thetayne commited on
Commit
488d0c8
1 Parent(s): d4231b0

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,644 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: apache-2.0
5
+ library_name: sentence-transformers
6
+ tags:
7
+ - sentence-transformers
8
+ - sentence-similarity
9
+ - feature-extraction
10
+ - generated_from_trainer
11
+ - dataset_size:1625
12
+ - loss:CosineSimilarityLoss
13
+ base_model: BAAI/bge-base-en-v1.5
14
+ datasets: []
15
+ metrics:
16
+ - pearson_cosine
17
+ - spearman_cosine
18
+ - pearson_manhattan
19
+ - spearman_manhattan
20
+ - pearson_euclidean
21
+ - spearman_euclidean
22
+ - pearson_dot
23
+ - spearman_dot
24
+ - pearson_max
25
+ - spearman_max
26
+ widget:
27
+ - source_sentence: Boron Steel
28
+ sentences:
29
+ - Rock Bit
30
+ - Spalling Test
31
+ - Excavator Bucket
32
+ - source_sentence: Friction Wear
33
+ sentences:
34
+ - Tool Steel
35
+ - Medium Carbon Steel
36
+ - Diffusion Bonding
37
+ - source_sentence: Delamination
38
+ sentences:
39
+ - Subsea Christmas Tree
40
+ - Low Alloyed Steel
41
+ - Screw Conveyors
42
+ - source_sentence: Nitriding
43
+ sentences:
44
+ - Subsea Manifold
45
+ - Trencher Chain
46
+ - Cylinder
47
+ - source_sentence: Corrosion Resistant Coatings
48
+ sentences:
49
+ - Mower Blade
50
+ - Gas Metal Arc Welding (GMAW)
51
+ - Corrosion Resistant Coatings
52
+ pipeline_tag: sentence-similarity
53
+ model-index:
54
+ - name: BGE base Financial Matryoshka
55
+ results:
56
+ - task:
57
+ type: semantic-similarity
58
+ name: Semantic Similarity
59
+ dataset:
60
+ name: dim 768
61
+ type: dim_768
62
+ metrics:
63
+ - type: pearson_cosine
64
+ value: 0.9548051644723275
65
+ name: Pearson Cosine
66
+ - type: spearman_cosine
67
+ value: 0.6620048542679903
68
+ name: Spearman Cosine
69
+ - type: pearson_manhattan
70
+ value: 0.985909077336812
71
+ name: Pearson Manhattan
72
+ - type: spearman_manhattan
73
+ value: 0.6620048542679903
74
+ name: Spearman Manhattan
75
+ - type: pearson_euclidean
76
+ value: 0.9863519709955113
77
+ name: Pearson Euclidean
78
+ - type: spearman_euclidean
79
+ value: 0.6620048542679903
80
+ name: Spearman Euclidean
81
+ - type: pearson_dot
82
+ value: 0.9548051701614557
83
+ name: Pearson Dot
84
+ - type: spearman_dot
85
+ value: 0.6610658947764548
86
+ name: Spearman Dot
87
+ - type: pearson_max
88
+ value: 0.9863519709955113
89
+ name: Pearson Max
90
+ - type: spearman_max
91
+ value: 0.6620048542679903
92
+ name: Spearman Max
93
+ - task:
94
+ type: semantic-similarity
95
+ name: Semantic Similarity
96
+ dataset:
97
+ name: dim 512
98
+ type: dim_512
99
+ metrics:
100
+ - type: pearson_cosine
101
+ value: 0.9544417196413574
102
+ name: Pearson Cosine
103
+ - type: spearman_cosine
104
+ value: 0.6620048542679903
105
+ name: Spearman Cosine
106
+ - type: pearson_manhattan
107
+ value: 0.9855825558550574
108
+ name: Pearson Manhattan
109
+ - type: spearman_manhattan
110
+ value: 0.6620048542679903
111
+ name: Spearman Manhattan
112
+ - type: pearson_euclidean
113
+ value: 0.9862004412296757
114
+ name: Pearson Euclidean
115
+ - type: spearman_euclidean
116
+ value: 0.6620048542679903
117
+ name: Spearman Euclidean
118
+ - type: pearson_dot
119
+ value: 0.9501184326722917
120
+ name: Pearson Dot
121
+ - type: spearman_dot
122
+ value: 0.6607798700248341
123
+ name: Spearman Dot
124
+ - type: pearson_max
125
+ value: 0.9862004412296757
126
+ name: Pearson Max
127
