Series, range: str) -> pd.Series: """Compute a comparition expression on a numeric Series Args: ser (pd.Series): Numeric Series. range (str): comparition expression like 'x>5'. 'x' is mandatory and represent the input. Raises: NotNumericSeriesError: Input Series`s dtype is not a numeric type. Returns: pd.Series: Series with boolean values. """ if ser.dtype == 'object': raise NotNumericSeriesError(f'{ser.name} is not numeric') #return ser.map(lambda x: eval(re.sub(r'x', str(x), range))) return eval(re.sub(r'x', 'ser', range)) def _catagory_selector(self, ser: pd.Series, range: list) -> pd.Series: """Return True if the Series` value in the input range list. Args: ser (pd.Series): Catagory Series. range (list): List of target options. Returns: pd.Series: Series with boolean values """ return ser.isin(range) def _selector(self, df: pd.DataFrame, selections: dict) -> pd.DataFrame: """Filter the input DataFrame via the dict of conditions. Args: df (pd.DataFrame): Input. selections (dict): Dict format of conditions like "{'Cancer_type':['lung','CRC'],'Age':'x>5'}". The keys represent a column in the input DataFrame. The list values represent a catagory target and str values represent a numeric target. Raises: NotInColumnError: Key in the dict is not in the df`s columns. UnknowSelectionTypeError: The type of value in the dict is not str nor list. Returns: pd.DataFrame: Filterd DataFrame """ columns = df.columns for key, value in selections.items(): if key not in columns: raise NotInColumnError(f'{key} is not in the columns') if isinstance(value, str): df = df[self._numeric_selector(df[key], value)] elif isinstance(value, list): df = df[self._catagory_selector(df[key], value)] else: raise UnknowSelectionTypeError( f'{selections} have values not str nor list') return df def _fuzzy_id(self, regex: re.Pattern, text: str) -> str: """transform a sample id into fuzzy mode according the regex pattern Args: regex (re.Pattern): The info retains are in the capture patterns text (str): input sample id Returns: str: fuzzy mode sample id """ matches = regex.findall(text) if matches: text = '_'.join(matches[0]) return text def select_by_sample_ids(self, sample_ids: list, fuzzy: bool = False, regex_str: str = r'(\d+)[A-Z](\d+)', study_ids: list = []): """Select samples via a list of sample IDs. Args: sample_ids (list): sample ids list. fuzzy (bool): fuzzy mode. regex_str (str): The match principle for fuzzy match. The info in the regex capture patterns must be matched for a certifired record. Default for r'(\d+)[A-Z](\d+)'. study_ids: (list): The corresponding study id of each sample ids. Length of sample_ids and study_ids must be the same. Raises: ListsUnEqualLengthError: Length of sample_ids and study_ids are not equal. Returns: CDx: CDx object of selected samples. """ if fuzzy: regex = re.compile(regex_str) # fuzzy the input ids target_ids = [] fuzzy_to_origin = defaultdict(list) transform = lambda x: self._fuzzy_id(regex, x) for sample_id in sample_ids: fuzzy_sample_id = self._fuzzy_id(regex, sample_id) fuzzy_to_origin[fuzzy_sample_id].append(sample_id) target_ids.append(fuzzy_sample_id) else: target_ids = sample_ids transform = lambda x: x # match sample_id_bool = self.cli['sampleId'].map(transform).isin(target_ids) # no match, return immediately if not sample_id_bool.any(): return CDx_Data() # with study ids if len(study_ids): if len(study_ids) != len(sample_ids): raise ListsUnEqualLengthError('Error') sub_cli_df = self.cli[sample_id_bool] study_id_bool = sub_cli_df.apply( lambda x: x['studyId'] == study_ids[target_ids.index( transform(x['sampleId']))], axis=1) sample_id_bool = sample_id_bool & study_id_bool # construct new CDx_Data object # CDx_Data always have a cli cli_df = self.cli[sample_id_bool].copy() # add a column of query ids for fuzzy match # multi hit represent as a string if fuzzy: cli_df['queryId'] = cli_df['sampleId'].map( lambda x: ','.join(fuzzy_to_origin[transform(x)])).copy() if not self.mut is None and len(self.mut) != 0: mut_df = self.mut[self.mut['Tumor_Sample_Barcode'].isin( cli_df['sampleId'])].copy() else: mut_df = None if not self.cnv is None and len(self.cnv) != 0: cnv_df = self.cnv[self.cnv['Tumor_Sample_Barcode'].isin( cli_df['sampleId'])].copy() else: cnv_df = None if not self.sv is None and len(self.sv) != 0: sv_df = self.sv[self.sv['Tumor_Sample_Barcode'].isin( cli_df['sampleId'])].copy() else: sv_df = None return CDx_Data(cli_df=cli_df, mut_df=mut_df, cnv_df=cnv_df, sv_df=sv_df) # def set_mut_eligibility(self, **kwargs): """Set threshold for SNV/InDels to regrard as a positive sample Raises: VariantUndefinedError: mut info not provided by user. Returns: CDx_Data: CDx_Data object """ if self.mut is None or len(self.mut) == 0: mut = None else: mut = self._selector(self.mut, kwargs) return CDx_Data(cli_df=self.cli, mut_df=mut, cnv_df=self.cnv, sv_df=self.sv) def set_cnv_eligibility(self, **kwargs): """Set threshold for CNV to regrard as a positive sample. Raises: VariantUndefinedError: cnv info not provided by user. Returns: CDx_Data: CDx_Data object. """ if self.cnv is None or len(self.cnv) == 0: cnv = None else: cnv = self._selector(self.cnv, kwargs) return CDx_Data(cli_df=self.cli, mut_df=self.mut, cnv_df=cnv, sv_df=self.sv) def set_sv_eligibility(self, **kwargs): """Set threshold for SV to regrard as a positive sample. Raises: VariantUndefinedError: SV info not provided by user. Returns: CDx_Data: CDx_Data object. """ if self.sv is None or len(self.sv) == 0: sv = None else: sv = self._selector(self.sv, kwargs) return CDx_Data(cli_df=self.cli, mut_df=self.mut, cnv_df=self.cnv, sv_df=sv) # 指定一个列名,再指定范围。离散型用数组,数值型 # attrdict={'Cancer_type':['lung','CRC'],'Age':'x>5'} def select_samples_by_clinical_attributes2(self, attr_dict: dict): """Select samples via a set of conditions corresponding to the columns in the cli DataFrame. Args: attr_dict (dict): Dict format of conditions like "{'Cancer_type':['lung','CRC'],'Age':'x>5'}". The keys represent a column in the input DataFrame. The list values represent a catagory target and str values represent a numeric target. Returns: CDx: CDx object of selected samples. """ cli_df = self._selector(self.cli, attr_dict) return self.select_by_sample_ids(cli_df['sampleId']) def select_samples_by_clinical_attributes(self, **kwargs): """Select samples via a set of conditions corresponding to the columns in the cli DataFrame. Args: Keywords arguments with each key represent a column in the input DataFrame. like "Cancer_type=['lung','CRC'], Age='x>5'" The list values represent a catagory target and str values represent a numeric target. Returns: CDx: CDx object of selected samples. """ cli_df = self._selector(self.cli, kwargs) return self.select_by_sample_ids(cli_df['sampleId']) def select_samples_by_date_attributes( self, column_name: str = 'SAMPLE_RECEIVED_DATE', start='', end: str = '', days: int = 0, period: str = '', ): """Select samples using a datetime attribute in the cli dataframe Args: column_name (str, optional): Column used in the cli dataframe. Defaults to 'SAMPLE_RECEIVED_DATE'. from (str, optional): Time start point. Defaults to ''. to (str, optional): Time end point. Defaults to ''. days (int, optional): Days lasts. Defaults to ''. exact (str, optional): Exact range,eg '202005' for May in 2020 or '2021' for the whole year. Defaults to ''. """ date_ser = self.cli.set_index(column_name)['sampleId'] if period: cdx = self.select_by_sample_ids(date_ser[period]) elif start and end: cdx = self.select_by_sample_ids(date_ser[start:end]) elif start and days: cdx = self.select_by_sample_ids(date_ser[start:( pd.to_datetime(start) + pd.to_timedelta(days, 'D')).strftime("%Y-%m-%d")]) elif end and days: cdx = self.select_by_sample_ids(date_ser[( pd.to_datetime(end) - pd.to_timedelta(days, 'D')).strftime("%Y-%m-%d"):end]) return cdx # 对阳性样本进行选取。基因组合,且或关系,chgvs和ghgvs,基因系列如MMR、HR等 # 基因组合可以做为入参数组来传入 def select_samples_by_mutate_genes( self, genes: list = [], variant_type: list = ['MUTATIONS', 'CNV', 'FUSION'], how='or'): """Select sample via positve variant genes. Args: genes (list): Gene Hugo names. Defaults to [] for all mutated genes variant_type (list, optional): Combination of MUTATIONS, CNV and SV. Defaults to ['MUTATIONS', 'CNV', 'SV']. how (str, optional): 'and' for variant in all genes, 'or' for variant in either genes. Defaults to 'or'. Raises: GenesRelationError: Value of how is not 'and' nor 'or'. Returns: CDx: CDx object of selected samples. """ variant_crosstab = self.crosstab.reindex(index=variant_type, level=0) if len(genes) != 0: variant_crosstab = variant_crosstab.reindex(index=genes, level=1) # Certain variant_types or genes get a empty table. all.() bug if len(variant_crosstab) == 0: return CDx_Data() gene_num = len( pd.DataFrame(list( variant_crosstab.index)).iloc[:, 1].drop_duplicates()) if how == 'or': is_posi_sample = variant_crosstab.apply( lambda x: any(pd.notnull(x))) elif how == 'and': # reindex multiindex bug if len(genes) != 0 and len(genes) != gene_num: return CDx_Data() is_posi_sample = variant_crosstab.apply( lambda x: all(pd.notnull(x))) else: raise GenesRelationError( f'value of "how" must be "or" or "and", here comes "{how}"') # the last column is "track_type" sample_ids = is_posi_sample[is_posi_sample].index return self.select_by_sample_ids(sample_ids) # Analysis def tableone(self, **kwargs) -> TableOne: """Generate summary table1 using tableone library. Please refer to https://github.com/tompollard/tableone Args: columns : list, optional List of columns in the dataset to be included in the final table. categorical : list, optional List of columns that contain categorical variables. groupby : str, optional Optional column for stratifying the final table (default: None). nonnormal : list, optional List of columns that contain non-normal variables (default: None). min_max: list, optional List of variables that should report minimum and maximum, instead of standard deviation (for normal) or Q1-Q3 (for non-normal). pval : bool, optional Display computed P-Values (default: False). pval_adjust : str, optional Method used to adjust P-Values for multiple testing. The P-values from the unadjusted table (default when pval=True) are adjusted to account for the number of total tests that were performed. These adjustments would be useful when many variables are being screened to assess if their distribution varies by the variable in the groupby argument. For a complete list of methods, see documentation for statsmodels multipletests. Available methods include :: `None` : no correction applied. `bonferroni` : one-step correction `sidak` : one-step correction `holm-sidak` : step down method using Sidak adjustments `simes-hochberg` : step-up method (independent) `hommel` : closed method based on Simes tests (non-negative) htest_name : bool, optional Display a column with the names of hypothesis tests (default: False). htest : dict, optional Dictionary of custom hypothesis tests. Keys are variable names and values are functions. Functions must take a list of Numpy Arrays as the input argument and must return a test result. e.g. htest = {'age': myfunc} missing : bool, optional Display a count of null values (default: True). ddof : int, optional Degrees of freedom for standard deviation calculations (default: 1). rename : dict, optional Dictionary of alternative names for variables. e.g. `rename = {'sex':'gender', 'trt':'treatment'}` sort : bool or str, optional If `True`, sort the variables alphabetically. If a string (e.g. `'P-Value'`), sort by the specified column in ascending order. Default (`False`) retains the sequence specified in the `columns` argument. Currently the only columns supported are: `'Missing'`, `'P-Value'`, `'P-Value (adjusted)'`, and `'Test'`. limit : int or dict, optional Limit to the top N most frequent categories. If int, apply to all categorical variables. If dict, apply to the key (e.g. {'sex': 1}). order : dict, optional Specify an order for categorical variables. Key is the variable, value is a list of values in order. {e.g. 'sex': ['f', 'm', 'other']} label_suffix : bool, optional Append summary type (e.g. "mean (SD); median [Q1,Q3], n (%); ") to the row label (default: True). decimals : int or dict, optional Number of decimal places to display. An integer applies the rule to all variables (default: 1). A dictionary (e.g. `decimals = {'age': 0)`) applies the rule per variable, defaulting to 1 place for unspecified variables. For continuous variables, applies to all summary statistics (e.g. mean and standard deviation). For categorical variables, applies to percentage only. overall : bool, optional If True, add an "overall" column to the table. Smd and p-value calculations are performed only using stratified columns. display_all : bool, optional If True, set pd. display_options to display all columns and rows. (default: False) dip_test : bool, optional Run Hartigan's Dip Test for multimodality. If variables are found to have multimodal distributions, a remark will be added below the Table 1. (default: False) normal_test : bool, optional Test the null hypothesis that a sample come from a normal distribution. Uses scipy.stats.normaltest. If variables are found to have non-normal distributions, a remark will be added below the Table 1. (default: False) tukey_test : bool, optional Run Tukey's test for far outliers. If variables are found to have far outliers, a remark will be added below the Table 1. (default: False) Returns: pd.DataFrame: Summary of the Data """ table1 = TableOne(self.cli, **kwargs) return table1 def pathway(self): pass def pinpoint(self): pass def oncoprint(self): pass def survival(self): pass def plot_gene_variant_rate(self, genes=genes_688): freq_mut_s = self.test_positive_rate( genes_to_observe=genes, groupby_genes=True, variant_type_to_observe=['MUTATIONS']) * 100 freq_cnv_s = self.test_positive_rate(genes_to_observe=genes, groupby_genes=True, variant_type_to_observe=['CNV' ]) * 100 freq_sv_s = self.test_positive_rate(genes_to_observe=genes, groupby_genes=True, variant_type_to_observe=['FUSION' ]) * 100 #判定是否三种变异类型是0并处理 avalible_s = [] variantlist = [freq_mut_s, freq_cnv_s, freq_sv_s] for i, x in enumerate(variantlist): if len(x) != 0: avalible_s.append(x) if len(avalible_s) == 0: return 'no data' if len(freq_mut_s) == 0: freq_mut_s = pd.Series([0] * len(avalible_s[0]), index=avalible_s[0].index) if len(freq_cnv_s) == 0: freq_cnv_s = pd.Series([0] * len(avalible_s[0]), index=avalible_s[0].index) if len(freq_sv_s) == 0: freq_sv_s = pd.Series([0] * len(avalible_s[0]), index=avalible_s[0].index) freq_s = pd.DataFrame({ 'Mutations': freq_mut_s, 'CNV': freq_cnv_s, 'SV': freq_sv_s }).fillna(0) freq_s['total'] = freq_s.sum(axis=1) freq_s = freq_s.sort_values(by='total', ascending=False) fig = px.bar( freq_s, x=freq_s.index, y=['Mutations', 'CNV', 'SV'], ) #fig.update_traces(texttemplate='%{text:.2%}', textposition='outside',) fig.update_layout(uniformtext_minsize=8, uniformtext_mode='hide') fig.layout.xaxis.title.text = None fig.layout.yaxis.title.text = '检出率(%)' fig.layout.legend.title.text = None return fig # 画图的程序是否内置? def test_positive_rate( self, groupby='', groupby_genes=False, groupby_variant_type=False, genes_to_observe=[], variant_type_to_observe=['MUTATIONS', 'CNV', 'FUSION']): """Calculate the positvie rate for CDx object in user defined way Args: groupby (str, optional): Column name in the CDx_Data.cli DataFrame. Defaults to ''. groupby_genes (bool, optional): Groupby mutate genes. Defaults to False. groupby_variant_type (bool, optional): Groupby variant type, including MUTATIONS, CNV and SV. Defaults to False. genes_to_observe (list, optional): Genes list that should be considered. Defaults to []. variant_type_to_observe (list, optional): Variant type that shoud be considered. Defaults to ['MUTATIONS','CNV','SV']. Returns: Union[float,pd.Series]: A pd.Series when groupby options passed, a float value when not. """ # empty CDx if len(self) == 0: return
pd.Series([], dtype='float64')
pandas.Series
# Type: module # String form: <module 'WindPy' from '/opt/conda/lib/python3.6/WindPy.py'> # File: /opt/conda/lib/python3.6/WindPy.py # Source: from ctypes import * import threading import traceback from datetime import datetime, date, time, timedelta import time as t import re from WindData import * from WindBktData import * from XMLParser import XMLReader import pandas as pd import logging import getpass r = XMLReader("/wind/serverapi/wsq_decode.xml") # import speedtcpclient as client expolib = None speedlib = None TDB_lib = None c_lib = None # For test use! Should be replaced with a real userID # userID = "1214779" api_retry = 1 interval = 2 userName = getpass.getuser() authDataPath = "/home/" + userName + "/.wind/authData" authString = readFile(authDataPath) # userID = str(getJsonTag(authString, 'accountID')) # if userID == '': # userID = "1214779" wind_log_path = "/usr/local/log/" def DemoWSQCallback(out): print("DemoWSQCallback") print(out) wsq_items = [] def g_wsq_callback(reqID, indata): out = WindData() out.set(indata, 3) out.RequestID = reqID id2rtField = {} for item in wsq_items: id2rtField[item['id']] = item['funname'].upper() tmp = [id2rtField[str(val)] for val in out.Fields] out.Fields = tmp out.Times = datetime.now().strftime('%Y%m%d %H:%M:%S') try: g_wsq_callback.callback_funcs[reqID](out) except: print(out) SPDCBTYPE = CFUNCTYPE(None, c_int, POINTER(c_apiout)) spdcb = SPDCBTYPE(g_wsq_callback) g_wsq_callback.callback_funcs = {} REQUEST_ID_CANCELALL = 0 REQUEST_ID_SYNC = 1 REQUEST_ID_MAX_RESQUEST = 9999 REQUEST_ID_MIN_RESQUEST = 3 g_requestID = REQUEST_ID_MIN_RESQUEST # The minimum id of NONE BLOCKING MODE def retry(func): def wrapper(*args, **kargs): out = func(*args, **kargs) if not out: return out error_code = type_check(out) if error_code == -10: for i in range(api_retry): out = func(*args, **kargs) error_code = type_check(out) if error_code != -10: break return out # 判断out类型,若带usedf参数则为tuple def type_check(out): if isinstance(out, tuple): error_code = out[0] else: error_code = out.ErrorCode return error_code return wrapper class WindQnt: b_start = False def __static_var(var_name, inital_value): def _set_var(obj): setattr(obj, var_name, inital_value) return obj return _set_var def __stringify(arg): if arg is None: tmp = [""] elif arg == "": tmp = [""] elif isinstance(arg, str): a_l = arg.strip().split(',') arg = ','.join([a.strip() for a in a_l]) tmp = [arg] elif isinstance(arg, list): tmp = [str(x) for x in arg] elif isinstance(arg, tuple): tmp = [str(x) for x in arg] elif isinstance(arg, float) or isinstance(arg, int): tmp = [str(arg)] elif str(type(arg)) == "<type 'unicode'>": tmp = [arg] else: tmp = None if tmp is None: return None else: return ";".join(tmp) def __parseoptions(self, arga=None, argb=None): options = WindQnt._WindQnt__stringify(self) if options is None: return None if isinstance(arga, tuple): for i in range(len(arga)): v = WindQnt._WindQnt__stringify(arga[i]) if v is None: continue else: if options == "": options = v else: options = options + ";" + v if isinstance(argb, dict): keys = argb.keys() for key in keys: v = WindQnt._WindQnt__stringify(argb[key]) if v is None: continue else: if options == "": options = str(key) + "=" + v else: options = options + ";" + str(key) + "=" + v return options @staticmethod def format_option(options): if options is None: return None option_f = options.replace(';', '&&') return option_f # with_time param means you can format hours:minutes:seconds, but not must be def __parsedate(self, with_time=False): d = self if d is None: d = datetime.today().strftime("%Y-%m-%d") return d elif isinstance(d, date): d = d.strftime("%Y-%m-%d") return d elif isinstance(d, datetime): d = d.strftime("%Y-%m-%d") return d elif isinstance(d, str): try: d = pure_num = ''.join(list(filter(str.isdigit, d))) if len(d) != 8 and len(d) != 14: return None if len(pure_num) == 14: d = pure_num[:8] + ' ' + pure_num[8:] if int(d[9:11]) > 24 or int(d[9:11]) < 0 or \ int(d[11:13]) > 60 or int(d[11:13]) < 0 or \ int(d[13:15]) > 60 or int(d[13:15]) < 0: return None if int(d[:4]) < 1000 or int(d[:4]) > 9999 or \ int(d[4:6]) < 1 or int(d[4:6]) > 12 or \ int(d[6:8]) < 1 or int(d[6:8]) > 31: return None date_time = d.split(' ') YMD = date_time[0][:4] + '-' + date_time[0][4:6] + '-' + date_time[0][6:8] HMS = '' if with_time and len(date_time) == 2: HMS = ' ' + date_time[1][:2] + ':' + date_time[1][2:4] + ':' + date_time[1][4:6] d = YMD + HMS return d except: return None return d # def __parsedate(d): # if d is None: # d = datetime.today().strftime("%Y-%m-%d") # return d # elif isinstance(d, date): # d = d.strftime("%Y-%m-%d") # return d # elif isinstance(d, str): # try: # #Try to get datetime object from the user input string. # #We will go to the except block, given an invalid format. # if re.match(r'^(?:(?!0000)[0-9]{4}-(?:(?:0[1-9]|1[0-2])-(?:0[1-9]|1[0-9]|2[0-8])|(?:0[13-9]|1[0-2])-(?:29|30)|(?:0[13578]|1[02])-31)|(?:[0-9]{2}(?:0[48]|[2468][048]|[13579][26])|(?:0[48]|[2468][048]|[13579][26])00)-02-29)$',d, re.I|re.M): # d = datetime.strptime(d, "%Y-%m-%d") # return d.strftime("%Y-%m-%d") # elif re.match(r'^(?:(?!0000)[0-9]{4}(?:(?:0[1-9]|1[0-2])(?:0[1-9]|1[0-9]|2[0-8])|(?:0[13-9]|1[0-2])(?:29|30)|(?:0[13578]|1[02])31)|(?:[0-9]{2}(?:0[48]|[2468][048]|[13579][26])|(?:0[48]|[2468][048]|[13579][26])00)0229)$', d, re.I|re.M): # d = datetime.strptime(d, "%Y%m%d") # return d.strftime("%Y-%m-%d") # else: # return None # except: # return None # else: # return None # # return d def use_debug_file(self, debug_expo='/wind/serverapi/libExpoWrapperDebug.so', debug_speed='/wind/serverapi/libSpeedWrapperDebug.so'): WindQnt.debug_expo = debug_expo WindQnt.debug_speed = debug_speed @staticmethod def format_wind_data(error_codes, msg): out = WindData() out.ErrorCode = error_codes out.Codes = ['ErrorReport'] out.Fields = ['OUT MESSAGE'] out.Times = datetime.now().strftime('%Y%m%d %H:%M:%S') out.Data = [[msg]] return out @staticmethod def to_dataframe(out): if out.ErrorCode != 0: return pd.DataFrame([out.ErrorCode], columns=['ErrorCode']) col = out.Times if len(out.Codes) == len(out.Fields) == 1: idx = out.Fields elif len(out.Codes) > 1 and len(out.Fields) == 1: idx = out.Codes elif len(out.Codes) == 1 and len(out.Fields) > 1: idx = out.Fields else: idx = None df = pd.DataFrame(out.Data, columns=col) if idx: df.index = idx return df.T.infer_objects() def isconnected(self): return 0 class __start: def __init__(self): self.restype = c_int32 self.argtypes = [c_wchar_p, c_wchar_p, c_int32] self.lastCall = 0 def __call__(self, show_welcome=True, retry=1): global expolib global speedlib global TDB_lib global c_lib global api_retry if t.time() - self.lastCall > interval: if WindQnt.b_start: return WindQnt.b_start = True self.lastCall = t.time() TDB_lib = CDLL("/wind/serverapi/libtdb.so") c_lib = CDLL("/wind/serverapi/libtradeapi.so") c_lib.tLogon.restype = POINTER(c_variant) c_lib.tQuery.restype = POINTER(c_variant) c_lib.tLogout.restype = POINTER(c_variant) c_lib.tSendOrder.restype = POINTER(c_variant) c_lib.tCancelOrder.restype = POINTER(c_variant) if hasattr(WindQnt, "debug_expo"): expolib = CDLL(WindQnt.debug_expo) else: expolib = CDLL("/wind/serverapi/libExpoWrapper.so") expolib.SendMsg2Expo.restype = POINTER(c_apiout) if hasattr(WindQnt, "debug_speed"): speedlib = CDLL(WindQnt.debug_speed) else: speedlib = CDLL("/wind/serverapi/libSpeedWrapper.so") speedlib.SendMsg2SpeedAsyc.restype = POINTER(c_apiout) api_retry = int(retry) if int(retry) < 6 else 5 if show_welcome: print("COPYRIGHT (C) 2017 Wind Information Co., Ltd. ALL RIGHTS RESERVED.\n" "IN NO CIRCUMSTANCE SHALL WIND BE RESPONSIBLE FOR ANY DAMAGES OR LOSSES\n" "CAUSED BY USING WIND QUANT API FOR PYTHON.") return else: # print ("wait a while to start!") return ERR_WAIT def __str__(self): return ("Start the Wind Quant API") start = __start() class __wses: def __init__(self): self.restype = POINTER(c_apiout) self.argtypes = [c_wchar_p,c_wchar_p,c_wchar_p,c_wchar_p,c_wchar_p] self.lastCall = 0 @retry def __call__(self, codes, fields, beginTime=None, endTime=None, options=None, *arga, **argb): # write_log('call wsd') s = int(t.time()*1000) if expolib is None: return WindQnt.format_wind_data(-103, '') if t.time() - self.lastCall < interval: t.sleep(interval) if isinstance(endTime, str): # 判断是否为日期宏,若不是,则调用parsedate方法 endTime_compile = re.findall('\d\d\d\d\d\d\d\d', endTime.replace('-', '')) if endTime_compile: endTime = WindQnt._WindQnt__parsedate(endTime) else: # 处理datetime类型日期 endTime = WindQnt._WindQnt__parsedate(endTime) if endTime == None: print("Invalid date format of endTime! Please use the '%Y-%m-%d' format! E.g. 2016-01-01") return if isinstance(beginTime, str): beginTime_compile = re.findall('\d\d\d\d\d\d\d\d', beginTime.replace('-', '')) if beginTime_compile: beginTime = WindQnt._WindQnt__parsedate(beginTime) else: beginTime = WindQnt._WindQnt__parsedate(beginTime) if beginTime == None: print("Invalid date format of beginTime! Please use the '%Y-%m-%d' format! E.g. 2016-01-01") return if(endTime==None): endTime = datetime.today().strftime("%Y-%m-%d") if(beginTime==None): beginTime = endTime # chech if the endTime is before than the beginTime # endD = datetime.strptime(endTime, "%Y-%m-%d") # beginD = datetime.strptime(beginTime, "%Y-%m-%d") # if (endD-beginD).days < 0: # print("The endTime should be later than or equal to the beginTime!") # return codes = WindQnt._WindQnt__stringify(codes) fields = WindQnt._WindQnt__stringify(fields) options = WindQnt._WindQnt__parseoptions(options, arga, argb) if codes == None or fields == None or options == None: print("Insufficient arguments!") return userID = str(getJsonTag(authString, 'accountID')) if userID == '': userID = "1214779" tmp = "wses|"+codes+"|"+fields+"|"+beginTime+"|"+endTime+"|"+options+"|"+userID tmp = tmp.encode("utf16") + b"\x00\x00" apiOut = expolib.SendMsg2Expo(tmp, len(tmp)) self.lastCall = t.time() if apiOut.contents.ErrorCode == -1 or apiOut.contents.ErrorCode == -40521010: msg = 'Request Timeout' e = int(t.time()*1000) write_log(str(e-s) + ' call wses') return WindQnt.format_wind_data(-40521010, msg) else: out = WindData() out.set(apiOut, 1, asdate = True) if 'usedf' in argb.keys(): usedf = argb['usedf'] if usedf: if not isinstance(usedf, bool): print('the sixth parameter is usedf which should be the Boolean type!') return try: if out.ErrorCode != 0: df = pd.DataFrame(out.Data, index=out.Fields) df.columns = [x for x in range(df.columns.size)] return out.ErrorCode, df.T.infer_objects() col = out.Times if len(out.Codes) == len(out.Fields) == 1: idx = out.Fields elif len(out.Codes) > 1 and len(out.Fields) == 1: idx = out.Codes elif len(out.Codes) == 1 and len(out.Fields) > 1: idx = out.Fields else: idx = None df = pd.DataFrame(out.Data, columns=col) if idx: df.index = idx e = int(t.time()*1000) write_log(str(e-s) + ' call wsd') return out.ErrorCode, df.T.infer_objects() except Exception: print(traceback.format_exc()) return if out.ErrorCode != 0: if len(out.Data) != 0 and len(out.Data[0]) > 100: if len(out.Data) > 1: print(str(out.Data)[:10] + '...]...]') else: print(str(out.Data)[:10] + '...]]') else: print(out.Data) e = int(t.time()*1000) write_log(str(e-s) + ' call wses') return out def __str__(self): return ("WSES") wses = __wses() class __wsee: def __init__(self): self.restype = POINTER(c_apiout) self.argtypes = [c_wchar_p,c_wchar_p,c_wchar_p] #codes,fields,options self.lastCall = 0 @retry def __call__(self, codes, fields, options=None, *arga, **argb): # write_log('call wsee') s = int(t.time()*1000) if expolib is None: return WindQnt.format_wind_data(-103, '') if t.time() - self.lastCall < interval: t.sleep(interval) codes = WindQnt._WindQnt__stringify(codes) fields = WindQnt._WindQnt__stringify(fields) options = WindQnt._WindQnt__parseoptions(options, arga, argb) if fields == None or options == None: print("Insufficient arguments!") return userID = str(getJsonTag(authString, 'accountID')) if userID == '': userID = "1214779" tmp = "wsee|"+codes+"|"+fields+"|"+options+"|"+userID tmp = tmp.encode("utf16") + b"\x00\x00" apiOut = expolib.SendMsg2Expo(tmp, len(tmp)) self.lastCall = t.time() if apiOut.contents.ErrorCode == -1 or apiOut.contents.ErrorCode == -40521010: msg = 'Request Timeout' e = int(t.time()*1000) write_log(str(e-s) + ' call wsee') return WindQnt.format_wind_data(-40521010, msg) else: out = WindData() out.set(apiOut, 1, asdate=True) #将winddata类型数据改为dataframe格式 if 'usedf' in argb.keys(): usedf = argb['usedf'] if usedf: if not isinstance(usedf, bool): print('the fourth parameter is usedf which should be the Boolean type!') return try: if out.ErrorCode != 0: df = pd.DataFrame(out.Data, index=out.Fields) df.columns = [x for x in range(df.columns.size)] return out.ErrorCode, df.T.infer_objects() if out.Codes == 1 or out.Fields == 1: return out.ErrorCode, WindQnt.to_dataframe(out) else: df =
pd.DataFrame(out.Data, columns=out.Codes, index=out.Fields)
pandas.DataFrame
# Copyright 2022 The Feast Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pandas as pd import pytest from feast import RequestSource from feast.feature_view import FeatureView from feast.field import Field from feast.infra.offline_stores.file_source import FileSource from feast.on_demand_feature_view import OnDemandFeatureView, on_demand_feature_view from feast.types import Float32, String, UnixTimestamp def udf1(features_df: pd.DataFrame) -> pd.DataFrame: df =
pd.DataFrame()
pandas.DataFrame
# ---------------------------------------------------------------------------- # Copyright (c) 2013--, scikit-bio development team. # # Distributed under the terms of the Modified BSD License. # # The full license is in the file COPYING.txt, distributed with this software. # ---------------------------------------------------------------------------- import collections import copy import unittest import functools import itertools import types import numpy as np import numpy.testing as npt import pandas as pd import scipy.stats from skbio import Sequence, DNA, RNA, Protein, TabularMSA from skbio.sequence import GrammaredSequence from skbio.util import classproperty from skbio.util._decorator import overrides from skbio.util._testing import ReallyEqualMixin from skbio.metadata._testing import (MetadataMixinTests, PositionalMetadataMixinTests) from skbio.util import assert_data_frame_almost_equal from skbio.util._testing import assert_index_equal class TabularMSASubclass(TabularMSA): """Used for testing purposes.""" pass class TestTabularMSAMetadata(unittest.TestCase, ReallyEqualMixin, MetadataMixinTests): def setUp(self): self._metadata_constructor_ = functools.partial(TabularMSA, []) class TestTabularMSAPositionalMetadata(unittest.TestCase, ReallyEqualMixin, PositionalMetadataMixinTests): def setUp(self): def factory(axis_len, positional_metadata=None): return TabularMSA([DNA('A' * axis_len)], positional_metadata=positional_metadata) self._positional_metadata_constructor_ = factory class TestTabularMSA(unittest.TestCase, ReallyEqualMixin): def test_from_dict_empty(self): self.assertEqual(TabularMSA.from_dict({}), TabularMSA([], index=[])) def test_from_dict_single_sequence(self): self.assertEqual(TabularMSA.from_dict({'foo': DNA('ACGT')}), TabularMSA([DNA('ACGT')], index=['foo'])) def test_from_dict_multiple_sequences(self): msa = TabularMSA.from_dict( {1: DNA('ACG'), 2: DNA('GGG'), 3: DNA('TAG')}) # Sort because order is arbitrary. msa.sort() self.assertEqual( msa, TabularMSA([DNA('ACG'), DNA('GGG'), DNA('TAG')], index=[1, 2, 3])) def test_from_dict_invalid_input(self): # Basic test to make sure error-checking in the TabularMSA constructor # is being invoked. with self.assertRaisesRegex( ValueError, 'must match the number of positions'): TabularMSA.from_dict({'a': DNA('ACG'), 'b': DNA('ACGT')}) def test_constructor_invalid_dtype(self): with self.assertRaisesRegex(TypeError, 'GrammaredSequence.*Sequence'): TabularMSA([Sequence('')]) with self.assertRaisesRegex(TypeError, 'GrammaredSequence.*int'): TabularMSA([42, DNA('')]) def test_constructor_not_monomorphic(self): with self.assertRaisesRegex(TypeError, 'matching type.*RNA.*DNA'): TabularMSA([DNA(''), RNA('')]) with self.assertRaisesRegex(TypeError, 'matching type.*float.*Protein'): TabularMSA([Protein(''), Protein(''), 42.0, Protein('')]) def test_constructor_unequal_length(self): with self.assertRaisesRegex( ValueError, 'must match the number of positions.*1 != 0'): TabularMSA([Protein(''), Protein('P')]) with self.assertRaisesRegex( ValueError, 'must match the number of positions.*1 != 3'): TabularMSA([Protein('PAW'), Protein('ABC'), Protein('A')]) def test_constructor_non_iterable(self): with self.assertRaises(TypeError): TabularMSA(42) def test_constructor_minter_and_index_both_provided(self): with self.assertRaisesRegex(ValueError, 'both.*minter.*index'): TabularMSA([DNA('ACGT'), DNA('TGCA')], minter=str, index=['a', 'b']) def test_constructor_invalid_minter_callable(self): with self.assertRaises(TypeError): TabularMSA([DNA('ACGT'), DNA('TGCA')], minter=float) def test_constructor_missing_minter_metadata_key(self): with self.assertRaises(KeyError): TabularMSA([DNA('ACGT', metadata={'foo': 'bar'}), DNA('TGCA')], minter='foo') def test_constructor_unhashable_minter_metadata_key(self): with self.assertRaises(TypeError): TabularMSA([DNA('ACGT'), DNA('TGCA')], minter=[]) def test_constructor_index_length_mismatch_iterable(self): with self.assertRaisesRegex(ValueError, 'sequences.*2.*index length.*0'): TabularMSA([DNA('ACGT'), DNA('TGCA')], index=iter([])) def test_constructor_index_length_mismatch_index_object(self): with self.assertRaisesRegex(ValueError, 'sequences.*2.*index length.*0'): TabularMSA([DNA('ACGT'), DNA('TGCA')], index=pd.Index([])) def test_constructor_invalid_index_scalar(self): with self.assertRaises(TypeError): TabularMSA([DNA('ACGT'), DNA('TGCA')], index=42) def test_constructor_non_unique_labels(self): msa = TabularMSA([DNA('ACGT'), DNA('ACGT')], index=[1, 1]) assert_index_equal(msa.index, pd.Int64Index([1, 1])) def test_constructor_empty_no_index(self): # sequence empty msa = TabularMSA([]) self.assertIsNone(msa.dtype) self.assertEqual(msa.shape, (0, 0)) assert_index_equal(msa.index, pd.RangeIndex(0)) with self.assertRaises(StopIteration): next(iter(msa)) # position empty seqs = [DNA(''), DNA('')] msa = TabularMSA(seqs) self.assertIs(msa.dtype, DNA) self.assertEqual(msa.shape, (2, 0)) assert_index_equal(msa.index, pd.RangeIndex(2)) self.assertEqual(list(msa), seqs) def test_constructor_empty_with_labels(self): # sequence empty msa = TabularMSA([], minter=lambda x: x) assert_index_equal(msa.index, pd.Index([])) msa = TabularMSA([], index=iter([])) assert_index_equal(msa.index, pd.Index([])) # position empty msa = TabularMSA([DNA('', metadata={'id': 42}), DNA('', metadata={'id': 43})], minter='id') assert_index_equal(msa.index, pd.Index([42, 43])) msa = TabularMSA([DNA(''), DNA('')], index=iter([42, 43])) assert_index_equal(msa.index, pd.Index([42, 43])) def test_constructor_non_empty_no_labels_provided(self): # 1x3 seqs = [DNA('ACG')] msa = TabularMSA(seqs) self.assertIs(msa.dtype, DNA) self.assertEqual(msa.shape, (1, 3)) assert_index_equal(msa.index, pd.RangeIndex(1)) self.assertEqual(list(msa), seqs) # 3x1 seqs = [DNA('A'), DNA('C'), DNA('G')] msa = TabularMSA(seqs) self.assertIs(msa.dtype, DNA) self.assertEqual(msa.shape, (3, 1)) assert_index_equal(msa.index, pd.RangeIndex(3)) self.assertEqual(list(msa), seqs) def test_constructor_non_empty_with_labels_provided(self): seqs = [DNA('ACG'), DNA('CGA'), DNA('GTT')] msa = TabularMSA(seqs, minter=str) self.assertIs(msa.dtype, DNA) self.assertEqual(msa.shape, (3, 3)) assert_index_equal(msa.index, pd.Index(['ACG', 'CGA', 'GTT'])) self.assertEqual(list(msa), seqs) msa = TabularMSA(seqs, index=iter([42, 43, 44])) assert_index_equal(msa.index, pd.Index([42, 43, 44])) def test_constructor_works_with_iterator(self): seqs = [DNA('ACG'), DNA('CGA'), DNA('GTT')] msa = TabularMSA(iter(seqs), minter=str) self.assertIs(msa.dtype, DNA) self.assertEqual(msa.shape, (3, 3)) assert_index_equal(msa.index, pd.Index(['ACG', 'CGA', 'GTT'])) self.assertEqual(list(msa), seqs) def test_constructor_with_multiindex_index(self): msa = TabularMSA([DNA('AA'), DNA('GG')], index=[('foo', 42), ('bar', 43)]) self.assertIsInstance(msa.index, pd.MultiIndex) assert_index_equal(msa.index, pd.Index([('foo', 42), ('bar', 43)])) def test_constructor_with_multiindex_minter(self): def multiindex_minter(seq): if str(seq) == 'AC': return ('foo', 42) else: return ('bar', 43) msa = TabularMSA([DNA('AC'), DNA('GG')], minter=multiindex_minter) self.assertIsInstance(msa.index, pd.MultiIndex) assert_index_equal(msa.index, pd.Index([('foo', 42), ('bar', 43)])) def test_copy_constructor_respects_default_index(self): msa = TabularMSA([DNA('ACGT'), DNA('----'), DNA('AAAA')]) copy = TabularMSA(msa) self.assertEqual(msa, copy) self.assertIsNot(msa, copy) assert_index_equal(msa.index, pd.RangeIndex(3)) assert_index_equal(copy.index, pd.RangeIndex(3)) def test_copy_constructor_without_metadata(self): msa = TabularMSA([DNA('ACGT'), DNA('----')]) copy = TabularMSA(msa) self.assertEqual(msa, copy) self.assertIsNot(msa, copy) assert_index_equal(copy.index, pd.RangeIndex(2)) def test_copy_constructor_with_metadata(self): msa = TabularMSA([DNA('ACGT'), DNA('----')], metadata={'foo': 42}, positional_metadata={'bar': range(4)}, index=['idx1', 'idx2']) copy = TabularMSA(msa) self.assertEqual(msa, copy) self.assertIsNot(msa, copy) self.assertIsNot(msa.metadata, copy.metadata) self.assertIsNot(msa.positional_metadata, copy.positional_metadata) # pd.Index is immutable, no copy necessary. self.assertIs(msa.index, copy.index) def test_copy_constructor_state_override_with_minter(self): msa = TabularMSA([DNA('ACGT'), DNA('----')], metadata={'foo': 42}, positional_metadata={'bar': range(4)}, index=['idx1', 'idx2']) copy = TabularMSA(msa, metadata={'foo': 43}, positional_metadata={'bar': range(4, 8)}, minter=str) self.assertNotEqual(msa, copy) self.assertEqual( copy, TabularMSA([DNA('ACGT'), DNA('----')], metadata={'foo': 43}, positional_metadata={'bar': range(4, 8)}, minter=str)) def test_copy_constructor_state_override_with_index(self): msa = TabularMSA([DNA('ACGT'), DNA('----')], metadata={'foo': 42}, positional_metadata={'bar': range(4)}, index=['idx1', 'idx2']) copy = TabularMSA(msa, metadata={'foo': 43}, positional_metadata={'bar': range(4, 8)}, index=['a', 'b']) self.assertNotEqual(msa, copy) self.assertEqual( copy, TabularMSA([DNA('ACGT'), DNA('----')], metadata={'foo': 43}, positional_metadata={'bar': range(4, 8)}, index=['a', 'b'])) def test_copy_constructor_with_minter_and_index(self): msa = TabularMSA([DNA('ACGT'), DNA('----')], index=['idx1', 'idx2']) with self.assertRaisesRegex(ValueError, 'both.*minter.*index'): TabularMSA(msa, index=['a', 'b'], minter=str) def test_dtype(self): self.assertIsNone(TabularMSA([]).dtype) self.assertIs(TabularMSA([Protein('')]).dtype, Protein) with self.assertRaises(AttributeError): TabularMSA([]).dtype = DNA with self.assertRaises(AttributeError): del TabularMSA([]).dtype def test_shape(self): shape = TabularMSA([DNA('ACG'), DNA('GCA')]).shape self.assertEqual(shape, (2, 3)) self.assertEqual(shape.sequence, shape[0]) self.assertEqual(shape.position, shape[1]) with self.assertRaises(TypeError): shape[0] = 3 with self.assertRaises(AttributeError): TabularMSA([]).shape = (3, 3) with self.assertRaises(AttributeError): del TabularMSA([]).shape def test_index_getter_default_index(self): msa = TabularMSA([DNA('AC'), DNA('AG'), DNA('AT')]) assert_index_equal(msa.index, pd.RangeIndex(3)) # immutable with self.assertRaises(TypeError): msa.index[1] = 2 # original state is maintained assert_index_equal(msa.index, pd.RangeIndex(3)) def test_index_getter(self): index = TabularMSA([DNA('AC'), DNA('AG'), DNA('AT')], minter=str).index self.assertIsInstance(index, pd.Index) assert_index_equal(index, pd.Index(['AC', 'AG', 'AT'])) # immutable with self.assertRaises(TypeError): index[1] = 'AA' # original state is maintained assert_index_equal(index, pd.Index(['AC', 'AG', 'AT'])) def test_index_mixed_type(self): msa = TabularMSA([DNA('AC'), DNA('CA'), DNA('AA')], index=['abc', 'd', 42]) assert_index_equal(msa.index, pd.Index(['abc', 'd', 42])) def test_index_setter_empty(self): msa = TabularMSA([]) msa.index = iter([]) assert_index_equal(msa.index, pd.Index([])) def test_index_setter_non_empty(self): msa = TabularMSA([DNA('AC'), DNA('AG'), DNA('AT')]) msa.index = range(3) assert_index_equal(msa.index, pd.RangeIndex(3)) msa.index = range(3, 6) assert_index_equal(msa.index, pd.RangeIndex(3, 6)) def test_index_setter_length_mismatch(self): msa = TabularMSA([DNA('ACGT'), DNA('TGCA')], minter=str) index =
pd.Index(['ACGT', 'TGCA'])
pandas.Index
import collections import fnmatch import os from typing import Union import tarfile import pandas as pd import numpy as np from pandas.core.dtypes.common import is_string_dtype, is_numeric_dtype from hydrodataset.data.data_base import DataSourceBase from hydrodataset.data.stat import cal_fdc from hydrodataset.utils import hydro_utils from hydrodataset.utils.hydro_utils import download_one_zip, unzip_nested_zip CAMELS_NO_DATASET_ERROR_LOG = ( "We cannot read this dataset now. Please check if you choose the correct dataset:\n" ' ["AUS", "BR", "CA", "CL", "GB", "US", "YR"]' ) def time_intersect_dynamic_data(obs: np.array, date: np.array, t_range: list): """ chose data from obs in the t_range Parameters ---------- obs a np array date all periods for obs t_range the time range we need, such as ["1990-01-01","2000-01-01"] Returns ------- np.array the chosen data """ t_lst = hydro_utils.t_range_days(t_range) nt = t_lst.shape[0] if len(obs) != nt: out = np.full([nt], np.nan) [c, ind1, ind2] = np.intersect1d(date, t_lst, return_indices=True) out[ind2] = obs[ind1] else: out = obs return out class Camels(DataSourceBase): def __init__(self, data_path, download=False, region: str = "US"): """ Initialization for CAMELS series dataset Parameters ---------- data_path where we put the dataset download if true, download region the default is CAMELS(-US), since it's the first CAMELS dataset. Others now include: AUS, BR, CL, GB, YR """ super().__init__(data_path) region_lst = ["AUS", "BR", "CA", "CE", "CL", "GB", "US", "YR"] assert region in region_lst self.region = region self.data_source_description = self.set_data_source_describe() if download: self.download_data_source() self.camels_sites = self.read_site_info() def get_name(self): return "CAMELS_" + self.region def set_data_source_describe(self) -> collections.OrderedDict: """ Introduce the files in the dataset and list their location in the file system Returns ------- collections.OrderedDict the description for a CAMELS dataset """ camels_db = self.data_source_dir if self.region == "US": # shp file of basins camels_shp_file = os.path.join( camels_db, "basin_set_full_res", "HCDN_nhru_final_671.shp" ) # config of flow data flow_dir = os.path.join( camels_db, "basin_timeseries_v1p2_metForcing_obsFlow", "basin_dataset_public_v1p2", "usgs_streamflow", ) # forcing forcing_dir = os.path.join( camels_db, "basin_timeseries_v1p2_metForcing_obsFlow", "basin_dataset_public_v1p2", "basin_mean_forcing", ) forcing_types = ["daymet", "maurer", "nldas"] # attr attr_dir = os.path.join( camels_db, "camels_attributes_v2.0", "camels_attributes_v2.0" ) gauge_id_file = os.path.join(attr_dir, "camels_name.txt") attr_key_lst = ["topo", "clim", "hydro", "vege", "soil", "geol"] download_url_lst = [ "https://ral.ucar.edu/sites/default/files/public/product-tool/camels-catchment-attributes-and-meteorology-for-large-sample-studies-dataset-downloads/camels_attributes_v2.0.zip", "https://ral.ucar.edu/sites/default/files/public/product-tool/camels-catchment-attributes-and-meteorology-for-large-sample-studies-dataset-downloads/basin_set_full_res.zip", "https://ral.ucar.edu/sites/default/files/public/product-tool/camels-catchment-attributes-and-meteorology-for-large-sample-studies-dataset-downloads/basin_timeseries_v1p2_metForcing_obsFlow.zip", ] return collections.OrderedDict( CAMELS_DIR=camels_db, CAMELS_FLOW_DIR=flow_dir, CAMELS_FORCING_DIR=forcing_dir, CAMELS_FORCING_TYPE=forcing_types, CAMELS_ATTR_DIR=attr_dir, CAMELS_ATTR_KEY_LST=attr_key_lst, CAMELS_GAUGE_FILE=gauge_id_file, CAMELS_BASINS_SHP_FILE=camels_shp_file, CAMELS_DOWNLOAD_URL_LST=download_url_lst, ) elif self.region == "AUS": # id and name gauge_id_file = os.path.join( camels_db, "01_id_name_metadata", "01_id_name_metadata", "id_name_metadata.csv", ) # shp file of basins camels_shp_file = os.path.join( camels_db, "02_location_boundary_area", "02_location_boundary_area", "shp", "CAMELS_AUS_BasinOutlets_adopted.shp", ) # config of flow data flow_dir = os.path.join(camels_db, "03_streamflow", "03_streamflow") # attr attr_dir = os.path.join(camels_db, "04_attributes", "04_attributes") # forcing forcing_dir = os.path.join( camels_db, "05_hydrometeorology", "05_hydrometeorology" ) return collections.OrderedDict( CAMELS_DIR=camels_db, CAMELS_FLOW_DIR=flow_dir, CAMELS_FORCING_DIR=forcing_dir, CAMELS_ATTR_DIR=attr_dir, CAMELS_GAUGE_FILE=gauge_id_file, CAMELS_BASINS_SHP_FILE=camels_shp_file, ) elif self.region == "BR": # attr attr_dir = os.path.join( camels_db, "01_CAMELS_BR_attributes", "01_CAMELS_BR_attributes" ) # we don't need the location attr file attr_key_lst = [ "climate", "geology", "human_intervention", "hydrology", "land_cover", "quality_check", "soil", "topography", ] # id and name, there are two types stations in CAMELS_BR, and we only chose the 897-stations version gauge_id_file = os.path.join(attr_dir, "camels_br_topography.txt") # shp file of basins camels_shp_file = os.path.join( camels_db, "14_CAMELS_BR_catchment_boundaries", "14_CAMELS_BR_catchment_boundaries", "camels_br_catchments.shp", ) # config of flow data flow_dir_m3s = os.path.join( camels_db, "02_CAMELS_BR_streamflow_m3s", "02_CAMELS_BR_streamflow_m3s" ) flow_dir_mm_selected_catchments = os.path.join( camels_db, "03_CAMELS_BR_streamflow_mm_selected_catchments", "03_CAMELS_BR_streamflow_mm_selected_catchments", ) flow_dir_simulated = os.path.join( camels_db, "04_CAMELS_BR_streamflow_simulated", "04_CAMELS_BR_streamflow_simulated", ) # forcing forcing_dir_precipitation_chirps = os.path.join( camels_db, "05_CAMELS_BR_precipitation_chirps", "05_CAMELS_BR_precipitation_chirps", ) forcing_dir_precipitation_mswep = os.path.join( camels_db, "06_CAMELS_BR_precipitation_mswep", "06_CAMELS_BR_precipitation_mswep", ) forcing_dir_precipitation_cpc = os.path.join( camels_db, "07_CAMELS_BR_precipitation_cpc", "07_CAMELS_BR_precipitation_cpc", ) forcing_dir_evapotransp_gleam = os.path.join( camels_db, "08_CAMELS_BR_evapotransp_gleam", "08_CAMELS_BR_evapotransp_gleam", ) forcing_dir_evapotransp_mgb = os.path.join( camels_db, "09_CAMELS_BR_evapotransp_mgb", "09_CAMELS_BR_evapotransp_mgb", ) forcing_dir_potential_evapotransp_gleam = os.path.join( camels_db, "10_CAMELS_BR_potential_evapotransp_gleam", "10_CAMELS_BR_potential_evapotransp_gleam", ) forcing_dir_temperature_min_cpc = os.path.join( camels_db, "11_CAMELS_BR_temperature_min_cpc", "11_CAMELS_BR_temperature_min_cpc", ) forcing_dir_temperature_mean_cpc = os.path.join( camels_db, "12_CAMELS_BR_temperature_mean_cpc", "12_CAMELS_BR_temperature_mean_cpc", ) forcing_dir_temperature_max_cpc = os.path.join( camels_db, "13_CAMELS_BR_temperature_max_cpc", "13_CAMELS_BR_temperature_max_cpc", ) return collections.OrderedDict( CAMELS_DIR=camels_db, CAMELS_FLOW_DIR=[ flow_dir_m3s, flow_dir_mm_selected_catchments, flow_dir_simulated, ], CAMELS_FORCING_DIR=[ forcing_dir_precipitation_chirps, forcing_dir_precipitation_mswep, forcing_dir_precipitation_cpc, forcing_dir_evapotransp_gleam, forcing_dir_evapotransp_mgb, forcing_dir_potential_evapotransp_gleam, forcing_dir_temperature_min_cpc, forcing_dir_temperature_mean_cpc, forcing_dir_temperature_max_cpc, ], CAMELS_ATTR_DIR=attr_dir, CAMELS_ATTR_KEY_LST=attr_key_lst, CAMELS_GAUGE_FILE=gauge_id_file, CAMELS_BASINS_SHP_FILE=camels_shp_file, ) elif self.region == "CL": # attr attr_dir = os.path.join(camels_db, "1_CAMELScl_attributes") attr_file = os.path.join(attr_dir, "1_CAMELScl_attributes.txt") # shp file of basins camels_shp_file = os.path.join( camels_db, "CAMELScl_catchment_boundaries", "catchments_camels_cl_v1.3.shp", ) # config of flow data flow_dir_m3s = os.path.join(camels_db, "2_CAMELScl_streamflow_m3s") flow_dir_mm = os.path.join(camels_db, "3_CAMELScl_streamflow_mm") # forcing forcing_dir_precip_cr2met = os.path.join( camels_db, "4_CAMELScl_precip_cr2met" ) forcing_dir_precip_chirps = os.path.join( camels_db, "5_CAMELScl_precip_chirps" ) forcing_dir_precip_mswep = os.path.join( camels_db, "6_CAMELScl_precip_mswep" ) forcing_dir_precip_tmpa = os.path.join(camels_db, "7_CAMELScl_precip_tmpa") forcing_dir_tmin_cr2met = os.path.join(camels_db, "8_CAMELScl_tmin_cr2met") forcing_dir_tmax_cr2met = os.path.join(camels_db, "9_CAMELScl_tmax_cr2met") forcing_dir_tmean_cr2met = os.path.join( camels_db, "10_CAMELScl_tmean_cr2met" ) forcing_dir_pet_8d_modis = os.path.join( camels_db, "11_CAMELScl_pet_8d_modis" ) forcing_dir_pet_hargreaves = os.path.join( camels_db, "12_CAMELScl_pet_hargreaves", ) forcing_dir_swe = os.path.join(camels_db, "13_CAMELScl_swe") return collections.OrderedDict( CAMELS_DIR=camels_db, CAMELS_FLOW_DIR=[flow_dir_m3s, flow_dir_mm], CAMELS_FORCING_DIR=[ forcing_dir_precip_cr2met, forcing_dir_precip_chirps, forcing_dir_precip_mswep, forcing_dir_precip_tmpa, forcing_dir_tmin_cr2met, forcing_dir_tmax_cr2met, forcing_dir_tmean_cr2met, forcing_dir_pet_8d_modis, forcing_dir_pet_hargreaves, forcing_dir_swe, ], CAMELS_ATTR_DIR=attr_dir, CAMELS_GAUGE_FILE=attr_file, CAMELS_BASINS_SHP_FILE=camels_shp_file, ) elif self.region == "GB": # shp file of basins camels_shp_file = os.path.join( camels_db, "8344e4f3-d2ea-44f5-8afa-86d2987543a9", "8344e4f3-d2ea-44f5-8afa-86d2987543a9", "data", "CAMELS_GB_catchment_boundaries", "CAMELS_GB_catchment_boundaries.shp", ) # flow and forcing data are in a same file flow_dir = os.path.join( camels_db, "8344e4f3-d2ea-44f5-8afa-86d2987543a9", "8344e4f3-d2ea-44f5-8afa-86d2987543a9", "data", "timeseries", ) forcing_dir = flow_dir # attr attr_dir = os.path.join( camels_db, "8344e4f3-d2ea-44f5-8afa-86d2987543a9", "8344e4f3-d2ea-44f5-8afa-86d2987543a9", "data", ) gauge_id_file = os.path.join( attr_dir, "CAMELS_GB_hydrometry_attributes.csv" ) attr_key_lst = [ "climatic", "humaninfluence", "hydrogeology", "hydrologic", "hydrometry", "landcover", "soil", "topographic", ] return collections.OrderedDict( CAMELS_DIR=camels_db, CAMELS_FLOW_DIR=flow_dir, CAMELS_FORCING_DIR=forcing_dir, CAMELS_ATTR_DIR=attr_dir, CAMELS_ATTR_KEY_LST=attr_key_lst, CAMELS_GAUGE_FILE=gauge_id_file, CAMELS_BASINS_SHP_FILE=camels_shp_file, ) elif self.region == "YR": # shp files of basins camels_shp_files_dir = os.path.join( camels_db, "9_Normal_Camels_YR", "Normal_Camels_YR_basin_boundary" ) # attr, flow and forcing data are all in the same dir. each basin has one dir. flow_dir = os.path.join( camels_db, "9_Normal_Camels_YR", "1_Normal_Camels_YR_basin_data" ) forcing_dir = flow_dir attr_dir = flow_dir # no gauge id file for CAMELS_YR; natural_watersheds.txt showed unregulated basins in CAMELS_YR gauge_id_file = os.path.join( camels_db, "9_Normal_Camels_YR", "natural_watersheds.txt" ) return collections.OrderedDict( CAMELS_DIR=camels_db, CAMELS_FLOW_DIR=flow_dir, CAMELS_FORCING_DIR=forcing_dir, CAMELS_ATTR_DIR=attr_dir, CAMELS_GAUGE_FILE=gauge_id_file, CAMELS_BASINS_SHP_DIR=camels_shp_files_dir, ) elif self.region == "CA": # shp file of basins camels_shp_files_dir = os.path.join(camels_db, "CANOPEX_BOUNDARIES") # config of flow data flow_dir = os.path.join( camels_db, "CANOPEX_NRCAN_ASCII", "CANOPEX_NRCAN_ASCII" ) forcing_dir = flow_dir # There is no attr data in CANOPEX, hence we use attr from HYSET -- https://osf.io/7fn4c/ attr_dir = camels_db gauge_id_file = os.path.join(camels_db, "STATION_METADATA.xlsx") return collections.OrderedDict( CAMELS_DIR=camels_db, CAMELS_FLOW_DIR=flow_dir, CAMELS_FORCING_DIR=forcing_dir, CAMELS_ATTR_DIR=attr_dir, CAMELS_GAUGE_FILE=gauge_id_file, CAMELS_BASINS_SHP_DIR=camels_shp_files_dir, ) elif self.region == "CE": # We use A_basins_total_upstrm # shp file of basins camels_shp_file = os.path.join( camels_db, "2_LamaH-CE_daily", "A_basins_total_upstrm", "3_shapefiles", "Basins_A.shp", ) # config of flow data flow_dir = os.path.join( camels_db, "2_LamaH-CE_daily", "D_gauges", "2_timeseries", "daily" ) forcing_dir = os.path.join( camels_db, "2_LamaH-CE_daily", "A_basins_total_upstrm", "2_timeseries", "daily", ) attr_dir = os.path.join( camels_db, "2_LamaH-CE_daily", "A_basins_total_upstrm", "1_attributes" ) gauge_id_file = os.path.join( camels_db, "2_LamaH-CE_daily", "D_gauges", "1_attributes", "Gauge_attributes.csv", ) return collections.OrderedDict( CAMELS_DIR=camels_db, CAMELS_FLOW_DIR=flow_dir, CAMELS_FORCING_DIR=forcing_dir, CAMELS_ATTR_DIR=attr_dir, CAMELS_GAUGE_FILE=gauge_id_file, CAMELS_BASINS_SHP_FILE=camels_shp_file, ) else: raise NotImplementedError(CAMELS_NO_DATASET_ERROR_LOG) def download_data_source(self) -> None: """ Download CAMELS dataset. Now we only support CAMELS-US's downloading. For others, please download it manually and put all files of a CAMELS dataset in one directory. For example, all files of CAMELS_AUS should be put in "camels_aus" directory Returns ------- None """ camels_config = self.data_source_description if self.region == "US": if not os.path.isdir(camels_config["CAMELS_DIR"]): os.makedirs(camels_config["CAMELS_DIR"]) [ download_one_zip(attr_url, camels_config["CAMELS_DIR"]) for attr_url in camels_config["CAMELS_DOWNLOAD_URL_LST"] if not os.path.isfile( os.path.join(camels_config["CAMELS_DIR"], attr_url.split("/")[-1]) ) ] print("The CAMELS_US data have been downloaded!") print( "Please download it manually and put all files of a CAMELS dataset in the CAMELS_DIR directory." ) print("We unzip all files now.") if self.region == "CE": # We only use CE's dauly files now and it is tar.gz formatting file = tarfile.open( os.path.join(camels_config["CAMELS_DIR"], "2_LamaH-CE_daily.tar.gz") ) # extracting file file.extractall( os.path.join(camels_config["CAMELS_DIR"], "2_LamaH-CE_daily") ) file.close() for f_name in os.listdir(camels_config["CAMELS_DIR"]): if fnmatch.fnmatch(f_name, "*.zip"): unzip_dir = os.path.join(camels_config["CAMELS_DIR"], f_name[0:-4]) file_name = os.path.join(camels_config["CAMELS_DIR"], f_name) unzip_nested_zip(file_name, unzip_dir) def read_site_info(self) -> pd.DataFrame: """ Read the basic information of gages in a CAMELS dataset Returns ------- pd.DataFrame basic info of gages """ camels_file = self.data_source_description["CAMELS_GAUGE_FILE"] if self.region == "US": data = pd.read_csv( camels_file, sep=";", dtype={"gauge_id": str, "huc_02": str} ) elif self.region == "AUS": data = pd.read_csv(camels_file, sep=",", dtype={"station_id": str}) elif self.region == "BR": data = pd.read_csv(camels_file, sep="\s+", dtype={"gauge_id": str}) elif self.region == "CL": data = pd.read_csv(camels_file, sep="\t", index_col=0) elif self.region == "GB": data = pd.read_csv(camels_file, sep=",", dtype={"gauge_id": str}) elif self.region == "YR": dirs_ = os.listdir(self.data_source_description["CAMELS_ATTR_DIR"]) data =
pd.DataFrame({"gauge_id": dirs_})
pandas.DataFrame
# coding=utf-8 import pandas as pd import xgboost as xgb from sklearn.metrics import f1_score import param ############################ 定义评估函数 ############################ def micro_avg_f1(preds, dtrain): y_true = dtrain.get_label() return 'micro_avg_f1', f1_score(y_true, preds, average='micro') ############################ 加载特征 & 标签 ############################ df_tfidf_lr = pd.read_csv(param.data_path + '/output/feature/tfidf/lr_prob_12w.csv') df_tfidf_bnb = pd.read_csv(param.data_path + '/output/feature/tfidf/bnb_prob_12w.csv') df_tfidf_mnb = pd.read_csv(param.data_path + '/output/feature/tfidf/mnb_prob_12w.csv') df_tfidf_svc = pd.read_csv(param.data_path + '/output/feature/tfidf/svc_prob_12w.csv') df_amt = pd.read_csv(param.data_path + '/output/feature/amt/amt_12w.csv') df_dbow_nn = pd.read_csv(param.data_path + '/output/feature/dbowd2v/nn_prob_12w.csv') df_w2v = pd.read_csv(param.data_path + '/output/feature/w2v/w2v_12w.csv') # df_dm = pd.read_csv(param.data_path + 'dmd2v_stack_20W.csv') df_lb = pd.read_csv(param.data_path + '/output/corpus/all_data.csv', usecols=['id', 'penalty'], nrows=param.train_num) df_lb['penalty'] = df_lb['penalty'] - 1 # 让标签属于 [0, 8) ############################ xgboost ############################ tr_num = param.cv_train_num df_sub =
pd.DataFrame()
pandas.DataFrame
# Copyright (C) 2020 <NAME>, <NAME> # Code -- Study 2 -- What Personal Information Can a Consumer Facial Image Reveal? # https://github.com/computationalmarketing/facialanalysis/ import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import matplotlib.lines as mlines import matplotlib.patches as mpatches import matplotlib.ticker as mtick from matplotlib import gridspec from matplotlib import rcParams rcParams.update({'font.size': 12}) rcParams['font.family'] = 'serif' rcParams['font.sans-serif'] = ['Times'] import seaborn as sns import torchvision.models as models import torch from torch.utils.data import DataLoader from torch.autograd import Variable import torch.nn.functional as F import torch.optim as optim import os from os import walk from tqdm import tqdm from sklearn.utils import class_weight from sklearn import metrics, svm from sklearn.linear_model import LogisticRegression from sklearn.decomposition import TruncatedSVD, PCA from sklearn.model_selection import KFold, GroupKFold, ShuffleSplit, GroupShuffleSplit from sklearn.neighbors import NearestNeighbors import scipy.stats from scipy.special import softmax import scipy.cluster.hierarchy as sch from scipy.cluster.hierarchy import dendrogram, linkage # ATTENTION: we disable notifications when AUC cannot be computed -- during nn finetuning from sklearn.exceptions import UndefinedMetricWarning import warnings warnings.filterwarnings(action='ignore', category=UndefinedMetricWarning) warnings.filterwarnings(action='ignore', category=RuntimeWarning) import json import numpy as np from torchvision import transforms from torch.utils.data.dataset import Dataset from PIL import Image import pandas as pd import pickle import sys ''' CustomDataset object takes care of supplying an observation (image, labels). It also performs image preprocessing, such as normalization by color channel. In case of training, it also performs random transformations, such as horizontal flips, resized crops, rotations, and color jitter. ''' class CustomDataset(Dataset): def __init__(self, data, tr = True): self.data = data self.paths = self.data['img_path'].values.astype('str') self.data_len = self.data.shape[0] self.labels = self.data[q_list].values.astype('int32') self.control_metrics = self.data[control_list].values.astype('float32') # transforms if tr: self.transforms = transforms.Compose([ transforms.Resize(224), transforms.RandomHorizontalFlip(p=0.5), transforms.RandomApply([ transforms.RandomResizedCrop(224), transforms.RandomRotation(20), transforms.ColorJitter(brightness=0.1,contrast=0.1,saturation=0.1,hue=0.1)], p=0.75), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406],[0.229, 0.224, 0.225])]) else: self.transforms = transforms.Compose([ transforms.Resize(224), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406],[0.229, 0.224, 0.225])]) def __getitem__(self, index): img_path = PATH + '/'+ self.paths[index] img = Image.open(img_path) img_tensor = self.transforms(img) label = self.labels[index] control_metric = self.control_metrics[index] return (img_tensor, label, control_metric) def __len__(self): return self.data_len #get pretrained resnet50 model def get_pretrained(): model = models.resnet50(pretrained=True) return model # replace last layer def prepare_for_finetuning(model): for param in model.parameters(): param.requires_grad = False param.requires_grad = True #replacing last layer with new fully connected model.fc = torch.nn.Linear(model.fc.in_features,n_outs) return # create an object that uses CustomDataset object from above to load multiple observations in parallel def create_dataloader(data,rand=True): if rand: # shuddle observations dataset = CustomDataset(data, tr=True) loader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=True, num_workers=10, drop_last=False) else: # load in fixed order of data dataset = CustomDataset(data, tr=False) loader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=False, sampler = torch.utils.data.sampler.SequentialSampler(dataset), num_workers=10, drop_last=False) return loader #finetune and save neural net model def finetune_and_save(loader_train, loader_test): # loading pretrained model and preparing it for finetuning model = get_pretrained() prepare_for_finetuning(model) if CUDA: model.cuda() # optimize only last six layers layers = list(model.children()) params = list(layers[len(layers)-1].parameters())+list(layers[len(layers)-2].parameters())+list(layers[len(layers)-3].parameters())+list(layers[len(layers)-4].parameters())+list(layers[len(layers)-5].parameters())+list(layers[len(layers)-6].parameters()) optimizer = optim.Adamax(params=params, lr=0.001) # print("starting finetuning") hist = {} hist['d_labs'] = q_list hist['train_loss'] = [] hist['val_loss'] = [] hist['train_loss_d'] = [] hist['val_loss_d'] = [] hist['train_auc_d'] = [] hist['val_auc_d'] = [] acc_best = 0.0 #train for epoch in range(N_EPOCHS): train_loss, train_loss_d, train_auc_d = run_epoch(model, loss_f, optimizer, loader_train, update_model = True) # training eval_loss, eval_loss_d, eval_auc_d = run_epoch(model, loss_f, optimizer, loader_test, update_model = False) # evaluation hist['train_loss'].append(train_loss) hist['val_loss'].append(eval_loss) hist['train_loss_d'].append(train_loss_d) hist['val_loss_d'].append(eval_loss_d) hist['train_auc_d'].append(train_auc_d) hist['val_auc_d'].append(eval_auc_d) with open(RESULTS+'/eval_record.json', 'w') as fjson: json.dump(hist, fjson) # saving model torch.save(model, RESULTS+"/finetuned_model") return # function that performa training (or evaluation) over an epoch (full pass through a data set) def run_epoch(model, loss_f, optimizer, loader, update_model = False): if update_model: model.train() else: model.eval() loss_hist = [] loss_hist_detailed = [] auc_hist_detailed = [] for batch_i, var in tqdm(enumerate(loader)): loss, loss_detailed, auc_detailed = loss_f(model, var) if update_model: optimizer.zero_grad() loss.backward() optimizer.step() loss_hist.append(loss.data.item()) loss_hist_detailed.append(loss_detailed) auc_hist_detailed.append(auc_detailed) loss_detailed = pd.DataFrame(loss_hist_detailed) loss_detailed.columns = q_list auc_detailed = pd.DataFrame(auc_hist_detailed) auc_detailed.columns = q_list return np.mean(loss_hist).item(), loss_detailed.mean(0).values.tolist(), auc_detailed.mean(0).values.tolist() # function to compute loss from a batch data def loss_f(model, var): data, target, _ = var data, target = Variable(data), Variable(target) if CUDA: data, target = data.cuda(), target.cuda() output = model(data) # match for the user and focal game loss = 0 loss_detailed = [] auc_detailed = [] for i in range(len(q_d_list)): w = torch.FloatTensor(class_weights[i]) if CUDA: w = w.cuda() # output contains scores for each level of every predicted variable # q_d_list[i] is number of levels to variable i # q_d_list_cumsum[i] is a cumulative sum over number of levels for variable i and all variables before it # all variables ordered as in q_list # (q_d_list_cumsum[i]-q_d_list[i]):q_d_list_cumsum[i] then gives exact coordinates of the scores for variable i # among all scores in the output temp = F.cross_entropy(output[:,(q_d_list_cumsum[i]-q_d_list[i]):q_d_list_cumsum[i]], target[:,i].long(), weight=w) loss_detailed.append(temp.data.item()) loss += temp # now we calculate AUC y_true = target[:,i].detach().cpu().numpy() y_score = output[:,(q_d_list_cumsum[i]-q_d_list[i]):q_d_list_cumsum[i]].detach().cpu().numpy()[:,1] fpr, tpr, thresholds = metrics.roc_curve(y_true, y_score) auc_detailed.append(metrics.auc(fpr, tpr)) return loss, loss_detailed, auc_detailed # building class balancing weights as in # https://datascience.stackexchange.com/questions/13490/how-to-set-class-weights-for-imbalanced-classes-in-keras def calculate_class_weights(X): class_weights = [] for i in q_list: class_weights.append( class_weight.compute_class_weight('balanced', np.unique(X[i].values), X[i].values)) return class_weights # extract data from a dataloader as a set of image features X and set of labels y, corresponding to those image features # can also blackout specified areas of the loaded images before extracting the image features -- this is used in our experiments # when data loader is deterministic, then it will load in the same data again and again def extract_data(loader, modelred, blackout=None): X = [] y = [] z = [] for batch_i, var in tqdm(enumerate(loader)): data, target, control_metrics = var if blackout is not None: data[:, :, blackout[0]:blackout[1], blackout[2]:blackout[3]] = 0.0 data, target, control_metrics = Variable(data), Variable(target), Variable(control_metrics) if CUDA: data, target, control_metrics = data.cuda(), target.cuda(), control_metrics.cuda() data_out = modelred(data) X.append(data_out.detach().cpu().numpy()) y.append(target.detach().cpu().numpy()) z.append(control_metrics.detach().cpu().numpy()) X = np.vstack(X).squeeze() y = np.vstack(y) z = np.vstack(z) return X, y, z # function to evaluate a set of trained classifier using AUC metric # 'models' contains classifiers in order of binary variables to be predicted -- which are contaiend in Y # X is a matrix of covariates def analytics_lin(models, X, Y): acc = {} auc = {} for i in tqdm(range(Y.shape[1])): y_true = Y[:,i] mod = models[i] y_pred = np.argmax(mod.predict_proba(X),axis=1) # auc y_prob = mod.predict_proba(X)[:,1] fpr, tpr, thresholds = metrics.roc_curve(y_true, y_prob) auc[q_list[i]] = metrics.auc(fpr, tpr) return auc # sequentially yield coordinates for blackout in an image def sliding_window(image_shape, stepSize, windowSize): # slide a window across the image for yc in range(0, image_shape[0], stepSize): for xc in range(0, image_shape[1], stepSize): # yield the current window yield (yc, yc + windowSize[1], xc, xc + windowSize[0]) # calculating decrease in AUC when blocking a particular area of an image -- over 8x8 grid placed over the image def img_area_importance(modelred, models, svd, dat, auc_true): patch_importance = {} for (y0, y1, x0, x1) in sliding_window(image_shape=(224,224), stepSize = 28, windowSize=(28,28)): loader = create_dataloader(dat,rand=False) # X_modified_raw contains image features extracted from images with a portion of the image blocked X_modified_raw, Y, _ = extract_data(loader, modelred, (y0, y1, x0, x1)) # image features reduced to 500 via svd X_modified = svd.transform(X_modified_raw) auc = analytics_lin(models, X_modified, Y) patch_importance_q = {} # contains -(decrease in auc after blocking of an image) for q in q_list: patch_importance_q[q] = auc_true[q] - auc[q] patch_importance[(y0, y1, x0, x1)] = patch_importance_q # decrease in auc across all variables -- for the given blocked portion of the image return patch_importance # START OF THE RUN torch.set_num_threads(1) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False N_EPOCHS = 20 FINETUNE = True CUDA = torch.cuda.is_available() batch_size=10 PATH = './data' # analysis on face vs. bodies CASHIER = sys.argv[1]#'ALL' #'4' # 3 # control_list = ['02.05','03.05','04.05','05.05','06.05','07.05','08.05','09.05','10.05', '11.05', '12.05', '13.05', 'time_1', 'time_2', 'time_3', 'time_4'] if CASHIER == 'ALL': data =
pd.read_csv(PATH+'/data_face.csv')
pandas.read_csv
import pandas as pd import pickle def main(): gene_info = pd.read_csv('./../list/GRCh38_ensembl96_geneset.csv', sep='\t') gene_info_dict = {} for n, r in gene_info.iterrows(): gene_info_dict[r['transcript_stable_id']] = [ r['display_label'], r['gene_stable_id'] ] score = pd.read_csv('./scores/gMVP_raw_score_Feb24.tsv', sep='\t') info = pd.read_csv('./scores/all_possible_missense_info.csv', sep='\t', dtype={'chrom': str}) #score = pd.read_csv('./scores/sample_score.csv', sep='\t') #info = pd.read_csv('./scores/sample_info.csv', # sep='\t', # dtype={'chrom': str}) info = info[info['consequence'] == 'missense_variant'] def get_var(x): return '_'.join([ x['transcript_id'], str(x['protein_position']), x['ref_aa'], x['alt_aa'] ]) info['var'] = info.apply(get_var, axis=1) df = pd.merge(info, score, on='var', how='inner') #normalized by gene df2 = [] _cnt = 0 def _get_rank(x): nonlocal _cnt _cnt += 1 return _cnt for n, g in df.groupby(by='transcript_id'): g2 = g.sort_values(by='gMVP', axis=0, ascending=True) _cnt = 0 g2['gMVP_normalized'] = g2['gMVP'].apply(_get_rank) / g2.shape[0] genename, gene_id = gene_info_dict.get(n, ['', '']) g2['gene_symbol'] = genename g2['gene_id'] = gene_id df2.append(g2) df =
pd.concat(df2, axis=0)
pandas.concat
