update model card README.md
Browse files
README.md
CHANGED
@@ -24,16 +24,16 @@ model-index:
|
|
24 |
metrics:
|
25 |
- name: Precision
|
26 |
type: precision
|
27 |
-
value: 0
|
28 |
- name: Recall
|
29 |
type: recall
|
30 |
-
value: 0
|
31 |
- name: F1
|
32 |
type: f1
|
33 |
-
value: 0
|
34 |
- name: Accuracy
|
35 |
type: accuracy
|
36 |
-
value: 0
|
37 |
---
|
38 |
|
39 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -44,10 +44,10 @@ should probably proofread and complete it, then remove this comment. -->
|
|
44 |
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the ner dataset.
|
45 |
It achieves the following results on the evaluation set:
|
46 |
- Loss: 0.0000
|
47 |
-
- Precision: 1.
|
48 |
-
- Recall: 1.
|
49 |
-
- F1: 1.
|
50 |
-
- Accuracy: 1.
|
51 |
|
52 |
## Model description
|
53 |
|
@@ -72,17 +72,62 @@ The following hyperparameters were used during training:
|
|
72 |
- seed: 42
|
73 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
74 |
- lr_scheduler_type: linear
|
75 |
-
- num_epochs:
|
76 |
|
77 |
### Training results
|
78 |
|
79 |
-
| Training Loss | Epoch | Step
|
80 |
-
|
81 |
-
| No log | 1.0 | 344
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
-
| 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
|
87 |
|
88 |
### Framework versions
|
|
|
24 |
metrics:
|
25 |
- name: Precision
|
26 |
type: precision
|
27 |
+
value: 1.0
|
28 |
- name: Recall
|
29 |
type: recall
|
30 |
+
value: 1.0
|
31 |
- name: F1
|
32 |
type: f1
|
33 |
+
value: 1.0
|
34 |
- name: Accuracy
|
35 |
type: accuracy
|
36 |
+
value: 1.0
|
37 |
---
|
38 |
|
39 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
44 |
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the ner dataset.
|
45 |
It achieves the following results on the evaluation set:
|
46 |
- Loss: 0.0000
|
47 |
+
- Precision: 1.0
|
48 |
+
- Recall: 1.0
|
49 |
+
- F1: 1.0
|
50 |
+
- Accuracy: 1.0
|
51 |
|
52 |
## Model description
|
53 |
|
|
|
72 |
- seed: 42
|
73 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
74 |
- lr_scheduler_type: linear
|
75 |
+
- num_epochs: 50
|
76 |
|
77 |
### Training results
|
78 |
|
79 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
80 |
+
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
81 |
+
| No log | 1.0 | 344 | 0.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
|
82 |
+
| 0.0027 | 2.0 | 688 | 0.0000 | 1.0 | 1.0 | 1.0 | 1.0 |
|
83 |
+
| 0.0019 | 3.0 | 1032 | 0.0001 | 1.0 | 1.0 | 1.0 | 1.0 |
|
84 |
+
| 0.0019 | 4.0 | 1376 | 0.0000 | 1.0 | 1.0 | 1.0 | 1.0 |
|
85 |
+
| 0.0021 | 5.0 | 1720 | 0.0000 | 1.0 | 1.0 | 1.0 | 1.0 |
|
86 |
+
| 0.0016 | 6.0 | 2064 | 0.0000 | 1.0 | 1.0 | 1.0 | 1.0 |
|
87 |
+
| 0.0016 | 7.0 | 2408 | 0.0000 | 1.0 | 1.0 | 1.0 | 1.0 |
|
88 |
+
| 0.0007 | 8.0 | 2752 | 0.0000 | 1.0 | 1.0 | 1.0 | 1.0 |
|
89 |
+
| 0.001 | 9.0 | 3096 | 0.0000 | 1.0 | 1.0 | 1.0 | 1.0 |