+ - type: spearman_max
128
+ value: 0.6620048542679903
129
+ name: Spearman Max
130
+ - task:
131
+ type: semantic-similarity
132
+ name: Semantic Similarity
133
+ dataset:
134
+ name: dim 256
135
+ type: dim_256
136
+ metrics:
137
+ - type: pearson_cosine
138
+ value: 0.9494511778471465
139
+ name: Pearson Cosine
140
+ - type: spearman_cosine
141
+ value: 0.6620048542679903
142
+ name: Spearman Cosine
143
+ - type: pearson_manhattan
144
+ value: 0.9830259644213172
145
+ name: Pearson Manhattan
146
+ - type: spearman_manhattan
147
+ value: 0.6620048542679903
148
+ name: Spearman Manhattan
149
+ - type: pearson_euclidean
150
+ value: 0.9835562939431381
151
+ name: Pearson Euclidean
152
+ - type: spearman_euclidean
153
+ value: 0.6620048542679903
154
+ name: Spearman Euclidean
155
+ - type: pearson_dot
156
+ value: 0.9469313992827345
157
+ name: Pearson Dot
158
+ - type: spearman_dot
159
+ value: 0.6607798700248341
160
+ name: Spearman Dot
161
+ - type: pearson_max
162
+ value: 0.9835562939431381
163
+ name: Pearson Max
164
+ - type: spearman_max
165
+ value: 0.6620048542679903
166
+ name: Spearman Max
167
+ - task:
168
+ type: semantic-similarity
169
+ name: Semantic Similarity
170
+ dataset:
171
+ name: dim 128
172
+ type: dim_128
173
+ metrics:
174
+ - type: pearson_cosine
175
+ value: 0.9397052405386266
176
+ name: Pearson Cosine
177
+ - type: spearman_cosine
178
+ value: 0.6620048542679903
179
+ name: Spearman Cosine
180
+ - type: pearson_manhattan
181
+ value: 0.9762184586055923
182
+ name: Pearson Manhattan
183
+ - type: spearman_manhattan
184
+ value: 0.6620048542679903
185
+ name: Spearman Manhattan
186
+ - type: pearson_euclidean
187
+ value: 0.9781975526221939
188
+ name: Pearson Euclidean
189
+ - type: spearman_euclidean
190
+ value: 0.6620048542679903
191
+ name: Spearman Euclidean
192
+ - type: pearson_dot
193
+ value: 0.9271211389022183
194
+ name: Pearson Dot
195
+ - type: spearman_dot
196
+ value: 0.6607798700248341
197
+ name: Spearman Dot
198
+ - type: pearson_max
199
+ value: 0.9781975526221939
200
+ name: Pearson Max
201
+ - type: spearman_max
202
+ value: 0.6620048542679903
203
+ name: Spearman Max
204
+ - task:
205
+ type: semantic-similarity
206
+ name: Semantic Similarity
207
+ dataset:
208
+ name: dim 64
209
+ type: dim_64
210
+ metrics:
211
+ - type: pearson_cosine
212
+ value: 0.9149032642312528
213
+ name: Pearson Cosine
214
+ - type: spearman_cosine
215
+ value: 0.6620048542679903
216
+ name: Spearman Cosine
217
+ - type: pearson_manhattan
218
+ value: 0.968215524939354
219
+ name: Pearson Manhattan
220
+ - type: spearman_manhattan
221
+ value: 0.6620048542679903
222
+ name: Spearman Manhattan
223
+ - type: pearson_euclidean
224
+ value: 0.9708485057392984
225
+ name: Pearson Euclidean
226
+ - type: spearman_euclidean
227
+ value: 0.6620048542679903
228
+ name: Spearman Euclidean
229
+ - type: pearson_dot
230
+ value: 0.8940456314300972
231
+ name: Pearson Dot
232
+ - type: spearman_dot
233
+ value: 0.6602255244962898
234
+ name: Spearman Dot
235
+ - type: pearson_max
236
+ value: 0.9708485057392984
237
+ name: Pearson Max
238
+ - type: spearman_max
239
+ value: 0.6620048542679903
240
+ name: Spearman Max
241
+ ---
242
+
243
+ # BGE base Financial Matryoshka
244
+
245
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
246
+
247
+ ## Model Details
248
+
249
+ ### Model Description
250
+ - **Model Type:** Sentence Transformer
251