import pandas as pd from texthero import preprocessing from . import PandasTestCase import unittest import string class TestPreprocessing(PandasTestCase): """ Remove digits. """ def test_remove_digits_only_block(self): s = pd.Series("remove block of digits 1234 h1n1") s_true = pd.Series("remove block of digits h1n1") self.assertEqual(preprocessing.remove_digits(s), s_true) def test_remove_digits_block(self): s = pd.Series("remove block of digits 1234 h1n1") s_true = pd.Series("remove block of digits hn") self.assertEqual(preprocessing.remove_digits(s, only_blocks=False), s_true) def test_remove_digits_brackets(self): s = pd.Series("Digits in bracket (123 $) needs to be cleaned out") s_true = pd.Series("Digits in bracket ( $) needs to be cleaned out") self.assertEqual(preprocessing.remove_digits(s), s_true) def test_remove_digits_start(self): s = pd.Series("123 starting digits needs to be cleaned out") s_true = pd.Series(" starting digits needs to be cleaned out") self.assertEqual(preprocessing.remove_digits(s), s_true) def test_remove_digits_end(self): s = pd.Series("end digits needs to be cleaned out 123") s_true = pd.Series("end digits needs to be cleaned out ") self.assertEqual(preprocessing.remove_digits(s), s_true) def test_remove_digits_phone(self): s = pd.Series("+41 1234 5678") s_true = pd.Series("+ ") self.assertEqual(preprocessing.remove_digits(s), s_true) def test_remove_digits_punctuation(self): s = pd.Series(string.punctuation) s_true = pd.Series(string.punctuation) self.assertEqual(preprocessing.remove_digits(s), s_true) """ Remove punctuation. """ def test_remove_punctation(self): s = pd.Series("Remove all! punctuation!! ()") s_true = pd.Series( "Remove all punctuation ") # TODO maybe just remove space? self.assertEqual(preprocessing.remove_punctuation(s), s_true) """ Remove diacritics. """ def test_remove_diactitics(self): s = pd.Series("hèllo") s_true = pd.Series("hello") self.assertEqual(preprocessing.remove_diacritics(s), s_true) """ Remove whitespace. """ def test_remove_whitespace(self): s = pd.Series("hello world hello world ") s_true = pd.Series("hello world hello world") self.assertEqual(preprocessing.remove_whitespace(s), s_true) """ Text pipeline. """ def test_pipeline_stopwords(self): s =
pd.Series("E-I-E-I-O\nAnd on")
pandas.Series
import glob import os import sys # these imports and usings need to be in the same order sys.path.insert(0, "../") sys.path.insert(0, "TP_model") sys.path.insert(0, "TP_model/fit_and_forecast") from Reff_functions import * from Reff_constants import * from sys import argv from datetime import timedelta, datetime from scipy.special import expit import matplotlib.pyplot as plt import numpy as np import pandas as pd import matplotlib matplotlib.use("Agg") def forecast_TP(data_date): from scenarios import scenarios, scenario_dates from params import ( num_forecast_days, alpha_start_date, delta_start_date, omicron_start_date, truncation_days, start_date, sim_start_date, third_start_date, mob_samples, ) data_date = pd.to_datetime(data_date) # Define inputs sim_start_date = pd.to_datetime(sim_start_date) # Add 3 days buffer to mobility forecast num_forecast_days = num_forecast_days + 3 # data_date = pd.to_datetime('2022-01-25') print("============") print("Generating forecasts using data from", data_date) print("============") # convert third start date to the correct format third_start_date = pd.to_datetime(third_start_date) third_end_date = data_date - timedelta(truncation_days) # a different end date to deal with issues in fitting third_end_date_diff = data_date - timedelta(18 + 7 + 7) third_states = sorted(["NSW", "VIC", "ACT", "QLD", "SA", "TAS", "NT", "WA"]) # third_states = sorted(['NSW', 'VIC', 'ACT', 'QLD', 'SA', 'NT']) # choose dates for each state for third wave # NOTE: These need to be in date sorted order third_date_range = { "ACT": pd.date_range(start="2021-08-15", end=third_end_date).values, "NSW": pd.date_range(start="2021-06-25", end=third_end_date).values, "NT": pd.date_range(start="2021-12-20", end=third_end_date).values, "QLD": pd.date_range(start="2021-07-30", end=third_end_date).values, "SA": pd.date_range(start="2021-12-10", end=third_end_date).values, "TAS": pd.date_range(start="2021-12-20", end=third_end_date).values, "VIC": pd.date_range(start="2021-07-10", end=third_end_date).values, "WA": pd.date_range(start="2022-01-01", end=third_end_date).values, } # Get Google Data - Don't use the smoothed data? df_google_all = read_in_google(Aus_only=True, moving=True, local=True) third_end_date = pd.to_datetime(data_date) - pd.Timedelta(days=truncation_days) results_dir = ( "results/" + data_date.strftime("%Y-%m-%d") + "/" ) # Load in vaccination data by state and date which should have the same date as the # NNDSS/linelist data use the inferred VE vaccination_by_state_delta = pd.read_csv( results_dir + "adjusted_vaccine_ts_delta" + data_date.strftime("%Y-%m-%d") + ".csv", parse_dates=["date"], ) vaccination_by_state_delta = vaccination_by_state_delta[["state", "date", "effect"]] vaccination_by_state_delta = vaccination_by_state_delta.pivot( index="state", columns="date", values="effect" ) # Convert to matrix form # Convert to simple array for indexing vaccination_by_state_delta_array = vaccination_by_state_delta.to_numpy() vaccination_by_state_omicron = pd.read_csv( results_dir + "adjusted_vaccine_ts_omicron" + data_date.strftime("%Y-%m-%d") + ".csv", parse_dates=["date"], ) vaccination_by_state_omicron = vaccination_by_state_omicron[["state", "date", "effect"]] vaccination_by_state_omicron = vaccination_by_state_omicron.pivot( index="state", columns="date", values="effect" ) # Convert to matrix form # Convert to simple array for indexing vaccination_by_state_omicron_array = vaccination_by_state_omicron.to_numpy() # Get survey data surveys = pd.DataFrame() path = "data/md/Barometer wave*.csv" for file in glob.glob(path): surveys = surveys.append(pd.read_csv(file, parse_dates=["date"])) surveys = surveys.sort_values(by="date") print("Latest microdistancing survey is {}".format(surveys.date.values[-1])) surveys.loc[surveys.state != "ACT", "state"] = ( surveys.loc[surveys.state != "ACT", "state"] .map(states_initials) .fillna(surveys.loc[surveys.state != "ACT", "state"]) ) surveys["proportion"] = surveys["count"] / surveys.respondents surveys.date = pd.to_datetime(surveys.date) always = surveys.loc[surveys.response == "Always"].set_index(["state", "date"]) always = always.unstack(["state"]) # fill in date range idx = pd.date_range("2020-03-01", pd.to_datetime("today")) always = always.reindex(idx, fill_value=np.nan) always.index.name = "date" always = always.fillna(method="bfill") always = always.stack(["state"]) # Zero out before first survey 20th March always = always.reset_index().set_index("date") always.loc[:"2020-03-20", "count"] = 0 always.loc[:"2020-03-20", "respondents"] = 0 always.loc[:"2020-03-20", "proportion"] = 0 always = always.reset_index().set_index(["state", "date"]) survey_X = pd.pivot_table( data=always, index="date", columns="state", values="proportion" ) prop_all = survey_X ## read in and process mask wearing data mask_wearing = pd.DataFrame() path = "data/face_coverings/face_covering_*_.csv" for file in glob.glob(path): mask_wearing = mask_wearing.append(pd.read_csv(file, parse_dates=["date"])) mask_wearing = mask_wearing.sort_values(by="date") print("Latest mask wearing survey is {}".format(mask_wearing.date.values[-1])) # mask_wearing['state'] = mask_wearing['state'].map(states_initials).fillna(mask_wearing['state']) mask_wearing.loc[mask_wearing.state != "ACT", "state"] = ( mask_wearing.loc[mask_wearing.state != "ACT", "state"] .map(states_initials) .fillna(mask_wearing.loc[mask_wearing.state != "ACT", "state"]) ) mask_wearing["proportion"] = mask_wearing["count"] / mask_wearing.respondents mask_wearing.date = pd.to_datetime(mask_wearing.date) mask_wearing_always = mask_wearing.loc[ mask_wearing.face_covering == "Always" ].set_index(["state", "date"]) mask_wearing_always = mask_wearing_always.unstack(["state"]) idx = pd.date_range("2020-03-01", pd.to_datetime("today")) mask_wearing_always = mask_wearing_always.reindex(idx, fill_value=np.nan) mask_wearing_always.index.name = "date" # fill back to earlier and between weeks. # Assume survey on day x applies for all days up to x - 6 mask_wearing_always = mask_wearing_always.fillna(method="bfill") mask_wearing_always = mask_wearing_always.stack(["state"]) # Zero out before first survey 20th March mask_wearing_always = mask_wearing_always.reset_index().set_index("date") mask_wearing_always.loc[:"2020-03-20", "count"] = 0 mask_wearing_always.loc[:"2020-03-20", "respondents"] = 0 mask_wearing_always.loc[:"2020-03-20", "proportion"] = 0 mask_wearing_X = pd.pivot_table( data=mask_wearing_always, index="date", columns="state", values="proportion" ) mask_wearing_all = mask_wearing_X # Get posterior df_samples = read_in_posterior( date=data_date.strftime("%Y-%m-%d"), ) states = sorted(["NSW", "QLD", "SA", "VIC", "TAS", "WA", "ACT", "NT"]) plot_states = states.copy() one_month = data_date + timedelta(days=num_forecast_days) days_from_March = (one_month - pd.to_datetime(start_date)).days # filter out future info prop = prop_all.loc[:data_date] masks = mask_wearing_all.loc[:data_date] df_google = df_google_all.loc[df_google_all.date <= data_date] # use this trick of saving the google data and then reloading it to kill # the date time values df_google.to_csv("results/test_google_data.csv") df_google = pd.read_csv("results/test_google_data.csv") # remove the temporary file # os.remove("results/test_google_data.csv") # Simple interpolation for missing vlaues in Google data df_google = df_google.interpolate(method="linear", axis=0) df_google.date = pd.to_datetime(df_google.date) # forecast time parameters today = data_date.strftime("%Y-%m-%d") # add days to forecast if we are missing data if df_google.date.values[-1] < data_date: n_forecast = num_forecast_days + (data_date - df_google.date.values[-1]).days else: n_forecast = num_forecast_days training_start_date = datetime(2020, 3, 1, 0, 0) print( "Forecast ends at {} days after 1st March".format( (pd.to_datetime(today) - pd.to_datetime(training_start_date)).days + num_forecast_days ) ) print( "Final date is {}".format(pd.to_datetime(today) + timedelta(days=num_forecast_days)) ) df_google = df_google.loc[df_google.date >= training_start_date] outdata = {"date": [], "type": [], "state": [], "mean": [], "std": []} predictors = mov_values.copy() # predictors.remove("residential_7days") # Setup Figures axes = [] figs = [] for var in predictors: fig, ax_states = plt.subplots(figsize=(7, 8), nrows=4, ncols=2, sharex=True) axes.append(ax_states) # fig.suptitle(var) figs.append(fig) # extra fig for microdistancing var = "Proportion people always microdistancing" fig, ax_states = plt.subplots(figsize=(7, 8), nrows=4, ncols=2, sharex=True) axes.append(ax_states) figs.append(fig) # # extra fig for mask wearing var = "Proportion people always wearing masks" fig, ax_states = plt.subplots(figsize=(7, 8), nrows=4, ncols=2, sharex=True) axes.append(ax_states) figs.append(fig) var = "Reduction in Reff due to vaccination" fig, ax_states = plt.subplots(figsize=(7, 8), nrows=4, ncols=2, sharex=True) axes.append(ax_states) figs.append(fig) var = "Reduction in Reff due to vaccination" fig, ax_states = plt.subplots(figsize=(7, 8), nrows=4, ncols=2, sharex=True) axes.append(ax_states) figs.append(fig) # Forecasting Params n_training = 21 # Period to examine trend n_baseline = 150 # Period to create baseline n_training_vaccination = 30 # period to create trend for vaccination # since this can be useful, predictor ordering is: # [ # 'retail_and_recreation_7days', # 'grocery_and_pharmacy_7days', # 'parks_7days', # 'transit_stations_7days', # 'workplaces_7days' # ] # Loop through states and run forecasting. print("============") print("Forecasting macro, micro and vaccination") print("============") state_Rmed = {} state_sims = {} for i, state in enumerate(states): rownum = int(i / 2) colnum = np.mod(i, 2) rows = df_google.loc[df_google.state == state].shape[0] # Rmed currently a list, needs to be a matrix Rmed_array = np.zeros(shape=(rows, len(predictors), mob_samples)) for j, var in enumerate(predictors): for n in range(mob_samples): # historically we want a little more noise. In the actual forecasting of trends # we don't want this to be quite that prominent. Rmed_array[:, j, n] = df_google[df_google["state"] == state][ var ].values.T + np.random.normal( loc=0, scale=df_google[df_google["state"] == state][var + "_std"] ) dates = df_google[df_google["state"] == state]["date"] # cap min and max at historical or (-50,0) # 1 by predictors by mob_samples size minRmed_array = np.minimum(-50, np.amin(Rmed_array, axis=0)) maxRmed_array = np.maximum(10, np.amax(Rmed_array, axis=0)) # days by predictors by samples sims = np.zeros(shape=(n_forecast, len(predictors), mob_samples)) for n in range(mob_samples): # Loop through simulations Rmed = Rmed_array[:, :, n] minRmed = minRmed_array[:, n] maxRmed = maxRmed_array[:, n] if maxRmed[1] < 20: maxRmed[1] = 50 R_baseline_mean = np.mean(Rmed[-n_baseline:, :], axis=0) if state not in {"WA"}: R_baseline_mean[-1] = 0 R_diffs = np.diff(Rmed[-n_training:, :], axis=0) mu = np.mean(R_diffs, axis=0) cov = np.cov(R_diffs, rowvar=False) # columns are vars, rows are obs # Forecast mobility forward sequentially by day. # current = np.mean(Rmed[-9:-2, :], axis=0) # Start from last valid days # current = np.mean(Rmed[-1, :], axis=0) # Start from last valid days current = Rmed[-1, :] # Start from last valid days for i in range(n_forecast): # ## SCENARIO MODELLING # This code chunk will allow you manually set the distancing params for a state to allow for modelling. if scenarios[state] == "": # Proportion of trend_force to regression_to_baseline_force p_force = (n_forecast - i) / (n_forecast) # Generate a single forward realisation of trend trend_force = np.random.multivariate_normal(mu, cov) # Generate a single forward realisation of baseline regression # regression to baseline force stronger in standard forecasting regression_to_baseline_force = np.random.multivariate_normal( 0.05 * (R_baseline_mean - current), cov ) new_forcast_points = ( current + p_force * trend_force + (1 - p_force) * regression_to_baseline_force ) # Find overall simulation step # Apply minimum and maximum new_forcast_points = np.maximum(minRmed, new_forcast_points) new_forcast_points = np.minimum(maxRmed, new_forcast_points) current = new_forcast_points elif scenarios[state] != "": # Make baseline cov for generating points cov_baseline = np.cov(Rmed[-42:-28, :], rowvar=False) mu_current = Rmed[-1, :] mu_victoria = np.array( [ -55.35057887, -22.80891056, -46.59531636, -75.99942378, -44.71119293, ] ) mu_baseline = np.mean(Rmed[-42:-28, :], axis=0) # mu_baseline = 0*np.mean(Rmed[-42:-28, :], axis=0) if scenario_dates[state] != "": scenario_change_point = ( pd.to_datetime(scenario_dates[state]) - data_date ).days + (n_forecast - 42) # Constant Lockdown if ( scenarios[state] == "no_reversion" or scenarios[state] == "school_opening_2022" ): # take a continuous median to account for noise in recent observations (such as sunny days) # mu_current = np.mean(Rmed[-7:, :], axis=0) # cov_baseline = np.cov(Rmed[-28:, :], rowvar=False) new_forcast_points = np.random.multivariate_normal( mu_current, cov_baseline ) elif scenarios[state] == "no_reversion_continuous_lockdown": # add the new scenario here new_forcast_points = np.random.multivariate_normal( mu_current, cov_baseline ) # No Lockdown elif scenarios[state] == "full_reversion": # a full reversion scenario changes the social mobility and microdistancing # behaviours at the scenario change date and then applies a return to baseline force if i < scenario_change_point: new_forcast_points = np.random.multivariate_normal( mu_current, cov_baseline ) else: # baseline is within lockdown period so take a new baseline of 0's and trend towards this R_baseline_0 = np.zeros_like(R_baseline_mean) R_baseline_0 = mu_baseline # set adjusted baselines by eyeline for now, need to get this automated # R_baseline_0[1] = 10 # baseline of +10% for Grocery based on other jurisdictions # # apply specific baselines to the jurisdictions progressing towards normal restrictions # if state == 'NSW': # R_baseline_0[3] = -25 # baseline of -25% for Transit based on 2021-April to 2021-July (pre-third-wave lockdowns) # elif state == 'ACT': # R_baseline_0[1] = 20 # baseline of +20% for Grocery based on other jurisdictions # R_baseline_0[3] = -25 # baseline of -25% for Transit based on 2021-April to 2021-July (pre-third-wave lockdowns) # elif state == 'VIC': # R_baseline_0[0] = -15 # baseline of -15% for R&R based on 2021-April to 2021-July (pre-third-wave lockdowns) # R_baseline_0[3] = -30 # baseline of -30% for Transit based on 2021-April to 2021-July (pre-third-wave lockdowns) # R_baseline_0[4] = -15 # baseline of -15% for workplaces based on 2021-April to 2021-July (pre-third-wave lockdowns) # the force we trend towards the baseline above with p_force = (n_forecast - i) / (n_forecast) trend_force = np.random.multivariate_normal( mu, cov ) # Generate a single forward realisation of trend # baseline scalar is smaller for this as we want slow returns adjusted_baseline_drift_mean = R_baseline_0 - current # we purposely scale the transit measure so that we increase a little more quickly # tmp = 0.05 * adjusted_baseline_drift_mean[3] adjusted_baseline_drift_mean *= 0.005 # adjusted_baseline_drift_mean[3] = tmp regression_to_baseline_force = np.random.multivariate_normal( adjusted_baseline_drift_mean, cov ) # Generate a single forward realisation of baseline regression new_forcast_points = ( current + p_force * trend_force + (1 - p_force) * regression_to_baseline_force ) # Find overall simulation step # new_forcast_points = current + regression_to_baseline_force # Find overall simulation step # Apply minimum and maximum new_forcast_points = np.maximum(minRmed, new_forcast_points) new_forcast_points = np.minimum(maxRmed, new_forcast_points) current = new_forcast_points elif scenarios[state] == "immediately_baseline": # this scenario is used to return instantly to the baseline levels if i < scenario_change_point: new_forcast_points = np.random.multivariate_normal( mu_current, cov_baseline ) else: # baseline is within lockdown period so take a new baseline of 0's and trend towards this R_baseline_0 = np.zeros_like(R_baseline_mean) # jump immediately to baseline new_forcast_points = np.random.multivariate_normal( R_baseline_0, cov_baseline ) # Temporary Lockdown elif scenarios[state] == "half_reversion": if i < scenario_change_point: new_forcast_points = np.random.multivariate_normal( mu_current, cov_baseline ) else: new_forcast_points = np.random.multivariate_normal( (mu_current + mu_baseline) / 2, cov_baseline ) # Stage 4 elif scenarios[state] == "stage4": if i < scenario_change_point: new_forcast_points = np.random.multivariate_normal( mu_current, cov_baseline ) else: new_forcast_points = np.random.multivariate_normal( mu_victoria, cov_baseline ) # Set this day in this simulation to the forecast realisation sims[i, :, n] = new_forcast_points dd = [dates.tolist()[-1] + timedelta(days=x) for x in range(1, n_forecast + 1)] sims_med = np.median(sims, axis=2) # N by predictors sims_q25 = np.percentile(sims, 25, axis=2) sims_q75 = np.percentile(sims, 75, axis=2) # forecast mircodistancing # Get a baseline value of microdistancing mu_overall = np.mean(prop[state].values[-n_baseline:]) md_diffs = np.diff(prop[state].values[-n_training:]) mu_diffs = np.mean(md_diffs) std_diffs = np.std(md_diffs) extra_days_md = ( pd.to_datetime(df_google.date.values[-1]) - pd.to_datetime(prop[state].index.values[-1]) ).days # Set all values to current value. current = [prop[state].values[-1]] * mob_samples new_md_forecast = [] # Forecast mobility forward sequentially by day. for i in range(n_forecast + extra_days_md): # SCENARIO MODELLING # This code chunk will allow you manually set the distancing params for a state to allow for modelling. if scenarios[state] == "": # Proportion of trend_force to regression_to_baseline_force p_force = (n_forecast + extra_days_md - i) / (n_forecast + extra_days_md) # Generate step realisations in training trend direction trend_force = np.random.normal(mu_diffs, std_diffs, size=mob_samples) # Generate realisations that draw closer to baseline regression_to_baseline_force = np.random.normal( 0.05 * (mu_overall - current), std_diffs ) current = ( current + p_force * trend_force + (1 - p_force) * regression_to_baseline_force ) # Balance forces # current = current+p_force*trend_force # Balance forces elif scenarios[state] != "": current = np.array(current) # Make baseline cov for generating points std_baseline = np.std(prop[state].values[-42:-28]) mu_baseline = np.mean(prop[state].values[-42:-28], axis=0) mu_current = prop[state].values[-1] if scenario_dates[state] != "": scenario_change_point = ( pd.to_datetime(scenario_dates[state]) - data_date ).days + extra_days_md # Constant Lockdown if ( scenarios[state] == "no_reversion" or scenarios[state] == "school_opening_2022" ): # use only more recent data to forecast under a no-reversion scenario # std_lockdown = np.std(prop[state].values[-24:-4]) # current = np.random.normal(mu_current, std_lockdown) current = np.random.normal(mu_current, std_baseline) # No Lockdown elif scenarios[state] == "full_reversion": if i < scenario_change_point: current = np.random.normal(mu_current, std_baseline) else: mu_baseline_0 = 0.2 # Proportion of trend_force to regression_to_baseline_force p_force = (n_forecast + extra_days_md - i) / ( n_forecast + extra_days_md ) # take a mean of the differences over the last 2 weeks mu_diffs = np.mean(np.diff(prop[state].values[-14:])) # Generate step realisations in training trend direction trend_force = np.random.normal(mu_diffs, std_baseline) # Generate realisations that draw closer to baseline regression_to_baseline_force = np.random.normal( 0.005 * (mu_baseline_0 - current), std_baseline ) current = current + regression_to_baseline_force # Balance forces elif scenarios[state] == "immediately_baseline": # this scenario is an immediate return to baseline values if i < scenario_change_point: current = np.random.normal(mu_current, std_baseline) else: mu_baseline_0 = 0.2 # jump immediately to baseline current = np.random.normal(mu_baseline_0, std_baseline) # Temporary Lockdown elif scenarios[state] == "half_reversion": # No Lockdown if i < scenario_change_point: current = np.random.normal(mu_current, std_baseline) else: # Revert to values halfway between the before and after current = np.random.normal( (mu_current + mu_baseline) / 2, std_baseline ) new_md_forecast.append(current) md_sims = np.vstack(new_md_forecast) # Put forecast days together md_sims = np.minimum(1, md_sims) md_sims = np.maximum(0, md_sims) dd_md = [ prop[state].index[-1] + timedelta(days=x) for x in range(1, n_forecast + extra_days_md + 1) ] ## currently not forecasting masks — may return in the future but will need to assess. # forecast mask wearing compliance # Get a baseline value of microdistancing mu_overall = np.mean(masks[state].values[-n_baseline:]) md_diffs = np.diff(masks[state].values[-n_training:]) mu_diffs = np.mean(md_diffs) std_diffs = np.std(md_diffs) extra_days_masks = ( pd.to_datetime(df_google.date.values[-1]) - pd.to_datetime(masks[state].index.values[-1]) ).days # Set all values to current value. current = [masks[state].values[-1]] * mob_samples new_masks_forecast = [] # Forecast mobility forward sequentially by day. for i in range(n_forecast + extra_days_masks): # SCENARIO MODELLING # This code chunk will allow you manually set the distancing params for a state to allow for modelling. if scenarios[state] == "": # masksortion of trend_force to regression_to_baseline_force p_force = (n_forecast + extra_days_masks - i) / ( n_forecast + extra_days_masks ) # Generate step realisations in training trend direction trend_force = np.random.normal(mu_diffs, std_diffs, size=mob_samples) # Generate realisations that draw closer to baseline # regression_to_baseline_force = np.random.normal(0.05*(mu_overall - current), std_diffs) # current = current + p_force*trend_force + (1-p_force)*regression_to_baseline_force # Balance forces current = current + trend_force elif scenarios[state] != "": current = np.array(current) # Make baseline cov for generating points std_baseline = np.std(masks[state].values[-42:-28]) mu_baseline = np.mean(masks[state].values[-42:-28], axis=0) mu_current = masks[state].values[-1] if scenario_dates[state] != "": scenario_change_point = ( pd.to_datetime(scenario_dates[state]) - data_date ).days + extra_days_masks # Constant Lockdown if ( scenarios[state] == "no_reversion" or scenarios[state] == "school_opening_2022" ): # use only more recent data to forecast under a no-reversion scenario # std_lockdown = np.std(masks[state].values[-24:-4]) # current = np.random.normal(mu_current, std_lockdown) current = np.random.normal(mu_current, std_baseline) # No Lockdown elif scenarios[state] == "full_reversion": if i < scenario_change_point: current = np.random.normal(mu_current, std_baseline) else: mu_baseline_0 = 0.2 # masksortion of trend_force to regression_to_baseline_force p_force = (n_forecast + extra_days_masks - i) / ( n_forecast + extra_days_masks ) # take a mean of the differences over the last 2 weeks mu_diffs = np.mean(np.diff(masks[state].values[-14:])) # Generate step realisations in training trend direction trend_force = np.random.normal(mu_diffs, std_baseline) # Generate realisations that draw closer to baseline regression_to_baseline_force = np.random.normal( 0.005 * (mu_baseline_0 - current), std_baseline ) current = current + regression_to_baseline_force # Balance forces elif scenarios[state] == "immediately_baseline": # this scenario is an immediate return to baseline values if i < scenario_change_point: current = np.random.normal(mu_current, std_baseline) else: mu_baseline_0 = 0.2 # jump immediately to baseline current = np.random.normal(mu_baseline_0, std_baseline) # Temporary Lockdown elif scenarios[state] == "half_reversion": # No Lockdown if i < scenario_change_point: current = np.random.normal(mu_current, std_baseline) else: # Revert to values halfway between the before and after current = np.random.normal( (mu_current + mu_baseline) / 2, std_baseline ) new_masks_forecast.append(current) masks_sims = np.vstack(new_masks_forecast) # Put forecast days together masks_sims = np.minimum(1, masks_sims) masks_sims = np.maximum(0, masks_sims) dd_masks = [ masks[state].index[-1] + timedelta(days=x) for x in range(1, n_forecast + extra_days_masks + 1) ] # Forecasting vaccine effect # if state == "WA": # last_fit_date = pd.to_datetime(third_end_date) # else: last_fit_date = pd.to_datetime(third_date_range[state][-1]) extra_days_vacc = (pd.to_datetime(df_google.date.values[-1]) - last_fit_date).days total_forecasting_days = n_forecast + extra_days_vacc # get the VE on the last day mean_delta = vaccination_by_state_delta.loc[state][last_fit_date + timedelta(1)] mean_omicron = vaccination_by_state_omicron.loc[state][last_fit_date + timedelta(1)] current = np.zeros_like(mob_samples) new_delta = [] new_omicron = [] # variance on the vaccine forecasts is equivalent to what we use in the fitting var_vax = 0.00005 a_vax = np.zeros_like(mob_samples) b_vax = np.zeros_like(mob_samples) for d in pd.date_range( last_fit_date + timedelta(1), pd.to_datetime(today) + timedelta(days=num_forecast_days), ): mean_delta = vaccination_by_state_delta.loc[state][d] a_vax = mean_delta * (mean_delta * (1 - mean_delta) / var_vax - 1) b_vax = (1 - mean_delta) * (mean_delta * (1 - mean_delta) / var_vax - 1) current = np.random.beta(a_vax, b_vax, mob_samples) new_delta.append(current.tolist()) mean_omicron = vaccination_by_state_omicron.loc[state][d] a_vax = mean_omicron * (mean_omicron * (1 - mean_omicron) / var_vax - 1) b_vax = (1 - mean_omicron) * (mean_omicron * (1 - mean_omicron) / var_vax - 1) current = np.random.beta(a_vax, b_vax, mob_samples) new_omicron.append(current.tolist()) vacc_sims_delta = np.vstack(new_delta) vacc_sims_omicron = np.vstack(new_omicron) dd_vacc = [ last_fit_date + timedelta(days=x) for x in range(1, n_forecast + extra_days_vacc + 1) ] for j, var in enumerate( predictors + ["md_prop"] + ["masks_prop"] + ["vaccination_delta"] + ["vaccination_omicron"] ): # Record data axs = axes[j] if (state == "AUS") and (var == "md_prop"): continue if var == "md_prop": outdata["type"].extend([var] * len(dd_md)) outdata["state"].extend([state] * len(dd_md)) outdata["date"].extend([d.strftime("%Y-%m-%d") for d in dd_md]) outdata["mean"].extend(np.mean(md_sims, axis=1)) outdata["std"].extend(np.std(md_sims, axis=1)) elif var == "masks_prop": outdata["type"].extend([var] * len(dd_masks)) outdata["state"].extend([state] * len(dd_masks)) outdata["date"].extend([d.strftime("%Y-%m-%d") for d in dd_masks]) outdata["mean"].extend(np.mean(masks_sims, axis=1)) outdata["std"].extend(np.std(masks_sims, axis=1)) elif var == "vaccination_delta": outdata["type"].extend([var] * len(dd_vacc)) outdata["state"].extend([state] * len(dd_vacc)) outdata["date"].extend([d.strftime("%Y-%m-%d") for d in dd_vacc]) outdata["mean"].extend(np.mean(vacc_sims_delta, axis=1)) outdata["std"].extend(np.std(vacc_sims_delta, axis=1)) elif var == "vaccination_omicron": outdata["type"].extend([var] * len(dd_vacc)) outdata["state"].extend([state] * len(dd_vacc)) outdata["date"].extend([d.strftime("%Y-%m-%d") for d in dd_vacc]) outdata["mean"].extend(np.mean(vacc_sims_omicron, axis=1)) outdata["std"].extend(np.std(vacc_sims_omicron, axis=1)) else: outdata["type"].extend([var] * len(dd)) outdata["state"].extend([state] * len(dd)) outdata["date"].extend([d.strftime("%Y-%m-%d") for d in dd]) outdata["mean"].extend(np.mean(sims[:, j, :], axis=1)) outdata["std"].extend(np.std(sims[:, j, :], axis=1)) if state in plot_states: if var == "md_prop": # md plot axs[rownum, colnum].plot(prop[state].index, prop[state].values, lw=1) axs[rownum, colnum].plot(dd_md, np.median(md_sims, axis=1), "k", lw=1) axs[rownum, colnum].fill_between( dd_md, np.quantile(md_sims, 0.25, axis=1), np.quantile(md_sims, 0.75, axis=1), color="k", alpha=0.1, ) elif var == "masks_prop": # masks plot axs[rownum, colnum].plot(masks[state].index, masks[state].values, lw=1) axs[rownum, colnum].plot( dd_masks, np.median(masks_sims, axis=1), "k", lw=1 ) axs[rownum, colnum].fill_between( dd_masks, np.quantile(masks_sims, 0.25, axis=1), np.quantile(masks_sims, 0.75, axis=1), color="k", alpha=0.1, ) elif var == "vaccination_delta": # vaccination plot axs[rownum, colnum].plot( vaccination_by_state_delta.loc[ state, ~vaccination_by_state_delta.loc[state].isna() ].index, vaccination_by_state_delta.loc[ state, ~vaccination_by_state_delta.loc[state].isna() ].values, lw=1, ) axs[rownum, colnum].plot( dd_vacc, np.median(vacc_sims_delta, axis=1), color="C1", lw=1 ) axs[rownum, colnum].fill_between( dd_vacc, np.quantile(vacc_sims_delta, 0.25, axis=1), np.quantile(vacc_sims_delta, 0.75, axis=1), color="C1", alpha=0.1, ) elif var == "vaccination_omicron": # vaccination plot axs[rownum, colnum].plot( vaccination_by_state_omicron.loc[ state, ~vaccination_by_state_omicron.loc[state].isna() ].index, vaccination_by_state_omicron.loc[ state, ~vaccination_by_state_omicron.loc[state].isna() ].values, lw=1, ) axs[rownum, colnum].plot( dd_vacc, np.median(vacc_sims_omicron, axis=1), color="C1", lw=1 ) axs[rownum, colnum].fill_between( dd_vacc, np.quantile(vacc_sims_omicron, 0.25, axis=1), np.quantile(vacc_sims_omicron, 0.75, axis=1), color="C1", alpha=0.1, ) else: # all other predictors axs[rownum, colnum].plot( dates, df_google[df_google["state"] == state][var].values, lw=1 ) axs[rownum, colnum].fill_between( dates, np.percentile(Rmed_array[:, j, :], 25, axis=1), np.percentile(Rmed_array[:, j, :], 75, axis=1), alpha=0.5, ) axs[rownum, colnum].plot(dd, sims_med[:, j], color="C1", lw=1) axs[rownum, colnum].fill_between( dd, sims_q25[:, j], sims_q75[:, j], color="C1", alpha=0.1 ) # axs[rownum,colnum].axvline(dd[-num_forecast_days], ls = '--', color = 'black', lw=1) # plotting a vertical line at the end of the data date # axs[rownum,colnum].axvline(dd[-(num_forecast_days+truncation_days)], ls = '-.', color='grey', lw=1) # plotting a vertical line at the forecast date axs[rownum, colnum].set_title(state) # plotting horizontal line at 1 axs[rownum, colnum].axhline(1, ls="--", c="k", lw=1) axs[rownum, colnum].set_title(state) axs[rownum, colnum].tick_params("x", rotation=90) axs[rownum, colnum].tick_params("both", labelsize=8) # plot the start date of the data and indicators of the data we are actually fitting to (in grey) axs[rownum, colnum].axvline(data_date, ls="-.", color="black", lw=1) if j < len(predictors): axs[rownum, colnum].set_ylabel( predictors[j].replace("_", " ")[:-5], fontsize=7 ) elif var == "md_prop": axs[rownum, colnum].set_ylabel( "Proportion of respondents\n micro-distancing", fontsize=7 ) elif var == "masks_prop": axs[rownum, colnum].set_ylabel( "Proportion of respondents\n wearing masks", fontsize=7 ) elif var == "vaccination_delta" or var == "vaccination_omicron": axs[rownum, colnum].set_ylabel( "Reduction in TP \n from vaccination", fontsize=7 ) # historically we want to store the higher variance mobilities state_Rmed[state] = Rmed_array state_sims[state] = sims os.makedirs( "figs/mobility_forecasts/" + data_date.strftime("%Y-%m-%d") + "_mobility_forecasts", exist_ok=True, ) for i, fig in enumerate(figs): fig.text(0.5, 0.02, "Date", ha="center", va="center", fontsize=15) if i < len(predictors): # this plots the google mobility forecasts fig.tight_layout() fig.savefig( "figs/mobility_forecasts/" + data_date.strftime("%Y-%m-%d") + "_mobility_forecasts/" + str(predictors[i]) + ".png", dpi=400, ) elif i == len(predictors): # this plots the microdistancing forecasts fig.tight_layout() fig.savefig( "figs/mobility_forecasts/" + data_date.strftime("%Y-%m-%d") + "_mobility_forecasts/micro_dist.png", dpi=400, ) elif i == len(predictors) + 1: # this plots the microdistancing forecasts fig.tight_layout() fig.savefig( "figs/mobility_forecasts/" + data_date.strftime("%Y-%m-%d") + "_mobility_forecasts/mask_wearing.png", dpi=400, ) elif i == len(predictors) + 2: # finally this plots the delta VE forecasts fig.tight_layout() fig.savefig( "figs/mobility_forecasts/" + data_date.strftime("%Y-%m-%d") + "_mobility_forecasts/delta_vaccination.png", dpi=400, ) else: # finally this plots the omicron VE forecasts fig.tight_layout() fig.savefig( "figs/mobility_forecasts/" + data_date.strftime("%Y-%m-%d") + "_mobility_forecasts/omicron_vaccination.png", dpi=400, ) df_out = pd.DataFrame.from_dict(outdata) df_md = df_out.loc[df_out.type == "md_prop"] df_masks = df_out.loc[df_out.type == "masks_prop"] df_out = df_out.loc[df_out.type != "vaccination_delta"] df_out = df_out.loc[df_out.type != "vaccination_omicron"] df_out = df_out.loc[df_out.type != "md_prop"] df_out = df_out.loc[df_out.type != "masks_prop"] df_forecast = pd.pivot_table( df_out, columns=["type"], index=["date", "state"], values=["mean"] ) df_std = pd.pivot_table( df_out, columns=["type"], index=["date", "state"], values=["std"] ) df_forecast_md = pd.pivot_table( df_md, columns=["state"], index=["date"], values=["mean"] ) df_forecast_md_std = pd.pivot_table( df_md, columns=["state"], index=["date"], values=["std"] ) df_forecast_masks = pd.pivot_table( df_masks, columns=["state"], index=["date"], values=["mean"] ) df_forecast_masks_std = pd.pivot_table( df_masks, columns=["state"], index=["date"], values=["std"] ) # align with google order in columns df_forecast = df_forecast.reindex([("mean", val) for val in predictors], axis=1) df_std = df_std.reindex([("std", val) for val in predictors], axis=1) df_forecast.columns = predictors # remove the tuple name of columns df_std.columns = predictors df_forecast = df_forecast.reset_index() df_std = df_std.reset_index() df_forecast.date = pd.to_datetime(df_forecast.date) df_std.date = pd.to_datetime(df_std.date) df_forecast_md = df_forecast_md.reindex([("mean", state) for state in states], axis=1) df_forecast_md_std = df_forecast_md_std.reindex( [("std", state) for state in states], axis=1 ) df_forecast_md.columns = states df_forecast_md_std.columns = states df_forecast_md = df_forecast_md.reset_index() df_forecast_md_std = df_forecast_md_std.reset_index() df_forecast_md.date = pd.to_datetime(df_forecast_md.date) df_forecast_md_std.date = pd.to_datetime(df_forecast_md_std.date) df_forecast_masks = df_forecast_masks.reindex( [("mean", state) for state in states], axis=1 ) df_forecast_masks_std = df_forecast_masks_std.reindex( [("std", state) for state in states], axis=1 ) df_forecast_masks.columns = states df_forecast_masks_std.columns = states df_forecast_masks = df_forecast_masks.reset_index() df_forecast_masks_std = df_forecast_masks_std.reset_index() df_forecast_masks.date = pd.to_datetime(df_forecast_masks.date) df_forecast_masks_std.date = pd.to_datetime(df_forecast_masks_std.date) df_R = df_google[["date", "state"] + mov_values + [val + "_std" for val in mov_values]] df_R = pd.concat([df_R, df_forecast], ignore_index=True, sort=False) df_R["policy"] = (df_R.date >= "2020-03-20").astype("int8") df_md = pd.concat([prop, df_forecast_md.set_index("date")]) df_masks = pd.concat([masks, df_forecast_masks.set_index("date")]) # now we read in the ve time series and create an adjusted timeseries from March 1st # that includes no effect prior vaccination_by_state = pd.read_csv( results_dir + "adjusted_vaccine_ts_delta" + data_date.strftime("%Y-%m-%d") + ".csv", parse_dates=["date"], ) # there are a couple NA's early on in the time series but is likely due to slightly different start dates vaccination_by_state.fillna(1, inplace=True) vaccination_by_state = vaccination_by_state[["state", "date", "effect"]] vaccination_by_state = vaccination_by_state.pivot( index="state", columns="date", values="effect" ) # Convert to matrix form # initialise a complete dataframe which will be the full VE timeseries plus the forecasted VE df_ve_delta = pd.DataFrame() # loop over states and get the offset compoonenets of the full VE before_vacc_dates = pd.date_range( start_date, vaccination_by_state.columns[0] - timedelta(days=1), freq="d" ) # this is just a df of ones with all the missing dates as indices (8 comes from 8 jurisdictions) before_vacc_Reff_reduction = pd.DataFrame(np.ones(((1, len(before_vacc_dates))))) before_vacc_Reff_reduction.columns = before_vacc_dates for state in states: before_vacc_Reff_reduction.index = {state} # merge the vaccine data and the 1's dataframes df_ve_delta[state] = pd.concat( [before_vacc_Reff_reduction.loc[state].T, vaccination_by_state.loc[state].T] ) # clip off extra days df_ve_delta = df_ve_delta[ df_ve_delta.index <= pd.to_datetime(today) + timedelta(days=num_forecast_days) ] # save the forecasted vaccination line df_ve_delta.to_csv( results_dir + "forecasted_vaccination_delta" + data_date.strftime("%Y-%m-%d") + ".csv" ) vaccination_by_state = pd.read_csv( results_dir + "adjusted_vaccine_ts_omicron" + data_date.strftime("%Y-%m-%d") + ".csv", parse_dates=["date"], ) # there are a couple NA's early on in the time series but is likely due to slightly different start dates vaccination_by_state.fillna(1, inplace=True) vaccination_by_state = vaccination_by_state[["state", "date", "effect"]] vaccination_by_state = vaccination_by_state.pivot( index="state", columns="date", values="effect" ) # Convert to matrix form # initialise a complete dataframe which will be the full VE timeseries plus the forecasted VE df_ve_omicron = pd.DataFrame() # loop over states and get the offset compoonenets of the full VE before_vacc_dates = pd.date_range( start_date, pd.to_datetime(omicron_start_date) - timedelta(days=1), freq="d" ) # this is just a df of ones with all the missing dates as indices (8 comes from 8 jurisdictions) before_vacc_Reff_reduction = pd.DataFrame(np.ones(((1, len(before_vacc_dates))))) before_vacc_Reff_reduction.columns = before_vacc_dates for state in states: before_vacc_Reff_reduction.index = {state} # merge the vaccine data and the 1's dataframes df_ve_omicron[state] = pd.concat( [ before_vacc_Reff_reduction.loc[state].T, vaccination_by_state.loc[state][ vaccination_by_state.loc[state].index >= pd.to_datetime(omicron_start_date) ], ] ) df_ve_omicron = df_ve_omicron[ df_ve_omicron.index <= pd.to_datetime(today) + timedelta(days=num_forecast_days) ] # save the forecasted vaccination line df_ve_omicron.to_csv( results_dir + "forecasted_vaccination_omicron" + data_date.strftime("%Y-%m-%d") + ".csv" ) print("============") print("Plotting forecasted estimates") print("============") expo_decay = True theta_md = np.tile(df_samples["theta_md"].values, (df_md["NSW"].shape[0], 1)) fig, ax = plt.subplots(figsize=(12, 9), nrows=4, ncols=2, sharex=True, sharey=True) for i, state in enumerate(plot_states): # np.random.normal(df_md[state].values, df_md_std.values) prop_sim = df_md[state].values if expo_decay: md = ((1 + theta_md).T ** (-1 * prop_sim)).T else: md = 2 * expit(-1 * theta_md * prop_sim[:, np.newaxis]) row = i // 2 col = i % 2 ax[row, col].plot( df_md[state].index, np.median(md, axis=1), label="Microdistancing" ) ax[row, col].fill_between( df_md[state].index, np.quantile(md, 0.25, axis=1), np.quantile(md, 0.75, axis=1), label="Microdistancing", alpha=0.4, color="C0", ) ax[row, col].fill_between( df_md[state].index, np.quantile(md, 0.05, axis=1), np.quantile(md, 0.95, axis=1), label="Microdistancing", alpha=0.4, color="C0", ) ax[row, col].set_title(state) ax[row, col].tick_params("x", rotation=45) ax[row, col].set_xticks( [df_md[state].index.values[-n_forecast - extra_days_md]], minor=True, ) ax[row, col].xaxis.grid(which="minor", linestyle="-.", color="grey", linewidth=1) fig.text( 0.03, 0.5, "Multiplicative effect \n of micro-distancing $M_d$", ha="center", va="center", rotation="vertical", fontsize=20, ) fig.text(0.5, 0.04, "Date", ha="center", va="center", fontsize=20) plt.tight_layout(rect=[0.05, 0.04, 1, 1]) fig.savefig( "figs/" + "mobility_forecasts/" + data_date.strftime("%Y-%m-%d") + "_mobility_forecasts/md_factor.png", dpi=144, ) theta_masks = np.tile(df_samples["theta_masks"].values, (df_masks["NSW"].shape[0], 1)) fig, ax = plt.subplots(figsize=(12, 9), nrows=4, ncols=2, sharex=True, sharey=True) for i, state in enumerate(plot_states): # np.random.normal(df_md[state].values, df_md_std.values) masks_prop_sim = df_masks[state].values if expo_decay: mask_wearing_factor = ((1 + theta_masks).T ** (-1 * masks_prop_sim)).T else: mask_wearing_factor = 2 * expit( -1 * theta_masks * masks_prop_sim[:, np.newaxis] ) row = i // 2 col = i % 2 ax[row, col].plot( df_masks[state].index, np.median(mask_wearing_factor, axis=1), label="Microdistancing", ) ax[row, col].fill_between( df_masks[state].index, np.quantile(mask_wearing_factor, 0.25, axis=1), np.quantile(mask_wearing_factor, 0.75, axis=1), label="Microdistancing", alpha=0.4, color="C0", ) ax[row, col].fill_between( df_masks[state].index, np.quantile(mask_wearing_factor, 0.05, axis=1), np.quantile(mask_wearing_factor, 0.95, axis=1), label="Microdistancing", alpha=0.4, color="C0", ) ax[row, col].set_title(state) ax[row, col].tick_params("x", rotation=45) ax[row, col].set_xticks( [df_masks[state].index.values[-n_forecast - extra_days_masks]], minor=True ) ax[row, col].xaxis.grid(which="minor", linestyle="-.", color="grey", linewidth=1) fig.text( 0.03, 0.5, "Multiplicative effect \n of mask-wearing $M_d$", ha="center", va="center", rotation="vertical", fontsize=20, ) fig.text(0.5, 0.04, "Date", ha="center", va="center", fontsize=20) plt.tight_layout(rect=[0.05, 0.04, 1, 1]) fig.savefig( "figs/" + "mobility_forecasts/" + data_date.strftime("%Y-%m-%d") + "_mobility_forecasts/mask_wearing_factor.png", dpi=144, ) df_R = df_R.sort_values("date") # samples = df_samples.sample(n_samples) # test on sample of 2 # keep all samples samples = df_samples.iloc[:mob_samples, :] # for strain in ("Delta", "Omicron"): # samples = df_samples # flags for advanced scenario modelling advanced_scenario_modelling = False save_for_SA = False # since this can be useful, predictor ordering is: # ['retail_and_recreation_7days', 'grocery_and_pharmacy_7days', 'parks_7days', 'transit_stations_7days', 'workplaces_7days'] typ = "R_L" forecast_type = ["R_L"] for strain in ("Delta", "Omicron"): print("============") print("Calculating", strain, "TP") print("============") state_Rs = { "state": [], "date": [], "type": [], "median": [], "lower": [], "upper": [], "bottom": [], "top": [], "mean": [], "std": [], } ban = "2020-03-20" # VIC and NSW allow gatherings of up to 20 people, other jurisdictions allow for new_pol = "2020-06-01" expo_decay = True # start and end date for the third wave # Subtract 10 days to avoid right truncation third_end_date = data_date - pd.Timedelta(days=truncation_days) typ_state_R = {} mob_forecast_date = df_forecast.date.min() state_key = { "ACT": "1", "NSW": "2", "NT": "3", "QLD": "4", "SA": "5", "TAS": "6", "VIC": "7", "WA": "8", } total_N_p_third_omicron = 0 for v in third_date_range.values(): tmp = sum(v >= pd.to_datetime(omicron_start_date)) # add a plus one for inclusion of end date (the else 0 is due to QLD having no Omicron potential) total_N_p_third_omicron += tmp if tmp > 0 else 0 state_R = {} for (kk, state) in enumerate(states): # sort df_R by date so that rows are dates. rows are dates, columns are predictors df_state = df_R.loc[df_R.state == state] dd = df_state.date post_values = samples[predictors].values.T prop_sim = df_md[state].values # grab vaccination data vacc_ts_delta = df_ve_delta[state] vacc_ts_omicron = df_ve_omicron[state] # take right size of md to be N by N theta_md = np.tile(samples["theta_md"].values, (df_state.shape[0], 1)) theta_masks = np.tile(samples["theta_masks"].values, (df_state.shape[0], 1)) r = samples["r[" + str(kk + 1) + "]"].values tau = samples["tau[" + str(kk + 1) + "]"].values m0 = samples["m0[" + str(kk + 1) + "]"].values m1 = samples["m1[" + str(kk + 1) + "]"].values # m1 = 1.0 md = ((1 + theta_md).T ** (-1 * prop_sim)).T masks = ((1 + theta_masks).T ** (-1 * masks_prop_sim)).T third_states_indices = { state: index + 1 for (index, state) in enumerate(third_states) } third_days = {k: v.shape[0] for (k, v) in third_date_range.items()} third_days_cumulative = np.append( [0], np.cumsum([v for v in third_days.values()]) ) vax_idx_ranges = { k: range(third_days_cumulative[i], third_days_cumulative[i + 1]) for (i, k) in enumerate(third_days.keys()) } third_days_tot = sum(v for v in third_days.values()) # get the sampled vaccination effect (this will be incomplete as it's only over the fitting period) sampled_vax_effects_all = samples[ ["ve_delta[" + str(j + 1) + "]" for j in range(third_days_tot)] ].T vacc_tmp = sampled_vax_effects_all.iloc[vax_idx_ranges[state], :] # now we layer in the posterior vaccine multiplier effect which ill be a (T,mob_samples) array # get before and after fitting and tile them vacc_ts_data_before = pd.concat( [vacc_ts_delta.loc[vacc_ts_delta.index < third_date_range[state][0]]] * mob_samples, axis=1, ).to_numpy() vacc_ts_data_after = pd.concat( [vacc_ts_delta.loc[vacc_ts_delta.index > third_date_range[state][-1]]] * mob_samples, axis=1, ).to_numpy() # merge in order vacc_ts_delta = np.vstack( [vacc_ts_data_before, vacc_tmp, vacc_ts_data_after] ) # construct a range of dates for omicron which starts at the maximum of the start date for that state or the Omicron start date third_omicron_date_range = { k: pd.date_range( start=max(v[0], pd.to_datetime(omicron_start_date)), end=v[-1] ).values for (k, v) in third_date_range.items() } third_omicron_days = { k: v.shape[0] for (k, v) in third_omicron_date_range.items() } third_omicron_days_cumulative = np.append( [0], np.cumsum([v for v in third_omicron_days.values()]) ) omicron_ve_idx_ranges = { k: range( third_omicron_days_cumulative[i], third_omicron_days_cumulative[i + 1], ) for (i, k) in enumerate(third_omicron_days.keys()) } third_omicron_days_tot = sum(v for v in third_omicron_days.values()) # get the sampled vaccination effect (this will be incomplete as it's only over the fitting period) sampled_vax_effects_all = ( samples[ ["ve_omicron[" + str(j + 1) + "]" for j in range(third_omicron_days_tot)] ].T ) vacc_tmp = sampled_vax_effects_all.iloc[omicron_ve_idx_ranges[state], :] # now we layer in the posterior vaccine multiplier effect which ill be a (T,mob_samples) array # get before and after fitting and tile them vacc_ts_data_before = pd.concat( [ vacc_ts_omicron.loc[ vacc_ts_omicron.index < third_omicron_date_range[state][0] ] ] * mob_samples, axis=1, ).to_numpy() vacc_ts_data_after = pd.concat( [ vacc_ts_omicron.loc[ vacc_ts_omicron.index > third_date_range[state][-1] ] ] * mob_samples, axis=1, ).to_numpy() # merge in order vacc_ts_omicron = np.vstack( [vacc_ts_data_before, vacc_tmp, vacc_ts_data_after] ) # setup some variables for handling the omicron starts third_states_indices = { state: index + 1 for (index, state) in enumerate(third_states) } omicron_start_day = ( pd.to_datetime(omicron_start_date) - pd.to_datetime(start_date) ).days days_into_omicron = np.cumsum( np.append( [0], [ (v >= pd.to_datetime(omicron_start_date)).sum() for v in third_date_range.values() ], ) ) idx = {} kk = 0 for k in third_date_range.keys(): idx[k] = range(days_into_omicron[kk], days_into_omicron[kk + 1]) kk += 1 # tile the reduction in vaccination effect for omicron (i.e. VE is (1+r)*VE) voc_vacc_product = np.zeros_like(vacc_ts_delta) # calculate the voc effects voc_multiplier_delta = samples["voc_effect_delta"].values voc_multiplier_omicron = samples["voc_effect_omicron"].values # sample the right R_L sim_R = samples["R_Li[" + state_key[state] + "]"].values for n in range(mob_samples): # add gaussian noise to predictors before forecast # df_state.loc[ df_state.loc[df_state.date < mob_forecast_date, predictors] = ( state_Rmed[state][:, :, n] / 100 ) # add gaussian noise to predictors after forecast df_state.loc[df_state.date >= mob_forecast_date, predictors] = ( state_sims[state][:, :, n] / 100 ) ## ADVANCED SCENARIO MODELLING - USE ONLY FOR POINT ESTIMATES # set non-grocery values to 0 if advanced_scenario_modelling: df_state.loc[:, predictors[0]] = 0 df_state.loc[:, predictors[2]] = 0 df_state.loc[:, predictors[3]] = 0 df_state.loc[:, predictors[4]] = 0 df1 = df_state.loc[df_state.date <= ban] X1 = df1[predictors] # N by K md[: X1.shape[0], :] = 1 if n == 0: # initialise arrays (loggodds) # N by K times (Nsamples by K )^T = Ndate by Nsamples logodds = X1 @ post_values[:, n] df2 = df_state.loc[ (df_state.date > ban) & (df_state.date < new_pol) ] df3 = df_state.loc[df_state.date >= new_pol] X2 = df2[predictors] X3 = df3[predictors] logodds = np.append(logodds, X2 @ post_values[:, n], axis=0) logodds = np.append(logodds, X3 @ post_values[:, n], axis=0) else: # concatenate to pre-existing logodds martrix logodds1 = X1 @ post_values[:, n] df2 = df_state.loc[ (df_state.date > ban) & (df_state.date < new_pol) ] df3 = df_state.loc[df_state.date >= new_pol] X2 = df2[predictors] X3 = df3[predictors] prop2 = df_md.loc[ban:new_pol, state].values prop3 = df_md.loc[new_pol:, state].values logodds2 = X2 @ post_values[:, n] logodds3 = X3 @ post_values[:, n] logodds_sample = np.append(logodds1, logodds2, axis=0) logodds_sample = np.append(logodds_sample, logodds3, axis=0) # concatenate to previous logodds = np.vstack((logodds, logodds_sample)) # create an matrix of mob_samples realisations which is an indicator of the voc (delta right now) # which will be 1 up until the voc_start_date and then it will be values from the posterior sample voc_multiplier_alpha = samples["voc_effect_alpha"].values voc_multiplier_delta = samples["voc_effect_delta"].values voc_multiplier_omicron = samples["voc_effect_omicron"].values # number of days into omicron forecast tt = 0 # loop over days in third wave and apply the appropriate form (i.e. decay or not) # note that in here we apply the entire sample to the vaccination data to create a days by samples array tmp_date = pd.to_datetime("2020-03-01") # get the correct Omicron start date # omicron_start_date_tmp = np.maximum( # pd.to_datetime(omicron_start_date), # pd.to_datetime(third_date_range[state][0]), # ) omicron_start_date_tmp = pd.to_datetime(omicron_start_date) omicron_start_day_tmp = ( pd.to_datetime(omicron_start_date_tmp) - pd.to_datetime(start_date) ).days for ii in range(mob_samples): # if before omicron introduced in a jurisdiction, we consider what period we're at: # 1. Wildtype # 2. Alpha # 3. Delta voc_vacc_product[:, ii] = vacc_ts_delta[:, ii] idx_start = df_state.loc[df_state.date < alpha_start_date].shape[0] idx_end = df_state.loc[df_state.date < delta_start_date].shape[0] voc_vacc_product[idx_start:idx_end, ii] *= voc_multiplier_alpha[ii] idx_start = idx_end idx_end = df_state.loc[df_state.date < omicron_start_date_tmp].shape[0] voc_vacc_product[idx_start:idx_end, ii] *= voc_multiplier_delta[ii] idx_start = idx_end idx_end = np.shape(voc_vacc_product)[0] if strain == "Delta": voc_vacc_product[idx_start:idx_end, ii] *= voc_multiplier_delta[ii] elif strain == "Omicron": # if omicron we need to account for the Omicron VE prior to the introduction of # omicron in mid November voc_vacc_product[idx_start:idx_end, ii] = ( vacc_ts_omicron[idx_start:idx_end, ii] * voc_multiplier_omicron[ii] ) # save the components of the TP pd.DataFrame(sim_R).to_csv(results_dir + "baseline_R_L_" + strain + ".csv") pd.DataFrame(md).to_csv(results_dir + "md_" + strain + ".csv") pd.DataFrame(masks).to_csv(results_dir + "masks_" + strain + ".csv") macro = 2 * expit(logodds.T) pd.DataFrame(macro).to_csv(results_dir + "macro_" + strain + ".csv") pd.DataFrame(voc_vacc_product).to_csv(results_dir + "voc_vacc_product_" + strain + ".csv") # calculate TP R_L = ( 2 * expit(logodds.T) * md * masks * sim_R * voc_vacc_product ) # now we increase TP by 15% based on school reopening (this code can probably be reused # but inferring it would be pretty difficult # due to lockdowns and various interruptions since March 2020) if scenarios[state] == "school_opening_2022": R_L[dd.values >= pd.to_datetime(scenario_dates[state]), :] = ( 1.15 * R_L[dd.values >= pd.to_datetime(scenario_dates[state]), :] ) # calculate summary stats R_L_med = np.median(R_L, axis=1) R_L_lower = np.percentile(R_L, 25, axis=1) R_L_upper = np.percentile(R_L, 75, axis=1) R_L_bottom = np.percentile(R_L, 5, axis=1) R_L_top = np.percentile(R_L, 95, axis=1) # R_L state_Rs["state"].extend([state] * df_state.shape[0]) state_Rs["type"].extend([typ] * df_state.shape[0]) state_Rs["date"].extend(dd.values) # repeat mob_samples times? state_Rs["lower"].extend(R_L_lower) state_Rs["median"].extend(R_L_med) state_Rs["upper"].extend(R_L_upper) state_Rs["top"].extend(R_L_top) state_Rs["bottom"].extend(R_L_bottom) state_Rs["mean"].extend(np.mean(R_L, axis=1)) state_Rs["std"].extend(np.std(R_L, axis=1)) state_R[state] = R_L # generate a summary for the R_I for state in states: # R_I if strain == "Delta": R_I = samples["R_I"].values[:df_state.shape[0]] elif strain == "Omicron": # if Omicron period, then we need to multiply in the VoC effect as there's a period # in the fitting where Delta and Omicron overlap (i.e. R_I = R_I * P(t) where P(t) is # a product term). R_I = samples["R_I_omicron"].values[:df_state.shape[0]] state_Rs["state"].extend([state] * df_state.shape[0]) state_Rs["type"].extend(["R_I"] * df_state.shape[0]) state_Rs["date"].extend(dd.values) state_Rs["lower"].extend(np.repeat(np.percentile(R_I, 25), df_state.shape[0])) state_Rs["median"].extend(np.repeat(np.median(R_I), df_state.shape[0])) state_Rs["upper"].extend(np.repeat(np.percentile(R_I, 75), df_state.shape[0])) state_Rs["top"].extend(np.repeat(np.percentile(R_I, 95), df_state.shape[0])) state_Rs["bottom"].extend(np.repeat(np.percentile(R_I, 5), df_state.shape[0])) state_Rs["mean"].extend(np.repeat(np.mean(R_I), df_state.shape[0])) state_Rs["std"].extend(np.repeat(np.std(R_I), df_state.shape[0])) df_Rhats = pd.DataFrame().from_dict(state_Rs) df_Rhats = df_Rhats.set_index(["state", "date", "type"]) d = pd.DataFrame() for state in states: for i, typ in enumerate(forecast_type): if i == 0: t = pd.DataFrame.from_dict(state_R[state]) t["date"] = dd.values t["state"] = state t["type"] = typ else: temp = pd.DataFrame.from_dict(state_R[state]) temp["date"] = dd.values temp["state"] = state temp["type"] = typ t = t.append(temp) # R_I if strain == "Delta": # use the Delta import reproduction number before Omicron starts i = pd.DataFrame(np.tile(samples["R_I"].values, (len(dd.values), 1))) elif strain == "Omicron": # use the Omicron import reproduction number after Omicron starts i = pd.DataFrame(np.tile(samples["R_I_omicron"].values, (len(dd.values), 1))) i["date"] = dd.values i["type"] = "R_I" i["state"] = state t = t.append(i) d = d.append(t) d = d.set_index(["state", "date", "type"]) df_Rhats = df_Rhats.join(d) df_Rhats = df_Rhats.reset_index() df_Rhats.state = df_Rhats.state.astype(str) df_Rhats.type = df_Rhats.type.astype(str) fig, ax = plt.subplots(figsize=(12, 9), nrows=4, ncols=2, sharex=True, sharey=True) for i, state in enumerate(plot_states): row = i // 2 col = i % 2 plot_df = df_Rhats.loc[(df_Rhats.state == state) & (df_Rhats.type == "R_L")].copy() # split the TP into pre data date and after plot_df_backcast = plot_df.loc[plot_df["date"] <= data_date].copy() plot_df_forecast = plot_df.loc[plot_df["date"] > data_date].copy() # plot the backcast TP ax[row, col].plot(plot_df_backcast.date, plot_df_backcast["median"], color="C0") ax[row, col].fill_between( plot_df_backcast.date, plot_df_backcast["lower"], plot_df_backcast["upper"], alpha=0.4, color="C0", ) ax[row, col].fill_between( plot_df_backcast.date, plot_df_backcast["bottom"], plot_df_backcast["top"], alpha=0.4, color="C0", ) # plot the forecast TP ax[row, col].plot(plot_df_forecast.date, plot_df_forecast["median"], color="C1") ax[row, col].fill_between( plot_df_forecast.date, plot_df_forecast["lower"], plot_df_forecast["upper"], alpha=0.4, color="C1", ) ax[row, col].fill_between( plot_df_forecast.date, plot_df_forecast["bottom"], plot_df_forecast["top"], alpha=0.4, color="C1", ) ax[row, col].tick_params("x", rotation=90) ax[row, col].set_title(state) ax[row, col].set_yticks( [1], minor=True, ) ax[row, col].set_yticks([0, 2, 4, 6], minor=False) ax[row, col].set_yticklabels([0, 2, 4, 6], minor=False) ax[row, col].yaxis.grid(which="minor", linestyle="--", color="black", linewidth=2) ax[row, col].set_ylim((0, 6)) # ax[row, col].set_xticks([plot_df.date.values[-n_forecast]], minor=True) ax[row, col].axvline(data_date, ls="-.", color="black", lw=1) # plot window start date plot_window_start_date = min( pd.to_datetime(today) - timedelta(days=6 * 30), sim_start_date - timedelta(days=truncation_days), ) # create a plot window over the last six months ax[row, col].set_xlim( plot_window_start_date, pd.to_datetime(today) + timedelta(days=num_forecast_days), ) # plot the start date ax[row, col].axvline(sim_start_date, ls="--", color="green", lw=2) ax[row, col].xaxis.grid(which="minor", linestyle="-.", color="grey", linewidth=2) fig.text( 0.03, 0.5, "Transmission potential", va="center", ha="center", rotation="vertical", fontsize=20, ) fig.text(0.525, 0.02, "Date", va="center", ha="center", fontsize=20) plt.tight_layout(rect=[0.04, 0.04, 1, 1]) plt.savefig( "figs/mobility_forecasts/" + data_date.strftime("%Y-%m-%d") + "_mobility_forecasts/TP_6_month_" + strain + data_date.strftime("%Y-%m-%d") + ".png", dpi=144, ) fig, ax = plt.subplots(figsize=(12, 9), nrows=4, ncols=2, sharex=True, sharey=True) for i, state in enumerate(plot_states): row = i // 2 col = i % 2 plot_df = df_Rhats.loc[(df_Rhats.state == state) & (df_Rhats.type == "R_L")].copy() # split the TP into pre data date and after plot_df_backcast = plot_df.loc[plot_df["date"] <= data_date].copy() plot_df_forecast = plot_df.loc[plot_df["date"] > data_date].copy() # plot the backcast TP ax[row, col].plot(plot_df_backcast.date, plot_df_backcast["median"], color="C0") ax[row, col].fill_between( plot_df_backcast.date, plot_df_backcast["lower"], plot_df_backcast["upper"], alpha=0.4, color="C0", ) ax[row, col].fill_between( plot_df_backcast.date, plot_df_backcast["bottom"], plot_df_backcast["top"], alpha=0.4, color="C0", ) # plot the forecast TP ax[row, col].plot(plot_df_forecast.date, plot_df_forecast["median"], color="C1") ax[row, col].fill_between( plot_df_forecast.date, plot_df_forecast["lower"], plot_df_forecast["upper"], alpha=0.4, color="C1", ) ax[row, col].fill_between( plot_df_forecast.date, plot_df_forecast["bottom"], plot_df_forecast["top"], alpha=0.4, color="C1", ) ax[row, col].tick_params("x", rotation=90) ax[row, col].set_title(state) ax[row, col].set_yticks( [1], minor=True, ) ax[row, col].set_yticks([0, 2, 4, 6], minor=False) ax[row, col].set_yticklabels([0, 2, 4, 6], minor=False) ax[row, col].yaxis.grid(which="minor", linestyle="--", color="black", linewidth=2) ax[row, col].set_ylim((0, 6)) # ax[row, col].set_xticks([plot_df.date.values[-n_forecast]], minor=True) ax[row, col].axvline(data_date, ls="-.", color="black", lw=1) # plot window start date plot_window_start_date = min( pd.to_datetime(today) - timedelta(days=12 * 30), sim_start_date - timedelta(days=truncation_days), ) # create a plot window over the last six months ax[row, col].set_xlim( plot_window_start_date, pd.to_datetime(today) + timedelta(days=num_forecast_days), ) # plot the start date ax[row, col].axvline(sim_start_date, ls="--", color="green", lw=2) ax[row, col].xaxis.grid(which="minor", linestyle="-.", color="grey", linewidth=2) fig.text( 0.03, 0.5, "Transmission potential", va="center", ha="center", rotation="vertical", fontsize=20, ) fig.text(0.525, 0.02, "Date", va="center", ha="center", fontsize=20) plt.tight_layout(rect=[0.04, 0.04, 1, 1]) print("============") print("Saving results") print("============") plt.savefig( "figs/mobility_forecasts/" + data_date.strftime("%Y-%m-%d") + "_mobility_forecasts/TP_12_month_" + strain + data_date.strftime("%Y-%m-%d") + ".png", dpi=144, ) # save values for the functional omicron related proportions for each state prop_omicron_vars = ("r", "tau", "m0", "m1") for (kk, state) in enumerate(states): # sort df_R by date so that rows are dates. rows are dates, columns are predictors df_state = df_R.loc[df_R.state == state].copy() for v in prop_omicron_vars: # take right size of the values to be N by N y = samples[v + "[" + str(kk + 1) + "]"].values pd.DataFrame(y[:mob_samples]).to_csv( results_dir + v + "_" + state + data_date.strftime("%Y-%m-%d") + ".csv" ) # now we save the sampled TP paths # convert the appropriate sampled susceptible depletion factors to a csv and save them for simulation # NOTE: this will not save an updated median, mean etc for the R_I's. We don't use it so it's not # really important but it should be noted for later if we are comparing things. The step function # R_I -> R_I_omicron, is noticeable and shouldn't be overlooked. df_Rhats = df_Rhats[ ["state", "date", "type", "median", "bottom", "lower", "upper", "top"] + [i for i in range(mob_samples)] ] # # save the file as a csv (easier to handle in Julia for now) df_Rhats.to_csv( results_dir + "soc_mob_R_" + strain + data_date.strftime("%Y-%m-%d") + ".csv" ) return None def calculate_Reff_local( Reff, R_I, R_I_omicron, voc_effect, prop_import, omicron_start_day, ): """ Apply the same mixture model idea as per the TP model to get R_eff^L = (R_eff - rho * RI)/(1 - rho) and use this to weight the TP historically. """ # calculate this all in one step. Note that we set the Reff to -1 if # the prop_import = 1 as in that instance the relationship breaks due to division by 0. Reff_local = np.zeros(shape=Reff.shape[0]) for n in range(len(Reff_local)): # adjust the Reff based on the time period of interest if n < omicron_start_day: R_I_tmp = R_I else: R_I_tmp = R_I_omicron * voc_effect if prop_import[n] < 1: Reff_local[n] = (Reff[n] - prop_import[n] * R_I_tmp) / (1 - prop_import[n]) else: Reff_local[n] = 0 # Reff_local = [ # (Reff[t] - prop_import[t] * R_I) / (1 - prop_import[t]) # if prop_import[t] < 1 else -1 for t in range(Reff.shape[0]) # ] return Reff_local def adjust_TP(data_date): from params import ( num_forecast_days, alpha_start_date, delta_start_date, omicron_start_date, truncation_days, start_date, sim_start_date, third_start_date, n_days_nowcast_TP_adjustment, mob_samples, ) print("============") print("Adjusting TP forecasts using data from", data_date) print("============") data_date = pd.to_datetime(data_date) # convert third start date to the correct format third_start_date = pd.to_datetime(third_start_date) third_end_date = data_date - timedelta(truncation_days) sim_start_date = pd.to_datetime(sim_start_date) # a different end date to deal with issues in fitting third_end_date_diff = data_date - timedelta(18 + 7 + 7) third_states = sorted(["NSW", "VIC", "ACT", "QLD", "SA", "TAS", "NT", "WA"]) # third_states = sorted(['NSW', 'VIC', 'ACT', 'QLD', 'SA', 'NT']) # choose dates for each state for third wave # NOTE: These need to be in date sorted order third_date_range = { "ACT": pd.date_range(start="2021-08-15", end=third_end_date).values, "NSW": pd.date_range(start=third_start_date, end=third_end_date).values, "NT": pd.date_range(start="2021-12-01", end=third_end_date).values, "QLD": pd.date_range(start="2021-07-30", end=third_end_date).values, "SA": pd.date_range(start="2021-11-25", end=third_end_date).values, "TAS": pd.date_range(start="2021-12-20", end=third_end_date).values, "VIC": pd.date_range(start="2021-08-01", end=third_end_date).values, "WA": pd.date_range(start="2022-01-01", end=third_end_date).values, } # Get Google Data - Don't use the smoothed data? df_google_all = read_in_google(Aus_only=True, moving=True, local=True) third_end_date = pd.to_datetime(data_date) - pd.Timedelta(days=truncation_days) results_dir = ( "results/" + data_date.strftime("%Y-%m-%d") + "/" ) # Load in vaccination data by state and date which should have the same date as the # NNDSS/linelist data use the inferred VE vaccination_by_state_delta = pd.read_csv( results_dir + "adjusted_vaccine_ts_delta" + data_date.strftime("%Y-%m-%d") + ".csv", parse_dates=["date"], ) vaccination_by_state_delta = vaccination_by_state_delta[["state", "date", "effect"]] vaccination_by_state_delta = vaccination_by_state_delta.pivot( index="state", columns="date", values="effect" ) # Convert to matrix form # Convert to simple array for indexing vaccination_by_state_delta_array = vaccination_by_state_delta.to_numpy() vaccination_by_state_omicron = pd.read_csv( results_dir + "adjusted_vaccine_ts_omicron" + data_date.strftime("%Y-%m-%d") + ".csv", parse_dates=["date"], ) vaccination_by_state_omicron = vaccination_by_state_omicron[["state", "date", "effect"]] vaccination_by_state_omicron = vaccination_by_state_omicron.pivot( index="state", columns="date", values="effect" ) # Convert to matrix form # Convert to simple array for indexing vaccination_by_state_omicron_array = vaccination_by_state_omicron.to_numpy() # Get survey data surveys =
pd.DataFrame()
pandas.DataFrame
