End of training
Browse files
README.md
CHANGED
@@ -4,7 +4,7 @@ base_model: distilbert-base-uncased
|
|
4 |
tags:
|
5 |
- generated_from_trainer
|
6 |
datasets:
|
7 |
-
-
|
8 |
metrics:
|
9 |
- precision
|
10 |
- recall
|
@@ -17,24 +17,24 @@ model-index:
|
|
17 |
name: Token Classification
|
18 |
type: token-classification
|
19 |
dataset:
|
20 |
-
name:
|
21 |
-
type:
|
22 |
config: indian_names
|
23 |
split: train
|
24 |
args: indian_names
|
25 |
metrics:
|
26 |
- name: Precision
|
27 |
type: precision
|
28 |
-
value: 0.
|
29 |
- name: Recall
|
30 |
type: recall
|
31 |
-
value: 0.
|
32 |
- name: F1
|
33 |
type: f1
|
34 |
-
value: 0.
|
35 |
- name: Accuracy
|
36 |
type: accuracy
|
37 |
-
value: 0.
|
38 |
---
|
39 |
|
40 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -42,13 +42,13 @@ should probably proofread and complete it, then remove this comment. -->
|
|
42 |
|
43 |
# my_awesome_wnut_model
|
44 |
|
45 |
-
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the
|
46 |
It achieves the following results on the evaluation set:
|
47 |
-
- Loss: 0.
|
48 |
-
- Precision: 0.
|
49 |
-
- Recall: 0.
|
50 |
-
- F1: 0.
|
51 |
-
- Accuracy: 0.
|
52 |
|
53 |
## Model description
|
54 |
|
@@ -79,11 +79,11 @@ The following hyperparameters were used during training:
|
|
79 |
|
80 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
81 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
82 |
-
| No log | 1.0 |
|
83 |
-
| No log | 2.0 |
|
84 |
-
| No log | 3.0 |
|
85 |
-
| No log | 4.0 |
|
86 |
-
| No log | 5.0 |
|
87 |
|
88 |
|
89 |
### Framework versions
|
|
|
4 |
tags:
|
5 |
- generated_from_trainer
|
6 |
datasets:
|
7 |
+
- ner
|
8 |
metrics:
|
9 |
- precision
|
10 |
- recall
|
|
|
17 |
name: Token Classification
|
18 |
type: token-classification
|
19 |
dataset:
|
20 |
+
name: ner
|
21 |
+
type: ner
|
22 |
config: indian_names
|
23 |
split: train
|
24 |
args: indian_names
|
25 |
metrics:
|
26 |
- name: Precision
|
27 |
type: precision
|
28 |
+
value: 0.9269461077844311
|
29 |
- name: Recall
|
30 |
type: recall
|
31 |
+
value: 0.9381818181818182
|
32 |
- name: F1
|
33 |
type: f1
|
34 |
+
value: 0.9325301204819277
|
35 |
- name: Accuracy
|
36 |
type: accuracy
|
37 |
+
value: 0.9986404599129894
|
38 |
---
|
39 |
|
40 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
42 |
|
43 |
# my_awesome_wnut_model
|
44 |
|
45 |
+
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the ner dataset.
|
46 |
It achieves the following results on the evaluation set:
|
47 |
+
- Loss: 0.0067
|
48 |
+
- Precision: 0.9269
|
49 |
+
- Recall: 0.9382
|
50 |
+
- F1: 0.9325
|
51 |
+
- Accuracy: 0.9986
|
52 |
|
53 |
## Model description
|
54 |
|
|
|
79 |
|
80 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
81 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
82 |
+
| No log | 1.0 | 63 | 0.0500 | 0.8048 | 0.4097 | 0.5430 | 0.9883 |
|
83 |
+
| No log | 2.0 | 126 | 0.0305 | 0.8104 | 0.7564 | 0.7824 | 0.9936 |
|
84 |
+
| No log | 3.0 | 189 | 0.0136 | 0.8643 | 0.8412 | 0.8526 | 0.9965 |
|
85 |
+
| No log | 4.0 | 252 | 0.0089 | 0.8571 | 0.9164 | 0.8858 | 0.9976 |
|
86 |
+
| No log | 5.0 | 315 | 0.0067 | 0.9269 | 0.9382 | 0.9325 | 0.9986 |
|
87 |
|
88 |
|
89 |
### Framework versions
|