thetayne's picture
Add new SentenceTransformer model.
488d0c8 verified
---
language:
- en
license: apache-2.0
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:1625
- loss:CosineSimilarityLoss
base_model: BAAI/bge-base-en-v1.5
datasets: []
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
widget:
- source_sentence: Boron Steel
sentences:
- Rock Bit
- Spalling Test
- Excavator Bucket
- source_sentence: Friction Wear
sentences:
- Tool Steel
- Medium Carbon Steel
- Diffusion Bonding
- source_sentence: Delamination
sentences:
- Subsea Christmas Tree
- Low Alloyed Steel
- Screw Conveyors
- source_sentence: Nitriding
sentences:
- Subsea Manifold
- Trencher Chain
- Cylinder
- source_sentence: Corrosion Resistant Coatings
sentences:
- Mower Blade
- Gas Metal Arc Welding (GMAW)
- Corrosion Resistant Coatings
pipeline_tag: sentence-similarity
model-index:
- name: BGE base Financial Matryoshka
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: dim 768
type: dim_768
metrics:
- type: pearson_cosine
value: 0.9548051644723275
name: Pearson Cosine
- type: spearman_cosine
value: 0.6620048542679903
name: Spearman Cosine
- type: pearson_manhattan
value: 0.985909077336812
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.6620048542679903
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.9863519709955113
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.6620048542679903
name: Spearman Euclidean
- type: pearson_dot
value: 0.9548051701614557
name: Pearson Dot
- type: spearman_dot
value: 0.6610658947764548
name: Spearman Dot
- type: pearson_max
value: 0.9863519709955113
name: Pearson Max
- type: spearman_max
value: 0.6620048542679903
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: dim 512
type: dim_512
metrics:
- type: pearson_cosine
value: 0.9544417196413574
name: Pearson Cosine
- type: spearman_cosine
value: 0.6620048542679903
name: Spearman Cosine
- type: pearson_manhattan
value: 0.9855825558550574
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.6620048542679903
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.9862004412296757
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.6620048542679903
name: Spearman Euclidean
- type: pearson_dot
value: 0.9501184326722917
name: Pearson Dot
- type: spearman_dot
value: 0.6607798700248341
name: Spearman Dot
- type: pearson_max
value: 0.9862004412296757
name: Pearson Max
- type: spearman_max
value: 0.6620048542679903
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: dim 256
type: dim_256
metrics:
- type: pearson_cosine
value: 0.9494511778471465
name: Pearson Cosine
- type: spearman_cosine
value: 0.6620048542679903
name: Spearman Cosine
- type: pearson_manhattan
value: 0.9830259644213172
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.6620048542679903
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.9835562939431381
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.6620048542679903
name: Spearman Euclidean
- type: pearson_dot
value: 0.9469313992827345
name: Pearson Dot
- type: spearman_dot
value: 0.6607798700248341
name: Spearman Dot
- type: pearson_max
value: 0.9835562939431381
name: Pearson Max
- type: spearman_max
value: 0.6620048542679903
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: dim 128
type: dim_128
metrics:
- type: pearson_cosine
value: 0.9397052405386266
name: Pearson Cosine
- type: spearman_cosine
value: 0.6620048542679903
name: Spearman Cosine
- type: pearson_manhattan
value: 0.9762184586055923
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.6620048542679903
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.9781975526221939
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.6620048542679903
name: Spearman Euclidean
- type: pearson_dot
value: 0.9271211389022183
name: Pearson Dot
- type: spearman_dot
value: 0.6607798700248341
name: Spearman Dot
- type: pearson_max
value: 0.9781975526221939
name: Pearson Max
- type: spearman_max
value: 0.6620048542679903
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: dim 64
type: dim_64
metrics:
- type: pearson_cosine
value: 0.9149032642312528
name: Pearson Cosine
- type: spearman_cosine
value: 0.6620048542679903
name: Spearman Cosine
- type: pearson_manhattan
value: 0.968215524939354
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.6620048542679903
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.9708485057392984
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.6620048542679903
name: Spearman Euclidean
- type: pearson_dot
value: 0.8940456314300972
name: Pearson Dot
- type: spearman_dot
value: 0.6602255244962898
name: Spearman Dot
- type: pearson_max
value: 0.9708485057392984
name: Pearson Max
- type: spearman_max
value: 0.6620048542679903
name: Spearman Max
---