# -*- coding: utf-8 -*- import pandas as pd from zvt.contract.api import df_to_db from zvt.contract.recorder import Recorder, TimeSeriesDataRecorder from zvt.recorders.emquantapi.common import mainCallback from zvt.recorders.joinquant.common import to_entity_id from zvt.utils.pd_utils import pd_is_not_null from zvt.utils.time_utils import now_pd_timestamp, to_time_str, TIME_FORMAT_DAY from zvt.domain import BlockStock, Block, Block1dKdata, BlockMoneyFlow from zvt.settings import ZVT_HOME try: from jqdatasdk import finance, query from EmQuantAPI import * except: pass class EmChinaBlockRecorder(Recorder): """ choice板块数据 """ provider = 'emquantapi' data_schema = Block hs_category_map = pd.read_excel(f'{ZVT_HOME}/data/沪深股票GICS行业分类.xlsx') hk_category_map = pd.read_excel(f'{ZVT_HOME}/data/港股GICS行业分类.xlsx') us_category_map = pd.read_excel(f'{ZVT_HOME}/data/美股GICS行业分类.xlsx') gics_one = hs_category_map[['一级板块代码','一级板块名称']].append(hk_category_map[['一级板块代码','一级板块名称']]).append(us_category_map[['一级板块代码','一级板块名称']]).dropna(subset=['一级板块名称']) gics_two = hs_category_map[['二级板块代码','二级板块名称']].append(hk_category_map[['二级板块代码','二级板块名称']]).append(us_category_map[['二级板块代码','二级板块名称']]).dropna(subset=['二级板块名称']) gics_three = hs_category_map[['三级板块代码','三级板块名称']].append(hk_category_map[['三级板块代码','三级板块名称']]).append(us_category_map[['三级板块代码','三级板块名称']]).dropna(subset=['三级板块名称']) gics_four = hs_category_map[['四级板块代码','四级板块名称']].append(hk_category_map[['四级板块代码','四级板块名称']]).append(us_category_map[['四级板块代码','四级板块名称']]).dropna(subset=['四级板块名称']) gics_one['一级板块代码'] = gics_one['一级板块代码'].apply(lambda x:str(int(x)).zfill(6)) gics_two['二级板块代码'] = gics_two['二级板块代码'].apply(lambda x:str(int(x)).zfill(9)) gics_three['三级板块代码'] = gics_three['三级板块代码'].apply(lambda x:str(int(x)).zfill(12)) gics_four['四级板块代码'] = gics_four['四级板块代码'].apply(lambda x:str(int(x)).zfill(15)) category_map=[] category_map.extend(gics_one.to_dict(orient='records')) category_map.extend(gics_two.to_dict(orient='records')) category_map.extend(gics_three.to_dict(orient='records')) category_map.extend(gics_four.to_dict(orient='records')) def __init__(self, batch_size=10, force_update=True, sleeping_time=10) -> None: super().__init__(batch_size, force_update, sleeping_time) # 调用登录函数(激活后使用,不需要用户名密码) loginResult = c.start("ForceLogin=1", '', mainCallback) if (loginResult.ErrorCode != 0): print("login in fail") exit() def run(self): # get stock blocks from sina for category_map_dict in self.category_map: # df = get_industries(name=category, date=None) category, name_ch = category_map_dict.items() df = pd.DataFrame(index=[0]) if '一级板块代码' in category: df['code'] = category[1] if category[1].startswith('003'): df['exchange'] = 'cn' elif category[1].startswith('204'): df['exchange'] = 'us' elif category[1].startswith('402'): df['exchange'] = 'hk' df['block_type'] = 'gicsl1' elif '二级板块代码' in category: df['code'] = category[1] if category[1].startswith('003'): df['exchange'] = 'cn' elif category[1].startswith('204'): df['exchange'] = 'us' elif category[1].startswith('402'): df['exchange'] = 'hk' df['block_type'] = 'gicsl2' elif '三级板块代码' in category: df['code'] = category[1] if category[1].startswith('003'): df['exchange'] = 'cn' elif category[1].startswith('204'): df['exchange'] = 'us' elif category[1].startswith('402'): df['exchange'] = 'hk' df['block_type'] = 'gicsl3' elif '四级板块代码' in category: df['code'] = category[1] if category[1].startswith('003'): df['exchange'] = 'cn' elif category[1].startswith('204'): df['exchange'] = 'us' elif category[1].startswith('402'): df['exchange'] = 'hk' df['block_type'] = 'gicsl4' df['timestamp'] = now_pd_timestamp() df['name'] = name_ch[1] df['entity_type'] = 'block' df['category'] = "industry" df['id'] = df['entity_id'] = df.apply(lambda x: "block_" + x.exchange + "_" + x.code, axis=1) df_to_db(data_schema=self.data_schema, df=df, provider=self.provider, force_update=True) self.logger.info(f"完成choice数据行业数据保存:{category[1],name_ch[1]}") class EmChinaBlockStockRecorder(TimeSeriesDataRecorder): entity_provider = 'joinquant' entity_schema = Block provider = 'emquantapi' data_schema = BlockStock def __init__(self, entity_type='block', exchanges=None, entity_ids=None, codes=None, batch_size=10, force_update=True, sleeping_time=5, default_size=2000, real_time=False, fix_duplicate_way='add', start_timestamp=None, end_timestamp=None, close_hour=0, close_minute=0) -> None: super().__init__(entity_type, exchanges, entity_ids, codes, batch_size, force_update, sleeping_time, default_size, real_time, fix_duplicate_way, start_timestamp, end_timestamp, close_hour, close_minute) # 调用登录函数(激活后使用,不需要用户名密码) loginResult = c.start("ForceLogin=1", '', mainCallback) if (loginResult.ErrorCode != 0): print("login in fail") exit() def record(self, entity, start, end, size, timestamps): if not entity.block_type: return if 'gics' not in entity.block_type: return None # industry_stocks = get_industry_stocks(entity.code,date=now_pd_timestamp()) industry_stocks = c.sector(entity.code, to_time_str(now_pd_timestamp())) if len(industry_stocks.Data) == 0: return None codes = industry_stocks.Codes names = [i for i in industry_stocks.Data if i not in codes] df = pd.DataFrame({"stock": codes,"stock_name":names}) df["stock_id"] = df.stock.apply(lambda x: to_entity_id(x, "stock").lower()) df["stock_code"] = df.stock_id.str.split("_", expand=True)[2] df["code"] = entity.code df["exchange"] = entity.exchange df["name"] = entity.name df["timestamp"] = now_pd_timestamp() df["entity_id"] = entity.id df["block_type"] = entity.block_type df["entity_type"] = "block" df["id"] = df.apply(lambda x: x.entity_id + "_" + x.stock_id, axis=1) if df.empty: return None df_to_db(data_schema=self.data_schema, df=df, provider=self.provider, force_update=True) self.logger.info('finish recording BlockStock:{},{}'.format(entity.category, entity.name)) class JqChinaBlockKdataRecorder(TimeSeriesDataRecorder): entity_provider = 'joinquant' entity_schema = Block provider = 'emquantapi' data_schema = Block1dKdata def __init__(self, entity_type='block', exchanges=None, entity_ids=None, codes=None, batch_size=10, force_update=True, sleeping_time=5, default_size=2000, real_time=False, fix_duplicate_way='add', start_timestamp=None, end_timestamp=None, close_hour=0, close_minute=0) -> None: super().__init__(entity_type, exchanges, entity_ids, codes, batch_size, force_update, sleeping_time, default_size, real_time, fix_duplicate_way, start_timestamp, end_timestamp, close_hour, close_minute) # 调用登录函数(激活后使用,不需要用户名密码) loginResult = c.start("ForceLogin=1", '', mainCallback) if (loginResult.ErrorCode != 0): print("login in fail") exit() # def record(self, entity, start, end, size, timestamps): # # if entity.exchange == "swl1": # # return None # if not end: # if (now_pd_timestamp() - start).days > 365: # from datetime import timedelta # end = to_time_str(start + timedelta(days=365)) # else: # end = to_time_str(now_pd_timestamp()) # start = to_time_str(start) # if entity.code in ['801780', '801180', '801150', '801160', '801230', '801890', # '801720', '801710', '801110', '801880', '801120', '801080', # '801750', '801170', '801140', '801770', '801760', '801010', # '801200', '801030', '801050', '801790', '801730', '801210', # '801740', '801020', '801130', '801040']: # return None # entityid = entity.id.replace('cn', 'swl3') # df = get_data(data_schema=Block1dKdata, entity_id=entityid,provider='joinquant') # # # df = c.csd(f"{entity.code}.SWI", "OPEN,CLOSE,HIGH,LOW,VOLUME,AMOUNT", start, end, # # "period=1,adjustflag=1,curtype=1,order=1,ispandas=1") # if type(df) != pd.DataFrame: # return None # if pd_is_not_null(df): # df['entity_id'] = entity.id # df['provider'] = 'emquantapi' # # def generate_kdata_id(se): # return "{}_{}".format(se['entity_id'], to_time_str(se['timestamp'], fmt=TIME_FORMAT_DAY)) # # df['id'] = df[['entity_id', 'timestamp']].apply(generate_kdata_id, axis=1) # # df_to_db(df=df, data_schema=self.data_schema, provider=self.provider, force_update=self.force_update) # # return None def record(self, entity, start, end, size, timestamps): # if entity.exchange == "swl1": # return None if not end: if (now_pd_timestamp() - start).days > 365: from datetime import timedelta end = to_time_str(start + timedelta(days=365)) else: end = to_time_str(now_pd_timestamp()) start = to_time_str(start) df = c.csd(f"{entity.code}.SWI", "OPEN,CLOSE,HIGH,LOW,VOLUME,AMOUNT", start, end, "period=1,adjustflag=1,curtype=1,order=1,ispandas=1") if type(df) != pd.DataFrame: return None df.rename(columns={ 'DATES': 'timestamp', 'OPEN': 'open', 'CLOSE': 'close', 'HIGH': 'high', 'LOW': 'low', 'VOLUME': 'volume', 'AMOUNT': 'turnover', }, inplace=True) if pd_is_not_null(df): df['name'] = entity.name df['entity_id'] = entity.id df['timestamp'] = pd.to_datetime(df['timestamp']) df['provider'] = 'joinquant' df['level'] = '1d' df['code'] = entity.code def generate_kdata_id(se): return "{}_{}".format(se['entity_id'], to_time_str(se['timestamp'], fmt=TIME_FORMAT_DAY)) df['id'] = df[['entity_id', 'timestamp']].apply(generate_kdata_id, axis=1) df_to_db(df=df, data_schema=self.data_schema, provider=self.provider, force_update=self.force_update) return None class JqChinaBlockMoneyFlowRecorder(TimeSeriesDataRecorder): # entity_provider = 'joinquant' # entity_schema = Block provider = 'emquantapi' data_schema = BlockMoneyFlow def __init__(self, entity_type='block', exchanges=None, entity_ids=None, codes=None, batch_size=10, force_update=True, sleeping_time=5, default_size=2000, real_time=False, fix_duplicate_way='add', start_timestamp=None, end_timestamp=None, close_hour=0, close_minute=0) -> None: super().__init__(entity_type, exchanges, entity_ids, codes, batch_size, force_update, sleeping_time, default_size, real_time, fix_duplicate_way, start_timestamp, end_timestamp, close_hour, close_minute) # 调用登录函数(激活后使用,不需要用户名密码) loginResult = c.start("ForceLogin=1", '', mainCallback) if (loginResult.ErrorCode != 0): print("login in fail") exit() def record(self, entity, start, end, size, timestamps): if "swl1" not in entity.id: return None start = to_time_str(start) df = finance.run_query( query(finance.SW1_DAILY_PRICE).filter( finance.SW1_DAILY_PRICE.code == entity.code).filter( finance.SW1_DAILY_PRICE.date >= start).limit(size)) if pd_is_not_null(df): df['name'] = entity.name df.rename(columns={'money': 'turnover', 'date': 'timestamp'}, inplace=True) df['entity_id'] = entity.id df['timestamp'] =
pd.to_datetime(df['timestamp'])
pandas.to_datetime
#!/usr/bin/env python3 ''' A module for reading Next Gen Stats data ''' import pandas as pd import csv class NextGenStatsReader(object): ''' A class for reading and manipulating Next Gen Stats data in a DataFrame ''' def load_ngs_data_into_dataframe(self, file_path): ''' Load a CSV file of Next Gen Stats data into a DataFrame @param {string} file_path, e.g. '/data/train.csv' @return {DataFrame} ''' self.ngs_df = pd.read_csv(file_path, low_memory=False) def load_ngs_data_into_dict_reader(self, file_path): ''' Load a CSV file of Next Gen Stats data into a DictReader @param {string} file_path, e.g. '/data/train.csv' @return {DictReader} ''' with open(file_path, newline='') as csvfile: return csv.DictReader(csvfile) def get_positionals_dataframe_for_play(self, play_id): ''' Get each player's positions for a play as a dataframe @param {int} play_id @return {DataFrame} ''' return self.ngs_df.loc[self.ngs_df['PlayId'] == int(play_id)] def get_positionals_dict_for_play(self, play_id): ''' Get each player's positions for a play as a dictionary @param {int} play_id @return {dict<dict>} a dict of each player's positional data as a dict, keyed by NflId ''' play_positionals_df = self.get_positionals_dataframe_for_play(play_id) play_positionals_dict = dict() for index, dict_row in play_positionals_df.iterrows(): if dict_row['NflId'] not in play_positionals_dict: play_positionals_dict[dict_row['NflId']] = dict_row return play_positionals_dict def __init__(self): ''' Constructor ''' self.ngs_df =
pd.DataFrame()
pandas.DataFrame
#!/usr/bin/env python import pandas as pd import seaborn as sns import pylab as plt __package__ = "Byron times plot" __author__ = "<NAME> (<EMAIL>)" if __name__ == '__main__': filename = 'byron_times.dat' data =
pd.read_csv(filename, sep=',', header=0)
pandas.read_csv
import pandas as pd import numpy as np #import psycopg2 import matplotlib.pyplot as plt from sklearn.model_selection import KFold import Constants import sys from pathlib import Path output_folder = Path(sys.argv[1]) output_folder.mkdir(parents = True, exist_ok = True) #conn = psycopg2.connect('dbname=mimic user=haoran host=mimic password=password') mimiciii_csv_path = "/nobackup/users/nhulkund/6.864/files/mimiciii/1.4/" # pats = pd.read_sql_query(''' # select subject_id, gender, dob, dod from mimiciii.patients # ''', conn) pats_df = pd.read_csv(mimiciii_csv_path + "PATIENTS.csv") pats_df = pats_df.rename(columns = {name: name.lower() for name in pats_df.columns}) pats = pats_df[["subject_id", "gender", "dob", "dod"]] n_splits = 12 pats = pats.sample(frac = 1, random_state = 42).reset_index(drop = True) kf = KFold(n_splits = n_splits, shuffle = True, random_state = 42) for c,i in enumerate(kf.split(pats, groups = pats.gender)): pats.loc[i[1], 'fold'] = str(c) # adm = pd.read_sql_query(''' # select subject_id, hadm_id, insurance, language, # religion, ethnicity, # admittime, deathtime, dischtime, # HOSPITAL_EXPIRE_FLAG, DISCHARGE_LOCATION, # diagnosis as adm_diag # from mimiciii.admissions # ''', conn) admissions = pd.read_csv(mimiciii_csv_path+"ADMISSIONS.csv") admissions = admissions.rename(columns = {name: name.lower() for name in admissions.columns}) adm = admissions.rename(columns = {'diagnosis': 'adm_diag'})[['subject_id', 'hadm_id', 'insurance', 'language', 'religion', 'ethnicity', 'admittime', 'deathtime', 'dischtime', 'hospital_expire_flag', 'discharge_location', 'adm_diag']] df = pd.merge(pats, adm, on='subject_id', how = 'inner') def merge_death(row): if not(pd.isnull(row.deathtime)): return row.deathtime else: return row.dod df['dod_merged'] = df.apply(merge_death, axis = 1) # notes = pd.read_sql_query(''' # select category, chartdate, charttime, hadm_id, row_id as note_id, text from mimiciii.noteevents # where iserror is null # ''', conn) notes_df = pd.read_csv(mimiciii_csv_path + "NOTEEVENTS.csv") notes = notes_df.rename(columns = {name: name.lower() for name in notes_df.columns}) notes = notes.rename(columns={'row_id': 'note_id'})[notes.iserror.isna()][['category', 'chartdate', 'charttime', 'hadm_id', 'note_id', 'text']] # drop all outpatients. They only have a subject_id, so can't link back to insurance or other fields notes = notes[~(pd.isnull(notes['hadm_id']))] df = pd.merge(left = notes, right = df, on='hadm_id', how = 'left') df.ethnicity.fillna(value = 'UNKNOWN/NOT SPECIFIED', inplace = True) others_set = set() def cleanField(string): mappings = {'HISPANIC OR LATINO': 'HISPANIC/LATINO', 'BLACK/AFRICAN AMERICAN': 'BLACK', 'UNABLE TO OBTAIN':'UNKNOWN/NOT SPECIFIED', 'PATIENT DECLINED TO ANSWER': 'UNKNOWN/NOT SPECIFIED'} bases = ['WHITE', 'UNKNOWN/NOT SPECIFIED', 'BLACK', 'HISPANIC/LATINO', 'OTHER', 'ASIAN'] if string in bases: return string elif string in mappings: return mappings[string] else: for i in bases: if i in string: return i others_set.add(string) return 'OTHER' df['ethnicity_to_use'] = df['ethnicity'].apply(cleanField) df = df[df.chartdate >= df.dob] # ages = [] # for i in range(df.shape[0]): # ages.append((df.chartdate.iloc[i] - df.dob.iloc[i]).days/365.24) # df['age'] = ages chartdate = pd.to_datetime(df.chartdate)#.dt.date dob = pd.to_datetime(df.dob)#.dt.date df['age'] = (chartdate.apply(lambda s: s.timestamp()) - dob.apply(lambda s:s.timestamp()))/ 60./60/24/365 df.loc[(df.category == 'Discharge summary') | (df.category == 'Echo') | (df.category == 'ECG'), 'fold'] = 'NA' # icds = (pd.read_sql_query('select * from mimiciii.diagnoses_icd', conn) # .groupby('hadm_id') # .agg({'icd9_code': lambda x: list(x.values)}) # .reset_index()) diagnoses_icd = pd.read_csv(mimiciii_csv_path + "DIAGNOSES_ICD.csv") diagnoses_icd = diagnoses_icd.rename(columns = {name: name.lower() for name in diagnoses_icd.columns}) icds = diagnoses_icd.groupby('hadm_id').agg({'icd9_code': lambda x: list(x.values)}).reset_index() df = pd.merge(left = df, right = icds, on = 'hadm_id') def map_lang(x): if x == 'ENGL': return 'English' if pd.isnull(x): return 'Missing' return 'Other' df['language_to_use'] = df['language'].apply(map_lang) for i in Constants.groups: assert(i['name'] in df.columns), i['name'] # acuities = pd.read_sql_query(''' # select * from ( # select a.subject_id, a.hadm_id, a.icustay_id, a.oasis, a.oasis_prob, b.sofa from # (mimiciii.oasis a # natural join mimiciii.sofa b )) ab # natural join # (select subject_id, hadm_id, icustay_id, sapsii, sapsii_prob from # mimiciii.sapsii) c # ''', conn) df_sapsii = pd.read_csv(mimiciii_csv_path + "sapsii")[['subject_id', 'hadm_id', 'icustay_id', 'sapsii', 'sapsii_prob']] df_sapsii = df_sapsii.rename(columns = {name: name.lower() for name in df_sapsii.columns}) df_oasis = pd.read_csv(mimiciii_csv_path + "oasis") df_oasis = df_oasis.rename(columns = {name: name.lower() for name in df_oasis.columns}) df_sofa = pd.read_csv(mimiciii_csv_path + "sofa") df_sofa = df_sofa.rename(columns = {name: name.lower() for name in df_sofa.columns}) oasis_sofa_merge = pd.merge(df_oasis, df_sofa)[['subject_id', 'hadm_id', 'icustay_id', 'oasis', 'oasis_prob', 'sofa']] acuities = pd.merge(oasis_sofa_merge, df_sapsii) # icustays = pd.read_sql_query(''' # select subject_id, hadm_id, icustay_id, intime, outtime # from mimiciii.icustays # ''', conn).set_index(['subject_id','hadm_id']) icustays_df = pd.read_csv(mimiciii_csv_path + 'ICUSTAYS.csv') icustays_df = icustays_df.rename(columns = {name: name.lower() for name in icustays_df.columns}) df_timestamp_cols = ['chartdate', 'charttime', 'dob', 'dod', 'admittime', 'deathtime', 'dischtime', "dod_merged"] icustays_timestamp_cols = ['intime', 'outtime'] for col in df_timestamp_cols: df[col] = pd.to_datetime(df[col]) for col in icustays_timestamp_cols: icustays_df[col] = pd.to_datetime(icustays_df[col]) icustays = icustays_df[["subject_id", "hadm_id", "icustay_id", "intime", "outtime"]].set_index(['subject_id', 'hadm_id']) icustays = icustays.sort_index() def fill_icustay(row): try: opts = icustays.loc[(row['subject_id'],row['hadm_id'])] except: return None if
pd.isnull(row['charttime'])
pandas.isnull
from flask import Flask, request, jsonify, g, render_template from flask_json import FlaskJSON, JsonError, json_response, as_json from app.data_process import bp from datetime import datetime import pandas as pd from pathlib import Path from bs4 import BeautifulSoup import glob import os positivity_replace = { 'ALG':3526, 'BRN':3527, 'CKH':3540, 'DUR':3530, 'EOH':3558, 'GBH':3533, 'HNH':3534, 'HKP':3535, 'HAL':3536, 'HAM':3537, 'HPE':3538, 'HPH':3539, 'KFL':3541, 'LAM':3542, 'LGL':3543, 'MSL':3544, 'NIA':3546, 'NPS':3547, 'NWR':3549, 'OTT':3551, 'PEL':3553, 'PET':3555, 'PQP':3556, 'WAT':3565, 'REN':3557, 'SMD':3560, 'SWH':3575, 'SUD':3561, 'THB':3562, 'TSK':3563, 'TOR':3595, 'WDG':3566, 'WEK':3568, 'YRK':3570, 'overall':6 } def get_file_path(data, step='raw', today=datetime.today().strftime('%Y-%m-%d')): source_dir = 'data/' + data['classification'] + '/' + step + '/' if data['type'] != '': file_name = data['table_name'] + '_' + today + '.' + data['type'] else: file_name = data['table_name'] + '_' + today save_dir = source_dir + data['source_name'] + '/' + data['table_name'] file_path = save_dir + '/' + file_name return file_path, save_dir @bp.cli.command('public_ontario_gov_daily_change_in_cases_by_phu') def process_public_ontario_gov_daily_change_in_cases_by_phu(): data = {'classification':'public', 'source_name':'ontario_gov', 'table_name':'daily_change_in_cases_by_phu', 'type': 'csv'} date_field = ['Date'] load_file, load_dir = get_file_path(data) files = glob.glob(load_dir+"/*."+data['type']) for file in files: try: filename = file.split('_')[-1] date = filename.split('.')[0] save_file, save_dir = get_file_path(data, 'processed', date) if not os.path.isfile(save_file) or date == datetime.today().strftime('%Y-%m-%d'): df = pd.read_csv(file) df = df.melt(id_vars='Date') replace = { 'Algoma_Public_Health_Unit':3526, 'Algoma_District':3526, 'Brant_County_Health_Unit':3527, 'Brant_County':3527, 'Chatham-Kent_Health_Unit':3540, 'Chatham_Kent':3540, 'Durham_Region_Health_Department':3530, 'Durham_Region':3530, 'Eastern_Ontario_Health_Unit':3558, 'Eastern_Ontario':3558, 'Grey_Bruce_Health_Unit':3533, 'Grey_Bruce':3533, 'Haldimand-Norfolk_Health_Unit':3534, 'Haldimand_Norfolk':3534, 'Haliburton,_Kawartha,_Pine_Ridge_District_Health_Unit':3535, 'Haliburton_Kawartha_Pine_Ridge':3535, 'Halton_Region_Health_Department':3536, 'Halton_Region':3536, 'Hamilton_Public_Health_Services':3537, 'City_of_Hamilton':3537, 'Hastings_and_Prince_Edward_Counties_Health_Unit':3538, 'Hastings_Prince_Edward':3538, 'Huron_Perth_District_Health_Unit':3539, 'Huron_Perth':3539, 'Kingston,_Frontenac_and_Lennox_&_Addington_Public_Health':3541, 'KFLA':3541, 'Lambton_Public_Health':3542, 'Lambton_County':3542, 'Leeds,_Grenville_and_Lanark_District_Health_Unit':3543, 'Leeds_Grenville_Lanark':3543, 'Middlesex-London_Health_Unit':3544, 'Middlesex_London':3544, 'Niagara_Region_Public_Health_Department':3546, 'Niagara_Region':3546, 'North_Bay_Parry_Sound_District_Health_Unit':3547, 'North_Bay_Parry_Sound_District':3547, 'Northwestern_Health_Unit':3549, 'Northwestern':3549, 'Ottawa_Public_Health':3551, 'City_of_Ottawa':3551, 'Peel_Public_Health':3553, 'Peel_Region':3553, 'Peterborough_Public_Health':3555, 'Peterborough_County_City':3555, 'Porcupine_Health_Unit':3556, 'Porcupine':3556, 'Region_of_Waterloo,_Public_Health':3565, 'Waterloo_Region':3565, 'Renfrew_County_and_District_Health_Unit':3557, 'Renfrew_County_and_District':3557, 'Simcoe_Muskoka_District_Health_Unit':3560, 'Simcoe_Muskoka_District':3560, 'Southwestern_Public_Health':3575, 'Southwestern':3575, 'Sudbury_&_District_Health_Unit':3561, 'Sudbury_and_District':3561, 'Thunder_Bay_District_Health_Unit':3562, 'Thunder_Bay_District':3562, 'Timiskaming_Health_Unit':3563, 'Timiskaming':3563, 'Toronto_Public_Health':3595, 'Toronto':3595, 'Wellington-Dufferin-Guelph_Public_Health':3566, 'Wellington_Dufferin_Guelph':3566, 'Windsor-Essex_County_Health_Unit':3568, 'Windsor_Essex_County':3568, 'York_Region_Public_Health_Services':3570, 'York_Region':3570, 'Total':6 } df['HR_UID'] = df['variable'].replace(replace) for column in date_field: df[column] = pd.to_datetime(df[column], errors='coerce') Path(save_dir).mkdir(parents=True, exist_ok=True) df.to_csv(save_file, index=False) except Exception as e: print(f"Failed to get {file}") print(e) return e @bp.cli.command('public_ontario_gov_conposcovidloc') def process_public_ontario_gov_conposcovidloc(): data = {'classification':'public', 'source_name':'ontario_gov', 'table_name':'conposcovidloc', 'type': 'csv'} field_map = { "Row_ID":"row_id", "Accurate_Episode_Date": "accurate_episode_date", "Case_Reported_Date": "case_reported_date", "Specimen_Date": "specimen_reported_date", "Test_Reported_Date": "test_reported_date", "Age_Group":"age_group", "Client_Gender":"client_gender", "Case_AcquisitionInfo": "case_acquisition_info", "Outcome1": "outcome_1", "Outbreak_Related": "outbreak_related", "Reporting_PHU": "reporting_phu", "Reporting_PHU_Address": "reporting_phu_address", "Reporting_PHU_City": "reporting_phu_city", "Reporting_PHU_Postal_Code": "reporting_phu_postal_code", "Reporting_PHU_Website": "reporting_phu_website", "Reporting_PHU_Latitude":"reporting_phu_latitude", "Reporting_PHU_Longitude": "reporting_phu_longitude", } date_field = ['accurate_episode_date', 'case_reported_date', 'specimen_reported_date', 'test_reported_date'] load_file, load_dir = get_file_path(data) files = glob.glob(load_dir+"/*."+data['type']) for file in files: try: filename = file.split('_')[-1] date = filename.split('.')[0] save_file, save_dir = get_file_path(data, 'processed', date) if not os.path.isfile(save_file) or date == datetime.today().strftime('%Y-%m-%d'): df = pd.read_csv(file) df = df.replace("12:00:00 AM", None) df = df.rename(columns=field_map) for column in date_field: df[column] = pd.to_datetime(df[column], errors='coerce') Path(save_dir).mkdir(parents=True, exist_ok=True) df.to_csv(save_file, index=False) except Exception as e: print(f"Failed to get {file}") print(e) return e @bp.cli.command('public_ontario_gov_vaccination') def process_public_ontario_gov_vaccination(): data = {'classification':'public', 'source_name':'ontario_gov', 'table_name':'vaccination', 'type': 'csv'} date_field = ['date'] field_map = { 'report_date': 'date' } load_file, load_dir = get_file_path(data) files = glob.glob(load_dir+"/*."+data['type']) for file in files: try: filename = file.split('_')[-1] date = filename.split('.')[0] save_file, save_dir = get_file_path(data, 'processed', date) if not os.path.isfile(save_file) or date == datetime.today().strftime('%Y-%m-%d'): df = pd.read_csv(file) df = df.rename(columns=field_map) df.dropna(how='all', axis=1, inplace=True) df.dropna(how='any', inplace=True) for index, row in df.iterrows(): if type(row['previous_day_total_doses_administered'])==str: df.at[index,'previous_day_doses_administered'] = row['previous_day_doses_administered'].replace(",","") if type(row['total_doses_administered'])==str: df.at[index,'total_doses_administered'] = row['total_doses_administered'].replace(",","") if type(row['total_doses_in_fully_vaccinated_individuals'])==str: df.at[index,'total_doses_in_fully_vaccinated_individuals'] = row['total_doses_in_fully_vaccinated_individuals'].replace(",","") if type(row['total_individuals_fully_vaccinated'])==str: df.at[index,'total_individuals_fully_vaccinated'] = row['total_individuals_fully_vaccinated'].replace(",","") for column in date_field: df[column] = pd.to_datetime(df[column]) Path(save_dir).mkdir(parents=True, exist_ok=True) df.to_csv(save_file, index=False) except Exception as e: print(f"Failed to get {file}") print(e) return e @bp.cli.command('public_ontario_gov_covidtesting') def process_public_ontario_gov_covidtesting(): data = {'classification':'public', 'source_name':'ontario_gov', 'table_name':'covidtesting', 'type': 'csv'} date_field = ['reported_date'] load_file, load_dir = get_file_path(data) files = glob.glob(load_dir+"/*."+data['type']) for file in files: try: filename = file.split('_')[-1] date = filename.split('.')[0] save_file, save_dir = get_file_path(data, 'processed', date) if not os.path.isfile(save_file) or date == datetime.today().strftime('%Y-%m-%d'): df = pd.read_csv(file) to_include = [] for column in df.columns: name = column.replace(' ','_').lower() df[name] = df[column] to_include.append(name) df = df[to_include] for column in date_field: df[column] = pd.to_datetime(df[column]) Path(save_dir).mkdir(parents=True, exist_ok=True) df.to_csv(save_file, index=False) except Exception as e: print(f"Failed to get {file}") print(e) return e @bp.cli.command('confidential_211_call_reports') def process_confidential_211_call_reports(): data = {'classification':'confidential', 'source_name':'211', 'table_name':'call_reports', 'type': 'csv'} field_map = { "CallReportNum":"call_report_num", "CallDateAndTimeStart": "call_date_and_time_start", "Demographics of Inquirer - Age Category": "age_of_inquirer" } date_field = ['call_date_and_time_start'] load_file, load_dir = get_file_path(data) files = glob.glob(load_dir+"/*."+data['type']) for file in files: try: filename = file.split('_')[-1] date = filename.split('.')[0] save_file, save_dir = get_file_path(data, 'processed', date) if not os.path.isfile(save_file) or date == datetime.today().strftime('%Y-%m-%d'): df =
pd.read_csv(file)
pandas.read_csv
import json from unittest import TestCase import pandas from pandas.io.json import json_normalize from pandas.util.testing import assert_frame_equal from gamebench_api_client.api.utilities.dataframe_utilities import \ json_to_normalized_dataframe, session_detail_to_dataframe, to_dataframe from tests import * class TestDataFrameUtilities(TestCase): def setUp(self): self.data_frame = pandas.DataFrame() with open(os.path.join( PARENT_DIR + API_SAMPLES + "gpu_img.json")) as json_data: self.test_json = json.load(json_data) with open(os.path.join( PARENT_DIR + API_SAMPLES + "sessionid.json")) as json_data: self.session_json = json.load(json_data) def test_json_to_normalized_dataframe(self): """ Verify a DataFrame is returned after normalizing a JSON.""" expected = json_normalize( self.test_json['response'], 'samples', ['id', 'sessionId'] ) actual = json_to_normalized_dataframe(self.test_json['response']) assert_frame_equal( expected, actual ) def test_session_metric_to_dataframe(self): """ Verify a DataFrame is returned when given a specific metric.""" expected =
pandas.DataFrame(data=[self.session_json['response']['app']])
pandas.DataFrame
import pandas as pd import numpy as np from scipy.spatial.distance import cdist, pdist, squareform from scipy.cluster import hierarchy import copy import sys sys.path.append('/home/sd375') from scipy.cluster.hierarchy import dendrogram, linkage from scipy.cluster import hierarchy from .load_and_save_environment_data import load_target_residuals from ..environment_processing.base_processing import path_inputs_env from UsefulFonctions import ComputeDistanceMatrix import os dict_ensemble_to_datasets = { 'ENSEMBLE_HealthAndMedicalHistory' : ['Breathing', 'CancerScreening', 'ChestPain', 'Claudification', 'Eyesight', 'GeneralHealth', 'GeneralPain', 'Hearing', 'Medication', 'Mouth'], 'ENSEMBLE_LifestyleAndEnvironment' : ['Alcohol', 'Diet', 'ElectronicDevices', 'PhysicalActivityQuestionnaire', 'SexualFactors', 'Sleep', 'Smoking', 'SunExposure'], 'ENSEMBLE_PsychosocialFactors' : ['MentalHealth', 'SocialSupport'], 'ENSEMBLE_SocioDemographics' : ['Education', 'Employment', 'Household', 'OtherSociodemographics'] } cols_ethnicity = ['Ethnicity.White', 'Ethnicity.British', 'Ethnicity.Irish', 'Ethnicity.White_Other', 'Ethnicity.Mixed', 'Ethnicity.White_and_Black_Caribbean', 'Ethnicity.White_and_Black_African', 'Ethnicity.White_and_Asian', 'Ethnicity.Mixed_Other', 'Ethnicity.Asian', 'Ethnicity.Indian', 'Ethnicity.Pakistani', 'Ethnicity.Bangladeshi', 'Ethnicity.Asian_Other', 'Ethnicity.Black', 'Ethnicity.Caribbean', 'Ethnicity.African', 'Ethnicity.Black_Other', 'Ethnicity.Chinese', 'Ethnicity.Other_ethnicity', 'Ethnicity.Do_not_know', 'Ethnicity.Prefer_not_to_answer', 'Ethnicity.NA', 'Ethnicity.Other'] cols_age_sex_eid_ethnicity = ['Sex', 'eid', 'Age when attended assessment centre'] + cols_ethnicity ## Agglomerative Clustering : # Metrics : def NegativeIntersection(x, y): """ x, y 1D numpy vectors """ return -x.dot(y) #1 - x.dot(y) / np.sum(x | y) def CreateDictSizes(path_dataset_full, target_dataset, env_dataset): ## Load everything dict_name_to_df = {} dict_name_to_num_features = {} print("Loading Full raw data") if env_dataset is not None : if 'ENSEMBLE' in env_dataset : subdatasets = dict_ensemble_to_datasets[env_dataset] usecols = [] for sub_envdataset in subdatasets : usecol = pd.read_csv(path_inputs_env + '%s.csv' % sub_envdataset, nrows = 1).set_index('id').columns usecol = [elem for elem in usecol if elem not in ['eid', 'Sex', 'Age when attended assessment centre', 'Unnamed: 0'] + cols_ethnicity] usecols += usecol else : usecols = pd.read_csv(path_inputs_env + '%s.csv' % env_dataset, nrows = 1).set_index('id').columns usecols = [elem for elem in usecols if elem not in ['eid', 'Sex', 'Age when attended assessment centre', 'Unnamed: 0'] + cols_ethnicity] else : usecols = None full_df = pd.read_csv(path_dataset_full, usecols = usecols + ['id', 'eid', 'Age when attended assessment centre']).set_index('id') if target_dataset is not None : target_dataset = target_dataset.replace('\\', '') Alan_residuals = load_target_residuals(target_dataset) full_df = full_df.join(Alan_residuals) full_df = full_df[~full_df['residuals'].isna()] print("Starting to convert columns to vectors") cols = [elem for elem in full_df.columns if elem not in cols_age_sex_eid_ethnicity + ['residuals']] for col in cols : if not full_df[col].dropna().empty : col_name = col dict_name_to_df[col_name] = full_df[[col, 'eid']].dropna() dict_name_to_num_features[col_name] = 1 else : continue print("End dict series") df_age = full_df['Age when attended assessment centre'].index return dict_name_to_df, dict_name_to_num_features, df_age def CreateDataArray(dict_name_to_df, ids): n = len(dict_name_to_df) dim = len(ids) array_fill_0 = np.zeros((n, dim), dtype = 'int') map_name_to_idx = dict(zip(dict_name_to_df.keys(), range(len(dict_name_to_df)))) for name, elem in dict_name_to_df.items(): idx = map_name_to_idx[name] array_fill_0[idx] = ids.isin(elem.index) return array_fill_0, map_name_to_idx def FindArgmin(full_distance_matrix): argmin = full_distance_matrix.argmin() argmin_i, argmin_j = np.unravel_index(argmin, full_distance_matrix.shape) if argmin_i > argmin_j: argmin_i, argmin_j = argmin_j, argmin_i return argmin_i, argmin_j def ReplaceIbyIJ(array_fill_0, dataset_ij, argmin_i, argmin_j, ids): ## Replace i by ij array_fill_0[argmin_i] = 0 array_fill_0[argmin_i] = ids.isin(dataset_ij.index) ## Delete j array_fill_0 = np.delete(array_fill_0, argmin_j, axis = 0) return array_fill_0 def CreateNewMapping(map_idx_to_name, argmin_i, argmin_j): new_mapping = dict() for index in range(argmin_i): new_mapping[index] = map_idx_to_name[index] new_mapping[argmin_i] = map_idx_to_name[argmin_i] + '//' + map_idx_to_name[argmin_j] for index in range(argmin_i + 1, argmin_j): new_mapping[index] = map_idx_to_name[index] for index in range(argmin_j, len(map_idx_to_name) - 1): new_mapping[index] = map_idx_to_name[index + 1] map_idx_to_name = copy.deepcopy(new_mapping) map_name_to_idx = {v : k for k, v in map_idx_to_name.items()} return map_idx_to_name, map_name_to_idx def RecomputeDistanceMatrix(full_distance_matrix, array_fill_0, argmin_i, argmin_j): full_distance_matrix = np.delete(np.delete(full_distance_matrix, argmin_j, axis = 0), argmin_j, axis = 1) new_point = array_fill_0[argmin_i] old_points = array_fill_0 new_distance_matrix = ComputeDistanceMatrix(new_point[np.newaxis, :], old_points) full_distance_matrix[:, argmin_i] = new_distance_matrix[0, :] full_distance_matrix[argmin_i, :] = new_distance_matrix[0, :] full_distance_matrix[argmin_i, argmin_i] = np.inf return full_distance_matrix def AglomerativeClusteringFull(path_input, target_dataset = None, env_dataset = None): ## Load eid and ids, compute max_size and min_size : dict_name_to_df, dict_name_to_num_features, ids = CreateDictSizes(path_input, target_dataset, env_dataset) ## Create Array with size vectors, and create mapping between idx and dataset names array_fill_0, map_name_to_idx = CreateDataArray(dict_name_to_df, ids) map_idx_to_name = {v : k for k, v in map_name_to_idx.items()} ## Initialise distance matrix full_distance_matrix = ComputeDistanceMatrix(array_fill_0, array_fill_0) np.fill_diagonal(full_distance_matrix, np.inf) print("Done computing full distance matrix ", full_distance_matrix) dict_not_changed_index = copy.deepcopy(map_idx_to_name) dict_not_changed_index_to_num_features = dict((map_name_to_idx[key], value) for (key, value) in dict_name_to_num_features.items()) initial_dict = copy.deepcopy(dict_not_changed_index) n = array_fill_0.shape[0] Zdf = pd.DataFrame(columns = {'index_i', 'index_j', 'index_ij', 'num_features_i', 'num_features_j', 'num_features_ij', 'distance_ij', 'number_ij', 'samplesize_i','samplesize_j', 'samplesize_ij', 'name_i', 'name_j', 'name_ij', 'step'}) for count in range(n - 1): if count % 10 == 0: print(count/(n-1)) ## Find Argmin i and j argmin_i, argmin_j = FindArgmin(full_distance_matrix) ## Store Names : dataset_name_i, dataset_name_j = map_idx_to_name[argmin_i], map_idx_to_name[argmin_j] name_ij = dataset_name_i + '//' + dataset_name_j ## Store sample sizes row_i, row_j = array_fill_0[argmin_i], array_fill_0[argmin_j] samplesize_ij = row_i.dot(row_j) samplesize_i, samplesize_j = row_i.dot(row_i), row_j.dot(row_j) ## Store distance distance_ij = full_distance_matrix[argmin_i, argmin_j] ## Merge argmin_i and argmin_j dataset_i, dataset_j = dict_name_to_df[dataset_name_i], dict_name_to_df[dataset_name_j] dataset_ij = dataset_i.join(dataset_j, how = 'inner', rsuffix = '_r').drop(columns = 'eid_r') dict_name_to_df[name_ij] = dataset_ij dict_name_to_df.pop(dataset_name_i, None) dict_name_to_df.pop(dataset_name_j, None) print("Merge %s and %s => %s " % (dataset_name_i, dataset_name_j, name_ij)) ## Replace i by ij, delete j array_fill_0 = ReplaceIbyIJ(array_fill_0, dataset_ij, argmin_i, argmin_j, ids) ## New mapping map_idx_to_name, map_name_to_idx = CreateNewMapping(map_idx_to_name, argmin_i, argmin_j) ## Recompute distances with new cluster full_distance_matrix = RecomputeDistanceMatrix(full_distance_matrix, array_fill_0, argmin_i, argmin_j) ## Update saving index and creating final Z row: dict_not_changed_index[count + n] = name_ij i_index_not_changed = [key for key, value in dict_not_changed_index.items() if value == dataset_name_i][0] j_index_not_changed = [key for key, value in dict_not_changed_index.items() if value == dataset_name_j][0] number_in_ij = len(name_ij.split('//')) ## Store number of features features_i, features_j = dict_not_changed_index_to_num_features[i_index_not_changed], dict_not_changed_index_to_num_features[j_index_not_changed] features_ij = features_i + features_j dict_not_changed_index_to_num_features[count + n] = features_ij Zdf = Zdf.append({'index_i' : i_index_not_changed, 'index_j' : j_index_not_changed, 'index_ij' : count + n, 'num_features_i' : features_i, 'num_features_j' : features_j, 'num_features_ij' : features_ij, 'samplesize_ij' : samplesize_ij, 'samplesize_i' : samplesize_i, 'samplesize_j' : samplesize_j, 'name_i' : dataset_name_i, 'name_j' : dataset_name_j, 'name_ij' : name_ij, 'distance_ij': distance_ij, 'number_ij' : number_in_ij, 'step' : count + n }, ignore_index = True) return dict_not_changed_index, Zdf, initial_dict ## Processing HC def Create_full_linkage_matrix(Zdf, initial_dict): Z = Zdf[['index_i', 'index_j', 'distance_ij', 'number_ij']].astype(float).values tree = hierarchy.to_tree(Z) cols = list(initial_dict.values()) linkage_matrix_raw = Zdf.set_index('index_ij') linkage_matrix_raw['Score_i'] = linkage_matrix_raw['samplesize_i'] * linkage_matrix_raw['num_features_i'] linkage_matrix_raw['Score_j'] = linkage_matrix_raw['samplesize_j'] * linkage_matrix_raw['num_features_j'] linkage_matrix_raw['Score_ij'] = linkage_matrix_raw['samplesize_ij'] * linkage_matrix_raw['num_features_ij'] return tree, linkage_matrix_raw def CreateMappingScoreAndFeatures(linkage_matrix_raw): mapping_index_to_score = {} mapping_index_to_features = {} first_node = linkage_matrix_raw.index[0] for elem in linkage_matrix_raw.index: mapping_index_to_score[elem] = linkage_matrix_raw.loc[elem, 'Score_ij'] mapping_index_to_features[elem] = linkage_matrix_raw.loc[elem, 'num_features_ij'] for index in range(first_node): if index in linkage_matrix_raw['index_i'].values: score = linkage_matrix_raw[linkage_matrix_raw.index_i == index]['Score_i'].values[0] feature = linkage_matrix_raw[linkage_matrix_raw.index_i == index]['num_features_i'].values[0] elif index in linkage_matrix_raw['index_j'].values: score = linkage_matrix_raw[linkage_matrix_raw.index_j == index]['Score_j'].values[0] feature = linkage_matrix_raw[linkage_matrix_raw.index_j == index]['num_features_j'].values[0] mapping_index_to_score[index] = score mapping_index_to_features[index] = feature return mapping_index_to_score, mapping_index_to_features ## Find interesting nodes def GetInterestingNodes(tree_, linkage_matrix_raw, printing = True): list_interesting = [] def recurse(tree): score_parent = linkage_matrix_raw.loc[tree.get_id(), 'Score_ij'] if printing: print(" PARENT : ", tree.get_id(), ", Score : ", score_parent) ## Compare parent and left child if not tree.get_left().is_leaf(): score_left = linkage_matrix_raw.loc[tree.get_left().get_id(), 'Score_ij'] else: row = linkage_matrix_raw.loc[tree.get_id()] if row['index_i'] == tree.get_left().get_id(): score = row['Score_i'] else : score = row['Score_j'] score_left = score if printing: print(" CHILD LEFT : ", tree.get_left().get_id(), ", Score left : ", score_left) ## Compare parent and right child if not tree.get_right().is_leaf(): score_right = linkage_matrix_raw.loc[tree.get_right().get_id(), 'Score_ij'] else : row = linkage_matrix_raw.loc[tree.get_id()] if row['index_i'] == tree.get_right().get_id(): score = row['Score_i'] else : score = row['Score_j'] score_right = score if printing: print(" CHILD RIGHT : ", tree.get_right().get_id(), ", Score right : ", score_right) ## Append interesting nodes if score_right > score_parent: list_interesting.append(tree.get_right().get_id()) if score_left > score_parent: list_interesting.append(tree.get_left().get_id()) ## Explore left and right if possible if not tree.get_left().is_leaf(): recurse(tree.get_left()) if not tree.get_right().is_leaf(): recurse(tree.get_right()) return list_interesting list_interesting = recurse(tree_) if list_interesting == [] : return [linkage_matrix_raw.index.max()] else : return list_interesting def CreateBestClusterFromInterestingNodes(list_interesting, linkage_matrix_raw, path_input, path_clusters, target, env_df): print("linkage_matrix_raw", linkage_matrix_raw) try : df_sorted = linkage_matrix_raw.loc[list_interesting].sort_values('Score_ij', ascending = False) except KeyError: df_sorted = linkage_matrix_raw.sort_values('Score_ij', ascending = False) best_cluster = df_sorted.iloc[0] list_features = best_cluster['name_ij'].split('//') df_cluster = pd.read_csv(path_input, usecols = ['id'] + list_features ).set_index('id') df_sex_age_ethnicity = pd.read_csv('/n/groups/patel/Alan/Aging/Medical_Images/data/data-features_instances.csv').set_index('id').drop(columns = ['Abdominal_images_quality', 'instance', 'outer_fold']) df_sex_age_ethnicity = df_sex_age_ethnicity.rename(columns = {'Age' : 'Age when attended assessment centre'}) df_cluster = df_cluster.join(df_sex_age_ethnicity) df_cluster.to_csv(path_clusters + 'Clusters_%s_%s.csv' % (env_df, target)) def CreateClustersFromInterestingNodes(list_interesting, linkage_matrix_raw, path_input, path_clusters, target = None): ## EWAS : if target is not None: os.mkdir(path_clusters + target ) path_saving = path_clusters + target + '/' ## Biomarkers else : path_saving = path_clusters ## Compute interesting Nodes for node_id in list_interesting: print(node_id) features = linkage_matrix_raw.loc[node_id, 'name_ij'] score = linkage_matrix_raw.loc[node_id, 'Score_ij'] num_features = linkage_matrix_raw.loc[node_id, 'num_features_ij'] print(features) list_features = features.split('//') df_cluster = pd.read_csv(path_input, usecols = ['id'] + list_features ).set_index('id') ## Remember to drop nas df_sex_age_ethnicity =
pd.read_csv('/n/groups/patel/Alan/Aging/Medical_Images/data/data-features_instances.csv')
pandas.read_csv
import json import numpy as np import pandas as pd import matplotlib.pyplot as plt, mpld3 from pandas import DataFrame #----------------------------------------------------------------------------------------------------------------------# #Load the data into a DF with open(r"C:/Users/Pathtoyourdata", 'r', encoding='utf8', errors='ignore') as read_file: json_reloaded = json.load(read_file) print(len(json_reloaded)) complete_data = pd.DataFrame(json_reloaded) print(complete_data.head()) #head def artists(): df_top_freq = complete_data.groupby(['artistName'])['artistName'].agg( {"artist_count": len}).sort_values("artist_count", ascending=False) with pd.option_context('display.max_rows', None, 'display.max_columns', None): # more options can be specified also print(df_top_freq) df_top_freq.to_csv('top_artists.csv') def songs(): df_top_songs = complete_data.groupby(["trackName"])["trackName"].agg( {"song_count": len}).sort_values("song_count", ascending=False) with
pd.option_context('display.max_rows', None, 'display.max_columns', None)
pandas.option_context
import logging import os import gc import pandas as pd from src.data_models.tdidf_model import FrequencyModel from src.evaluations.statisticalOverview import StatisticalOverview from src.globalVariable import GlobalVariable from src.kemures.tecnics.content_based import ContentBased from src.preprocessing.preprocessing import Preprocessing def execute_one_time(): Preprocessing.database_evaluate_graph() scenario = GlobalVariable.ONE_SCENARIO_SIZE scenario_class_df = pd.DataFrame() scenario_results_df = pd.DataFrame() for run in range(GlobalVariable.RUN_TIMES): os.system('cls||clear') logger.info("+ Rodada " + str(run + 1)) logger.info("+ Carregando o Cenário com " + str(scenario)) songs_base_df, users_preference_base_df = Preprocessing.load_data_test(scenario) run_class_df, run_results_df = ContentBased.run_recommenders( users_preference_base_df, FrequencyModel.mold(songs_base_df), scenario, run + 1 ) scenario_results_df = pd.concat([scenario_results_df, run_results_df]) scenario_class_df = pd.concat([scenario_class_df, run_class_df]) StatisticalOverview.result_info(scenario_results_df) StatisticalOverview.graphics(scenario_results_df) os.system('cls||clear') StatisticalOverview.comparate(scenario_results_df) def execute_by_scenarios(): Preprocessing.database_evaluate_graph() application_class_df = pd.DataFrame() application_results_df = pd.DataFrame() for scenario in GlobalVariable.SCENARIO_SIZE_LIST: gc.collect() scenario_class_df = pd.DataFrame() scenario_results_df =
pd.DataFrame()
pandas.DataFrame
from sklearn import tree from sklearn import preprocessing from sklearn.model_selection import cross_val_score from sklearn.metrics import mean_absolute_error, f1_score from itertools import product from tqdm import tqdm from functools import partial import multiprocessing as mp import numpy as np import pandas as pd from pandas.api.types import ( is_numeric_dtype, is_bool_dtype, is_object_dtype, is_categorical_dtype, is_string_dtype, is_datetime64_any_dtype, is_timedelta64_dtype, ) NOT_SUPPORTED_ANYMORE = "NOT_SUPPORTED_ANYMORE" TO_BE_CALCULATED = -1 def _calculate_model_cv_score_( df, target, feature, task, cross_validation, random_seed, **kwargs ): "Calculates the mean model score based on cross-validation" # Sources about the used methods: # https://scikit-learn.org/stable/modules/tree.html # https://scikit-learn.org/stable/modules/cross_validation.html # https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.cross_val_score.html metric = task["metric_key"] model = task["model"] # shuffle the rows - this is important for cross-validation # because the cross-validation just takes the first n lines # if there is a strong pattern in the rows eg 0,0,0,0,1,1,1,1 # then this will lead to problems because the first cv sees mostly 0 and the later 1 # this approach might be wrong for timeseries because it might leak information df = df.sample(frac=1, random_state=random_seed, replace=False) # preprocess target if task["type"] == "classification": label_encoder = preprocessing.LabelEncoder() df[target] = label_encoder.fit_transform(df[target]) target_series = df[target] else: target_series = df[target] # preprocess feature if _dtype_represents_categories(df[feature]): one_hot_encoder = preprocessing.OneHotEncoder() array = df[feature].__array__() sparse_matrix = one_hot_encoder.fit_transform(array.reshape(-1, 1)) feature_input = sparse_matrix else: # reshaping needed because there is only 1 feature feature_input = df[feature].values.reshape(-1, 1) # Cross-validation is stratifiedKFold for classification, KFold for regression # CV on one core (n_job=1; default) has shown to be fastest scores = cross_val_score( model, feature_input, target_series, cv=cross_validation, scoring=metric ) return scores.mean() def _normalized_mae_score(model_mae, naive_mae): "Normalizes the model MAE score, given the baseline score" # # Value range of MAE is [0, infinity), 0 is best # 10, 5 ==> 0 because worse than naive # 10, 20 ==> 0.5 # 5, 20 ==> 0.75 = 1 - (mae/base_mae) if model_mae > naive_mae: return 0 else: return 1 - (model_mae / naive_mae) def _mae_normalizer(df, y, model_score, **kwargs): "In case of MAE, calculates the baseline score for y and derives the PPS." df["naive"] = df[y].median() baseline_score = mean_absolute_error(df[y], df["naive"]) # true, pred ppscore = _normalized_mae_score(abs(model_score), baseline_score) return ppscore, baseline_score def _normalized_f1_score(model_f1, baseline_f1): "Normalizes the model F1 score, given the baseline score" # # F1 ranges from 0 to 1 # # 1 is best # 0.5, 0.7 ==> 0 because model is worse than naive baseline # 0.75, 0.5 ==> 0.5 # if model_f1 < baseline_f1: return 0 else: scale_range = 1.0 - baseline_f1 # eg 0.3 f1_diff = model_f1 - baseline_f1 # eg 0.1 return f1_diff / scale_range # 0.1/0.3 = 0.33 def _f1_normalizer(df, y, model_score, random_seed): "In case of F1, calculates the baseline score for y and derives the PPS." label_encoder = preprocessing.LabelEncoder() df["truth"] = label_encoder.fit_transform(df[y]) df["most_common_value"] = df["truth"].value_counts().index[0] random = df["truth"].sample(frac=1, random_state=random_seed) baseline_score = max( f1_score(df["truth"], df["most_common_value"], average="weighted"), f1_score(df["truth"], random, average="weighted"), ) ppscore = _normalized_f1_score(model_score, baseline_score) return ppscore, baseline_score VALID_CALCULATIONS = { "regression": { "type": "regression", "is_valid_score": True, "model_score": TO_BE_CALCULATED, "baseline_score": TO_BE_CALCULATED, "ppscore": TO_BE_CALCULATED, "metric_name": "mean absolute error", "metric_key": "neg_mean_absolute_error", "model": tree.DecisionTreeRegressor(), "score_normalizer": _mae_normalizer, }, "classification": { "type": "classification", "is_valid_score": True, "model_score": TO_BE_CALCULATED, "baseline_score": TO_BE_CALCULATED, "ppscore": TO_BE_CALCULATED, "metric_name": "weighted F1", "metric_key": "f1_weighted", "model": tree.DecisionTreeClassifier(), "score_normalizer": _f1_normalizer, }, "predict_itself": { "type": "predict_itself", "is_valid_score": True, "model_score": 1, "baseline_score": 0, "ppscore": 1, "metric_name": None, "metric_key": None, "model": None, "score_normalizer": None, }, "target_is_constant": { "type": "target_is_constant", "is_valid_score": True, "model_score": 1, "baseline_score": 1, "ppscore": 0, "metric_name": None, "metric_key": None, "model": None, "score_normalizer": None, }, "target_is_id": { "type": "target_is_id", "is_valid_score": True, "model_score": 0, "baseline_score": 0, "ppscore": 0, "metric_name": None, "metric_key": None, "model": None, "score_normalizer": None, }, "feature_is_id": { "type": "feature_is_id", "is_valid_score": True, "model_score": 0, "baseline_score": 0, "ppscore": 0, "metric_name": None, "metric_key": None, "model": None, "score_normalizer": None, }, } INVALID_CALCULATIONS = [ "target_is_datetime", "target_data_type_not_supported", "empty_dataframe_after_dropping_na", "unknown_error", ] def _dtype_represents_categories(series) -> bool: "Determines if the dtype of the series represents categorical values" return ( is_bool_dtype(series) or is_object_dtype(series) or is_string_dtype(series) or is_categorical_dtype(series) ) def _determine_case_and_prepare_df(df, x, y, sample=5_000, random_seed=123): "Returns str with the name of the determined case based on the columns x and y" if x == y: return df, "predict_itself" df = df[[x, y]] # IDEA: log.warning when values have been dropped df = df.dropna() if len(df) == 0: return df, "empty_dataframe_after_dropping_na" # IDEA: show warning # raise Exception( # "After dropping missing values, there are no valid rows left" # ) df = _maybe_sample(df, sample, random_seed=random_seed) if _feature_is_id(df, x): return df, "feature_is_id" category_count = df[y].value_counts().count() if category_count == 1: # it is helpful to separate this case in order to save unnecessary calculation time return df, "target_is_constant" if _dtype_represents_categories(df[y]) and (category_count == len(df[y])): # it is important to separate this case in order to save unnecessary calculation time return df, "target_is_id" if _dtype_represents_categories(df[y]): return df, "classification" if is_numeric_dtype(df[y]): # this check needs to be after is_bool_dtype (which is part of _dtype_represents_categories) because bool is considered numeric by pandas return df, "regression" if is_datetime64_any_dtype(df[y]) or
is_timedelta64_dtype(df[y])
pandas.api.types.is_timedelta64_dtype
import numpy as np import pandas as pd import pandas.util.testing as tm import pytest import pandas_datareader.data as web pytestmark = pytest.mark.stable class TestEcondb(object): def test_get_cdh_e_fos(self): # EUROSTAT # Employed doctorate holders in non managerial and non professional # occupations by fields of science (%) df = web.DataReader( "dataset=CDH_E_FOS&GEO=NO,PL,PT,RU&FOS07=FOS1&Y_GRAD=TOTAL", "econdb", start=
pd.Timestamp("2005-01-01")
pandas.Timestamp
import os import unittest import pandas as pd import numpy as np from pandas.testing import assert_frame_equal, assert_series_equal from mavedbconvert import empiric, constants from tests import ProgramTestCase class TestEmpiricInit(ProgramTestCase): def setUp(self): super().setUp() self.path = os.path.join(self.data_dir, "empiric", "empiric.xlsx") def test_offset_inframe(self): empiric.Empiric(src=self.path, wt_sequence="ATC", offset=3) def test_error_offset_not_inframe(self): with self.assertRaises(ValueError): empiric.Empiric(src=self.path, wt_sequence="ATC", offset=1) def test_error_noncoding(self): with self.assertRaises(ValueError): empiric.Empiric(src=self.path, wt_sequence="ATC", is_coding=False) class TestInferProEvent(unittest.TestCase): def test_infers_equal_event(self): self.assertEqual( empiric.infer_pro_substitution(mut_aa="V", wt_aa="v", codon_pos=0), "p.Val1=", ) def test_infers_sub_event_event(self): self.assertEqual( empiric.infer_pro_substitution(mut_aa="V", wt_aa="F", codon_pos=0), "p.Phe1Val", ) def test_converts_triple_q_to_Xaa(self): self.assertEqual( empiric.infer_pro_substitution(mut_aa="?", wt_aa="V", codon_pos=0), "p.Val1Xaa", ) class TestInferNTEvent(unittest.TestCase): def test_infers_equal_event(self): self.assertEqual( empiric.infer_nt_substitution(wt_codon="aaa", mut_codon="AAA", codon_pos=0), "c.[1=;2=;3=]", ) def test_infers_sub_event_event(self): self.assertEqual( empiric.infer_nt_substitution(wt_codon="ATC", mut_codon="GTA", codon_pos=0), "c.[1A>G;2=;3C>A]", ) def test_adds_codon_pos_multiplied_by_3_to_position(self): self.assertEqual( empiric.infer_nt_substitution(wt_codon="ATC", mut_codon="GTA", codon_pos=1), "c.[4A>G;5=;6C>A]", ) class TestEmpiric(ProgramTestCase): def setUp(self): super().setUp() self.input = os.path.join(self.data_dir, "empiric", "empiric.xlsx") self.empiric = empiric.Empiric( src=self.input, wt_sequence="AAA", one_based=False ) def test_error_missing_amino_acid(self): for nan in constants.extra_na: df = pd.DataFrame({"Position": [0], "Amino Acid": [nan], "row_num": [0]}) self.empiric.validate_columns(df) with self.assertRaises(ValueError): self.empiric.parse_row(row=df.iloc[0, :]) def test_value_error_codon_doesnt_match_aa_column(self): with self.assertRaises(ValueError): df = pd.DataFrame( {"Position": [0], "Amino Acid": ["V"], "Codon": ["AAT"], "row_num": [0]} ) self.empiric.validate_columns(df) self.empiric.parse_row(row=df.iloc[0, :]) def test_error_infer_nt_true_but_missing_codon_value(self): for nan in constants.extra_na: df = pd.DataFrame( {"Position": [0], "Amino Acid": ["N"], "row_num": [0], "Codon": [nan]} ) self.empiric.validate_columns(df) with self.assertRaises(ValueError): self.empiric.parse_row(row=df.iloc[0, :]) def test_index_error_negative_position(self): df = pd.DataFrame( {"Position": [0], "Amino Acid": ["K"], "row_num": [0], "Codon": ["AAA"]} ) self.empiric.validate_columns(df) self.empiric.one_based = True with self.assertRaises(IndexError): self.empiric.parse_row(row=df.iloc[0, :]) def test_index_error_out_of_codon_bounds(self): df = pd.DataFrame( {"Position": [56], "Amino Acid": ["K"], "row_num": [0], "Codon": ["AAA"]} ) self.empiric.validate_columns(df) with self.assertRaises(IndexError): self.empiric.parse_row(row=df.iloc[0, :]) def test_amino_acid_column_is_case_insensitive(self): df = pd.DataFrame( {"Position": [0], "Amino Acid": ["v"], "row_num": [0], "Codon": ["GTA"]} ) self.empiric.validate_columns(df) _, hgvs_pro = self.empiric.parse_row(row=df.iloc[0, :]) self.assertEqual(hgvs_pro, "p.Lys1Val") def test_infers_hgvs_pro_event_from_one_based_position(self): df = pd.DataFrame( {"Position": [1], "Amino Acid": ["V"], "row_num": [0], "Codon": ["GTA"]} ) self.empiric.validate_columns(df) self.empiric.one_based = True _, hgvs_pro = self.empiric.parse_row(row=df.iloc[0, :]) self.assertEqual(hgvs_pro, "p.Lys1Val") def test_infers_hgvs_pro_event_from_zero_based_position(self): df = pd.DataFrame( {"Position": [1], "Amino Acid": ["V"], "row_num": [0], "Codon": ["GTA"]} ) self.empiric.validate_columns(df) self.empiric.wt_sequence = "GTAAAA" self.empiric.one_based = False _, hgvs_pro = self.empiric.parse_row(row=df.iloc[0, :]) self.assertEqual(hgvs_pro, "p.Lys2Val") def test_protein_output_is_singular_when_inferring_nt(self): df = pd.DataFrame( {"Position": [0], "Amino Acid": ["V"], "row_num": [0], "Codon": ["GTA"]} ) self.empiric.validate_columns(df) hgvs_nt, hgvs_pro = self.empiric.parse_row(row=df.iloc[0, :]) self.assertEqual(hgvs_nt, "c.[1A>G;2A>T;3=]") self.assertEqual(hgvs_pro, "p.Lys1Val") def test_hgvs_nt_is_none_when_codon_is_not_in_axes(self): df = pd.DataFrame({"Position": [0], "Amino Acid": ["V"], "row_num": [0]}) self.empiric.validate_columns(df) hgvs_nt, _ = self.empiric.parse_row(row=df.iloc[0, :]) self.assertIsNone(hgvs_nt) def test_correctly_infers_hgvs_nt_positions_when_zero_based(self): df = pd.DataFrame( {"Position": [1], "Amino Acid": ["V"], "row_num": [0], "Codon": ["GTA"]} ) self.empiric.validate_columns(df) self.empiric.one_based = False self.empiric.wt_sequence = "GGGAAT" hgvs_nt, _ = self.empiric.parse_row(row=df.iloc[0, :]) self.assertEqual(hgvs_nt, "c.[4A>G;5A>T;6T>A]") def test_correctly_infers_hgvs_nt_positions_when_one_based(self): df = pd.DataFrame({"Position": [1], "Amino Acid": ["N"], "Codon": ["AAT"]}) self.empiric.validate_columns(df) self.empiric.one_based = True self.empiric.wt_sequence = "GTAAAA" hgvs_nt, _ = self.empiric.parse_row(row=df.iloc[0, :]) self.assertEqual(hgvs_nt, "c.[1G>A;2T>A;3A>T]") class TestEmpiricValidateColumns(ProgramTestCase): def setUp(self): super().setUp() self.input = os.path.join(self.data_dir, "empiric", "empiric.xlsx") self.empiric = empiric.Empiric( src=self.input, wt_sequence="AAA", one_based=False ) def test_error_cannot_find_case_insensitive_aa_column(self): df = pd.DataFrame({"Position": [1], "aa": ["N"], "Codon": ["AAT"]}) with self.assertRaises(ValueError): self.empiric.validate_columns(df) def test_error_cannot_find_case_insensitive_position_column(self): df = pd.DataFrame({"pos": [1], "Amino Acid": ["N"], "Codon": ["AAT"]}) with self.assertRaises(ValueError): self.empiric.validate_columns(df) def test_sets_codon_column_as_none_if_not_present(self): df = pd.DataFrame({"Position": [1], "Amino Acid": ["N"]}) self.empiric.validate_columns(df) self.assertEqual(self.empiric.codon_column, None) def test_sets_codon_column_if_present(self): df = pd.DataFrame({"Position": [1], "Amino Acid": ["N"], "Codon": ["AAT"]}) self.empiric.validate_columns(df) self.assertEqual(self.empiric.codon_column, "Codon") def test_sets_position_column(self): df = pd.DataFrame({"Position": [1], "Amino Acid": ["N"], "Codon": ["AAT"]}) self.empiric.validate_columns(df) self.assertEqual(self.empiric.position_column, "Position") def test_sets_aa_column(self): df = pd.DataFrame({"Position": [1], "amino acid": ["N"], "Codon": ["AAT"]}) self.empiric.validate_columns(df) self.assertEqual(self.empiric.aa_column, "amino acid") class TestEmpiricParseScoresInput(ProgramTestCase): def setUp(self): super().setUp() self.input = os.path.join(self.data_dir, "empiric", "empiric.xlsx") self.empiric = empiric.Empiric( src=self.input, wt_sequence="AAA", one_based=False, input_type="scores", score_column="A", ) def test_deletes_position_amino_acid_codon_row_num_columns(self): df = pd.DataFrame( {"Position": [0], "Amino Acid": ["N"], "Codon": ["AAT"], "A": [1.2]} ) result = self.empiric.parse_input(df) self.assertNotIn("Position", result.columns) self.assertNotIn("Amino Acid", result.columns) self.assertNotIn("Codon", result.columns) self.assertNotIn("row_num", result.columns) def test_keeps_additional_non_score_columns(self): df = pd.DataFrame( { "Position": [0], "Amino Acid": ["N"], "Codon": ["AAT"], "A": [1.2], "B": [2.4], } ) result = self.empiric.parse_input(df) self.assertIn("B", result.columns) def test_renames_score_column_to_score_and_drops_original(self): df = pd.DataFrame( { "Position": [0], "Amino Acid": ["N"], "Codon": ["AAT"], "A": [1.2], "B": [2.4], } ) result = self.empiric.parse_input(df) self.assertListEqual(list(df["A"]), list(result["score"])) self.assertIn("B", result.columns) self.assertNotIn("A", result.columns) def test_sets_hgvs_pro_column(self): df = pd.DataFrame( { "Position": [0], "Amino Acid": ["N"], "Codon": ["AAT"], "A": [1.2], "B": [2.4], } ) result = self.empiric.parse_input(df) self.assertEqual(result[constants.pro_variant_col].values[0], "p.Lys1Asn") def test_correctly_infers_hgvs_nt_column_when_codon_column_present(self): df = pd.DataFrame( { "Position": [1], "Amino Acid": ["N"], "Codon": ["AAT"], "A": [1.2], "B": [2.4], } ) self.empiric.one_based = False self.empiric.wt_sequence = "GGGAAA" result = self.empiric.parse_input(df) self.assertEqual(result[constants.nt_variant_col].values[0], "c.[4=;5=;6A>T]") def test_orders_columns(self): df = pd.DataFrame( { "Position": [0], "Amino Acid": ["N"], "Codon": ["AAT"], "A": [1.2], "B": [2.4], } ) result = self.empiric.parse_input(df) self.assertEqual(list(result.columns).index(constants.nt_variant_col), 0) self.assertEqual(list(result.columns).index(constants.pro_variant_col), 1) self.assertEqual(list(result.columns).index(constants.mavedb_score_column), 2) def test_removes_null_columns(self): df = pd.DataFrame( { "Position": [0], "Amino Acid": ["N"], "Codon": ["AAT"], "B": [None], "A": [2.4], } ) result = self.empiric.parse_input(df) self.assertNotIn("B", result.columns) def test_drops_nt_when_codon_column_is_not_provided(self): df = pd.DataFrame( {"Position": [0], "Amino Acid": ["N"], "A": [1.2], "B": [2.4]} ) result = self.empiric.parse_input(df) self.assertNotIn(constants.nt_variant_col, result.columns) def test_drops_non_numeric_columns(self): df = pd.DataFrame( { "Position": [0], "Amino Acid": ["N"], "Codon": ["AAT"], "A": [1.2], "B": ["a"], } ) result = self.empiric.parse_input(df) self.assertNotIn("B", result.columns) def test_keeps_int_type_as_int(self): df = pd.DataFrame( {"Position": [0], "Amino Acid": ["N"], "Codon": ["AAT"], "A": [1]} ) result = self.empiric.parse_input(df) self.assertTrue( np.issubdtype( result[constants.mavedb_score_column].values[0], np.signedinteger ) ) class TestEmpiricParseCountsInput(ProgramTestCase): def setUp(self): super().setUp() self.input = os.path.join(self.data_dir, "empiric", "empiric.xlsx") self.empiric = empiric.Empiric( src=self.input, wt_sequence="AAA", one_based=False, input_type="counts", score_column="A", ) def test_orders_columns(self): df = pd.DataFrame( { "Position": [0], "Amino Acid": ["N"], "Codon": ["AAT"], "A": [1.2], "B": [2.4], } ) result = self.empiric.parse_input(df) self.assertEqual(list(result.columns).index(constants.nt_variant_col), 0) self.assertEqual(list(result.columns).index(constants.pro_variant_col), 1) self.assertEqual(list(result.columns).index("A"), 2) self.assertEqual(list(result.columns).index("B"), 3) class TestEmpiricLoadInput(ProgramTestCase): def setUp(self): super().setUp() self.excel_path = os.path.join(self.data_dir, "empiric", "empiric.xlsx") self.excel_header_footer_path = os.path.join( self.data_dir, "empiric", "empiric_header_footer.xlsx" ) self.csv_path = os.path.join(self.data_dir, "empiric", "tmp.csv") self.tsv_path = os.path.join(self.data_dir, "empiric", "tmp.tsv") self.excel_multisheet_path = os.path.join( self.data_dir, "empiric", "empiric_multisheet.xlsx" ) def test_extra_na_load_as_nan(self): for value in constants.extra_na: df = pd.read_excel(self.excel_path, engine="openpyxl") df["A"] = [value] * len(df) df.to_csv(self.csv_path, index=False) e = empiric.Empiric( src=self.csv_path, wt_sequence="TTTTCTTATTGT", score_column="col_A", input_type=constants.score_type, one_based=False, ) result = e.load_input_file() expected = pd.Series([np.NaN] * len(df), index=df.index, name="A") assert_series_equal(result["A"], expected) def test_loads_first_sheet_by_default(self): p = empiric.Empiric( src=self.excel_multisheet_path, wt_sequence="TTTTCTTATTGT", score_column="score", input_type=constants.score_type, ) result = p.load_input_file() expected = pd.read_excel( self.excel_multisheet_path, na_values=constants.extra_na, engine="openpyxl" ) assert_frame_equal(result, expected) def test_loads_correct_sheet(self): p = empiric.Empiric( src=self.excel_multisheet_path, wt_sequence="TTTTCTTATTGT", score_column="col_A", input_type=constants.score_type, one_based=False, sheet_name="Sheet3", ) result = p.load_input_file() expected = pd.read_excel( self.excel_multisheet_path, na_values=constants.extra_na, sheet_name="Sheet3", engine="openpyxl", ) assert_frame_equal(result, expected) def test_error_missing_sheet(self): p = empiric.Empiric( src=self.excel_multisheet_path, wt_sequence="TTTTCTTATTGT", score_column="col_A", input_type=constants.score_type, one_based=False, sheet_name="BadSheet", ) with self.assertRaises(KeyError): p.load_input_file() def test_handles_csv(self): df = pd.read_excel(self.excel_path, engine="openpyxl") df.to_csv(self.csv_path, index=False, sep=",") e = empiric.Empiric( src=self.csv_path, wt_sequence="TTTTCTTATTGT", score_column="col_A", input_type=constants.score_type, one_based=False, ) result = e.load_input_file() assert_frame_equal(result, df) def test_loads_with_skipped_rows(self): p = empiric.Empiric( src=self.excel_header_footer_path, wt_sequence="TTTTCTTATTGT", score_column="col_A", input_type=constants.score_type, one_based=False, skip_header_rows=2, skip_footer_rows=2, ) result = p.load_input_file() df = pd.read_excel(self.excel_path, engine="openpyxl") assert_frame_equal(result, df) def test_handles_tsv(self): df = pd.read_excel(self.excel_path, engine="openpyxl") df.to_csv(self.tsv_path, index=False, sep="\t") e = empiric.Empiric( src=self.tsv_path, wt_sequence="TTTTCTTATTGT", score_column="col_A", input_type=constants.score_type, one_based=False, ) result = e.load_input_file() assert_frame_equal(result, df) def test_error_position_not_in_columns(self): df = pd.read_excel(self.excel_path, engine="openpyxl") df = df.drop(columns=["Position"]) df.to_csv(self.csv_path, index=False, sep="\t") with self.assertRaises(ValueError): e = empiric.Empiric( src=self.csv_path, wt_sequence="TTTTCTTATTGT", score_column="col_A", input_type=constants.score_type, one_based=False, ) e.load_input_file() def test_error_amino_acid_not_in_columns(self): df =
pd.read_excel(self.excel_path, engine="openpyxl")
pandas.read_excel
# Utility scripts # import sys import os import logging from os.path import abspath, dirname, isdir, join, exists from collections import defaultdict from pathlib import Path import numpy as np import pandas as pd from enum import Enum # Setup log class colr: GRN = "\033[92m" END = "\033[0m" WARN = "\033[93m" def setupLogging(LOGNAME): global log if "darwin" in sys.platform: stdoutformat = logging.Formatter( colr.GRN + "%(asctime)s" + colr.END + ": %(message)s", datefmt="[%b %d %I:%M %p]", ) else: stdoutformat = logging.Formatter( "%(asctime)s: %(message)s", datefmt="[%I:%M %p]" ) fileformat = logging.Formatter("%(asctime)s: %(message)s", datefmt="[%x %H:%M:%S]") log = logging.getLogger(__name__) log.setLevel(logging.DEBUG) sth = logging.StreamHandler() sth.setLevel(logging.INFO) sth.setFormatter(stdoutformat) log.addHandler(sth) fhnd = logging.FileHandler(LOGNAME) fhnd.setLevel(logging.DEBUG) fhnd.setFormatter(fileformat) log.addHandler(fhnd) class TaxonomicLevel(Enum): kingdom = 1 phylum = 2 _class = 3 order = 4 famliy = 5 genus = 6 species = 7 def which(file): for path in os.environ["PATH"].split(os.pathsep): if os.path.exists(os.path.join(path, file)): return os.path.join(path, file) return None def make_output_dir(dirpath, strict=False): """Make an output directory if it doesn't exist Returns the path to the directory dirpath -- a string describing the path to the directory strict -- if True, raise an exception if dir already exists """ dirpath = abspath(dirpath) # Check if directory already exists if isdir(dirpath): if strict: err_str = "Directory '%s' already exists" % dirpath raise IOError(err_str) return dirpath try: os.makedirs(dirpath) except IOError as e: err_str = ( "Could not create directory '%s'. Are permissions set " + "correctly? Got error: '%s'" % e ) raise IOError(err_str) return dirpath def read_otutable(fh): """Read OTU table file""" df = pd.read_csv(fh, sep="\t", header=0, index_col=0) return df def read_taxatable(fh): """Read taxa table from QIIME. Currently only work on Greengene's notation""" alignment = ["kingdom", "phylum", "class", "order", "family", "genus", "species"] predf =
pd.read_csv(fh, sep="\t", index_col=0, header=0)
pandas.read_csv
import numpy as np import pandas as pd from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics.pairwise import cosine_similarity from recipe_app import read_all_files, path # import the web-extracted data reader from typing import List, Tuple d_full = read_all_files(path) #define the path as the location of the csv web-extrcted path. read files will be # the function which will read all the files there and concatanate them # Note: write read_files d_full = d_full[d_full.Image.notna()] # Cast as a list of values for calculating weights text_data= d_full.ingredients_list.values.tolist() # The target columns should have text data # Calculate TF-IDF matrix def tf_idf(search_keys:str, data:List) -> Tuple: """calculate the tf-idf matrices for the vocabulary and keyword matrix""" tfidf_vectorizer = TfidfVectorizer() tfidf_weights_matrix = tfidf_vectorizer.fit_transform(data) search_query_weights = tfidf_vectorizer.transform([search_keys]) return search_query_weights, tfidf_weights_matrix # Calculate the cosine similarity between search query and TF-IDF vectors def cos_similarity(search_query_weights, tfidf_weights_matrix) -> np.ndarray: """find the cosine similarity between the vocabulary matrix and the keyword matrix""" cosine_distance = cosine_similarity(search_query_weights, tfidf_weights_matrix) similarity_list = cosine_distance[0] return similarity_list # Calculate number of relevant vectors def calculate_num_vectors(cosine_similar): """check the number of non-zero vectos, which has some similarity with keyword""" num = 0 for i in cosine_similar: if i != 0.0: num += 1 return num # Calculate the most relevant vectors def most_similar(similarity_list: np.ndarray, N: int): """returns the most similar vectors in descedning order of their similarity""" most_similar = [] while N > 0: tmp_index = np.argmax(similarity_list) most_similar.append(tmp_index) similarity_list[tmp_index] = 0 N -= 1 return most_similar # Create weights at specific index for quick retrieval def create_matrix_dict(cosine_similarity): matrix_dict = {} iter = 0 for i in cosine_similarity: matrix_dict[iter] = i iter += 1 return matrix_dict # ----------- # Return the recipes with relevant search term def return_relevant_recipes(search_term): # Create local variables search, matrix = tf_idf(search_term, text_data) cosine_sim_list = cos_similarity(search, matrix) num_relevant_vectors = calculate_num_vectors(cosine_sim_list) #dictionary = create_matrix_dict(cosine_sim_list) list_of_most_similar = most_similar(cosine_sim_list, num_relevant_vectors) df =
pd.DataFrame()
pandas.DataFrame