+ - **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
252
+ - **Maximum Sequence Length:** 512 tokens
253
+ - **Output Dimensionality:** 768 tokens
254
+ - **Similarity Function:** Cosine Similarity
255
+ <!-- - **Training Dataset:** Unknown -->
256
+ - **Language:** en
257
+ - **License:** apache-2.0
258
+
259
+ ### Model Sources
260
+
261
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
262
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
263
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
264
+
265
+ ### Full Model Architecture
266
+
267
+ ```
268
+ SentenceTransformer(
269
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
270
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
271
+ (2): Normalize()
272
+ )
273
+ ```
274
+
275
+ ## Usage
276
+
277
+ ### Direct Usage (Sentence Transformers)
278
+
279
+ First install the Sentence Transformers library:
280
+
281
+ ```bash
282
+ pip install -U sentence-transformers
283
+ ```
284
+
285
+ Then you can load this model and run inference.
286
+ ```python
287
+ from sentence_transformers import SentenceTransformer
288
+
289
+ # Download from the 🤗 Hub
290
+ model = SentenceTransformer("thetayne/finetuned_model_0613")
291
+ # Run inference
292
+ sentences = [
293
+ 'Corrosion Resistant Coatings',
294
+ 'Corrosion Resistant Coatings',
295
+ 'Mower Blade',
296
+ ]
297
+ embeddings = model.encode(sentences)
298
+ print(embeddings.shape)
299
+ # [3, 768]
300
+
301
+ # Get the similarity scores for the embeddings
302
+ similarities = model.similarity(embeddings, embeddings)
303
+ print(similarities.shape)
304
+ # [3, 3]
305
+ ```
306
+
307
+ <!--
308
+ ### Direct Usage (Transformers)
309
+
310
+ <details><summary>Click to see the direct usage in Transformers</summary>
311
+
312
+ </details>
313
+ -->
314
+
315
+ <!--
316
+ ### Downstream Usage (Sentence Transformers)
317
+
318
+ You can finetune this model on your own dataset.
319
+
320
+ <details><summary>Click to expand</summary>
321
+
322
+ </details>
323
+ -->
324
+
325
+ <!--
326
+ ### Out-of-Scope Use
327
+
328
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
329
+ -->
330
+
331
+ ## Evaluation
332
+
333
+ ### Metrics
334
+
335
+ #### Semantic Similarity
336
+ * Dataset: `dim_768`
337
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
338
+
339
+ | Metric | Value |
340
+ |:--------------------|:----------|
341
+ | pearson_cosine | 0.9548 |
342
+ | **spearman_cosine** | **0.662** |
343
+ | pearson_manhattan | 0.9859 |
344
+ | spearman_manhattan | 0.662 |
345
+ | pearson_euclidean | 0.9864 |
346
+ | spearman_euclidean | 0.662 |
347
+ | pearson_dot | 0.9548 |
348
+ | spearman_dot | 0.6611 |
349
+ | pearson_max | 0.9864 |
350
+ | spearman_max | 0.662 |
351
+
352
+ #### Semantic Similarity
353
+ * Dataset: `dim_512`
354
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
355
+
356
+ | Metric | Value |
357
+ |:--------------------|:----------|
358
+ | pearson_cosine | 0.9544 |
359
+ | **spearman_cosine** | **0.662** |
360
+ | pearson_manhattan | 0.9856 |
361
+ | spearman_manhattan | 0.662 |
362
+ | pearson_euclidean | 0.9862 |
363
+ | spearman_euclidean | 0.662 |
364
+ | pearson_dot | 0.9501 |
365
+ | spearman_dot | 0.6608 |
366
+ | pearson_max | 0.9862 |
367
+ | spearman_max | 0.662 |
368
+
369
+ #### Semantic Similarity
370
+ * Dataset: `dim_256`
371
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
372
+
373
+ | Metric | Value |
