Kriyans commited on
Commit
e0dabea
1 Parent(s): ba7c329

End of training

Browse files
Files changed (1) hide show
  1. README.md +18 -18
README.md CHANGED
@@ -1,6 +1,6 @@
1
  ---
2
  license: apache-2.0
3
- base_model: distilbert-base-uncased
4
  tags:
5
  - generated_from_trainer
6
  datasets:
@@ -25,16 +25,16 @@ model-index:
25
  metrics:
26
  - name: Precision
27
  type: precision
28
- value: 0.9860607282009942
29
  - name: Recall
30
  type: recall
31
- value: 0.9693364297742606
32
  - name: F1
33
  type: f1
34
- value: 0.9776270584382788
35
  - name: Accuracy
36
  type: accuracy
37
- value: 0.9882459717748076
38
  ---
39
 
40
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -42,13 +42,13 @@ should probably proofread and complete it, then remove this comment. -->
42
 
43
  # Bert-NER
44
 
45
- This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the ner dataset.
46
  It achieves the following results on the evaluation set:
47
- - Loss: 0.0372
48
- - Precision: 0.9861
49
- - Recall: 0.9693
50
- - F1: 0.9776
51
- - Accuracy: 0.9882
52
 
53
  ## Model description
54
 
@@ -79,14 +79,14 @@ The following hyperparameters were used during training:
79
 
80
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
- | 0.0461 | 1.0 | 858 | 0.0450 | 0.9853 | 0.9602 | 0.9725 | 0.9859 |
83
- | 0.0408 | 2.0 | 1716 | 0.0400 | 0.9836 | 0.9679 | 0.9757 | 0.9873 |
84
- | 0.0391 | 3.0 | 2574 | 0.0372 | 0.9861 | 0.9693 | 0.9776 | 0.9882 |
85
 
86
 
87
  ### Framework versions
88
 
89
- - Transformers 4.34.1
90
- - Pytorch 2.1.0+cu118
91
- - Datasets 2.14.6
92
- - Tokenizers 0.14.1
 
1
  ---
2
  license: apache-2.0
3
+ base_model: bert-base-uncased
4
  tags:
5
  - generated_from_trainer
6
  datasets:
 
25
  metrics:
26
  - name: Precision
27
  type: precision
28
+ value: 0.9948381144840311
29
  - name: Recall
30
  type: recall
31
+ value: 0.972891113354671
32
  - name: F1
33
  type: f1
34
+ value: 0.9837422213534031
35
  - name: Accuracy
36
  type: accuracy
37
+ value: 0.9932984044056051
38
  ---
39
 
40
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
42
 
43
  # Bert-NER
44
 
45
+ This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the ner dataset.
46
  It achieves the following results on the evaluation set:
47
+ - Loss: 0.0270
48
+ - Precision: 0.9948
49
+ - Recall: 0.9729
50
+ - F1: 0.9837
51
+ - Accuracy: 0.9933
52
 
53
  ## Model description
54
 
 
79
 
80
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
+ | 0.0875 | 1.0 | 501 | 0.0328 | 0.9923 | 0.9696 | 0.9808 | 0.9920 |
83
+ | 0.0333 | 2.0 | 1002 | 0.0289 | 0.9935 | 0.9726 | 0.9830 | 0.9929 |
84
+ | 0.0283 | 3.0 | 1503 | 0.0270 | 0.9948 | 0.9729 | 0.9837 | 0.9933 |
85
 
86
 
87
  ### Framework versions
88
 
89
+ - Transformers 4.41.2
90
+ - Pytorch 2.3.0+cu121
91
+ - Datasets 2.20.0
92
+ - Tokenizers 0.19.1