# -*- coding: utf-8 -*- # pylint: disable-msg=W0612,E1101 import itertools import warnings from warnings import catch_warnings from datetime import datetime from pandas.types.common import (is_integer_dtype, is_float_dtype, is_scalar) from pandas.compat import range, lrange, lzip, StringIO, lmap from pandas.tslib import NaT from numpy import nan from numpy.random import randn import numpy as np import pandas as pd from pandas import option_context from pandas.core.indexing import _non_reducing_slice, _maybe_numeric_slice from pandas.core.api import (DataFrame, Index, Series, Panel, isnull, MultiIndex, Timestamp, Timedelta, UInt64Index) from pandas.formats.printing import pprint_thing from pandas import concat from pandas.core.common import PerformanceWarning from pandas.tests.indexing.common import _mklbl import pandas.util.testing as tm from pandas import date_range _verbose = False # ------------------------------------------------------------------------ # Indexing test cases def _generate_indices(f, values=False): """ generate the indicies if values is True , use the axis values is False, use the range """ axes = f.axes if values: axes = [lrange(len(a)) for a in axes] return itertools.product(*axes) def _get_value(f, i, values=False): """ return the value for the location i """ # check agains values if values: return f.values[i] # this is equiv of f[col][row]..... # v = f # for a in reversed(i): # v = v.__getitem__(a) # return v with catch_warnings(record=True): return f.ix[i] def _get_result(obj, method, key, axis): """ return the result for this obj with this key and this axis """ if isinstance(key, dict): key = key[axis] # use an artifical conversion to map the key as integers to the labels # so ix can work for comparisions if method == 'indexer': method = 'ix' key = obj._get_axis(axis)[key] # in case we actually want 0 index slicing try: xp = getattr(obj, method).__getitem__(_axify(obj, key, axis)) except: xp = getattr(obj, method).__getitem__(key) return xp def _axify(obj, key, axis): # create a tuple accessor axes = [slice(None)] * obj.ndim axes[axis] = key return tuple(axes) class TestIndexing(tm.TestCase): _objs = set(['series', 'frame', 'panel']) _typs = set(['ints', 'uints', 'labels', 'mixed', 'ts', 'floats', 'empty', 'ts_rev']) def setUp(self): self.series_ints = Series(np.random.rand(4), index=lrange(0, 8, 2)) self.frame_ints = DataFrame(np.random.randn(4, 4), index=lrange(0, 8, 2), columns=lrange(0, 12, 3)) self.panel_ints = Panel(np.random.rand(4, 4, 4), items=lrange(0, 8, 2), major_axis=lrange(0, 12, 3), minor_axis=lrange(0, 16, 4)) self.series_uints = Series(np.random.rand(4), index=UInt64Index(lrange(0, 8, 2))) self.frame_uints = DataFrame(np.random.randn(4, 4), index=UInt64Index(lrange(0, 8, 2)), columns=UInt64Index(lrange(0, 12, 3))) self.panel_uints = Panel(np.random.rand(4, 4, 4), items=UInt64Index(lrange(0, 8, 2)), major_axis=UInt64Index(lrange(0, 12, 3)), minor_axis=UInt64Index(lrange(0, 16, 4))) self.series_labels = Series(np.random.randn(4), index=list('abcd')) self.frame_labels = DataFrame(np.random.randn(4, 4), index=list('abcd'), columns=list('ABCD')) self.panel_labels = Panel(np.random.randn(4, 4, 4), items=list('abcd'), major_axis=list('ABCD'), minor_axis=list('ZYXW')) self.series_mixed = Series(np.random.randn(4), index=[2, 4, 'null', 8]) self.frame_mixed = DataFrame(np.random.randn(4, 4), index=[2, 4, 'null', 8]) self.panel_mixed = Panel(np.random.randn(4, 4, 4), items=[2, 4, 'null', 8]) self.series_ts = Series(np.random.randn(4), index=date_range('20130101', periods=4)) self.frame_ts = DataFrame(np.random.randn(4, 4), index=date_range('20130101', periods=4)) self.panel_ts = Panel(np.random.randn(4, 4, 4), items=date_range('20130101', periods=4)) dates_rev = (date_range('20130101', periods=4) .sort_values(ascending=False)) self.series_ts_rev = Series(np.random.randn(4), index=dates_rev) self.frame_ts_rev = DataFrame(np.random.randn(4, 4), index=dates_rev) self.panel_ts_rev = Panel(np.random.randn(4, 4, 4), items=dates_rev) self.frame_empty = DataFrame({}) self.series_empty = Series({}) self.panel_empty = Panel({}) # form agglomerates for o in self._objs: d = dict() for t in self._typs: d[t] = getattr(self, '%s_%s' % (o, t), None) setattr(self, o, d) def check_values(self, f, func, values=False): if f is None: return axes = f.axes indicies = itertools.product(*axes) for i in indicies: result = getattr(f, func)[i] # check agains values if values: expected = f.values[i] else: expected = f for a in reversed(i): expected = expected.__getitem__(a) tm.assert_almost_equal(result, expected) def check_result(self, name, method1, key1, method2, key2, typs=None, objs=None, axes=None, fails=None): def _eq(t, o, a, obj, k1, k2): """ compare equal for these 2 keys """ if a is not None and a > obj.ndim - 1: return def _print(result, error=None): if error is not None: error = str(error) v = ("%-16.16s [%-16.16s]: [typ->%-8.8s,obj->%-8.8s," "key1->(%-4.4s),key2->(%-4.4s),axis->%s] %s" % (name, result, t, o, method1, method2, a, error or '')) if _verbose: pprint_thing(v) try: rs = getattr(obj, method1).__getitem__(_axify(obj, k1, a)) try: xp = _get_result(obj, method2, k2, a) except: result = 'no comp' _print(result) return detail = None try: if is_scalar(rs) and is_scalar(xp): self.assertEqual(rs, xp) elif xp.ndim == 1: tm.assert_series_equal(rs, xp) elif xp.ndim == 2: tm.assert_frame_equal(rs, xp) elif xp.ndim == 3: tm.assert_panel_equal(rs, xp) result = 'ok' except AssertionError as e: detail = str(e) result = 'fail' # reverse the checks if fails is True: if result == 'fail': result = 'ok (fail)' _print(result) if not result.startswith('ok'): raise AssertionError(detail) except AssertionError: raise except Exception as detail: # if we are in fails, the ok, otherwise raise it if fails is not None: if isinstance(detail, fails): result = 'ok (%s)' % type(detail).__name__ _print(result) return result = type(detail).__name__ raise AssertionError(_print(result, error=detail)) if typs is None: typs = self._typs if objs is None: objs = self._objs if axes is not None: if not isinstance(axes, (tuple, list)): axes = [axes] else: axes = list(axes) else: axes = [0, 1, 2] # check for o in objs: if o not in self._objs: continue d = getattr(self, o) for a in axes: for t in typs: if t not in self._typs: continue obj = d[t] if obj is not None: obj = obj.copy() k2 = key2 _eq(t, o, a, obj, key1, k2) def test_ix_deprecation(self): # GH 15114 df = DataFrame({'A': [1, 2, 3]}) with tm.assert_produces_warning(DeprecationWarning, check_stacklevel=False): df.ix[1, 'A'] def test_indexer_caching(self): # GH5727 # make sure that indexers are in the _internal_names_set n = 1000001 arrays = [lrange(n), lrange(n)] index = MultiIndex.from_tuples(lzip(*arrays)) s = Series(np.zeros(n), index=index) str(s) # setitem expected = Series(np.ones(n), index=index) s = Series(np.zeros(n), index=index) s[s == 0] = 1 tm.assert_series_equal(s, expected) def test_at_and_iat_get(self): def _check(f, func, values=False): if f is not None: indicies = _generate_indices(f, values) for i in indicies: result = getattr(f, func)[i] expected = _get_value(f, i, values) tm.assert_almost_equal(result, expected) for o in self._objs: d = getattr(self, o) # iat for f in [d['ints'], d['uints']]: _check(f, 'iat', values=True) for f in [d['labels'], d['ts'], d['floats']]: if f is not None: self.assertRaises(ValueError, self.check_values, f, 'iat') # at for f in [d['ints'], d['uints'], d['labels'], d['ts'], d['floats']]: _check(f, 'at') def test_at_and_iat_set(self): def _check(f, func, values=False): if f is not None: indicies = _generate_indices(f, values) for i in indicies: getattr(f, func)[i] = 1 expected = _get_value(f, i, values) tm.assert_almost_equal(expected, 1) for t in self._objs: d = getattr(self, t) # iat for f in [d['ints'], d['uints']]: _check(f, 'iat', values=True) for f in [d['labels'], d['ts'], d['floats']]: if f is not None: self.assertRaises(ValueError, _check, f, 'iat') # at for f in [d['ints'], d['uints'], d['labels'], d['ts'], d['floats']]: _check(f, 'at') def test_at_iat_coercion(self): # as timestamp is not a tuple! dates = date_range('1/1/2000', periods=8) df = DataFrame(randn(8, 4), index=dates, columns=['A', 'B', 'C', 'D']) s = df['A'] result = s.at[dates[5]] xp = s.values[5] self.assertEqual(result, xp) # GH 7729 # make sure we are boxing the returns s = Series(['2014-01-01', '2014-02-02'], dtype='datetime64[ns]') expected = Timestamp('2014-02-02') for r in [lambda: s.iat[1], lambda: s.iloc[1]]: result = r() self.assertEqual(result, expected) s = Series(['1 days', '2 days'], dtype='timedelta64[ns]') expected = Timedelta('2 days') for r in [lambda: s.iat[1], lambda: s.iloc[1]]: result = r() self.assertEqual(result, expected) def test_iat_invalid_args(self): pass def test_imethods_with_dups(self): # GH6493 # iat/iloc with dups s = Series(range(5), index=[1, 1, 2, 2, 3], dtype='int64') result = s.iloc[2] self.assertEqual(result, 2) result = s.iat[2] self.assertEqual(result, 2) self.assertRaises(IndexError, lambda: s.iat[10]) self.assertRaises(IndexError, lambda: s.iat[-10]) result = s.iloc[[2, 3]] expected = Series([2, 3], [2, 2], dtype='int64') tm.assert_series_equal(result, expected) df = s.to_frame() result = df.iloc[2] expected = Series(2, index=[0], name=2) tm.assert_series_equal(result, expected) result = df.iat[2, 0] expected = 2 self.assertEqual(result, 2) def test_repeated_getitem_dups(self): # GH 5678 # repeated gettitems on a dup index returing a ndarray df = DataFrame( np.random.random_sample((20, 5)), index=['ABCDE' [x % 5] for x in range(20)]) expected = df.loc['A', 0] result = df.loc[:, 0].loc['A'] tm.assert_series_equal(result, expected) def test_iloc_exceeds_bounds(self): # GH6296 # iloc should allow indexers that exceed the bounds df = DataFrame(np.random.random_sample((20, 5)), columns=list('ABCDE')) expected = df # lists of positions should raise IndexErrror! with tm.assertRaisesRegexp(IndexError, 'positional indexers are out-of-bounds'): df.iloc[:, [0, 1, 2, 3, 4, 5]] self.assertRaises(IndexError, lambda: df.iloc[[1, 30]]) self.assertRaises(IndexError, lambda: df.iloc[[1, -30]]) self.assertRaises(IndexError, lambda: df.iloc[[100]]) s = df['A'] self.assertRaises(IndexError, lambda: s.iloc[[100]]) self.assertRaises(IndexError, lambda: s.iloc[[-100]]) # still raise on a single indexer msg = 'single positional indexer is out-of-bounds' with tm.assertRaisesRegexp(IndexError, msg): df.iloc[30] self.assertRaises(IndexError, lambda: df.iloc[-30]) # GH10779 # single positive/negative indexer exceeding Series bounds should raise # an IndexError with tm.assertRaisesRegexp(IndexError, msg): s.iloc[30] self.assertRaises(IndexError, lambda: s.iloc[-30]) # slices are ok result = df.iloc[:, 4:10] # 0 < start < len < stop expected = df.iloc[:, 4:] tm.assert_frame_equal(result, expected) result = df.iloc[:, -4:-10] # stop < 0 < start < len expected = df.iloc[:, :0] tm.assert_frame_equal(result, expected) result = df.iloc[:, 10:4:-1] # 0 < stop < len < start (down) expected = df.iloc[:, :4:-1] tm.assert_frame_equal(result, expected) result = df.iloc[:, 4:-10:-1] # stop < 0 < start < len (down) expected = df.iloc[:, 4::-1] tm.assert_frame_equal(result, expected) result = df.iloc[:, -10:4] # start < 0 < stop < len expected = df.iloc[:, :4] tm.assert_frame_equal(result, expected) result = df.iloc[:, 10:4] # 0 < stop < len < start expected = df.iloc[:, :0] tm.assert_frame_equal(result, expected) result = df.iloc[:, -10:-11:-1] # stop < start < 0 < len (down) expected = df.iloc[:, :0] tm.assert_frame_equal(result, expected) result = df.iloc[:, 10:11] # 0 < len < start < stop expected = df.iloc[:, :0] tm.assert_frame_equal(result, expected) # slice bounds exceeding is ok result = s.iloc[18:30] expected = s.iloc[18:] tm.assert_series_equal(result, expected) result = s.iloc[30:] expected = s.iloc[:0] tm.assert_series_equal(result, expected) result = s.iloc[30::-1] expected = s.iloc[::-1] tm.assert_series_equal(result, expected) # doc example def check(result, expected): str(result) result.dtypes tm.assert_frame_equal(result, expected) dfl = DataFrame(np.random.randn(5, 2), columns=list('AB')) check(dfl.iloc[:, 2:3], DataFrame(index=dfl.index)) check(dfl.iloc[:, 1:3], dfl.iloc[:, [1]]) check(dfl.iloc[4:6], dfl.iloc[[4]]) self.assertRaises(IndexError, lambda: dfl.iloc[[4, 5, 6]]) self.assertRaises(IndexError, lambda: dfl.iloc[:, 4]) def test_iloc_getitem_int(self): # integer self.check_result('integer', 'iloc', 2, 'ix', {0: 4, 1: 6, 2: 8}, typs=['ints', 'uints']) self.check_result('integer', 'iloc', 2, 'indexer', 2, typs=['labels', 'mixed', 'ts', 'floats', 'empty'], fails=IndexError) def test_iloc_getitem_neg_int(self): # neg integer self.check_result('neg int', 'iloc', -1, 'ix', {0: 6, 1: 9, 2: 12}, typs=['ints', 'uints']) self.check_result('neg int', 'iloc', -1, 'indexer', -1, typs=['labels', 'mixed', 'ts', 'floats', 'empty'], fails=IndexError) def test_iloc_getitem_list_int(self): # list of ints self.check_result('list int', 'iloc', [0, 1, 2], 'ix', {0: [0, 2, 4], 1: [0, 3, 6], 2: [0, 4, 8]}, typs=['ints', 'uints']) self.check_result('list int', 'iloc', [2], 'ix', {0: [4], 1: [6], 2: [8]}, typs=['ints', 'uints']) self.check_result('list int', 'iloc', [0, 1, 2], 'indexer', [0, 1, 2], typs=['labels', 'mixed', 'ts', 'floats', 'empty'], fails=IndexError) # array of ints (GH5006), make sure that a single indexer is returning # the correct type self.check_result('array int', 'iloc', np.array([0, 1, 2]), 'ix', {0: [0, 2, 4], 1: [0, 3, 6], 2: [0, 4, 8]}, typs=['ints', 'uints']) self.check_result('array int', 'iloc', np.array([2]), 'ix', {0: [4], 1: [6], 2: [8]}, typs=['ints', 'uints']) self.check_result('array int', 'iloc', np.array([0, 1, 2]), 'indexer', [0, 1, 2], typs=['labels', 'mixed', 'ts', 'floats', 'empty'], fails=IndexError) def test_iloc_getitem_neg_int_can_reach_first_index(self): # GH10547 and GH10779 # negative integers should be able to reach index 0 df = DataFrame({'A': [2, 3, 5], 'B': [7, 11, 13]}) s = df['A'] expected = df.iloc[0] result = df.iloc[-3] tm.assert_series_equal(result, expected) expected = df.iloc[[0]] result = df.iloc[[-3]] tm.assert_frame_equal(result, expected) expected = s.iloc[0] result = s.iloc[-3] self.assertEqual(result, expected) expected = s.iloc[[0]] result = s.iloc[[-3]] tm.assert_series_equal(result, expected) # check the length 1 Series case highlighted in GH10547 expected = pd.Series(['a'], index=['A']) result = expected.iloc[[-1]] tm.assert_series_equal(result, expected) def test_iloc_getitem_dups(self): # no dups in panel (bug?) self.check_result('list int (dups)', 'iloc', [0, 1, 1, 3], 'ix', {0: [0, 2, 2, 6], 1: [0, 3, 3, 9]}, objs=['series', 'frame'], typs=['ints', 'uints']) # GH 6766 df1 = DataFrame([{'A': None, 'B': 1}, {'A': 2, 'B': 2}]) df2 = DataFrame([{'A': 3, 'B': 3}, {'A': 4, 'B': 4}]) df = concat([df1, df2], axis=1) # cross-sectional indexing result = df.iloc[0, 0] self.assertTrue(isnull(result)) result = df.iloc[0, :] expected = Series([np.nan, 1, 3, 3], index=['A', 'B', 'A', 'B'], name=0) tm.assert_series_equal(result, expected) def test_iloc_getitem_array(self): # array like s = Series(index=lrange(1, 4)) self.check_result('array like', 'iloc', s.index, 'ix', {0: [2, 4, 6], 1: [3, 6, 9], 2: [4, 8, 12]}, typs=['ints', 'uints']) def test_iloc_getitem_bool(self): # boolean indexers b = [True, False, True, False, ] self.check_result('bool', 'iloc', b, 'ix', b, typs=['ints', 'uints']) self.check_result('bool', 'iloc', b, 'ix', b, typs=['labels', 'mixed', 'ts', 'floats', 'empty'], fails=IndexError) def test_iloc_getitem_slice(self): # slices self.check_result('slice', 'iloc', slice(1, 3), 'ix', {0: [2, 4], 1: [3, 6], 2: [4, 8]}, typs=['ints', 'uints']) self.check_result('slice', 'iloc', slice(1, 3), 'indexer', slice(1, 3), typs=['labels', 'mixed', 'ts', 'floats', 'empty'], fails=IndexError) def test_iloc_getitem_slice_dups(self): df1 = DataFrame(np.random.randn(10, 4), columns=['A', 'A', 'B', 'B']) df2 = DataFrame(np.random.randint(0, 10, size=20).reshape(10, 2), columns=['A', 'C']) # axis=1 df = concat([df1, df2], axis=1) tm.assert_frame_equal(df.iloc[:, :4], df1) tm.assert_frame_equal(df.iloc[:, 4:], df2) df = concat([df2, df1], axis=1) tm.assert_frame_equal(df.iloc[:, :2], df2) tm.assert_frame_equal(df.iloc[:, 2:], df1) exp = concat([df2, df1.iloc[:, [0]]], axis=1) tm.assert_frame_equal(df.iloc[:, 0:3], exp) # axis=0 df = concat([df, df], axis=0) tm.assert_frame_equal(df.iloc[0:10, :2], df2) tm.assert_frame_equal(df.iloc[0:10, 2:], df1) tm.assert_frame_equal(df.iloc[10:, :2], df2) tm.assert_frame_equal(df.iloc[10:, 2:], df1) def test_iloc_setitem(self): df = self.frame_ints df.iloc[1, 1] = 1 result = df.iloc[1, 1] self.assertEqual(result, 1) df.iloc[:, 2:3] = 0 expected = df.iloc[:, 2:3] result = df.iloc[:, 2:3] tm.assert_frame_equal(result, expected) # GH5771 s = Series(0, index=[4, 5, 6]) s.iloc[1:2] += 1 expected = Series([0, 1, 0], index=[4, 5, 6]) tm.assert_series_equal(s, expected) def test_loc_setitem_slice(self): # GH10503 # assigning the same type should not change the type df1 = DataFrame({'a': [0, 1, 1], 'b': Series([100, 200, 300], dtype='uint32')}) ix = df1['a'] == 1 newb1 = df1.loc[ix, 'b'] + 1 df1.loc[ix, 'b'] = newb1 expected = DataFrame({'a': [0, 1, 1], 'b': Series([100, 201, 301], dtype='uint32')}) tm.assert_frame_equal(df1, expected) # assigning a new type should get the inferred type df2 = DataFrame({'a': [0, 1, 1], 'b': [100, 200, 300]}, dtype='uint64') ix = df1['a'] == 1 newb2 = df2.loc[ix, 'b'] df1.loc[ix, 'b'] = newb2 expected = DataFrame({'a': [0, 1, 1], 'b': [100, 200, 300]}, dtype='uint64') tm.assert_frame_equal(df2, expected) def test_ix_loc_setitem_consistency(self): # GH 5771 # loc with slice and series s = Series(0, index=[4, 5, 6]) s.loc[4:5] += 1 expected = Series([1, 1, 0], index=[4, 5, 6]) tm.assert_series_equal(s, expected) # GH 5928 # chained indexing assignment df = DataFrame({'a': [0, 1, 2]}) expected = df.copy() with catch_warnings(record=True): expected.ix[[0, 1, 2], 'a'] = -expected.ix[[0, 1, 2], 'a'] with catch_warnings(record=True): df['a'].ix[[0, 1, 2]] = -df['a'].ix[[0, 1, 2]] tm.assert_frame_equal(df, expected) df = DataFrame({'a': [0, 1, 2], 'b': [0, 1, 2]}) with catch_warnings(record=True): df['a'].ix[[0, 1, 2]] = -df['a'].ix[[0, 1, 2]].astype( 'float64') + 0.5 expected = DataFrame({'a': [0.5, -0.5, -1.5], 'b': [0, 1, 2]}) tm.assert_frame_equal(df, expected) # GH 8607 # ix setitem consistency df = DataFrame({'timestamp': [1413840976, 1413842580, 1413760580], 'delta': [1174, 904, 161], 'elapsed': [7673, 9277, 1470]}) expected = DataFrame({'timestamp': pd.to_datetime( [1413840976, 1413842580, 1413760580], unit='s'), 'delta': [1174, 904, 161], 'elapsed': [7673, 9277, 1470]}) df2 = df.copy() df2['timestamp'] = pd.to_datetime(df['timestamp'], unit='s') tm.assert_frame_equal(df2, expected) df2 = df.copy() df2.loc[:, 'timestamp'] = pd.to_datetime(df['timestamp'], unit='s') tm.assert_frame_equal(df2, expected) df2 = df.copy() with catch_warnings(record=True): df2.ix[:, 2] = pd.to_datetime(df['timestamp'], unit='s') tm.assert_frame_equal(df2, expected) def test_ix_loc_consistency(self): # GH 8613 # some edge cases where ix/loc should return the same # this is not an exhaustive case def compare(result, expected): if is_scalar(expected): self.assertEqual(result, expected) else: self.assertTrue(expected.equals(result)) # failure cases for .loc, but these work for .ix df = pd.DataFrame(np.random.randn(5, 4), columns=list('ABCD')) for key in [slice(1, 3), tuple([slice(0, 2), slice(0, 2)]), tuple([slice(0, 2), df.columns[0:2]])]: for index in [tm.makeStringIndex, tm.makeUnicodeIndex, tm.makeDateIndex, tm.makePeriodIndex, tm.makeTimedeltaIndex]: df.index = index(len(df.index)) with catch_warnings(record=True): df.ix[key] self.assertRaises(TypeError, lambda: df.loc[key]) df = pd.DataFrame(np.random.randn(5, 4), columns=list('ABCD'), index=pd.date_range('2012-01-01', periods=5)) for key in ['2012-01-03', '2012-01-31', slice('2012-01-03', '2012-01-03'), slice('2012-01-03', '2012-01-04'), slice('2012-01-03', '2012-01-06', 2), slice('2012-01-03', '2012-01-31'), tuple([[True, True, True, False, True]]), ]: # getitem # if the expected raises, then compare the exceptions try: with catch_warnings(record=True): expected = df.ix[key] except KeyError: self.assertRaises(KeyError, lambda: df.loc[key]) continue result = df.loc[key] compare(result, expected) # setitem df1 = df.copy() df2 = df.copy() with catch_warnings(record=True): df1.ix[key] = 10 df2.loc[key] = 10 compare(df2, df1) # edge cases s = Series([1, 2, 3, 4], index=list('abde')) result1 = s['a':'c'] with catch_warnings(record=True): result2 = s.ix['a':'c'] result3 = s.loc['a':'c'] tm.assert_series_equal(result1, result2) tm.assert_series_equal(result1, result3) # now work rather than raising KeyError s = Series(range(5), [-2, -1, 1, 2, 3]) with catch_warnings(record=True): result1 = s.ix[-10:3] result2 = s.loc[-10:3] tm.assert_series_equal(result1, result2) with catch_warnings(record=True): result1 = s.ix[0:3] result2 = s.loc[0:3] tm.assert_series_equal(result1, result2) def test_loc_setitem_dups(self): # GH 6541 df_orig = DataFrame( {'me': list('rttti'), 'foo': list('aaade'), 'bar': np.arange(5, dtype='float64') * 1.34 + 2, 'bar2': np.arange(5, dtype='float64') * -.34 + 2}).set_index('me') indexer = tuple(['r', ['bar', 'bar2']]) df = df_orig.copy() df.loc[indexer] *= 2.0 tm.assert_series_equal(df.loc[indexer], 2.0 * df_orig.loc[indexer]) indexer = tuple(['r', 'bar']) df = df_orig.copy() df.loc[indexer] *= 2.0 self.assertEqual(df.loc[indexer], 2.0 * df_orig.loc[indexer]) indexer = tuple(['t', ['bar', 'bar2']]) df = df_orig.copy() df.loc[indexer] *= 2.0 tm.assert_frame_equal(df.loc[indexer], 2.0 * df_orig.loc[indexer]) def test_iloc_setitem_dups(self): # GH 6766 # iloc with a mask aligning from another iloc df1 = DataFrame([{'A': None, 'B': 1}, {'A': 2, 'B': 2}]) df2 = DataFrame([{'A': 3, 'B': 3}, {'A': 4, 'B': 4}]) df = concat([df1, df2], axis=1) expected = df.fillna(3) expected['A'] = expected['A'].astype('float64') inds = np.isnan(df.iloc[:, 0]) mask = inds[inds].index df.iloc[mask, 0] = df.iloc[mask, 2] tm.assert_frame_equal(df, expected) # del a dup column across blocks expected = DataFrame({0: [1, 2], 1: [3, 4]}) expected.columns = ['B', 'B'] del df['A'] tm.assert_frame_equal(df, expected) # assign back to self df.iloc[[0, 1], [0, 1]] = df.iloc[[0, 1], [0, 1]] tm.assert_frame_equal(df, expected) # reversed x 2 df.iloc[[1, 0], [0, 1]] = df.iloc[[1, 0], [0, 1]].reset_index( drop=True) df.iloc[[1, 0], [0, 1]] = df.iloc[[1, 0], [0, 1]].reset_index( drop=True) tm.assert_frame_equal(df, expected) def test_chained_getitem_with_lists(self): # GH6394 # Regression in chained getitem indexing with embedded list-like from # 0.12 def check(result, expected): tm.assert_numpy_array_equal(result, expected) tm.assertIsInstance(result, np.ndarray) df = DataFrame({'A': 5 * [np.zeros(3)], 'B': 5 * [np.ones(3)]}) expected = df['A'].iloc[2] result = df.loc[2, 'A'] check(result, expected) result2 = df.iloc[2]['A'] check(result2, expected) result3 = df['A'].loc[2] check(result3, expected) result4 = df['A'].iloc[2] check(result4, expected) def test_loc_getitem_int(self): # int label self.check_result('int label', 'loc', 2, 'ix', 2, typs=['ints', 'uints'], axes=0) self.check_result('int label', 'loc', 3, 'ix', 3, typs=['ints', 'uints'], axes=1) self.check_result('int label', 'loc', 4, 'ix', 4, typs=['ints', 'uints'], axes=2) self.check_result('int label', 'loc', 2, 'ix', 2, typs=['label'], fails=KeyError) def test_loc_getitem_label(self): # label self.check_result('label', 'loc', 'c', 'ix', 'c', typs=['labels'], axes=0) self.check_result('label', 'loc', 'null', 'ix', 'null', typs=['mixed'], axes=0) self.check_result('label', 'loc', 8, 'ix', 8, typs=['mixed'], axes=0) self.check_result('label', 'loc', Timestamp('20130102'), 'ix', 1, typs=['ts'], axes=0) self.check_result('label', 'loc', 'c', 'ix', 'c', typs=['empty'], fails=KeyError) def test_loc_getitem_label_out_of_range(self): # out of range label self.check_result('label range', 'loc', 'f', 'ix', 'f', typs=['ints', 'uints', 'labels', 'mixed', 'ts'], fails=KeyError) self.check_result('label range', 'loc', 'f', 'ix', 'f', typs=['floats'], fails=TypeError) self.check_result('label range', 'loc', 20, 'ix', 20, typs=['ints', 'uints', 'mixed'], fails=KeyError) self.check_result('label range', 'loc', 20, 'ix', 20, typs=['labels'], fails=TypeError) self.check_result('label range', 'loc', 20, 'ix', 20, typs=['ts'], axes=0, fails=TypeError) self.check_result('label range', 'loc', 20, 'ix', 20, typs=['floats'], axes=0, fails=TypeError) def test_loc_getitem_label_list(self): # list of labels self.check_result('list lbl', 'loc', [0, 2, 4], 'ix', [0, 2, 4], typs=['ints', 'uints'], axes=0) self.check_result('list lbl', 'loc', [3, 6, 9], 'ix', [3, 6, 9], typs=['ints', 'uints'], axes=1) self.check_result('list lbl', 'loc', [4, 8, 12], 'ix', [4, 8, 12], typs=['ints', 'uints'], axes=2) self.check_result('list lbl', 'loc', ['a', 'b', 'd'], 'ix', ['a', 'b', 'd'], typs=['labels'], axes=0) self.check_result('list lbl', 'loc', ['A', 'B', 'C'], 'ix', ['A', 'B', 'C'], typs=['labels'], axes=1) self.check_result('list lbl', 'loc', ['Z', 'Y', 'W'], 'ix', ['Z', 'Y', 'W'], typs=['labels'], axes=2) self.check_result('list lbl', 'loc', [2, 8, 'null'], 'ix', [2, 8, 'null'], typs=['mixed'], axes=0) self.check_result('list lbl', 'loc', [Timestamp('20130102'), Timestamp('20130103')], 'ix', [Timestamp('20130102'), Timestamp('20130103')], typs=['ts'], axes=0) self.check_result('list lbl', 'loc', [0, 1, 2], 'indexer', [0, 1, 2], typs=['empty'], fails=KeyError) self.check_result('list lbl', 'loc', [0, 2, 3], 'ix', [0, 2, 3], typs=['ints', 'uints'], axes=0, fails=KeyError) self.check_result('list lbl', 'loc', [3, 6, 7], 'ix', [3, 6, 7], typs=['ints', 'uints'], axes=1, fails=KeyError) self.check_result('list lbl', 'loc', [4, 8, 10], 'ix', [4, 8, 10], typs=['ints', 'uints'], axes=2, fails=KeyError) def test_loc_getitem_label_list_fails(self): # fails self.check_result('list lbl', 'loc', [20, 30, 40], 'ix', [20, 30, 40], typs=['ints', 'uints'], axes=1, fails=KeyError) self.check_result('list lbl', 'loc', [20, 30, 40], 'ix', [20, 30, 40], typs=['ints', 'uints'], axes=2, fails=KeyError) def test_loc_getitem_label_array_like(self): # array like self.check_result('array like', 'loc', Series(index=[0, 2, 4]).index, 'ix', [0, 2, 4], typs=['ints', 'uints'], axes=0) self.check_result('array like', 'loc', Series(index=[3, 6, 9]).index, 'ix', [3, 6, 9], typs=['ints', 'uints'], axes=1) self.check_result('array like', 'loc', Series(index=[4, 8, 12]).index, 'ix', [4, 8, 12], typs=['ints', 'uints'], axes=2) def test_loc_getitem_bool(self): # boolean indexers b = [True, False, True, False] self.check_result('bool', 'loc', b, 'ix', b, typs=['ints', 'uints', 'labels', 'mixed', 'ts', 'floats']) self.check_result('bool', 'loc', b, 'ix', b, typs=['empty'], fails=KeyError) def test_loc_getitem_int_slice(self): # ok self.check_result('int slice2', 'loc', slice(2, 4), 'ix', [2, 4], typs=['ints', 'uints'], axes=0) self.check_result('int slice2', 'loc', slice(3, 6), 'ix', [3, 6], typs=['ints', 'uints'], axes=1) self.check_result('int slice2', 'loc', slice(4, 8), 'ix', [4, 8], typs=['ints', 'uints'], axes=2) # GH 3053 # loc should treat integer slices like label slices from itertools import product index = MultiIndex.from_tuples([t for t in product( [6, 7, 8], ['a', 'b'])]) df = DataFrame(np.random.randn(6, 6), index, index) result = df.loc[6:8, :] with catch_warnings(record=True): expected = df.ix[6:8, :] tm.assert_frame_equal(result, expected) index = MultiIndex.from_tuples([t for t in product( [10, 20, 30], ['a', 'b'])]) df = DataFrame(np.random.randn(6, 6), index, index) result = df.loc[20:30, :] with catch_warnings(record=True): expected = df.ix[20:30, :] tm.assert_frame_equal(result, expected) # doc examples result = df.loc[10, :] with catch_warnings(record=True): expected = df.ix[10, :] tm.assert_frame_equal(result, expected) result = df.loc[:, 10] # expected = df.ix[:,10] (this fails) expected = df[10] tm.assert_frame_equal(result, expected) def test_loc_to_fail(self): # GH3449 df = DataFrame(np.random.random((3, 3)), index=['a', 'b', 'c'], columns=['e', 'f', 'g']) # raise a KeyError? self.assertRaises(KeyError, df.loc.__getitem__, tuple([[1, 2], [1, 2]])) # GH 7496 # loc should not fallback s = Series() s.loc[1] = 1 s.loc['a'] = 2 self.assertRaises(KeyError, lambda: s.loc[-1]) self.assertRaises(KeyError, lambda: s.loc[[-1, -2]]) self.assertRaises(KeyError, lambda: s.loc[['4']]) s.loc[-1] = 3 result = s.loc[[-1, -2]] expected = Series([3, np.nan], index=[-1, -2]) tm.assert_series_equal(result, expected) s['a'] = 2 self.assertRaises(KeyError, lambda: s.loc[[-2]]) del s['a'] def f(): s.loc[[-2]] = 0 self.assertRaises(KeyError, f) # inconsistency between .loc[values] and .loc[values,:] # GH 7999 df = DataFrame([['a'], ['b']], index=[1, 2], columns=['value']) def f(): df.loc[[3], :] self.assertRaises(KeyError, f) def f(): df.loc[[3]] self.assertRaises(KeyError, f) def test_at_to_fail(self): # at should not fallback # GH 7814 s = Series([1, 2, 3], index=list('abc')) result = s.at['a'] self.assertEqual(result, 1) self.assertRaises(ValueError, lambda: s.at[0]) df = DataFrame({'A': [1, 2, 3]}, index=list('abc')) result = df.at['a', 'A'] self.assertEqual(result, 1) self.assertRaises(ValueError, lambda: df.at['a', 0]) s = Series([1, 2, 3], index=[3, 2, 1]) result = s.at[1] self.assertEqual(result, 3) self.assertRaises(ValueError, lambda: s.at['a']) df = DataFrame({0: [1, 2, 3]}, index=[3, 2, 1]) result = df.at[1, 0] self.assertEqual(result, 3) self.assertRaises(ValueError, lambda: df.at['a', 0]) # GH 13822, incorrect error string with non-unique columns when missing # column is accessed df =
DataFrame({'x': [1.], 'y': [2.], 'z': [3.]})
pandas.core.api.DataFrame
# streamlit4.py import streamlit as st import pandas as pd import numpy as np import time # import joblib from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer import nltk #Natural language processing tool-kit from nltk.corpus import stopwords #Stopwords corpus from nltk.stem import PorterStemmer, WordNetLemmatizer nltk.download('stopwords') nltk.download('wordnet') nltk.download('punkt') nltk.download('averaged_perceptron_tagger') # Ignore the warnings import warnings warnings.filterwarnings("ignore") @st.cache(suppress_st_warning=True) def data_clean1(data): # Ensure that 1st column is text column txt = data.iloc[:,0].name data = data.drop_duplicates(subset=[txt], ignore_index=True) data = data.dropna() data.iloc[:,1] = data.iloc[:,1].replace({'I': 1, 'II': 2,'III': 3,'IV': 4,'V': 5,'VI':6}) return data # @st.cache(suppress_st_warning=True) def nlp_preprocess(sentence, stopwords,lemmer): import nltk import string import re sentence = sentence.lower() # Converting to lowercase sentence = re.sub(r'\d+', '', sentence) # Removing numbers sentence = re.sub(r'[^\w\s]', '', sentence) #sentence = sentence.translate(string.maketrans('',''), string.punctuation) # Remove punctuations sentence = ' '.join(sentence.split()) # Remove whitespaces tokens = nltk.word_tokenize(sentence) # Create tokens output = [i for i in tokens if not i in stopwords] # Remove stop words words = [lemmer.lemmatize(word) for word in output] # Lemmatize words sentence = ' '.join(words) return sentence # @st.cache(suppress_st_warning=True) def preprocess_func(train_text1,test_text1): stop_words = set(stopwords.words('english')) lemmer = nltk.stem.WordNetLemmatizer() train_text2 = train_text1.apply(lambda x: nlp_preprocess(x,stop_words,lemmer)) test_text2 = test_text1.apply(lambda x: nlp_preprocess(x,stop_words,lemmer)) return train_text2, test_text2 def result_format(train_y,train_pred, test_y,test_pred): from sklearn.metrics import f1_score, recall_score, precision_score, accuracy_score a = accuracy_score(train_y, train_pred) # Train accuracy b = accuracy_score(test_y, test_pred) # Test accuracy c = f1_score(test_y, test_pred, average='weighted',zero_division=0) # weighted F1 d = f1_score(test_y, test_pred, average=None, zero_division=0) # list of F1s d = [ round(elem, 2) for elem in d ] e = precision_score(test_y, test_pred, average=None, zero_division=0) # Precision scores e = [ round(elem, 2) for elem in e ] f = recall_score(test_y, test_pred, average=None, zero_division=0) # Recall scores f = [ round(elem, 2) for elem in f ] return [a,b,c,d,e,f] def get_results(x_train,x_test, train_y, test_y,mod,param): #def get_results(train_y,train_pred, test_y,test_pred): from sklearn.model_selection import StratifiedShuffleSplit from sklearn.model_selection import RandomizedSearchCV try: #s_split = StratifiedShuffleSplit(n_splits=3,test_size=0.2,random_state=108) model = RandomizedSearchCV(mod,param_distributions=param,cv=5, scoring='f1_weighted', random_state=108) except: model = mod model.fit(x_train, train_y) train_pred = model.predict(x_train) test_pred = model.predict(x_test) scores = result_format(train_y,train_pred,test_y,test_pred) return scores, model # @st.cache(suppress_st_warning=True) def r_f(x_train,x_test, y_train, y_test): from sklearn.ensemble import RandomForestClassifier runtime = time.time() model = RandomForestClassifier(max_depth=4,max_features=4) param = {'class_weight':['balanced'], 'random_state':[108], 'n_estimators':[100,200,300], 'max_depth':[5,7,9,11] } #rf.fit(x_train,y_train) #scores = get_results(y_train,rf.predict(x_train),y_test,rf.predict(x_test)) scores, model = get_results(x_train,x_test, y_train, y_test,model,param) g = time.time() - runtime scores.append(g) return scores, model def LogR(x_train,x_test, y_train, y_test): from sklearn.linear_model import LogisticRegression param = {'penalty':['l1','l2'], 'C':[0.01,0.1,1,10,100], 'solver':['saga']} model = LogisticRegression(max_iter=1000) runtime = time.time() scores, model = get_results(x_train,x_test, y_train, y_test,model,param) g = time.time() - runtime scores.append(g) return scores, model def GNB(x_train,x_test, y_train, y_test): from sklearn.naive_bayes import GaussianNB model = GaussianNB() param = {'var_smoothing':[10**-8,10**-9,10**-10]} runtime = time.time() x_train = x_train.toarray() x_test = x_test.toarray() scores, model = get_results(x_train,x_test, y_train, y_test,model,param) g = time.time() - runtime scores.append(g) return scores, model def KNC(x_train,x_test, y_train, y_test): from sklearn.neighbors import KNeighborsClassifier model = KNeighborsClassifier() param = {'n_neighbors':[5,9,13,17,21,25,29,33,35], 'weights':['distance']} runtime = time.time() scores, model = get_results(x_train,x_test, y_train, y_test,model,param) g = time.time() - runtime scores.append(g) return scores, model def SVC(x_train,x_test, y_train, y_test): from sklearn.svm import SVC model = SVC() param = {'C':range(1,100,10), 'gamma':[0.1, 0.5, 0.9, 1,2,3], # 'class_weight':['balanced'], "kernel" : ['rbf'] } runtime = time.time() scores, model = get_results(x_train,x_test, y_train, y_test,model,param) g = time.time() - runtime scores.append(g) return scores, model def DTC(x_train,x_test, y_train, y_test): from sklearn.tree import DecisionTreeClassifier model = DecisionTreeClassifier() param = {'criterion':['gini','entropy'], 'max_depth':[5,7,9,11], 'class_weight':['balanced']} runtime = time.time() scores, model = get_results(x_train,x_test, y_train, y_test,model,param) g = time.time() - runtime scores.append(g) return scores, model def GBC(x_train,x_test, y_train, y_test): from sklearn.ensemble import GradientBoostingClassifier model = GradientBoostingClassifier() param = {'learning_rate':[0.01,0.05,0.1,0.2], 'random_state':[108], 'n_estimators':[100,200] } runtime = time.time() scores, model = get_results(x_train,x_test, y_train, y_test,model,param) g = time.time() - runtime scores.append(g) return scores, model def XGB(x_train,x_test, y_train, y_test): from xgboost import XGBClassifier model = XGBClassifier(random_state=108) param = { 'objective':['reg:squarederror', 'binary:logistic'], #logistic regression for binary classification, output probability 'learning_rate': np.linspace(uniform.ppf(0.01), uniform.ppf(0.09), 20), # or `eta` value 'max_depth': [6,10, 20, 30], # avoid 0 'min_child_weight': [2,3], 'subsample': [0.8,0.9,1], # 'colsample_bytree': [0.8,0.9,1] } runtime = time.time() scores, model = get_results(x_train,x_test, y_train, y_test,model,param) g = time.time() - runtime scores.append(g) return scores, model # @st.cache(suppress_st_warning=True) def n_n(x_train,x_test, y_train, y_test): from tensorflow.keras.layers import Activation, Dense, Dropout, InputLayer, BatchNormalization from tensorflow.keras import optimizers, initializers, losses from tensorflow.keras.layers import Embedding, Dense, GlobalMaxPool1D, Bidirectional, LSTM, Dropout, SpatialDropout1D from tensorflow.keras.models import Sequential from tensorflow.compat.v1.keras.layers import CuDNNLSTM from tensorflow.keras.initializers import Constant from tensorflow.keras.optimizers import Adam from tensorflow.keras.callbacks import LearningRateScheduler, EarlyStopping runtime = time.time() n_layers = 5 neurons = 20 act='relu' bat=True dout=True drop=0.2 lr=0.001 in_shape = x_train.toarray().shape[1] output = np.unique(y_train).shape[0] #st.write(x_train[0]) clf = Sequential() clf.add(InputLayer(input_shape=(in_shape,))) for i in range(n_layers): clf.add(Dense(neurons)) if bat: clf.add(BatchNormalization()) clf.add(Activation(act)) if dout: clf.add(Dropout(drop)) # neurons=neurons-50 clf.add(Dense(output, activation='softmax')) adam = optimizers.Adam(learning_rate=lr) clf.compile(optimizer=adam, loss = 'categorical_crossentropy', metrics= ['accuracy']) history = clf.fit(x_train, y_train, validation_data=(x_test, y_test), epochs=50, batch_size=5) train_pred = clf.predict(x_train) test_pred = clf.predict(x_test) scores = result_format(y_train,train_pred,y_test,test_pred) g = time.time() - runtime scores.append(g) return scores, clf # @st.cache(suppress_st_warning=True) def lstm(x_train,x_test, y_train, y_test): from tensorflow.keras.layers import Activation, Dense, Dropout, InputLayer, BatchNormalization from tensorflow.keras import optimizers, initializers, losses from tensorflow.keras.layers import Embedding, Dense, GlobalMaxPool1D, Bidirectional, LSTM, Dropout, SpatialDropout1D from tensorflow.keras.models import Sequential from tensorflow.compat.v1.keras.layers import CuDNNLSTM from tensorflow.keras.initializers import Constant from tensorflow.keras.optimizers import Adam from tensorflow.keras.callbacks import LearningRateScheduler, EarlyStopping runtime = time.time() embed_dim = 128 lstm_out = 150 max_vocab = 10000 inp_len = x_train.toarray().shape[1] out = np.unique(y_train).shape[0] model = Sequential() model.add(Embedding(max_vocab,embed_dim,input_length = inp_len)) model.add(SpatialDropout1D(0.6)) model.add(LSTM(lstm_out, dropout=0.5, recurrent_dropout=0.6)) # model.add(Dropout(0.5)) # model.add(LSTM(lstm_out-30, dropout=0.5, recurrent_dropout=0.5)) model.add(Dense(out,activation='softmax')) model.compile(loss = 'categorical_crossentropy', optimizer='adam',metrics = ['accuracy']) history = model.fit(x_train, y_train, validation_data=(x_test, y_test), epochs=50, batch_size=32) train_pred = model.predict(x_train) test_pred = model.predict(x_test) scores = result_format(y_train,train_pred,y_test,test_pred) g = time.time() - runtime scores.append(g) return scores, model def bilstm(x_train,x_test, y_train, y_test): from tensorflow.keras.layers import Activation, Dense, Dropout, InputLayer, BatchNormalization from tensorflow.keras import optimizers, initializers, losses from tensorflow.keras.layers import Embedding, Dense, GlobalMaxPool1D, Bidirectional, LSTM, Dropout, SpatialDropout1D from tensorflow.keras.models import Sequential from tensorflow.compat.v1.keras.layers import CuDNNLSTM from tensorflow.keras.initializers import Constant from tensorflow.keras.optimizers import Adam from tensorflow.keras.callbacks import LearningRateScheduler, EarlyStopping runtime = time.time() inp_len = x_train.toarray().shape[1] out = np.unique(y_train).shape[0] max_vocab = 10000 embed_dim = 128 biLSTM = Sequential() biLSTM.add(Embedding(max_vocab, embed_dim, input_length= inp_len)) biLSTM.add(Bidirectional(LSTM(units=32, recurrent_dropout = 0.5, dropout = 0.5, return_sequences = True))) biLSTM.add(Bidirectional(LSTM(units=16, recurrent_dropout = 0.5, dropout = 0.5))) biLSTM.add(Dense(out, activation='softmax')) biLSTM.compile(optimizer=optimizers.Adam(lr = 0.01), loss='categorical_crossentropy', metrics=['accuracy']) history = biLSTM.fit(x_train, y_train, validation_data=(x_test, y_test), epochs=50, batch_size=32) train_pred = biLSTM.predict(x_train) test_pred = biLSTM.predict(x_test) scores = result_format(y_train,train_pred,y_test,test_pred) g = time.time() - runtime scores.append(g) return scores, biLSTM # @st.cache(suppress_st_warning=True) def tt_split(data,split): from sklearn.model_selection import train_test_split train_text,test_text,train_label,test_label = train_test_split(data.iloc[:,0],data.iloc[:,1],test_size = split/100, stratify=data.iloc[:,1], random_state=42) #st.write("\nTrain-test split done:") return train_text,test_text,train_label,test_label # @st.cache(suppress_st_warning=True) def encode_labels(train_label,test_label): # 5. One hot encoding of labels from sklearn import preprocessing lb = preprocessing.LabelEncoder() #lb = preprocessing.LabelBinarizer() y_train = lb.fit_transform(train_label) y_test = lb.transform(test_label) return y_train,y_test, lb @st.cache(suppress_st_warning=True,allow_output_mutation=True) def vectorize(Vect, train_text_,test_text_): if Vect == 'tf-idf': Vector = TfidfVectorizer() elif Vect == 'CountVec': Vector = CountVectorizer() else: Vector = glove() x_train = Vector.fit_transform(train_text_) x_test = Vector.transform(test_text_) return Vector, x_train, x_test def preprecess_chatbot(sentence,vector): stop_words = set(stopwords.words('english')) lemmer = nltk.stem.WordNetLemmatizer() sentence1 = nlp_preprocess(sentence,stop_words,lemmer) output = vector.transform([sentence1]) return output def prepare_trans_df(train_df,text,labels): file_add = 'https://raw.githubusercontent.com/mhtkmr1/Industrial_safety_chatbot/main/Google_translated_data.csv' google_translated = pd.read_csv(file_add) google_translated.drop_duplicates(subset=[text],inplace=True, ignore_index=True) # remove duplicate rows google_translated.set_index(text,inplace=True) train_df = train_df.set_index(text) clms = ['es', 'hi', 'it', 'Id', 'ja', 'he','ga', 'de', 'fr'] dtf = pd.concat([train_df, google_translated.loc[train_df.index,clms]],axis=1) dtf.reset_index(inplace=True) dtf1 = dtf[[text,labels]].copy(deep=True) for lang in clms: new_df = pd.DataFrame() new_df[text] = dtf[lang] new_df[labels] = dtf[labels] dtf1 = pd.concat([dtf1, new_df],ignore_index=True) #dtf1.drop_duplicates(subset=[text],inplace=True, ignore_index=True) # remove duplicate rows # Function output contains some duplicates which can be removed later return dtf1 def syn_augmentor(text_df,text,labels): import nlpaug import nlpaug.augmenter.char as nac import nlpaug.augmenter.word as naw import nlpaug.augmenter.sentence as nas values = text_df[labels].value_counts().values levels = text_df[labels].value_counts().index augmented_sen = [] level = [] for i in range(1,len(levels)): data = text_df[text_df[labels] == levels[i]] for dt in data[text]: sent = dt for k in range(values[0]//values[i]): if len(sent) < 10: wrd_aug = naw.SynonymAug(aug_min=3) sent = wrd_aug.augment(sent) elif len(sent) > 10 and len(sent) < 25: wrd_aug = naw.SynonymAug(aug_min=5) sent = wrd_aug.augment(sent) else: wrd_aug = naw.SynonymAug(aug_min=8) sent = wrd_aug.augment(sent) augmented_sen.append(sent) level.append(levels[i]) desc = pd.concat([text_df[text],pd.Series(augmented_sen)]) acc_lvl = pd.concat([text_df[labels], pd.Series(level)]) aug_df = pd.concat([desc,acc_lvl],axis=1) aug_df.reset_index(drop=True, inplace=True) aug_df.columns = [text,labels] return aug_df # @st.cache(suppress_st_warning=True,allow_output_mutation=True) #def load_model(): #final_model = joblib.load('final_model.pkl') #return final_model #st.write("_" * 30) # >>>>>>>>>>>>>>>> def main(): st.set_page_config(layout='wide') #st.write(st.session_state) hide_menu_style = """ <style> #MainMenu {visibility:hidden;} footer {visibility:hidden;} </style> """ st.markdown(hide_menu_style, unsafe_allow_html = True) st.title('INDUSTRIAL SAFETY CHATBOT') #separate into 3 columns st.session_state.col_size = [1,2,3] col11, col12, col13 = st.columns(st.session_state.col_size) with col11: st.header("STEPS") st.write("**Step-1: Upload the data file:**") # Provide button in sidebar to clear all cache and restart the app #if st.sidebar.button('Press here to restart the app'): # for key in st.session_state.keys(): # del st.session_state[key] with col12: st.header("INPUT") uploaded_file = st.file_uploader( label="Select and upload the csv file containing the data from your system:", type="csv", accept_multiple_files=False, key = 'file', help='''Upload a csv file that contains your chabot corpus. required structure: one column with text data or accident description and another column with Accident levels or categories first row = column headers ''') uploaded_file1 = st.button('Press to use an example data from repo',key='uploaded_file1') with col13: st.header("OUTPUT AND STATUS") if uploaded_file1 and not uploaded_file: #st.write('value of uploaded_file1 parameter is: ',uploaded_file1) file_url='https://raw.githubusercontent.com/mhtkmr1/Industrial_safety_chatbot/main/Data%20Set%20-%20industrial_safety_and_health_database_with_accidents_description.csv' st.session_state.df = pd.read_csv(file_url) with col13: st.write('**NOTE: Currently the example file is being used**') if uploaded_file: #if 'df' in st.session_state: del st.session_state[df] # Remove df if already exists, generally in case of new file uploaded st.session_state.df = pd.read_csv(uploaded_file) with col13: st.write('FILENAME: ', uploaded_file.name) st.write('FILETYPE: ', uploaded_file.type) if 'df' in st.session_state: with col13: st.success('File uploaded successfully') st.write('**Shape of original data: **',st.session_state.df.shape) #st.dataframe(st.session_state.df.head()) col11_, col12_ = st.columns([1,5]) with col12_: st.write('**Preview of the uploaded dataframe**') st.dataframe(st.session_state.df.head()) st.write("_" * 30) if 'df' in st.session_state: col21, col22, col23, col24 = st.columns([1,1,1,3]) columns = st.session_state.df.columns with col21: st.write("**Step-2: Select the columns with text and labels:**") with col22: text = st.radio('Select column with text data',(columns), key = 'text') with col23: labels = st.radio('Select column with labels',(columns), key = 'labels') with col24: st.write('Selected columns are:') st.write('**Text column: **',st.session_state['text']) st.write('**Label column: **',st.session_state['labels']) st.write("_" * 30) if 'text' in st.session_state and 'labels' in st.session_state: col31, col32, col33 = st.columns(st.session_state.col_size) with col31: st.write("**Step-3: Perform Data cleaning:**") with col32: cleaning = st.button(label = ' Press here for Data cleaning and pre-processing', key = 'cleaning') if cleaning: for keys in ['y_train']: # remove all keys of importance to next step if keys in st.session_state: del st.session_state[keys] st.session_state.df1 = data_clean1(st.session_state.df[[st.session_state.text,st.session_state.labels]]).copy(deep=True) # first column should be the text column if 'df1' in st.session_state: with col33: st.success('Data cleaning is complete') st.write('**Shape of dataframe after cleaning: **', st.session_state.df1.shape) st.write('Preview of Dataframe after cleaning and removing duplicates from text column: ') st.dataframe(st.session_state.df1.head()) st.write("_" * 30) if 'df1' in st.session_state: col41, col42, col43,col44 = st.columns([1,2,1.5,1.5]) with col41: st.write("**Step-4: Train - Test split and encoding of labels**") with col42: test_split = st.slider('Select percentage of test data for test-train split?', min_value=5, max_value=50,value=20, step=5, key = 'test_split') #test_split = st.number_input('Write the percentage of test data for test-train split? (example: write "20" for 20%)') #if test_split is not None and test_split > 0: with col43: st.write("**Percentage of test split you entered: **", st.session_state.test_split,"%") st.write(' ') st.write(' ') st.write('**Label distribution before train-test split:**') distribution = st.session_state.df1.iloc[:,1].value_counts() st.dataframe(distribution) check_error = distribution.index[distribution <= 1].tolist() with col42: perform_split = st.button(label = 'Step - 3: Perform train-test split',key = 'perform_split') if perform_split: for keys in ['aug_train_text','y_train']: # remove all keys of importance to next step if keys in st.session_state: del st.session_state[keys] if check_error: st.error('Some of the labels have only one value, thus train-test split cannot be performed. Please change the input paramaters accordingly') else: st.session_state.train_text,st.session_state.test_text,st.session_state.train_label,st.session_state.test_label =tt_split(st.session_state.df1,test_split) # One hot encoding of labels st.session_state.y_train, st.session_state.y_test, st.session_state.lb =encode_labels(st.session_state.train_label,st.session_state.test_label) if 'y_train' in st.session_state: with col44: st.success('Train - Test split is complete') st.write('**Shape of train data after stratified split: **',st.session_state.train_text.shape) st.write('**Shape of test data after split: **',st.session_state.test_text.shape) st.write('**Label distribution of test data after split:**') st.dataframe(st.session_state.test_label.value_counts()) st.write("_" * 30) if 'y_train' in st.session_state: col51, col52, col53 = st.columns([1,2,3]) with col51: st.write("**Step-5: Oversampling/augmentation of train data **") with col52: perform_oversampling = st.button(label = 'Step - 4: Perform Oversampling (only for train data)',key = 'perform_oversampling') if perform_oversampling: for keys in ['train_text1']: # remove all keys of importance to next step if keys in st.session_state: del st.session_state[keys] # perform the Augmentation and avoid recalculation during program reruns if 'aug_train_text' not in st.session_state: with st.spinner('Augmentation in progress, please wait...'): a = prepare_trans_df(
pd.concat([st.session_state.train_text, st.session_state.train_label], axis=1)
pandas.concat
#!/usr/bin/env python3 """ Pipeline for PANGAEA data, with custom NETCDF reading. This script allows for data updates. @author: giuseppeperonato """ import json import logging import os import shutil import sys import frictionless import numpy as np import pandas as pd import requests import utilities import xarray from pyproj import CRS # Constants logging.basicConfig(level=logging.INFO) Z = None DT = 720 SEL = "MON" EPSG = 4326 # source # Settings for the query metadata # these are the fields that are used to construct a query QUERY_FIELDS = ["scale"] # empty list means all; None means do not use query fields. # these are parameters that added to those automatically generated by the pipeline QUERY_PARAMETERS = { "temporal_granularity": "month", "is_tiled": False, "is_raster": True, } DB_URL = utilities.DB_URL def prepareNETCDF( df: pd.DataFrame, crs: CRS = CRS.from_epsg(3035), delete_orig: bool = False, ): """ Convert NetCDF into EnerMaps rasters (single band, GeoTiff, EPSG:3035). Adapted to multi-dimensional NetCDF files as the ones from PANGAEA. Parameters ---------- df : DataFrame. Results of API extraction. crs : pyproj.crs.CRS. coordinate reference system. delete_orig : bool, optional. Set to True to delete original downloaded file (e.g. NetCDF). Returns ------- df : DataFrame Results with schema for EnerMaps data table """ dicts = [] for i, row in df.iterrows(): filename_orig = row["value"] logging.info(filename_orig) xds = xarray.open_dataset(filename_orig) if "crs" not in df.columns: raise ValueError("Missing crs") if "variable" not in df.columns: raise ValueError("Missing variable") xds.rio.write_crs(row["crs"].to_string(), inplace=True) variable = row.variable dims = list(xds[variable].dims) if "lat" in dims: dims.remove("lat") if "lon" in dims: dims.remove("lon") def np_encoder(object): """Source: https://stackoverflow.com/a/65151218.""" if isinstance(object, np.generic): return object.item() def prepareFile(tmp_filename, dest_filename, my_dict, filename_orig): """Export raster.""" # Change day to 1st of the month, to be consistent across datasets my_dict["start_at"] = my_dict["start_at"].replace(day=1) if not os.path.exists(tmp_filename): reprojected.rio.to_raster(tmp_filename) dicts.append(my_dict) # Compress os.system( # nosec "gdal_translate {filename} {dest_filename} -of GTIFF --config" " GDAL_PAM_ENABLED NO -co COMPRESS=DEFLATE -co BIGTIFF=YES".format( filename=tmp_filename, dest_filename=dest_filename ) ) os.remove(tmp_filename) return dicts if len(dims) == 2: for d0 in range(xds[variable][dims[0]].shape[0]): for d1 in range(xds[variable][dims[1]].shape[0]): my_dict = {} dest_filename = "{}_{}_{}.tif".format( filename_orig.split(".")[0], d0, d1 ) tmp_filename = "{}_{}_{}_tmp.tif".format( filename_orig.split(".")[0], d0, d1 ) my_dict["fid"] = os.path.basename(dest_filename) my_dict["variable"] = xds[variable][d0][d1].attrs["long_name"] my_dict["unit"] = xds[variable][d0].attrs.get("units") # Add extra fields my_dict["fields"] = { **xds.attrs, # at the dataset level **xds[variable][d0][d1].attrs, } # at the dimension level for dim in dims: if dim != "time": # add information about extra dimensions my_dict["fields"][dim] = str( xds[variable][d0][d1][dim].values ) my_dict["fields"] = json.dumps( my_dict["fields"], default=np_encoder ) my_dict["israster"] = True my_dict["start_at"] = pd.to_datetime( xds[variable][d0][d1].time.values ) date_future = my_dict["start_at"] + pd.DateOffset(months=1) my_dict["dt"] = ( date_future - my_dict["start_at"] ).total_seconds() / 3600 # reproj reprojected = xds[variable][d0][d1].rio.reproject(crs.to_string()) dicts = prepareFile( tmp_filename, dest_filename, my_dict, filename_orig ) elif len(dims) == 1: for d0 in range(xds[variable][dims[0]].shape[0]): my_dict = {} dest_filename = "{}_{}.tif".format(filename_orig.split(".")[0], d0) tmp_filename = "{}_{}_tmp.tif".format(filename_orig.split(".")[0], d0) my_dict["fid"] = os.path.basename(dest_filename) my_dict["variable"] = xds[variable][d0].attrs["long_name"] my_dict["unit"] = xds[variable][d0].attrs.get("units") # Add extra fields my_dict["fields"] = { **xds.attrs, # at the dataset level **xds[variable][d0].attrs, } # at the dimension level my_dict["fields"] = json.dumps(my_dict["fields"], default=np_encoder) my_dict["israster"] = True my_dict["start_at"] = pd.to_datetime(xds[variable][d0].time.values) date_future = my_dict["start_at"] + pd.DateOffset(months=1) my_dict["dt"] = ( date_future - my_dict["start_at"] ).total_seconds() / 3600 # Reproject if xds[variable][d0].dtype == "<m8[ns]": # otherwise an error is thrown reprojected = ( xds[variable][d0] .astype(np.float32) .rio.reproject(crs.to_string()) ) else: reprojected = xds[variable][d0].rio.reproject(crs.to_string()) dicts = prepareFile(tmp_filename, dest_filename, my_dict, filename_orig) else: raise ValueError("Too many dimensions") if delete_orig: os.remove(filename_orig) data = pd.DataFrame( dicts, columns=[ "start_at", "fields", "variable", "value", "ds_id", "fid", "dt", "z", "unit", "israster", ], ) return data def prepare(dp: frictionless.package.Package): """ Prepare data in EnerMaps format. Parameters ---------- dp : frictionless.package.Package Valid datapackage Returns ------- DataFrame Data in EnerMaps format. """ if not os.path.exists("tmp"): os.mkdir("tmp") for resource_idx, resource in enumerate(dp["resources"]): file_list = resource["path"] r = requests.get(file_list, stream=True) lines = [line for line in r.iter_lines()] skiprows = [ind for ind, i in enumerate(lines) if i.startswith(b"*/")][0] files = pd.read_csv(file_list, skiprows=skiprows + 1, delimiter="\t") files = files.loc[files["File name"].str.contains(SEL), :] # Prepare df containing paths to rasters rasters = [] for r, row in files.iterrows(): if not os.path.exists(os.path.join("tmp", row["File name"])): logging.info("Downloading {}".format(row["File name"])) utilities.download_url( row["URL file"], os.path.join("tmp", row["File name"]) ) raster = { "value": os.path.join("tmp", row["File name"]), "start_at": pd.to_datetime(row["File name"].split("_")[6]), "z": None, "unit": None, "dt": DT, "crs": CRS.from_epsg(EPSG), "variable": row["File name"].split("_")[0], } rasters.append(raster) rasters =
pd.DataFrame(rasters)
pandas.DataFrame
import pandas as pd import numpy as np from sklearn.base import TransformerMixin, BaseEstimator from sklearn.feature_extraction import DictVectorizer from sklearn.preprocessing import FunctionTransformer, StandardScaler, RobustScaler from sklearn.preprocessing import Imputer, MultiLabelBinarizer from sklearn.impute import SimpleImputer from data_science_toolbox.pandas.profiling.data_types import df_binary_columns_list from functools import reduce import warnings ############################################################################################################### # Custom Transformers from PyData Seattle 2017 Talk ############################################################################################################### # Reference # http://zacstewart.com/2014/08/05/pipelines-of-featureunions-of-pipelines.html # https://github.com/jem1031/pandas-pipelines-custom-transformers class DFFunctionTransformer(TransformerMixin): # FunctionTransformer but for pandas DataFrames def __init__(self, *args, **kwargs): self.ft = FunctionTransformer(*args, **kwargs) def fit(self, X, y=None): # stateless transformer return self def transform(self, X): Xt = self.ft.transform(X) Xt = pd.DataFrame(Xt, index=X.index, columns=X.columns) return Xt class DFFeatureUnion(BaseEstimator, TransformerMixin): # FeatureUnion but for pandas DataFrames def __init__(self, transformer_list): self.transformer_list = transformer_list def fit(self, X, y=None): for (name, t) in self.transformer_list: t.fit(X, y) return self def transform(self, X): # assumes X is a DataFrame Xts = [t.transform(X) for _, t in self.transformer_list] Xunion = reduce(lambda X1, X2:
pd.merge(X1, X2, left_index=True, right_index=True)
pandas.merge
#!/usr/bin/env python # coding=utf-8 """ @version: 0.1 @author: li @file: factor_solvency.py @time: 2019-01-28 11:33 """ import gc, six import json import numpy as np import pandas as pd from pandas.io.json import json_normalize from utilities.calc_tools import CalcTools from utilities.singleton import Singleton # from basic_derivation import app # from ultron.cluster.invoke.cache_data import cache_data @six.add_metaclass(Singleton) class FactorSolvency(object): """ 偿债能力 """ def __init__(self): __str__ = 'factor_solvency' self.name = '财务指标' self.factor_type1 = '财务指标' self.factor_type2 = '偿债能力' self.description = '财务指标的二级指标-偿债能力' @staticmethod def BondsToAsset(tp_solvency, factor_solvency, dependencies=['bonds_payable', 'total_assets']): """ :name: 应付债券与总资产之比 :desc: 应付债券MRQ/资产总计MRQ*100% """ management = tp_solvency.loc[:, dependencies] management['BondsToAsset'] = np.where( CalcTools.is_zero(management.total_assets.values), 0, management.bonds_payable.values / management.total_assets.values) management = management.drop(dependencies, axis=1) factor_solvency = pd.merge(factor_solvency, management, on="security_code") return factor_solvency @staticmethod def BookLev(tp_solvency, factor_solvency, dependencies=['total_non_current_liability', 'total_assets']): """ :name: 账面杠杆 :desc:非流动负债合计/股东权益合计(含少数股东权益)(MRQ) """ management = tp_solvency.loc[:, dependencies] management['BookLev'] = np.where( CalcTools.is_zero(management.total_assets.values), 0, management.total_non_current_liability.values / management.total_assets.values) management = management.drop(dependencies, axis=1) factor_solvency = pd.merge(factor_solvency, management, on="security_code") return factor_solvency @staticmethod def CurrentRatio(tp_solvency, factor_solvency, dependencies=['total_current_assets', 'total_current_liability']): """ :name: 流动比率 :desc: 流动资产合计/流动负债合计(MRQ) """ management = tp_solvency.loc[:, dependencies] management['CurrentRatio'] = np.where( CalcTools.is_zero(management.total_current_liability.values), 0, management.total_current_assets.values / management.total_current_liability.values) management = management.drop(dependencies, axis=1) factor_solvency = pd.merge(factor_solvency, management, on="security_code") return factor_solvency @staticmethod def DA(tp_solvency, factor_solvency, dependencies=['total_liability', 'total_assets']): """ :name: 债务总资产比 :desc:负债合计MRQ/资产总计MRQ """ contrarian = tp_solvency.loc[:, dependencies] contrarian['DA'] = np.where( CalcTools.is_zero(contrarian['total_assets']), 0, contrarian['total_liability'] / contrarian['total_assets']) contrarian = contrarian.drop(dependencies, axis=1) factor_solvency = pd.merge(factor_solvency, contrarian, on="security_code") return factor_solvency @staticmethod def DTE(tp_solvency, factor_solvency, dependencies=['total_liability', 'total_current_liability', 'fixed_assets']): """ :name:有形净值债务率 :desc:负债合计/有形净值(MRQ) """ contrarian = tp_solvency.loc[:, dependencies] contrarian['DTE'] = np.where( CalcTools.is_zero(contrarian['total_current_liability'] + contrarian['fixed_assets']), 0, contrarian['total_current_liability'] / (contrarian['total_current_liability'] + contrarian['fixed_assets']) ) contrarian = contrarian.drop(dependencies, axis=1) factor_solvency = pd.merge(factor_solvency, contrarian, on="security_code") return factor_solvency @staticmethod def EquityRatio(tp_solvency, factor_solvency, dependencies=['total_liability', 'equities_parent_company_owners']): """ :name:权益比率 :desc:负债合计/归属母公司股东的权益(MRQ) """ management = tp_solvency.loc[:, dependencies] func = lambda x: x[0] / x[1] if x[1] is not None and x[1] != 0 else None management['EquityRatio'] = management.apply(func, axis=1) management = management.drop(dependencies, axis=1) factor_solvency = pd.merge(management, factor_solvency, how='outer', on='security_code') return factor_solvency @staticmethod def EquityPCToIBDebt(tp_solvency, factor_solvency, dependencies=['equities_parent_company_owners', 'shortterm_loan', 'non_current_liability_in_one_year', 'longterm_loan', 'bonds_payable', 'interest_payable']): """ :name:归属母公司股东的权益/带息负债 :desc:归属母公司股东的权益/带息负债(补充 带息负债 = 短期借款+一年内到期的长期负债+长期借款+应付债券+应付利息) """ management = tp_solvency.loc[:, dependencies] management["debt"] = (management.shortterm_loan + management.non_current_liability_in_one_year + management.longterm_loan + management.bonds_payable + management.interest_payable) management['EquityPCToIBDebt'] = np.where( CalcTools.is_zero(management.debt.values), 0, management.equities_parent_company_owners.values / management.debt.values) dependencies = dependencies + ['debt'] management = management.drop(dependencies, axis=1) factor_solvency =
pd.merge(factor_solvency, management, how='outer', on="security_code")
pandas.merge
# %% import pandas as pd from collections import defaultdict import pickle from typing import DefaultDict cmap_data = pickle.load(open("./cmap_transformer.pkl", "rb")) mm_data = pickle.load(open("./mm_report_transformer.pkl", "rb")) # %% def convert_to_metric_first(data): rows = defaultdict(dict) for model, metrics in data.items(): for metric, values in metrics.items(): for i, value in enumerate(values): rows[metric][model + f"_{i}"] = value return rows def save_to_csv(data, save_path): df =
pd.DataFrame(data)
pandas.DataFrame
# # # # # # # # # # # # # # # # # # # # # # # # # # # Module to run real time contingencies # # By: <NAME> and <NAME> # # 09-08-2018 # # Version Aplha-0. 1 # # # # Module inputs: # # -> File name # # # # # # # # # # # # # # # # # # # # # # # # # import pandapower as pp import pandas as pd import json import copy import calendar from time import time import datetime from inspyred import ec import inspyred import math from random import Random # # # # # # # # # # # # # # # # # # # # # # # # # # # # # def Disconet_Asset(net,Asset_type,Asset_to_disc, Service=False): net_lf = copy.deepcopy(net) if Asset_type=='GEN': # Disconnect Generators index = net_lf.sgen.loc[net_lf.sgen['name'] == Asset_to_disc].index[0] net_lf.sgen.in_service[index] = Service elif Asset_type=='TR': # Disconnect Transformers index = net_lf.trafo.loc[net_lf.trafo['name'] == Asset_to_disc].index[0] net_lf.trafo.in_service[index] = Service elif Asset_type=='LN': # Disconnect Lines index = net_lf.line.loc[net_lf.line['name'] == Asset_to_disc].index[0] net_lf.line.in_service[index] = Service elif Asset_type=='SW': index = net_lf.switch.loc[net.switch['name'] == Asset_to_disc].index[0] net_lf.switch.closed[index] = not Service elif Asset_type=='LO': index = net_lf.load.loc[net.load['name'] == Asset_to_disc].index[0] net_lf.load.in_service[index] = Service elif Asset_type=='BUS': index = net_lf.bus.loc[net.bus['name'] == Asset_to_disc].index[0] net_lf.bus.in_service[index] = Service elif Asset_type=='ST': index = net_lf.storage.loc[net.storage['name'] == Asset_to_disc].index[0] net_lf.storage.in_service[index] = Service else: print('Asset to disconnet does not exist') return net_lf # # # # # # # # # # # # # # # # # # # # # # # # # # # # # def Network_Reconfiguration(net,strategy): net_lf = copy.deepcopy(net) for step in strategy: l_sequence = strategy[step] asset_type = l_sequence['Element_Type'] asset_to_disc = l_sequence['Element_Name'] net_lf = Disconet_Asset(net_lf,asset_type,asset_to_disc) return net_lf # # # # # # # # # # # # # # # # # # # # # # # # # # # # # def Load_Contingency_Strategies(File): with open(File) as json_file: data = json.load(json_file) return data # # # # # # # # # # # # # # # # # # # # # # # # # # # # # def Load_AM_Plan(File): data = Load_Contingency_Strategies(File) #with open(File) as json_file: # data = json.load(json_file) df = pd.DataFrame.from_dict(data, orient='index') df['Date'] = pd.to_datetime(df['Date'])#pd.to_datetime(df['Date']) return df # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # Funtion to return the daily load growth def Load_Growth_By_Day(L_growth): daily_growth = pow(1+L_growth, 1/365)-1 # Daily growth rate def f_Load_Daily_Growth(ndays): # Daily growth rate fuction return pow(1+daily_growth,ndays) return f_Load_Daily_Growth # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # Risk assessment def Power_Risk_assessment(net,secure=1): assessment = {} load = net.res_load['p_mw'].fillna(0)*secure load_base = net.load['p_mw']*net.load.scaling assessment['Load'] = pd.DataFrame( {'name':net.load.name, 'ENS':load_base - load, 'ES': load}) assessment['T_ES'] = load.sum() assessment['T_ENS'] = load_base.sum()-load.sum() gen_name = pd.concat([net.sgen.name, net.storage.name,net.ext_grid.name], ignore_index=True) p_gen = pd.concat([net.res_sgen.p_mw, net.res_storage.p_mw,net.res_ext_grid.p_mw], ignore_index=True) p_gen = p_gen.fillna(0)*secure net.res_sgen['Type'] = 'D_Gen' net.res_storage['Type'] = 'Storage' net.res_ext_grid['Type'] = 'External' p_source = pd.concat([net.res_sgen.Type, net.res_storage.Type,net.res_ext_grid.Type], ignore_index=True) assessment['Gen'] = pd.DataFrame( {'name':gen_name, 'source': p_source, 'gen':p_gen}) assessment['purchased_E'] = secure*net.res_ext_grid['p_mw'].values[0] # Delta of energy suplied p_gen_base = pd.concat([net.sgen.p_mw, net.storage.p_mw], ignore_index=True) p_gen_actual = pd.concat([net.res_sgen.p_mw, net.res_storage.p_mw], ignore_index=True) assessment['Delta_E'] = secure*(p_gen_base.sum()-p_gen_actual.sum()) return assessment # Function for get the contingency analysis def ContingencyAnalysis(Netw): OverloadLines =[] OverLoadTrafos =[] OverVoltageBuses=[] AllOverloads =[] # Bring all Buses for bus in Netw.res_bus.iterrows(): indexb = bus[0] vm_pu = bus[1].vm_pu # Select into the list of Energized Buses, the Busses which have certain values of voltage in p.u #if (vm_pu >1.1 or vm_pu < 0.9) and vm_pu !=nan: if (vm_pu >1.1 or vm_pu < 0.9): # Generate the list of results in a dictionary temp_data = {'Name': Netw.bus.name[indexb], 'Type': 'BU', 'Serial': '0', 'Mag': vm_pu} OverVoltageBuses.append(temp_data) for trafo in Netw.res_trafo.iterrows(): indext = trafo[0] loadingt = trafo[1].loading_percent # Select into the list of Energized Transformer which have loading parameter higher than 100 if loadingt>100: # Generate the list of results in a dictionary temp_data = {'Name': Netw.trafo.name[indext], 'Type': 'TR', 'Serial': '1', 'Mag': loadingt/100} OverLoadTrafos.append(temp_data) for line in Netw.res_line.iterrows(): indexl = line[0] loadingl = line[1].loading_percent # Select into the list of Energized Lines which have loading parameter higher than 100 if loadingl>100: # Generate the list of results in a dictionary temp_data = {'Name': Netw.line.name[indexl], 'Type': 'LN', 'Serial': '2', 'Mag': loadingl/100} OverloadLines.append(temp_data) # Set a variable which have the results of all elements AllOverloads=OverVoltageBuses+OverloadLines+OverLoadTrafos df =pd.DataFrame(AllOverloads) # Define the order of the variables in the dictionary if not df.empty: df =df[['Serial','Name','Type','Mag']] df.set_index(['Serial'], inplace=True) return df def Load_Net_Pandapower(data_file,pp_case=None): # data_file -> File name which contains network data, if file name is none by default is load the CIGRE model if data_file==None: import pandapower.networks as pn if pp_case==None: net = pn.create_cigre_network_mv(with_der=False) elif pp_case == 'case33bw': net = pn.case33bw() load_name = [] s_val = [] for index, row in net.load.iterrows(): load_name.append('load_'+str(row.bus)) s_val.append(math.sqrt(row.p_mw**2+row.q_mvar**2)) net.load.name = load_name net.load.sn_mva = load_name line_name = [] for index, row in net.line.iterrows(): line_name.append('line_'+str(row.from_bus)+'_'+str(row.to_bus)) net.line.name = line_name else: if pp_case=='json': net = pp.from_json(data_file) else: # Import network data using excel data = pd.read_excel(open(data_file, 'rb'), sheet_name='DATA') # Create Network net = pp.create_empty_network(name = data.loc[0,'Name'],f_hz =data.loc[0,'f'],sn_mva=data.loc[0,'sb_mva']) # # # # # # # # # # # # # # # # # # Load elements # # # # # # # # # # # # Buses net.bus = pd.read_excel(open(data_file, 'rb'), sheet_name='BUS') # Lines net.line = pd.read_excel(open(data_file, 'rb'), sheet_name='LINE') # Load net.load = pd.read_excel(open(data_file, 'rb'), sheet_name='LOAD') # External grid df = pd.read_excel(open(data_file, 'rb'), sheet_name='EXT_GRID') if not df.empty: net.ext_grid = df # Generators df = pd.read_excel(open(data_file, 'rb'), sheet_name='GEN') if not df.empty: net.gen = df # Static generators df = pd.read_excel(open(data_file, 'rb'), sheet_name='SGEN') if not df.empty: net.sgen = df # Transformers df = pd.read_excel(open(data_file, 'rb'), sheet_name='TRAFO') if not df.empty: net.trafo = df # 3 winding transformer df = pd.read_excel(open(data_file, 'rb'), sheet_name='TRAFO3W') if not df.empty: net.trafo3w = df # SWITCHES df = pd.read_excel(open(data_file, 'rb'), sheet_name='SWITCH') if not df.empty: net.switch = df # Shunt element df = pd.read_excel(open(data_file, 'rb'), sheet_name='SHUNT') if not df.empty: net.shunt = df return net # Return network # Function to load forecatings def Forecating_Data(net_lf,file,today): from Load_Historic_Load import Load_Historical_Data data = pd.read_excel(open(file, 'rb'), sheet_name='LOAD_TAGS') # Sheet with loads tags data = data.set_index('Name') load_names = net_lf.load['name'] df_col_name = ['Name','Hour','Val'] hour = list(range(24)) df = pd.DataFrame(columns=df_col_name) df_by_load = pd.DataFrame() for loads in load_names: # Forecast model for each load tag = data.loc[loads]['TAG'] # Tag ID base = data.loc[loads]['Base'] # Power base test = Load_Historical_Data(tag,base) # Load historical data day_data = test.days[today] # Day to analize f_forecast = day_data.Filt.fitt.Load_Forecast_by_Day # Function fitted # Load forecasting l_t0 = day_data.i_rms[-1][0] # Initial load, at time 0 load_forec = f_forecast(l_t0,1) # Load forecasting result # update dataframe df_by_load['Val'] = list(load_forec) # Assign data frame values df_by_load['Hour'] = hour df_by_load['Name'] = loads df = pd.concat([df,df_by_load],sort=True) return df # Function to load forecatings def Fourier_Fit(file): from Load_Historic_Load import Load_Historical_Data data = pd.read_excel(open(file, 'rb'), sheet_name='LOAD_TAGS') # Sheet with loads tags data = data.set_index('Name') #load_names = net_lf.load['name'] df_col_name = ['Name','Hour','Val','Day'] hour = list(range(24)) df = pd.DataFrame(columns=df_col_name) df_by_load = pd.DataFrame() for loads in data.index: # Forecast model for each load tag = data.loc[loads]['TAG'] # Tag ID base = data.loc[loads]['Base'] # Power base hist_data = Load_Historical_Data(tag,base) # Load historical data for day in list(calendar.day_name): # Eval each week day day_data = hist_data.days[day] # Day to analize f_forecast = day_data.Filt.fitt.Load_Forecast_by_Day # Function fitted # Load forecasting l_t0 = day_data.i_rms[-1][0] # Initial load, at time 0 load_forec = f_forecast(l_t0,1) # Load forecasting result # update dataframe df_by_load['Val'] = list(load_forec) # Assign data frame values df_by_load['Hour'] = hour df_by_load['Name'] = loads df_by_load['Day'] = day df = pd.concat([df,df_by_load],sort=True) return df # Function to allocate asset list def Make_Asset_List(file): df = pd.read_excel(open(file, 'rb'), sheet_name='ASSETS') # Sheet with loads tags df = df.set_index('Name') return df # Function to allocate asset list def User_Data_List(file,sheet='LOAD_TAGS'): df = pd.read_excel(open(file, 'rb'), sheet_name=sheet) # Sheet with loads tags df = df.set_index('Name') df = df.drop(columns=['TAG', 'Base']) return df # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # class Real_Time_Contingencies: # Main file def __init__(self,data_file,pp_case=None): try: # Net data self.net = Load_Net_Pandapower(data_file['net_file'],pp_case) self.load_forecast = Fourier_Fit(data_file['load_data']) self.asset_list = Make_Asset_List(data_file['portfolio_source']) self.load_user = User_Data_List(data_file['load_data']) # Users data by load self.gen_data = User_Data_List(data_file['load_data'],sheet='GEN_TAGS') # Generation data self.Cont_Strategies = Load_Contingency_Strategies(data_file['cont_stra']) self.AM_Plan = Load_AM_Plan(data_file['AM_Plan']) self.N_Users = self.load_user['N_Users'].sum() except: self.cont_df = pd.DataFrame() print('Error running contingencies') # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # Network during the the contingecy def Net_Configurarion_during_Contingency(self,net,Asset_id, Service=False): net_lf = copy.deepcopy(net) # Contingency strategy strategy_id = self.asset_list.loc[Asset_id].Strategy if strategy_id in self.Cont_Strategies.keys(): net_lf = Network_Reconfiguration(net_lf,self.Cont_Strategies[strategy_id]) asset_type = self.asset_list.loc[Asset_id].Disc_Type asset_to_disc = self.asset_list.loc[Asset_id].Asset_To_Disconet net_lf = Disconet_Asset(net_lf,asset_type,asset_to_disc) return net_lf # Function to filter forecast data frame def Forecast_Val_By_Day_By_Hour(self,Day,Hour): DF = self.load_forecast df = DF[DF.Hour==Hour] df = df[df.Day==Day] df = df.drop(columns = ['Hour','Day']) df = df.set_index('Name') return df # Sett contingiencies def Update_Net_With_Load_Forecast(self,Net,DF,*load_shed): l_net = copy.deepcopy(Net) load_factor = [] for ind,row in l_net.load.iterrows(): load_name =row['name'] lf = DF.loc[load_name]['Val'] try: if not load_shed==(): l_shed_factor = load_shed[0][load_name] else: l_shed_factor = 1 except: l_shed_factor = 1 lf = lf*l_shed_factor load_factor.append(lf) #print(load_factor) cond_new = (l_net.load['p_mw']*load_factor).sum() cond_base = l_net.load['p_mw'].sum() # Generation load factor g_f = cond_new/cond_base l_net.load['p_mw'] = l_net.load['p_mw']*load_factor l_net.load['q_mvar'] = l_net.load['q_mvar']*load_factor l_net.gen['p_mw'] = l_net.gen['p_mw']*g_f return l_net # Load growth function def Load_Growth_Update(self,growth_rate): self.f_growth_rate = Load_Growth_By_Day(growth_rate) # Run Non-Contingencies case #-> def Run_Case_Load_growth(self,net,L_growth,date_beg,hour=0,opt_load_sheeding=False): def Run_Case_Load_growth(self,net,L_growth,hour=0,day=None): ndays = datetime.timedelta(hours=hour).days self.Load_Growth_Update(L_growth) growth_rate = self.f_growth_rate(ndays) return self.Run_Case_Base(net,growth_rate,day_list=day) # Run Non-Contingencies case def Run_Case_Base(self,net,growth_rate=1,opt_load_sheeding=False,day_list=None): df_sec = pd.DataFrame() # Dataframe that return security margins results df_load = pd.DataFrame() # Dataframe that return the load forecasting cont_assessment = {} # Dataframe with the contigency assessment cr_assessment = {} # Criticality assessment if day_list==None: day_list = list(calendar.day_name) for day in day_list: # Loop for each day cont_assessment_by_hour = {} # Contingency assessment by hour cr_assessment_by_hour = {} # Criticality assessment by hours for hour in range(24): # Loop for each hour df_load_forecast = self.Forecast_Val_By_Day_By_Hour(day,hour) #Load forecast filtered net_lf = self.Update_Net_With_Load_Forecast(net,df_load_forecast) # Update network with forecast net_lf.load.scaling = growth_rate net_lf.gen.scaling = growth_rate try: pp.runpp(net_lf) # Run load flow with pandapower lf_error = False except: print('Error running load flow') lf_error = True if opt_load_sheeding: dave = RTC(net_lf) net_lf = dave.Main_Load_Shedding_Opt() # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # Security margins dataframe # # # # # # # # # Lines data frame df_temp_0 = pd.DataFrame() df_temp_0['Loading'] = net_lf.res_line['loading_percent'] df_temp_0['Load'] = (net_lf.res_line['p_from_mw']**2+net_lf.res_line['q_from_mvar']**2).pow(1./2) df_temp_0['Name'] = net_lf.line['name'] df_temp_0['Type'] = 'LN' # Transformer data frame df_temp =
pd.DataFrame()