374
+ |:--------------------|:----------|
375
+ | pearson_cosine | 0.9495 |
376
+ | **spearman_cosine** | **0.662** |
377
+ | pearson_manhattan | 0.983 |
378
+ | spearman_manhattan | 0.662 |
379
+ | pearson_euclidean | 0.9836 |
380
+ | spearman_euclidean | 0.662 |
381
+ | pearson_dot | 0.9469 |
382
+ | spearman_dot | 0.6608 |
383
+ | pearson_max | 0.9836 |
384
+ | spearman_max | 0.662 |
385
+
386
+ #### Semantic Similarity
387
+ * Dataset: `dim_128`
388
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
389
+
390
+ | Metric | Value |
391
+ |:--------------------|:----------|
392
+ | pearson_cosine | 0.9397 |
393
+ | **spearman_cosine** | **0.662** |
394
+ | pearson_manhattan | 0.9762 |
395
+ | spearman_manhattan | 0.662 |
396
+ | pearson_euclidean | 0.9782 |
397
+ | spearman_euclidean | 0.662 |
398
+ | pearson_dot | 0.9271 |
399
+ | spearman_dot | 0.6608 |
400
+ | pearson_max | 0.9782 |
401
+ | spearman_max | 0.662 |
402
+
403
+ #### Semantic Similarity
404
+ * Dataset: `dim_64`
405
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
406
+
407
+ | Metric | Value |
408
+ |:--------------------|:----------|
409
+ | pearson_cosine | 0.9149 |
410
+ | **spearman_cosine** | **0.662** |
411
+ | pearson_manhattan | 0.9682 |
412
+ | spearman_manhattan | 0.662 |
413
+ | pearson_euclidean | 0.9708 |
414
+ | spearman_euclidean | 0.662 |
415
+ | pearson_dot | 0.894 |
416
+ | spearman_dot | 0.6602 |
417
+ | pearson_max | 0.9708 |
418
+ | spearman_max | 0.662 |
419
+
420
+ <!--
421
+ ## Bias, Risks and Limitations
422
+
423
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
424
+ -->
425
+
426
+ <!--
427
+ ### Recommendations
428
+
429
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
430
+ -->
431
+
432
+ ## Training Details
433
+
434
+ ### Training Dataset
435
+
436
+ #### Unnamed Dataset
437
+
438
+
439
+ * Size: 1,625 training samples
440
+ * Columns: <code>sentence_A</code>, <code>sentence_B</code>, and <code>score</code>
441
+ * Approximate statistics based on the first 1000 samples:
442
+ | | sentence_A | sentence_B | score |
443
+ |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:------------------------------------------------|
444
+ | type | string | string | int |
445
+ | details | <ul><li>min: 3 tokens</li><li>mean: 5.68 tokens</li><li>max: 36 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 5.73 tokens</li><li>max: 36 tokens</li></ul> | <ul><li>0: ~83.30%</li><li>1: ~16.70%</li></ul> |
446
+ * Samples:
447
+ | sentence_A | sentence_B | score |
448
+ |:-----------------------------------|:--------------------------------------|:---------------|
449
+ | <code>Thermal Fatigue</code> | <code>Ferritic Stainless Steel</code> | <code>0</code> |
450
+ | <code>High Temperature Wear</code> | <code>Drill String</code> | <code>0</code> |
451
+ | <code>Carbide Coatings</code> | <code>Carbide Coatings</code> | <code>1</code> |
452
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
453
+ ```json
454
+ {
455
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
456
+ }
457
+ ```
458
+
459
+ ### Training Hyperparameters
460
+ #### Non-Default Hyperparameters
461
+
462
+ - `eval_strategy`: epoch
463
+ - `per_device_train_batch_size`: 32
464
+ - `per_device_eval_batch_size`: 16
465
+ - `gradient_accumulation_steps`: 16
466
+ - `learning_rate`: 2e-05
467
+ - `num_train_epochs`: 4
468
+ - `lr_scheduler_type`: cosine
469
+ - `warmup_ratio`: 0.1
470
+ - `bf16`: True