|
90 |
+
| 0.001 | 10.0 | 3440 | 0.0000 | 1.0 | 1.0 | 1.0 | 1.0 |
|
91 |
+
| 0.001 | 11.0 | 3784 | 0.0001 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
|
92 |
+
| 0.0008 | 12.0 | 4128 | 0.0000 | 1.0 | 1.0 | 1.0 | 1.0 |
|
93 |
+
| 0.0008 | 13.0 | 4472 | 0.0000 | 1.0 | 1.0 | 1.0 | 1.0 |
|
94 |
+
| 0.0007 | 14.0 | 4816 | 0.0000 | 1.0 | 1.0 | 1.0 | 1.0 |
|
95 |
+
| 0.0009 | 15.0 | 5160 | 0.0000 | 1.0 | 1.0 | 1.0 | 1.0 |
|
96 |
+
| 0.0006 | 16.0 | 5504 | 0.0000 | 1.0 | 1.0 | 1.0 | 1.0 |
|
97 |
+
| 0.0006 | 17.0 | 5848 | 0.0000 | 1.0 | 1.0 | 1.0 | 1.0 |
|
98 |
+
| 0.0003 | 18.0 | 6192 | 0.0000 | 1.0 | 1.0 | 1.0 | 1.0 |
|
99 |
+
| 0.0006 | 19.0 | 6536 | 0.0000 | 1.0 | 1.0 | 1.0 | 1.0 |
|
100 |
+
| 0.0006 | 20.0 | 6880 | 0.0000 | 1.0 | 1.0 | 1.0 | 1.0 |
|
101 |
+
| 0.0007 | 21.0 | 7224 | 0.0000 | 1.0 | 1.0 | 1.0 | 1.0 |
|
102 |
+
| 0.0007 | 22.0 | 7568 | 0.0000 | 1.0 | 1.0 | 1.0 | 1.0 |
|
103 |
+
| 0.0007 | 23.0 | 7912 | 0.0000 | 1.0 | 1.0 | 1.0 | 1.0 |
|
104 |
+
| 0.0005 | 24.0 | 8256 | 0.0000 | 1.0 | 1.0 | 1.0 | 1.0 |
|
105 |
+
| 0.0001 | 25.0 | 8600 | 0.0000 | 1.0 | 1.0 | 1.0 | 1.0 |
|
106 |
+
| 0.0001 | 26.0 | 8944 | 0.0000 | 1.0 | 1.0 | 1.0 | 1.0 |
|
107 |
+
| 0.0002 | 27.0 | 9288 | 0.0000 | 1.0 | 1.0 | 1.0 | 1.0 |
|
108 |
+
| 0.0003 | 28.0 | 9632 | 0.0000 | 1.0 | 1.0 | 1.0 | 1.0 |
|
109 |
+
| 0.0003 | 29.0 | 9976 | 0.0000 | 1.0 | 1.0 | 1.0 | 1.0 |
|
110 |
+
| 0.0001 | 30.0 | 10320 | 0.0000 | 1.0 | 1.0 | 1.0 | 1.0 |
|
111 |
+
| 0.0 | 31.0 | 10664 | 0.0000 | 1.0 | 1.0 | 1.0 | 1.0 |
|
112 |
+
| 0.0001 | 32.0 | 11008 | 0.0000 | 1.0 | 1.0 | 1.0 | 1.0 |
|
113 |
+
| 0.0001 | 33.0 | 11352 | 0.0000 | 1.0 | 1.0 | 1.0 | 1.0 |
|
114 |
+
| 0.0001 | 34.0 | 11696 | 0.0000 | 1.0 | 1.0 | 1.0 | 1.0 |
|
115 |
+
| 0.0003 | 35.0 | 12040 | 0.0000 | 1.0 | 1.0 | 1.0 | 1.0 |
|
116 |
+
| 0.0003 | 36.0 | 12384 | 0.0000 | 1.0 | 1.0 | 1.0 | 1.0 |
|
117 |
+
| 0.0001 | 37.0 | 12728 | 0.0000 | 1.0 | 1.0 | 1.0 | 1.0 |
|
118 |
+
| 0.0001 | 38.0 | 13072 | 0.0000 | 1.0 | 1.0 | 1.0 | 1.0 |
|
119 |
+
| 0.0001 | 39.0 | 13416 | 0.0000 | 1.0 | 1.0 | 1.0 | 1.0 |
|
120 |
+
| 0.0002 | 40.0 | 13760 | 0.0000 | 1.0 | 1.0 | 1.0 | 1.0 |
|
121 |
+
| 0.0 | 41.0 | 14104 | 0.0000 | 1.0 | 1.0 | 1.0 | 1.0 |
|
122 |
+
| 0.0 | 42.0 | 14448 | 0.0000 | 1.0 | 1.0 | 1.0 | 1.0 |
|
123 |
+
| 0.0 | 43.0 | 14792 | 0.0000 | 1.0 | 1.0 | 1.0 | 1.0 |
|
124 |
+
| 0.0 | 44.0 | 15136 | 0.0000 | 1.0 | 1.0 | 1.0 | 1.0 |
|
125 |
+
| 0.0 | 45.0 | 15480 | 0.0000 | 1.0 | 1.0 | 1.0 | 1.0 |
|
126 |
+
| 0.0 | 46.0 | 15824 | 0.0000 | 1.0 | 1.0 | 1.0 | 1.0 |
|
127 |
+
| 0.0001 | 47.0 | 16168 | 0.0000 | 1.0 | 1.0 | 1.0 | 1.0 |
|
128 |
+
| 0.0 | 48.0 | 16512 | 0.0000 | 1.0 | 1.0 | 1.0 | 1.0 |
|
129 |
+
| 0.0 | 49.0 | 16856 | 0.0000 | 1.0 | 1.0 | 1.0 | 1.0 |
|
130 |
+
| 0.0 | 50.0 | 17200 | 0.0000 | 1.0 | 1.0 | 1.0 | 1.0 |
|
131 |
|
132 |
|
133 |
### Framework versions
|