pandas.DataFrame
import os import numpy as np import pandas as pd pd.options.mode.chained_assignment = None from random import seed RANDOM_SEED = 54321 seed(RANDOM_SEED) # set the random seed so that the random permutations can be reproduced again np.random.seed(RANDOM_SEED) def load_spambase_data(): # input vars data_name = 'spambase' raw_data_file = os.path.join(os.path.dirname(__file__), 'Spambase.csv') processed_file = os.path.join(os.path.dirname(__file__), 'Spambase-processed.csv') ##### Spambase Data Processing raw_df =
pd.read_csv(raw_data_file)
pandas.read_csv
from datetime import datetime, time, timedelta from pandas.compat import range import sys import os import nose import numpy as np from pandas import Index, DatetimeIndex, Timestamp, Series, date_range, period_range import pandas.tseries.frequencies as frequencies from pandas.tseries.tools import to_datetime import pandas.tseries.offsets as offsets from pandas.tseries.period import PeriodIndex import pandas.compat as compat from pandas.compat import is_platform_windows import pandas.util.testing as tm from pandas import Timedelta def test_to_offset_multiple(): freqstr = '2h30min' freqstr2 = '2h 30min' result = frequencies.to_offset(freqstr) assert(result == frequencies.to_offset(freqstr2)) expected = offsets.Minute(150) assert(result == expected) freqstr = '2h30min15s' result = frequencies.to_offset(freqstr) expected = offsets.Second(150 * 60 + 15) assert(result == expected) freqstr = '2h 60min' result = frequencies.to_offset(freqstr) expected = offsets.Hour(3) assert(result == expected) freqstr = '15l500u' result = frequencies.to_offset(freqstr) expected = offsets.Micro(15500) assert(result == expected) freqstr = '10s75L' result = frequencies.to_offset(freqstr) expected = offsets.Milli(10075) assert(result == expected) freqstr = '2800N' result = frequencies.to_offset(freqstr) expected = offsets.Nano(2800) assert(result == expected) # malformed try: frequencies.to_offset('2h20m') except ValueError: pass else: assert(False) def test_to_offset_negative(): freqstr = '-1S' result = frequencies.to_offset(freqstr) assert(result.n == -1) freqstr = '-5min10s' result = frequencies.to_offset(freqstr) assert(result.n == -310) def test_to_offset_leading_zero(): freqstr = '00H 00T 01S' result = frequencies.to_offset(freqstr) assert(result.n == 1) freqstr = '-00H 03T 14S' result = frequencies.to_offset(freqstr) assert(result.n == -194) def test_to_offset_pd_timedelta(): # Tests for #9064 td = Timedelta(days=1, seconds=1) result = frequencies.to_offset(td) expected = offsets.Second(86401) assert(expected==result) td = Timedelta(days=-1, seconds=1) result = frequencies.to_offset(td) expected = offsets.Second(-86399) assert(expected==result) td = Timedelta(hours=1, minutes=10) result = frequencies.to_offset(td) expected = offsets.Minute(70) assert(expected==result) td = Timedelta(hours=1, minutes=-10) result = frequencies.to_offset(td) expected =
offsets.Minute(50)
pandas.tseries.offsets.Minute
#-*- coding: utf-8 -*- # 阈值寻优 import numpy as np import pandas as pd inputfile = '../data/water_heater.xls' # 输入数据路径,需要使用Excel格式 n = 4 # 使用以后四个点的平均斜率 threshold = pd.Timedelta(minutes=5) # 专家阈值 data = pd.read_excel(inputfile) data[u'发生时间'] = pd.to_datetime(data[u'发生时间'], format='%Y%m%d%H%M%S') data = data[data[u'水流量'] > 0] # 只要流量大于0的记录 def event_num(ts): d = data[u'发生时间'].diff() > ts # 相邻时间作差分,比较是否大于阈值 return d.sum() + 1 # 这样直接返回事件数 dt = [pd.Timedelta(minutes=i) for i in np.arange(1, 9, 0.25)] h =
pd.DataFrame(dt, columns=[u'阈值'])
pandas.DataFrame
"""This module is dedicated to helpers for the DeepDAO class""" import pandas as pd def unpack_dataframe_of_lists(df_in: pd.DataFrame) -> pd.DataFrame: """Unpacks a dataframe where all entries are list of dicts Parameters ---------- df_in: pd.DataFrame input DataFrame Returns ------- DataFrame formated pandas DataFrame """ df_list=[] for column_name in df_in.columns: sub_df = df_in[column_name] tmp_df_list=[] for entry in sub_df: if isinstance(entry, list): tmp_df = pd.DataFrame(entry) tmp_df_list.append(tmp_df) reorg_df = pd.concat(tmp_df_list) reorg_df.reset_index(drop=True, inplace=True) # Reset indexes so there are no repeats df_list.append(reorg_df) df_out =
pd.concat(df_list, keys=df_in.columns, axis=1)
pandas.concat
# Arithmetic tests for DataFrame/Series/Index/Array classes that should # behave identically. # Specifically for Period dtype import operator import numpy as np import pytest from pandas._libs.tslibs.period import IncompatibleFrequency from pandas.errors import PerformanceWarning import pandas as pd from pandas import Period, PeriodIndex, Series, period_range from pandas.core import ops from pandas.core.arrays import TimedeltaArray import pandas.util.testing as tm from pandas.tseries.frequencies import to_offset # ------------------------------------------------------------------ # Comparisons class TestPeriodArrayLikeComparisons: # Comparison tests for PeriodDtype vectors fully parametrized over # DataFrame/Series/PeriodIndex/PeriodArray. Ideally all comparison # tests will eventually end up here. def test_compare_zerodim(self, box_with_array): # GH#26689 make sure we unbox zero-dimensional arrays xbox = box_with_array if box_with_array is not pd.Index else np.ndarray pi = pd.period_range("2000", periods=4) other = np.array(pi.to_numpy()[0]) pi = tm.box_expected(pi, box_with_array) result = pi <= other expected = np.array([True, False, False, False]) expected = tm.box_expected(expected, xbox) tm.assert_equal(result, expected) class TestPeriodIndexComparisons: # TODO: parameterize over boxes @pytest.mark.parametrize("other", ["2017", 2017]) def test_eq(self, other): idx = PeriodIndex(["2017", "2017", "2018"], freq="D") expected = np.array([True, True, False]) result = idx == other tm.assert_numpy_array_equal(result, expected) def test_pi_cmp_period(self): idx = period_range("2007-01", periods=20, freq="M") result = idx < idx[10] exp = idx.values < idx.values[10] tm.assert_numpy_array_equal(result, exp) # TODO: moved from test_datetime64; de-duplicate with version below def test_parr_cmp_period_scalar2(self, box_with_array): xbox = box_with_array if box_with_array is not pd.Index else np.ndarray pi = pd.period_range("2000-01-01", periods=10, freq="D") val = Period("2000-01-04", freq="D") expected = [x > val for x in pi] ser = tm.box_expected(pi, box_with_array) expected = tm.box_expected(expected, xbox) result = ser > val tm.assert_equal(result, expected) val = pi[5] result = ser > val expected = [x > val for x in pi] expected = tm.box_expected(expected, xbox) tm.assert_equal(result, expected) @pytest.mark.parametrize("freq", ["M", "2M", "3M"]) def test_parr_cmp_period_scalar(self, freq, box_with_array): # GH#13200 xbox = np.ndarray if box_with_array is pd.Index else box_with_array base = PeriodIndex(["2011-01", "2011-02", "2011-03", "2011-04"], freq=freq) base = tm.box_expected(base, box_with_array) per = Period("2011-02", freq=freq) exp = np.array([False, True, False, False]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base == per, exp) tm.assert_equal(per == base, exp) exp = np.array([True, False, True, True]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base != per, exp) tm.assert_equal(per != base, exp) exp = np.array([False, False, True, True]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base > per, exp) tm.assert_equal(per < base, exp) exp = np.array([True, False, False, False]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base < per, exp) tm.assert_equal(per > base, exp) exp = np.array([False, True, True, True]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base >= per, exp) tm.assert_equal(per <= base, exp) exp = np.array([True, True, False, False]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base <= per, exp) tm.assert_equal(per >= base, exp) @pytest.mark.parametrize("freq", ["M", "2M", "3M"]) def test_parr_cmp_pi(self, freq, box_with_array): # GH#13200 xbox = np.ndarray if box_with_array is pd.Index else box_with_array base = PeriodIndex(["2011-01", "2011-02", "2011-03", "2011-04"], freq=freq) base = tm.box_expected(base, box_with_array) # TODO: could also box idx? idx = PeriodIndex(["2011-02", "2011-01", "2011-03", "2011-05"], freq=freq) exp = np.array([False, False, True, False]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base == idx, exp) exp = np.array([True, True, False, True]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base != idx, exp) exp = np.array([False, True, False, False]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base > idx, exp) exp = np.array([True, False, False, True]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base < idx, exp) exp = np.array([False, True, True, False]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base >= idx, exp) exp = np.array([True, False, True, True]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base <= idx, exp) @pytest.mark.parametrize("freq", ["M", "2M", "3M"]) def test_parr_cmp_pi_mismatched_freq_raises(self, freq, box_with_array): # GH#13200 # different base freq base = PeriodIndex(["2011-01", "2011-02", "2011-03", "2011-04"], freq=freq) base = tm.box_expected(base, box_with_array) msg = "Input has different freq=A-DEC from " with pytest.raises(IncompatibleFrequency, match=msg): base <= Period("2011", freq="A") with pytest.raises(IncompatibleFrequency, match=msg): Period("2011", freq="A") >= base # TODO: Could parametrize over boxes for idx? idx = PeriodIndex(["2011", "2012", "2013", "2014"], freq="A") rev_msg = ( r"Input has different freq=(M|2M|3M) from " r"PeriodArray\(freq=A-DEC\)" ) idx_msg = rev_msg if box_with_array is tm.to_array else msg with pytest.raises(IncompatibleFrequency, match=idx_msg): base <= idx # Different frequency msg = "Input has different freq=4M from " with pytest.raises(IncompatibleFrequency, match=msg): base <= Period("2011", freq="4M") with pytest.raises(IncompatibleFrequency, match=msg): Period("2011", freq="4M") >= base idx = PeriodIndex(["2011", "2012", "2013", "2014"], freq="4M") rev_msg = r"Input has different freq=(M|2M|3M) from " r"PeriodArray\(freq=4M\)" idx_msg = rev_msg if box_with_array is tm.to_array else msg with pytest.raises(IncompatibleFrequency, match=idx_msg): base <= idx @pytest.mark.parametrize("freq", ["M", "2M", "3M"]) def test_pi_cmp_nat(self, freq): idx1 = PeriodIndex(["2011-01", "2011-02", "NaT", "2011-05"], freq=freq) result = idx1 > Period("2011-02", freq=freq) exp = np.array([False, False, False, True]) tm.assert_numpy_array_equal(result, exp) result = Period("2011-02", freq=freq) < idx1 tm.assert_numpy_array_equal(result, exp) result = idx1 == Period("NaT", freq=freq) exp = np.array([False, False, False, False]) tm.assert_numpy_array_equal(result, exp) result = Period("NaT", freq=freq) == idx1 tm.assert_numpy_array_equal(result, exp) result = idx1 != Period("NaT", freq=freq) exp = np.array([True, True, True, True]) tm.assert_numpy_array_equal(result, exp) result = Period("NaT", freq=freq) != idx1 tm.assert_numpy_array_equal(result, exp) idx2 = PeriodIndex(["2011-02", "2011-01", "2011-04", "NaT"], freq=freq) result = idx1 < idx2 exp = np.array([True, False, False, False]) tm.assert_numpy_array_equal(result, exp) result = idx1 == idx2 exp = np.array([False, False, False, False]) tm.assert_numpy_array_equal(result, exp) result = idx1 != idx2 exp = np.array([True, True, True, True]) tm.assert_numpy_array_equal(result, exp) result = idx1 == idx1 exp = np.array([True, True, False, True]) tm.assert_numpy_array_equal(result, exp) result = idx1 != idx1 exp = np.array([False, False, True, False]) tm.assert_numpy_array_equal(result, exp) @pytest.mark.parametrize("freq", ["M", "2M", "3M"]) def test_pi_cmp_nat_mismatched_freq_raises(self, freq): idx1 = PeriodIndex(["2011-01", "2011-02", "NaT", "2011-05"], freq=freq) diff = PeriodIndex(["2011-02", "2011-01", "2011-04", "NaT"], freq="4M") msg = "Input has different freq=4M from Period(Array|Index)" with pytest.raises(IncompatibleFrequency, match=msg): idx1 > diff with pytest.raises(IncompatibleFrequency, match=msg): idx1 == diff # TODO: De-duplicate with test_pi_cmp_nat @pytest.mark.parametrize("dtype", [object, None]) def test_comp_nat(self, dtype): left = pd.PeriodIndex( [pd.Period("2011-01-01"), pd.NaT, pd.Period("2011-01-03")] ) right = pd.PeriodIndex([pd.NaT, pd.NaT, pd.Period("2011-01-03")]) if dtype is not None: left = left.astype(dtype) right = right.astype(dtype) result = left == right expected = np.array([False, False, True]) tm.assert_numpy_array_equal(result, expected) result = left != right expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(left == pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT == right, expected) expected = np.array([True, True, True]) tm.assert_numpy_array_equal(left != pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT != left, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(left < pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT > left, expected) class TestPeriodSeriesComparisons: def test_cmp_series_period_series_mixed_freq(self): # GH#13200 base = Series( [ Period("2011", freq="A"), Period("2011-02", freq="M"), Period("2013", freq="A"), Period("2011-04", freq="M"), ] ) ser = Series( [ Period("2012", freq="A"), Period("2011-01", freq="M"), Period("2013", freq="A"), Period("2011-05", freq="M"), ] ) exp = Series([False, False, True, False]) tm.assert_series_equal(base == ser, exp) exp = Series([True, True, False, True]) tm.assert_series_equal(base != ser, exp) exp = Series([False, True, False, False]) tm.assert_series_equal(base > ser, exp) exp = Series([True, False, False, True]) tm.assert_series_equal(base < ser, exp) exp = Series([False, True, True, False]) tm.assert_series_equal(base >= ser, exp) exp = Series([True, False, True, True]) tm.assert_series_equal(base <= ser, exp) class TestPeriodIndexSeriesComparisonConsistency: """ Test PeriodIndex and Period Series Ops consistency """ # TODO: needs parametrization+de-duplication def _check(self, values, func, expected): # Test PeriodIndex and Period Series Ops consistency idx = pd.PeriodIndex(values) result = func(idx) # check that we don't pass an unwanted type to tm.assert_equal assert isinstance(expected, (pd.Index, np.ndarray)) tm.assert_equal(result, expected) s = pd.Series(values) result = func(s) exp = pd.Series(expected, name=values.name) tm.assert_series_equal(result, exp) def test_pi_comp_period(self): idx = PeriodIndex( ["2011-01", "2011-02", "2011-03", "2011-04"], freq="M", name="idx" ) f = lambda x: x == pd.Period("2011-03", freq="M") exp = np.array([False, False, True, False], dtype=np.bool) self._check(idx, f, exp) f = lambda x: pd.Period("2011-03", freq="M") == x self._check(idx, f, exp) f = lambda x: x != pd.Period("2011-03", freq="M") exp = np.array([True, True, False, True], dtype=np.bool) self._check(idx, f, exp) f = lambda x: pd.Period("2011-03", freq="M") != x self._check(idx, f, exp) f = lambda x: pd.Period("2011-03", freq="M") >= x exp = np.array([True, True, True, False], dtype=np.bool) self._check(idx, f, exp) f = lambda x: x > pd.Period("2011-03", freq="M") exp = np.array([False, False, False, True], dtype=np.bool) self._check(idx, f, exp) f = lambda x: pd.Period("2011-03", freq="M") >= x exp = np.array([True, True, True, False], dtype=np.bool) self._check(idx, f, exp) def test_pi_comp_period_nat(self): idx = PeriodIndex( ["2011-01", "NaT", "2011-03", "2011-04"], freq="M", name="idx" ) f = lambda x: x == pd.Period("2011-03", freq="M") exp = np.array([False, False, True, False], dtype=np.bool) self._check(idx, f, exp) f = lambda x: pd.Period("2011-03", freq="M") == x self._check(idx, f, exp) f = lambda x: x == pd.NaT exp = np.array([False, False, False, False], dtype=np.bool) self._check(idx, f, exp) f = lambda x: pd.NaT == x self._check(idx, f, exp) f = lambda x: x != pd.Period("2011-03", freq="M") exp = np.array([True, True, False, True], dtype=np.bool) self._check(idx, f, exp) f = lambda x: pd.Period("2011-03", freq="M") != x self._check(idx, f, exp) f = lambda x: x != pd.NaT exp = np.array([True, True, True, True], dtype=np.bool) self._check(idx, f, exp) f = lambda x: pd.NaT != x self._check(idx, f, exp) f = lambda x: pd.Period("2011-03", freq="M") >= x exp = np.array([True, False, True, False], dtype=np.bool) self._check(idx, f, exp) f = lambda x: x < pd.Period("2011-03", freq="M") exp = np.array([True, False, False, False], dtype=np.bool) self._check(idx, f, exp) f = lambda x: x > pd.NaT exp = np.array([False, False, False, False], dtype=np.bool) self._check(idx, f, exp) f = lambda x: pd.NaT >= x exp = np.array([False, False, False, False], dtype=np.bool) self._check(idx, f, exp) # ------------------------------------------------------------------ # Arithmetic class TestPeriodFrameArithmetic: def test_ops_frame_period(self): # GH#13043 df = pd.DataFrame( { "A": [pd.Period("2015-01", freq="M"), pd.Period("2015-02", freq="M")], "B": [pd.Period("2014-01", freq="M"), pd.Period("2014-02", freq="M")], } ) assert df["A"].dtype == "Period[M]" assert df["B"].dtype == "Period[M]" p = pd.Period("2015-03", freq="M") off = p.freq # dtype will be object because of original dtype exp = pd.DataFrame( { "A": np.array([2 * off, 1 * off], dtype=object), "B": np.array([14 * off, 13 * off], dtype=object), } ) tm.assert_frame_equal(p - df, exp) tm.assert_frame_equal(df - p, -1 * exp) df2 = pd.DataFrame( { "A": [pd.Period("2015-05", freq="M"), pd.Period("2015-06", freq="M")], "B": [pd.Period("2015-05", freq="M"), pd.Period("2015-06", freq="M")], } ) assert df2["A"].dtype == "Period[M]" assert df2["B"].dtype == "Period[M]" exp = pd.DataFrame( { "A": np.array([4 * off, 4 * off], dtype=object), "B": np.array([16 * off, 16 * off], dtype=object), } ) tm.assert_frame_equal(df2 - df, exp) tm.assert_frame_equal(df - df2, -1 * exp) class TestPeriodIndexArithmetic: # --------------------------------------------------------------- # __add__/__sub__ with PeriodIndex # PeriodIndex + other is defined for integers and timedelta-like others # PeriodIndex - other is defined for integers, timedelta-like others, # and PeriodIndex (with matching freq) def test_parr_add_iadd_parr_raises(self, box_with_array): rng = pd.period_range("1/1/2000", freq="D", periods=5) other = pd.period_range("1/6/2000", freq="D", periods=5) # TODO: parametrize over boxes for other? rng = tm.box_expected(rng, box_with_array) # An earlier implementation of PeriodIndex addition performed # a set operation (union). This has since been changed to # raise a TypeError. See GH#14164 and GH#13077 for historical # reference. with pytest.raises(TypeError): rng + other with pytest.raises(TypeError): rng += other def test_pi_sub_isub_pi(self): # GH#20049 # For historical reference see GH#14164, GH#13077. # PeriodIndex subtraction originally performed set difference, # then changed to raise TypeError before being implemented in GH#20049 rng = pd.period_range("1/1/2000", freq="D", periods=5) other = pd.period_range("1/6/2000", freq="D", periods=5) off = rng.freq expected = pd.Index([-5 * off] * 5) result = rng - other tm.assert_index_equal(result, expected) rng -= other tm.assert_index_equal(rng, expected) def test_pi_sub_pi_with_nat(self): rng = pd.period_range("1/1/2000", freq="D", periods=5) other = rng[1:].insert(0, pd.NaT) assert other[1:].equals(rng[1:]) result = rng - other off = rng.freq expected = pd.Index([pd.NaT, 0 * off, 0 * off, 0 * off, 0 * off]) tm.assert_index_equal(result, expected) def test_parr_sub_pi_mismatched_freq(self, box_with_array): rng = pd.period_range("1/1/2000", freq="D", periods=5) other = pd.period_range("1/6/2000", freq="H", periods=5) # TODO: parametrize over boxes for other? rng = tm.box_expected(rng, box_with_array) with pytest.raises(IncompatibleFrequency): rng - other @pytest.mark.parametrize("n", [1, 2, 3, 4]) def test_sub_n_gt_1_ticks(self, tick_classes, n): # GH 23878 p1_d = "19910905" p2_d = "19920406" p1 = pd.PeriodIndex([p1_d], freq=tick_classes(n)) p2 = pd.PeriodIndex([p2_d], freq=tick_classes(n)) expected = pd.PeriodIndex([p2_d], freq=p2.freq.base) - pd.PeriodIndex( [p1_d], freq=p1.freq.base ) tm.assert_index_equal((p2 - p1), expected) @pytest.mark.parametrize("n", [1, 2, 3, 4]) @pytest.mark.parametrize( "offset, kwd_name", [ (pd.offsets.YearEnd, "month"), (pd.offsets.QuarterEnd, "startingMonth"), (pd.offsets.MonthEnd, None), (pd.offsets.Week, "weekday"), ], ) def test_sub_n_gt_1_offsets(self, offset, kwd_name, n): # GH 23878 kwds = {kwd_name: 3} if kwd_name is not None else {} p1_d = "19910905" p2_d = "19920406" freq = offset(n, normalize=False, **kwds) p1 = pd.PeriodIndex([p1_d], freq=freq) p2 = pd.PeriodIndex([p2_d], freq=freq) result = p2 - p1 expected = pd.PeriodIndex([p2_d], freq=freq.base) - pd.PeriodIndex( [p1_d], freq=freq.base ) tm.assert_index_equal(result, expected) # ------------------------------------------------------------- # Invalid Operations @pytest.mark.parametrize("other", [3.14, np.array([2.0, 3.0])]) @pytest.mark.parametrize("op", [operator.add, ops.radd, operator.sub, ops.rsub]) def test_parr_add_sub_float_raises(self, op, other, box_with_array): dti = pd.DatetimeIndex(["2011-01-01", "2011-01-02"], freq="D") pi = dti.to_period("D") pi = tm.box_expected(pi, box_with_array) with pytest.raises(TypeError): op(pi, other) @pytest.mark.parametrize( "other", [ # datetime scalars pd.Timestamp.now(), pd.Timestamp.now().to_pydatetime(), pd.Timestamp.now().to_datetime64(), # datetime-like arrays pd.date_range("2016-01-01", periods=3, freq="H"), pd.date_range("2016-01-01", periods=3, tz="Europe/Brussels"), pd.date_range("2016-01-01", periods=3, freq="S")._data, pd.date_range("2016-01-01", periods=3, tz="Asia/Tokyo")._data, # Miscellaneous invalid types ], ) def test_parr_add_sub_invalid(self, other, box_with_array): # GH#23215 rng = pd.period_range("1/1/2000", freq="D", periods=3) rng = tm.box_expected(rng, box_with_array) with pytest.raises(TypeError): rng + other with pytest.raises(TypeError): other + rng with pytest.raises(TypeError): rng - other with pytest.raises(TypeError): other - rng # ----------------------------------------------------------------- # __add__/__sub__ with ndarray[datetime64] and ndarray[timedelta64] def test_pi_add_sub_td64_array_non_tick_raises(self): rng =
pd.period_range("1/1/2000", freq="Q", periods=3)
pandas.period_range
#!/usr/bin/env python3 """Universal kernel blocks""" import re import os import time import datetime as dt import numpy as np import scipy as ss import pandas as pd import requests import matplotlib.pyplot as plt import seaborn as sns import lightgbm as lgb import xgboost as xgb from catboost import CatBoostRegressor, CatBoostClassifier from sklearn import metrics from numba import jit ################################################################################################### # constants ################################################################################################### PROJECT_DIR = os.path.dirname(os.path.dirname( os.path.dirname(os.path.abspath(__file__)))) SRC_PATH = PROJECT_DIR + '/src/' DATASETS_PATH = PROJECT_DIR + '/datasets/' DATASETS_ORIGINAL_PATH = DATASETS_PATH + 'original/' DATASETS_DEV_PATH = DATASETS_PATH + 'dev/' DATASETS_PRED_PATH = DATASETS_PATH + 'predictions/' ################################################################################################### # resources optimization ################################################################################################### def reduce_mem_usage(df, verbose=True): """ Reduce memory costs of df via changing numeric column types to more efficient ones Takes a lot of time, try only once """ numerics = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64'] start_mem = df.memory_usage().sum() / 1024**2 for col in df.columns: col_type = df[col].dtypes if col_type in numerics: c_min = df[col].min() c_max = df[col].max() if str(col_type)[:3] == 'int': if c_min > np.iinfo(np.int8).min and c_max < np.iinfo(np.int8).max: df[col] = df[col].astype(np.int8) elif c_min > np.iinfo(np.int16).min and c_max < np.iinfo(np.int16).max: df[col] = df[col].astype(np.int16) elif c_min > np.iinfo(np.int32).min and c_max < np.iinfo(np.int32).max: df[col] = df[col].astype(np.int32) elif c_min > np.iinfo(np.int64).min and c_max < np.iinfo(np.int64).max: df[col] = df[col].astype(np.int64) else: if c_min > np.finfo(np.float16).min and c_max < np.finfo(np.float16).max: df[col] = df[col].astype(np.float16) elif c_min > np.finfo(np.float32).min and c_max < np.finfo(np.float32).max: df[col] = df[col].astype(np.float32) else: df[col] = df[col].astype(np.float64) else: df[col] = df[col].astype('category') end_mem = df.memory_usage().sum() / 1024**2 if verbose: print('Mem. usage decreased to {:5.2f} Mb ({:.1f}% reduction)'.format( end_mem, 100 * (start_mem - end_mem) / start_mem)) return df @jit def fast_auc(y_true, y_prob): """ fast roc_auc computation: https://www.kaggle.com/c/microsoft-malware-prediction/discussion/76013 """ y_true = np.asarray(y_true) y_true = y_true[np.argsort(y_prob)] nfalse = 0 auc = 0 n = len(y_true) for i in range(n): y_i = y_true[i] nfalse += (1 - y_i) auc += y_i * nfalse auc /= (nfalse * (n - nfalse)) return auc def eval_auc(y_true, y_pred): """ Fast auc eval function for lgb. """ return 'auc', fast_auc(y_true, y_pred), True def group_mean_log_mae(y_true, y_pred, types, floor=1e-9): """ Fast metric computation for this competition: https://www.kaggle.com/c/champs-scalar-coupling Code is from this kernel: https://www.kaggle.com/uberkinder/efficient-metric """ maes = (y_true-y_pred).abs().groupby(types).mean() return np.log(maes.map(lambda x: max(x, floor))).mean() ################################################################################################### # descibe & visualise ################################################################################################### def resumetable(df): """ Table about table """ print(f"Dataset Shape: {df.shape}") summary = pd.DataFrame(df.dtypes, columns=['dtypes']) summary = summary.reset_index() summary['Name'] = summary['index'] summary = summary[['Name', 'dtypes']] summary['Missing'] = df.isnull().sum().values summary['Uniques'] = df.nunique().values summary['First Value'] = df.loc[0].values summary['Second Value'] = df.loc[1].values summary['Third Value'] = df.loc[2].values for name in summary['Name'].value_counts().index: summary.loc[summary['Name'] == name, 'Entropy'] = \ round(ss.stats.entropy( df[name].value_counts(normalize=True), base=2), 2) return summary ################################################################################################### # preprocessing ################################################################################################### def my_csv_read(csv_file): """Solve function pickle issues https://stackoverflow.com/questions/8804830/ python-multiprocessing-picklingerror-cant-pickle-type-function """ return pd.read_csv(csv_file) def get_floats_from_string(string_to_parse): """finds all float numbers in string""" res_list = re.findall(r"[-+]?\d*\.\d+|\d+", string_to_parse) return res_list def none_or_first(list_to_get): """gets first element of list of None""" if list_to_get: return list_to_get[0] else: return None def clean_inf_nan(df): """nan instead of inf""" return df.replace([np.inf, -np.inf], np.nan) def add_datetime_info(df_trans, ts_column='TransactionDT', start_date=dt.datetime(2017, 12, 1)): """adds _Weekdays, _Hours, _Days columns to df Args: df_trans (DataFrame): With timestamp column. ts_column (string): Column with second. start_date (datetime): Starting point if ts_column has no full timestamp Returns: df_trans (DataFrame): With 4 additional columns """ if start_date: df_trans["_Date"] = df_trans[ts_column].apply(lambda x: (start_date + dt.timedelta(seconds=x))) else: df_trans["_Date"] = df_trans[ts_column].apply( dt.datetime.fromtimestamp) df_trans['_Weekdays'] = df_trans['_Date'].dt.dayofweek df_trans['_Hours'] = df_trans['_Date'].dt.hour df_trans['_Days'] = df_trans['_Date'].dt.day df_trans.drop(['_Date'], axis=1, inplace=True) return df_trans def correct_card_id(x): """Just replacement of characters""" x = x.replace('.0', '') x = x.replace('-999', 'NNNN') while len(x) < 4: x += 'N' return x def add_card_id(df): """Apply correct_card_id to df columns""" cards_cols = ['card1', 'card2', 'card3', 'card5'] for card in cards_cols: if '1' in card: df['Card_ID'] = df[card].map(str) else: df['Card_ID'] += ' ' + df[card].map(str) return df def drop_columns_nan_null(df_look, keep_cols, drop_proportion=0.9): """ drop columns with lots of nans or without values """ one_value_cols = [ col for col in df_look.columns if df_look[col].nunique() <= 1] many_null_cols = [col for col in df_look.columns if df_look[col].isnull().sum() / df_look.shape[0] > drop_proportion] big_top_value_cols = [col for col in df_look.columns if df_look[col].value_counts(dropna=False, normalize=True). values[0] > drop_proportion] cols_to_drop = list(set(many_null_cols + big_top_value_cols + one_value_cols )) for keep_col in keep_cols: if keep_col in cols_to_drop: cols_to_drop.remove(keep_col) # for col in cols_to_drop: # if col in df_drop: # df_drop.drop([col], axis=1, inplace=True) # print(len(cols_to_drop), ' columns were removed because of nulls and NaNs') # print(f'dropped ones: {cols_to_drop}') return cols_to_drop def drop_columns_corr(df_look, keep_cols, drop_threshold=0.98): """drop columns with high correlation """ # Absolute value correlation matrix corr_matrix = df_look[df_look['isFraud'].notnull()].corr().abs() # Getting the upper triangle of correlations upper = corr_matrix.where(np.array(np.triu(np.ones(corr_matrix.shape), k=1)).astype(np.bool)) # Select columns with correlations above threshold cols_to_drop = [column for column in upper.columns if any(upper[column] > drop_threshold)] for keep_col in keep_cols: if keep_col in cols_to_drop: cols_to_drop.remove(keep_col) # df_drop.drop(cols_to_drop, axis=1, inplace=True) # for col in cols_to_drop: # if col in df_drop: # df_drop.drop([col], axis=1, inplace=True) # print(len(cols_to_drop), ' columns were removed because of high corr') # print(f'dropped ones: {cols_to_drop}') return cols_to_drop ################################################################################################### # training model ################################################################################################### def train_model_regression(X, X_test, y, params, folds=None, model_type='lgb', eval_metric='mae', columns=None, plot_feature_importance=False, model=None, verbose=10000, early_stopping_rounds=200, n_estimators=50000, splits=None, n_folds=3): """ A function to train a variety of regression models. Returns dictionary with oof predictions, test predictions, scores and, if necessary, feature importances. :params: X - training data, can be pd.DataFrame or np.ndarray (after normalizing) :params: X_test - test data, can be pd.DataFrame or np.ndarray (after normalizing) :params: y - target :params: folds - folds to split data :params: model_type - type of model to use :params: eval_metric - metric to use :params: columns - columns to use. If None - use all columns :params: plot_feature_importance - whether to plot feature importance of LGB :params: model - sklearn model, works only for "sklearn" model type """ columns = X.columns if columns is None else columns X_test = X_test[columns] # check for different Kfolds if str(type(folds)) == "<class 'sklearn.model_selection._split.StratifiedKFold'>": splits = folds.split(X, y) elif str(type(folds)) == "<class 'sklearn.model_selection._split.TimeSeriesSplit'>": splits = folds.split(X) if splits is None else splits else: splits = folds.split(X) if splits is None else splits n_splits = folds.n_splits if splits is None else n_folds # to set up scoring parameters metrics_dict = {'mae': {'lgb_metric_name': 'mae', 'catboost_metric_name': 'MAE', 'sklearn_scoring_function': metrics.mean_absolute_error}, 'group_mae': {'lgb_metric_name': 'mae', 'catboost_metric_name': 'MAE', 'scoring_function': group_mean_log_mae}, 'mse': {'lgb_metric_name': 'mse', 'catboost_metric_name': 'MSE', 'sklearn_scoring_function': metrics.mean_squared_error} } result_dict = {} # out-of-fold predictions on train data oof = np.zeros(len(X)) # averaged predictions on train data prediction = np.zeros(len(X_test)) # list of scores on folds scores = [] feature_importance =
pd.DataFrame()
pandas.DataFrame
from collections import abc, deque from decimal import Decimal from io import StringIO from warnings import catch_warnings import numpy as np from numpy.random import randn import pytest from pandas.core.dtypes.dtypes import CategoricalDtype import pandas as pd from pandas import ( Categorical, DataFrame, DatetimeIndex, Index, MultiIndex, Series, concat, date_range, read_csv, ) import pandas._testing as tm from pandas.core.arrays import SparseArray from pandas.core.construction import create_series_with_explicit_dtype from pandas.tests.extension.decimal import to_decimal @pytest.fixture(params=[True, False]) def sort(request): """Boolean sort keyword for concat and DataFrame.append.""" return request.param class TestConcatenate: def test_concat_copy(self): df = DataFrame(np.random.randn(4, 3)) df2 = DataFrame(np.random.randint(0, 10, size=4).reshape(4, 1)) df3 = DataFrame({5: "foo"}, index=range(4)) # These are actual copies. result = concat([df, df2, df3], axis=1, copy=True) for b in result._mgr.blocks: assert b.values.base is None # These are the same. result = concat([df, df2, df3], axis=1, copy=False) for b in result._mgr.blocks: if b.is_float: assert b.values.base is df._mgr.blocks[0].values.base elif b.is_integer: assert b.values.base is df2._mgr.blocks[0].values.base elif b.is_object: assert b.values.base is not None # Float block was consolidated. df4 = DataFrame(np.random.randn(4, 1)) result = concat([df, df2, df3, df4], axis=1, copy=False) for b in result._mgr.blocks: if b.is_float: assert b.values.base is None elif b.is_integer: assert b.values.base is df2._mgr.blocks[0].values.base elif b.is_object: assert b.values.base is not None def test_concat_with_group_keys(self): df = DataFrame(np.random.randn(4, 3)) df2 = DataFrame(np.random.randn(4, 4)) # axis=0 df = DataFrame(np.random.randn(3, 4)) df2 = DataFrame(np.random.randn(4, 4)) result = concat([df, df2], keys=[0, 1]) exp_index = MultiIndex.from_arrays( [[0, 0, 0, 1, 1, 1, 1], [0, 1, 2, 0, 1, 2, 3]] ) expected = DataFrame(np.r_[df.values, df2.values], index=exp_index) tm.assert_frame_equal(result, expected) result = concat([df, df], keys=[0, 1]) exp_index2 = MultiIndex.from_arrays([[0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 1, 2]]) expected = DataFrame(np.r_[df.values, df.values], index=exp_index2) tm.assert_frame_equal(result, expected) # axis=1 df = DataFrame(np.random.randn(4, 3)) df2 = DataFrame(np.random.randn(4, 4)) result = concat([df, df2], keys=[0, 1], axis=1) expected = DataFrame(np.c_[df.values, df2.values], columns=exp_index) tm.assert_frame_equal(result, expected) result = concat([df, df], keys=[0, 1], axis=1) expected = DataFrame(np.c_[df.values, df.values], columns=exp_index2) tm.assert_frame_equal(result, expected) def test_concat_keys_specific_levels(self): df = DataFrame(np.random.randn(10, 4)) pieces = [df.iloc[:, [0, 1]], df.iloc[:, [2]], df.iloc[:, [3]]] level = ["three", "two", "one", "zero"] result = concat( pieces, axis=1, keys=["one", "two", "three"], levels=[level], names=["group_key"], ) tm.assert_index_equal(result.columns.levels[0], Index(level, name="group_key")) tm.assert_index_equal(result.columns.levels[1], Index([0, 1, 2, 3])) assert result.columns.names == ["group_key", None] def test_concat_dataframe_keys_bug(self, sort): t1 = DataFrame( {"value": Series([1, 2, 3], index=Index(["a", "b", "c"], name="id"))} ) t2 = DataFrame({"value": Series([7, 8], index=Index(["a", "b"], name="id"))}) # it works result = concat([t1, t2], axis=1, keys=["t1", "t2"], sort=sort) assert list(result.columns) == [("t1", "value"), ("t2", "value")] def test_concat_series_partial_columns_names(self): # GH10698 foo = Series([1, 2], name="foo") bar = Series([1, 2]) baz = Series([4, 5]) result = concat([foo, bar, baz], axis=1) expected = DataFrame( {"foo": [1, 2], 0: [1, 2], 1: [4, 5]}, columns=["foo", 0, 1] ) tm.assert_frame_equal(result, expected) result = concat([foo, bar, baz], axis=1, keys=["red", "blue", "yellow"]) expected = DataFrame( {"red": [1, 2], "blue": [1, 2], "yellow": [4, 5]}, columns=["red", "blue", "yellow"], ) tm.assert_frame_equal(result, expected) result = concat([foo, bar, baz], axis=1, ignore_index=True) expected = DataFrame({0: [1, 2], 1: [1, 2], 2: [4, 5]}) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("mapping", ["mapping", "dict"]) def test_concat_mapping(self, mapping, non_dict_mapping_subclass): constructor = dict if mapping == "dict" else non_dict_mapping_subclass frames = constructor( { "foo": DataFrame(np.random.randn(4, 3)), "bar": DataFrame(np.random.randn(4, 3)), "baz": DataFrame(np.random.randn(4, 3)), "qux": DataFrame(np.random.randn(4, 3)), } ) sorted_keys = list(frames.keys()) result = concat(frames) expected = concat([frames[k] for k in sorted_keys], keys=sorted_keys) tm.assert_frame_equal(result, expected) result = concat(frames, axis=1) expected = concat([frames[k] for k in sorted_keys], keys=sorted_keys, axis=1) tm.assert_frame_equal(result, expected) keys = ["baz", "foo", "bar"] result = concat(frames, keys=keys) expected = concat([frames[k] for k in keys], keys=keys) tm.assert_frame_equal(result, expected) def test_concat_ignore_index(self, sort): frame1 = DataFrame( {"test1": ["a", "b", "c"], "test2": [1, 2, 3], "test3": [4.5, 3.2, 1.2]} ) frame2 = DataFrame({"test3": [5.2, 2.2, 4.3]}) frame1.index = Index(["x", "y", "z"]) frame2.index = Index(["x", "y", "q"]) v1 = concat([frame1, frame2], axis=1, ignore_index=True, sort=sort) nan = np.nan expected = DataFrame( [ [nan, nan, nan, 4.3], ["a", 1, 4.5, 5.2], ["b", 2, 3.2, 2.2], ["c", 3, 1.2, nan], ], index=Index(["q", "x", "y", "z"]), ) if not sort: expected = expected.loc[["x", "y", "z", "q"]] tm.assert_frame_equal(v1, expected) @pytest.mark.parametrize( "name_in1,name_in2,name_in3,name_out", [ ("idx", "idx", "idx", "idx"), ("idx", "idx", None, None), ("idx", None, None, None), ("idx1", "idx2", None, None), ("idx1", "idx1", "idx2", None), ("idx1", "idx2", "idx3", None), (None, None, None, None), ], ) def test_concat_same_index_names(self, name_in1, name_in2, name_in3, name_out): # GH13475 indices = [ Index(["a", "b", "c"], name=name_in1), Index(["b", "c", "d"], name=name_in2), Index(["c", "d", "e"], name=name_in3), ] frames = [ DataFrame({c: [0, 1, 2]}, index=i) for i, c in zip(indices, ["x", "y", "z"]) ] result = pd.concat(frames, axis=1) exp_ind = Index(["a", "b", "c", "d", "e"], name=name_out) expected = DataFrame( { "x": [0, 1, 2, np.nan, np.nan], "y": [np.nan, 0, 1, 2, np.nan], "z": [np.nan, np.nan, 0, 1, 2], }, index=exp_ind, ) tm.assert_frame_equal(result, expected) def test_concat_multiindex_with_keys(self): index = MultiIndex( levels=[["foo", "bar", "baz", "qux"], ["one", "two", "three"]], codes=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], names=["first", "second"], ) frame = DataFrame( np.random.randn(10, 3), index=index, columns=Index(["A", "B", "C"], name="exp"), ) result = concat([frame, frame], keys=[0, 1], names=["iteration"]) assert result.index.names == ("iteration",) + index.names tm.assert_frame_equal(result.loc[0], frame) tm.assert_frame_equal(result.loc[1], frame) assert result.index.nlevels == 3 def test_concat_multiindex_with_none_in_index_names(self): # GH 15787 index = pd.MultiIndex.from_product([[1], range(5)], names=["level1", None]) df = DataFrame({"col": range(5)}, index=index, dtype=np.int32) result = concat([df, df], keys=[1, 2], names=["level2"]) index = pd.MultiIndex.from_product( [[1, 2], [1], range(5)], names=["level2", "level1", None] ) expected = DataFrame({"col": list(range(5)) * 2}, index=index, dtype=np.int32) tm.assert_frame_equal(result, expected) result = concat([df, df[:2]], keys=[1, 2], names=["level2"]) level2 = [1] * 5 + [2] * 2 level1 = [1] * 7 no_name = list(range(5)) + list(range(2)) tuples = list(zip(level2, level1, no_name)) index = pd.MultiIndex.from_tuples(tuples, names=["level2", "level1", None]) expected = DataFrame({"col": no_name}, index=index, dtype=np.int32) tm.assert_frame_equal(result, expected) def test_concat_keys_and_levels(self): df = DataFrame(np.random.randn(1, 3)) df2 = DataFrame(np.random.randn(1, 4)) levels = [["foo", "baz"], ["one", "two"]] names = ["first", "second"] result = concat( [df, df2, df, df2], keys=[("foo", "one"), ("foo", "two"), ("baz", "one"), ("baz", "two")], levels=levels, names=names, ) expected = concat([df, df2, df, df2]) exp_index = MultiIndex( levels=levels + [[0]], codes=[[0, 0, 1, 1], [0, 1, 0, 1], [0, 0, 0, 0]], names=names + [None], ) expected.index = exp_index tm.assert_frame_equal(result, expected) # no names result = concat( [df, df2, df, df2], keys=[("foo", "one"), ("foo", "two"), ("baz", "one"), ("baz", "two")], levels=levels, ) assert result.index.names == (None,) * 3 # no levels result = concat( [df, df2, df, df2], keys=[("foo", "one"), ("foo", "two"), ("baz", "one"), ("baz", "two")], names=["first", "second"], ) assert result.index.names == ("first", "second", None) tm.assert_index_equal( result.index.levels[0], Index(["baz", "foo"], name="first") ) def test_concat_keys_levels_no_overlap(self): # GH #1406 df = DataFrame(np.random.randn(1, 3), index=["a"]) df2 = DataFrame(np.random.randn(1, 4), index=["b"]) msg = "Values not found in passed level" with pytest.raises(ValueError, match=msg): concat([df, df], keys=["one", "two"], levels=[["foo", "bar", "baz"]]) msg = "Key one not in level" with pytest.raises(ValueError, match=msg): concat([df, df2], keys=["one", "two"], levels=[["foo", "bar", "baz"]]) def test_concat_rename_index(self): a = DataFrame( np.random.rand(3, 3), columns=list("ABC"), index=Index(list("abc"), name="index_a"), ) b = DataFrame( np.random.rand(3, 3), columns=list("ABC"), index=Index(list("abc"), name="index_b"), ) result = concat([a, b], keys=["key0", "key1"], names=["lvl0", "lvl1"]) exp = concat([a, b], keys=["key0", "key1"], names=["lvl0"]) names = list(exp.index.names) names[1] = "lvl1" exp.index.set_names(names, inplace=True) tm.assert_frame_equal(result, exp) assert result.index.names == exp.index.names def test_crossed_dtypes_weird_corner(self): columns = ["A", "B", "C", "D"] df1 = DataFrame( { "A": np.array([1, 2, 3, 4], dtype="f8"), "B": np.array([1, 2, 3, 4], dtype="i8"), "C": np.array([1, 2, 3, 4], dtype="f8"), "D": np.array([1, 2, 3, 4], dtype="i8"), }, columns=columns, ) df2 = DataFrame( { "A": np.array([1, 2, 3, 4], dtype="i8"), "B": np.array([1, 2, 3, 4], dtype="f8"), "C": np.array([1, 2, 3, 4], dtype="i8"), "D": np.array([1, 2, 3, 4], dtype="f8"), }, columns=columns, ) appended = df1.append(df2, ignore_index=True) expected = DataFrame( np.concatenate([df1.values, df2.values], axis=0), columns=columns ) tm.assert_frame_equal(appended, expected) df = DataFrame(np.random.randn(1, 3), index=["a"]) df2 = DataFrame(np.random.randn(1, 4), index=["b"]) result = concat([df, df2], keys=["one", "two"], names=["first", "second"]) assert result.index.names == ("first", "second") def test_dups_index(self): # GH 4771 # single dtypes df = DataFrame( np.random.randint(0, 10, size=40).reshape(10, 4), columns=["A", "A", "C", "C"], ) result = concat([df, df], axis=1) tm.assert_frame_equal(result.iloc[:, :4], df) tm.assert_frame_equal(result.iloc[:, 4:], df) result = concat([df, df], axis=0) tm.assert_frame_equal(result.iloc[:10], df) tm.assert_frame_equal(result.iloc[10:], df) # multi dtypes df = concat( [ DataFrame(np.random.randn(10, 4), columns=["A", "A", "B", "B"]), DataFrame( np.random.randint(0, 10, size=20).reshape(10, 2), columns=["A", "C"] ), ], axis=1, ) result = concat([df, df], axis=1) tm.assert_frame_equal(result.iloc[:, :6], df) tm.assert_frame_equal(result.iloc[:, 6:], df) result = concat([df, df], axis=0) tm.assert_frame_equal(result.iloc[:10], df) tm.assert_frame_equal(result.iloc[10:], df) # append result = df.iloc[0:8, :].append(df.iloc[8:]) tm.assert_frame_equal(result, df) result = df.iloc[0:8, :].append(df.iloc[8:9]).append(df.iloc[9:10]) tm.assert_frame_equal(result, df) expected = concat([df, df], axis=0) result = df.append(df) tm.assert_frame_equal(result, expected) def test_with_mixed_tuples(self, sort): # 10697 # columns have mixed tuples, so handle properly df1 = DataFrame({"A": "foo", ("B", 1): "bar"}, index=range(2)) df2 = DataFrame({"B": "foo", ("B", 1): "bar"}, index=range(2)) # it works concat([df1, df2], sort=sort) def test_handle_empty_objects(self, sort): df = DataFrame(np.random.randn(10, 4), columns=list("abcd")) baz = df[:5].copy() baz["foo"] = "bar" empty = df[5:5] frames = [baz, empty, empty, df[5:]] concatted = concat(frames, axis=0, sort=sort) expected = df.reindex(columns=["a", "b", "c", "d", "foo"]) expected["foo"] = expected["foo"].astype("O") expected.loc[0:4, "foo"] = "bar" tm.assert_frame_equal(concatted, expected) # empty as first element with time series # GH3259 df = DataFrame( dict(A=range(10000)), index=date_range("20130101", periods=10000, freq="s") ) empty = DataFrame() result = concat([df, empty], axis=1) tm.assert_frame_equal(result, df) result = concat([empty, df], axis=1) tm.assert_frame_equal(result, df) result = concat([df, empty]) tm.assert_frame_equal(result, df) result = concat([empty, df]) tm.assert_frame_equal(result, df) def test_concat_mixed_objs(self): # concat mixed series/frames # G2385 # axis 1 index = date_range("01-Jan-2013", periods=10, freq="H") arr = np.arange(10, dtype="int64") s1 = Series(arr, index=index) s2 = Series(arr, index=index) df = DataFrame(arr.reshape(-1, 1), index=index) expected = DataFrame( np.repeat(arr, 2).reshape(-1, 2), index=index, columns=[0, 0] ) result = concat([df, df], axis=1) tm.assert_frame_equal(result, expected) expected = DataFrame( np.repeat(arr, 2).reshape(-1, 2), index=index, columns=[0, 1] ) result = concat([s1, s2], axis=1) tm.assert_frame_equal(result, expected) expected = DataFrame( np.repeat(arr, 3).reshape(-1, 3), index=index, columns=[0, 1, 2] ) result = concat([s1, s2, s1], axis=1) tm.assert_frame_equal(result, expected) expected = DataFrame( np.repeat(arr, 5).reshape(-1, 5), index=index, columns=[0, 0, 1, 2, 3] ) result = concat([s1, df, s2, s2, s1], axis=1) tm.assert_frame_equal(result, expected) # with names s1.name = "foo" expected = DataFrame( np.repeat(arr, 3).reshape(-1, 3), index=index, columns=["foo", 0, 0] ) result = concat([s1, df, s2], axis=1) tm.assert_frame_equal(result, expected) s2.name = "bar" expected = DataFrame( np.repeat(arr, 3).reshape(-1, 3), index=index, columns=["foo", 0, "bar"] ) result = concat([s1, df, s2], axis=1) tm.assert_frame_equal(result, expected) # ignore index expected = DataFrame( np.repeat(arr, 3).reshape(-1, 3), index=index, columns=[0, 1, 2] ) result = concat([s1, df, s2], axis=1, ignore_index=True) tm.assert_frame_equal(result, expected) # axis 0 expected = DataFrame( np.tile(arr, 3).reshape(-1, 1), index=index.tolist() * 3, columns=[0] ) result = concat([s1, df, s2]) tm.assert_frame_equal(result, expected) expected = DataFrame(np.tile(arr, 3).reshape(-1, 1), columns=[0]) result = concat([s1, df, s2], ignore_index=True) tm.assert_frame_equal(result, expected) def test_empty_dtype_coerce(self): # xref to #12411 # xref to #12045 # xref to #11594 # see below # 10571 df1 = DataFrame(data=[[1, None], [2, None]], columns=["a", "b"]) df2 = DataFrame(data=[[3, None], [4, None]], columns=["a", "b"]) result = concat([df1, df2]) expected = df1.dtypes tm.assert_series_equal(result.dtypes, expected) def test_dtype_coerceion(self): # 12411 df = DataFrame({"date": [pd.Timestamp("20130101").tz_localize("UTC"), pd.NaT]}) result = concat([df.iloc[[0]], df.iloc[[1]]]) tm.assert_series_equal(result.dtypes, df.dtypes) # 12045 import datetime df = DataFrame( {"date": [datetime.datetime(2012, 1, 1), datetime.datetime(1012, 1, 2)]} ) result = concat([df.iloc[[0]], df.iloc[[1]]]) tm.assert_series_equal(result.dtypes, df.dtypes) # 11594 df = DataFrame({"text": ["some words"] + [None] * 9}) result = concat([df.iloc[[0]], df.iloc[[1]]]) tm.assert_series_equal(result.dtypes, df.dtypes) def test_concat_series(self): ts = tm.makeTimeSeries() ts.name = "foo" pieces = [ts[:5], ts[5:15], ts[15:]] result = concat(pieces) tm.assert_series_equal(result, ts) assert result.name == ts.name result = concat(pieces, keys=[0, 1, 2]) expected = ts.copy() ts.index = DatetimeIndex(np.array(ts.index.values, dtype="M8[ns]")) exp_codes = [np.repeat([0, 1, 2], [len(x) for x in pieces]), np.arange(len(ts))] exp_index = MultiIndex(levels=[[0, 1, 2], ts.index], codes=exp_codes) expected.index = exp_index tm.assert_series_equal(result, expected) def test_concat_series_axis1(self, sort=sort): ts = tm.makeTimeSeries() pieces = [ts[:-2], ts[2:], ts[2:-2]] result = concat(pieces, axis=1) expected = DataFrame(pieces).T tm.assert_frame_equal(result, expected) result = concat(pieces, keys=["A", "B", "C"], axis=1) expected = DataFrame(pieces, index=["A", "B", "C"]).T tm.assert_frame_equal(result, expected) # preserve series names, #2489 s = Series(randn(5), name="A") s2 = Series(randn(5), name="B") result = concat([s, s2], axis=1) expected = DataFrame({"A": s, "B": s2}) tm.assert_frame_equal(result, expected) s2.name = None result = concat([s, s2], axis=1) tm.assert_index_equal(result.columns, Index(["A", 0], dtype="object")) # must reindex, #2603 s = Series(randn(3), index=["c", "a", "b"], name="A") s2 = Series(randn(4), index=["d", "a", "b", "c"], name="B") result = concat([s, s2], axis=1, sort=sort) expected = DataFrame({"A": s, "B": s2}) tm.assert_frame_equal(result, expected) def test_concat_series_axis1_names_applied(self): # ensure names argument is not ignored on axis=1, #23490 s = Series([1, 2, 3]) s2 = Series([4, 5, 6]) result = concat([s, s2], axis=1, keys=["a", "b"], names=["A"]) expected = DataFrame( [[1, 4], [2, 5], [3, 6]], columns=Index(["a", "b"], name="A") ) tm.assert_frame_equal(result, expected) result = concat([s, s2], axis=1, keys=[("a", 1), ("b", 2)], names=["A", "B"]) expected = DataFrame( [[1, 4], [2, 5], [3, 6]], columns=MultiIndex.from_tuples([("a", 1), ("b", 2)], names=["A", "B"]), ) tm.assert_frame_equal(result, expected) def test_concat_single_with_key(self): df = DataFrame(np.random.randn(10, 4)) result = concat([df], keys=["foo"]) expected = concat([df, df], keys=["foo", "bar"]) tm.assert_frame_equal(result, expected[:10]) def test_concat_exclude_none(self): df = DataFrame(np.random.randn(10, 4)) pieces = [df[:5], None, None, df[5:]] result = concat(pieces) tm.assert_frame_equal(result, df) with pytest.raises(ValueError, match="All objects passed were None"): concat([None, None]) def test_concat_timedelta64_block(self): from pandas import to_timedelta rng = to_timedelta(np.arange(10), unit="s") df = DataFrame({"time": rng}) result = concat([df, df]) assert (result.iloc[:10]["time"] == rng).all() assert (result.iloc[10:]["time"] == rng).all() def test_concat_keys_with_none(self): # #1649 df0 = DataFrame([[10, 20, 30], [10, 20, 30], [10, 20, 30]]) result = concat(dict(a=None, b=df0, c=df0[:2], d=df0[:1], e=df0)) expected = concat(dict(b=df0, c=df0[:2], d=df0[:1], e=df0)) tm.assert_frame_equal(result, expected) result = concat( [None, df0, df0[:2], df0[:1], df0], keys=["a", "b", "c", "d", "e"] ) expected = concat([df0, df0[:2], df0[:1], df0], keys=["b", "c", "d", "e"]) tm.assert_frame_equal(result, expected) def test_concat_bug_1719(self): ts1 = tm.makeTimeSeries() ts2 = tm.makeTimeSeries()[::2] # to join with union # these two are of different length! left = concat([ts1, ts2], join="outer", axis=1) right = concat([ts2, ts1], join="outer", axis=1) assert len(left) == len(right) def test_concat_bug_2972(self): ts0 = Series(np.zeros(5)) ts1 = Series(np.ones(5)) ts0.name = ts1.name = "same name" result = concat([ts0, ts1], axis=1) expected = DataFrame({0: ts0, 1: ts1}) expected.columns = ["same name", "same name"] tm.assert_frame_equal(result, expected) def test_concat_bug_3602(self): # GH 3602, duplicate columns df1 = DataFrame( { "firmNo": [0, 0, 0, 0], "prc": [6, 6, 6, 6], "stringvar": ["rrr", "rrr", "rrr", "rrr"], } ) df2 = DataFrame( {"C": [9, 10, 11, 12], "misc": [1, 2, 3, 4], "prc": [6, 6, 6, 6]} ) expected = DataFrame( [ [0, 6, "rrr", 9, 1, 6], [0, 6, "rrr", 10, 2, 6], [0, 6, "rrr", 11, 3, 6], [0, 6, "rrr", 12, 4, 6], ] ) expected.columns = ["firmNo", "prc", "stringvar", "C", "misc", "prc"] result = concat([df1, df2], axis=1) tm.assert_frame_equal(result, expected) def test_concat_inner_join_empty(self): # GH 15328 df_empty = DataFrame() df_a = DataFrame({"a": [1, 2]}, index=[0, 1], dtype="int64") df_expected = DataFrame({"a": []}, index=[], dtype="int64") for how, expected in [("inner", df_expected), ("outer", df_a)]: result = pd.concat([df_a, df_empty], axis=1, join=how) tm.assert_frame_equal(result, expected) def test_concat_series_axis1_same_names_ignore_index(self): dates = date_range("01-Jan-2013", "01-Jan-2014", freq="MS")[0:-1] s1 = Series(randn(len(dates)), index=dates, name="value") s2 = Series(randn(len(dates)), index=dates, name="value") result = concat([s1, s2], axis=1, ignore_index=True) expected = Index([0, 1]) tm.assert_index_equal(result.columns, expected) def test_concat_iterables(self): # GH8645 check concat works with tuples, list, generators, and weird # stuff like deque and custom iterables df1 = DataFrame([1, 2, 3]) df2 = DataFrame([4, 5, 6]) expected = DataFrame([1, 2, 3, 4, 5, 6]) tm.assert_frame_equal(concat((df1, df2), ignore_index=True), expected) tm.assert_frame_equal(concat([df1, df2], ignore_index=True), expected) tm.assert_frame_equal( concat((df for df in (df1, df2)), ignore_index=True), expected ) tm.assert_frame_equal(concat(deque((df1, df2)), ignore_index=True), expected) class CustomIterator1: def __len__(self) -> int: return 2 def __getitem__(self, index): try: return {0: df1, 1: df2}[index] except KeyError as err: raise IndexError from err tm.assert_frame_equal(pd.concat(CustomIterator1(), ignore_index=True), expected) class CustomIterator2(abc.Iterable): def __iter__(self): yield df1 yield df2 tm.assert_frame_equal(pd.concat(CustomIterator2(), ignore_index=True), expected) def test_concat_invalid(self): # trying to concat a ndframe with a non-ndframe df1 = tm.makeCustomDataframe(10, 2) for obj in [1, dict(), [1, 2], (1, 2)]: msg = ( f"cannot concatenate object of type '{type(obj)}'; " "only Series and DataFrame objs are valid" ) with pytest.raises(TypeError, match=msg): concat([df1, obj]) def test_concat_invalid_first_argument(self): df1 = tm.makeCustomDataframe(10, 2) df2 = tm.makeCustomDataframe(10, 2) msg = ( "first argument must be an iterable of pandas " 'objects, you passed an object of type "DataFrame"' ) with pytest.raises(TypeError, match=msg): concat(df1, df2) # generator ok though concat(DataFrame(np.random.rand(5, 5)) for _ in range(3)) # text reader ok # GH6583 data = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo2,12,13,14,15 bar2,12,13,14,15 """ reader = read_csv(StringIO(data), chunksize=1) result = concat(reader, ignore_index=True) expected = read_csv(StringIO(data)) tm.assert_frame_equal(result, expected) def test_concat_empty_series(self): # GH 11082 s1 = Series([1, 2, 3], name="x") s2 = Series(name="y", dtype="float64") res = pd.concat([s1, s2], axis=1) exp = DataFrame( {"x": [1, 2, 3], "y": [np.nan, np.nan, np.nan]}, index=Index([0, 1, 2], dtype="O"), ) tm.assert_frame_equal(res, exp) s1 = Series([1, 2, 3], name="x") s2 = Series(name="y", dtype="float64") res = pd.concat([s1, s2], axis=0) # name will be reset exp = Series([1, 2, 3]) tm.assert_series_equal(res, exp) # empty Series with no name s1 = Series([1, 2, 3], name="x") s2 = Series(name=None, dtype="float64") res = pd.concat([s1, s2], axis=1) exp = DataFrame( {"x": [1, 2, 3], 0: [np.nan, np.nan, np.nan]}, columns=["x", 0], index=Index([0, 1, 2], dtype="O"), ) tm.assert_frame_equal(res, exp) @pytest.mark.parametrize("tz", [None, "UTC"]) @pytest.mark.parametrize("values", [[], [1, 2, 3]]) def test_concat_empty_series_timelike(self, tz, values): # GH 18447 first = Series([], dtype="M8[ns]").dt.tz_localize(tz) dtype = None if values else np.float64 second = Series(values, dtype=dtype) expected = DataFrame( { 0: Series([pd.NaT] * len(values), dtype="M8[ns]").dt.tz_localize(tz), 1: values, } ) result = concat([first, second], axis=1) tm.assert_frame_equal(result, expected) def test_default_index(self): # is_series and ignore_index s1 = Series([1, 2, 3], name="x") s2 = Series([4, 5, 6], name="y") res = pd.concat([s1, s2], axis=1, ignore_index=True) assert isinstance(res.columns, pd.RangeIndex) exp = DataFrame([[1, 4], [2, 5], [3, 6]]) # use check_index_type=True to check the result have # RangeIndex (default index) tm.assert_frame_equal(res, exp, check_index_type=True, check_column_type=True) # is_series and all inputs have no names s1 = Series([1, 2, 3]) s2 = Series([4, 5, 6]) res = pd.concat([s1, s2], axis=1, ignore_index=False) assert isinstance(res.columns, pd.RangeIndex) exp = DataFrame([[1, 4], [2, 5], [3, 6]]) exp.columns = pd.RangeIndex(2) tm.assert_frame_equal(res, exp, check_index_type=True, check_column_type=True) # is_dataframe and ignore_index df1 = DataFrame({"A": [1, 2], "B": [5, 6]}) df2 = DataFrame({"A": [3, 4], "B": [7, 8]}) res = pd.concat([df1, df2], axis=0, ignore_index=True) exp = DataFrame([[1, 5], [2, 6], [3, 7], [4, 8]], columns=["A", "B"]) tm.assert_frame_equal(res, exp, check_index_type=True, check_column_type=True) res = pd.concat([df1, df2], axis=1, ignore_index=True) exp = DataFrame([[1, 5, 3, 7], [2, 6, 4, 8]]) tm.assert_frame_equal(res, exp, check_index_type=True, check_column_type=True) def test_concat_multiindex_rangeindex(self): # GH13542 # when multi-index levels are RangeIndex objects # there is a bug in concat with objects of len 1 df = DataFrame(np.random.randn(9, 2)) df.index = MultiIndex( levels=[pd.RangeIndex(3), pd.RangeIndex(3)], codes=[np.repeat(np.arange(3), 3), np.tile(np.arange(3), 3)], ) res = concat([df.iloc[[2, 3, 4], :], df.iloc[[5], :]]) exp = df.iloc[[2, 3, 4, 5], :] tm.assert_frame_equal(res, exp) def test_concat_multiindex_dfs_with_deepcopy(self): # GH 9967 from copy import deepcopy example_multiindex1 = pd.MultiIndex.from_product([["a"], ["b"]]) example_dataframe1 = DataFrame([0], index=example_multiindex1) example_multiindex2 = pd.MultiIndex.from_product([["a"], ["c"]]) example_dataframe2 = DataFrame([1], index=example_multiindex2) example_dict = {"s1": example_dataframe1, "s2": example_dataframe2} expected_index = pd.MultiIndex( levels=[["s1", "s2"], ["a"], ["b", "c"]], codes=[[0, 1], [0, 0], [0, 1]], names=["testname", None, None], ) expected = DataFrame([[0], [1]], index=expected_index) result_copy = pd.concat(deepcopy(example_dict), names=["testname"]) tm.assert_frame_equal(result_copy, expected) result_no_copy = pd.concat(example_dict, names=["testname"]) tm.assert_frame_equal(result_no_copy, expected) def test_categorical_concat_append(self): cat = Categorical(["a", "b"], categories=["a", "b"]) vals = [1, 2] df = DataFrame({"cats": cat, "vals": vals}) cat2 = Categorical(["a", "b", "a", "b"], categories=["a", "b"]) vals2 = [1, 2, 1, 2] exp = DataFrame({"cats": cat2, "vals": vals2}, index=Index([0, 1, 0, 1])) tm.assert_frame_equal(pd.concat([df, df]), exp) tm.assert_frame_equal(df.append(df), exp) # GH 13524 can concat different categories cat3 = Categorical(["a", "b"], categories=["a", "b", "c"]) vals3 = [1, 2] df_different_categories = DataFrame({"cats": cat3, "vals": vals3}) res = pd.concat([df, df_different_categories], ignore_index=True) exp = DataFrame({"cats": list("abab"), "vals": [1, 2, 1, 2]}) tm.assert_frame_equal(res, exp) res = df.append(df_different_categories, ignore_index=True) tm.assert_frame_equal(res, exp) def test_categorical_concat_dtypes(self): # GH8143 index = ["cat", "obj", "num"] cat = Categorical(["a", "b", "c"]) obj = Series(["a", "b", "c"]) num = Series([1, 2, 3]) df = pd.concat([Series(cat), obj, num], axis=1, keys=index) result = df.dtypes == "object" expected = Series([False, True, False], index=index) tm.assert_series_equal(result, expected) result = df.dtypes == "int64" expected = Series([False, False, True], index=index) tm.assert_series_equal(result, expected) result = df.dtypes == "category" expected = Series([True, False, False], index=index) tm.assert_series_equal(result, expected) def test_categorical_concat(self, sort): # See GH 10177 df1 = DataFrame( np.arange(18, dtype="int64").reshape(6, 3), columns=["a", "b", "c"] ) df2 = DataFrame(np.arange(14, dtype="int64").reshape(7, 2), columns=["a", "c"]) cat_values = ["one", "one", "two", "one", "two", "two", "one"] df2["h"] = Series(Categorical(cat_values)) res = pd.concat((df1, df2), axis=0, ignore_index=True, sort=sort) exp = DataFrame( { "a": [0, 3, 6, 9, 12, 15, 0, 2, 4, 6, 8, 10, 12], "b": [ 1, 4, 7, 10, 13, 16, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, ], "c": [2, 5, 8, 11, 14, 17, 1, 3, 5, 7, 9, 11, 13], "h": [None] * 6 + cat_values, } ) tm.assert_frame_equal(res, exp) def test_categorical_concat_gh7864(self): # GH 7864 # make sure ordering is preserved df = DataFrame({"id": [1, 2, 3, 4, 5, 6], "raw_grade": list("abbaae")}) df["grade"] = Categorical(df["raw_grade"]) df["grade"].cat.set_categories(["e", "a", "b"]) df1 = df[0:3] df2 = df[3:] tm.assert_index_equal(df["grade"].cat.categories, df1["grade"].cat.categories) tm.assert_index_equal(df["grade"].cat.categories, df2["grade"].cat.categories) dfx = pd.concat([df1, df2]) tm.assert_index_equal(df["grade"].cat.categories, dfx["grade"].cat.categories) dfa = df1.append(df2) tm.assert_index_equal(df["grade"].cat.categories, dfa["grade"].cat.categories) def test_categorical_concat_preserve(self): # GH 8641 series concat not preserving category dtype # GH 13524 can concat different categories s = Series(list("abc"), dtype="category") s2 = Series(list("abd"), dtype="category") exp = Series(list("abcabd")) res = pd.concat([s, s2], ignore_index=True) tm.assert_series_equal(res, exp) exp = Series(list("abcabc"), dtype="category") res = pd.concat([s, s], ignore_index=True) tm.assert_series_equal(res, exp) exp = Series(list("abcabc"), index=[0, 1, 2, 0, 1, 2], dtype="category") res = pd.concat([s, s]) tm.assert_series_equal(res, exp) a = Series(np.arange(6, dtype="int64")) b = Series(list("aabbca")) df2 = DataFrame({"A": a, "B": b.astype(CategoricalDtype(list("cab")))}) res = pd.concat([df2, df2]) exp = DataFrame( { "A": pd.concat([a, a]), "B": pd.concat([b, b]).astype(CategoricalDtype(list("cab"))), } ) tm.assert_frame_equal(res, exp) def test_categorical_index_preserver(self): a = Series(np.arange(6, dtype="int64")) b = Series(list("aabbca")) df2 = DataFrame( {"A": a, "B": b.astype(CategoricalDtype(list("cab")))} ).set_index("B") result = pd.concat([df2, df2]) expected = DataFrame( { "A": pd.concat([a, a]), "B": pd.concat([b, b]).astype(CategoricalDtype(list("cab"))), } ).set_index("B") tm.assert_frame_equal(result, expected) # wrong categories df3 = DataFrame( {"A": a, "B": Categorical(b, categories=list("abe"))} ).set_index("B") msg = "categories must match existing categories when appending" with pytest.raises(TypeError, match=msg): pd.concat([df2, df3]) def test_concat_categoricalindex(self): # GH 16111, categories that aren't lexsorted categories = [9, 0, 1, 2, 3] a = Series(1, index=pd.CategoricalIndex([9, 0], categories=categories)) b = Series(2, index=pd.CategoricalIndex([0, 1], categories=categories)) c = Series(3, index=pd.CategoricalIndex([1, 2], categories=categories)) result = pd.concat([a, b, c], axis=1) exp_idx = pd.CategoricalIndex([9, 0, 1, 2], categories=categories) exp = DataFrame( { 0: [1, 1, np.nan, np.nan], 1: [np.nan, 2, 2, np.nan], 2: [np.nan, np.nan, 3, 3], }, columns=[0, 1, 2], index=exp_idx, ) tm.assert_frame_equal(result, exp) def test_concat_order(self): # GH 17344 dfs = [DataFrame(index=range(3), columns=["a", 1, None])] dfs += [DataFrame(index=range(3), columns=[None, 1, "a"]) for i in range(100)] result = pd.concat(dfs, sort=True).columns expected = dfs[0].columns tm.assert_index_equal(result, expected) def test_concat_different_extension_dtypes_upcasts(self): a = Series(pd.core.arrays.integer_array([1, 2])) b = Series(to_decimal([1, 2])) result = pd.concat([a, b], ignore_index=True) expected = Series([1, 2, Decimal(1), Decimal(2)], dtype=object) tm.assert_series_equal(result, expected) def test_concat_odered_dict(self): # GH 21510 expected = pd.concat( [Series(range(3)), Series(range(4))], keys=["First", "Another"] ) result = pd.concat( dict([("First", Series(range(3))), ("Another", Series(range(4)))]) ) tm.assert_series_equal(result, expected) def test_concat_empty_dataframe_dtypes(self): df = DataFrame(columns=list("abc")) df["a"] = df["a"].astype(np.bool_) df["b"] = df["b"].astype(np.int32) df["c"] = df["c"].astype(np.float64) result = pd.concat([df, df]) assert result["a"].dtype == np.bool_ assert result["b"].dtype == np.int32 assert result["c"].dtype == np.float64 result = pd.concat([df, df.astype(np.float64)]) assert result["a"].dtype == np.object_ assert result["b"].dtype == np.float64 assert result["c"].dtype == np.float64 @pytest.mark.parametrize("pdt", [Series, pd.DataFrame]) @pytest.mark.parametrize("dt", np.sctypes["float"]) def test_concat_no_unnecessary_upcast(dt, pdt): # GH 13247 dims = pdt(dtype=object).ndim dfs = [ pdt(np.array([1], dtype=dt, ndmin=dims)), pdt(np.array([np.nan], dtype=dt, ndmin=dims)), pdt(np.array([5], dtype=dt, ndmin=dims)), ] x = pd.concat(dfs) assert x.values.dtype == dt @pytest.mark.parametrize("pdt", [create_series_with_explicit_dtype, pd.DataFrame]) @pytest.mark.parametrize("dt", np.sctypes["int"]) def test_concat_will_upcast(dt, pdt): with catch_warnings(record=True): dims = pdt().ndim dfs = [ pdt(np.array([1], dtype=dt, ndmin=dims)), pdt(np.array([np.nan], ndmin=dims)), pdt(np.array([5], dtype=dt, ndmin=dims)), ] x = pd.concat(dfs) assert x.values.dtype == "float64" def test_concat_empty_and_non_empty_frame_regression(): # GH 18178 regression test df1 = DataFrame({"foo": [1]}) df2 = DataFrame({"foo": []}) expected = DataFrame({"foo": [1.0]}) result = pd.concat([df1, df2]) tm.assert_frame_equal(result, expected) def test_concat_empty_and_non_empty_series_regression(): # GH 18187 regression test s1 = Series([1]) s2 = Series([], dtype=object) expected = s1 result = pd.concat([s1, s2]) tm.assert_series_equal(result, expected) def test_concat_sorts_columns(sort): # GH-4588 df1 = DataFrame({"a": [1, 2], "b": [1, 2]}, columns=["b", "a"]) df2 = DataFrame({"a": [3, 4], "c": [5, 6]}) # for sort=True/None expected = DataFrame( {"a": [1, 2, 3, 4], "b": [1, 2, None, None], "c": [None, None, 5, 6]}, columns=["a", "b", "c"], ) if sort is False: expected = expected[["b", "a", "c"]] # default with tm.assert_produces_warning(None): result = pd.concat([df1, df2], ignore_index=True, sort=sort) tm.assert_frame_equal(result, expected) def test_concat_sorts_index(sort): df1 = DataFrame({"a": [1, 2, 3]}, index=["c", "a", "b"]) df2 = DataFrame({"b": [1, 2]}, index=["a", "b"]) # For True/None expected = DataFrame( {"a": [2, 3, 1], "b": [1, 2, None]}, index=["a", "b", "c"], columns=["a", "b"] ) if sort is False: expected = expected.loc[["c", "a", "b"]] # Warn and sort by default with tm.assert_produces_warning(None): result = pd.concat([df1, df2], axis=1, sort=sort) tm.assert_frame_equal(result, expected) def test_concat_inner_sort(sort): # https://github.com/pandas-dev/pandas/pull/20613 df1 = DataFrame({"a": [1, 2], "b": [1, 2], "c": [1, 2]}, columns=["b", "a", "c"]) df2 = DataFrame({"a": [1, 2], "b": [3, 4]}, index=[3, 4]) with tm.assert_produces_warning(None): # unset sort should *not* warn for inner join # since that never sorted result = pd.concat([df1, df2], sort=sort, join="inner", ignore_index=True) expected = DataFrame({"b": [1, 2, 3, 4], "a": [1, 2, 1, 2]}, columns=["b", "a"]) if sort is True: expected = expected[["a", "b"]] tm.assert_frame_equal(result, expected) def test_concat_aligned_sort(): # GH-4588 df = DataFrame({"c": [1, 2], "b": [3, 4], "a": [5, 6]}, columns=["c", "b", "a"]) result = pd.concat([df, df], sort=True, ignore_index=True) expected = DataFrame( {"a": [5, 6, 5, 6], "b": [3, 4, 3, 4], "c": [1, 2, 1, 2]}, columns=["a", "b", "c"], ) tm.assert_frame_equal(result, expected) result = pd.concat([df, df[["c", "b"]]], join="inner", sort=True, ignore_index=True) expected = expected[["b", "c"]] tm.assert_frame_equal(result, expected) def test_concat_aligned_sort_does_not_raise(): # GH-4588 # We catch TypeErrors from sorting internally and do not re-raise. df = DataFrame({1: [1, 2], "a": [3, 4]}, columns=[1, "a"]) expected = DataFrame({1: [1, 2, 1, 2], "a": [3, 4, 3, 4]}, columns=[1, "a"]) result = pd.concat([df, df], ignore_index=True, sort=True) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("s1name,s2name", [(np.int64(190), (43, 0)), (190, (43, 0))]) def test_concat_series_name_npscalar_tuple(s1name, s2name): # GH21015 s1 = Series({"a": 1, "b": 2}, name=s1name) s2 = Series({"c": 5, "d": 6}, name=s2name) result = pd.concat([s1, s2]) expected = Series({"a": 1, "b": 2, "c": 5, "d": 6}) tm.assert_series_equal(result, expected) def test_concat_categorical_tz(): # GH-23816 a = Series(pd.date_range("2017-01-01", periods=2, tz="US/Pacific")) b = Series(["a", "b"], dtype="category") result = pd.concat([a, b], ignore_index=True) expected = Series( [ pd.Timestamp("2017-01-01", tz="US/Pacific"), pd.Timestamp("2017-01-02", tz="US/Pacific"), "a", "b", ] ) tm.assert_series_equal(result, expected) def test_concat_categorical_unchanged(): # GH-12007 # test fix for when concat on categorical and float # coerces dtype categorical -> float df = DataFrame(Series(["a", "b", "c"], dtype="category", name="A")) ser = Series([0, 1, 2], index=[0, 1, 3], name="B") result = pd.concat([df, ser], axis=1) expected = DataFrame( { "A": Series(["a", "b", "c", np.nan], dtype="category"), "B": Series([0, 1, np.nan, 2], dtype="float"), } ) tm.assert_equal(result, expected) def test_concat_empty_df_object_dtype(): # GH 9149 df_1 = DataFrame({"Row": [0, 1, 1], "EmptyCol": np.nan, "NumberCol": [1, 2, 3]}) df_2 = DataFrame(columns=df_1.columns) result = pd.concat([df_1, df_2], axis=0) expected = df_1.astype(object) tm.assert_frame_equal(result, expected) def test_concat_sparse(): # GH 23557 a = Series(SparseArray([0, 1, 2])) expected = DataFrame(data=[[0, 0], [1, 1], [2, 2]]).astype( pd.SparseDtype(np.int64, 0) ) result = pd.concat([a, a], axis=1) tm.assert_frame_equal(result, expected) def test_concat_dense_sparse(): # GH 30668 a = Series(pd.arrays.SparseArray([1, None]), dtype=float) b = Series([1], dtype=float) expected =
