thetayne's picture
Add new SentenceTransformer model.
488d0c8 verified
metadata
language:
  - en
license: apache-2.0
library_name: sentence-transformers
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:1625
  - loss:CosineSimilarityLoss
base_model: BAAI/bge-base-en-v1.5
datasets: []
metrics:
  - pearson_cosine
  - spearman_cosine
  - pearson_manhattan
  - spearman_manhattan
  - pearson_euclidean
  - spearman_euclidean
  - pearson_dot
  - spearman_dot
  - pearson_max
  - spearman_max
widget:
  - source_sentence: Boron Steel
    sentences:
      - Rock Bit
      - Spalling Test
      - Excavator Bucket
  - source_sentence: Friction Wear
    sentences:
      - Tool Steel
      - Medium Carbon Steel
      - Diffusion Bonding
  - source_sentence: Delamination
    sentences:
      - Subsea Christmas Tree
      - Low Alloyed Steel
      - Screw Conveyors
  - source_sentence: Nitriding
    sentences:
      - Subsea Manifold
      - Trencher Chain
      - Cylinder
  - source_sentence: Corrosion Resistant Coatings
    sentences:
      - Mower Blade
      - Gas Metal Arc Welding (GMAW)
      - Corrosion Resistant Coatings
pipeline_tag: sentence-similarity
model-index:
  - name: BGE base Financial Matryoshka
    results:
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          name: dim 768
          type: dim_768
        metrics:
          - type: pearson_cosine
            value: 0.9548051644723275
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.6620048542679903
            name: Spearman Cosine
          - type: pearson_manhattan
            value: 0.985909077336812
            name: Pearson Manhattan
          - type: spearman_manhattan
            value: 0.6620048542679903
            name: Spearman Manhattan
          - type: pearson_euclidean
            value: 0.9863519709955113
            name: Pearson Euclidean
          - type: spearman_euclidean
            value: 0.6620048542679903
            name: Spearman Euclidean
          - type: pearson_dot
            value: 0.9548051701614557
            name: Pearson Dot
          - type: spearman_dot
            value: 0.6610658947764548
            name: Spearman Dot
          - type: pearson_max
            value: 0.9863519709955113
            name: Pearson Max
          - type: spearman_max
            value: 0.6620048542679903
            name: Spearman Max
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          name: dim 512
          type: dim_512
        metrics:
          - type: pearson_cosine
            value: 0.9544417196413574
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.6620048542679903
            name: Spearman Cosine
          - type: pearson_manhattan
            value: 0.9855825558550574
            name: Pearson Manhattan
          - type: spearman_manhattan
            value: 0.6620048542679903
            name: Spearman Manhattan
          - type: pearson_euclidean
            value: 0.9862004412296757
            name: Pearson Euclidean
          - type: spearman_euclidean
            value: 0.6620048542679903
            name: Spearman Euclidean
          - type: pearson_dot
            value: 0.9501184326722917
            name: Pearson Dot
          - type: spearman_dot
            value: 0.6607798700248341
            name: Spearman Dot
          - type: pearson_max
            value: 0.9862004412296757
            name: Pearson Max
          - type: spearman_max
            value: 0.6620048542679903
            name: Spearman Max
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          name: dim 256
          type: dim_256
        metrics:
          - type: pearson_cosine
            value: 0.9494511778471465
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.6620048542679903
            name: Spearman Cosine
          - type: pearson_manhattan
            value: 0.9830259644213172
            name: Pearson Manhattan
          - type: spearman_manhattan
            value: 0.6620048542679903
            name: Spearman Manhattan
          - type: pearson_euclidean
            value: 0.9835562939431381
            name: Pearson Euclidean
          - type: spearman_euclidean
            value: 0.6620048542679903
            name: Spearman Euclidean
          - type: pearson_dot
            value: 0.9469313992827345
            name: Pearson Dot
          - type: spearman_dot
            value: 0.6607798700248341
            name: Spearman Dot
          - type: pearson_max
            value: 0.9835562939431381
            name: Pearson Max
          - type: spearman_max
            value: 0.6620048542679903
            name: Spearman Max
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          name: dim 128
          type: dim_128
        metrics:
          - type: pearson_cosine
            value: 0.9397052405386266
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.6620048542679903
            name: Spearman Cosine
          - type: pearson_manhattan
            value: 0.9762184586055923
            name: Pearson Manhattan
          - type: spearman_manhattan
            value: 0.6620048542679903
            name: Spearman Manhattan
          - type: pearson_euclidean
            value: 0.9781975526221939
            name: Pearson Euclidean
          - type: spearman_euclidean
            value: 0.6620048542679903
            name: Spearman Euclidean
          - type: pearson_dot
            value: 0.9271211389022183
            name: Pearson Dot
          - type: spearman_dot
            value: 0.6607798700248341
            name: Spearman Dot
          - type: pearson_max
            value: 0.9781975526221939
            name: Pearson Max
          - type: spearman_max
            value: 0.6620048542679903
            name: Spearman Max
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          name: dim 64
          type: dim_64
        metrics:
          - type: pearson_cosine
            value: 0.9149032642312528
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.6620048542679903
            name: Spearman Cosine
          - type: pearson_manhattan
            value: 0.968215524939354
            name: Pearson Manhattan
          - type: spearman_manhattan
            value: 0.6620048542679903
            name: Spearman Manhattan
          - type: pearson_euclidean
            value: 0.9708485057392984
            name: Pearson Euclidean
          - type: spearman_euclidean
            value: 0.6620048542679903
            name: Spearman Euclidean
          - type: pearson_dot
            value: 0.8940456314300972
            name: Pearson Dot
          - type: spearman_dot
            value: 0.6602255244962898
            name: Spearman Dot
          - type: pearson_max
            value: 0.9708485057392984
            name: Pearson Max
          - type: spearman_max
            value: 0.6620048542679903
            name: Spearman Max