471
+ - `tf32`: True
472
+ - `load_best_model_at_end`: True
473
+ - `optim`: adamw_torch_fused
474
+ - `batch_sampler`: no_duplicates
475
+
476
+ #### All Hyperparameters
477
+ <details><summary>Click to expand</summary>
478
+
479
+ - `overwrite_output_dir`: False
480
+ - `do_predict`: False
481
+ - `eval_strategy`: epoch
482
+ - `prediction_loss_only`: True
483
+ - `per_device_train_batch_size`: 32
484
+ - `per_device_eval_batch_size`: 16
485
+ - `per_gpu_train_batch_size`: None
486
+ - `per_gpu_eval_batch_size`: None
487
+ - `gradient_accumulation_steps`: 16
488
+ - `eval_accumulation_steps`: None
489
+ - `learning_rate`: 2e-05
490
+ - `weight_decay`: 0.0
491
+ - `adam_beta1`: 0.9
492
+ - `adam_beta2`: 0.999
493
+ - `adam_epsilon`: 1e-08
494
+ - `max_grad_norm`: 1.0
495
+ - `num_train_epochs`: 4
496
+ - `max_steps`: -1
497
+ - `lr_scheduler_type`: cosine
498
+ - `lr_scheduler_kwargs`: {}
499
+ - `warmup_ratio`: 0.1
500
+ - `warmup_steps`: 0
501
+ - `log_level`: passive
502
+ - `log_level_replica`: warning
503
+ - `log_on_each_node`: True
504
+ - `logging_nan_inf_filter`: True
505
+ - `save_safetensors`: True
506
+ - `save_on_each_node`: False
507
+ - `save_only_model`: False
508
+ - `restore_callback_states_from_checkpoint`: False
509
+ - `no_cuda`: False
510
+ - `use_cpu`: False
511
+ - `use_mps_device`: False
512
+ - `seed`: 42
513
+ - `data_seed`: None
514
+ - `jit_mode_eval`: False
515
+ - `use_ipex`: False
516
+ - `bf16`: True
517
+ - `fp16`: False
518
+ - `fp16_opt_level`: O1
519
+ - `half_precision_backend`: auto
520
+ - `bf16_full_eval`: False
521
+ - `fp16_full_eval`: False
522
+ - `tf32`: True
523
+ - `local_rank`: 0
524
+ - `ddp_backend`: None
525
+ - `tpu_num_cores`: None
526
+ - `tpu_metrics_debug`: False
527
+ - `debug`: []
528
+ - `dataloader_drop_last`: False
529
+ - `dataloader_num_workers`: 0
530
+ - `dataloader_prefetch_factor`: None
531
+ - `past_index`: -1
532
+ - `disable_tqdm`: False
533
+ - `remove_unused_columns`: True
534
+ - `label_names`: None
535
+ - `load_best_model_at_end`: True
536
+ - `ignore_data_skip`: False
537
+ - `fsdp`: []
538
+ - `fsdp_min_num_params`: 0
539
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
540
+ - `fsdp_transformer_layer_cls_to_wrap`: None
541
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
542
+ - `deepspeed`: None
543
+ - `label_smoothing_factor`: 0.0
544
+ - `optim`: adamw_torch_fused
545
+ - `optim_args`: None
546
+ - `adafactor`: False
547
+ - `group_by_length`: False
548
+ - `length_column_name`: length
549
+ - `ddp_find_unused_parameters`: None
550
+ - `ddp_bucket_cap_mb`: None
551
+ - `ddp_broadcast_buffers`: False
552
+ - `dataloader_pin_memory`: True
553
+ - `dataloader_persistent_workers`: False
554
+ - `skip_memory_metrics`: True
555
+ - `use_legacy_prediction_loop`: False
556
+ - `push_to_hub`: False
557
+ - `resume_from_checkpoint`: None
558
+ - `hub_model_id`: None
559
+ - `hub_strategy`: every_save
560
+ - `hub_private_repo`: False
561
+ - `hub_always_push`: False
562
+ - `gradient_checkpointing`: False
563
+ - `gradient_checkpointing_kwargs`: None
564
+ - `include_inputs_for_metrics`: False
565
+ - `eval_do_concat_batches`: True
566
+ - `fp16_backend`: auto
567
+ - `push_to_hub_model_id`: None
568
+ - `push_to_hub_organization`: None
569
+ - `mp_parameters`:
570
+ - `auto_find_batch_size`: False
571
+ - `full_determinism`: False
572
+ - `torchdynamo`: None
573