Series(data=[1, None, 1], index=[0, 1, 0])
pandas.Series
#!/usr/bin/python3 # coding: utf-8 import sys import os.path import numpy as np import pandas as pd import matplotlib import matplotlib.pyplot as plt from matplotlib.colors import LogNorm # get_ipython().run_line_magic('matplotlib', 'inline') # plt.close('all') # dpi = 300 # figsize = (1920 / dpi, 1080 / dpi) from plotHitMissUnkRate import plotHitMissUnkRate def getExamplesDf(path): assert os.path.isfile(path), "file '%s' not found." % path df =
pd.read_csv(filepath_or_buffer=path, header=None)
pandas.read_csv
from datetime import datetime import numpy as np import pandas as pd import pytest from numba import njit import vectorbt as vbt from tests.utils import record_arrays_close from vectorbt.generic.enums import range_dt, drawdown_dt from vectorbt.portfolio.enums import order_dt, trade_dt, log_dt day_dt = np.timedelta64(86400000000000) example_dt = np.dtype([ ('id', np.int64), ('col', np.int64), ('idx', np.int64), ('some_field1', np.float64), ('some_field2', np.float64) ], align=True) records_arr = np.asarray([ (0, 0, 0, 10, 21), (1, 0, 1, 11, 20), (2, 0, 2, 12, 19), (3, 1, 0, 13, 18), (4, 1, 1, 14, 17), (5, 1, 2, 13, 18), (6, 2, 0, 12, 19), (7, 2, 1, 11, 20), (8, 2, 2, 10, 21) ], dtype=example_dt) records_nosort_arr = np.concatenate(( records_arr[0::3], records_arr[1::3], records_arr[2::3] )) group_by = pd.Index(['g1', 'g1', 'g2', 'g2']) wrapper = vbt.ArrayWrapper( index=['x', 'y', 'z'], columns=['a', 'b', 'c', 'd'], ndim=2, freq='1 days' ) wrapper_grouped = wrapper.replace(group_by=group_by) records = vbt.records.Records(wrapper, records_arr) records_grouped = vbt.records.Records(wrapper_grouped, records_arr) records_nosort = records.replace(records_arr=records_nosort_arr) records_nosort_grouped = vbt.records.Records(wrapper_grouped, records_nosort_arr) # ############# Global ############# # def setup_module(): vbt.settings.numba['check_func_suffix'] = True vbt.settings.caching.enabled = False vbt.settings.caching.whitelist = [] vbt.settings.caching.blacklist = [] def teardown_module(): vbt.settings.reset() # ############# col_mapper.py ############# # class TestColumnMapper: def test_col_arr(self): np.testing.assert_array_equal( records['a'].col_mapper.col_arr, np.array([0, 0, 0]) ) np.testing.assert_array_equal( records.col_mapper.col_arr, np.array([0, 0, 0, 1, 1, 1, 2, 2, 2]) ) def test_get_col_arr(self): np.testing.assert_array_equal( records.col_mapper.get_col_arr(), records.col_mapper.col_arr ) np.testing.assert_array_equal( records_grouped['g1'].col_mapper.get_col_arr(), np.array([0, 0, 0, 0, 0, 0]) ) np.testing.assert_array_equal( records_grouped.col_mapper.get_col_arr(), np.array([0, 0, 0, 0, 0, 0, 1, 1, 1]) ) def test_col_range(self): np.testing.assert_array_equal( records['a'].col_mapper.col_range, np.array([ [0, 3] ]) ) np.testing.assert_array_equal( records.col_mapper.col_range, np.array([ [0, 3], [3, 6], [6, 9], [-1, -1] ]) ) def test_get_col_range(self): np.testing.assert_array_equal( records.col_mapper.get_col_range(), np.array([ [0, 3], [3, 6], [6, 9], [-1, -1] ]) ) np.testing.assert_array_equal( records_grouped['g1'].col_mapper.get_col_range(), np.array([[0, 6]]) ) np.testing.assert_array_equal( records_grouped.col_mapper.get_col_range(), np.array([[0, 6], [6, 9]]) ) def test_col_map(self): np.testing.assert_array_equal( records['a'].col_mapper.col_map[0], np.array([0, 1, 2]) ) np.testing.assert_array_equal( records['a'].col_mapper.col_map[1], np.array([3]) ) np.testing.assert_array_equal( records.col_mapper.col_map[0], np.array([0, 1, 2, 3, 4, 5, 6, 7, 8]) ) np.testing.assert_array_equal( records.col_mapper.col_map[1], np.array([3, 3, 3, 0]) ) def test_get_col_map(self): np.testing.assert_array_equal( records.col_mapper.get_col_map()[0], records.col_mapper.col_map[0] ) np.testing.assert_array_equal( records.col_mapper.get_col_map()[1], records.col_mapper.col_map[1] ) np.testing.assert_array_equal( records_grouped['g1'].col_mapper.get_col_map()[0], np.array([0, 1, 2, 3, 4, 5]) ) np.testing.assert_array_equal( records_grouped['g1'].col_mapper.get_col_map()[1], np.array([6]) ) np.testing.assert_array_equal( records_grouped.col_mapper.get_col_map()[0], np.array([0, 1, 2, 3, 4, 5, 6, 7, 8]) ) np.testing.assert_array_equal( records_grouped.col_mapper.get_col_map()[1], np.array([6, 3]) ) def test_is_sorted(self): assert records.col_mapper.is_sorted() assert not records_nosort.col_mapper.is_sorted() # ############# mapped_array.py ############# # mapped_array = records.map_field('some_field1') mapped_array_grouped = records_grouped.map_field('some_field1') mapped_array_nosort = records_nosort.map_field('some_field1') mapped_array_nosort_grouped = records_nosort_grouped.map_field('some_field1') mapping = {x: 'test_' + str(x) for x in pd.unique(mapped_array.values)} mp_mapped_array = mapped_array.replace(mapping=mapping) mp_mapped_array_grouped = mapped_array_grouped.replace(mapping=mapping) class TestMappedArray: def test_config(self, tmp_path): assert vbt.MappedArray.loads(mapped_array.dumps()) == mapped_array mapped_array.save(tmp_path / 'mapped_array') assert vbt.MappedArray.load(tmp_path / 'mapped_array') == mapped_array def test_mapped_arr(self): np.testing.assert_array_equal( mapped_array['a'].values, np.array([10., 11., 12.]) ) np.testing.assert_array_equal( mapped_array.values, np.array([10., 11., 12., 13., 14., 13., 12., 11., 10.]) ) def test_id_arr(self): np.testing.assert_array_equal( mapped_array['a'].id_arr, np.array([0, 1, 2]) ) np.testing.assert_array_equal( mapped_array.id_arr, np.array([0, 1, 2, 3, 4, 5, 6, 7, 8]) ) def test_col_arr(self): np.testing.assert_array_equal( mapped_array['a'].col_arr, np.array([0, 0, 0]) ) np.testing.assert_array_equal( mapped_array.col_arr, np.array([0, 0, 0, 1, 1, 1, 2, 2, 2]) ) def test_idx_arr(self): np.testing.assert_array_equal( mapped_array['a'].idx_arr, np.array([0, 1, 2]) ) np.testing.assert_array_equal( mapped_array.idx_arr, np.array([0, 1, 2, 0, 1, 2, 0, 1, 2]) ) def test_is_sorted(self): assert mapped_array.is_sorted() assert mapped_array.is_sorted(incl_id=True) assert not mapped_array_nosort.is_sorted() assert not mapped_array_nosort.is_sorted(incl_id=True) def test_sort(self): assert mapped_array.sort().is_sorted() assert mapped_array.sort().is_sorted(incl_id=True) assert mapped_array.sort(incl_id=True).is_sorted(incl_id=True) assert mapped_array_nosort.sort().is_sorted() assert mapped_array_nosort.sort().is_sorted(incl_id=True) assert mapped_array_nosort.sort(incl_id=True).is_sorted(incl_id=True) def test_apply_mask(self): mask_a = mapped_array['a'].values >= mapped_array['a'].values.mean() np.testing.assert_array_equal( mapped_array['a'].apply_mask(mask_a).id_arr, np.array([1, 2]) ) mask = mapped_array.values >= mapped_array.values.mean() filtered = mapped_array.apply_mask(mask) np.testing.assert_array_equal( filtered.id_arr, np.array([2, 3, 4, 5, 6]) ) np.testing.assert_array_equal(filtered.col_arr, mapped_array.col_arr[mask]) np.testing.assert_array_equal(filtered.idx_arr, mapped_array.idx_arr[mask]) assert mapped_array_grouped.apply_mask(mask).wrapper == mapped_array_grouped.wrapper assert mapped_array_grouped.apply_mask(mask, group_by=False).wrapper.grouper.group_by is None def test_map_to_mask(self): @njit def every_2_nb(inout, idxs, col, mapped_arr): inout[idxs[::2]] = True np.testing.assert_array_equal( mapped_array.map_to_mask(every_2_nb), np.array([True, False, True, True, False, True, True, False, True]) ) def test_top_n_mask(self): np.testing.assert_array_equal( mapped_array.top_n_mask(1), np.array([False, False, True, False, True, False, True, False, False]) ) def test_bottom_n_mask(self): np.testing.assert_array_equal( mapped_array.bottom_n_mask(1), np.array([True, False, False, True, False, False, False, False, True]) ) def test_top_n(self): np.testing.assert_array_equal( mapped_array.top_n(1).id_arr, np.array([2, 4, 6]) ) def test_bottom_n(self): np.testing.assert_array_equal( mapped_array.bottom_n(1).id_arr, np.array([0, 3, 8]) ) def test_to_pd(self): target = pd.DataFrame( np.array([ [10., 13., 12., np.nan], [11., 14., 11., np.nan], [12., 13., 10., np.nan] ]), index=wrapper.index, columns=wrapper.columns ) pd.testing.assert_series_equal( mapped_array['a'].to_pd(), target['a'] ) pd.testing.assert_frame_equal( mapped_array.to_pd(), target ) pd.testing.assert_frame_equal( mapped_array.to_pd(fill_value=0.), target.fillna(0.) ) mapped_array2 = vbt.MappedArray( wrapper, records_arr['some_field1'].tolist() + [1], records_arr['col'].tolist() + [2], idx_arr=records_arr['idx'].tolist() + [2] ) with pytest.raises(Exception): _ = mapped_array2.to_pd() pd.testing.assert_series_equal( mapped_array['a'].to_pd(ignore_index=True), pd.Series(np.array([10., 11., 12.]), name='a') ) pd.testing.assert_frame_equal( mapped_array.to_pd(ignore_index=True), pd.DataFrame( np.array([ [10., 13., 12., np.nan], [11., 14., 11., np.nan], [12., 13., 10., np.nan] ]), columns=wrapper.columns ) ) pd.testing.assert_frame_equal( mapped_array.to_pd(fill_value=0, ignore_index=True), pd.DataFrame( np.array([ [10., 13., 12., 0.], [11., 14., 11., 0.], [12., 13., 10., 0.] ]), columns=wrapper.columns ) ) pd.testing.assert_frame_equal( mapped_array_grouped.to_pd(ignore_index=True), pd.DataFrame( np.array([ [10., 12.], [11., 11.], [12., 10.], [13., np.nan], [14., np.nan], [13., np.nan], ]), columns=pd.Index(['g1', 'g2'], dtype='object') ) ) def test_apply(self): @njit def cumsum_apply_nb(idxs, col, a): return np.cumsum(a) np.testing.assert_array_equal( mapped_array['a'].apply(cumsum_apply_nb).values, np.array([10., 21., 33.]) ) np.testing.assert_array_equal( mapped_array.apply(cumsum_apply_nb).values, np.array([10., 21., 33., 13., 27., 40., 12., 23., 33.]) ) np.testing.assert_array_equal( mapped_array_grouped.apply(cumsum_apply_nb, apply_per_group=False).values, np.array([10., 21., 33., 13., 27., 40., 12., 23., 33.]) ) np.testing.assert_array_equal( mapped_array_grouped.apply(cumsum_apply_nb, apply_per_group=True).values, np.array([10., 21., 33., 46., 60., 73., 12., 23., 33.]) ) assert mapped_array_grouped.apply(cumsum_apply_nb).wrapper == \ mapped_array.apply(cumsum_apply_nb, group_by=group_by).wrapper assert mapped_array.apply(cumsum_apply_nb, group_by=False).wrapper.grouper.group_by is None def test_reduce(self): @njit def mean_reduce_nb(col, a): return np.mean(a) assert mapped_array['a'].reduce(mean_reduce_nb) == 11. pd.testing.assert_series_equal( mapped_array.reduce(mean_reduce_nb), pd.Series(np.array([11., 13.333333333333334, 11., np.nan]), index=wrapper.columns).rename('reduce') ) pd.testing.assert_series_equal( mapped_array.reduce(mean_reduce_nb, fill_value=0.), pd.Series(np.array([11., 13.333333333333334, 11., 0.]), index=wrapper.columns).rename('reduce') ) pd.testing.assert_series_equal( mapped_array.reduce(mean_reduce_nb, fill_value=0., wrap_kwargs=dict(dtype=np.int_)), pd.Series(np.array([11., 13.333333333333334, 11., 0.]), index=wrapper.columns).rename('reduce') ) pd.testing.assert_series_equal( mapped_array.reduce(mean_reduce_nb, wrap_kwargs=dict(to_timedelta=True)), pd.Series(np.array([11., 13.333333333333334, 11., np.nan]), index=wrapper.columns).rename('reduce') * day_dt ) pd.testing.assert_series_equal( mapped_array_grouped.reduce(mean_reduce_nb), pd.Series([12.166666666666666, 11.0], index=pd.Index(['g1', 'g2'], dtype='object')).rename('reduce') ) assert mapped_array_grouped['g1'].reduce(mean_reduce_nb) == 12.166666666666666 pd.testing.assert_series_equal( mapped_array_grouped[['g1']].reduce(mean_reduce_nb), pd.Series([12.166666666666666], index=pd.Index(['g1'], dtype='object')).rename('reduce') ) pd.testing.assert_series_equal( mapped_array.reduce(mean_reduce_nb), mapped_array_grouped.reduce(mean_reduce_nb, group_by=False) ) pd.testing.assert_series_equal( mapped_array.reduce(mean_reduce_nb, group_by=group_by), mapped_array_grouped.reduce(mean_reduce_nb) ) def test_reduce_to_idx(self): @njit def argmin_reduce_nb(col, a): return np.argmin(a) assert mapped_array['a'].reduce(argmin_reduce_nb, returns_idx=True) == 'x' pd.testing.assert_series_equal( mapped_array.reduce(argmin_reduce_nb, returns_idx=True), pd.Series(np.array(['x', 'x', 'z', np.nan], dtype=object), index=wrapper.columns).rename('reduce') ) pd.testing.assert_series_equal( mapped_array.reduce(argmin_reduce_nb, returns_idx=True, to_index=False), pd.Series(np.array([0, 0, 2, -1], dtype=int), index=wrapper.columns).rename('reduce') ) pd.testing.assert_series_equal( mapped_array_grouped.reduce(argmin_reduce_nb, returns_idx=True, to_index=False), pd.Series(np.array([0, 2], dtype=int), index=pd.Index(['g1', 'g2'], dtype='object')).rename('reduce') ) def test_reduce_to_array(self): @njit def min_max_reduce_nb(col, a): return np.array([np.min(a), np.max(a)]) pd.testing.assert_series_equal( mapped_array['a'].reduce(min_max_reduce_nb, returns_array=True, wrap_kwargs=dict(name_or_index=['min', 'max'])), pd.Series([10., 12.], index=pd.Index(['min', 'max'], dtype='object'), name='a') ) pd.testing.assert_frame_equal( mapped_array.reduce(min_max_reduce_nb, returns_array=True, wrap_kwargs=dict(name_or_index=['min', 'max'])), pd.DataFrame( np.array([ [10., 13., 10., np.nan], [12., 14., 12., np.nan] ]), index=pd.Index(['min', 'max'], dtype='object'), columns=wrapper.columns ) ) pd.testing.assert_frame_equal( mapped_array.reduce(min_max_reduce_nb, returns_array=True, fill_value=0.), pd.DataFrame( np.array([ [10., 13., 10., 0.], [12., 14., 12., 0.] ]), columns=wrapper.columns ) ) pd.testing.assert_frame_equal( mapped_array.reduce(min_max_reduce_nb, returns_array=True, wrap_kwargs=dict(to_timedelta=True)), pd.DataFrame( np.array([ [10., 13., 10., np.nan], [12., 14., 12., np.nan] ]), columns=wrapper.columns ) * day_dt ) pd.testing.assert_frame_equal( mapped_array_grouped.reduce(min_max_reduce_nb, returns_array=True), pd.DataFrame( np.array([ [10., 10.], [14., 12.] ]), columns=pd.Index(['g1', 'g2'], dtype='object') ) ) pd.testing.assert_frame_equal( mapped_array.reduce(min_max_reduce_nb, returns_array=True), mapped_array_grouped.reduce(min_max_reduce_nb, returns_array=True, group_by=False) ) pd.testing.assert_frame_equal( mapped_array.reduce(min_max_reduce_nb, returns_array=True, group_by=group_by), mapped_array_grouped.reduce(min_max_reduce_nb, returns_array=True) ) pd.testing.assert_series_equal( mapped_array_grouped['g1'].reduce(min_max_reduce_nb, returns_array=True), pd.Series([10., 14.], name='g1') ) pd.testing.assert_frame_equal( mapped_array_grouped[['g1']].reduce(min_max_reduce_nb, returns_array=True), pd.DataFrame([[10.], [14.]], columns=pd.Index(['g1'], dtype='object')) ) def test_reduce_to_idx_array(self): @njit def idxmin_idxmax_reduce_nb(col, a): return np.array([np.argmin(a), np.argmax(a)]) pd.testing.assert_series_equal( mapped_array['a'].reduce( idxmin_idxmax_reduce_nb, returns_array=True, returns_idx=True, wrap_kwargs=dict(name_or_index=['min', 'max']) ), pd.Series( np.array(['x', 'z'], dtype=object), index=pd.Index(['min', 'max'], dtype='object'), name='a' ) ) pd.testing.assert_frame_equal( mapped_array.reduce( idxmin_idxmax_reduce_nb, returns_array=True, returns_idx=True, wrap_kwargs=dict(name_or_index=['min', 'max']) ), pd.DataFrame( { 'a': ['x', 'z'], 'b': ['x', 'y'], 'c': ['z', 'x'], 'd': [np.nan, np.nan] }, index=pd.Index(['min', 'max'], dtype='object') ) ) pd.testing.assert_frame_equal( mapped_array.reduce( idxmin_idxmax_reduce_nb, returns_array=True, returns_idx=True, to_index=False ), pd.DataFrame( np.array([ [0, 0, 2, -1], [2, 1, 0, -1] ]), columns=wrapper.columns ) ) pd.testing.assert_frame_equal( mapped_array_grouped.reduce( idxmin_idxmax_reduce_nb, returns_array=True, returns_idx=True, to_index=False ), pd.DataFrame( np.array([ [0, 2], [1, 0] ]), columns=pd.Index(['g1', 'g2'], dtype='object') ) ) def test_nth(self): assert mapped_array['a'].nth(0) == 10. pd.testing.assert_series_equal( mapped_array.nth(0), pd.Series(np.array([10., 13., 12., np.nan]), index=wrapper.columns).rename('nth') ) assert mapped_array['a'].nth(-1) == 12. pd.testing.assert_series_equal( mapped_array.nth(-1), pd.Series(np.array([12., 13., 10., np.nan]), index=wrapper.columns).rename('nth') ) with pytest.raises(Exception): _ = mapped_array.nth(10) pd.testing.assert_series_equal( mapped_array_grouped.nth(0), pd.Series(np.array([10., 12.]), index=pd.Index(['g1', 'g2'], dtype='object')).rename('nth') ) def test_nth_index(self): assert mapped_array['a'].nth(0) == 10. pd.testing.assert_series_equal( mapped_array.nth_index(0), pd.Series( np.array(['x', 'x', 'x', np.nan], dtype='object'), index=wrapper.columns ).rename('nth_index') ) assert mapped_array['a'].nth(-1) == 12. pd.testing.assert_series_equal( mapped_array.nth_index(-1), pd.Series( np.array(['z', 'z', 'z', np.nan], dtype='object'), index=wrapper.columns ).rename('nth_index') ) with pytest.raises(Exception): _ = mapped_array.nth_index(10) pd.testing.assert_series_equal( mapped_array_grouped.nth_index(0), pd.Series( np.array(['x', 'x'], dtype='object'), index=pd.Index(['g1', 'g2'], dtype='object') ).rename('nth_index') ) def test_min(self): assert mapped_array['a'].min() == mapped_array['a'].to_pd().min() pd.testing.assert_series_equal( mapped_array.min(), mapped_array.to_pd().min().rename('min') ) pd.testing.assert_series_equal( mapped_array_grouped.min(), pd.Series([10., 10.], index=pd.Index(['g1', 'g2'], dtype='object')).rename('min') ) def test_max(self): assert mapped_array['a'].max() == mapped_array['a'].to_pd().max() pd.testing.assert_series_equal( mapped_array.max(), mapped_array.to_pd().max().rename('max') ) pd.testing.assert_series_equal( mapped_array_grouped.max(), pd.Series([14., 12.], index=pd.Index(['g1', 'g2'], dtype='object')).rename('max') ) def test_mean(self): assert mapped_array['a'].mean() == mapped_array['a'].to_pd().mean() pd.testing.assert_series_equal( mapped_array.mean(), mapped_array.to_pd().mean().rename('mean') ) pd.testing.assert_series_equal( mapped_array_grouped.mean(), pd.Series([12.166667, 11.], index=pd.Index(['g1', 'g2'], dtype='object')).rename('mean') ) def test_median(self): assert mapped_array['a'].median() == mapped_array['a'].to_pd().median() pd.testing.assert_series_equal( mapped_array.median(), mapped_array.to_pd().median().rename('median') ) pd.testing.assert_series_equal( mapped_array_grouped.median(), pd.Series([12.5, 11.], index=pd.Index(['g1', 'g2'], dtype='object')).rename('median') ) def test_std(self): assert mapped_array['a'].std() == mapped_array['a'].to_pd().std() pd.testing.assert_series_equal( mapped_array.std(), mapped_array.to_pd().std().rename('std') ) pd.testing.assert_series_equal( mapped_array.std(ddof=0), mapped_array.to_pd().std(ddof=0).rename('std') ) pd.testing.assert_series_equal( mapped_array_grouped.std(), pd.Series([1.4719601443879746, 1.0], index=pd.Index(['g1', 'g2'], dtype='object')).rename('std') ) def test_sum(self): assert mapped_array['a'].sum() == mapped_array['a'].to_pd().sum() pd.testing.assert_series_equal( mapped_array.sum(), mapped_array.to_pd().sum().rename('sum') ) pd.testing.assert_series_equal( mapped_array_grouped.sum(), pd.Series([73.0, 33.0], index=pd.Index(['g1', 'g2'], dtype='object')).rename('sum') ) def test_count(self): assert mapped_array['a'].count() == mapped_array['a'].to_pd().count() pd.testing.assert_series_equal( mapped_array.count(), mapped_array.to_pd().count().rename('count') ) pd.testing.assert_series_equal( mapped_array_grouped.count(), pd.Series([6, 3], index=pd.Index(['g1', 'g2'], dtype='object')).rename('count') ) def test_idxmin(self): assert mapped_array['a'].idxmin() == mapped_array['a'].to_pd().idxmin() pd.testing.assert_series_equal( mapped_array.idxmin(), mapped_array.to_pd().idxmin().rename('idxmin') ) pd.testing.assert_series_equal( mapped_array_grouped.idxmin(), pd.Series( np.array(['x', 'z'], dtype=object), index=pd.Index(['g1', 'g2'], dtype='object') ).rename('idxmin') ) def test_idxmax(self): assert mapped_array['a'].idxmax() == mapped_array['a'].to_pd().idxmax() pd.testing.assert_series_equal( mapped_array.idxmax(), mapped_array.to_pd().idxmax().rename('idxmax') ) pd.testing.assert_series_equal( mapped_array_grouped.idxmax(), pd.Series( np.array(['y', 'x'], dtype=object), index=pd.Index(['g1', 'g2'], dtype='object') ).rename('idxmax') ) def test_describe(self): pd.testing.assert_series_equal( mapped_array['a'].describe(), mapped_array['a'].to_pd().describe() ) pd.testing.assert_frame_equal( mapped_array.describe(percentiles=None), mapped_array.to_pd().describe(percentiles=None) ) pd.testing.assert_frame_equal( mapped_array.describe(percentiles=[]), mapped_array.to_pd().describe(percentiles=[]) ) pd.testing.assert_frame_equal( mapped_array.describe(percentiles=np.arange(0, 1, 0.1)), mapped_array.to_pd().describe(percentiles=np.arange(0, 1, 0.1)) ) pd.testing.assert_frame_equal( mapped_array_grouped.describe(), pd.DataFrame( np.array([ [6., 3.], [12.16666667, 11.], [1.47196014, 1.], [10., 10.], [11.25, 10.5], [12.5, 11.], [13., 11.5], [14., 12.] ]), columns=pd.Index(['g1', 'g2'], dtype='object'), index=mapped_array.describe().index ) ) def test_value_counts(self): pd.testing.assert_series_equal( mapped_array['a'].value_counts(), pd.Series( np.array([1, 1, 1]), index=pd.Float64Index([10.0, 11.0, 12.0], dtype='float64'), name='a' ) ) pd.testing.assert_series_equal( mapped_array['a'].value_counts(mapping=mapping), pd.Series( np.array([1, 1, 1]), index=pd.Index(['test_10.0', 'test_11.0', 'test_12.0'], dtype='object'), name='a' ) ) pd.testing.assert_frame_equal( mapped_array.value_counts(), pd.DataFrame( np.array([ [1, 0, 1, 0], [1, 0, 1, 0], [1, 0, 1, 0], [0, 2, 0, 0], [0, 1, 0, 0] ]), index=pd.Float64Index([10.0, 11.0, 12.0, 13.0, 14.0], dtype='float64'), columns=wrapper.columns ) ) pd.testing.assert_frame_equal( mapped_array_grouped.value_counts(), pd.DataFrame( np.array([ [1, 1], [1, 1], [1, 1], [2, 0], [1, 0] ]), index=pd.Float64Index([10.0, 11.0, 12.0, 13.0, 14.0], dtype='float64'), columns=pd.Index(['g1', 'g2'], dtype='object') ) ) mapped_array2 = mapped_array.replace(mapped_arr=[4, 4, 3, 2, np.nan, 4, 3, 2, 1]) pd.testing.assert_frame_equal( mapped_array2.value_counts(sort_uniques=False), pd.DataFrame( np.array([ [2, 1, 0, 0], [1, 0, 1, 0], [0, 1, 1, 0], [0, 0, 1, 0], [0, 1, 0, 0] ]), index=pd.Float64Index([4.0, 3.0, 2.0, 1.0, None], dtype='float64'), columns=wrapper.columns ) ) pd.testing.assert_frame_equal( mapped_array2.value_counts(sort_uniques=True), pd.DataFrame( np.array([ [0, 0, 1, 0], [0, 1, 1, 0], [1, 0, 1, 0], [2, 1, 0, 0], [0, 1, 0, 0] ]), index=pd.Float64Index([1.0, 2.0, 3.0, 4.0, None], dtype='float64'), columns=wrapper.columns ) ) pd.testing.assert_frame_equal( mapped_array2.value_counts(sort=True), pd.DataFrame( np.array([ [2, 1, 0, 0], [0, 1, 1, 0], [1, 0, 1, 0], [0, 0, 1, 0], [0, 1, 0, 0] ]), index=pd.Float64Index([4.0, 2.0, 3.0, 1.0, np.nan], dtype='float64'), columns=wrapper.columns ) ) pd.testing.assert_frame_equal( mapped_array2.value_counts(sort=True, ascending=True), pd.DataFrame( np.array([ [0, 0, 1, 0], [0, 1, 0, 0], [0, 1, 1, 0], [1, 0, 1, 0], [2, 1, 0, 0] ]), index=pd.Float64Index([1.0, np.nan, 2.0, 3.0, 4.0], dtype='float64'), columns=wrapper.columns ) ) pd.testing.assert_frame_equal( mapped_array2.value_counts(sort=True, normalize=True), pd.DataFrame( np.array([ [0.2222222222222222, 0.1111111111111111, 0.0, 0.0], [0.0, 0.1111111111111111, 0.1111111111111111, 0.0], [0.1111111111111111, 0.0, 0.1111111111111111, 0.0], [0.0, 0.0, 0.1111111111111111, 0.0], [0.0, 0.1111111111111111, 0.0, 0.0] ]), index=pd.Float64Index([4.0, 2.0, 3.0, 1.0, np.nan], dtype='float64'), columns=wrapper.columns ) ) pd.testing.assert_frame_equal( mapped_array2.value_counts(sort=True, normalize=True, dropna=True), pd.DataFrame( np.array([ [0.25, 0.125, 0.0, 0.0], [0.0, 0.125, 0.125, 0.0], [0.125, 0.0, 0.125, 0.0], [0.0, 0.0, 0.125, 0.0] ]), index=pd.Float64Index([4.0, 2.0, 3.0, 1.0], dtype='float64'), columns=wrapper.columns ) ) @pytest.mark.parametrize( "test_nosort", [False, True], ) def test_indexing(self, test_nosort): if test_nosort: ma = mapped_array_nosort ma_grouped = mapped_array_nosort_grouped else: ma = mapped_array ma_grouped = mapped_array_grouped np.testing.assert_array_equal( ma['a'].id_arr, np.array([0, 1, 2]) ) np.testing.assert_array_equal( ma['a'].col_arr, np.array([0, 0, 0]) ) pd.testing.assert_index_equal( ma['a'].wrapper.columns, pd.Index(['a'], dtype='object') ) np.testing.assert_array_equal( ma['b'].id_arr, np.array([3, 4, 5]) ) np.testing.assert_array_equal( ma['b'].col_arr, np.array([0, 0, 0]) ) pd.testing.assert_index_equal( ma['b'].wrapper.columns, pd.Index(['b'], dtype='object') ) np.testing.assert_array_equal( ma[['a', 'a']].id_arr, np.array([0, 1, 2, 0, 1, 2]) ) np.testing.assert_array_equal( ma[['a', 'a']].col_arr, np.array([0, 0, 0, 1, 1, 1]) ) pd.testing.assert_index_equal( ma[['a', 'a']].wrapper.columns, pd.Index(['a', 'a'], dtype='object') ) np.testing.assert_array_equal( ma[['a', 'b']].id_arr, np.array([0, 1, 2, 3, 4, 5]) ) np.testing.assert_array_equal( ma[['a', 'b']].col_arr, np.array([0, 0, 0, 1, 1, 1]) ) pd.testing.assert_index_equal( ma[['a', 'b']].wrapper.columns, pd.Index(['a', 'b'], dtype='object') ) with pytest.raises(Exception): _ = ma.iloc[::2, :] # changing time not supported pd.testing.assert_index_equal( ma_grouped['g1'].wrapper.columns, pd.Index(['a', 'b'], dtype='object') ) assert ma_grouped['g1'].wrapper.ndim == 2 assert ma_grouped['g1'].wrapper.grouped_ndim == 1 pd.testing.assert_index_equal( ma_grouped['g1'].wrapper.grouper.group_by, pd.Index(['g1', 'g1'], dtype='object') ) pd.testing.assert_index_equal( ma_grouped['g2'].wrapper.columns, pd.Index(['c', 'd'], dtype='object') ) assert ma_grouped['g2'].wrapper.ndim == 2 assert ma_grouped['g2'].wrapper.grouped_ndim == 1 pd.testing.assert_index_equal( ma_grouped['g2'].wrapper.grouper.group_by, pd.Index(['g2', 'g2'], dtype='object') ) pd.testing.assert_index_equal( ma_grouped[['g1']].wrapper.columns, pd.Index(['a', 'b'], dtype='object') ) assert ma_grouped[['g1']].wrapper.ndim == 2 assert ma_grouped[['g1']].wrapper.grouped_ndim == 2 pd.testing.assert_index_equal( ma_grouped[['g1']].wrapper.grouper.group_by, pd.Index(['g1', 'g1'], dtype='object') ) pd.testing.assert_index_equal( ma_grouped[['g1', 'g2']].wrapper.columns, pd.Index(['a', 'b', 'c', 'd'], dtype='object') ) assert ma_grouped[['g1', 'g2']].wrapper.ndim == 2 assert ma_grouped[['g1', 'g2']].wrapper.grouped_ndim == 2 pd.testing.assert_index_equal( ma_grouped[['g1', 'g2']].wrapper.grouper.group_by, pd.Index(['g1', 'g1', 'g2', 'g2'], dtype='object') ) def test_magic(self): a = vbt.MappedArray( wrapper, records_arr['some_field1'], records_arr['col'], id_arr=records_arr['id'], idx_arr=records_arr['idx'] ) a_inv = vbt.MappedArray( wrapper, records_arr['some_field1'][::-1], records_arr['col'][::-1], id_arr=records_arr['id'][::-1], idx_arr=records_arr['idx'][::-1] ) b = records_arr['some_field2'] a_bool = vbt.MappedArray( wrapper, records_arr['some_field1'] > np.mean(records_arr['some_field1']), records_arr['col'], id_arr=records_arr['id'], idx_arr=records_arr['idx'] ) b_bool = records_arr['some_field2'] > np.mean(records_arr['some_field2']) assert a ** a == a ** 2 with pytest.raises(Exception): _ = a * a_inv # binary ops # comparison ops np.testing.assert_array_equal((a == b).values, a.values == b) np.testing.assert_array_equal((a != b).values, a.values != b) np.testing.assert_array_equal((a < b).values, a.values < b) np.testing.assert_array_equal((a > b).values, a.values > b) np.testing.assert_array_equal((a <= b).values, a.values <= b) np.testing.assert_array_equal((a >= b).values, a.values >= b) # arithmetic ops np.testing.assert_array_equal((a + b).values, a.values + b) np.testing.assert_array_equal((a - b).values, a.values - b) np.testing.assert_array_equal((a * b).values, a.values * b) np.testing.assert_array_equal((a ** b).values, a.values ** b) np.testing.assert_array_equal((a % b).values, a.values % b) np.testing.assert_array_equal((a // b).values, a.values // b) np.testing.assert_array_equal((a / b).values, a.values / b) # __r*__ is only called if the left object does not have an __*__ method np.testing.assert_array_equal((10 + a).values, 10 + a.values) np.testing.assert_array_equal((10 - a).values, 10 - a.values) np.testing.assert_array_equal((10 * a).values, 10 * a.values) np.testing.assert_array_equal((10 ** a).values, 10 ** a.values) np.testing.assert_array_equal((10 % a).values, 10 % a.values) np.testing.assert_array_equal((10 // a).values, 10 // a.values) np.testing.assert_array_equal((10 / a).values, 10 / a.values) # mask ops np.testing.assert_array_equal((a_bool & b_bool).values, a_bool.values & b_bool) np.testing.assert_array_equal((a_bool | b_bool).values, a_bool.values | b_bool) np.testing.assert_array_equal((a_bool ^ b_bool).values, a_bool.values ^ b_bool) np.testing.assert_array_equal((True & a_bool).values, True & a_bool.values) np.testing.assert_array_equal((True | a_bool).values, True | a_bool.values) np.testing.assert_array_equal((True ^ a_bool).values, True ^ a_bool.values) # unary ops np.testing.assert_array_equal((-a).values, -a.values) np.testing.assert_array_equal((+a).values, +a.values) np.testing.assert_array_equal((abs(-a)).values, abs((-a.values))) def test_stats(self): stats_index = pd.Index([ 'Start', 'End', 'Period', 'Count', 'Mean', 'Std', 'Min', 'Median', 'Max', 'Min Index', 'Max Index' ], dtype='object') pd.testing.assert_series_equal( mapped_array.stats(), pd.Series([ 'x', 'z', pd.Timedelta('3 days 00:00:00'), 2.25, 11.777777777777779, 0.859116756396542, 11.0, 11.666666666666666, 12.666666666666666 ], index=stats_index[:-2], name='agg_func_mean' ) ) pd.testing.assert_series_equal( mapped_array.stats(column='a'), pd.Series([ 'x', 'z', pd.Timedelta('3 days 00:00:00'), 3, 11.0, 1.0, 10.0, 11.0, 12.0, 'x', 'z' ], index=stats_index, name='a' ) ) pd.testing.assert_series_equal( mapped_array.stats(column='g1', group_by=group_by), pd.Series([ 'x', 'z', pd.Timedelta('3 days 00:00:00'), 6, 12.166666666666666, 1.4719601443879746, 10.0, 12.5, 14.0, 'x', 'y' ], index=stats_index, name='g1' ) ) pd.testing.assert_series_equal( mapped_array['c'].stats(), mapped_array.stats(column='c') ) pd.testing.assert_series_equal( mapped_array['c'].stats(), mapped_array.stats(column='c', group_by=False) ) pd.testing.assert_series_equal( mapped_array_grouped['g2'].stats(), mapped_array_grouped.stats(column='g2') ) pd.testing.assert_series_equal( mapped_array_grouped['g2'].stats(), mapped_array.stats(column='g2', group_by=group_by) ) stats_df = mapped_array.stats(agg_func=None) assert stats_df.shape == (4, 11) pd.testing.assert_index_equal(stats_df.index, mapped_array.wrapper.columns) pd.testing.assert_index_equal(stats_df.columns, stats_index) def test_stats_mapping(self): stats_index = pd.Index([ 'Start', 'End', 'Period', 'Count', 'Value Counts: test_10.0', 'Value Counts: test_11.0', 'Value Counts: test_12.0', 'Value Counts: test_13.0', 'Value Counts: test_14.0' ], dtype='object') pd.testing.assert_series_equal( mp_mapped_array.stats(), pd.Series([ 'x', 'z', pd.Timedelta('3 days 00:00:00'), 2.25, 0.5, 0.5, 0.5, 0.5, 0.25 ], index=stats_index, name='agg_func_mean' ) ) pd.testing.assert_series_equal( mp_mapped_array.stats(column='a'), pd.Series([ 'x', 'z', pd.Timedelta('3 days 00:00:00'), 3, 1, 1, 1, 0, 0 ], index=stats_index, name='a' ) ) pd.testing.assert_series_equal( mp_mapped_array.stats(column='g1', group_by=group_by), pd.Series([ 'x', 'z', pd.Timedelta('3 days 00:00:00'), 6, 1, 1, 1, 2, 1 ], index=stats_index, name='g1' ) ) pd.testing.assert_series_equal( mp_mapped_array.stats(), mapped_array.stats(settings=dict(mapping=mapping)) ) pd.testing.assert_series_equal( mp_mapped_array['c'].stats(settings=dict(incl_all_keys=True)), mp_mapped_array.stats(column='c') ) pd.testing.assert_series_equal( mp_mapped_array['c'].stats(settings=dict(incl_all_keys=True)), mp_mapped_array.stats(column='c', group_by=False) ) pd.testing.assert_series_equal( mp_mapped_array_grouped['g2'].stats(settings=dict(incl_all_keys=True)), mp_mapped_array_grouped.stats(column='g2') ) pd.testing.assert_series_equal( mp_mapped_array_grouped['g2'].stats(settings=dict(incl_all_keys=True)), mp_mapped_array.stats(column='g2', group_by=group_by) ) stats_df = mp_mapped_array.stats(agg_func=None) assert stats_df.shape == (4, 9) pd.testing.assert_index_equal(stats_df.index, mp_mapped_array.wrapper.columns) pd.testing.assert_index_equal(stats_df.columns, stats_index) # ############# base.py ############# # class TestRecords: def test_config(self, tmp_path): assert vbt.Records.loads(records['a'].dumps()) == records['a'] assert vbt.Records.loads(records.dumps()) == records records.save(tmp_path / 'records') assert vbt.Records.load(tmp_path / 'records') == records def test_records(self): pd.testing.assert_frame_equal( records.records, pd.DataFrame.from_records(records_arr) ) def test_recarray(self): np.testing.assert_array_equal(records['a'].recarray.some_field1, records['a'].values['some_field1']) np.testing.assert_array_equal(records.recarray.some_field1, records.values['some_field1']) def test_records_readable(self): pd.testing.assert_frame_equal( records.records_readable, pd.DataFrame([ [0, 'a', 'x', 10.0, 21.0], [1, 'a', 'y', 11.0, 20.0], [2, 'a', 'z', 12.0, 19.0], [3, 'b', 'x', 13.0, 18.0], [4, 'b', 'y', 14.0, 17.0], [5, 'b', 'z', 13.0, 18.0], [6, 'c', 'x', 12.0, 19.0], [7, 'c', 'y', 11.0, 20.0], [8, 'c', 'z', 10.0, 21.0] ], columns=pd.Index(['Id', 'Column', 'Timestamp', 'some_field1', 'some_field2'], dtype='object')) ) def test_is_sorted(self): assert records.is_sorted() assert records.is_sorted(incl_id=True) assert not records_nosort.is_sorted() assert not records_nosort.is_sorted(incl_id=True) def test_sort(self): assert records.sort().is_sorted() assert records.sort().is_sorted(incl_id=True) assert records.sort(incl_id=True).is_sorted(incl_id=True) assert records_nosort.sort().is_sorted() assert records_nosort.sort().is_sorted(incl_id=True) assert records_nosort.sort(incl_id=True).is_sorted(incl_id=True) def test_apply_mask(self): mask_a = records['a'].values['some_field1'] >= records['a'].values['some_field1'].mean() record_arrays_close( records['a'].apply_mask(mask_a).values, np.array([ (1, 0, 1, 11., 20.), (2, 0, 2, 12., 19.) ], dtype=example_dt) ) mask = records.values['some_field1'] >= records.values['some_field1'].mean() filtered = records.apply_mask(mask) record_arrays_close( filtered.values, np.array([ (2, 0, 2, 12., 19.), (3, 1, 0, 13., 18.), (4, 1, 1, 14., 17.), (5, 1, 2, 13., 18.), (6, 2, 0, 12., 19.) ], dtype=example_dt) ) assert records_grouped.apply_mask(mask).wrapper == records_grouped.wrapper def test_map_field(self): np.testing.assert_array_equal( records['a'].map_field('some_field1').values, np.array([10., 11., 12.]) ) np.testing.assert_array_equal( records.map_field('some_field1').values, np.array([10., 11., 12., 13., 14., 13., 12., 11., 10.]) ) assert records_grouped.map_field('some_field1').wrapper == \ records.map_field('some_field1', group_by=group_by).wrapper assert records_grouped.map_field('some_field1', group_by=False).wrapper.grouper.group_by is None def test_map(self): @njit def map_func_nb(record): return record['some_field1'] + record['some_field2'] np.testing.assert_array_equal( records['a'].map(map_func_nb).values, np.array([31., 31., 31.]) ) np.testing.assert_array_equal( records.map(map_func_nb).values, np.array([31., 31., 31., 31., 31., 31., 31., 31., 31.]) ) assert records_grouped.map(map_func_nb).wrapper == \ records.map(map_func_nb, group_by=group_by).wrapper assert records_grouped.map(map_func_nb, group_by=False).wrapper.grouper.group_by is None def test_map_array(self): arr = records_arr['some_field1'] + records_arr['some_field2'] np.testing.assert_array_equal( records['a'].map_array(arr[:3]).values, np.array([31., 31., 31.]) ) np.testing.assert_array_equal( records.map_array(arr).values, np.array([31., 31., 31., 31., 31., 31., 31., 31., 31.]) ) assert records_grouped.map_array(arr).wrapper == \ records.map_array(arr, group_by=group_by).wrapper assert records_grouped.map_array(arr, group_by=False).wrapper.grouper.group_by is None def test_apply(self): @njit def cumsum_apply_nb(records): return np.cumsum(records['some_field1']) np.testing.assert_array_equal( records['a'].apply(cumsum_apply_nb).values, np.array([10., 21., 33.]) ) np.testing.assert_array_equal( records.apply(cumsum_apply_nb).values, np.array([10., 21., 33., 13., 27., 40., 12., 23., 33.]) ) np.testing.assert_array_equal( records_grouped.apply(cumsum_apply_nb, apply_per_group=False).values, np.array([10., 21., 33., 13., 27., 40., 12., 23., 33.]) ) np.testing.assert_array_equal( records_grouped.apply(cumsum_apply_nb, apply_per_group=True).values, np.array([10., 21., 33., 46., 60., 73., 12., 23., 33.]) ) assert records_grouped.apply(cumsum_apply_nb).wrapper == \ records.apply(cumsum_apply_nb, group_by=group_by).wrapper assert records_grouped.apply(cumsum_apply_nb, group_by=False).wrapper.grouper.group_by is None def test_count(self): assert records['a'].count() == 3 pd.testing.assert_series_equal( records.count(), pd.Series( np.array([3, 3, 3, 0]), index=wrapper.columns ).rename('count') ) assert records_grouped['g1'].count() == 6 pd.testing.assert_series_equal( records_grouped.count(), pd.Series( np.array([6, 3]), index=pd.Index(['g1', 'g2'], dtype='object') ).rename('count') ) @pytest.mark.parametrize( "test_nosort", [False, True], ) def test_indexing(self, test_nosort): if test_nosort: r = records_nosort r_grouped = records_nosort_grouped else: r = records r_grouped = records_grouped record_arrays_close( r['a'].values, np.array([ (0, 0, 0, 10., 21.), (1, 0, 1, 11., 20.), (2, 0, 2, 12., 19.) ], dtype=example_dt) ) pd.testing.assert_index_equal( r['a'].wrapper.columns, pd.Index(['a'], dtype='object') ) pd.testing.assert_index_equal( r['b'].wrapper.columns, pd.Index(['b'], dtype='object') ) record_arrays_close( r[['a', 'a']].values, np.array([ (0, 0, 0, 10., 21.), (1, 0, 1, 11., 20.), (2, 0, 2, 12., 19.), (0, 1, 0, 10., 21.), (1, 1, 1, 11., 20.), (2, 1, 2, 12., 19.) ], dtype=example_dt) ) pd.testing.assert_index_equal( r[['a', 'a']].wrapper.columns, pd.Index(['a', 'a'], dtype='object') ) record_arrays_close( r[['a', 'b']].values, np.array([ (0, 0, 0, 10., 21.), (1, 0, 1, 11., 20.), (2, 0, 2, 12., 19.), (3, 1, 0, 13., 18.), (4, 1, 1, 14., 17.), (5, 1, 2, 13., 18.) ], dtype=example_dt) ) pd.testing.assert_index_equal( r[['a', 'b']].wrapper.columns, pd.Index(['a', 'b'], dtype='object') ) with pytest.raises(Exception): _ = r.iloc[::2, :] # changing time not supported pd.testing.assert_index_equal( r_grouped['g1'].wrapper.columns, pd.Index(['a', 'b'], dtype='object') ) assert r_grouped['g1'].wrapper.ndim == 2 assert r_grouped['g1'].wrapper.grouped_ndim == 1 pd.testing.assert_index_equal( r_grouped['g1'].wrapper.grouper.group_by,
pd.Index(['g1', 'g1'], dtype='object')
pandas.Index
""" trees_matplotlib_seaborn.py An extension of trees.py using the matplotlib and seaborn libraries. """ import datetime as dt import streamlit as st import pandas as pd import matplotlib.pyplot as plt import seaborn as sns st.title("SF Trees") st.write( "This app analyzes San Francisco's tree data provided by the SF DPW." ) # Collect the data from the CSV file: trees_df = pd.read_csv("trees.csv") # Determine the age of each tree + add to the dataframe: trees_df['age'] = (pd.to_datetime('today') -
pd.to_datetime(trees_df['date'])
pandas.to_datetime
from dotmap import DotMap from model.BLRPRx import * from calendar import month_abbr from datetime import timedelta as td from datetime import datetime as dt from datetime import datetime from utils.utils import * from utils.stats_calculation import * import numpy as np import pandas as pd import os from sampling.mergeCells import * from sampling.sampling import * from fitting import fitting, objectiveFunction import warnings, yaml args = yaml.load(open('./config/default.yaml'), Loader=yaml.FullLoader) args = DotMap(args) args.sampling.start_time = dt.strptime(args.sampling.start_time, '%Y-%m-%d') args.sampling.end_time = dt.strptime(args.sampling.end_time, '%Y-%m-%d') total_sample_sta_prop = [] num_month =
pd.read_csv(args.IO.stats_file_path,index_col=0, header=0)
pandas.read_csv
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging from typing import Any, Dict, Optional, Sequence, Tuple, Union import matplotlib.pyplot as plt import numpy as np import pandas as pd from kats.consts import TimeSeriesData from statsmodels.tsa.seasonal import STL, seasonal_decompose # from numpy.typing import ArrayLike ArrayLike = Union[np.ndarray, Sequence[float]] Figsize = Tuple[int, int] def _identity(x: ArrayLike) -> ArrayLike: return x class TimeSeriesDecomposition: """Model class for Time Series Decomposition. This class provides utilities to decompose an input time series Pass specific arguments to seasonal_decompose and STL functions via kwargs. Attributes: data: the input time series data as `TimeSeriesData` decomposition: `additive` or `multiplicative` decomposition method: `STL decompostion` or `seasonal_decompose` """ freq: Optional[str] = None results: Optional[Dict[str, TimeSeriesData]] = None def __init__( self, data: TimeSeriesData, decomposition: str = "additive", method: str = "STL", **kwargs, ) -> None: if not isinstance(data.value, pd.Series): msg = f"Only support univariate time series, but got {type(data.value)}." logging.error(msg) raise ValueError(msg) self.data = data if decomposition in ("additive", "multiplicative"): self.decomposition = decomposition else: logging.info( "Invalid decomposition setting specified; " "defaulting to Additive Decomposition." ) self.decomposition = "additive" if method == "seasonal_decompose": self.method = self.__decompose_seasonal else: if method != "STL": logging.info( f"""Invalid decomposition setting {method} specified. Possible Values: STL, seasonal_decompose. Defaulting to STL.""" ) self.method = self.__decompose_STL ## The following are params for the STL Module self.period = kwargs.get("period", None) self.seasonal = kwargs.get("seasonal", 7) self.trend = kwargs.get("trend", None) self.low_pass = kwargs.get("low_pass", None) self.seasonal_deg = kwargs.get("seasonal_deg", 1) self.trend_deg = kwargs.get("trend_deg", 1) self.low_pass_deg = kwargs.get("low_pass_deg", 1) self.robust = kwargs.get("robust", False) self.seasonal_jump = kwargs.get("seasonal_jump", 1) self.trend_jump = kwargs.get("trend_jump", 1) self.low_pass_jump = kwargs.get("low_pass_jump", 1) def __clean_ts(self) -> pd.DataFrame: """Internal function to clean the time series. Internal function to interpolate time series and infer frequency of time series required for decomposition. """ original = pd.DataFrame( list(self.data.value), index=pd.to_datetime(self.data.time), columns=["y"] ) if
pd.infer_freq(original.index)
pandas.infer_freq
"""Clean, bundle and create API to load KSSL data The KSSL database is provided as a Microsoft Access database designed as an OLTP. The purposes of this module are: (i) to export all tables as independent .csv files to make it platform independent; (ii) to make it amenable to multi-dimensional analytical queries (OLAP); (iii) to provide an API for easy loading of the dataset as numpy arrays. For further information on KSSL database contact: * https://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/research/ """ import subprocess from pathlib import Path from .base import select_rows, chunk from spectrai.core import get_kssl_config import pandas as pd import numpy as np import re import opusFC # Ref.: https://stuart-cls.github.io/python-opusfc-dist/ from tqdm import tqdm DATA_KSSL, DATA_NORM, DATA_SPECTRA, DB_NAME = get_kssl_config() def access_to_csv(in_folder=None, out_folder=DATA_NORM, db_name=DB_NAME): """Exports KSSL '.accdb' tables to individual '.csv' files. Linux-like OS only as depends on 'mdbtools' https://github.com/brianb/mdbtools Parameters ---------- in_folder: string, optional Specify the path of the folder containing the '.accdb' KSSL file out_folder: string, optional Specify the path of the folder that will contain exported tables db_name: string, optional Specify name of the KSSL Microsoft Access database Returns ------- None """ in_folder = Path(in_folder) out_folder = Path(out_folder) if not in_folder.exists(): raise IOError('in_folder not found.') if not out_folder.exists(): out_folder.mkdir(parents=True) script_name = Path(__file__).parent / 'scripts/access2csv.sh' out = subprocess.run([script_name, in_folder / DB_NAME, out_folder]) if out.returncode == 0: print('KSSL tables exported successfully to .csv files.') else: raise OSError('Execution of access2csv.sh failed.') def _get_layer_analyte_tbl(): """Returns relevant clean subset of `layer_analyte.csv` KSSL DB table. Notes ---- Only `master_prep_id` relevant to MIRS analysis selected `calc_value` are by default `str` as possibly containing values such as (slight, 1:2, ...). Only numeric ones are selected Returns ------- Pandas DataFrame New DataFrame with selected columns, rows """ return pd.read_csv(DATA_NORM / 'layer_analyte.csv', low_memory=False) \ .dropna(subset=['analyte_id', 'calc_value']) \ .pipe(select_rows, { 'master_prep_id': lambda d: d in [18, 19, 27, 28], 'calc_value': lambda d: re.search(r'[a-zA-Z]|:|\s', str(d)) is None}) \ .loc[:, ['lay_id', 'analyte_id', 'calc_value']] \ .astype({'calc_value': float}) def _get_layer_tbl(): """Returns relevant clean subset of `analyte.csv` KSSL DB table. Returns ------- Pandas DataFrame New DataFrame with selected columns, rows """ return pd.read_csv(DATA_NORM / 'layer.csv', low_memory=False) \ .loc[:, ['lay_id', 'lims_pedon_id', 'lims_site_id', 'lay_depth_to_top']] \ .dropna() \ .astype({'lims_pedon_id': 'int32', 'lims_site_id': 'int32'}) def _get_sample_tbl(): """Returns relevant clean subset of `sample.csv` KSSL DB table. Notes ---- Only `smp_id` > 1000 relevant to MIRS analysis selected Returns ------- Pandas DataFrame New DataFrame with selected columns, rows """ return pd.read_csv(DATA_NORM / 'sample.csv', low_memory=False) \ .pipe(select_rows, {'smp_id': lambda d: d > 1000}) \ .loc[:, ['smp_id', 'lay_id']] def _get_mirs_det_tbl(valid_name=['XN', 'XS']): """Returns relevant clean subset of `mir_scan_det_data.csv` KSSL DB table. Notes ---- Only `scan_path_name` containing valid substring `['XN', 'XS'] by default. Returns ------- Pandas DataFrame New DataFrame with selected columns, rows """ return pd.read_csv(DATA_NORM / 'mir_scan_det_data.csv', low_memory=False) \ .dropna(subset=['scan_path_name', 'mir_scan_mas_id']) \ .loc[:, ['mir_scan_mas_id', 'scan_path_name']] \ .pipe(select_rows, { 'scan_path_name': lambda d: re.search(r'X.', str(d))[0] in valid_name}) def _get_mirs_mas_tbl(): """Returns relevant clean subset of `mir_scan_mas_data.csv` KSSL DB table. Returns ------- Pandas DataFrame New DataFrame with selected columns, rows """ return pd.read_csv(DATA_NORM / 'mir_scan_mas_data.csv', low_memory=False) \ .loc[:, ['smp_id', 'mir_scan_mas_id']] def _get_lookup_smp_id_scan_path(): """Returns relevant clean subset of `mir_scan_mas_data.csv` KSSL DB table. Returns ------- Pandas DataFrame New DataFrame with selected columns, rows """ return pd.merge(_get_mirs_mas_tbl(), _get_mirs_det_tbl(), on='mir_scan_mas_id', how='inner') \ .loc[:, ['smp_id', 'scan_path_name']] \ .astype({'smp_id': int, 'scan_path_name': 'string'}) def build_analyte_dim_tbl(out_folder=DATA_KSSL): """Builds/creates analyte_dim dim table (star schema) for KSSL dataset Returns ------- Pandas DataFrame New DataFrame with selected columns, rows """ df = pd.read_csv(DATA_NORM / 'analyte.csv') \ .loc[:, ['analyte_id', 'analyte_name', 'analyte_abbrev', 'uom_abbrev']] df.to_csv(out_folder / 'analyte_dim_tbl.csv', index=False) return df def build_taxonomy_dim_tbl(out_folder=DATA_KSSL): """Returns relevant subset of `lims_ped_tax_hist.csv` KSSL DB table Notes ---- A same `lims_pedon_id` column as duplicates (several classifi. version). Only `taxonomic_classification_type` = `'sampled as'` should be considered. Returns ------- Pandas DataFrame New DataFrame with selected columns, rows """ df = pd.read_csv(DATA_NORM / 'lims_ped_tax_hist.csv') \ .pipe(select_rows, {'taxonomic_classification_type': lambda d: d == 'sampled as'}) \ .loc[:, ['lims_pedon_id', 'taxonomic_order', 'taxonomic_suborder', 'taxonomic_great_group', 'taxonomic_subgroup']] df.to_csv(out_folder / 'taxonomy_dim_tbl.csv', index=False) return df def build_location_dim_tbl(out_folder=DATA_KSSL): pass def build_sample_analysis_fact_tbl(out_folder=DATA_KSSL): """Builds/creates sample_analysis fact table (star schema) for KSSL dataset Returns ------- Pandas DataFrame New DataFrame with selected columns, rows """ df = pd.merge( pd.merge(_get_layer_tbl(), _get_sample_tbl(), on='lay_id'), _get_layer_analyte_tbl(), on='lay_id') df.to_csv(out_folder / 'sample_analysis_fact_tbl.csv', index=False) return df def build_kssl_star_tbl(): """Builds/creates star schema version of the KSSL DB""" print('Building analyte_dim_tbl...') build_analyte_dim_tbl() print('Building taxonomy_dim_tbl...') build_taxonomy_dim_tbl() print('Building spectra_dim_tbl...') bundle_spectra_dim_tbl() print('Building sample_analysis_fact_tbl...') build_sample_analysis_fact_tbl() print('Success!') def export_spectra(in_folder=None, out_folder=DATA_KSSL, nb_decimals=4, max_wavenumber=4000, valid_name=['XN', 'XS'], nb_chunks=1): """Exports KSSL MIRS spectra into a series of .csv files Parameters ---------- in_folder: string, optional Specify the path of the folder containing the KSSL MIRS spectra out_folder: string, optional Specify the path of the folder that will contain exported files nb_decimals: int, optional Specify floating point precision (to save memory) max_wavenumber: int, optional Specify the max wavenumber to be considered in spectra valid_name: list of str, optional Specify valid spectra file names nb_chunks: int, optional Specify tne number of chunks/files to be created Returns ------- None """ in_folder = Path(in_folder) out_folder = Path(out_folder) if not in_folder.exists(): raise IOError('in_folder not found.') if not out_folder.exists(): out_folder.mkdir(parents=True) columns = None valid_files = [f for f in in_folder.rglob('*.0') if re.search(r'X.', f.name)[0] in valid_name] for (l_bound, u_bound) in list(chunk(len(valid_files), nb_chunks)): columns = None rows_list = [] for i, f in enumerate(tqdm(valid_files[l_bound:u_bound])): dbs = opusFC.listContents(f) if dbs: data = opusFC.getOpusData(str(f), dbs[0]) row = [f.name] + list(data.y[data.x <= max_wavenumber]) rows_list.append(row) if columns is None: columns = list((data.x[data.x <= max_wavenumber]).astype(int)) df = pd.DataFrame(rows_list, columns=['id'] + list(columns)) df = df.round(nb_decimals) df.to_csv(out_folder / 'spectra_{}_{}.csv'.format(l_bound, u_bound-1), index=False) def bundle_spectra_dim_tbl(in_folder=DATA_SPECTRA, out_folder=DATA_KSSL, with_replicates=False): """Creates MIRS spectra dimension table of new KSSL star-like schema Parameters ---------- in_folder: string, optional Specify the path of the folder containing the KSSL MIRS spectra out_folder: string, optional Specify the path of the folder that will contain exported files with_replicates: boolean, optional Specify whether to include spectra replicates (averaged otherwise) Returns ------- Pandas DataFrame Spectra dimension table """ all_files = list(in_folder.glob('*.csv')) li = [] columns = None for filename in tqdm(all_files): if columns is None: columns = pd.read_csv(filename).columns df = pd.read_csv(filename, header=None, skiprows=1) df.columns = columns df = _get_lookup_smp_id_scan_path() \ .merge(df, left_on='scan_path_name', right_on='id', how='inner') \ .drop(['id', 'scan_path_name'], axis=1) if not with_replicates: df = df.groupby('smp_id').mean() li.append(df) df = pd.concat(li) df = df.reset_index() print('Writing spectra_dim_tbl.csv...') df.to_csv(out_folder / 'spectra_dim_tbl.csv', index=False) return df.reset_index() def load_spectra(in_folder=DATA_KSSL): """Loads Spectra dimension table""" return pd.read_csv(in_folder / 'spectra_dim_tbl.csv') \ .drop_duplicates(subset='smp_id', keep=False) def load_taxonomy(in_folder=DATA_KSSL): """Loads taxonomy dimension table Notes ---- 'mollisols' order is sometimes mispelled so fixing it """ return pd.read_csv(in_folder / 'taxonomy_dim_tbl.csv') \ .replace({'mollisol': 'mollisols'}) def get_tax_orders_lookup_tbl(order_to_int=True): """Returns a lookup table of taxonomic order names and respective ids""" df = load_taxonomy() orders = df['taxonomic_order'].unique() idx = range(len(orders)) key_values = zip(orders, idx) if not order_to_int: key_values = zip(idx, orders) return dict(key_values) def load_fact_tbl(in_folder=DATA_KSSL): return pd.read_csv(in_folder / 'sample_analysis_fact_tbl.csv') def load_analytes(in_folder=DATA_KSSL, like=None): return
pd.read_csv(in_folder / 'analyte_dim_tbl.csv')
pandas.read_csv
import pandas as pd import numpy as np import matplotlib.pyplot as plt # four representative days in each season winter_day = '01-15' spring_day = '04-15' summer_day = '07-15' fall_day = '10-15' # define a function to plot household profile and battery storage level def plot_4days(mode, tmy_code, utility, year, c_cost): df = pd.read_csv('/Users/jiajiazheng/Box/Suh\'s lab/GSRs/Jiajia/3-Residential Solar-plus-storage/Results/' 'optimized/minCost_%(mode)s_%(year)s_cc_%(c_cost)s/' 'optimal_minCost_%(tmy_code)s_%(utility)s_%(year)s_cc_%(c_cost)s.csv' % {'year': year, 'mode': mode, 'tmy_code': tmy_code, 'utility': utility, 'c_cost': c_cost}, index_col=0) df.rename(columns={'Time': 'Hour'}, inplace=True) s = df['Hour'].str.split() df['Hour'] =
pd.to_datetime(s.str[0], format="%m/%d")
pandas.to_datetime
from sklearn.metrics import accuracy_score import pandas as pd import joblib from sklearn.tree import DecisionTreeClassifier import sys try: from StringIO import StringIO ## for Python 2 except ImportError: from io import StringIO ## for Python 3 def PClassification(name, clf, loadFilename=False): # Dataset c = dt.shape[1] - 1 check_data = dt.iloc[:,:c] check_answ = dt.iloc[:,c] # Load model if loadFilename: clf = joblib.load(loadFilename) # Prediction preds = pd.Series(clf.predict(check_data), name='preds') reals =
pd.Series(check_answ, name='reales')
pandas.Series
