End of training
Browse files
README.md
CHANGED
@@ -25,16 +25,16 @@ model-index:
|
|
25 |
metrics:
|
26 |
- name: Precision
|
27 |
type: precision
|
28 |
-
value: 0.
|
29 |
- name: Recall
|
30 |
type: recall
|
31 |
-
value: 0.
|
32 |
- name: F1
|
33 |
type: f1
|
34 |
-
value: 0.
|
35 |
- name: Accuracy
|
36 |
type: accuracy
|
37 |
-
value: 0.
|
38 |
---
|
39 |
|
40 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -44,11 +44,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
44 |
|
45 |
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the indian_names dataset.
|
46 |
It achieves the following results on the evaluation set:
|
47 |
-
- Loss: 0.
|
48 |
-
- Precision: 0.
|
49 |
-
- Recall: 0.
|
50 |
-
- F1: 0.
|
51 |
-
- Accuracy: 0.
|
52 |
|
53 |
## Model description
|
54 |
|
@@ -67,20 +67,23 @@ More information needed
|
|
67 |
### Training hyperparameters
|
68 |
|
69 |
The following hyperparameters were used during training:
|
70 |
-
- learning_rate:
|
71 |
- train_batch_size: 16
|
72 |
- eval_batch_size: 16
|
73 |
- seed: 42
|
74 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
75 |
- lr_scheduler_type: linear
|
76 |
-
- num_epochs:
|
77 |
|
78 |
### Training results
|
79 |
|
80 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
81 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
82 |
-
| No log | 1.0 | 213 | 0.
|
83 |
-
| No log | 2.0 | 426 | 0.
|
|
|
|
|
|
|
84 |
|
85 |
|
86 |
### Framework versions
|
|
|
25 |
metrics:
|
26 |
- name: Precision
|
27 |
type: precision
|
28 |
+
value: 0.9805194805194806
|
29 |
- name: Recall
|
30 |
type: recall
|
31 |
+
value: 0.984171322160149
|
32 |
- name: F1
|
33 |
type: f1
|
34 |
+
value: 0.9823420074349444
|
35 |
- name: Accuracy
|
36 |
type: accuracy
|
37 |
+
value: 0.9989348679713209
|
38 |
---
|
39 |
|
40 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
44 |
|
45 |
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the indian_names dataset.
|
46 |
It achieves the following results on the evaluation set:
|
47 |
+
- Loss: 0.0053
|
48 |
+
- Precision: 0.9805
|
49 |
+
- Recall: 0.9842
|
50 |
+
- F1: 0.9823
|
51 |
+
- Accuracy: 0.9989
|
52 |
|
53 |
## Model description
|
54 |
|
|
|
67 |
### Training hyperparameters
|
68 |
|
69 |
The following hyperparameters were used during training:
|
70 |
+
- learning_rate: 5e-05
|
71 |
- train_batch_size: 16
|
72 |
- eval_batch_size: 16
|
73 |
- seed: 42
|
74 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
75 |
- lr_scheduler_type: linear
|
76 |
+
- num_epochs: 5
|
77 |
|
78 |
### Training results
|
79 |
|
80 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
81 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
82 |
+
| No log | 1.0 | 213 | 0.0572 | 0.6793 | 0.7356 | 0.7063 | 0.9820 |
|
83 |
+
| No log | 2.0 | 426 | 0.0248 | 0.8912 | 0.8887 | 0.8900 | 0.9936 |
|
84 |
+
| 0.0713 | 3.0 | 639 | 0.0118 | 0.9570 | 0.9534 | 0.9552 | 0.9973 |
|
85 |
+
| 0.0713 | 4.0 | 852 | 0.0067 | 0.9777 | 0.9800 | 0.9788 | 0.9987 |
|
86 |
+
| 0.0164 | 5.0 | 1065 | 0.0053 | 0.9805 | 0.9842 | 0.9823 | 0.9989 |
|
87 |
|
88 |
|
89 |
### Framework versions
|