End of training
Browse files- README.md +38 -3
- pytorch_model.bin +1 -1
README.md
CHANGED
@@ -5,9 +5,36 @@ tags:
|
|
5 |
- generated_from_trainer
|
6 |
datasets:
|
7 |
- ner
|
|
|
|
|
|
|
|
|
|
|
8 |
model-index:
|
9 |
- name: Bert-NER
|
10 |
-
results:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
---
|
12 |
|
13 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -16,6 +43,12 @@ should probably proofread and complete it, then remove this comment. -->
|
|
16 |
# Bert-NER
|
17 |
|
18 |
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the ner dataset.
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
## Model description
|
21 |
|
@@ -40,13 +73,15 @@ The following hyperparameters were used during training:
|
|
40 |
- seed: 42
|
41 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
42 |
- lr_scheduler_type: linear
|
43 |
-
- num_epochs:
|
44 |
|
45 |
### Training results
|
46 |
|
47 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
48 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
49 |
-
| No log | 1.0 | 486 | 0.
|
|
|
|
|
50 |
|
51 |
|
52 |
### Framework versions
|
|
|
5 |
- generated_from_trainer
|
6 |
datasets:
|
7 |
- ner
|
8 |
+
metrics:
|
9 |
+
- precision
|
10 |
+
- recall
|
11 |
+
- f1
|
12 |
+
- accuracy
|
13 |
model-index:
|
14 |
- name: Bert-NER
|
15 |
+
results:
|
16 |
+
- task:
|
17 |
+
name: Token Classification
|
18 |
+
type: token-classification
|
19 |
+
dataset:
|
20 |
+
name: ner
|
21 |
+
type: ner
|
22 |
+
config: indian_names
|
23 |
+
split: train
|
24 |
+
args: indian_names
|
25 |
+
metrics:
|
26 |
+
- name: Precision
|
27 |
+
type: precision
|
28 |
+
value: 0.9987202862934734
|
29 |
+
- name: Recall
|
30 |
+
type: recall
|
31 |
+
value: 0.9989804934411745
|
32 |
+
- name: F1
|
33 |
+
type: f1
|
34 |
+
value: 0.9988503729209022
|
35 |
+
- name: Accuracy
|
36 |
+
type: accuracy
|
37 |
+
value: 0.9993990151023617
|
38 |
---
|
39 |
|
40 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
43 |
# Bert-NER
|
44 |
|
45 |
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the ner dataset.
|
46 |
+
It achieves the following results on the evaluation set:
|
47 |
+
- Loss: 0.0019
|
48 |
+
- Precision: 0.9987
|
49 |
+
- Recall: 0.9990
|
50 |
+
- F1: 0.9989
|
51 |
+
- Accuracy: 0.9994
|
52 |
|
53 |
## Model description
|
54 |
|
|
|
73 |
- seed: 42
|
74 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
75 |
- lr_scheduler_type: linear
|
76 |
+
- num_epochs: 3
|
77 |
|
78 |
### Training results
|
79 |
|
80 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
81 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
82 |
+
| No log | 1.0 | 486 | 0.0038 | 0.9961 | 0.9983 | 0.9972 | 0.9985 |
|
83 |
+
| 0.0034 | 2.0 | 972 | 0.0024 | 0.9980 | 0.9990 | 0.9985 | 0.9992 |
|
84 |
+
| 0.0041 | 3.0 | 1458 | 0.0019 | 0.9987 | 0.9990 | 0.9989 | 0.9994 |
|
85 |
|
86 |
|
87 |
### Framework versions
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 265526309
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1b921de0a75daa094b25b35771a06d4bd085822947ab3f35ce256d44788b212e
|
3 |
size 265526309
|