update model card README.md
Browse files
README.md
CHANGED
@@ -24,16 +24,16 @@ model-index:
|
|
24 |
metrics:
|
25 |
- name: Precision
|
26 |
type: precision
|
27 |
-
value: 0
|
28 |
- name: Recall
|
29 |
type: recall
|
30 |
-
value: 0
|
31 |
- name: F1
|
32 |
type: f1
|
33 |
-
value: 0
|
34 |
- name: Accuracy
|
35 |
type: accuracy
|
36 |
-
value: 0
|
37 |
---
|
38 |
|
39 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -43,11 +43,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
43 |
|
44 |
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the ner dataset.
|
45 |
It achieves the following results on the evaluation set:
|
46 |
-
- Loss: 0.
|
47 |
-
- Precision: 0
|
48 |
-
- Recall: 0
|
49 |
-
- F1: 0
|
50 |
-
- Accuracy: 0
|
51 |
|
52 |
## Model description
|
53 |
|
@@ -67,20 +67,22 @@ More information needed
|
|
67 |
|
68 |
The following hyperparameters were used during training:
|
69 |
- learning_rate: 5e-05
|
70 |
-
- train_batch_size:
|
71 |
-
- eval_batch_size:
|
72 |
- seed: 42
|
73 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
74 |
- lr_scheduler_type: linear
|
75 |
-
- num_epochs:
|
76 |
|
77 |
### Training results
|
78 |
|
79 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
80 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
81 |
-
|
|
82 |
-
| 0.
|
83 |
-
| 0.
|
|
|
|
|
84 |
|
85 |
|
86 |
### Framework versions
|
|
|
24 |
metrics:
|
25 |
- name: Precision
|
26 |
type: precision
|
27 |
+
value: 1.0
|
28 |
- name: Recall
|
29 |
type: recall
|
30 |
+
value: 1.0
|
31 |
- name: F1
|
32 |
type: f1
|
33 |
+
value: 1.0
|
34 |
- name: Accuracy
|
35 |
type: accuracy
|
36 |
+
value: 1.0
|
37 |
---
|
38 |
|
39 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
43 |
|
44 |
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the ner dataset.
|
45 |
It achieves the following results on the evaluation set:
|
46 |
+
- Loss: 0.0000
|
47 |
+
- Precision: 1.0
|
48 |
+
- Recall: 1.0
|
49 |
+
- F1: 1.0
|
50 |
+
- Accuracy: 1.0
|
51 |
|
52 |
## Model description
|
53 |
|
|
|
67 |
|
68 |
The following hyperparameters were used during training:
|
69 |
- learning_rate: 5e-05
|
70 |
+
- train_batch_size: 32
|
71 |
+
- eval_batch_size: 32
|
72 |
- seed: 42
|
73 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
74 |
- lr_scheduler_type: linear
|
75 |
+
- num_epochs: 5
|
76 |
|
77 |
### Training results
|
78 |
|
79 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
80 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
81 |
+
| No log | 1.0 | 344 | 0.0008 | 0.9995 | 0.9994 | 0.9994 | 0.9997 |
|
82 |
+
| 0.0027 | 2.0 | 688 | 0.0008 | 0.9994 | 0.9993 | 0.9994 | 0.9996 |
|
83 |
+
| 0.0016 | 3.0 | 1032 | 0.0001 | 1.0000 | 0.9999 | 0.9999 | 1.0000 |
|
84 |
+
| 0.0016 | 4.0 | 1376 | 0.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
|
85 |
+
| 0.0003 | 5.0 | 1720 | 0.0000 | 1.0 | 1.0 | 1.0 | 1.0 |
|
86 |
|
87 |
|
88 |
### Framework versions
|