# coding=utf-8 # pylint: disable-msg=E1101,W0612 from datetime import datetime, timedelta from numpy import nan import numpy as np import pandas as pd from pandas.types.common import is_integer, is_scalar from pandas import Index, Series, DataFrame, isnull, date_range from pandas.core.index import MultiIndex from pandas.core.indexing import IndexingError from pandas.tseries.index import Timestamp from pandas.tseries.offsets import BDay from pandas.tseries.tdi import Timedelta from pandas.compat import lrange, range from pandas import compat from pandas.util.testing import assert_series_equal, assert_almost_equal import pandas.util.testing as tm from pandas.tests.series.common import TestData JOIN_TYPES = ['inner', 'outer', 'left', 'right'] class TestSeriesIndexing(TestData, tm.TestCase): _multiprocess_can_split_ = True def test_get(self): # GH 6383 s = Series(np.array([43, 48, 60, 48, 50, 51, 50, 45, 57, 48, 56, 45, 51, 39, 55, 43, 54, 52, 51, 54])) result = s.get(25, 0) expected = 0 self.assertEqual(result, expected) s = Series(np.array([43, 48, 60, 48, 50, 51, 50, 45, 57, 48, 56, 45, 51, 39, 55, 43, 54, 52, 51, 54]), index=pd.Float64Index( [25.0, 36.0, 49.0, 64.0, 81.0, 100.0, 121.0, 144.0, 169.0, 196.0, 1225.0, 1296.0, 1369.0, 1444.0, 1521.0, 1600.0, 1681.0, 1764.0, 1849.0, 1936.0], dtype='object')) result = s.get(25, 0) expected = 43 self.assertEqual(result, expected) # GH 7407 # with a boolean accessor df = pd.DataFrame({'i': [0] * 3, 'b': [False] * 3}) vc = df.i.value_counts() result = vc.get(99, default='Missing') self.assertEqual(result, 'Missing') vc = df.b.value_counts() result = vc.get(False, default='Missing') self.assertEqual(result, 3) result = vc.get(True, default='Missing') self.assertEqual(result, 'Missing') def test_delitem(self): # GH 5542 # should delete the item inplace s = Series(lrange(5)) del s[0] expected = Series(lrange(1, 5), index=lrange(1, 5)) assert_series_equal(s, expected) del s[1] expected = Series(lrange(2, 5), index=lrange(2, 5)) assert_series_equal(s, expected) # empty s = Series() def f(): del s[0] self.assertRaises(KeyError, f) # only 1 left, del, add, del s = Series(1) del s[0] assert_series_equal(s, Series(dtype='int64', index=Index( [], dtype='int64'))) s[0] = 1 assert_series_equal(s, Series(1)) del s[0] assert_series_equal(s, Series(dtype='int64', index=Index( [], dtype='int64'))) # Index(dtype=object) s = Series(1, index=['a']) del s['a'] assert_series_equal(s, Series(dtype='int64', index=Index( [], dtype='object'))) s['a'] = 1 assert_series_equal(s, Series(1, index=['a'])) del s['a'] assert_series_equal(s, Series(dtype='int64', index=Index( [], dtype='object'))) def test_getitem_setitem_ellipsis(self): s = Series(np.random.randn(10)) np.fix(s) result = s[...] assert_series_equal(result, s) s[...] = 5 self.assertTrue((result == 5).all()) def test_getitem_negative_out_of_bounds(self): s = Series(tm.rands_array(5, 10), index=tm.rands_array(10, 10)) self.assertRaises(IndexError, s.__getitem__, -11) self.assertRaises(IndexError, s.__setitem__, -11, 'foo') def test_pop(self): # GH 6600 df = DataFrame({'A': 0, 'B': np.arange(5, dtype='int64'), 'C': 0, }) k = df.iloc[4] result = k.pop('B') self.assertEqual(result, 4) expected = Series([0, 0], index=['A', 'C'], name=4) assert_series_equal(k, expected) def test_getitem_get(self): idx1 = self.series.index[5] idx2 = self.objSeries.index[5] self.assertEqual(self.series[idx1], self.series.get(idx1)) self.assertEqual(self.objSeries[idx2], self.objSeries.get(idx2)) self.assertEqual(self.series[idx1], self.series[5]) self.assertEqual(self.objSeries[idx2], self.objSeries[5]) self.assertEqual( self.series.get(-1), self.series.get(self.series.index[-1])) self.assertEqual(self.series[5], self.series.get(self.series.index[5])) # missing d = self.ts.index[0] - BDay() self.assertRaises(KeyError, self.ts.__getitem__, d) # None # GH 5652 for s in [Series(), Series(index=list('abc'))]: result = s.get(None) self.assertIsNone(result) def test_iget(self): s = Series(np.random.randn(10), index=lrange(0, 20, 2)) # 10711, deprecated with tm.assert_produces_warning(FutureWarning): s.iget(1) # 10711, deprecated with tm.assert_produces_warning(FutureWarning): s.irow(1) # 10711, deprecated with tm.assert_produces_warning(FutureWarning): s.iget_value(1) for i in range(len(s)): result = s.iloc[i] exp = s[s.index[i]] assert_almost_equal(result, exp) # pass a slice result = s.iloc[slice(1, 3)] expected = s.ix[2:4] assert_series_equal(result, expected) # test slice is a view result[:] = 0 self.assertTrue((s[1:3] == 0).all()) # list of integers result = s.iloc[[0, 2, 3, 4, 5]] expected = s.reindex(s.index[[0, 2, 3, 4, 5]]) assert_series_equal(result, expected) def test_iget_nonunique(self): s = Series([0, 1, 2], index=[0, 1, 0]) self.assertEqual(s.iloc[2], 2) def test_getitem_regression(self): s = Series(lrange(5), index=lrange(5)) result = s[lrange(5)] assert_series_equal(result, s) def test_getitem_setitem_slice_bug(self): s = Series(lrange(10), lrange(10)) result = s[-12:] assert_series_equal(result, s) result = s[-7:] assert_series_equal(result, s[3:]) result = s[:-12] assert_series_equal(result, s[:0]) s = Series(lrange(10), lrange(10)) s[-12:] = 0 self.assertTrue((s == 0).all()) s[:-12] = 5 self.assertTrue((s == 0).all()) def test_getitem_int64(self): idx = np.int64(5) self.assertEqual(self.ts[idx], self.ts[5]) def test_getitem_fancy(self): slice1 = self.series[[1, 2, 3]] slice2 = self.objSeries[[1, 2, 3]] self.assertEqual(self.series.index[2], slice1.index[1]) self.assertEqual(self.objSeries.index[2], slice2.index[1]) self.assertEqual(self.series[2], slice1[1]) self.assertEqual(self.objSeries[2], slice2[1]) def test_getitem_boolean(self): s = self.series mask = s > s.median() # passing list is OK result = s[list(mask)] expected = s[mask] assert_series_equal(result, expected) self.assert_index_equal(result.index, s.index[mask]) def test_getitem_boolean_empty(self): s = Series([], dtype=np.int64) s.index.name = 'index_name' s = s[s.isnull()] self.assertEqual(s.index.name, 'index_name') self.assertEqual(s.dtype, np.int64) # GH5877 # indexing with empty series s = Series(['A', 'B']) expected = Series(np.nan, index=['C'], dtype=object) result = s[Series(['C'], dtype=object)] assert_series_equal(result, expected) s = Series(['A', 'B']) expected = Series(dtype=object, index=Index([], dtype='int64')) result = s[Series([], dtype=object)] assert_series_equal(result, expected) # invalid because of the boolean indexer # that's empty or not-aligned def f(): s[Series([], dtype=bool)] self.assertRaises(IndexingError, f) def f(): s[Series([True], dtype=bool)] self.assertRaises(IndexingError, f) def test_getitem_generator(self): gen = (x > 0 for x in self.series) result = self.series[gen] result2 = self.series[iter(self.series > 0)] expected = self.series[self.series > 0] assert_series_equal(result, expected) assert_series_equal(result2, expected) def test_type_promotion(self): # GH12599 s = pd.Series() s["a"] = pd.Timestamp("2016-01-01") s["b"] = 3.0 s["c"] = "foo" expected = Series([pd.Timestamp("2016-01-01"), 3.0, "foo"], index=["a", "b", "c"]) assert_series_equal(s, expected) def test_getitem_boolean_object(self): # using column from DataFrame s = self.series mask = s > s.median() omask = mask.astype(object) # getitem result = s[omask] expected = s[mask] assert_series_equal(result, expected) # setitem s2 = s.copy() cop = s.copy() cop[omask] = 5 s2[mask] = 5 assert_series_equal(cop, s2) # nans raise exception omask[5:10] = np.nan self.assertRaises(Exception, s.__getitem__, omask) self.assertRaises(Exception, s.__setitem__, omask, 5) def test_getitem_setitem_boolean_corner(self): ts = self.ts mask_shifted = ts.shift(1, freq=BDay()) > ts.median() # these used to raise...?? self.assertRaises(Exception, ts.__getitem__, mask_shifted) self.assertRaises(Exception, ts.__setitem__, mask_shifted, 1) # ts[mask_shifted] # ts[mask_shifted] = 1 self.assertRaises(Exception, ts.ix.__getitem__, mask_shifted) self.assertRaises(Exception, ts.ix.__setitem__, mask_shifted, 1) # ts.ix[mask_shifted] # ts.ix[mask_shifted] = 2 def test_getitem_setitem_slice_integers(self): s = Series(np.random.randn(8), index=[2, 4, 6, 8, 10, 12, 14, 16]) result = s[:4] expected = s.reindex([2, 4, 6, 8]) assert_series_equal(result, expected) s[:4] = 0 self.assertTrue((s[:4] == 0).all()) self.assertTrue(not (s[4:] == 0).any()) def test_getitem_out_of_bounds(self): # don't segfault, GH #495 self.assertRaises(IndexError, self.ts.__getitem__, len(self.ts)) # GH #917 s = Series([]) self.assertRaises(IndexError, s.__getitem__, -1) def test_getitem_setitem_integers(self): # caused bug without test s = Series([1, 2, 3], ['a', 'b', 'c']) self.assertEqual(s.ix[0], s['a']) s.ix[0] = 5 self.assertAlmostEqual(s['a'], 5) def test_getitem_box_float64(self): value = self.ts[5] tm.assertIsInstance(value, np.float64) def test_getitem_ambiguous_keyerror(self): s = Series(lrange(10), index=lrange(0, 20, 2)) self.assertRaises(KeyError, s.__getitem__, 1) self.assertRaises(KeyError, s.ix.__getitem__, 1) def test_getitem_unordered_dup(self): obj = Series(lrange(5), index=['c', 'a', 'a', 'b', 'b']) self.assertTrue(is_scalar(obj['c'])) self.assertEqual(obj['c'], 0) def test_getitem_dups_with_missing(self): # breaks reindex, so need to use .ix internally # GH 4246 s = Series([1, 2, 3, 4], ['foo', 'bar', 'foo', 'bah']) expected = s.ix[['foo', 'bar', 'bah', 'bam']] result = s[['foo', 'bar', 'bah', 'bam']] assert_series_equal(result, expected) def test_getitem_dups(self): s = Series(range(5), index=['A', 'A', 'B', 'C', 'C'], dtype=np.int64) expected = Series([3, 4], index=['C', 'C'], dtype=np.int64) result = s['C'] assert_series_equal(result, expected) def test_getitem_dataframe(self): rng = list(range(10)) s = pd.Series(10, index=rng) df = pd.DataFrame(rng, index=rng) self.assertRaises(TypeError, s.__getitem__, df > 5) def test_getitem_callable(self): # GH 12533 s = pd.Series(4, index=list('ABCD')) result = s[lambda x: 'A'] self.assertEqual(result, s.loc['A']) result = s[lambda x: ['A', 'B']] tm.assert_series_equal(result, s.loc[['A', 'B']]) result = s[lambda x: [True, False, True, True]] tm.assert_series_equal(result, s.iloc[[0, 2, 3]]) def test_setitem_ambiguous_keyerror(self): s = Series(lrange(10), index=lrange(0, 20, 2)) # equivalent of an append s2 = s.copy() s2[1] = 5 expected = s.append(Series([5], index=[1])) assert_series_equal(s2, expected) s2 = s.copy() s2.ix[1] = 5 expected = s.append(Series([5], index=[1])) assert_series_equal(s2, expected) def test_setitem_float_labels(self): # note labels are floats s = Series(['a', 'b', 'c'], index=[0, 0.5, 1]) tmp = s.copy() s.ix[1] = 'zoo' tmp.iloc[2] = 'zoo' assert_series_equal(s, tmp) def test_setitem_callable(self): # GH 12533 s = pd.Series([1, 2, 3, 4], index=list('ABCD')) s[lambda x: 'A'] = -1 tm.assert_series_equal(s, pd.Series([-1, 2, 3, 4], index=list('ABCD'))) def test_setitem_other_callable(self): # GH 13299 inc = lambda x: x + 1 s = pd.Series([1, 2, -1, 4]) s[s < 0] = inc expected = pd.Series([1, 2, inc, 4]) tm.assert_series_equal(s, expected) def test_slice(self): numSlice = self.series[10:20] numSliceEnd = self.series[-10:] objSlice = self.objSeries[10:20] self.assertNotIn(self.series.index[9], numSlice.index) self.assertNotIn(self.objSeries.index[9], objSlice.index) self.assertEqual(len(numSlice), len(numSlice.index)) self.assertEqual(self.series[numSlice.index[0]], numSlice[numSlice.index[0]]) self.assertEqual(numSlice.index[1], self.series.index[11]) self.assertTrue(tm.equalContents(numSliceEnd, np.array(self.series)[ -10:])) # test return view sl = self.series[10:20] sl[:] = 0 self.assertTrue((self.series[10:20] == 0).all()) def test_slice_can_reorder_not_uniquely_indexed(self): s = Series(1, index=['a', 'a', 'b', 'b', 'c']) s[::-1] # it works! def test_slice_float_get_set(self): self.assertRaises(TypeError, lambda: self.ts[4.0:10.0]) def f(): self.ts[4.0:10.0] = 0 self.assertRaises(TypeError, f) self.assertRaises(TypeError, self.ts.__getitem__, slice(4.5, 10.0)) self.assertRaises(TypeError, self.ts.__setitem__, slice(4.5, 10.0), 0) def test_slice_floats2(self): s = Series(np.random.rand(10), index=np.arange(10, 20, dtype=float)) self.assertEqual(len(s.ix[12.0:]), 8) self.assertEqual(len(s.ix[12.5:]), 7) i = np.arange(10, 20, dtype=float) i[2] = 12.2 s.index = i self.assertEqual(len(s.ix[12.0:]), 8) self.assertEqual(len(s.ix[12.5:]), 7) def test_slice_float64(self): values = np.arange(10., 50., 2) index = Index(values) start, end = values[[5, 15]] s = Series(np.random.randn(20), index=index) result = s[start:end] expected = s.iloc[5:16] assert_series_equal(result, expected) result = s.loc[start:end] assert_series_equal(result, expected) df = DataFrame(np.random.randn(20, 3), index=index) result = df[start:end] expected = df.iloc[5:16] tm.assert_frame_equal(result, expected) result = df.loc[start:end] tm.assert_frame_equal(result, expected) def test_setitem(self): self.ts[self.ts.index[5]] = np.NaN self.ts[[1, 2, 17]] = np.NaN self.ts[6] = np.NaN self.assertTrue(np.isnan(self.ts[6])) self.assertTrue(np.isnan(self.ts[2])) self.ts[np.isnan(self.ts)] = 5 self.assertFalse(np.isnan(self.ts[2])) # caught this bug when writing tests series = Series(tm.makeIntIndex(20).astype(float), index=tm.makeIntIndex(20)) series[::2] = 0 self.assertTrue((series[::2] == 0).all()) # set item that's not contained s = self.series.copy() s['foobar'] = 1 app = Series([1], index=['foobar'], name='series') expected = self.series.append(app) assert_series_equal(s, expected) # Test for issue #10193 key = pd.Timestamp('2012-01-01') series = pd.Series() series[key] = 47 expected = pd.Series(47, [key]) assert_series_equal(series, expected) series = pd.Series([], pd.DatetimeIndex([], freq='D')) series[key] = 47 expected = pd.Series(47, pd.DatetimeIndex([key], freq='D')) assert_series_equal(series, expected) def test_setitem_dtypes(self): # change dtypes # GH 4463 expected = Series([np.nan, 2, 3]) s = Series([1, 2, 3]) s.iloc[0] = np.nan assert_series_equal(s, expected) s = Series([1, 2, 3]) s.loc[0] = np.nan assert_series_equal(s, expected) s = Series([1, 2, 3]) s[0] = np.nan assert_series_equal(s, expected) s = Series([False]) s.loc[0] = np.nan assert_series_equal(s, Series([np.nan])) s = Series([False, True]) s.loc[0] = np.nan assert_series_equal(s, Series([np.nan, 1.0])) def test_set_value(self): idx = self.ts.index[10] res = self.ts.set_value(idx, 0) self.assertIs(res, self.ts) self.assertEqual(self.ts[idx], 0) # equiv s = self.series.copy() res = s.set_value('foobar', 0) self.assertIs(res, s) self.assertEqual(res.index[-1], 'foobar') self.assertEqual(res['foobar'], 0) s = self.series.copy() s.loc['foobar'] = 0 self.assertEqual(s.index[-1], 'foobar') self.assertEqual(s['foobar'], 0) def test_setslice(self): sl = self.ts[5:20] self.assertEqual(len(sl), len(sl.index)) self.assertTrue(sl.index.is_unique) def test_basic_getitem_setitem_corner(self): # invalid tuples, e.g. self.ts[:, None] vs. self.ts[:, 2] with tm.assertRaisesRegexp(ValueError, 'tuple-index'): self.ts[:, 2] with tm.assertRaisesRegexp(ValueError, 'tuple-index'): self.ts[:, 2] = 2 # weird lists. [slice(0, 5)] will work but not two slices result = self.ts[[slice(None, 5)]] expected = self.ts[:5] assert_series_equal(result, expected) # OK self.assertRaises(Exception, self.ts.__getitem__, [5, slice(None, None)]) self.assertRaises(Exception, self.ts.__setitem__, [5, slice(None, None)], 2) def test_basic_getitem_with_labels(self): indices = self.ts.index[[5, 10, 15]] result = self.ts[indices] expected = self.ts.reindex(indices) assert_series_equal(result, expected) result = self.ts[indices[0]:indices[2]] expected = self.ts.ix[indices[0]:indices[2]] assert_series_equal(result, expected) # integer indexes, be careful s = Series(np.random.randn(10), index=lrange(0, 20, 2)) inds = [0, 2, 5, 7, 8] arr_inds = np.array([0, 2, 5, 7, 8]) result = s[inds] expected = s.reindex(inds) assert_series_equal(result, expected) result = s[arr_inds] expected = s.reindex(arr_inds) assert_series_equal(result, expected) # GH12089 # with tz for values s = Series(pd.date_range("2011-01-01", periods=3, tz="US/Eastern"), index=['a', 'b', 'c']) expected = Timestamp('2011-01-01', tz='US/Eastern') result = s.loc['a'] self.assertEqual(result, expected) result = s.iloc[0] self.assertEqual(result, expected) result = s['a'] self.assertEqual(result, expected) def test_basic_setitem_with_labels(self): indices = self.ts.index[[5, 10, 15]] cp = self.ts.copy() exp = self.ts.copy() cp[indices] = 0 exp.ix[indices] = 0 assert_series_equal(cp, exp) cp = self.ts.copy() exp = self.ts.copy() cp[indices[0]:indices[2]] = 0 exp.ix[indices[0]:indices[2]] = 0 assert_series_equal(cp, exp) # integer indexes, be careful s = Series(np.random.randn(10), index=lrange(0, 20, 2)) inds = [0, 4, 6] arr_inds = np.array([0, 4, 6]) cp = s.copy() exp = s.copy() s[inds] = 0 s.ix[inds] = 0 assert_series_equal(cp, exp) cp = s.copy() exp = s.copy() s[arr_inds] = 0 s.ix[arr_inds] = 0 assert_series_equal(cp, exp) inds_notfound = [0, 4, 5, 6] arr_inds_notfound = np.array([0, 4, 5, 6]) self.assertRaises(Exception, s.__setitem__, inds_notfound, 0) self.assertRaises(Exception, s.__setitem__, arr_inds_notfound, 0) # GH12089 # with tz for values s = Series(pd.date_range("2011-01-01", periods=3, tz="US/Eastern"), index=['a', 'b', 'c']) s2 = s.copy() expected = Timestamp('2011-01-03', tz='US/Eastern') s2.loc['a'] = expected result = s2.loc['a'] self.assertEqual(result, expected) s2 = s.copy() s2.iloc[0] = expected result = s2.iloc[0] self.assertEqual(result, expected) s2 = s.copy() s2['a'] = expected result = s2['a'] self.assertEqual(result, expected) def test_ix_getitem(self): inds = self.series.index[[3, 4, 7]] assert_series_equal(self.series.ix[inds], self.series.reindex(inds)) assert_series_equal(self.series.ix[5::2], self.series[5::2]) # slice with indices d1, d2 = self.ts.index[[5, 15]] result = self.ts.ix[d1:d2] expected = self.ts.truncate(d1, d2) assert_series_equal(result, expected) # boolean mask = self.series > self.series.median() assert_series_equal(self.series.ix[mask], self.series[mask]) # ask for index value self.assertEqual(self.ts.ix[d1], self.ts[d1]) self.assertEqual(self.ts.ix[d2], self.ts[d2]) def test_ix_getitem_not_monotonic(self): d1, d2 = self.ts.index[[5, 15]] ts2 = self.ts[::2][[1, 2, 0]] self.assertRaises(KeyError, ts2.ix.__getitem__, slice(d1, d2)) self.assertRaises(KeyError, ts2.ix.__setitem__, slice(d1, d2), 0) def test_ix_getitem_setitem_integer_slice_keyerrors(self): s = Series(np.random.randn(10), index=lrange(0, 20, 2)) # this is OK cp = s.copy() cp.ix[4:10] = 0 self.assertTrue((cp.ix[4:10] == 0).all()) # so is this cp = s.copy() cp.ix[3:11] = 0 self.assertTrue((cp.ix[3:11] == 0).values.all()) result = s.ix[4:10] result2 = s.ix[3:11] expected = s.reindex([4, 6, 8, 10]) assert_series_equal(result, expected) assert_series_equal(result2, expected) # non-monotonic, raise KeyError s2 = s.iloc[lrange(5) + lrange(5, 10)[::-1]] self.assertRaises(KeyError, s2.ix.__getitem__, slice(3, 11)) self.assertRaises(KeyError, s2.ix.__setitem__, slice(3, 11), 0) def test_ix_getitem_iterator(self): idx = iter(self.series.index[:10]) result = self.series.ix[idx] assert_series_equal(result, self.series[:10]) def test_setitem_with_tz(self): for tz in ['US/Eastern', 'UTC', 'Asia/Tokyo']: orig = pd.Series(pd.date_range('2016-01-01', freq='H', periods=3, tz=tz)) self.assertEqual(orig.dtype, 'datetime64[ns, {0}]'.format(tz)) # scalar s = orig.copy() s[1] = pd.Timestamp('2011-01-01', tz=tz) exp = pd.Series([pd.Timestamp('2016-01-01 00:00', tz=tz), pd.Timestamp('2011-01-01 00:00', tz=tz), pd.Timestamp('2016-01-01 02:00', tz=tz)]) tm.assert_series_equal(s, exp) s = orig.copy() s.loc[1] = pd.Timestamp('2011-01-01', tz=tz) tm.assert_series_equal(s, exp) s = orig.copy() s.iloc[1] = pd.Timestamp('2011-01-01', tz=tz) tm.assert_series_equal(s, exp) # vector vals = pd.Series([pd.Timestamp('2011-01-01', tz=tz), pd.Timestamp('2012-01-01', tz=tz)], index=[1, 2]) self.assertEqual(vals.dtype, 'datetime64[ns, {0}]'.format(tz)) s[[1, 2]] = vals exp = pd.Series([pd.Timestamp('2016-01-01 00:00', tz=tz), pd.Timestamp('2011-01-01 00:00', tz=tz), pd.Timestamp('2012-01-01 00:00', tz=tz)]) tm.assert_series_equal(s, exp) s = orig.copy() s.loc[[1, 2]] = vals tm.assert_series_equal(s, exp) s = orig.copy() s.iloc[[1, 2]] = vals tm.assert_series_equal(s, exp) def test_setitem_with_tz_dst(self): # GH XXX tz = 'US/Eastern' orig = pd.Series(pd.date_range('2016-11-06', freq='H', periods=3, tz=tz)) self.assertEqual(orig.dtype, 'datetime64[ns, {0}]'.format(tz)) # scalar s = orig.copy() s[1] = pd.Timestamp('2011-01-01', tz=tz) exp = pd.Series([pd.Timestamp('2016-11-06 00:00', tz=tz), pd.Timestamp('2011-01-01 00:00', tz=tz), pd.Timestamp('2016-11-06 02:00', tz=tz)]) tm.assert_series_equal(s, exp) s = orig.copy() s.loc[1] = pd.Timestamp('2011-01-01', tz=tz) tm.assert_series_equal(s, exp) s = orig.copy() s.iloc[1] = pd.Timestamp('2011-01-01', tz=tz) tm.assert_series_equal(s, exp) # vector vals = pd.Series([pd.Timestamp('2011-01-01', tz=tz), pd.Timestamp('2012-01-01', tz=tz)], index=[1, 2]) self.assertEqual(vals.dtype, 'datetime64[ns, {0}]'.format(tz)) s[[1, 2]] = vals exp = pd.Series([pd.Timestamp('2016-11-06 00:00', tz=tz), pd.Timestamp('2011-01-01 00:00', tz=tz), pd.Timestamp('2012-01-01 00:00', tz=tz)]) tm.assert_series_equal(s, exp) s = orig.copy() s.loc[[1, 2]] = vals tm.assert_series_equal(s, exp) s = orig.copy() s.iloc[[1, 2]] = vals tm.assert_series_equal(s, exp) def test_where(self): s = Series(np.random.randn(5)) cond = s > 0 rs = s.where(cond).dropna() rs2 = s[cond] assert_series_equal(rs, rs2) rs = s.where(cond, -s) assert_series_equal(rs, s.abs()) rs = s.where(cond) assert (s.shape == rs.shape) assert (rs is not s) # test alignment cond =
Series([True, False, False, True, False], index=s.index)
pandas.Series
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Purpose: Uses the statement data to train a classifier and use the classifier for the prediction of the alternatives in the bluebook from 1988-2008 Here: standard classifier as RF, MN logitic regression, SVM Status: Draft Author: olivergiesecke """ ############################################################################### ### Import packages import pandas as pd import re import os from io import StringIO import numpy as np import matplotlib.pyplot as plt from sklearn.feature_extraction.text import TfidfVectorizer import numpy as np from sklearn.linear_model import LogisticRegression from sklearn.ensemble import RandomForestClassifier from sklearn.svm import LinearSVC from sklearn.model_selection import cross_val_score ############################################################################### ## Define function to reshape the sentences in the bluebooks def transform_merged(merge_class_d_e): for alt in ['a','b','c','d','e']: merge_class_d_e['C_TREATMENT_SIZE_alt_'+ alt] = "" merge_class_d_e['Sentences_alt_'+alt] = "" sentence_columns = [] for sentence_num in range(1, 12): col_name = 'Sentence_' + str(sentence_num) + "_alt_" + alt if col_name in merge_class_d_e and type(merge_class_d_e[col_name]=="str"): sentence_columns.append(col_name) #merge_class_d_e['Sentences_alt_'+alt] = merge_class_d_e[sentence_columns].apply(lambda row: ' '.join(row.values.astype(str)), axis=1) for index,row in merge_class_d_e.iterrows(): sentence_content = [] for sentence_col in sentence_columns: sentence = row[sentence_col] pattern = "(alternatives?\s+[^"+alt+"])([^a-z])" if type(sentence)==str and not re.search(pattern,sentence,re.IGNORECASE): # and not re.search(pattern,sentence,re.IGNORECASE) sentence_content.append(sentence) merge_class_d_e.at[index,'Sentences_alt_'+alt] = ' '.join(sentence_content) return merge_class_d_e ## Get bluebooks alternatives and statements in one file def get_merged_data(): ### Open the csv with the statements (note: this is the manual statement file) data=
pd.read_csv("../data/statements_text_extraction_cleaned.csv")
pandas.read_csv
# fmt: off import numpy as np import pandas as pd import h5py import scipy.signal import shutil import skimage as sk import os import pickle import sys import h5py_cache import copy import pickle as pkl from parse import compile from time import sleep from distributed.client import futures_of import dask.dataframe as dd import dask.delayed as delayed from skimage import filters from .trcluster import hdf5lock from .utils import multifov,pandas_hdf5_handler,writedir from tifffile import imread class kymograph_cluster: def __init__(self,headpath="",trenches_per_file=20,paramfile=False,all_channels=[""],trench_len_y=270,padding_y=20,trench_width_x=30,use_median_drift=False,\ invert=False,y_percentile=85,y_min_edge_dist=50,smoothing_kernel_y=(1,9),y_percentile_threshold=0.2,\ top_orientation=0,expected_num_rows=None,alternate_orientation=True,orientation_on_fail=None,x_percentile=85,background_kernel_x=(1,21),\ smoothing_kernel_x=(1,9),otsu_scaling=1.,min_threshold=0,trench_present_thr=0.): if paramfile: parampath = headpath + "/kymograph.par" with open(parampath, 'rb') as infile: param_dict = pickle.load(infile) all_channels = param_dict["All Channels"] trench_len_y = param_dict["Trench Length"] padding_y = param_dict["Y Padding"] trench_width_x = param_dict["Trench Width"] use_median_drift = param_dict['Use Median Drift?'] # t_range = param_dict["Time Range"] invert = param_dict["Invert"] y_percentile = param_dict["Y Percentile"] y_min_edge_dist = param_dict["Minimum Trench Length"] smoothing_kernel_y = (1,param_dict["Y Smoothing Kernel"]) y_percentile_threshold = param_dict['Y Percentile Threshold'] top_orientation = param_dict["Orientation Detection Method"] expected_num_rows = param_dict["Expected Number of Rows (Manual Orientation Detection)"] alternate_orientation = param_dict['Alternate Orientation'] orientation_on_fail = param_dict["Top Orientation when Row Drifts Out (Manual Orientation Detection)"] x_percentile = param_dict["X Percentile"] background_kernel_x = (1,param_dict["X Background Kernel"]) smoothing_kernel_x = (1,param_dict["X Smoothing Kernel"]) otsu_scaling = param_dict["Otsu Threshold Scaling"] min_threshold= param_dict['Minimum X Threshold'] trench_present_thr = param_dict["Trench Presence Threshold"] self.headpath = headpath self.kymographpath = self.headpath + "/kymograph" self.hdf5path = self.headpath + "/hdf5" self.all_channels = all_channels self.seg_channel = self.all_channels[0] self.metapath = self.headpath + "/metadata.hdf5" self.meta_handle = pandas_hdf5_handler(self.metapath) self.trenches_per_file = trenches_per_file # self.t_range = t_range self.invert = invert #### important paramaters to set self.trench_len_y = trench_len_y self.padding_y = padding_y ttl_len_y = trench_len_y+padding_y self.ttl_len_y = ttl_len_y self.trench_width_x = trench_width_x self.use_median_drift = use_median_drift #### params for y ## parameter for reducing signal to one dim self.y_percentile = y_percentile self.y_min_edge_dist = y_min_edge_dist ## parameters for threshold finding self.smoothing_kernel_y = smoothing_kernel_y self.y_percentile_threshold = y_percentile_threshold ### self.top_orientation = top_orientation self.expected_num_rows = expected_num_rows self.alternate_orientation = alternate_orientation self.orientation_on_fail = orientation_on_fail #### params for x ## parameter for reducing signal to one dim self.x_percentile = x_percentile ## parameters for midpoint finding self.background_kernel_x = background_kernel_x self.smoothing_kernel_x = smoothing_kernel_x ## parameters for threshold finding self.otsu_scaling = otsu_scaling self.min_threshold = min_threshold ## New self.trench_present_thr = trench_present_thr self.output_chunk_shape = (1,1,self.ttl_len_y,(self.trench_width_x//2)*2) self.output_chunk_bytes = (2*np.multiply.accumulate(np.array(self.output_chunk_shape))[-1]) self.output_chunk_cache_mem_size = 2*self.output_chunk_bytes self.kymograph_params = {"trench_len_y":trench_len_y,"padding_y":padding_y,"ttl_len_y":ttl_len_y,\ "trench_width_x":trench_width_x,"y_percentile":y_percentile,"invert":invert,\ "y_min_edge_dist":y_min_edge_dist,"smoothing_kernel_y":smoothing_kernel_y,\ "y_percentile_threshold":y_percentile_threshold,\ "top_orientation":top_orientation,"expected_num_rows":expected_num_rows,"alternate_orientation":alternate_orientation,\ "orientation_on_fail":orientation_on_fail,"x_percentile":x_percentile,\ "background_kernel_x":background_kernel_x,"smoothing_kernel_x":smoothing_kernel_x,\ "otsu_scaling":otsu_scaling,"min_x_threshold":min_threshold,"trench_present_thr":trench_present_thr} def median_filter_2d(self,array,smoothing_kernel): """Two-dimensional median filter, with average smoothing at the signal edges in the second dimension (the non-time dimension). Args: array_list (list): List containing a single array of 2 dimensional signal to be smoothed. smoothing_kernel (tuple): A tuple of ints specifying the kernel under which the median will be taken. Returns: array: Median-filtered 2 dimensional signal. """ kernel = np.array(smoothing_kernel) #1,9 kernel_pad = kernel//2 + 1 #1,5 med_filter = scipy.signal.medfilt(array,kernel_size=kernel) start_edge = np.mean(med_filter[:,kernel_pad[1]:kernel[1]]) end_edge = np.mean(med_filter[:,-kernel[1]:-kernel_pad[1]]) med_filter[:,:kernel_pad[1]] = start_edge med_filter[:,-kernel_pad[1]:] = end_edge return med_filter def get_smoothed_y_percentiles(self,file_idx,y_percentile,smoothing_kernel_y): """For each imported array, computes the percentile along the x-axis of the segmentation channel, generating a (y,t) array. Then performs median filtering of this array for smoothing. Args: imported_hdf5_handle (h5py.File): Hdf5 file handle corresponding to the input hdf5 dataset "data" of shape (channel,y,x,t). y_percentile (int): Percentile to apply along the x-axis. smoothing_kernel_y (tuple): Kernel to use for median filtering. Returns: h5py.File: Hdf5 file handle corresponding to the output hdf5 dataset "data", a smoothed percentile array of shape (y,t). """ with h5py_cache.File(self.hdf5path+"/hdf5_"+str(file_idx)+".hdf5","r",chunk_cache_mem_size=self.metadata["chunk_cache_mem_size"]) as imported_hdf5_handle: img_arr = imported_hdf5_handle[self.seg_channel][:] #t x y if self.invert: img_arr = sk.util.invert(img_arr) perc_arr = np.percentile(img_arr,y_percentile,axis=2,interpolation='lower') y_percentiles_smoothed = self.median_filter_2d(perc_arr,smoothing_kernel_y) min_qth_percentile = y_percentiles_smoothed.min(axis=1)[:, np.newaxis] max_qth_percentile = y_percentiles_smoothed.max(axis=1)[:, np.newaxis] y_percentiles_smoothed = (y_percentiles_smoothed - min_qth_percentile)/(max_qth_percentile - min_qth_percentile) return y_percentiles_smoothed def get_edges_from_mask(self,mask): """Finds edges from a boolean mask of shape (t,y). Filters out rows of length smaller than y_min_edge_dist. Args: mask (array): Boolean of shape (y,t) resulting from triangle thresholding. y_min_edge_dist (int): Minimum row length necessary for detection. Returns: list: List containing arrays of edges for each timepoint, filtered for rows that are too small. """ edges_list = [] start_above_list = [] end_above_list = [] for t in range(mask.shape[0]): edge_mask = (mask[t,1:] != mask[t,:-1]) start_above,end_above = (mask[t,0]==True,mask[t,-1]==True) edges = np.where(edge_mask)[0] edges_list.append(edges) start_above_list.append(start_above) end_above_list.append(end_above) return edges_list,start_above_list,end_above_list def get_trench_edges_y(self,y_percentiles_smoothed_array,y_percentile_threshold,y_min_edge_dist): """Detects edges in the shape (t,y) smoothed percentile arrays for each input array. Args: y_percentiles_smoothed_array (array): A shape (y,t) smoothed percentile array. triangle_nbins (int): Number of bins to be used to construct the thresholding histogram. triangle_scaling (float): Factor by which to scale the threshold. y_min_edge_dist (int): Minimum row length necessary for detection. Returns: list: List containing arrays of edges for each timepoint, filtered for rows that are too small. """ trench_mask_y = y_percentiles_smoothed_array>y_percentile_threshold edges_list,start_above_list,end_above_list = self.get_edges_from_mask(trench_mask_y) return edges_list,start_above_list,end_above_list def repair_out_of_frame(self,trench_edges_y,start_above,end_above): if start_above: trench_edges_y = np.array([0] + trench_edges_y.tolist()) if end_above: trench_edges_y = np.array(trench_edges_y.tolist() + [int(self.metadata['height'])]) return trench_edges_y def remove_small_rows(self,edges,min_edge_dist): """Filters out small rows when performing automated row detection. Args: edges (array): Array of edges along y-axis. min_edge_dist (int): Minimum row length necessary for detection. Returns: array: Array of edges, filtered for rows that are too small. """ grouped_edges = edges.reshape(-1,2) row_lens = np.diff(grouped_edges,axis=1) row_mask = (row_lens>min_edge_dist).flatten() filtered_edges = grouped_edges[row_mask] return filtered_edges.flatten() def remove_out_of_frame(self,orientations,repaired_trench_edges_y,start_above,end_above): """Takes an array of trench row edges and removes the first/last edge, if that edge does not have a proper partner (i.e. trench row mask takes value True at boundaries of image). Args: edges (array): Array of edges along y-axis. start_above (bool): True if the trench row mask takes value True at the starting edge of the mask. end_above (bool): True if the trench row mask takes value True at the ending edge of the mask. Returns: array: Array of edges along y-axis, corrected for edge pairs that are out of frame. """ drop_first_row,drop_last_row = (False,False) if start_above and orientations[0] == 0: #if the top is facing down and is cut drop_first_row = True orientations = orientations[1:] repaired_trench_edges_y = repaired_trench_edges_y[2:] if end_above and orientations[-1] == 1: #if the bottom is facing up and is cut drop_last_row = True orientations = orientations[:-1] repaired_trench_edges_y = repaired_trench_edges_y[:-2] return orientations,drop_first_row,drop_last_row,repaired_trench_edges_y def get_manual_orientations(self,trench_edges_y_list,start_above_list,end_above_list,expected_num_rows,alternate_orientation,top_orientation,orientation_on_fail,y_min_edge_dist): trench_edges_y = trench_edges_y_list[0] start_above = start_above_list[0] end_above = end_above_list[0] orientations = [] repaired_trench_edges_y = self.repair_out_of_frame(trench_edges_y,start_above,end_above) repaired_trench_edges_y = self.remove_small_rows(repaired_trench_edges_y,y_min_edge_dist) if repaired_trench_edges_y.shape[0]//2 == expected_num_rows: orientation = top_orientation for row in range(repaired_trench_edges_y.shape[0]//2): orientations.append(orientation) if alternate_orientation: orientation = (orientation+1)%2 orientations,drop_first_row,drop_last_row,repaired_trench_edges_y = self.remove_out_of_frame(orientations,repaired_trench_edges_y,start_above,end_above) elif (repaired_trench_edges_y.shape[0]//2 < expected_num_rows) and orientation_on_fail is not None: orientation = orientation_on_fail for row in range(repaired_trench_edges_y.shape[0]//2): orientations.append(orientation) if alternate_orientation: orientation = (orientation+1)%2 orientations,drop_first_row,drop_last_row,repaired_trench_edges_y = self.remove_out_of_frame(orientations,repaired_trench_edges_y,start_above,end_above) else: print("Start frame does not have expected number of rows!") return orientations,drop_first_row,drop_last_row def get_trench_ends(self,trench_edges_y_list,start_above_list,end_above_list,orientations,drop_first_row,drop_last_row,y_min_edge_dist): top_orientation = orientations[0] y_ends_list = [] for t,trench_edges_y in enumerate(trench_edges_y_list): start_above = start_above_list[t] end_above = end_above_list[t] repaired_trench_edges_y = self.repair_out_of_frame(trench_edges_y,start_above,end_above) repaired_trench_edges_y = self.remove_small_rows(repaired_trench_edges_y,y_min_edge_dist) if (repaired_trench_edges_y.shape[0]//2 > len(orientations)) and drop_first_row: repaired_trench_edges_y = repaired_trench_edges_y[2:] if (repaired_trench_edges_y.shape[0]//2 > len(orientations)) and drop_last_row: repaired_trench_edges_y = repaired_trench_edges_y[:-2] grouped_edges = repaired_trench_edges_y.reshape(-1,2) # or,2 y_ends = [] for edges,orientation in enumerate(orientations): y_ends.append(grouped_edges[edges,orientation]) y_ends = np.array(y_ends) y_ends_list.append(y_ends) return y_ends_list def get_y_drift(self,y_ends_list): """Given a list of midpoints, computes the average drift in y for every timepoint. Args: y_midpoints_list (list): A list containing, for each fov, a list of the form [time_list,[midpoint_array]] containing the trench row midpoints. Returns: list: A nested list of the form [time_list,[y_drift_int]] for fov i. """ y_drift = [] for t in range(len(y_ends_list)-1): diff_mat = np.subtract.outer(y_ends_list[t+1],y_ends_list[t]) if len(diff_mat) > 0: min_dist_idx = np.argmin(abs(diff_mat),axis=0) min_dists = [] for row in range(diff_mat.shape[0]): min_dists.append(diff_mat[row,min_dist_idx[row]]) min_dists = np.array(min_dists) median_translation = np.median(min_dists) else: median_translation = 0 y_drift.append(median_translation) net_y_drift = np.append(np.array([0]),np.add.accumulate(y_drift)).astype(int) return net_y_drift def keep_in_frame_kernels(self,y_ends_list,y_drift,orientations,padding_y,trench_len_y): """Removes those kernels which drift out of the image during any timepoint. Args: trench_edges_y_lists (list): A list containing, for each fov, a time-ordered list of trench edge arrays. y_drift_list (list): A list containing, for each fov, a nested list of the form [time_list,[y_drift_int]]. imported_array_list (int): A numpy array containing the hdf5 file image data. padding_y (int): Y-dimensional padding for cropping. Returns: list: Time-ordered list of trench edge arrays, filtered for images which stay in frame for all timepoints, for fov i. """ init_y_ends = y_ends_list[0] max_y_dim = self.metadata['height'] max_drift,min_drift = np.max(y_drift),np.min(y_drift) valid_y_ends_list = [] valid_orientations = [] for j,orientation in enumerate(orientations): y_end = init_y_ends[j] if orientation == 0: bottom_edge = y_end+trench_len_y+max_drift top_edge = y_end-padding_y+min_drift edge_under_max = bottom_edge<max_y_dim edge_over_min = top_edge >= 0 else: bottom_edge = y_end+padding_y+max_drift top_edge = y_end-trench_len_y+min_drift edge_under_max = bottom_edge<max_y_dim edge_over_min = top_edge >= 0 edge_in_bounds = edge_under_max*edge_over_min if edge_in_bounds: valid_y_ends_list.append([y_end[j] for y_end in y_ends_list]) valid_orientations.append(orientation) valid_y_ends = np.array(valid_y_ends_list).T # t,edge return valid_y_ends,valid_orientations def get_ends_and_orientations(self,fov_idx,edges_futures,expected_num_rows,alternate_orientation,top_orientation,orientation_on_fail,y_min_edge_dist,padding_y,trench_len_y): fovdf = self.meta_handle.read_df("global",read_metadata=False) # fovdf = fovdf.loc[(slice(None), slice(self.t_range[0],self.t_range[1])),:] working_fovdf = fovdf.loc[fov_idx] trench_edges_y_list = [] start_above_list = [] end_above_list = [] for j,file_idx in enumerate(working_fovdf["File Index"].unique().tolist()): working_filedf = working_fovdf[working_fovdf["File Index"]==file_idx] img_indices = working_filedf["Image Index"].unique() first_idx,last_idx = (img_indices[0],img_indices[-1]) trench_edges_y_list += edges_futures[j][0][first_idx:last_idx+1] start_above_list += edges_futures[j][1][first_idx:last_idx+1] end_above_list += edges_futures[j][2][first_idx:last_idx+1] orientations,drop_first_row,drop_last_row = self.get_manual_orientations(trench_edges_y_list,start_above_list,end_above_list,expected_num_rows,alternate_orientation,top_orientation,orientation_on_fail,y_min_edge_dist) y_ends_list = self.get_trench_ends(trench_edges_y_list,start_above_list,end_above_list,orientations,drop_first_row,drop_last_row,y_min_edge_dist) y_drift = self.get_y_drift(y_ends_list) valid_y_ends,valid_orientations = self.keep_in_frame_kernels(y_ends_list,y_drift,orientations,padding_y,trench_len_y) return y_drift,valid_orientations,valid_y_ends def get_median_y_drift(self,drift_orientation_and_initend_futures): y_drift_list = [item[0] for item in drift_orientation_and_initend_futures] median_drift = np.round(np.median(np.array(y_drift_list),axis=0)).astype(int) return median_drift def update_y_drift_futures(self,new_y_drift,drift_orientation_and_initend_future): drift_orientation_and_initend_future = tuple((new_y_drift,drift_orientation_and_initend_future[1],drift_orientation_and_initend_future[2])) return drift_orientation_and_initend_future def crop_y(self,file_idx,drift_orientation_and_initend_future,padding_y,trench_len_y): """Performs cropping of the images in the y-dimension. Args: i (int): Specifies the current fov index. trench_edges_y_list (list): List containing, for each fov entry, a list of time-sorted edge arrays. row_num_list (list): List containing The number of trench rows detected in each fov. imported_array_list (list): A list containing numpy arrays containing the hdf5 file image data of shape (channel,y,x,t). padding_y (int): Padding to be used when cropping in the y-dimension. trench_len_y (int): Length from the end of the tenches to be used when cropping in the y-dimension. top_orientation (int, optional): The orientation of the top-most row where 0 corresponds to a trench with a downward-oriented trench opening and 1 corresponds to a trench with an upward-oriented trench opening. Returns: array: A y-cropped array of shape (rows,channels,x,y,t). """ fovdf = self.meta_handle.read_df("global",read_metadata=False) # fovdf = fovdf.loc[(slice(None), slice(self.t_range[0],self.t_range[1])),:] filedf = fovdf.reset_index(inplace=False) filedf = filedf.set_index(["File Index","Image Index"], drop=True, append=False, inplace=False) filedf = filedf.sort_index() working_filedf = filedf.loc[file_idx] timepoint_indices = working_filedf["timepoints"].unique().tolist() image_indices = working_filedf.index.get_level_values("Image Index").unique().tolist() # first_idx,last_idx = (timepoint_indices[0]-self.t_range[0],timepoint_indices[-1]-self.t_range[0]) first_idx,last_idx = (timepoint_indices[0],timepoint_indices[-1]) y_drift = drift_orientation_and_initend_future[0][first_idx:last_idx+1] valid_orientations,valid_y_ends = drift_orientation_and_initend_future[1:] drift_corrected_edges = np.add.outer(y_drift,valid_y_ends[0]) channel_arr_list = [] for c,channel in enumerate(self.all_channels): with h5py_cache.File(self.hdf5path+"/hdf5_"+str(file_idx)+".hdf5","r",chunk_cache_mem_size=self.metadata["chunk_cache_mem_size"]) as imported_hdf5_handle: img_arr = imported_hdf5_handle[channel][image_indices[0]:image_indices[-1]+1] time_list = [] lane_y_coords_list = [] for t in range(img_arr.shape[0]): trench_ends_y = drift_corrected_edges[t] row_list = [] lane_y_coords = [] for r,orientation in enumerate(valid_orientations): trench_end = trench_ends_y[r] if orientation == 0: upper = max(trench_end-padding_y,0) lower = min(trench_end+trench_len_y,img_arr.shape[1]) else: upper = max(trench_end-trench_len_y,0) lower = min(trench_end+padding_y,img_arr.shape[1]) lane_y_coords.append(upper) output_array = img_arr[t,upper:lower,:] row_list.append(output_array) time_list.append(row_list) lane_y_coords_list.append(lane_y_coords) cropped_in_y = np.array(time_list) # t x row x y x x if len(cropped_in_y.shape) != 4: print("Error in crop_y") raise else: channel_arr_list.append(cropped_in_y) return channel_arr_list,lane_y_coords_list def get_smoothed_x_percentiles(self,file_idx,drift_orientation_and_initend_future,padding_y,trench_len_y,x_percentile,background_kernel_x,smoothing_kernel_x): """Summary. Args: array_tuple (tuple): A singleton tuple containing the y-cropped hdf5 array of shape (rows,x,y,t). background_kernel_x (tuple): Two-entry tuple specifying a kernel size for performing background subtraction on xt signal when cropping in the x-dimension. Dim_1 (time) should be set to 1. smoothing_kernel_x (tuple): Two-entry tuple specifying a kernel size for performing smoothing on xt signal when cropping in the x-dimension. Dim_1 (time) should be set to 1. Returns: array: A smoothed and background subtracted percentile array of shape (rows,x,t) """ channel_arr_list,_ = self.crop_y(file_idx,drift_orientation_and_initend_future,padding_y,trench_len_y) cropped_in_y = channel_arr_list[0] if self.invert: cropped_in_y = sk.util.invert(cropped_in_y) # cropped_in_y = y_crop_future[0][0] # t x row x y x x # (24, 1, 330, 2048) x_percentiles_smoothed = [] for row_num in range(cropped_in_y.shape[1]): cropped_in_y_seg = cropped_in_y[:,row_num] # t x y x x x_percentiles = np.percentile(cropped_in_y_seg,x_percentile,axis=1) # t x x x_background_filtered = x_percentiles - self.median_filter_2d(x_percentiles,background_kernel_x) x_smooth_filtered = self.median_filter_2d(x_background_filtered,smoothing_kernel_x) x_smooth_filtered[x_smooth_filtered<0.] = 0. x_percentiles_smoothed.append(x_smooth_filtered) x_percentiles_smoothed=np.array(x_percentiles_smoothed) # row x t x x return x_percentiles_smoothed def get_midpoints_from_mask(self,mask): """Using a boolean x mask, computes the positions of trench midpoints. Args: mask (array): x boolean array, specifying where trenches are present. Returns: array: array of trench midpoint x positions. """ transitions = mask[:-1].astype(int) - mask[1:].astype(int) trans_up = np.where((transitions==-1))[0] trans_dn = np.where((transitions==1))[0] if len(np.where(trans_dn>trans_up[0])[0])>0: first_dn = np.where(trans_dn>trans_up[0])[0][0] trans_dn = trans_dn[first_dn:] trans_up = trans_up[:len(trans_dn)] midpoints = (trans_dn + trans_up)//2 else: midpoints = [] return midpoints def get_x_row_midpoints(self,x_percentiles_t,otsu_scaling,min_threshold): """Given an array of signal in x, determines the position of trench midpoints. Args: x_percentiles_t (array): array of trench intensities in x, at time t. otsu_nbins (int): Number of bins to use when applying Otsu's method to x-dimension signal. otsu_scaling (float): Threshold scaling factor for Otsu's method thresholding. Returns: array: array of trench midpoint x positions. """ otsu_threshold = sk.filters.threshold_otsu(x_percentiles_t[:,np.newaxis],nbins=50)*otsu_scaling modified_otsu_threshold = max(otsu_threshold,min_threshold) x_mask = x_percentiles_t>modified_otsu_threshold midpoints = self.get_midpoints_from_mask(x_mask) return midpoints def get_x_midpoints(self,x_percentiles_smoothed,otsu_scaling,min_threshold): """Given an x percentile array of shape (rows,t,x), determines the trench midpoints of each row array at each time t. Args: x_percentiles_smoothed_array (array): A smoothed and background subtracted percentile array of shape (rows,x,t) otsu_nbins (int): Number of bins to use when applying Otsu's method to x-dimension signal. otsu_scaling (float): Threshold scaling factor for Otsu's method thresholding. Returns: list: A nested list of the form [row_list,[time_list,[midpoint_array]]]. """ all_midpoints_list = [] for row in range(x_percentiles_smoothed.shape[0]): row_x_percentiles = x_percentiles_smoothed[row] all_midpoints = [] midpoints = self.get_x_row_midpoints(row_x_percentiles[0],otsu_scaling,min_threshold) if len(midpoints) == 0: return None all_midpoints.append(midpoints) for t in range(1,row_x_percentiles.shape[0]): midpoints = self.get_x_row_midpoints(row_x_percentiles[t],otsu_scaling,min_threshold) if len(midpoints)/(len(all_midpoints[-1])+1) < 0.5: all_midpoints.append(all_midpoints[-1]) else: all_midpoints.append(midpoints) all_midpoints_list.append(all_midpoints) return all_midpoints_list def compile_midpoint_futures(self,midpoint_futures): num_rows = len(midpoint_futures[0]) all_midpoints_list = [] for row in range(num_rows): row_midpoints_list = [] for midpoint_future in midpoint_futures: row_midpoints_list += midpoint_future[row] all_midpoints_list.append(row_midpoints_list) return all_midpoints_list def get_x_drift(self,midpoint_futures): """Given a list of midpoints, computes the average drift in x for every timepoint. Args: all_midpoints_list (list): A nested list of the form [row_list,[time_list,[midpoint_array]]] containing the trench midpoints. Returns: list: A nested list of the form [row_list,[time_list,[x_drift_int]]]. """ all_midpoints_list = self.compile_midpoint_futures(midpoint_futures) x_drift_list = [] for all_midpoints in all_midpoints_list: x_drift = [] for t in range(len(all_midpoints)-1): diff_mat = np.subtract.outer(all_midpoints[t+1],all_midpoints[t]) min_dist_idx = np.argmin(abs(diff_mat),axis=0) min_dists = diff_mat[min_dist_idx] median_translation = int(np.median(min_dists)) x_drift.append(median_translation) net_x_drift = np.append(np.array([0]),np.add.accumulate(x_drift)) x_drift_list.append(net_x_drift) return x_drift_list def get_median_x_drift(self,x_drift_futures): uppacked_x_drift_futures = [row for fov in x_drift_futures for row in fov] median_drift = np.round(np.median(np.array(uppacked_x_drift_futures),axis=0)).astype(int) return median_drift def update_x_drift_futures(self,new_x_drift,x_drift_future): x_drift_future = [copy.copy(new_x_drift) for row in x_drift_future] return x_drift_future def filter_midpoints(self,all_midpoints,x_drift,trench_width_x,trench_present_thr): drift_corrected_midpoints = [] for t in range(len(x_drift)): drift_corrected_t = all_midpoints[t]-x_drift[t] drift_corrected_midpoints.append(drift_corrected_t) midpoints_up,midpoints_dn = (all_midpoints[0]-trench_width_x//2,\ all_midpoints[0]+trench_width_x//2+1) trench_present_t = [] for t in range(len(drift_corrected_midpoints)): above_mask = np.greater.outer(drift_corrected_midpoints[t],midpoints_up) below_mask = np.less.outer(drift_corrected_midpoints[t],midpoints_dn) in_bound_mask = (above_mask*below_mask) trench_present = np.any(in_bound_mask,axis=0) trench_present_t.append(trench_present) trench_present_t = np.array(trench_present_t) trench_present_perc = np.sum(trench_present_t,axis=0)/trench_present_t.shape[0] presence_filter_mask = trench_present_perc>=trench_present_thr midpoint_seeds = all_midpoints[0][presence_filter_mask] return midpoint_seeds def get_in_bounds(self,all_midpoints,x_drift,trench_width_x,trench_present_thr): """Produces and writes a trench mask of shape (y_dim,t_dim,x_dim). This will be used to mask out trenches from the reshaped "cropped_in_y" array at a later step. Args: cropped_in_y (array): A y-cropped hdf5 array of shape (rows,y,x,t) containing y-cropped image data. all_midpoints (list): A list containing, for each time t, an array of trench midpoints. x_drift (list): A list containing, for each time t, an int corresponding to the drift of the midpoints in x. trench_width_x (int): Width to be used when cropping in the x-dimension. Returns: h5py.File: Hdf5 file handle corresponding to the trench mask hdf5 dataset "data" of shape (y_dim,t_dim,x_dim). int: Total number of trenches detected in the image. """ midpoint_seeds = self.filter_midpoints(all_midpoints,x_drift,trench_width_x,trench_present_thr) corrected_midpoints = x_drift[:,np.newaxis]+midpoint_seeds[np.newaxis,:] midpoints_up,midpoints_dn = (corrected_midpoints-trench_width_x//2,\ corrected_midpoints+trench_width_x//2+1) stays_in_frame = np.all(midpoints_up>=0,axis=0)*np.all(midpoints_dn<=self.metadata["width"],axis=0) #filters out midpoints that stay in the frame for the whole time... # no_overlap = np.append(np.array([True]),(corrected_midpoints[0,1:]-corrected_midpoints[0,:-1])>=(trench_width_x+1)) #corrects for overlap # if np.sum(no_overlap)/len(no_overlap)<0.9: # print("Trench overlap issue!!!") # valid_mask = stays_in_frame*no_overlap in_bounds = np.array([midpoints_up[:,stays_in_frame],\ midpoints_dn[:,stays_in_frame]]) k_tot = in_bounds.shape[2] x_coords = in_bounds[0].T return in_bounds,x_coords,k_tot def get_all_in_bounds(self,midpoint_futures,x_drift_future,trench_width_x,trench_present_thr): """Generates complete kymograph arrays for all trenches in the fov in every channel listed in 'self.all_channels'. Writes hdf5 files containing datasets of shape (trench_num,y_dim,x_dim,t_dim) for each row,channel combination. Dataset keys follow the convention. ["[row_number]/[channel_name]"]. Args: cropped_in_y_handle (h5py.File): Hdf5 file handle corresponding to the y-cropped hdf5 dataset "data" of shape (rows,channels,x,y,t). all_midpoints_list (list): A nested list of the form [row_list,[time_list,[midpoint_array]]] containing the trench midpoints. x_drift_list (list): A nested list of the form [row_list,[time_list,[x_drift_int]]] containing the computed drift in the x dimension. trench_width_x (int): Width to be used when cropping in the x-dimension. """ all_midpoints_list = self.compile_midpoint_futures(midpoint_futures) in_bounds_list = [] x_coords_list = [] k_tot_list = [] for row_num,all_midpoints in enumerate(all_midpoints_list): x_drift = x_drift_future[row_num] in_bounds,x_coords,k_tot = self.get_in_bounds(all_midpoints,x_drift,trench_width_x,trench_present_thr) in_bounds_list.append(in_bounds) x_coords_list.append(x_coords) k_tot_list.append(k_tot) return in_bounds_list,x_coords_list,k_tot_list def crop_with_bounds(self,output_kymograph,cropped_in_y_list,working_in_bounds,k_tot,row_num): """Generates and writes kymographs of a single row from the already y-cropped image data, using a pregenerated kymograph mask of shape (y_dim,t_dim,x_dim). Args: cropped_in_y_handle (h5py.File): Hdf5 file handle corresponding to the y-cropped hdf5 dataset "data" of shape (rows,channels,x,y,t). k_mask_handle (h5py.File): Hdf5 file handle corresponding to the trench mask hdf5 dataset "data" of shape (y_dim,t_dim,x_dim). row_num (int): The row number to crop kymographs from. k_tot (int): Int specifying the total number of detected trenches in the fov. """ for c,channel in enumerate(self.all_channels): dataset_name = str(row_num) + "/" + str(channel) cropped_in_y = cropped_in_y_list[c][:,row_num] # t,y,x k_len,t_len,y_len,x_len = (working_in_bounds.shape[2],working_in_bounds.shape[1],cropped_in_y.shape[1],working_in_bounds[1,0,0]-working_in_bounds[0,0,0]) kymo_out = np.zeros((k_len,t_len,y_len,x_len),dtype="uint16") for t in range(working_in_bounds.shape[1]): for k in range(working_in_bounds.shape[2]): bounds = working_in_bounds[:,t,k] kymo_out[k,t] = cropped_in_y[t,:,bounds[0]:bounds[1]] # kymo_out = self.apply_kymo_mask(kymo_mask,cropped_in_y,k_tot) # k x t x y x x hdf5_dataset = output_kymograph.create_dataset(dataset_name,data=kymo_out,chunks=self.output_chunk_shape, dtype='uint16') def crop_x(self,file_idx,drift_orientation_and_initend_future,in_bounds_future,padding_y,trench_len_y): """Generates complete kymograph arrays for all trenches in the fov in every channel listed in 'self.all_channels'. Writes hdf5 files containing datasets of shape (trench_num,y_dim,x_dim,t_dim) for each row,channel combination. Dataset keys follow the convention. ["[row_number]/[channel_name]"]. Args: cropped_in_y_handle (h5py.File): Hdf5 file handle corresponding to the y-cropped hdf5 dataset "data" of shape (rows,channels,x,y,t). all_midpoints_list (list): A nested list of the form [row_list,[time_list,[midpoint_array]]] containing the trench midpoints. x_drift_list (list): A nested list of the form [row_list,[time_list,[x_drift_int]]] containing the computed drift in the x dimension. trench_width_x (int): Width to be used when cropping in the x-dimension. """ fovdf = self.meta_handle.read_df("global",read_metadata=False) # fovdf = fovdf.loc[(slice(None), slice(self.t_range[0],self.t_range[1])),:] filedf = fovdf.reset_index(inplace=False) filedf = filedf.set_index(["File Index","Image Index"], drop=True, append=False, inplace=False) filedf = filedf.sort_index() working_filedf = filedf.loc[file_idx] timepoint_indices = working_filedf["timepoints"].unique().tolist() image_indices = working_filedf.index.get_level_values("Image Index").unique().tolist() # first_idx,last_idx = (timepoint_indices[0]-self.t_range[0],timepoint_indices[-1]-self.t_range[0]) #CHANGED first_idx,last_idx = (timepoint_indices[0],timepoint_indices[-1]) #CHANGED channel_arr_list,lane_y_coords_list = self.crop_y(file_idx,drift_orientation_and_initend_future,padding_y,trench_len_y) num_rows = channel_arr_list[0].shape[1] in_bounds_list,x_coords_list,k_tot_list = in_bounds_future # counting_arr = self.init_counting_arr(self.metadata["width"]) with h5py_cache.File(self.kymographpath+"/kymograph_processed_"+str(file_idx)+".hdf5","w",chunk_cache_mem_size=self.output_chunk_cache_mem_size) as output_kymograph: for row_num in range(num_rows): in_bounds,k_tot = (in_bounds_list[row_num],k_tot_list[row_num]) working_in_bounds = in_bounds[:,first_idx:last_idx+1] # kymo_mask = self.get_trench_mask(in_bounds[:,first_idx:last_idx+1],counting_arr) self.crop_with_bounds(output_kymograph,channel_arr_list,working_in_bounds,k_tot,row_num) return lane_y_coords_list def save_coords(self,fov_idx,x_crop_futures,in_bounds_future,drift_orientation_and_initend_future): fovdf = self.meta_handle.read_df("global",read_metadata=False) # fovdf = fovdf.loc[(slice(None), slice(self.t_range[0],self.t_range[1])),:] fovdf = fovdf.loc[fov_idx] x_coords_list = in_bounds_future[1] orientations = drift_orientation_and_initend_future[1] y_coords_list = [] for j,file_idx in enumerate(fovdf["File Index"].unique().tolist()): working_filedf = fovdf[fovdf["File Index"]==file_idx] img_indices = working_filedf["Image Index"].unique() y_coords_list += x_crop_futures[j] # t x row list pixel_microns = self.metadata['pixel_microns'] y_coords = np.array(y_coords_list) # t x row array scaled_y_coords = y_coords*pixel_microns t_len = scaled_y_coords.shape[0] fs = np.repeat([fov_idx],t_len) orit_dict = {0:"top",1:"bottom"} tpts = np.array(range(t_len)) missing_metadata = ('x' not in fovdf.columns) if not missing_metadata: global_x,global_y,ts,file_indices,img_indices = (fovdf["x"].values,fovdf["y"].values,fovdf["t"].values,fovdf["File Index"].values,fovdf["Image Index"].values) else: file_indices,img_indices = (fovdf["File Index"].values,fovdf["Image Index"].values) pd_output = [] for l,x_coord in enumerate(x_coords_list): scaled_x_coord = x_coord*pixel_microns yt = scaled_y_coords[:,l] orit = np.repeat([orit_dict[orientations[l]]],t_len) if not missing_metadata: global_yt = yt+global_y ls = np.repeat([l],t_len) for k in range(scaled_x_coord.shape[0]): xt = scaled_x_coord[k] if not missing_metadata: global_xt = xt+global_x ks = np.repeat([k],t_len) if not missing_metadata: pd_output.append(np.array([fs,ls,ks,tpts,file_indices,img_indices,ts,orit,yt,xt,global_yt,global_xt]).T) else: pd_output.append(np.array([fs,ls,ks,tpts,file_indices,img_indices,orit,yt,xt]).T) pd_output = np.concatenate(pd_output,axis=0) if not missing_metadata: df = pd.DataFrame(pd_output,columns=["fov","row","trench","timepoints","File Index","Image Index","time (s)","lane orientation","y (local)","x (local)","y (global)","x (global)"]) df = df.astype({"fov":int,"row":int,"trench":int,"timepoints":int,"File Index":int,"Image Index":int,"time (s)":float,"lane orientation":str,"y (local)":float,"x (local)":float,\ "y (global)":float,"x (global)":float}) else: df =
pd.DataFrame(pd_output,columns=["fov","row","trench","timepoints","File Index","Image Index","lane orientation","y (local)","x (local)"])
pandas.DataFrame
import sys import os.path sys.path.insert(1, os.path.abspath(os.path.join(os.path.dirname(__file__), os.path.pardir))) import numpy as np import pandas as pd from urllib.parse import quote import os from utils.scraping_utils import get_soup_for_url, get_postcode_prefix, identify_postcode, strip_text from utils.geo import all_region_postcodes import re import ast sleep = .1 def map_to_companies_house_name(company_name, postcode=None,): if company_name.lower() == "myworkwear": return "J.M. WORTHINGTON & CO. LIMITED" return search_companies_house(company_name, postcode, postcode is not None)[0] def search_companies_house(company_name, postcode, check_postcode=True): company_name = company_name#.lower() # replace + company_name = company_name.replace("+", "plus") postcode_prefix = get_postcode_prefix(postcode) print ("searching companies house for company:", company_name, "using postcode", postcode) # company_name_url = "+".join(company_name.split(" ")) company_name_url = quote(company_name) url = f"https://find-and-update.company-information.service.gov.uk/search?q={company_name_url}" soup, status_code = get_soup_for_url(url, sleep=sleep) assert status_code == 200 # postcode_prefix = get_postcode_prefix(postcode) results = soup.find_all("li", {"class": 'type-company'}) if results is None: return None for result in results: anchor = result.find("a", {"title": 'View company'}) link = anchor["href"] link_company_name = strip_text(anchor.text) print ("COMPANIES HOUSE NAME", link_company_name) # check for post code address = result.find("p", {"class": None}).get_text(strip=True) if not check_postcode: return link_company_name, address, link if address is None or address == "": continue result_postcode = identify_postcode(address) if result_postcode is None: continue result_postcode_prefix = get_postcode_prefix(result_postcode) if result_postcode_prefix is None: continue if postcode_prefix == result_postcode_prefix: print ("POSTCODE MATCH", postcode, result_postcode, get_postcode_prefix(postcode), get_postcode_prefix(result_postcode)) return link_company_name, address, link elif result_postcode_prefix in all_region_postcodes["midlands"] \ or result_postcode_prefix in all_region_postcodes["yorkshire"]: print ("postcode region match", address, link) return link_company_name, address, link # raise Exception return None, None, None def scrape(link): # pass base_url = "https://find-and-update.company-information.service.gov.uk" + link overview_url = base_url soup, status_code = get_soup_for_url(overview_url, sleep=sleep) assert status_code == 200 # company status status_element = soup.find("dd", {"id": "company-status"}) if status_element is not None: # remove non alphabetic characters company_status = re.sub(r"[^A-Za-z]", "", status_element.text.rstrip()) else: company_status = None print ("company status", company_status) # get SIC codes sic_elements = soup.find_all(id=re.compile('^sic[0-9]+')) sic_codes = [] for sic_element in sic_elements: sic_codes.append(strip_text(sic_element.text)) return company_status, sic_codes def get_companies_house_name_for_members(): ''' THIS SEARCHES COMPAIES HOUSE FOR THE BEST MATCHING NAME BUT THE RESULTS WILL HAVE TO BE MANUALLY CHECKED ''' for membership_level in ( "Patron", "Platinum", "Gold", "Silver", "Bronze", "Digital", "Freemium", ): summary_filename = os.path.join("data_for_graph", "members", f"{membership_level}_members.csv") member_summaries = pd.read_csv(summary_filename, index_col=0) member_summaries["companies_house_name"] = member_summaries.apply( lambda row: map_to_companies_house_name( company_name=row["member_name"], # postcode=row["postcode"] ), axis=1 ) member_summaries.to_csv(summary_filename) def scrape_companies_house_for_members(): output_dir = os.path.join("data_for_graph", "members") for membership_level in ( "Patron", "Platinum", "Gold", "Silver", "Bronze", "Digital", "Freemium", ): filename = f"{membership_level}_members" companies = pd.read_csv( os.path.join(output_dir, f"{filename}.csv"), index_col=0, ) company_name_col = "companies_house_name" assert company_name_col in companies.columns companies = companies.drop_duplicates(company_name_col) output_filename = os.path.join(output_dir, f"{filename}_companies_house") output_filename_csv = f"{output_filename}.csv" if os.path.exists(output_filename_csv): full_company_info = pd.read_csv(output_filename_csv, index_col=0) existing_companies = set(full_company_info.index) else: full_company_info = pd.DataFrame() existing_companies = set() for i, company in companies.iterrows(): company_name = company[company_name_col] if
pd.isnull(company_name)
pandas.isnull
import warnings warnings.simplefilter(action = 'ignore', category = UserWarning) # Front matter import os import glob import re import pandas as pd import numpy as np import scipy.constants as constants import sympy as sp from sympy import Matrix, Symbol from sympy.utilities.lambdify import lambdify import matplotlib import matplotlib.pyplot as plt from matplotlib.ticker import AutoMinorLocator from matplotlib import gridspec # Seaborn, useful for graphics import seaborn as sns matplotlib.rc('xtick', labelsize=14) matplotlib.rc('ytick', labelsize=14) rc = {'lines.linewidth': 1, 'axes.labelsize': 20, 'axes.titlesize': 20, 'legend.fontsize': 26, 'xtick.direction': u'in', 'ytick.direction': u'in'} sns.set_style('ticks', rc=rc) # Functions def calc_V_bcc(a): return a**3 def calc_V_hcp(a,c): return (np.sqrt(3)/2)*a**2*c def calc_dV_bcc(a,da): return 3*a**2*da def calc_dV_hcp(a,c,da,dc): return np.sqrt( (np.sqrt(3)*a*c*da)**2 + ((np.sqrt(3)/2)*a**2*dc)**2 ) # Numeric Vinet EOS, used for everything except calculating dP def VinetEOS(V,V0,K0,Kprime0): A = V/V0 P = 3*K0*A**(-2/3) * (1-A**(1/3)) * np.exp((3/2)*(Kprime0-1)*(1-A**(1/3))) return P # Symbolic Vinet EOS, needed to calculate dP def VinetEOS_sym(V,V0,K0,Kprime0): A = V/V0 P = 3*K0*A**(-2/3) * (1-A**(1/3)) * sp.exp((3/2)*(Kprime0-1)*(1-A**(1/3))) return P # Create a covariance matrix from EOS_df with V0, K0, and K0prime; used to get dP def getCov3(EOS_df, phase): dV0 = np.float(EOS_df[EOS_df['Phase'] == phase]['dV0']) dK0 = np.float(EOS_df[EOS_df['Phase'] == phase]['dK0']) dKprime0 = np.float(EOS_df[EOS_df['Phase'] == phase]['dKprime0']) V0K0_corr = np.float(EOS_df[EOS_df['Phase'] == phase]['V0K0 corr']) V0Kprime0_corr = np.float(EOS_df[EOS_df['Phase'] == phase]['V0Kprime0 corr']) K0Kprime0_corr = np.float(EOS_df[EOS_df['Phase'] == phase]['K0Kprime0 corr']) corr_matrix = np.eye(3) corr_matrix[0,1] = V0K0_corr corr_matrix[1,0] = V0K0_corr corr_matrix[0,2] = V0Kprime0_corr corr_matrix[2,0] = V0Kprime0_corr corr_matrix[1,2] = K0Kprime0_corr corr_matrix[2,1] = K0Kprime0_corr sigmas = np.array([[dV0,dK0,dKprime0]]) cov = (sigmas.T@sigmas)*corr_matrix return cov # Create a covariance matrix with V, V0, K0, and K0prime; used to get dP def getVinetCov(dV, EOS_df, phase): cov3 = getCov3(EOS_df, phase) cov = np.eye(4) cov[1:4,1:4] = cov3 cov[0,0] = dV**2 return cov def calc_dP_VinetEOS(V, dV, EOS_df, phase): # Create function for Jacobian of Vinet EOS a,b,c,d = Symbol('a'),Symbol('b'),Symbol('c'),Symbol('d') # Symbolic variables V, V0, K0, K'0 Vinet_matrix = Matrix([VinetEOS_sym(a,b,c,d)]) # Create a symbolic Vinet EOS matrix param_matrix = Matrix([a,b,c,d]) # Create a matrix of symbolic variables # Symbolically take the Jacobian of the Vinet EOS and turn into a column matrix J_sym = Vinet_matrix.jacobian(param_matrix).T # Create a numpy function for the above expression # (easier to work with numerically) J_Vinet = lambdify((a,b,c,d), J_sym, 'numpy') J = J_Vinet(V,*getEOSparams(EOS_df, phase)) # Calculate Jacobian cov = getVinetCov(dV, EOS_df, phase) # Calculate covariance matrix dP = (J.T@cov@J).item() # Calculate uncertainty and convert to a scalar return dP def getEOSparams(EOS_df, phase): V0 = np.float(EOS_df[EOS_df['Phase'] == phase]['V0']) K0 = np.float(EOS_df[EOS_df['Phase'] == phase]['K0']) Kprime0 = np.float(EOS_df[EOS_df['Phase'] == phase]['Kprime0']) return V0, K0, Kprime0 def calc_rho(V,dV,M): # Convert from cubic angstroms to cm^3/mol V_ccpermol = (V/2)*constants.N_A/(10**24) rho = M/V_ccpermol drho = (M*2*10**24/constants.N_A)*(dV/(V**2)) return rho, drho # Import EOS information EOS_df = pd.read_csv('FeAlloyEOS.csv') # Find the filepath of all .xy XRD pattern files patternfilepath_list = [filepath for filepath in glob.glob('*/*/*.xy')] allresults_df = pd.DataFrame() bccFe_df = pd.DataFrame() bccFeNi_df = pd.DataFrame() bccFeNiSi_df =
pd.DataFrame()
pandas.DataFrame
from matplotlib.dates import DateFormatter, WeekdayLocator, \ DayLocator, MONDAY import pandas as pd import numpy as np import matplotlib.dates as mdates import matplotlib.pyplot as plt #from matplotlib.finance import candlestick_ohlc from mpl_finance import candlestick_ochl as candlestick from utilities import log def pandas_candlestick_ohlc(dataframe, stick="day", otherseries=None): """ :param dataframe: pandas DataFrame object with datetime64 index, and float columns "Open", "High", "Low", and "Close", likely created via DataReader from "yahoo" :param stick: A string or number indicating the period of time covered by a single candlestick. Valid string inputs include "day", "week", "month", and "year", ("day" default), and any numeric input indicates the number of trading days included in a period :param otherseries: An iterable that will be coerced into a list, containing the columns of dataframe that hold other series to be plotted as lines This will show a Japanese candlestick plot for stock data stored in dataframe, also plotting other series if passed. """ mondays = WeekdayLocator(MONDAY) # major ticks on the mondays alldays = DayLocator() # minor ticks on the days dayFormatter = DateFormatter('%d') # e.g., 12 # Create a new DataFrame which includes OHLC data for each period specified by stick input transdat = dataframe.loc[:, ["Open", "High", "Low", "Close"]] if (type(stick) == str): if stick == "day": plotdat = transdat stick = 1 # Used for plotting elif stick in ["week", "month", "year"]: if stick == "week": transdat["week"] = pd.to_datetime(transdat.index).map(lambda x: x.isocalendar()[1]) # Identify weeks elif stick == "month": transdat["month"] = pd.to_datetime(transdat.index).map(lambda x: x.month) # Identify months transdat["year"] = pd.to_datetime(transdat.index).map(lambda x: x.isocalendar()[0]) # Identify years grouped = transdat.groupby(list(set(["year", stick]))) # Group by year and other appropriate variable plotdat = pd.DataFrame({"Open": [], "High": [], "Low": [], "Close": []}) # Create empty data frame containing what will be plotted for name, group in grouped: plotdat = plotdat.append(pd.DataFrame({"Open": group.iloc[0, 0], "High": max(group.High), "Low": min(group.Low), "Close": group.iloc[-1, 3]}, index=[group.index[0]])) if stick == "week": stick = 5 elif stick == "month": stick = 30 elif stick == "year": stick = 365 elif (type(stick) == int and stick >= 1): transdat["stick"] = [np.floor(i / stick) for i in range(len(transdat.index))] grouped = transdat.groupby("stick") plotdat = pd.DataFrame( {"Open": [], "High": [], "Low": [], "Close": []}) # Create empty data frame containing what will be plotted for name, group in grouped: plotdat = plotdat.append(pd.DataFrame({"Open": group.iloc[0, 0], "High": max(group.High), "Low": min(group.Low), "Close": group.iloc[-1, 3]}, index=[group.index[0]])) else: raise ValueError( 'Valid inputs to argument "stick" include the strings "day", "week", "month", "year", or a positive integer') # Set plot parameters, including the axis object ax used for plotting fig, ax = plt.subplots() fig.subplots_adjust(bottom=0.2) if plotdat.index[-1] - plotdat.index[0] <
pd.Timedelta('730 days')
pandas.Timedelta