# BGE base Financial Matryoshka
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co./BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co./BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
- **Language:** en
- **License:** apache-2.0
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co./models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("thetayne/finetuned_model_0613")
# Run inference
sentences = [
'Corrosion Resistant Coatings',
'Corrosion Resistant Coatings',
'Mower Blade',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Semantic Similarity
* Dataset: `dim_768`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:----------|
| pearson_cosine | 0.9548 |
| **spearman_cosine** | **0.662** |
| pearson_manhattan | 0.9859 |
| spearman_manhattan | 0.662 |
| pearson_euclidean | 0.9864 |
| spearman_euclidean | 0.662 |
| pearson_dot | 0.9548 |
| spearman_dot | 0.6611 |
| pearson_max | 0.9864 |
| spearman_max | 0.662 |
#### Semantic Similarity
* Dataset: `dim_512`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:----------|
| pearson_cosine | 0.9544 |
| **spearman_cosine** | **0.662** |
| pearson_manhattan | 0.9856 |
| spearman_manhattan | 0.662 |
| pearson_euclidean | 0.9862 |
| spearman_euclidean | 0.662 |
| pearson_dot | 0.9501 |
| spearman_dot | 0.6608 |
| pearson_max | 0.9862 |
| spearman_max | 0.662 |
#### Semantic Similarity
* Dataset: `dim_256`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:----------|
| pearson_cosine | 0.9495 |
| **spearman_cosine** | **0.662** |
| pearson_manhattan | 0.983 |
| spearman_manhattan | 0.662 |
| pearson_euclidean | 0.9836 |
| spearman_euclidean | 0.662 |
| pearson_dot | 0.9469 |
| spearman_dot | 0.6608 |
| pearson_max | 0.9836 |
| spearman_max | 0.662 |
#### Semantic Similarity
* Dataset: `dim_128`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:----------|
| pearson_cosine | 0.9397 |
| **spearman_cosine** | **0.662** |
| pearson_manhattan | 0.9762 |
| spearman_manhattan | 0.662 |
| pearson_euclidean | 0.9782 |
| spearman_euclidean | 0.662 |
| pearson_dot | 0.9271 |
| spearman_dot | 0.6608 |
| pearson_max | 0.9782 |
| spearman_max | 0.662 |
#### Semantic Similarity
* Dataset: `dim_64`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:----------|
| pearson_cosine | 0.9149 |
| **spearman_cosine** | **0.662** |
| pearson_manhattan | 0.9682 |
| spearman_manhattan | 0.662 |
| pearson_euclidean | 0.9708 |
| spearman_euclidean | 0.662 |
| pearson_dot | 0.894 |
| spearman_dot | 0.6602 |
| pearson_max | 0.9708 |
| spearman_max | 0.662 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 1,625 training samples
* Columns: <code>sentence_A</code>, <code>sentence_B</code>, and <code>score</code>
* Approximate statistics based on the first 1000 samples:
| | sentence_A | sentence_B | score |
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:------------------------------------------------|
| type | string | string | int |
| details | <ul><li>min: 3 tokens</li><li>mean: 5.68 tokens</li><li>max: 36 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 5.73 tokens</li><li>max: 36 tokens</li></ul> | <ul><li>0: ~83.30%</li><li>1: ~16.70%</li></ul> |
* Samples:
| sentence_A | sentence_B | score |
|:-----------------------------------|:--------------------------------------|:---------------|
| <code>Thermal Fatigue</code> | <code>Ferritic Stainless Steel</code> | <code>0</code> |
| <code>High Temperature Wear</code> | <code>Drill String</code> | <code>0</code> |
| <code>Carbide Coatings</code> | <code>Carbide Coatings</code> | <code>1</code> |
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
```json
{
"loss_fct": "torch.nn.modules.loss.MSELoss"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 4
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `bf16`: True
- `tf32`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 16
- `eval_accumulation_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: True
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | dim_128_spearman_cosine | dim_256_spearman_cosine | dim_512_spearman_cosine | dim_64_spearman_cosine | dim_768_spearman_cosine |
|:----------:|:------:|:-------------:|:-----------------------:|:-----------------------:|:-----------------------:|:----------------------:|:-----------------------:|
| 0 | 0 | - | 0.6626 | 0.6626 | 0.6626 | 0.6626 | 0.6626 |
| 0.9412 | 3 | - | 0.6620 | 0.6620 | 0.6620 | 0.6620 | 0.6620 |
| 1.8627 | 6 | - | 0.6620 | 0.6620 | 0.6620 | 0.6620 | 0.6620 |
| 2.7843 | 9 | - | 0.6620 | 0.6620 | 0.6620 | 0.6620 | 0.6620 |
| 3.0784 | 10 | 0.156 | - | - | - | - | - |
| **3.7059** | **12** | **-** | **0.662** | **0.662** | **0.662** | **0.662** | **0.662** |
* The bold row denotes the saved checkpoint.
### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.31.0
- Datasets: 2.19.1
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->