Kriyans commited on
Commit
83fe4a1
1 Parent(s): c248d7c

End of training

Browse files
Files changed (1) hide show
  1. README.md +18 -18
README.md CHANGED
@@ -4,7 +4,7 @@ base_model: distilbert-base-uncased
4
  tags:
5
  - generated_from_trainer
6
  datasets:
7
- - indian_names
8
  metrics:
9
  - precision
10
  - recall
@@ -17,24 +17,24 @@ model-index:
17
  name: Token Classification
18
  type: token-classification
19
  dataset:
20
- name: indian_names
21
- type: indian_names
22
  config: indian_names
23
  split: train
24
  args: indian_names
25
  metrics:
26
  - name: Precision
27
  type: precision
28
- value: 0.9939821779886587
29
  - name: Recall
30
  type: recall
31
- value: 0.9958260869565217
32
  - name: F1
33
  type: f1
34
- value: 0.9949032781188464
35
  - name: Accuracy
36
  type: accuracy
37
- value: 0.999003984063745
38
  ---
39
 
40
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -42,13 +42,13 @@ should probably proofread and complete it, then remove this comment. -->
42
 
43
  # my_awesome_wnut_model
44
 
45
- This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the indian_names dataset.
46
  It achieves the following results on the evaluation set:
47
- - Loss: 0.0050
48
- - Precision: 0.9940
49
- - Recall: 0.9958
50
- - F1: 0.9949
51
- - Accuracy: 0.9990
52
 
53
  ## Model description
54
 
@@ -79,11 +79,11 @@ The following hyperparameters were used during training:
79
 
80
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
- | No log | 1.0 | 66 | 0.0440 | 0.9579 | 0.9650 | 0.9614 | 0.9906 |
83
- | No log | 2.0 | 132 | 0.0191 | 0.9870 | 0.9821 | 0.9845 | 0.9959 |
84
- | No log | 3.0 | 198 | 0.0098 | 0.9919 | 0.9899 | 0.9909 | 0.9980 |
85
- | No log | 4.0 | 264 | 0.0061 | 0.9927 | 0.9935 | 0.9931 | 0.9987 |
86
- | No log | 5.0 | 330 | 0.0050 | 0.9940 | 0.9958 | 0.9949 | 0.9990 |
87
 
88
 
89
  ### Framework versions
 
4
  tags:
5
  - generated_from_trainer
6
  datasets:
7
+ - ner
8
  metrics:
9
  - precision
10
  - recall
 
17
  name: Token Classification
18
  type: token-classification
19
  dataset:
20
+ name: ner
21
+ type: ner
22
  config: indian_names
23
  split: train
24
  args: indian_names
25
  metrics:
26
  - name: Precision
27
  type: precision
28
+ value: 0.9269461077844311
29
  - name: Recall
30
  type: recall
31
+ value: 0.9381818181818182
32
  - name: F1
33
  type: f1
34
+ value: 0.9325301204819277
35
  - name: Accuracy
36
  type: accuracy
37
+ value: 0.9986404599129894
38
  ---
39
 
40
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
42
 
43
  # my_awesome_wnut_model
44
 
45
+ This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the ner dataset.
46
  It achieves the following results on the evaluation set:
47
+ - Loss: 0.0067
48
+ - Precision: 0.9269
49
+ - Recall: 0.9382
50
+ - F1: 0.9325
51
+ - Accuracy: 0.9986
52
 
53
  ## Model description
54
 
 
79
 
80
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
+ | No log | 1.0 | 63 | 0.0500 | 0.8048 | 0.4097 | 0.5430 | 0.9883 |
83
+ | No log | 2.0 | 126 | 0.0305 | 0.8104 | 0.7564 | 0.7824 | 0.9936 |
84
+ | No log | 3.0 | 189 | 0.0136 | 0.8643 | 0.8412 | 0.8526 | 0.9965 |
85
+ | No log | 4.0 | 252 | 0.0089 | 0.8571 | 0.9164 | 0.8858 | 0.9976 |
86
+ | No log | 5.0 | 315 | 0.0067 | 0.9269 | 0.9382 | 0.9325 | 0.9986 |
87
 
88
 
89
  ### Framework versions