End of training
Browse files
README.md
CHANGED
@@ -25,16 +25,16 @@ model-index:
|
|
25 |
metrics:
|
26 |
- name: Precision
|
27 |
type: precision
|
28 |
-
value: 0.
|
29 |
- name: Recall
|
30 |
type: recall
|
31 |
-
value: 0.
|
32 |
- name: F1
|
33 |
type: f1
|
34 |
-
value: 0.
|
35 |
- name: Accuracy
|
36 |
type: accuracy
|
37 |
-
value: 0.
|
38 |
---
|
39 |
|
40 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -44,11 +44,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
44 |
|
45 |
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the ner dataset.
|
46 |
It achieves the following results on the evaluation set:
|
47 |
-
- Loss: 0.
|
48 |
-
- Precision: 0.
|
49 |
-
- Recall: 0.
|
50 |
-
- F1: 0.
|
51 |
-
- Accuracy: 0.
|
52 |
|
53 |
## Model description
|
54 |
|
@@ -67,9 +67,9 @@ More information needed
|
|
67 |
### Training hyperparameters
|
68 |
|
69 |
The following hyperparameters were used during training:
|
70 |
-
- learning_rate:
|
71 |
-
- train_batch_size:
|
72 |
-
- eval_batch_size:
|
73 |
- seed: 42
|
74 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
75 |
- lr_scheduler_type: linear
|
@@ -79,8 +79,11 @@ The following hyperparameters were used during training:
|
|
79 |
|
80 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
81 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
82 |
-
| 0.
|
83 |
-
| 0.
|
|
|
|
|
|
|
84 |
|
85 |
|
86 |
### Framework versions
|
|
|
25 |
metrics:
|
26 |
- name: Precision
|
27 |
type: precision
|
28 |
+
value: 0.9814334577809573
|
29 |
- name: Recall
|
30 |
type: recall
|
31 |
+
value: 0.9663647269885645
|
32 |
- name: F1
|
33 |
type: f1
|
34 |
+
value: 0.9738408043522868
|
35 |
- name: Accuracy
|
36 |
type: accuracy
|
37 |
+
value: 0.9864516687615129
|
38 |
---
|
39 |
|
40 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
44 |
|
45 |
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the ner dataset.
|
46 |
It achieves the following results on the evaluation set:
|
47 |
+
- Loss: 0.0429
|
48 |
+
- Precision: 0.9814
|
49 |
+
- Recall: 0.9664
|
50 |
+
- F1: 0.9738
|
51 |
+
- Accuracy: 0.9865
|
52 |
|
53 |
## Model description
|
54 |
|
|
|
67 |
### Training hyperparameters
|
68 |
|
69 |
The following hyperparameters were used during training:
|
70 |
+
- learning_rate: 4e-05
|
71 |
+
- train_batch_size: 16
|
72 |
+
- eval_batch_size: 16
|
73 |
- seed: 42
|
74 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
75 |
- lr_scheduler_type: linear
|
|
|
79 |
|
80 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
81 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
82 |
+
| 0.0981 | 0.58 | 500 | 0.0546 | 0.9699 | 0.9642 | 0.9670 | 0.9829 |
|
83 |
+
| 0.0528 | 1.17 | 1000 | 0.0487 | 0.9763 | 0.9649 | 0.9706 | 0.9848 |
|
84 |
+
| 0.0485 | 1.75 | 1500 | 0.0462 | 0.9796 | 0.9643 | 0.9719 | 0.9855 |
|
85 |
+
| 0.0439 | 2.33 | 2000 | 0.0447 | 0.9795 | 0.9662 | 0.9728 | 0.9859 |
|
86 |
+
| 0.0426 | 2.91 | 2500 | 0.0429 | 0.9814 | 0.9664 | 0.9738 | 0.9865 |
|
87 |
|
88 |
|
89 |
### Framework versions
|