Kriyans commited on
Commit
d0f8270
1 Parent(s): 98d9c83

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +12 -13
README.md CHANGED
@@ -1,6 +1,5 @@
1
  ---
2
  license: apache-2.0
3
- base_model: distilbert-base-uncased
4
  tags:
5
  - generated_from_trainer
6
  datasets:
@@ -25,16 +24,16 @@ model-index:
25
  metrics:
26
  - name: Precision
27
  type: precision
28
- value: 0.999514136319467
29
  - name: Recall
30
  type: recall
31
- value: 0.999560388708931
32
  - name: F1
33
  type: f1
34
- value: 0.9995372619791305
35
  - name: Accuracy
36
  type: accuracy
37
- value: 0.9997259356253235
38
  ---
39
 
40
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -42,11 +41,11 @@ should probably proofread and complete it, then remove this comment. -->
42
 
43
  # my_awesome_wnut_model
44
 
45
- This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the ner dataset.
46
  It achieves the following results on the evaluation set:
47
- - Loss: 0.0004
48
  - Precision: 0.9995
49
- - Recall: 0.9996
50
  - F1: 0.9995
51
  - Accuracy: 0.9997
52
 
@@ -79,14 +78,14 @@ The following hyperparameters were used during training:
79
 
80
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
- | 0.0416 | 1.0 | 688 | 0.0029 | 0.9957 | 0.9972 | 0.9965 | 0.9980 |
83
- | 0.008 | 2.0 | 1376 | 0.0010 | 0.9985 | 0.9990 | 0.9987 | 0.9993 |
84
- | 0.0023 | 3.0 | 2064 | 0.0004 | 0.9995 | 0.9996 | 0.9995 | 0.9997 |
85
 
86
 
87
  ### Framework versions
88
 
89
- - Transformers 4.33.2
90
  - Pytorch 2.0.1+cu118
91
- - Datasets 2.14.5
92
  - Tokenizers 0.13.3
 
1
  ---
2
  license: apache-2.0
 
3
  tags:
4
  - generated_from_trainer
5
  datasets:
 
24
  metrics:
25
  - name: Precision
26
  type: precision
27
+ value: 0.999537251272559
28
  - name: Recall
29
  type: recall
30
+ value: 0.999537251272559
31
  - name: F1
32
  type: f1
33
+ value: 0.999537251272559
34
  - name: Accuracy
35
  type: accuracy
36
+ value: 0.9997335485246202
37
  ---
38
 
39
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
41
 
42
  # my_awesome_wnut_model
43
 
44
+ This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the ner dataset.
45
  It achieves the following results on the evaluation set:
46
+ - Loss: 0.0003
47
  - Precision: 0.9995
48
+ - Recall: 0.9995
49
  - F1: 0.9995
50
  - Accuracy: 0.9997
51
 
 
78
 
79
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
80
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
81
+ | 0.0364 | 1.0 | 688 | 0.0026 | 0.9964 | 0.9965 | 0.9964 | 0.9979 |
82
+ | 0.0088 | 2.0 | 1376 | 0.0008 | 0.9991 | 0.9988 | 0.9990 | 0.9994 |
83
+ | 0.0017 | 3.0 | 2064 | 0.0003 | 0.9995 | 0.9995 | 0.9995 | 0.9997 |
84
 
85
 
86
  ### Framework versions
87
 
88
+ - Transformers 4.30.2
89
  - Pytorch 2.0.1+cu118
90
+ - Datasets 2.13.1
91
  - Tokenizers 0.13.3