+ - `ray_scope`: last
574
+ - `ddp_timeout`: 1800
575
+ - `torch_compile`: False
576
+ - `torch_compile_backend`: None
577
+ - `torch_compile_mode`: None
578
+ - `dispatch_batches`: None
579
+ - `split_batches`: None
580
+ - `include_tokens_per_second`: False
581
+ - `include_num_input_tokens_seen`: False
582
+ - `neftune_noise_alpha`: None
583
+ - `optim_target_modules`: None
584
+ - `batch_eval_metrics`: False
585
+ - `batch_sampler`: no_duplicates
586
+ - `multi_dataset_batch_sampler`: proportional
587
+
588
+ </details>
589
+
590
+ ### Training Logs
591
+ | Epoch | Step | Training Loss | dim_128_spearman_cosine | dim_256_spearman_cosine | dim_512_spearman_cosine | dim_64_spearman_cosine | dim_768_spearman_cosine |
592
+ |:----------:|:------:|:-------------:|:-----------------------:|:-----------------------:|:-----------------------:|:----------------------:|:-----------------------:|
593
+ | 0 | 0 | - | 0.6626 | 0.6626 | 0.6626 | 0.6626 | 0.6626 |
594
+ | 0.9412 | 3 | - | 0.6620 | 0.6620 | 0.6620 | 0.6620 | 0.6620 |
595
+ | 1.8627 | 6 | - | 0.6620 | 0.6620 | 0.6620 | 0.6620 | 0.6620 |
596
+ | 2.7843 | 9 | - | 0.6620 | 0.6620 | 0.6620 | 0.6620 | 0.6620 |
597
+ | 3.0784 | 10 | 0.156 | - | - | - | - | - |
598
+ | **3.7059** | **12** | **-** | **0.662** | **0.662** | **0.662** | **0.662** | **0.662** |
599
+
600
+ * The bold row denotes the saved checkpoint.
601
+
602
+ ### Framework Versions
603
+ - Python: 3.10.12
604
+ - Sentence Transformers: 3.0.1
605
+ - Transformers: 4.41.2
606
+ - PyTorch: 2.1.2+cu121
607
+ - Accelerate: 0.31.0
608
+ - Datasets: 2.19.1
609
+ - Tokenizers: 0.19.1
610
+
611
+ ## Citation
612
+
613
+ ### BibTeX
614
+
615
+ #### Sentence Transformers
616
+ ```bibtex
617
+ @inproceedings{reimers-2019-sentence-bert,
618
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
619
+ author = "Reimers, Nils and Gurevych, Iryna",
620
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
621
+ month = "11",
622
+ year = "2019",
623
+ publisher = "Association for Computational Linguistics",
624
+ url = "https://arxiv.org/abs/1908.10084",
625
+ }
626
+ ```
627
+
628
+ <!--
629
+ ## Glossary
630
+
631
+ *Clearly define terms in order to be accessible across audiences.*
632
+ -->
633
+
634
+ <!--
635
+ ## Model Card Authors
636
+
637
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
638
+ -->
639
+
640
+ <!--
641
+ ## Model Card Contact
642
+
643
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
644
+ -->
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "BAAI/bge-base-en-v1.5",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "id2label": {
13
+ "0": "LABEL_0"
14
+ },
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 3072,
17
+ "label2id": {
18
+ "LABEL_0": 0
19
+ },
20
+ "layer_norm_eps": 1e-12,
21
+ "max_position_embeddings": 512,
22
+ "model_type": "bert",
23
+ "num_attention_heads": 12,
24
+ "num_hidden_layers": 12,
25
+ "pad_token_id": 0,
26
+ "position_embedding_type": "absolute",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.41.2",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 30522
32
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.41.2",
5
+ "pytorch": "2.1.2+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a914a7f6770ec2aa31953dd18e4f7590d1fd79343c31efdb73b46647a5c67f87
3
+ size 437951328
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 512,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff