update model card README.md
Browse files
README.md
CHANGED
@@ -1,6 +1,5 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
-
base_model: distilbert-base-uncased
|
4 |
tags:
|
5 |
- generated_from_trainer
|
6 |
datasets:
|
@@ -25,16 +24,16 @@ model-index:
|
|
25 |
metrics:
|
26 |
- name: Precision
|
27 |
type: precision
|
28 |
-
value: 0.
|
29 |
- name: Recall
|
30 |
type: recall
|
31 |
-
value: 0.
|
32 |
- name: F1
|
33 |
type: f1
|
34 |
-
value: 0.
|
35 |
- name: Accuracy
|
36 |
type: accuracy
|
37 |
-
value: 0.
|
38 |
---
|
39 |
|
40 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -42,11 +41,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
42 |
|
43 |
# my_awesome_wnut_model
|
44 |
|
45 |
-
This model is a fine-tuned version of [
|
46 |
It achieves the following results on the evaluation set:
|
47 |
-
- Loss: 0.
|
48 |
- Precision: 0.9995
|
49 |
-
- Recall: 0.
|
50 |
- F1: 0.9995
|
51 |
- Accuracy: 0.9997
|
52 |
|
@@ -79,14 +78,14 @@ The following hyperparameters were used during training:
|
|
79 |
|
80 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
81 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
|
86 |
|
87 |
### Framework versions
|
88 |
|
89 |
-
- Transformers 4.
|
90 |
- Pytorch 2.0.1+cu118
|
91 |
-
- Datasets 2.
|
92 |
- Tokenizers 0.13.3
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
|
|
3 |
tags:
|
4 |
- generated_from_trainer
|
5 |
datasets:
|
|
|
24 |
metrics:
|
25 |
- name: Precision
|
26 |
type: precision
|
27 |
+
value: 0.999537251272559
|
28 |
- name: Recall
|
29 |
type: recall
|
30 |
+
value: 0.999537251272559
|
31 |
- name: F1
|
32 |
type: f1
|
33 |
+
value: 0.999537251272559
|
34 |
- name: Accuracy
|
35 |
type: accuracy
|
36 |
+
value: 0.9997335485246202
|
37 |
---
|
38 |
|
39 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
41 |
|
42 |
# my_awesome_wnut_model
|
43 |
|
44 |
+
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the ner dataset.
|
45 |
It achieves the following results on the evaluation set:
|
46 |
+
- Loss: 0.0003
|
47 |
- Precision: 0.9995
|
48 |
+
- Recall: 0.9995
|
49 |
- F1: 0.9995
|
50 |
- Accuracy: 0.9997
|
51 |
|
|
|
78 |
|
79 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
80 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
81 |
+
| 0.0364 | 1.0 | 688 | 0.0026 | 0.9964 | 0.9965 | 0.9964 | 0.9979 |
|
82 |
+
| 0.0088 | 2.0 | 1376 | 0.0008 | 0.9991 | 0.9988 | 0.9990 | 0.9994 |
|
83 |
+
| 0.0017 | 3.0 | 2064 | 0.0003 | 0.9995 | 0.9995 | 0.9995 | 0.9997 |
|
84 |
|
85 |
|
86 |
### Framework versions
|
87 |
|
88 |
+
- Transformers 4.30.2
|
89 |
- Pytorch 2.0.1+cu118
|
90 |
+
- Datasets 2.13.1
|
91 |
- Tokenizers 0.13.3
|