from collections import OrderedDict from datetime import timedelta import numpy as np import pytest from pandas.core.dtypes.dtypes import CategoricalDtype, DatetimeTZDtype import pandas as pd from pandas import ( Categorical, DataFrame, Series, Timedelta, Timestamp, _np_version_under1p14, concat, date_range, option_context, ) from pandas.core.arrays import integer_array import pandas.util.testing as tm def _check_cast(df, v): """ Check if all dtypes of df are equal to v """ assert all(s.dtype.name == v for _, s in df.items()) class TestDataFrameDataTypes: def test_concat_empty_dataframe_dtypes(self): df = DataFrame(columns=list("abc")) df["a"] = df["a"].astype(np.bool_) df["b"] = df["b"].astype(np.int32) df["c"] = df["c"].astype(np.float64) result = pd.concat([df, df]) assert result["a"].dtype == np.bool_ assert result["b"].dtype == np.int32 assert result["c"].dtype == np.float64 result = pd.concat([df, df.astype(np.float64)]) assert result["a"].dtype == np.object_ assert result["b"].dtype == np.float64 assert result["c"].dtype == np.float64 def test_empty_frame_dtypes_ftypes(self): empty_df = pd.DataFrame() tm.assert_series_equal(empty_df.dtypes, pd.Series(dtype=np.object)) # GH 26705 - Assert .ftypes is deprecated with tm.assert_produces_warning(FutureWarning): tm.assert_series_equal(empty_df.ftypes, pd.Series(dtype=np.object)) nocols_df = pd.DataFrame(index=[1, 2, 3]) tm.assert_series_equal(nocols_df.dtypes, pd.Series(dtype=np.object)) # GH 26705 - Assert .ftypes is deprecated with tm.assert_produces_warning(FutureWarning): tm.assert_series_equal(nocols_df.ftypes, pd.Series(dtype=np.object)) norows_df = pd.DataFrame(columns=list("abc")) tm.assert_series_equal( norows_df.dtypes, pd.Series(np.object, index=list("abc")) ) # GH 26705 - Assert .ftypes is deprecated with tm.assert_produces_warning(FutureWarning): tm.assert_series_equal( norows_df.ftypes, pd.Series("object:dense", index=list("abc")) ) norows_int_df = pd.DataFrame(columns=list("abc")).astype(np.int32) tm.assert_series_equal( norows_int_df.dtypes, pd.Series(np.dtype("int32"), index=list("abc")) ) # GH 26705 - Assert .ftypes is deprecated with tm.assert_produces_warning(FutureWarning): tm.assert_series_equal( norows_int_df.ftypes, pd.Series("int32:dense", index=list("abc")) ) odict = OrderedDict df = pd.DataFrame(odict([("a", 1), ("b", True), ("c", 1.0)]), index=[1, 2, 3]) ex_dtypes = pd.Series( odict([("a", np.int64), ("b", np.bool), ("c", np.float64)]) ) ex_ftypes = pd.Series( odict([("a", "int64:dense"), ("b", "bool:dense"), ("c", "float64:dense")]) ) tm.assert_series_equal(df.dtypes, ex_dtypes) # GH 26705 - Assert .ftypes is deprecated with tm.assert_produces_warning(FutureWarning): tm.assert_series_equal(df.ftypes, ex_ftypes) # same but for empty slice of df tm.assert_series_equal(df[:0].dtypes, ex_dtypes) # GH 26705 - Assert .ftypes is deprecated with tm.assert_produces_warning(FutureWarning): tm.assert_series_equal(df[:0].ftypes, ex_ftypes) def test_datetime_with_tz_dtypes(self): tzframe = DataFrame( { "A": date_range("20130101", periods=3), "B": date_range("20130101", periods=3, tz="US/Eastern"), "C": date_range("20130101", periods=3, tz="CET"), } ) tzframe.iloc[1, 1] = pd.NaT tzframe.iloc[1, 2] = pd.NaT result = tzframe.dtypes.sort_index() expected = Series( [ np.dtype("datetime64[ns]"), DatetimeTZDtype("ns", "US/Eastern"), DatetimeTZDtype("ns", "CET"), ], ["A", "B", "C"], ) tm.assert_series_equal(result, expected) def test_dtypes_are_correct_after_column_slice(self): # GH6525 df = pd.DataFrame(index=range(5), columns=list("abc"), dtype=np.float_) odict = OrderedDict tm.assert_series_equal( df.dtypes, pd.Series(odict([("a", np.float_), ("b", np.float_), ("c", np.float_)])), ) tm.assert_series_equal( df.iloc[:, 2:].dtypes, pd.Series(odict([("c", np.float_)])) ) tm.assert_series_equal( df.dtypes, pd.Series(odict([("a", np.float_), ("b", np.float_), ("c", np.float_)])), ) def test_select_dtypes_include_using_list_like(self): df = DataFrame( { "a": list("abc"), "b": list(range(1, 4)), "c": np.arange(3, 6).astype("u1"), "d": np.arange(4.0, 7.0, dtype="float64"), "e": [True, False, True], "f": pd.Categorical(list("abc")), "g": pd.date_range("20130101", periods=3), "h": pd.date_range("20130101", periods=3, tz="US/Eastern"), "i": pd.date_range("20130101", periods=3, tz="CET"), "j": pd.period_range("2013-01", periods=3, freq="M"), "k": pd.timedelta_range("1 day", periods=3), } ) ri = df.select_dtypes(include=[np.number]) ei = df[["b", "c", "d", "k"]] tm.assert_frame_equal(ri, ei) ri = df.select_dtypes(include=[np.number], exclude=["timedelta"]) ei = df[["b", "c", "d"]] tm.assert_frame_equal(ri, ei) ri = df.select_dtypes(include=[np.number, "category"], exclude=["timedelta"]) ei = df[["b", "c", "d", "f"]] tm.assert_frame_equal(ri, ei) ri = df.select_dtypes(include=["datetime"]) ei = df[["g"]] tm.assert_frame_equal(ri, ei) ri = df.select_dtypes(include=["datetime64"]) ei = df[["g"]] tm.assert_frame_equal(ri, ei) ri = df.select_dtypes(include=["datetimetz"]) ei = df[["h", "i"]] tm.assert_frame_equal(ri, ei) with pytest.raises(NotImplementedError, match=r"^$"): df.select_dtypes(include=["period"]) def test_select_dtypes_exclude_using_list_like(self): df = DataFrame( { "a": list("abc"), "b": list(range(1, 4)), "c": np.arange(3, 6).astype("u1"), "d": np.arange(4.0, 7.0, dtype="float64"), "e": [True, False, True], } ) re = df.select_dtypes(exclude=[np.number]) ee = df[["a", "e"]] tm.assert_frame_equal(re, ee) def test_select_dtypes_exclude_include_using_list_like(self): df = DataFrame( { "a": list("abc"), "b": list(range(1, 4)), "c": np.arange(3, 6).astype("u1"), "d": np.arange(4.0, 7.0, dtype="float64"), "e": [True, False, True], "f": pd.date_range("now", periods=3).values, } ) exclude = (np.datetime64,) include = np.bool_, "integer" r = df.select_dtypes(include=include, exclude=exclude) e = df[["b", "c", "e"]] tm.assert_frame_equal(r, e) exclude = ("datetime",) include = "bool", "int64", "int32" r = df.select_dtypes(include=include, exclude=exclude) e = df[["b", "e"]] tm.assert_frame_equal(r, e) def test_select_dtypes_include_using_scalars(self): df = DataFrame( { "a": list("abc"), "b": list(range(1, 4)), "c": np.arange(3, 6).astype("u1"), "d": np.arange(4.0, 7.0, dtype="float64"), "e": [True, False, True], "f": pd.Categorical(list("abc")), "g": pd.date_range("20130101", periods=3), "h": pd.date_range("20130101", periods=3, tz="US/Eastern"), "i": pd.date_range("20130101", periods=3, tz="CET"), "j": pd.period_range("2013-01", periods=3, freq="M"), "k": pd.timedelta_range("1 day", periods=3), } ) ri = df.select_dtypes(include=np.number) ei = df[["b", "c", "d", "k"]] tm.assert_frame_equal(ri, ei) ri = df.select_dtypes(include="datetime") ei = df[["g"]] tm.assert_frame_equal(ri, ei) ri = df.select_dtypes(include="datetime64") ei = df[["g"]] tm.assert_frame_equal(ri, ei) ri = df.select_dtypes(include="category") ei = df[["f"]] tm.assert_frame_equal(ri, ei) with pytest.raises(NotImplementedError, match=r"^$"): df.select_dtypes(include="period") def test_select_dtypes_exclude_using_scalars(self): df = DataFrame( { "a": list("abc"), "b": list(range(1, 4)), "c": np.arange(3, 6).astype("u1"), "d": np.arange(4.0, 7.0, dtype="float64"), "e": [True, False, True], "f": pd.Categorical(list("abc")), "g": pd.date_range("20130101", periods=3), "h": pd.date_range("20130101", periods=3, tz="US/Eastern"), "i": pd.date_range("20130101", periods=3, tz="CET"), "j": pd.period_range("2013-01", periods=3, freq="M"), "k": pd.timedelta_range("1 day", periods=3), } ) ri = df.select_dtypes(exclude=np.number) ei = df[["a", "e", "f", "g", "h", "i", "j"]] tm.assert_frame_equal(ri, ei) ri = df.select_dtypes(exclude="category") ei = df[["a", "b", "c", "d", "e", "g", "h", "i", "j", "k"]] tm.assert_frame_equal(ri, ei) with pytest.raises(NotImplementedError, match=r"^$"): df.select_dtypes(exclude="period") def test_select_dtypes_include_exclude_using_scalars(self): df = DataFrame( { "a": list("abc"), "b": list(range(1, 4)), "c": np.arange(3, 6).astype("u1"), "d": np.arange(4.0, 7.0, dtype="float64"), "e": [True, False, True], "f": pd.Categorical(list("abc")), "g": pd.date_range("20130101", periods=3), "h": pd.date_range("20130101", periods=3, tz="US/Eastern"), "i": pd.date_range("20130101", periods=3, tz="CET"), "j": pd.period_range("2013-01", periods=3, freq="M"), "k": pd.timedelta_range("1 day", periods=3), } ) ri = df.select_dtypes(include=np.number, exclude="floating") ei = df[["b", "c", "k"]] tm.assert_frame_equal(ri, ei) def test_select_dtypes_include_exclude_mixed_scalars_lists(self): df = DataFrame( { "a": list("abc"), "b": list(range(1, 4)), "c": np.arange(3, 6).astype("u1"), "d": np.arange(4.0, 7.0, dtype="float64"), "e": [True, False, True], "f": pd.Categorical(list("abc")), "g": pd.date_range("20130101", periods=3), "h": pd.date_range("20130101", periods=3, tz="US/Eastern"), "i": pd.date_range("20130101", periods=3, tz="CET"), "j": pd.period_range("2013-01", periods=3, freq="M"), "k": pd.timedelta_range("1 day", periods=3), } ) ri = df.select_dtypes(include=np.number, exclude=["floating", "timedelta"]) ei = df[["b", "c"]] tm.assert_frame_equal(ri, ei) ri = df.select_dtypes(include=[np.number, "category"], exclude="floating") ei = df[["b", "c", "f", "k"]] tm.assert_frame_equal(ri, ei) def test_select_dtypes_duplicate_columns(self): # GH20839 odict = OrderedDict df = DataFrame( odict( [ ("a", list("abc")), ("b", list(range(1, 4))), ("c", np.arange(3, 6).astype("u1")), ("d", np.arange(4.0, 7.0, dtype="float64")), ("e", [True, False, True]), ("f", pd.date_range("now", periods=3).values), ] ) ) df.columns = ["a", "a", "b", "b", "b", "c"] expected = DataFrame( {"a": list(range(1, 4)), "b": np.arange(3, 6).astype("u1")} ) result = df.select_dtypes(include=[np.number], exclude=["floating"]) tm.assert_frame_equal(result, expected) def test_select_dtypes_not_an_attr_but_still_valid_dtype(self): df = DataFrame( { "a": list("abc"), "b": list(range(1, 4)), "c": np.arange(3, 6).astype("u1"), "d": np.arange(4.0, 7.0, dtype="float64"), "e": [True, False, True], "f": pd.date_range("now", periods=3).values, } ) df["g"] = df.f.diff() assert not hasattr(np, "u8") r = df.select_dtypes(include=["i8", "O"], exclude=["timedelta"]) e = df[["a", "b"]] tm.assert_frame_equal(r, e) r = df.select_dtypes(include=["i8", "O", "timedelta64[ns]"]) e = df[["a", "b", "g"]] tm.assert_frame_equal(r, e) def test_select_dtypes_empty(self): df = DataFrame({"a": list("abc"), "b": list(range(1, 4))}) msg = "at least one of include or exclude must be nonempty" with pytest.raises(ValueError, match=msg): df.select_dtypes() def test_select_dtypes_bad_datetime64(self): df = DataFrame( { "a": list("abc"), "b": list(range(1, 4)), "c": np.arange(3, 6).astype("u1"), "d": np.arange(4.0, 7.0, dtype="float64"), "e": [True, False, True], "f": pd.date_range("now", periods=3).values, } ) with pytest.raises(ValueError, match=".+ is too specific"): df.select_dtypes(include=["datetime64[D]"]) with pytest.raises(ValueError, match=".+ is too specific"): df.select_dtypes(exclude=["datetime64[as]"]) def test_select_dtypes_datetime_with_tz(self): df2 = DataFrame( dict( A=Timestamp("20130102", tz="US/Eastern"), B=Timestamp("20130603", tz="CET"), ), index=range(5), ) df3 = pd.concat([df2.A.to_frame(), df2.B.to_frame()], axis=1) result = df3.select_dtypes(include=["datetime64[ns]"]) expected = df3.reindex(columns=[]) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "dtype", [str, "str", np.string_, "S1", "unicode", np.unicode_, "U1"] ) @pytest.mark.parametrize("arg", ["include", "exclude"]) def test_select_dtypes_str_raises(self, dtype, arg): df = DataFrame( { "a": list("abc"), "g": list("abc"), "b": list(range(1, 4)), "c": np.arange(3, 6).astype("u1"), "d": np.arange(4.0, 7.0, dtype="float64"), "e": [True, False, True], "f": pd.date_range("now", periods=3).values, } ) msg = "string dtypes are not allowed" kwargs = {arg: [dtype]} with pytest.raises(TypeError, match=msg): df.select_dtypes(**kwargs) def test_select_dtypes_bad_arg_raises(self): df = DataFrame( { "a": list("abc"), "g": list("abc"), "b": list(range(1, 4)), "c": np.arange(3, 6).astype("u1"), "d": np.arange(4.0, 7.0, dtype="float64"), "e": [True, False, True], "f": pd.date_range("now", periods=3).values, } ) msg = "data type.*not understood" with pytest.raises(TypeError, match=msg): df.select_dtypes(["blargy, blarg, blarg"]) def test_select_dtypes_typecodes(self): # GH 11990 df = tm.makeCustomDataframe(30, 3, data_gen_f=lambda x, y: np.random.random()) expected = df FLOAT_TYPES = list(np.typecodes["AllFloat"]) tm.assert_frame_equal(df.select_dtypes(FLOAT_TYPES), expected) def test_dtypes_gh8722(self, float_string_frame): float_string_frame["bool"] = float_string_frame["A"] > 0 result = float_string_frame.dtypes expected = Series( {k: v.dtype for k, v in float_string_frame.items()}, index=result.index ) tm.assert_series_equal(result, expected) # compat, GH 8722 with option_context("use_inf_as_na", True): df = DataFrame([[1]]) result = df.dtypes tm.assert_series_equal(result, Series({0: np.dtype("int64")})) def test_ftypes(self, mixed_float_frame): frame = mixed_float_frame expected = Series( dict( A="float32:dense", B="float32:dense", C="float16:dense", D="float64:dense", ) ).sort_values() # GH 26705 - Assert .ftypes is deprecated with tm.assert_produces_warning(FutureWarning): result = frame.ftypes.sort_values() tm.assert_series_equal(result, expected) def test_astype_float(self, float_frame): casted = float_frame.astype(int) expected = DataFrame( float_frame.values.astype(int), index=float_frame.index, columns=float_frame.columns, ) tm.assert_frame_equal(casted, expected) casted = float_frame.astype(np.int32) expected = DataFrame( float_frame.values.astype(np.int32), index=float_frame.index, columns=float_frame.columns, ) tm.assert_frame_equal(casted, expected) float_frame["foo"] = "5" casted = float_frame.astype(int) expected = DataFrame( float_frame.values.astype(int), index=float_frame.index, columns=float_frame.columns, ) tm.assert_frame_equal(casted, expected) def test_astype_mixed_float(self, mixed_float_frame): # mixed casting casted = mixed_float_frame.reindex(columns=["A", "B"]).astype("float32") _check_cast(casted, "float32") casted = mixed_float_frame.reindex(columns=["A", "B"]).astype("float16") _check_cast(casted, "float16") def test_astype_mixed_type(self, mixed_type_frame): # mixed casting mn = mixed_type_frame._get_numeric_data().copy() mn["little_float"] = np.array(12345.0, dtype="float16") mn["big_float"] = np.array(123456789101112.0, dtype="float64") casted = mn.astype("float64") _check_cast(casted, "float64") casted = mn.astype("int64") _check_cast(casted, "int64") casted = mn.reindex(columns=["little_float"]).astype("float16") _check_cast(casted, "float16") casted = mn.astype("float32") _check_cast(casted, "float32") casted = mn.astype("int32") _check_cast(casted, "int32") # to object casted = mn.astype("O") _check_cast(casted, "object") def test_astype_with_exclude_string(self, float_frame): df = float_frame.copy() expected = float_frame.astype(int) df["string"] = "foo" casted = df.astype(int, errors="ignore") expected["string"] = "foo" tm.assert_frame_equal(casted, expected) df = float_frame.copy() expected = float_frame.astype(np.int32) df["string"] = "foo" casted = df.astype(np.int32, errors="ignore") expected["string"] = "foo" tm.assert_frame_equal(casted, expected) def test_astype_with_view_float(self, float_frame): # this is the only real reason to do it this way tf = np.round(float_frame).astype(np.int32) casted = tf.astype(np.float32, copy=False) # TODO(wesm): verification? tf = float_frame.astype(np.float64) casted = tf.astype(np.int64, copy=False) # noqa def test_astype_with_view_mixed_float(self, mixed_float_frame): tf = mixed_float_frame.reindex(columns=["A", "B", "C"]) casted = tf.astype(np.int64) casted = tf.astype(np.float32) # noqa @pytest.mark.parametrize("dtype", [np.int32, np.int64]) @pytest.mark.parametrize("val", [np.nan, np.inf]) def test_astype_cast_nan_inf_int(self, val, dtype): # see gh-14265 # # Check NaN and inf --> raise error when converting to int. msg = "Cannot convert non-finite values \\(NA or inf\\) to integer" df = DataFrame([val]) with pytest.raises(ValueError, match=msg): df.astype(dtype) def test_astype_str(self): # see gh-9757 a = Series(date_range("2010-01-04", periods=5)) b = Series(date_range("3/6/2012 00:00", periods=5, tz="US/Eastern")) c = Series([Timedelta(x, unit="d") for x in range(5)]) d = Series(range(5)) e = Series([0.0, 0.2, 0.4, 0.6, 0.8]) df = DataFrame({"a": a, "b": b, "c": c, "d": d, "e": e}) # Datetime-like result = df.astype(str) expected = DataFrame( { "a": list(map(str, map(lambda x: Timestamp(x)._date_repr, a._values))), "b": list(map(str, map(Timestamp, b._values))), "c": list( map( str, map(lambda x: Timedelta(x)._repr_base(format="all"), c._values), ) ), "d": list(map(str, d._values)), "e": list(map(str, e._values)), } ) tm.assert_frame_equal(result, expected) def test_astype_str_float(self): # see gh-11302 result = DataFrame([np.NaN]).astype(str) expected = DataFrame(["nan"]) tm.assert_frame_equal(result, expected) result = DataFrame([1.12345678901234567890]).astype(str) # < 1.14 truncates # >= 1.14 preserves the full repr val = "1.12345678901" if _np_version_under1p14 else "1.1234567890123457" expected = DataFrame([val])
tm.assert_frame_equal(result, expected)
pandas.util.testing.assert_frame_equal
# -*- coding: utf-8 -*- """ author: zengbin93 email: <EMAIL> create_dt: 2021/11/4 17:39 describe: A股强势股票传感器 """ import os import os.path import traceback import inspect import pandas as pd import seaborn as sns import matplotlib.pyplot as plt from datetime import timedelta, datetime from collections import Counter from tqdm import tqdm from typing import Callable from czsc.objects import Event from czsc.utils import io from czsc.data.ts_cache import TsDataCache, Freq from czsc.sensors.utils import get_index_beta, generate_signals, max_draw_down, turn_over_rate from czsc.utils import WordWriter plt.style.use('ggplot') plt.rcParams['font.sans-serif'] = ['SimHei'] plt.rcParams['axes.unicode_minus'] = False def selected_filter_by_index(dc: TsDataCache, dfg: pd.DataFrame, index_code=None): """使用指数成分过滤 :param dc: 数据缓存对象 :param dfg: 单个交易日的强势股选股结果 :param index_code: 指数代码 :return: 过滤后的选股结果 """ if not index_code or dfg.empty: return dfg assert dfg['trade_date'].nunique() == 1 trade_date = dfg['trade_date'].max() index_members = dc.index_weight(index_code, trade_date) ts_codes = list(index_members['con_code'].unique()) return dfg[dfg.ts_code.isin(ts_codes)] def selected_filter_by_concepts(dc, dfg, top_n=20, min_n=3, method='v1'): """使用板块效应过滤 :param dc: 数据缓存对象 :param dfg: 单个交易日的强势股选股结果 :param top_n: 选取前 n 个密集概念 :param min_n: 单股票至少要有 n 个概念在 top_n 中 :param method: 打分计算方法 v1 直接取板块中的强势股数量作为分数 v2 板块内强势股数 / 板块内股数 :return: 过滤后的选股结果 """ if dfg.empty or not top_n or not min_n: return dfg, [] ths_members = dc.get_all_ths_members(exchange="A", type_="N") ths_members = ths_members[~ths_members['概念名称'].isin([ 'MSCI概念', '沪股通', '深股通', '融资融券', '上证180成份股', '央企国资改革', '标普道琼斯A股', '中证500成份股', '上证380成份股', '沪深300样本股', ])] ths_concepts = ths_members[ths_members.code.isin(dfg.ts_code)] if method == 'v1': key_concepts = [k for k, v in Counter(ths_concepts['概念名称'].to_list()).most_common(top_n)] elif method == 'v2': all_count = Counter(ths_members['概念名称'].to_list()) sel_count = Counter(ths_concepts['概念名称'].to_list()) df_scores = pd.DataFrame([{"concept": k, 'score': sel_count[k] / all_count[k]} for k in sel_count.keys()]) key_concepts = df_scores.sort_values('score', ascending=False).head(top_n)['concept'].to_list() else: raise ValueError(f"method value error") sel = ths_concepts[ths_concepts['概念名称'].isin(key_concepts)] ts_codes = [k for k, v in Counter(sel.code).most_common() if v >= min_n] dfg = dfg[dfg.ts_code.isin(ts_codes)] dfg.loc[:, '概念板块'] = dfg.ts_code.apply(lambda x: ths_concepts[ths_concepts.code == x]['概念名称'].to_list()) dfg.loc[:, '概念数量'] = dfg['概念板块'].apply(len) return dfg, key_concepts def selected_filter_by_market_value(dfg, min_total_mv=None): """使用总市值过滤 :param dfg: 单个交易日的强势股选股结果 :param min_total_mv: 最小总市值,单位为万元,1e6万元 = 100亿 :return: 过滤后的选股结果 """ if dfg.empty or not min_total_mv: return dfg return dfg[dfg['total_mv'] >= min_total_mv] def selected_filter_by_rps(dfg, n=21, v_range=(0.2, 0.8), max_count=-1): """使用b20b过滤,b20b 表示前20个交易日的涨跌幅 :param dfg: 单个交易日的强势股选股结果 :param n: RPS的计算区间 :param v_range: RPS值按从大到小排序后的可选区间 默认为 0.2 ~ 0.8,表示可选区间为排序位置在 20% ~ 80% 区间的股票 :param max_count: 最多保留结果数量 :return: 过滤后的选股结果 """ if dfg.empty or (not max_count) or len(dfg) < max_count: return dfg rps_col = f"b{n}b" # dfg = dfg.sort_values(rps_col, ascending=True) # dfg = dfg.reset_index(drop=True) # dfg = dfg.iloc[int(len(dfg) * v_range[0]): int(len(dfg) * v_range[1])] # return dfg.tail(max_count) split = v_range[1] dfg = dfg.sort_values(rps_col, ascending=True) head_i = int((len(dfg) - max_count) * split) + 1 tail_i = len(dfg) - int((len(dfg) - max_count) * (1 - split)) return dfg.iloc[head_i: tail_i] def create_next_positions(dc: TsDataCache, dfg: pd.DataFrame): """构建某天选股结果对应的下一交易日持仓明细 :param dc: 数据缓存对象 :param dfg: 单个交易日的强势股选股结果 :return: 下一交易日持仓明细 """ if dfg.empty: return dfg trade_cal = dc.trade_cal() trade_cal = trade_cal[trade_cal.is_open == 1] trade_dates = trade_cal.cal_date.to_list() trade_date = dfg['trade_date'].iloc[0] hold = dfg.copy() hold['成分日期'] = trade_dates[trade_dates.index(trade_date.strftime("%Y%m%d")) + 1] hold['持仓权重'] = 0.98 / len(dfg) hold.rename({'ts_code': "证券代码", "close": "交易价格"}, inplace=True, axis=1) hold = hold[['证券代码', '持仓权重', '交易价格', '成分日期']] hold['成分日期'] = pd.to_datetime(hold['成分日期']).apply(lambda x: x.strftime("%Y/%m/%d")) return hold def plot_alpha_v1(beta_name, df_alpha, file_png) -> None: """用三个并列线图来绘制 alpha 信息 :param beta_name: 基准指数名称 :param df_alpha: 包含 ['trade_date', 'beta', 'selector'] trade_date beta selector 0 2018-01-02 88.4782 93.471190 1 2018-01-03 45.8368 41.008785 2 2018-01-04 -0.4383 -132.660895 3 2018-01-05 45.0786 120.726060 4 2018-01-08 -0.6757 -17.231665 :param file_png: 图片保存文件名 :return: None """ plt.close() fig, axes = plt.subplots(nrows=3, ncols=1, figsize=(9, 5*3)) df_alpha['beta_curve'] = df_alpha['beta'].cumsum() df_alpha['selector_curve'] = df_alpha['selector'].cumsum() df_alpha['alpha_curve'] = df_alpha['selector_curve'] - df_alpha['beta_curve'] df_alpha.rename({'trade_date': 'date', 'beta_curve': f"beta_curve:{beta_name}"}, inplace=True, axis=1) for i, col in enumerate(['alpha_curve', 'selector_curve', f"beta_curve:{beta_name}"], 0): ax = axes[i] sns.lineplot(x='date', y=col, data=df_alpha, ax=ax) ax.text(x=df_alpha['date'].iloc[0], y=int(df_alpha[col].mean()), s=f"{col}:{int(df_alpha[col].iloc[-1])}", fontsize=12) ax.set_title(f"{col}", loc='center') ax.set_xlabel("") plt.savefig(file_png, bbox_inches='tight', dpi=100) plt.close() def plot_alpha_v2(beta_name, df_alpha, file_png) -> None: """用线图来绘制 alpha 信息 :param beta_name: 基准指数名称 :param df_alpha: 包含 ['trade_date', 'beta', 'selector'] trade_date beta selector 0 2018-01-02 88.4782 93.471190 1 2018-01-03 45.8368 41.008785 2 2018-01-04 -0.4383 -132.660895 3 2018-01-05 45.0786 120.726060 4 2018-01-08 -0.6757 -17.231665 :param file_png: 图片保存文件名 :return: None """ df_alpha['beta_curve'] = df_alpha['beta'].cumsum() df_alpha['selector_curve'] = df_alpha['selector'].cumsum() df_alpha['alpha_curve'] = df_alpha['selector_curve'] - df_alpha['beta_curve'] df_alpha.rename({'trade_date': 'date', 'beta_curve': f"beta_curve:{beta_name}"}, inplace=True, axis=1) plt.close() plt.figure(figsize=(9, 5)) sns.lineplot(x='date', y='alpha_curve', data=df_alpha) sns.lineplot(x='date', y='selector_curve', data=df_alpha) sns.lineplot(x='date', y=f"beta_curve:{beta_name}", data=df_alpha) plt.legend(labels=['超额', '选股', f"基准{beta_name}"]) plt.savefig(file_png, bbox_inches='tight', dpi=100) def plot_alpha_v3(beta_name, df_alpha, file_png) -> None: """用类似MACD图来绘制 alpha 信息 :param beta_name: 基准指数名称 :param df_alpha: 包含 ['trade_date', 'beta', 'selector'] trade_date beta selector 0 2018-01-02 88.4782 93.471190 1 2018-01-03 45.8368 41.008785 2 2018-01-04 -0.4383 -132.660895 3 2018-01-05 45.0786 120.726060 4 2018-01-08 -0.6757 -17.231665 :param file_png: 图片保存文件名 :return: None """ df_alpha['beta_curve'] = df_alpha['beta'].cumsum() df_alpha['selector_curve'] = df_alpha['selector'].cumsum() df_alpha['alpha'] = df_alpha['selector'] - df_alpha['beta'] df_alpha['alpha_curve'] = df_alpha['selector_curve'] - df_alpha['beta_curve'] df_alpha.rename({'trade_date': 'date', 'beta_curve': f"beta_curve:{beta_name}"}, inplace=True, axis=1) plt.close() plt.figure(figsize=(9, 5)) x = df_alpha['date'] plt.bar(x, height=df_alpha['alpha'], width=0.01, color='blue', label='alpha') plt.plot(x, df_alpha['alpha_curve'], label='alpha_curve') plt.plot(x, df_alpha['selector_curve'], label='selector_curve') plt.plot(x, df_alpha[f"beta_curve:{beta_name}"], label=f"beta_curve:{beta_name}") plt.legend() plt.savefig(file_png, bbox_inches='tight', dpi=100) class StocksDaySensor: """以日线为基础周期的强势股票感应器 输入:市场个股全部行情、概念板块成分信息 输出:强势个股列表以及概念板块分布 """ def __init__(self, experiment_path: str, sdt: str, edt: str, dc: TsDataCache, strategy: Callable, signals_n: int = 0, ): self.name = self.__class__.__name__ self.version = "V20220404" self.experiment_path = experiment_path self.results_path = os.path.join(experiment_path, f"{strategy()[1]().name}_{sdt}_{edt}") self.signals_path = os.path.join(experiment_path, 'signals') os.makedirs(self.experiment_path, exist_ok=True) os.makedirs(self.results_path, exist_ok=True) os.makedirs(self.signals_path, exist_ok=True) self.sdt = sdt self.edt = edt self.verbose = os.environ.get('verbose', False) self.strategy = strategy self.signals_n = signals_n self.get_signals, self.get_event = strategy() self.event: Event = self.get_event() self.base_freq = Freq.D.value self.freqs = [Freq.W.value, Freq.M.value] self.file_docx = os.path.join(self.results_path, f'{self.event.name}_{sdt}_{edt}.docx') writer = WordWriter(self.file_docx) if not os.path.exists(self.file_docx): writer.add_title("股票选股强度验证") writer.add_page_break() writer.add_heading(f"{datetime.now().strftime('%Y-%m-%d %H:%M')} {self.event.name}", level=1) writer.add_heading("参数配置", level=2) writer.add_paragraph(f"测试方法描述:{self.event.name}") writer.add_paragraph(f"测试起止日期:{sdt} ~ {edt}") writer.add_paragraph(f"信号计算函数:\n{inspect.getsource(self.get_signals)}") writer.add_paragraph(f"事件具体描述:\n{inspect.getsource(self.get_event)}") writer.save() with open(os.path.join(self.results_path, f"{strategy.__name__}.txt"), mode='w') as f: f.write(inspect.getsource(strategy)) self.writer = writer self.dc = dc self.betas = ['000905.SH', '000300.SH', '399006.SZ'] get_index_beta(dc, sdt, edt, freq='D', indices=self.betas, file_xlsx=os.path.join(self.results_path, 'betas.xlsx')) file_dfm = os.path.join(self.results_path, f'df_event_matched_{sdt}_{edt}.pkl') file_dfb = os.path.join(self.experiment_path, f'df_all_bars_{sdt}_{edt}.pkl') if os.path.exists(file_dfm): self.dfm = io.read_pkl(file_dfm) self.dfb = io.read_pkl(file_dfb) else: self.dfm, self.dfb = self.get_stock_strong_days() io.save_pkl(self.dfm, file_dfm) io.save_pkl(self.dfb, file_dfb) self.nb_cols = [x for x in self.dfb.columns if x[0] == 'n' and x[-1] == 'b'] def get_share_strong_days(self, ts_code: str, name: str): """获取单个标的全部强势信号日期""" dc = self.dc event = self.event sdt = self.sdt edt = self.edt file_signals = os.path.join(self.signals_path, f"{ts_code}.pkl") if os.path.exists(file_signals): signals, n_bars = io.read_pkl(file_signals) if self.verbose: print(f"get_share_strong_days: load signals from {file_signals}") else: start_date = pd.to_datetime(self.sdt) - timedelta(days=3000) bars = dc.pro_bar(ts_code=ts_code, start_date=start_date, end_date=edt, freq='D', asset="E", raw_bar=True) n_bars = dc.pro_bar(ts_code=ts_code, start_date=sdt, end_date=edt, freq='D', asset="E", raw_bar=False) signals = generate_signals(bars, sdt, self.base_freq, self.freqs, self.get_signals, signals_n=self.signals_n) io.save_pkl([signals, n_bars], file_signals) nb_dicts = {row['trade_date'].strftime("%Y%m%d"): row for row in n_bars.to_dict("records")} event_matched = [] for s in signals: m, f = event.is_match(s) if m: nb_info = nb_dicts.get(s['dt'].strftime("%Y%m%d"), None) r = {'name': name, 'event_match': True, 'factor_match': f} if nb_info: r.update(nb_info) event_matched.append(r) dfs = pd.DataFrame(event_matched) if event_matched: df_ = dc.daily_basic(ts_code, sdt, dc.edt) df_['trade_date'] = pd.to_datetime(df_['trade_date']) dfs = dfs.merge(df_[['trade_date', 'total_mv']], on='trade_date', how='left') dfs = dfs[pd.to_datetime(sdt) <= dfs['trade_date']] dfs = dfs[dfs['trade_date'] <= pd.to_datetime(edt)] print(f"{ts_code} - {name}: {len(dfs)}") return dfs, n_bars def get_stock_strong_days(self): """获取全部股票的强势日期""" stocks = self.dc.stock_basic() all_matched = [] all_bars = [] for row in tqdm(stocks.to_dict('records'), desc="get_stock_strong_days"): ts_code = row['ts_code'] name = row['name'] try: dfs, n_bars = self.get_share_strong_days(ts_code, name) all_matched.append(dfs) all_bars.append(n_bars) except: print(f"get_share_strong_days error: {ts_code}, {name}") traceback.print_exc() dfm = pd.concat(all_matched, ignore_index=True) dfb = pd.concat(all_bars, ignore_index=True) return dfm, dfb def get_selected(self, index_code=None, fc_top_n=None, fc_min_n=None, min_total_mv=None, max_count=None): """验证传感器在一组过滤参数下的表现 :param index_code: 指数成分过滤 :param fc_top_n: 板块效应过滤参数1 :param fc_min_n: 板块效应过滤参数2 :param min_total_mv: 市值效应过滤参数 :param max_count: 控制最大选出数量 :return: """ dc = self.dc df = self.dfm selected_dfg = {} for trade_date, dfg in df.groupby('trade_date'): try: if dfg.empty: print(f"{trade_date} 选股结果为空") continue dfg, key_concepts = selected_filter_by_concepts(dc, dfg, top_n=fc_top_n, min_n=fc_min_n) dfg = selected_filter_by_market_value(dfg, min_total_mv) dfg = selected_filter_by_index(dc, dfg, index_code) dfg = selected_filter_by_rps(dfg, n=21, v_range=(0.1, 0.8), max_count=max_count) selected_dfg[trade_date] = {'dfg': dfg, 'key_concepts': key_concepts} except: traceback.print_exc() return selected_dfg def get_agg_selected(self, selected_dfg, window_size: int = 1): """滑动窗口聚合选股结果 :param selected_dfg: get_selected 输出的结果 :param window_size: 聚合窗口大小 :return: """ dc = self.dc dfb = self.dfb assert window_size > 0 if window_size > 1: trade_cal = dc.trade_cal() trade_cal = trade_cal[trade_cal['is_open'] == 1].cal_date.to_list() trade_cal = [pd.to_datetime(x) for x in trade_cal] selected_agg = {} for td, dfg in tqdm(selected_dfg.items(), desc='agg_by_window'): i = trade_cal.index(td) windows = trade_cal[i-window_size+1: i+1] res = [] for td_ in windows: dfg = selected_dfg.get(td_, None) if dfg: df = dfg['dfg'] df['trade_date'] = td res.append(dfg['dfg']) dfd = pd.concat(res, ignore_index=True) dfd_cols = ['name', 'event_match', 'factor_match', 'ts_code', 'trade_date', 'total_mv', '概念板块', '概念数量'] dfd = dfd.drop_duplicates('ts_code', ignore_index=True)[dfd_cols] dfd = dfd.merge(dfb, on=['ts_code', 'trade_date'], how='left') selected_agg[td] = dfd else: selected_agg = {dt: x['dfg'] for dt, x in selected_dfg.items()} return selected_agg def validate_performance(self, index_code=None, fc_top_n=None, fc_min_n=None, min_total_mv=None, max_count=None, window_size=1, save: bool = False, ): """验证传感器在一组过滤参数下的表现 :param index_code: 指数成分过滤 :param fc_top_n: 板块效应过滤参数1 :param fc_min_n: 板块效应过滤参数2 :param min_total_mv: 市值效应过滤参数 :param max_count: b20b过滤参数,控制最大选出数量 :param window_size: 按 window_size 聚合多天的结果到一天 :param save: 是否保存结果到本地 :return: """ dc = self.dc sdt = self.sdt edt = self.edt selected_dfg = self.get_selected(index_code, fc_top_n, fc_min_n, min_total_mv, max_count) selected_agg = self.get_agg_selected(selected_dfg, window_size) # 分析 performances = [] for td, df in selected_agg.items(): p = {'trade_date': td, "number": len(df)} if df.empty: p.update({x: 0 for x in self.nb_cols}) else: p.update(df[self.nb_cols].mean().to_dict()) performances.append(p) df_p = pd.DataFrame(performances) df_detail = pd.concat([v for k, v in selected_agg.items()]) df_holds = pd.concat([create_next_positions(dc, v) for k, v in selected_agg.items()], ignore_index=True) df_turns, tor = turn_over_rate(df_holds) beta = get_index_beta(dc, sdt, edt, freq='D', file_xlsx=None, indices=self.betas) df_n1b =
pd.DataFrame()
pandas.DataFrame
import os import numpy as np import pandas as pd from scipy.io.arff import loadarff from sklearn.preprocessing import MinMaxScaler, OneHotEncoder, LabelEncoder from sklearn.compose import ColumnTransformer from collections import defaultdict def load_kropt(): # Read input dataset dataset = os.path.join('datasets', 'kropt.arff') data = loadarff(dataset) df_data = pd.DataFrame(data[0]) df_describe = df_data.describe().reset_index() feat = list(df_data.columns) feat.remove('game') #feat.remove('Class') #print(feat) # Pre-Processing # Convert label features into numerical with Label Encoder le = LabelEncoder() label_encoder = np.zeros((df_data.shape[0], df_data.shape[1] - 1)) for i in range(len(feat)): le.fit(df_data[feat[i]]) label_encoder[:, i] = le.transform(df_data[feat[i]]) y = le.fit_transform(df_data['game']) #df_data_pp_prev = pd.DataFrame(label_encoder, columns=feat) #df_data_pp_prev = df_data_pp_prev.describe().reset_index() scaler = MinMaxScaler() scaler.fit(label_encoder) data_trans_scaled = scaler.transform(label_encoder) df_data_pp = pd.DataFrame(data_trans_scaled, columns=feat) return df_data_pp, y def load_satimage(): path = os.path.join('datasets', 'satimage.arff') data_satimage, meta_satimage = loadarff(path) df_satimage = pd.DataFrame(data_satimage) # Drop NaN values df_satimage.dropna(inplace=True) df_satimage.reset_index(drop=True,inplace=True) # Save cluster columns for accuracy cluster_satimage = pd.DataFrame(df_satimage["clase"]) cluster_satimage = cluster_satimage.astype(int) - 1 # Delete cluster columns del df_satimage["clase"] return df_satimage, cluster_satimage def load_credita(): path = os.path.join('datasets', 'credit-a.arff') raw_data = loadarff(path) df = pd.DataFrame(raw_data[0]) y = df.pop('class') X = df y_label_encoder = LabelEncoder() y = y_label_encoder.fit_transform(y) # fill missing numerical values X.fillna(X.mean(), inplace=True) # fill missing categorical values categ_cols = X.select_dtypes(include=['category', object]).columns for col in categ_cols: X[col].replace(b'?', X[col].mode()[0], inplace=True) # standarize numerical features num_cols = X.select_dtypes(include=['number']).columns mm_scaler = MinMaxScaler() X[num_cols] = mm_scaler.fit_transform(X[num_cols]) # use one transformer per feature to preserve its name in the generated features # since new feature names are based on the transformer's name transformers = [(col, OneHotEncoder(drop='first'), [col]) for col in categ_cols] col_transformer = ColumnTransformer(transformers, remainder='passthrough') X_arr = col_transformer.fit_transform(X) X = pd.DataFrame(X_arr, columns=col_transformer.get_feature_names()) return X, y def load_waveform(): raw_data = loadarff('datasets/waveform.arff') df =
pd.DataFrame(raw_data[0])
pandas.DataFrame
## Making the code corpus ## This involves ## Hit every directory and read every supported files ## Form a corpus of words without special symbols ## Tokenize Camel case and Hungarian to split out new words ## Any word below 3 letter is not Allowed import os import pandas as pd import sys import pickle import configparser from CodeComb_Core.embeddings import * from CodeComb_Core.utils import * from CodeComb_Core.env import * ## Read the file and pack it into file_info dict def prepare_file(filename, location): with open(os.path.join(location,filename), "r", encoding = 'latin-1') as fp: file_data = fp.read() #file_data = process_text(file_data) file_info = dict() file_info["body"] = file_data file_info["name"] = filename file_info["location"] = location file_info["ext"] = filename[filename.rfind('.')+1:] return file_info # From file metas read all file content of supported formats def read_all_supported_files(file_metas): print ("READING FILES") print ("Total files-{}".format(len(file_metas))) file_contents = [] for i, info in enumerate(file_metas): path_to_file = info['location'] file_name = info['name'] if ((i % 100) == 0): print ("Processed {} files".format(i-1)) content = prepare_file(file_name, path_to_file) file_contents.append(content) return file_contents def test_read_all_supported_files(): path = os.getcwd() print ("TEST READ ALL CPP FILES") files = get_supported_files_name_location(path) file_contents = read_all_supported_files(files) print (file_contents) def test_prepare_file(): location = os.getcwd() filename = "sample_cpp.cpp" file_info = prepare_file(filename, location) print ("TEST PREPARE FILE") print (file_info) return ## Load Formats from the config file def load_format(): config = configparser.ConfigParser() config.read(os.path.join(os.path.expanduser("~"), "codecomb_config.ini")) fmts = list(config['FORMAT'].values()) formats_list = ["."+fmt for fmt in fmts] return formats_list # Get Metas def get_supported_files_name_location(path): files = [] # r=root, d=directories, f = files for r, _, f in os.walk(path): for file in f: formats = load_format() for fmt in formats: if file.endswith(fmt): info = {} info['name'] = file info['location'] = r files.append(info) return files def test_get_supported_files_name_location(): print ("TEST GET SUPPORTED FILES NAME LOCATION") path = "." file_infos = get_supported_files_name_location(path) print (file_infos) print (len(file_infos)) ## Recursively reads all supported file names from current locations ## And forms a DF def get_all_files_currentdir(pickle_file): PATH = os.getcwd() files = get_supported_files_name_location(PATH) file_contents = read_all_supported_files(files) df_corpus =
pd.DataFrame(file_contents)
pandas.DataFrame
from pathlib import Path import nibabel as nib import numpy as np import pandas as pd from scipy.stats import ttest_rel import tqdm from nipype.interfaces import fsl from utils.parcellation import ( parcellation_labels, parcellation_fname, ) def get_available_parcellations(mother_dir: Path): parcellations = [] for f in mother_dir.rglob("registrations/*_FS/*_native.nii.gz"): parcellations.append("_".join(f.name.split("_")[:-1])) return list(set(parcellations)) def generate_parcellations_dict( parcellations_dir: Path, avalilable_parcellations: list ): parcellations_dict = {} for parcellation in sorted(avalilable_parcellations): parcellations_dict[parcellation] = {} if "MMP" in parcellation: atlas_parcels = pd.read_csv( parcellations_dir / "MMP" / "MMP_parcels.csv", index_col=0 ) atlas_img = nib.load( parcellations_dir / "MMP" / "MMP_in_MNI_corr.nii.gz" ) elif "Brainnetome" in parcellation: atlas_parcels = pd.read_csv( parcellations_dir / "BNA_with_cerebellum.csv", index_col=0 ) atlas_parcels.index = atlas_parcels.Label atlas_img = nib.load( parcellations_dir / "BN_Atlas_274_combined.nii.gz" ) elif "Schaefer" in parcellation: n_networks, n_parcels = parcellation.split("_")[1:] atlas_parcels = pd.DataFrame( pd.read_csv( parcellations_dir / f"Schaefer2018_{n_parcels}_{n_networks}_order.txt", index_col=0, sep="\t", header=None, ).iloc[:, 0] ) atlas_parcels.columns = ["ROIname"] atlas_parcels["Label"] = atlas_parcels.index atlas_img = nib.load( parcellations_dir / f"Schaefer2018_{n_parcels}_{n_networks}_order_FSLMNI152_1mm.nii.gz" ) parcellations_dict[parcellation]["atlas_parcels"] = atlas_parcels parcellations_dict[parcellation]["atlas_img"] = atlas_img return parcellations_dict def read_atlas_parcels(atlas_parcels: Path) -> pd.DataFrame: df = pd.read_csv(atlas_parcels, sep=";", index_col=0) return df.iloc[:, :-1] def read_parcels(atlas_parcels: Path) -> pd.DataFrame: return pd.read_csv(atlas_parcels, index_col=0) def read_bna(atlas_parcels: Path) -> pd.DataFrame: df = pd.read_csv(atlas_parcels, sep=" ", header=None, index_col=0) df = pd.DataFrame( df.iloc[:, 0].values, columns=["ROIname"], index=df.index.values ) return df def read_aal_parcels(atlas_txt: Path) -> pd.DataFrame: df = pd.read_csv(atlas_txt, sep=" ", header=None) df.columns = ["Label", "ROIname", "2"] return df.iloc[:, :-1] def gather_subject_data( derivatives_dir: Path, subj: str, atlas_name: str, norm_method: str = "CAT" ) -> dict: fmriprep_dir = derivatives_dir.parent / "fmriprep" / subj if not fmriprep_dir.exists(): return None, None sessions = [f.name for f in fmriprep_dir.glob("ses-*")] if len(sessions) > 1: native_parcels = fmriprep_dir / "anat" / f"{atlas_name}_native.nii.gz" gm_probseg = fmriprep_dir / "anat" / f"{subj}_label-GM_probseg.nii.gz" else: native_parcels = ( fmriprep_dir / sessions[0] / "anat" / f"{atlas_name}_native.nii.gz" ) gm_probseg = ( fmriprep_dir / sessions[0] / "anat" / f"{subj}_{sessions[0]}_label-GM_probseg.nii.gz" ) return native_parcels, gm_probseg def crop_to_gm(native_parcels: Path, gm_probseg: Path): cropped_parcels = ( native_parcels.parent / f"{native_parcels.name.split('.')[0]}_GM.nii.gz" ) if not cropped_parcels.exists(): gm_mask = nib.load(gm_probseg).get_fdata().astype(bool) orig_img = nib.load(native_parcels) gm_parcels = orig_img.get_fdata() gm_parcels[~gm_mask] = np.nan gm_img = nib.Nifti1Image(gm_parcels, orig_img.affine) nib.save(gm_img, cropped_parcels) return cropped_parcels def calc_average(parcel, atlas_data: np.ndarray, subj_data: np.ndarray, temp): # temp = [] # for parcel in parcels: mask = atlas_data == parcel temp[parcel] = np.nanmean(subj_data[mask.astype(bool)]) return temp # @jit(parallel=True) def average_parcels( atlas_data: np.ndarray, subj_img: Path, temp_df: pd.DataFrame ): subj_data = nib.load(subj_img).get_fdata() temp = np.zeros(temp_df.index.shape) for i, parcel in enumerate(temp_df.index): # print(temp_df.ROIname[parcel]) roi = temp_df.loc[parcel, "Label"] mask = atlas_data == roi temp[i] = np.nanmean(subj_data[mask.astype(bool)]) return temp def parcellate_subjects_data( derivatives_dir: Path, atlas_parcels: pd.DataFrame, norm_method: str = "CAT", coreg_dirname: str = "coregistered", ): subjects_dict = {} for subj in sorted(derivatives_dir.glob("sub-*")): print(subj.name) try: subj_data = {} native_parcels_full, gm_mask = gather_subject_data( derivatives_dir, subj.name, atlas_name, norm_method ) if not native_parcels_full: continue native_parcels = crop_to_gm(native_parcels_full, gm_mask) atlas_data = nib.load(native_parcels).get_fdata() except FileNotFoundError: print( f"No {atlas_name} native parcellation found for {subj.name}!" ) continue for session in subj.glob("ses-*"): print(session.name) session_df = atlas_parcels.copy() tensor_dir = session / "tensors_parameters" / coreg_dirname tensor_dir.mkdir(exist_ok=True) out_fname = tensor_dir / f"{atlas_name}_parcels.csv" subj_data[session.name] = out_fname # if not out_fname.exists(): params = [p for p in tensor_dir.glob("*.nii.gz")] if not params or out_fname.exists(): continue for param in tqdm.tqdm(params): # print(param.name.split(".")[0]) session_df[param.name.split(".")[0]] = average_parcels( atlas_data, param, session_df ) session_df.to_csv(out_fname) subjects_dict[subj.name] = subj_data return ( subjects_dict, [f.name.split(".")[0] for f in tensor_dir.glob("*.nii.gz")], ) def generate_statistics( subjects: dict, out_dir: Path, parameters: list, atlas_parcels: pd.DataFrame, ): out_dict = {} for param in tqdm.tqdm(parameters): out_dict[param] = {} param_dir = out_dir / param param_dir.mkdir(exist_ok=True) param_df = pd.DataFrame( index=subjects.keys(), columns=atlas_parcels.ROIname.values ) for session in ["ses-1", "ses-2"]: out_fname = param_dir / f"{session}.csv" # print(out_fname) out_dict[param][session] = out_fname # if out_fname.exists(): # continue session_df = param_df.copy() for subj, subj_data in subjects.items(): # print(subj) session_df.loc[subj] = pd.read_csv( subj_data.get(session), index_col=0 )[param].values session_df.to_csv(out_fname) return out_dict def calculate_statistics(out_dir: Path, inputs: dict): for param, sessions in inputs.items(): # print(Path(out_dir / param).exists()) out_fname = out_dir / param / "statistics.csv" # if out_fname.exists(): # continue before, after = [ pd.read_csv(session, index_col=0) for session in sessions.values() ] t, p = ttest_rel(before, after, axis=0, nan_policy="omit") df =
pd.DataFrame(columns=["t", "p"], index=before.columns)
pandas.DataFrame
import sys sys.path.append('../') def WriteAriesScenarioToDB(scenarioName, ForecastName, ForecastYear, start_date, end_date, User, Area, GFO = False, CorpID = ['ALL']): from Model import ImportUtility as i from Model import BPXDatabase as bpxdb from Model import ModelLayer as m import datetime as dt Success = True Messages = [] try: #Query the Aries database using import methods scenario_results, Success, Messages = i.ImportAriesByScenario(scenarioName, start_date, end_date, Area) #Create NF columns for oil and gas (replace nan with 0) scenario_results['OilNF'] = scenario_results['C754'] / scenario_results['GasProduction'] scenario_results['GasNF'] = scenario_results['C753'] / scenario_results['OilProduction'] scenario_results = scenario_results.fillna(0) #Obtain list from scenario query results CorpID_list = scenario_results['CorpID'].to_list() CorpID_list = list(set(CorpID_list)) config = m.GetConfig() DBObj = bpxdb.BPXDatabase(config['server'], config['database'], config['UID']) #Linearly regress the data #Two segments: previous month's mid average and next month's mid average - regress to both to get the values. count = 1 for corpID in CorpID_list: #Get the subset of results that match this wellflac corpid_scenario_df = scenario_results.query('CorpID == @corpID') corpid_scenario_df = corpid_scenario_df.sort_values(by = ['Date'], ascending = True) if corpid_scenario_df.shape[0] > 1: df_previous_row = (0, corpid_scenario_df.iloc[1]) wellflac_count = 1 header_corpID = '' for df_row in corpid_scenario_df.iterrows(): if wellflac_count == 1: df_next_row = corpid_scenario_df.iloc[wellflac_count] results = InterpolateDailyRatesFromMonthlyVolumes(CurrentMonthVal = df_row[1], NextMonthVal = df_next_row) else: results = InterpolateDailyRatesFromMonthlyVolumes(CurrentMonthVal = df_row[1], PreviousMonthVal = df_previous_row[1]) Success, Message = WriteInterpolatedForecastToDB(df_row[1]['WellName'], corpID, ForecastName, ForecastYear, scenarioName, GFO, User, results) if not Success: Messages.append(Message) break df_previous_row = df_row wellflac_count = wellflac_count + 1 callprogressbar(count, len(CorpID_list)) count = count + 1 except Exception as ex: Success = False Messages.append('Failed to write the results from chosen scenario in Aries database. ' + str(ex)) return Success, Messages def SOHA_WriteGFOToDB_2019Database(ForecastName, ForecastYear, User, start_date, end_date, WellFlac = ['ALL'], GFO = False): #Part of to be deprecated methods to convert SoHa internal GFO data to standard from Model import BPXDatabase as bpxdb from Model import QueryFile as qf from Model import ImportUtility as imp from Model import ModelLayer as m import datetime as dt import numpy as np Sucess = True Messages = [] try: config = m.GetConfig() #Create DB Object return_df, Success, Message = imp.ImportGFOFromDB2019(start_date, end_date, WellFlac) if not Success: Messages.append(Message) Production_Column_Name = '2019Zmcfd' Success, Message = WriteInternalForecasttoDB(return_df, ForecastName, ForecastYear, Production_Column_Name, User, GFO) if not Success: Messages.append(Message) except Exception as ex: Success = False Messages.append('Error writing GFO to DB. ' + str(ex)) return Success, Messages def SOHA_WriteGFOToDB_2018Database(ForecastName, ForecastYear, User, start_date, end_date, WellFlac = ['ALL'], GFO = False): #Part of to be deprecated methods to convert SoHa internal GFO data to standard from Model import BPXDatabase as bpxdb from Model import QueryFile as qf from Model import ImportUtility as imp from Model import ModelLayer as m import datetime as dt import numpy as np Sucess = True Messages = [] try: config = m.GetConfig() #Create DB Object return_df, Success, Message = imp.ImportGFOFromDB2019(start_date, end_date, WellFlac) if not Success: Messages.append(Message) Production_Column_Name = '2018Zmcfd' Success, Message = WriteInternalForecasttoDB(return_df, ForecastName, ForecastYear, Production_Column_Name, User, GFO) if not Success: Messages.append(Message) except Exception as ex: Success = False Messages.append('Error writing GFO to DB. ' + str(ex)) return Success, Messages def SOHA_WriteInternalForecasttoDB(df,ForecastName, ForecastYear, Production_Column_Name, User, GFO=True): #Part of to be deprecated methods to convert SoHa internal GFO data to standard from Model import BPXDatabase as bpx from Model import ModelLayer as m import datetime as dt from Model import QueryFile as qf Success = True Messages = [] try: config = m.GetConfig() DBObj = bpx.BPXDatabase(config['server'], config['database'], config['UID']) EDWObj = bpx.GetDBEnvironment('ProdEDW', 'OVERRIDE') wellname_list = df['WellName'].unique() wellname_list = list(wellname_list) if '' in wellname_list: wellname_list.remove('') count = 1 for name in wellname_list: monthly_df = df.query('WellName == @name') monthly_df = monthly_df.sort_values(by = ['Date'], ascending = True) df_previous_row = (0, monthly_df.iloc[1]) nettingFactor = monthly_df['NettingFactor'].values[0] well_count = 1 header_corpid = '' for df_row in monthly_df.iterrows(): if well_count == 1: df_next_row = monthly_df.iloc[well_count] results = InterpolateDailyRatesFromMonthlyRates(CurrentMonthVal = df_row[1], NextMonthVal = df_next_row, GasRateField=Production_Column_Name) elif well_count != monthly_df.shape[0] and well_count != 1: df_next_row = monthly_df.iloc[well_count] results = InterpolateDailyRatesFromMonthlyRates(CurrentMonthVal = df_row[1], NextMonthVal = df_next_row, PreviousMonthVal = df_previous_row[1], GasRateField=Production_Column_Name) elif well_count == monthly_df.shape[0]: results = InterpolateDailyRatesFromMonthlyRates(CurrentMonthVal = df_row[1], PreviousMonthVal = df_previous_row[1], GasRateField=Production_Column_Name) for row in results.iterrows(): corpid_query = qf.EDWKeyQueryFromWellName([name]) corpid_results = EDWObj.Query(corpid_query) if not corpid_results[1].empty: CorpID = corpid_results[1].at[0,'CorpID'] else: CorpID = name WellName = name Update_Date = dt.datetime.now().strftime("%Y-%m-%d %H:%M:%S") Update_User = User if header_corpid != CorpID: #Create Header entry header_corpid = CorpID ForecastHeaderObj = m.ForecastHeaderRow(WellName, CorpID, ForecastName, ForecastYear, '', [], GFO, DBObj) Success, Message = ForecastHeaderObj.Write(Update_User, Update_Date) if not Success: Messages.append(Message) Date_Key = row[1]['Date'].strftime('%m/%d/%Y') Gas_Production = row[1]['GasProduction'] GasNF = row[1]['GasNF'] if Gas_Production >= 0 and Date_Key: ForecastDataObj = m.ForecastDataRow(ForecastName, CorpID, Date_Key, Gas_Production, 0, 0, GasNF, 0, 0, DBObj) Success, Message = ForecastDataObj.Write(Update_User, Update_Date) if not Success: Messages.append(Message) df_previous_row = df_row well_count = well_count + 1 callprogressbar(count, len(wellname_list)) count = count + 1 except Exception as ex: Success = False Messages.append('Error writing Forecast to Database. ' + str(ex)) return Success, Messages def SOHA_WriteGasNettingFactorsFromDB(Update_User, Update_Date, wellnames = []): from Model import BPXDatabase as bpx from Model import QueryFile as qf from Model import ModelLayer as m import datetime as datetime Success = True Messages = [] try: config = m.GetConfig() DBObj = bpx.BPXDatabase(config['server'], config['database'], config['UID']) TeamOpsObj = bpx.GetDBEnvironment('OnPrem', 'OVERRIDE') EDWObj = bpx.GetDBEnvironment('ProdEDW', 'OVERRIDE') #Get Well List of required netting values from data that is already in database. query = qf.GetNettingFactorsfromDB(wellnames) res, res_df = TeamOpsObj.Query(query) count = 1 for idx, item in res_df.iterrows(): wellquery = qf.EDWKeyQueryFromWellName([item['WellName']]) res, well_row = EDWObj.Query(wellquery) if not well_row.empty: corpID = well_row['CorpID'].values[0] NettingObj = m.GasNettingRow(item['WellName'], corpID, item['NF'], item['FirstSalesDateInput'], DBObj) Success, Message = NettingObj.Write(Update_User, Update_Date) if not Success: Messages.append(Message) callprogressbar(count, res_df.shape[0]) count = count + 1 except Exception as ex: Success = False Messages.append('Error during write of netting factors to DB. ' + str(ex)) return Success, Messages def WriteDefaultMultipliers(LE_Name, DefaultValue, Update_User, Update_Date, SuppressMessages): import datetime as datetime from Model import BPXDatabase as bpx from Model import ModelLayer as m Success = True Messages = [] try: config = m.GetConfig() DBObj = bpx.BPXDatabase(config['server'], config['database'], config['UID']) #Query the LE results LE_query = 'select * from [LEForecastDatabase].[dbo].[LE_Data] where HeaderName = \'' + LE_Name + '\'' res, df = DBObj.Query(LE_query) count = 1 for idx, row in df.iterrows(): FracHitObj = m.FracHitMultipliersRow(row['HeaderName'], row['CorpID'], row['Date_Key'], str(DefaultValue), DBObj) Success, Message = FracHitObj.Write(Update_User, Update_Date) if not Success: Messages.append(Message) if not SuppressMessages: callprogressbar(count, df.shape[0]) count = count + 1 except Exception as ex: Success = False Messages.append('Error during write of default frac hit multipliers. ' + str(ex)) return Success, Messages def WriteLEFromExcel(LEName, LE_Date,filename, sheetname, IDstartrow, corpID_col, wellName_col, date_row, date_startcol, date_endcol, InterpolationMethod, Phase, Update_User, Update_Date, IDs = ['ALL'] ): from datetime import datetime, date import pandas as pd from Model import QueryFile as qf from Model import BPXDatabase as bpx from Model import ImportUtility as i Messages = [] Success = True try: all_data_df, Success, Message = i.ImportForecastFromExcel(filename, sheetname, IDstartrow, corpID_col, wellName_col, date_row, date_startcol, date_endcol, Phase, '', '', ['ALL']) if Success: if corpID_col: IDCol = 'CorpID' else: IDCol = 'WellName' Success, Message = WriteLEFromTemplate(all_data_df, InterpolationMethod, LEName, LE_Date, Update_User, IDCol) if not Success: Messages.append(Message) else: Messages.append(Message) except Exception as ex: Success = False Messages.append('Error during write of LE data from Excel sheet. ' + str(ex)) return Success, Messages def WriteForecastFromExcel(ForecastName, ForecastYear,scenarioName, GFO, filename, sheetname, IDstartrow, corpID_col, wellName_col, date_row, date_startcol, date_endcol, InterpolationMethod, Phase, Update_User, Update_Date, IDs = ['ALL'] ): from datetime import datetime, date import pandas as pd from Model import QueryFile as qf from Model import BPXDatabase as bpx from Model import ImportUtility as i Messages = [] Success = True try: all_data_df, Success, Message = i.ImportForecastFromExcel(filename, sheetname, IDstartrow, corpID_col, wellName_col, date_row, date_startcol, date_endcol, Phase, '', '', ['ALL']) if Success: if corpID_col: IDCol = 'CorpID' else: IDCol = 'WellName' Success, Message = WriteForecastFromTemplate(all_data_df, InterpolationMethod, ForecastName, ForecastYear, scenarioName, GFO, Update_User, IDCol) if not Success: Messages.append(Message) else: Messages.append(Message) if not Success: Messages.append(Message) except Exception as ex: Success = False Messages.append('Error during the write of Forecast from Excel sheet. ' + str(ex)) return Success, Messages def WriteForecastFromTemplate(all_data_df, InterpolationMethod, ForecastName, ForecastYear, scenarioName, GFO, Update_User, IDCol='WellName'): from datetime import datetime, date import pandas as pd from Model import QueryFile as qf from Model import BPXDatabase as bpx from Model import ImportUtility as i Success = True Messages = [] results = [] try: #Data Frame must be the same structure as the output from the 'Read From Excel Function #'CorpID', 'WellName', 'Wedge', 'Date', 'Gas', 'Oil', 'Water', 'OilNF', 'GasNF' wellname = '' if not Success: Messages.append(Message) if IDCol == 'CorpID': corpid_list = list(all_data_df['CorpID'].unique()) corpid_query = qf.EDWKeyQueryFromCorpID(corpid_list) corpid_results, corpid_df = bpx.GetDBEnvironment('ProdEDW', 'OVERRIDE').Query(corpid_query) well_list = list(corpid_df['WellName'].unique()) well_query = 'CorpID == @corpid' else: well_list = list(all_data_df['WellName'].unique()) well_query = 'WellName == @wellname' well_list = [i for i in well_list if i] for wellname in well_list: wellname, corpid = i.GetWellandCorpID(wellname, '') if not corpid: corpid = wellname data_df = all_data_df.query(well_query) row_count = 1 if not data_df.empty: df_previous_row = (0, data_df.iloc[1]) for idx, df_row in data_df.iterrows(): if InterpolationMethod == 'MonthlyRates': if row_count == 1: df_next_row = data_df.iloc[row_count] results = InterpolateDailyRatesFromMonthlyRates(CurrentMonthVal = df_row, NextMonthVal = df_next_row, GasProduction='Gas', OilProduction='Oil') elif row_count != data_df.shape[0] and row_count != 1: df_next_row = data_df.iloc[row_count] results = InterpolateDailyRatesFromMonthlyRates(CurrentMonthVal = df_row, NextMonthVal = df_next_row, PreviousMonthVal = df_previous_row, GasProduction='Gas', OilProduction='Oil') elif row_count == data_df.shape[0]: results = InterpolateDailyRatesFromMonthlyRates(CurrentMonthVal = df_row, PreviousMonthVal = df_previous_row, GasProduction='Gas', OilProduction='Oil') elif InterpolationMethod == 'MonthlyVolume': if row_count == 1: df_next_row = data_df.iloc[row_count] results = InterpolateDailyRatesFromMonthlyVolumes(CurrentMonthVal = df_row[1], NextMonthVal = df_next_row) else: results = InterpolateDailyRatesFromMonthlyVolumes(CurrentMonthVal = df_row[1], PreviousMonthVal = df_previous_row[1]) elif InterpolationMethod == 'None': results = ConvertNonInterpolatedResults(df_row) Success, Message = WriteInterpolatedForecastToDB(wellname, corpid, ForecastName, ForecastYear, scenarioName, GFO, Update_User, results) if not Success: Messages.append(Message) df_previous_row = df_row row_count = row_count + 1 except Exception as ex: Success = False Messages.append('Error during the writing of the forecast from template. ' + str(ex)) return Success, Messages def WriteLEFromTemplate(all_data_df, InterpolationMethod, LEName, LE_Date, Update_User, IDCol = 'WellName'): from datetime import datetime, date import pandas as pd from Model import QueryFile as qf from Model import BPXDatabase as bpx from Model import ImportUtility as i Success = True Messages = [] results = [] try: #Data Frame must be the same structure as the output from the 'Read From Excel Function #'CorpID', 'WellName', 'Wedge', 'Date', 'Gas', 'Oil', 'Water', 'OilNF', 'GasNF' wellname = '' if not Success: Messages.append(Message) if IDCol == 'CorpID': corpid_list = list(all_data_df['CorpID'].unique()) corpid_query = qf.EDWKeyQueryFromCorpID(corpid_list) corpid_results, corpid_df = bpx.GetDBEnvironment('ProdEDW', 'OVERRIDE').Query(corpid_query) well_list = list(corpid_df['WellName'].unique()) well_query = 'CorpID == @corpid' else: well_list = list(all_data_df['WellName'].unique()) well_query = 'WellName == @wellname' well_list = [i for i in well_list if i] for wellname in well_list: wellname, corpid = i.GetWellandCorpID(wellname, '') if not corpid: corpid = wellname data_df = all_data_df.query(well_query) row_count = 1 if not data_df.empty: df_previous_row = (0, data_df.iloc[1]) for idx, df_row in data_df.iterrows(): if InterpolationMethod == 'MonthlyRates': if row_count == 1: df_next_row = data_df.iloc[row_count] results = InterpolateDailyRatesFromMonthlyRates(CurrentMonthVal = df_row, NextMonthVal = df_next_row, GasProduction='Gas', OilProduction='Oil') elif row_count != data_df.shape[0] and row_count != 1: df_next_row = data_df.iloc[row_count] results = InterpolateDailyRatesFromMonthlyRates(CurrentMonthVal = df_row, NextMonthVal = df_next_row, PreviousMonthVal = df_previous_row, GasProduction='Gas', OilProduction='Oil') elif row_count == data_df.shape[0]: results = InterpolateDailyRatesFromMonthlyRates(CurrentMonthVal = df_row, PreviousMonthVal = df_previous_row, GasProduction='Gas', OilProduction='Oil') elif InterpolationMethod == 'MonthlyVolume': if row_count == 1: df_next_row = data_df.iloc[row_count] results = InterpolateDailyRatesFromMonthlyVolumes(CurrentMonthVal = df_row[1], NextMonthVal = df_next_row) else: results = InterpolateDailyRatesFromMonthlyVolumes(CurrentMonthVal = df_row[1], PreviousMonthVal = df_previous_row[1]) elif InterpolationMethod == 'None': results = ConvertNonInterpolatedResults(df_row) Wedge, Message = i.GetWedgeData(corpid, True) Success, Message = WriteInterpolatedLEToDB(LEName, wellname, corpid, '', Wedge, LE_Date, Update_User, results) if not Success: Messages.append(Message) df_previous_row = df_row row_count = row_count + 1 except Exception as ex: Success = False Messages.append('Error during the writing of the LE from template. ' + str(ex)) return Success, Messages def WriteInterpolatedForecastToDB(WellName, corpID, ForecastName, ForecastYear, scenarioName, GFO, UserName, results): import datetime as dt import pandas as pd from Model import ModelLayer as m header_corpID = '' Messages = [] for item in results.iterrows(): idx = item[0] UpdateDate = dt.datetime.now().strftime("%Y-%m-%d %H:%M:%S") if header_corpID != corpID: ForecastHeaderObj = m.ForecastHeaderRow(WellName, corpID, ForecastName, ForecastYear, scenarioName, [], GFO, '') Success, Message = ForecastHeaderObj.Write(UserName, UpdateDate) if not Success: Messages.append(Message) else: header_corpID = corpID Date_Key = item[1]['Date'].strftime('%m/%d/%Y') Gas_Production = item[1]['GasProduction'] Oil_Production = item[1]['OilProduction'] GasNF = item[1]['GasNF'] OilNF = item[1]['OilNF'] ForecastDataObj = m.ForecastDataRow(ForecastName, corpID, Date_Key, Gas_Production, Oil_Production, 0, GasNF, OilNF, 0, '') Success, Message = ForecastDataObj.Write(UserName, UpdateDate) if not Success: Messages.append(Message) return Success, Messages def WriteInterpolatedLEToDB(LEName, WellName, CorpID, ForecastGeneratedFrom, Wedge, LE_Date, UserName, results): import datetime as dt import pandas as pd from Model import ModelLayer as m header_corpID = '' Messages = [] for item in results.iterrows(): idx = item[0] UpdateDate = dt.datetime.now().strftime("%Y-%m-%d %H:%M:%S") if header_corpID != CorpID: LEHeaderObj = m.LEHeaderRow(LEName, WellName, CorpID, ForecastGeneratedFrom, Wedge, LE_Date, '') Success, Message = LEHeaderObj.Write(UserName, UpdateDate) if not Success: Messages.append(Message) else: header_corpID = CorpID Date_Key = item[1]['Date'].strftime('%m/%d/%Y') Gas_Production = item[1]['GasProduction'] Oil_Production = item[1]['OilProduction'] LEDataObj = m.LEDataRow(LEName, CorpID, Date_Key, Gas_Production, Oil_Production, 0, '') Success, Message = LEDataObj.Write(UserName, UpdateDate) if not Success: Messages.append(Message) return Success, Messages def callprogressbar(iteration, total, prefix = '', suffix = '', decimals = 1, length = 100, fill = '█'): percent = ("{0:." + str(decimals) + "f}").format(100 * (iteration / float(total))) filledLength = int(length * iteration // total) bar = fill * filledLength + '-' * (length - filledLength) print('\r%s |%s| %s%% %s' % (prefix, bar, percent, suffix), end = '\r') # Print New Line on Complete if iteration == total: print() def InterpolateDailyRatesFromMonthlyVolumes(**kwargs): #Take in the monthly cumulative volumes that are assinged at the 'end' of the month in Aries #Assign daily production and return the results from datetime import timedelta import pandas as pd import math previous_month_val = '' current_month_val = '' next_month_val = '' return_df = pd.DataFrame(columns = ['GasProduction', 'OilProduction', 'GasNF', 'OilNF', 'Date']) previous_month_bool = False current_month_bool = False next_month_bool = False for key, value in kwargs.items(): if key=='PreviousMonthVal': previous_month_val = value previous_month_bool = True elif key=='CurrentMonthVal': current_month_val = value current_month_bool = True elif key == 'NextMonthVal': next_month_val = value next_month_bool = True if previous_month_bool and current_month_bool and not next_month_bool: #Get number of days between previous val and current val (should be roughly 1 month) previous_date = previous_month_val['Date'] current_month_date = current_month_val['Date'] diff = current_month_date - previous_date days = diff.days normal_days = 30.42 #Get slope between the two values previous_gas_volume = previous_month_val['GasProduction'] current_gas_volume = current_month_val['GasProduction'] gas_slope = (current_gas_volume - previous_gas_volume) / normal_days #Average days in a month previous_oil_volume = previous_month_val['OilProduction'] current_oil_volume = current_month_val['OilProduction'] oil_slope = (current_oil_volume - previous_oil_volume) / normal_days if current_gas_volume > 0: gasnettingFactor = current_month_val['GasNF'] else: gasnettingFactor = 0 if current_oil_volume > 0: oilnettingFactor = current_month_val['OilNF'] else: oilnettingFactor = 0 return_row = {} for day in range(days): #Add an entry to the return data frame gas_production = previous_gas_volume + (day + 1) * gas_slope if gas_production > 0: return_row['GasProduction'] = gas_production / normal_days else: return_row['GasProduction'] = 0 oil_production = previous_oil_volume + (day + 1) * oil_slope if gas_production > 0: return_row['OilProduction'] = oil_production / normal_days else: return_row['OilProduction'] = 0 return_row['Date'] = previous_date + timedelta(days = (day+1)) return_row['GasNF'] = gasnettingFactor return_row['OilNF'] = oilnettingFactor return_df = return_df.append(return_row, ignore_index = True) elif current_month_bool and next_month_bool and not previous_month_bool: current_month_date = current_month_val['Date'] next_month_date = next_month_val['Date'] diff = next_month_date - current_month_date days =current_month_date.day normal_days = 30.42 current_gas_volume = current_month_val['GasProduction'] next_gas_volume = next_month_val['GasProduction'] gas_slope = (next_gas_volume - current_gas_volume) / normal_days current_oil_volume = current_month_val['OilProduction'] next_oil_volume = next_month_val['OilProduction'] oil_slope = (next_oil_volume - current_oil_volume) / normal_days if current_gas_volume > 0: gasnettingFactor = current_month_val['GasNF'] else: gasnettingFactor = 0 if current_oil_volume > 0: oilnettingFactor = current_month_val['OilNF'] else: oilnettingFactor = 0 return_row = {} for day in range(days): gas_production = current_gas_volume - day * gas_slope if gas_production > 0: return_row['GasProduction'] = gas_production / normal_days else: return_row['GasProduction'] = 0 oil_production = current_oil_volume - day * oil_slope if oil_production > 0: return_row['OilProduction'] = oil_production / normal_days else: return_row['OilProduction'] = 0 return_row['Date'] = current_month_date - timedelta(days = day) return_row['GasNF'] = gasnettingFactor return_row['OilNF'] = oilnettingFactor return_df = return_df.append(return_row, ignore_index = True) return return_df def ConvertNonInterpolatedResults(df_row): from datetime import datetime, timedelta import pandas as pd return_df = pd.DataFrame(columns = ['GasProduction', 'OilProduction', 'GasNF', 'OilNF', 'Date']) return_row = {} return_row['GasProduction'] = df_row['Gas'] return_row['OilProduction'] = df_row['Oil'] return_row['GasNF'] = df_row['GasNF'] return_row['OilNF'] = df_row['OilNF'] return_row['Date'] = df_row['Date'] return_df = return_df.append(return_row, ignore_index = True) return return_df def InterpolateDailyRatesFromMonthlyRates(**kwargs): #Take in the monthly average rates that are assinged at the 'beginning' of the month in internal databases #Assign daily production and return the results from datetime import datetime, timedelta import pandas as pd import math previous_month_val = '' current_month_val = '' next_month_val = '' return_df = pd.DataFrame(columns = ['GasProduction', 'OilProduction', 'GasNF', 'OilNF', 'Date']) previous_month_bool = False current_month_bool = False next_month_bool = False for key, value in kwargs.items(): if key=='PreviousMonthVal': previous_month_val = value previous_month_bool = True elif key=='CurrentMonthVal': current_month_val = value current_month_bool = True elif key == 'NextMonthVal': next_month_val = value next_month_bool = True elif key == 'GasProduction': gas_rate = value elif key == 'OilProduction': oil_rate = value if previous_month_bool and current_month_bool and not next_month_bool: #Scenario for the end of the analysis when no next month's data exists current_month_date = current_month_val['Date'] previous_date = previous_month_val['Date'] current_gas_rate = current_month_val[gas_rate] previous_gas_rate = previous_month_val[gas_rate] current_oil_rate = current_month_val[oil_rate] previous_oil_rate = previous_month_val[oil_rate] days_in_month = pd.to_datetime(current_month_date +
pd.tseries.offsets.MonthEnd(1)
pandas.tseries.offsets.MonthEnd
import os import pyproj import pandas as pd import numpy as np ancpth = os.path.join(os.path.dirname(__file__), 'ancillary') shppth = os.path.join(os.path.dirname(__file__), 'shp') lcc_wkt = \ """PROJCS["North_America_Lambert_Conformal_Conic", GEOGCS["GCS_North_American_1983", DATUM["North_American_Datum_1983", SPHEROID["GRS_1980",6378137,298.257222101]], PRIMEM["Greenwich",0], UNIT["Degree",0.017453292519943295]], PROJECTION["Lambert_Conformal_Conic_2SP"], PARAMETER["False_Easting",5632642.22547], PARAMETER["False_Northing",4612545.65137], PARAMETER["Central_Meridian",-107], PARAMETER["Standard_Parallel_1",50], PARAMETER["Standard_Parallel_2",50], PARAMETER["Latitude_Of_Origin",50], UNIT["Meter",1], AUTHORITY["EPSG","102009"]]""" nad83_wkt = \ """GEOGCS["NAD83", DATUM["North_American_Datum_1983", SPHEROID["GRS 1980",6378137,298.257222101,AUTHORITY["EPSG","7019"]],AUTHORITY["EPSG","6269"]], PRIMEM["Greenwich",0,AUTHORITY["EPSG","8901"]], UNIT["degree",0.01745329251994328,AUTHORITY["EPSG","9122"]],AUTHORITY["EPSG","4269"]]""" def fill(data, invalid=None): """ Taken from https://stackoverflow.com/a/9262129/698809 Replace the value of invalid 'data' cells (indicated by 'invalid') by the value of the nearest valid data cell Input: data: numpy array of any dimension invalid: a binary array of same shape as 'data'. data value are replaced where invalid is True If None (default), use: invalid = np.isnan(data) Output: Return a filled array. """ from scipy import ndimage as nd if invalid is None: invalid = np.isnan(data) ind = nd.distance_transform_edt(invalid, return_distances=False, return_indices=True) return data[tuple(ind)] class Pixels(object): """ :param object: :return: """ def __init__(self): self.nrow, self.ncol = 407, 474 self._pixel_list = self.load_pixels() # Add projected coordinates nad83 = pyproj.Proj(nad83_wkt) lcc = pyproj.Proj(lcc_wkt) # transformer = pyproj.Transformer.from_crs(nad83, lcc) # _x, _y = transformer.transform(self._pixel_list.longitude.values, # self._pixel_list.latitude.values) _x, _y = pyproj.transform(nad83, lcc, self._pixel_list.latitude.values, self._pixel_list.longitude.values ) self.proj = lcc self._pixel_list.loc[:, 'x'] = _x self._pixel_list.loc[:, 'y'] = _y # Reorder pixels based on NEXRAD sequencing self._pixel_list = self._pixel_list.loc[self.calc_nrpix_sequence_number()] # Add row/column information i = np.zeros((self.nrow, self.ncol), dtype=int) for ii in range(self.nrow): i[ii, :] += ii j = np.zeros((self.nrow, self.ncol), dtype=int) for jj in range(self.ncol): j[:, jj] += jj self._pixel_list.loc[:, 'i'] = i.ravel() self._pixel_list.loc[:, 'j'] = j.ravel() # Add sequence numbers self._pixel_list.loc[:, 'sequence_number'] = self.calc_sequence_number() self._pixel_list.loc[:, 'nrpix_sequence_number'] = self.calc_nrpix_sequence_number() self._pixel_list.loc[:, 'fortran_sequence_number'] = self.calc_fortran_sequence_number() @staticmethod def load_pixels(): fname = os.path.join(ancpth, 'pixels.txt') pix_df = pd.read_csv(fname, index_col=['pixel'], usecols=['pixel', 'latitude', 'longitude']) return pix_df def calc_sequence_number(self): """ Pixel numbering starts at upper-left and increases with row-major order. """ return np.array(range(1, (self.nrow * self.ncol) + 1)) def calc_nrpix_sequence_number(self): """ Pixel numbering starts at lower-left and increases with row-major order. """ seq = np.array(range(1, (self.nrow * self.ncol) + 1)) seq = seq.reshape(self.nrow, self.ncol) return seq[::-1, :].ravel() def calc_fortran_sequence_number(self): """ Pixel numbering starts at lower-right and increases with column-major order. """ seq = np.array(range(1, (self.nrow * self.ncol) + 1))[::-1] seq = seq.reshape(self.nrow, self.ncol, order='f') return seq.ravel() @property def i(self): return self._pixel_list.loc[:, 'i'].copy() @property def j(self): return self._pixel_list.loc[:, 'j'].copy() @property def x(self): return self._pixel_list.loc[:, 'x'].copy() @property def y(self): return self._pixel_list.loc[:, 'y'].copy() @property def latitude(self): return self._pixel_list.loc[:, 'latitude'].copy() @property def longitude(self): return self._pixel_list.loc[:, 'longitude'].copy() @property def data(self): return self._pixel_list class GoesAsciiFile(object): """ A thin wrapper around the Pandas DataFrame class to help read and manipulate legacy ASCII files. Attributes ---------- Methods ------- Examples -------- >>> import goeset >>> etfile = goeset.GoesAsciiFile('Florida_2017.txt') >>> eto = etfile.get_array('RET') >>> import goeset >>> etfile = goeset.GoesAsciiFile('Florida_2017.txt') >>> df = etfile.get_dataframe(nrows=500) """ def __init__(self, fpth): s = f'Could not locate input file {fpth}.' assert os.path.isfile(fpth), s self.fpth = fpth self.nodata_value = -9999.9 # self.aea_proj4 = '+proj=aea +lat_1=29.5 +lat_2=45.5 +lat_0=23 +lon_0=-84 +x_' \ # '0=0 +y_0=0 +datum=NAD83 +units=ft +no_defs ' self.pixels = Pixels() self.reference_table = self.get_pixel_reference_table() self.nrow, self.ncol = 407, 474 self._df = None self._dates = None # self._x, self._y = self._get_xy_arrays() # self._latitude, self._longitude = self._get_latlon_arrays() self._oldfmt, self._header = self.get_header() @property def df(self): if self._df is None: self._df = self.get_dataframe() return self._df @property def dates(self): if self._df is None: self._df = self.get_dataframe() return self._dates @property def header(self): return self._header @property def latitude(self): return self.pixels.data.latitude.values.reshape(self.nrow, self.ncol) @property def longitude(self): return self.pixels.data.longitude.values.reshape(self.nrow, self.ncol) @staticmethod def get_pixel_reference_table(): """ Load the list of pixels. :return: """ dtype = {'NRpix': int, 'fips_county': str} fname = os.path.join(ancpth, 'pixel_reference.csv') tbl = pd.read_csv(fname, index_col=['NRpix'], dtype=dtype) tbl = tbl.sort_index() return tbl # @staticmethod # def get_pixels(): # """ # Load the list of pixels. # :return: # """ # fname = os.path.join(ancpth, 'pixels.txt') # return pd.read_csv(fname, index_col=['pixel']) def get_header(self): with open(self.fpth, 'r') as f: header = f.readline().strip().split() if 'YYYYMMDD' in header: header = ['YYYYMMDD', 'Lat', 'Lon', 'NRpix', 'PET', 'ETo', 'Solar', 'Albedo', 'RHmax', 'RHmin', 'Tmax', 'Tmin', 'ws2m'] oldfmt = False else: oldfmt = True header = ['YYYYMMDD', 'Lat', 'Lon', 'NRpix', 'PET', 'ETo', 'Solar', 'RHmax', 'RHmin', 'Tmax', 'Tmin', 'ws2m'] return oldfmt, header def get_dataframe(self, flush=True, **kwargs): """ Parameters ---------- flush : bool If true, reload fresh copy of entire pandas.DataFrame """ if self._df is None or flush: self._df = self._read_file(**kwargs) self._dates = [
pd.Timestamp(t)
pandas.Timestamp
import argparse from pathlib import Path import numpy as np import pandas as pd from sklearn.preprocessing import LabelBinarizer def clean_data(data, features_to_clean): for feature in features_to_clean: data.drop(feature, axis=1, inplace=True) def fulfill_missing_values(data, metadata=None): if metadata: age_median = metadata['age_median'] fare_median = metadata['fare_median'] embarked_value = metadata['embarked_value'] else: age_median = data['Age'].median() fare_median = data['Fare'].median() embarked_value = data['Embarked'].mode()[0] data['Age'].fillna(age_median, inplace=True) data['Fare'].fillna(fare_median, inplace=True) data['Embarked'].fillna(embarked_value, inplace=True) return { 'age_median': age_median, 'fare_median': fare_median, 'embarked_value': embarked_value } def one_hot_encoding(data, features, metadata={}): assert len(features) > 0 for feature in features: label_binarizer = LabelBinarizer() if feature in metadata: label_binarizer.classes_ = np.array(metadata[feature]) labeled_features = label_binarizer.transform(data[feature]) else: labeled_features = label_binarizer.fit_transform(data[feature]) column_names_for_labeled_features = ['{}_{}'.format(feature, cls) for cls in label_binarizer.classes_] if len( label_binarizer.classes_) >= 3 else ['{}_{}'.format(feature, label_binarizer.classes_[0])] data = data.join(pd.DataFrame(labeled_features, columns=column_names_for_labeled_features, index=data.index)) data.drop(feature, axis=1, inplace=True) metadata[feature] = label_binarizer.classes_.tolist() return data, metadata parser = argparse.ArgumentParser(description='Process some integers.') parser.add_argument('--input-train-data-path', type=str, help='an integer for the accumulator') parser.add_argument('--input-test-data-path', type=str, help='an integer for the accumulator') parser.add_argument('--output-train-data-path', type=str, help='an integer for the accumulator') parser.add_argument('--output-test-data-path', type=str, help='an integer for the accumulator') args = parser.parse_args() Path(args.output_train_data_path).parent.mkdir(parents=True, exist_ok=True) Path(args.output_test_data_path).parent.mkdir(parents=True, exist_ok=True) train = pd.read_csv(args.input_train_data_path) test =
pd.read_csv(args.input_test_data_path)
pandas.read_csv