Kriyans commited on
Commit
02d0c30
1 Parent(s): 785d016

End of training

Browse files
Files changed (1) hide show
  1. README.md +17 -14
README.md CHANGED
@@ -25,16 +25,16 @@ model-index:
25
  metrics:
26
  - name: Precision
27
  type: precision
28
- value: 0.9805654698636115
29
  - name: Recall
30
  type: recall
31
- value: 0.9645927116237604
32
  - name: F1
33
  type: f1
34
- value: 0.9725135102144988
35
  - name: Accuracy
36
  type: accuracy
37
- value: 0.9858187365837784
38
  ---
39
 
40
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -44,11 +44,11 @@ should probably proofread and complete it, then remove this comment. -->
44
 
45
  This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the ner dataset.
46
  It achieves the following results on the evaluation set:
47
- - Loss: 0.0454
48
- - Precision: 0.9806
49
- - Recall: 0.9646
50
- - F1: 0.9725
51
- - Accuracy: 0.9858
52
 
53
  ## Model description
54
 
@@ -67,9 +67,9 @@ More information needed
67
  ### Training hyperparameters
68
 
69
  The following hyperparameters were used during training:
70
- - learning_rate: 5e-05
71
- - train_batch_size: 32
72
- - eval_batch_size: 32
73
  - seed: 42
74
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
75
  - lr_scheduler_type: linear
@@ -79,8 +79,11 @@ The following hyperparameters were used during training:
79
 
80
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
- | 0.0831 | 1.17 | 500 | 0.0507 | 0.9756 | 0.9645 | 0.9700 | 0.9845 |
83
- | 0.0473 | 2.33 | 1000 | 0.0454 | 0.9806 | 0.9646 | 0.9725 | 0.9858 |
 
 
 
84
 
85
 
86
  ### Framework versions
 
25
  metrics:
26
  - name: Precision
27
  type: precision
28
+ value: 0.9814334577809573
29
  - name: Recall
30
  type: recall
31
+ value: 0.9663647269885645
32
  - name: F1
33
  type: f1
34
+ value: 0.9738408043522868
35
  - name: Accuracy
36
  type: accuracy
37
+ value: 0.9864516687615129
38
  ---
39
 
40
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
44
 
45
  This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the ner dataset.
46
  It achieves the following results on the evaluation set:
47
+ - Loss: 0.0429
48
+ - Precision: 0.9814
49
+ - Recall: 0.9664
50
+ - F1: 0.9738
51
+ - Accuracy: 0.9865
52
 
53
  ## Model description
54
 
 
67
  ### Training hyperparameters
68
 
69
  The following hyperparameters were used during training:
70
+ - learning_rate: 4e-05
71
+ - train_batch_size: 16
72
+ - eval_batch_size: 16
73
  - seed: 42
74
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
75
  - lr_scheduler_type: linear
 
79
 
80
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
+ | 0.0981 | 0.58 | 500 | 0.0546 | 0.9699 | 0.9642 | 0.9670 | 0.9829 |
83
+ | 0.0528 | 1.17 | 1000 | 0.0487 | 0.9763 | 0.9649 | 0.9706 | 0.9848 |
84
+ | 0.0485 | 1.75 | 1500 | 0.0462 | 0.9796 | 0.9643 | 0.9719 | 0.9855 |
85
+ | 0.0439 | 2.33 | 2000 | 0.0447 | 0.9795 | 0.9662 | 0.9728 | 0.9859 |
86
+ | 0.0426 | 2.91 | 2500 | 0.0429 | 0.9814 | 0.9664 | 0.9738 | 0.9865 |
87
 
88
 
89
  ### Framework versions