BGE base Financial Matryoshka

This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: BAAI/bge-base-en-v1.5
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 tokens
  • Similarity Function: Cosine Similarity
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("thetayne/finetuned_model_0613")
# Run inference
sentences = [
    'Corrosion Resistant Coatings',
    'Corrosion Resistant Coatings',
    'Mower Blade',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Semantic Similarity

Metric Value
pearson_cosine 0.9548
spearman_cosine 0.662
pearson_manhattan 0.9859
spearman_manhattan 0.662
pearson_euclidean 0.9864
spearman_euclidean 0.662
pearson_dot 0.9548
spearman_dot 0.6611
pearson_max 0.9864
spearman_max 0.662

Semantic Similarity

Metric Value
pearson_cosine 0.9544
spearman_cosine 0.662
pearson_manhattan 0.9856
spearman_manhattan 0.662
pearson_euclidean 0.9862
spearman_euclidean 0.662
pearson_dot 0.9501
spearman_dot 0.6608
pearson_max 0.9862
spearman_max 0.662

Semantic Similarity

Metric Value
pearson_cosine 0.9495
spearman_cosine 0.662
pearson_manhattan 0.983
spearman_manhattan 0.662
pearson_euclidean 0.9836
spearman_euclidean 0.662
pearson_dot 0.9469
spearman_dot 0.6608
pearson_max 0.9836
spearman_max 0.662

Semantic Similarity

Metric Value
pearson_cosine 0.9397
spearman_cosine 0.662
pearson_manhattan 0.9762
spearman_manhattan 0.662
pearson_euclidean 0.9782
spearman_euclidean 0.662
pearson_dot 0.9271
spearman_dot 0.6608
pearson_max 0.9782
spearman_max 0.662

Semantic Similarity

Metric Value
pearson_cosine 0.9149
spearman_cosine 0.662
pearson_manhattan 0.9682
spearman_manhattan 0.662
pearson_euclidean 0.9708
spearman_euclidean 0.662
pearson_dot 0.894
spearman_dot 0.6602
pearson_max 0.9708
spearman_max 0.662

Training Details

Training Dataset

Unnamed Dataset

  • Size: 1,625 training samples
  • Columns: sentence_A, sentence_B, and score
  • Approximate statistics based on the first 1000 samples:
    sentence_A sentence_B score
    type string string int
    details
    • min: 3 tokens
    • mean: 5.68 tokens
    • max: 36 tokens
    • min: 3 tokens
    • mean: 5.73 tokens
    • max: 36 tokens
    • 0: ~83.30%
    • 1: ~16.70%
  • Samples:
    sentence_A sentence_B score
    Thermal Fatigue Ferritic Stainless Steel 0
    High Temperature Wear Drill String 0
    Carbide Coatings Carbide Coatings 1
  • Loss: CosineSimilarityLoss with these parameters:
    {
        "loss_fct": "torch.nn.modules.loss.MSELoss"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 16
  • gradient_accumulation_steps: 16
  • learning_rate: 2e-05
  • num_train_epochs: 4
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.1
  • bf16: True
  • tf32: True
  • load_best_model_at_end: True
  • optim: adamw_torch_fused
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 16
  • eval_accumulation_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 4
  • max_steps: -1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: True
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss dim_128_spearman_cosine dim_256_spearman_cosine dim_512_spearman_cosine dim_64_spearman_cosine dim_768_spearman_cosine
0 0 - 0.6626 0.6626 0.6626 0.6626 0.6626
0.9412 3 - 0.6620 0.6620 0.6620 0.6620 0.6620
1.8627 6 - 0.6620 0.6620 0.6620 0.6620 0.6620
2.7843 9 - 0.6620 0.6620 0.6620 0.6620 0.6620
3.0784 10 0.156 - - - - -
3.7059 12 - 0.662 0.662 0.662 0.662 0.662
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.0.1
  • Transformers: 4.41.2
  • PyTorch: 2.1.2+cu121
  • Accelerate: 0.31.0
  • Datasets: 2.19.1
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}