--- language: - en license: apache-2.0 library_name: sentence-transformers tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:1625 - loss:CosineSimilarityLoss base_model: BAAI/bge-base-en-v1.5 datasets: [] metrics: - pearson_cosine - spearman_cosine - pearson_manhattan - spearman_manhattan - pearson_euclidean - spearman_euclidean - pearson_dot - spearman_dot - pearson_max - spearman_max widget: - source_sentence: Boron Steel sentences: - Rock Bit - Spalling Test - Excavator Bucket - source_sentence: Friction Wear sentences: - Tool Steel - Medium Carbon Steel - Diffusion Bonding - source_sentence: Delamination sentences: - Subsea Christmas Tree - Low Alloyed Steel - Screw Conveyors - source_sentence: Nitriding sentences: - Subsea Manifold - Trencher Chain - Cylinder - source_sentence: Corrosion Resistant Coatings sentences: - Mower Blade - Gas Metal Arc Welding (GMAW) - Corrosion Resistant Coatings pipeline_tag: sentence-similarity model-index: - name: BGE base Financial Matryoshka results: - task: type: semantic-similarity name: Semantic Similarity dataset: name: dim 768 type: dim_768 metrics: - type: pearson_cosine value: 0.9548051644723275 name: Pearson Cosine - type: spearman_cosine value: 0.6620048542679903 name: Spearman Cosine - type: pearson_manhattan value: 0.985909077336812 name: Pearson Manhattan - type: spearman_manhattan value: 0.6620048542679903 name: Spearman Manhattan - type: pearson_euclidean value: 0.9863519709955113 name: Pearson Euclidean - type: spearman_euclidean value: 0.6620048542679903 name: Spearman Euclidean - type: pearson_dot value: 0.9548051701614557 name: Pearson Dot - type: spearman_dot value: 0.6610658947764548 name: Spearman Dot - type: pearson_max value: 0.9863519709955113 name: Pearson Max - type: spearman_max value: 0.6620048542679903 name: Spearman Max - task: type: semantic-similarity name: Semantic Similarity dataset: name: dim 512 type: dim_512 metrics: - type: pearson_cosine value: 0.9544417196413574 name: Pearson Cosine - type: spearman_cosine value: 0.6620048542679903 name: Spearman Cosine - type: pearson_manhattan value: 0.9855825558550574 name: Pearson Manhattan - type: spearman_manhattan value: 0.6620048542679903 name: Spearman Manhattan - type: pearson_euclidean value: 0.9862004412296757 name: Pearson Euclidean - type: spearman_euclidean value: 0.6620048542679903 name: Spearman Euclidean - type: pearson_dot value: 0.9501184326722917 name: Pearson Dot - type: spearman_dot value: 0.6607798700248341 name: Spearman Dot - type: pearson_max value: 0.9862004412296757 name: Pearson Max - type: spearman_max value: 0.6620048542679903 name: Spearman Max - task: type: semantic-similarity name: Semantic Similarity dataset: name: dim 256 type: dim_256 metrics: - type: pearson_cosine value: 0.9494511778471465 name: Pearson Cosine - type: spearman_cosine value: 0.6620048542679903 name: Spearman Cosine - type: pearson_manhattan value: 0.9830259644213172 name: Pearson Manhattan - type: spearman_manhattan value: 0.6620048542679903 name: Spearman Manhattan - type: pearson_euclidean value: 0.9835562939431381 name: Pearson Euclidean - type: spearman_euclidean value: 0.6620048542679903 name: Spearman Euclidean - type: pearson_dot value: 0.9469313992827345 name: Pearson Dot - type: spearman_dot value: 0.6607798700248341 name: Spearman Dot - type: pearson_max value: 0.9835562939431381 name: Pearson Max - type: spearman_max value: 0.6620048542679903 name: Spearman Max - task: type: semantic-similarity name: Semantic Similarity dataset: name: dim 128 type: dim_128 metrics: - type: pearson_cosine value: 0.9397052405386266 name: Pearson Cosine - type: spearman_cosine value: 0.6620048542679903 name: Spearman Cosine - type: pearson_manhattan value: 0.9762184586055923 name: Pearson Manhattan - type: spearman_manhattan value: 0.6620048542679903 name: Spearman Manhattan - type: pearson_euclidean value: 0.9781975526221939 name: Pearson Euclidean - type: spearman_euclidean value: 0.6620048542679903 name: Spearman Euclidean - type: pearson_dot value: 0.9271211389022183 name: Pearson Dot - type: spearman_dot value: 0.6607798700248341 name: Spearman Dot - type: pearson_max value: 0.9781975526221939 name: Pearson Max - type: spearman_max value: 0.6620048542679903 name: Spearman Max - task: type: semantic-similarity name: Semantic Similarity dataset: name: dim 64 type: dim_64 metrics: - type: pearson_cosine value: 0.9149032642312528 name: Pearson Cosine - type: spearman_cosine value: 0.6620048542679903 name: Spearman Cosine - type: pearson_manhattan value: 0.968215524939354 name: Pearson Manhattan - type: spearman_manhattan value: 0.6620048542679903 name: Spearman Manhattan - type: pearson_euclidean value: 0.9708485057392984 name: Pearson Euclidean - type: spearman_euclidean value: 0.6620048542679903 name: Spearman Euclidean - type: pearson_dot value: 0.8940456314300972 name: Pearson Dot - type: spearman_dot value: 0.6602255244962898 name: Spearman Dot - type: pearson_max value: 0.9708485057392984 name: Pearson Max - type: spearman_max value: 0.6620048542679903 name: Spearman Max --- # BGE base Financial Matryoshka This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co./BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co./BAAI/bge-base-en-v1.5) - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 768 