File size: 6,483 Bytes
edbbaaf
 
 
 
 
83fe4a1
edbbaaf
 
 
 
 
 
 
 
 
 
 
 
83fe4a1
 
edbbaaf
ba64807
edbbaaf
 
 
 
7fcf2eb
edbbaaf
 
7fcf2eb
edbbaaf
 
7fcf2eb
edbbaaf
 
7fcf2eb
edbbaaf
 
 
 
 
 
 
ba64807
edbbaaf
c824d23
7fcf2eb
 
 
 
edbbaaf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc85824
c824d23
 
edbbaaf
 
 
7fcf2eb
edbbaaf
 
 
7fcf2eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
edbbaaf
 
 
 
d0f8270
edbbaaf
d0f8270
edbbaaf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- ner
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: my_awesome_wnut_model
  results:
  - task:
      name: Token Classification
      type: token-classification
    dataset:
      name: ner
      type: ner
      config: indian_names
      split: test
      args: indian_names
    metrics:
    - name: Precision
      type: precision
      value: 1.0
    - name: Recall
      type: recall
      value: 1.0
    - name: F1
      type: f1
      value: 1.0
    - name: Accuracy
      type: accuracy
      value: 1.0
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# my_awesome_wnut_model

This model is a fine-tuned version of [bert-base-cased](https://huggingface.co./bert-base-cased) on the ner dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0000
- Precision: 1.0
- Recall: 1.0
- F1: 1.0
- Accuracy: 1.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log        | 1.0   | 344   | 0.0000          | 1.0000    | 1.0000 | 1.0000 | 1.0000   |
| 0.0027        | 2.0   | 688   | 0.0000          | 1.0       | 1.0    | 1.0    | 1.0      |
| 0.0019        | 3.0   | 1032  | 0.0001          | 1.0       | 1.0    | 1.0    | 1.0      |
| 0.0019        | 4.0   | 1376  | 0.0000          | 1.0       | 1.0    | 1.0    | 1.0      |
| 0.0021        | 5.0   | 1720  | 0.0000          | 1.0       | 1.0    | 1.0    | 1.0      |
| 0.0016        | 6.0   | 2064  | 0.0000          | 1.0       | 1.0    | 1.0    | 1.0      |
| 0.0016        | 7.0   | 2408  | 0.0000          | 1.0       | 1.0    | 1.0    | 1.0      |
| 0.0007        | 8.0   | 2752  | 0.0000          | 1.0       | 1.0    | 1.0    | 1.0      |
| 0.001         | 9.0   | 3096  | 0.0000          | 1.0       | 1.0    | 1.0    | 1.0      |
| 0.001         | 10.0  | 3440  | 0.0000          | 1.0       | 1.0    | 1.0    | 1.0      |
| 0.001         | 11.0  | 3784  | 0.0001          | 1.0000    | 1.0000 | 1.0000 | 1.0000   |
| 0.0008        | 12.0  | 4128  | 0.0000          | 1.0       | 1.0    | 1.0    | 1.0      |
| 0.0008        | 13.0  | 4472  | 0.0000          | 1.0       | 1.0    | 1.0    | 1.0      |
| 0.0007        | 14.0  | 4816  | 0.0000          | 1.0       | 1.0    | 1.0    | 1.0      |
| 0.0009        | 15.0  | 5160  | 0.0000          | 1.0       | 1.0    | 1.0    | 1.0      |
| 0.0006        | 16.0  | 5504  | 0.0000          | 1.0       | 1.0    | 1.0    | 1.0      |
| 0.0006        | 17.0  | 5848  | 0.0000          | 1.0       | 1.0    | 1.0    | 1.0      |
| 0.0003        | 18.0  | 6192  | 0.0000          | 1.0       | 1.0    | 1.0    | 1.0      |
