End of training
Browse files
README.md
CHANGED
@@ -25,16 +25,16 @@ model-index:
|
|
25 |
metrics:
|
26 |
- name: Precision
|
27 |
type: precision
|
28 |
-
value: 0.
|
29 |
- name: Recall
|
30 |
type: recall
|
31 |
-
value: 0.
|
32 |
- name: F1
|
33 |
type: f1
|
34 |
-
value: 0.
|
35 |
- name: Accuracy
|
36 |
type: accuracy
|
37 |
-
value: 0.
|
38 |
---
|
39 |
|
40 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -44,11 +44,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
44 |
|
45 |
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the ner dataset.
|
46 |
It achieves the following results on the evaluation set:
|
47 |
-
- Loss: 0.
|
48 |
-
- Precision: 0.
|
49 |
-
- Recall: 0.
|
50 |
-
- F1: 0.
|
51 |
-
- Accuracy: 0.
|
52 |
|
53 |
## Model description
|
54 |
|
@@ -67,7 +67,7 @@ More information needed
|
|
67 |
### Training hyperparameters
|
68 |
|
69 |
The following hyperparameters were used during training:
|
70 |
-
- learning_rate:
|
71 |
- train_batch_size: 16
|
72 |
- eval_batch_size: 16
|
73 |
- seed: 42
|
@@ -79,16 +79,16 @@ The following hyperparameters were used during training:
|
|
79 |
|
80 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
81 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
-
| 0.
|
86 |
-
| 0.
|
87 |
|
88 |
|
89 |
### Framework versions
|
90 |
|
91 |
-
- Transformers 4.34.
|
92 |
-
- Pytorch 2.0
|
93 |
-
- Datasets 2.14.
|
94 |
- Tokenizers 0.14.1
|
|
|
25 |
metrics:
|
26 |
- name: Precision
|
27 |
type: precision
|
28 |
+
value: 0.9790805727433154
|
29 |
- name: Recall
|
30 |
type: recall
|
31 |
+
value: 0.9648238440626479
|
32 |
- name: F1
|
33 |
type: f1
|
34 |
+
value: 0.9718999284886718
|
35 |
- name: Accuracy
|
36 |
type: accuracy
|
37 |
+
value: 0.985535111315454
|
38 |
---
|
39 |
|
40 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
44 |
|
45 |
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the ner dataset.
|
46 |
It achieves the following results on the evaluation set:
|
47 |
+
- Loss: 0.0457
|
48 |
+
- Precision: 0.9791
|
49 |
+
- Recall: 0.9648
|
50 |
+
- F1: 0.9719
|
51 |
+
- Accuracy: 0.9855
|
52 |
|
53 |
## Model description
|
54 |
|
|
|
67 |
### Training hyperparameters
|
68 |
|
69 |
The following hyperparameters were used during training:
|
70 |
+
- learning_rate: 2e-05
|
71 |
- train_batch_size: 16
|
72 |
- eval_batch_size: 16
|
73 |
- seed: 42
|
|
|
79 |
|
80 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
81 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
82 |
+
| 0.1213 | 0.58 | 500 | 0.0608 | 0.9658 | 0.9626 | 0.9642 | 0.9815 |
|
83 |
+
| 0.0562 | 1.17 | 1000 | 0.0513 | 0.9746 | 0.9638 | 0.9692 | 0.9841 |
|
84 |
+
| 0.0514 | 1.75 | 1500 | 0.0484 | 0.9778 | 0.9643 | 0.9710 | 0.9851 |
|
85 |
+
| 0.0468 | 2.33 | 2000 | 0.0471 | 0.9776 | 0.9653 | 0.9715 | 0.9853 |
|
86 |
+
| 0.0461 | 2.91 | 2500 | 0.0457 | 0.9791 | 0.9648 | 0.9719 | 0.9855 |
|
87 |
|
88 |
|
89 |
### Framework versions
|
90 |
|
91 |
+
- Transformers 4.34.1
|
92 |
+
- Pytorch 2.1.0+cu118
|
93 |
+
- Datasets 2.14.6
|
94 |
- Tokenizers 0.14.1
|