tokens - **Similarity Function:** Cosine Similarity - **Language:** en - **License:** apache-2.0 ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co./models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("thetayne/finetuned_model_0613") # Run inference sentences = [ 'Corrosion Resistant Coatings', 'Corrosion Resistant Coatings', 'Mower Blade', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Evaluation ### Metrics #### Semantic Similarity * Dataset: `dim_768` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:----------| | pearson_cosine | 0.9548 | | **spearman_cosine** | **0.662** | | pearson_manhattan | 0.9859 | | spearman_manhattan | 0.662 | | pearson_euclidean | 0.9864 | | spearman_euclidean | 0.662 | | pearson_dot | 0.9548 | | spearman_dot | 0.6611 | | pearson_max | 0.9864 | | spearman_max | 0.662 | #### Semantic Similarity * Dataset: `dim_512` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:----------| | pearson_cosine | 0.9544 | | **spearman_cosine** | **0.662** | | pearson_manhattan | 0.9856 | | spearman_manhattan | 0.662 | | pearson_euclidean | 0.9862 | | spearman_euclidean | 0.662 | | pearson_dot | 0.9501 | | spearman_dot | 0.6608 | | pearson_max | 0.9862 | | spearman_max | 0.662 | #### Semantic Similarity * Dataset: `dim_256` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:----------| | pearson_cosine | 0.9495 | | **spearman_cosine** | **0.662** | | pearson_manhattan | 0.983 | | spearman_manhattan | 0.662 | | pearson_euclidean | 0.9836 | | spearman_euclidean | 0.662 | | pearson_dot | 0.9469 | | spearman_dot | 0.6608 | | pearson_max | 0.9836 | | spearman_max | 0.662 | #### Semantic Similarity * Dataset: `dim_128` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:----------| | pearson_cosine | 0.9397 | | **spearman_cosine** | **0.662** | | pearson_manhattan | 0.9762 | | spearman_manhattan | 0.662 | | pearson_euclidean | 0.9782 | | spearman_euclidean | 0.662 | | pearson_dot | 0.9271 | | spearman_dot | 0.6608 | | pearson_max | 0.9782 | | spearman_max | 0.662 | #### Semantic Similarity * Dataset: `dim_64` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:----------| | pearson_cosine | 0.9149 | | **spearman_cosine** | **0.662** | | pearson_manhattan | 0.9682 | | spearman_manhattan | 0.662 | | pearson_euclidean | 0.9708 | | spearman_euclidean | 0.662 | | pearson_dot | 0.894 | | spearman_dot | 0.6602 | | pearson_max | 0.9708 | | spearman_max | 0.662 | ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 1,625 training samples * Columns: sentence_A, sentence_B, and score * Approximate statistics based on the first 1000 samples: | | sentence_A | sentence_B | score | |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:------------------------------------------------| | type | string | string | int | | details | | | | * Samples: | sentence_A | sentence_B | score | |:-----------------------------------|:--------------------------------------|:---------------| | Thermal Fatigue | Ferritic Stainless Steel | 0 | | High Temperature Wear | Drill String | 0 | | Carbide Coatings | Carbide Coatings | 1 | * Loss: [CosineSimilarityLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters: ```json { "loss_fct": "torch.nn.modules.loss.MSELoss" } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: epoch - `per_device_train_batch_size`: 32 - `per_device_eval_batch_size`: 16 - `gradient_accumulation_steps`: 16 - `learning_rate`: 2e-05 - `num_train_epochs`: 4 - `lr_scheduler_type`: cosine - `warmup_ratio`: 0.1 - `bf16`: True - `tf32`: True - `load_best_model_at_end`: True - `optim`: adamw_torch_fused - `batch_sampler`: no_duplicates #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: epoch - `prediction_loss_only`: True - `per_device_train_batch_size`: 32 - `per_device_eval_batch_size`: 16 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 16 - `eval_accumulation_steps`: None - `learning_rate`: 2e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 4 - `max_steps`: -1 - `lr_scheduler_type`: cosine - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: True - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: True - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: True - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch_fused - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional
### Training Logs | Epoch | Step | Training Loss | dim_128_spearman_cosine | dim_256_spearman_cosine | dim_512_spearman_cosine | dim_64_spearman_cosine | dim_768_spearman_cosine | |:----------:|:------:|:-------------:|:-----------------------:|:-----------------------:|:-----------------------:|:----------------------:|:-----------------------:| | 0 | 0 | - | 0.6626 | 0.6626 | 0.6626 | 0.6626 | 0.6626 | | 0.9412 | 3 | - | 0.6620 | 0.6620 | 0.6620 | 0.6620 | 0.6620 | | 1.8627 | 6 | - | 0.6620 | 0.6620 | 0.6620 | 0.6620 | 0.6620 | | 2.7843 | 9 | - | 0.6620 | 0.6620 | 0.6620 | 0.6620 | 0.6620 | | 3.0784 | 10 | 0.156 | - | - | - | - | - | | **3.7059** | **12** | **-** | **0.662** | **0.662** | **0.662** | **0.662** | **0.662** | * The bold row denotes the saved checkpoint. ### Framework Versions - Python: 3.10.12 - Sentence Transformers: 3.0.1 - Transformers: 4.41.2 - PyTorch: 2.1.2+cu121 - Accelerate: 0.31.0 - Datasets: 2.19.1 - Tokenizers: 0.19.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ```