File size: 2,186 Bytes
edbbaaf
 
e0dabea
edbbaaf
 
 
83fe4a1
e641757
 
 
 
 
edbbaaf
4fea786
e641757
 
 
 
 
 
 
 
 
 
 
 
 
e0dabea
e641757
 
e0dabea
e641757
 
e0dabea
e641757
 
e0dabea
edbbaaf
 
 
 
 
4fea786
edbbaaf
e0dabea
e641757
e0dabea
 
 
 
 
edbbaaf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
775c3c5
02d0c30
 
edbbaaf
 
 
e641757
edbbaaf
 
 
2f2f50f
 
e0dabea
 
 
edbbaaf
 
 
 
e0dabea
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
---
license: apache-2.0
base_model: bert-base-uncased
tags:
- generated_from_trainer
datasets:
- ner
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: Bert-NER
  results:
  - task:
      name: Token Classification
      type: token-classification
    dataset:
      name: ner
      type: ner
      config: indian_names
      split: train
      args: indian_names
    metrics:
    - name: Precision
      type: precision
      value: 0.9948381144840311
    - name: Recall
      type: recall
      value: 0.972891113354671
    - name: F1
      type: f1
      value: 0.9837422213534031
    - name: Accuracy
      type: accuracy
      value: 0.9932984044056051
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Bert-NER

This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co./bert-base-uncased) on the ner dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0270
- Precision: 0.9948
- Recall: 0.9729
- F1: 0.9837
- Accuracy: 0.9933

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.0875        | 1.0   | 501  | 0.0328          | 0.9923    | 0.9696 | 0.9808 | 0.9920   |
| 0.0333        | 2.0   | 1002 | 0.0289          | 0.9935    | 0.9726 | 0.9830 | 0.9929   |
| 0.0283        | 3.0   | 1503 | 0.0270          | 0.9948    | 0.9729 | 0.9837 | 0.9933   |


### Framework versions

- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1