| 0.0006        | 19.0  | 6536  | 0.0000          | 1.0       | 1.0    | 1.0    | 1.0      |
| 0.0006        | 20.0  | 6880  | 0.0000          | 1.0       | 1.0    | 1.0    | 1.0      |
| 0.0007        | 21.0  | 7224  | 0.0000          | 1.0       | 1.0    | 1.0    | 1.0      |
| 0.0007        | 22.0  | 7568  | 0.0000          | 1.0       | 1.0    | 1.0    | 1.0      |
| 0.0007        | 23.0  | 7912  | 0.0000          | 1.0       | 1.0    | 1.0    | 1.0      |
| 0.0005        | 24.0  | 8256  | 0.0000          | 1.0       | 1.0    | 1.0    | 1.0      |
| 0.0001        | 25.0  | 8600  | 0.0000          | 1.0       | 1.0    | 1.0    | 1.0      |
| 0.0001        | 26.0  | 8944  | 0.0000          | 1.0       | 1.0    | 1.0    | 1.0      |
| 0.0002        | 27.0  | 9288  | 0.0000          | 1.0       | 1.0    | 1.0    | 1.0      |
| 0.0003        | 28.0  | 9632  | 0.0000          | 1.0       | 1.0    | 1.0    | 1.0      |
| 0.0003        | 29.0  | 9976  | 0.0000          | 1.0       | 1.0    | 1.0    | 1.0      |
| 0.0001        | 30.0  | 10320 | 0.0000          | 1.0       | 1.0    | 1.0    | 1.0      |
| 0.0           | 31.0  | 10664 | 0.0000          | 1.0       | 1.0    | 1.0    | 1.0      |
| 0.0001        | 32.0  | 11008 | 0.0000          | 1.0       | 1.0    | 1.0    | 1.0      |
| 0.0001        | 33.0  | 11352 | 0.0000          | 1.0       | 1.0    | 1.0    | 1.0      |
| 0.0001        | 34.0  | 11696 | 0.0000          | 1.0       | 1.0    | 1.0    | 1.0      |
| 0.0003        | 35.0  | 12040 | 0.0000          | 1.0       | 1.0    | 1.0    | 1.0      |
| 0.0003        | 36.0  | 12384 | 0.0000          | 1.0       | 1.0    | 1.0    | 1.0      |
| 0.0001        | 37.0  | 12728 | 0.0000          | 1.0       | 1.0    | 1.0    | 1.0      |
| 0.0001        | 38.0  | 13072 | 0.0000          | 1.0       | 1.0    | 1.0    | 1.0      |
| 0.0001        | 39.0  | 13416 | 0.0000          | 1.0       | 1.0    | 1.0    | 1.0      |
| 0.0002        | 40.0  | 13760 | 0.0000          | 1.0       | 1.0    | 1.0    | 1.0      |
| 0.0           | 41.0  | 14104 | 0.0000          | 1.0       | 1.0    | 1.0    | 1.0      |
| 0.0           | 42.0  | 14448 | 0.0000          | 1.0       | 1.0    | 1.0    | 1.0      |
| 0.0           | 43.0  | 14792 | 0.0000          | 1.0       | 1.0    | 1.0    | 1.0      |
| 0.0           | 44.0  | 15136 | 0.0000          | 1.0       | 1.0    | 1.0    | 1.0      |
| 0.0           | 45.0  | 15480 | 0.0000          | 1.0       | 1.0    | 1.0    | 1.0      |
| 0.0           | 46.0  | 15824 | 0.0000          | 1.0       | 1.0    | 1.0    | 1.0      |
| 0.0001        | 47.0  | 16168 | 0.0000          | 1.0       | 1.0    | 1.0    | 1.0      |
| 0.0           | 48.0  | 16512 | 0.0000          | 1.0       | 1.0    | 1.0    | 1.0      |
| 0.0           | 49.0  | 16856 | 0.0000          | 1.0       | 1.0    | 1.0    | 1.0      |
| 0.0           | 50.0  | 17200 | 0.0000          | 1.0       | 1.0    | 1.0    | 1.0      |


### Framework versions

- Transformers 4.30.2
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3