Kriyans commited on
Commit
c824d23
1 Parent(s): e10974e

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +17 -15
README.md CHANGED
@@ -24,16 +24,16 @@ model-index:
24
  metrics:
25
  - name: Precision
26
  type: precision
27
- value: 0.999537251272559
28
  - name: Recall
29
  type: recall
30
- value: 0.999537251272559
31
  - name: F1
32
  type: f1
33
- value: 0.999537251272559
34
  - name: Accuracy
35
  type: accuracy
36
- value: 0.9997335485246202
37
  ---
38
 
39
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -43,11 +43,11 @@ should probably proofread and complete it, then remove this comment. -->
43
 
44
  This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the ner dataset.
45
  It achieves the following results on the evaluation set:
46
- - Loss: 0.0003
47
- - Precision: 0.9995
48
- - Recall: 0.9995
49
- - F1: 0.9995
50
- - Accuracy: 0.9997
51
 
52
  ## Model description
53
 
@@ -67,20 +67,22 @@ More information needed
67
 
68
  The following hyperparameters were used during training:
69
  - learning_rate: 5e-05
70
- - train_batch_size: 16
71
- - eval_batch_size: 16
72
  - seed: 42
73
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
74
  - lr_scheduler_type: linear
75
- - num_epochs: 3
76
 
77
  ### Training results
78
 
79
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
80
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
81
- | 0.0364 | 1.0 | 688 | 0.0026 | 0.9964 | 0.9965 | 0.9964 | 0.9979 |
82
- | 0.0088 | 2.0 | 1376 | 0.0008 | 0.9991 | 0.9988 | 0.9990 | 0.9994 |
83
- | 0.0017 | 3.0 | 2064 | 0.0003 | 0.9995 | 0.9995 | 0.9995 | 0.9997 |
 
 
84
 
85
 
86
  ### Framework versions
 
24
  metrics:
25
  - name: Precision
26
  type: precision
27
+ value: 1.0
28
  - name: Recall
29
  type: recall
30
+ value: 1.0
31
  - name: F1
32
  type: f1
33
+ value: 1.0
34
  - name: Accuracy
35
  type: accuracy
36
+ value: 1.0
37
  ---
38
 
39
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
43
 
44
  This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the ner dataset.
45
  It achieves the following results on the evaluation set:
46
+ - Loss: 0.0000
47
+ - Precision: 1.0
48
+ - Recall: 1.0
49
+ - F1: 1.0
50
+ - Accuracy: 1.0
51
 
52
  ## Model description
53
 
 
67
 
68
  The following hyperparameters were used during training:
69
  - learning_rate: 5e-05
70
+ - train_batch_size: 32
71
+ - eval_batch_size: 32
72
  - seed: 42
73
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
74
  - lr_scheduler_type: linear
75
+ - num_epochs: 5
76
 
77
  ### Training results
78
 
79
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
80
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
81
+ | No log | 1.0 | 344 | 0.0008 | 0.9995 | 0.9994 | 0.9994 | 0.9997 |
82
+ | 0.0027 | 2.0 | 688 | 0.0008 | 0.9994 | 0.9993 | 0.9994 | 0.9996 |
83
+ | 0.0016 | 3.0 | 1032 | 0.0001 | 1.0000 | 0.9999 | 0.9999 | 1.0000 |
84
+ | 0.0016 | 4.0 | 1376 | 0.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
85
+ | 0.0003 | 5.0 | 1720 | 0.0000 | 1.0 | 1.0 | 1.0 | 1.0 |
86
 
87
 
88
  ### Framework versions