---
language:
- en
license: apache-2.0
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:1625
- loss:CosineSimilarityLoss
base_model: BAAI/bge-base-en-v1.5
datasets: []
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
widget:
- source_sentence: Boron Steel
sentences:
- Rock Bit
- Spalling Test
- Excavator Bucket
- source_sentence: Friction Wear
sentences:
- Tool Steel
- Medium Carbon Steel
- Diffusion Bonding
- source_sentence: Delamination
sentences:
- Subsea Christmas Tree
- Low Alloyed Steel
- Screw Conveyors
- source_sentence: Nitriding
sentences:
- Subsea Manifold
- Trencher Chain
- Cylinder
- source_sentence: Corrosion Resistant Coatings
sentences:
- Mower Blade
- Gas Metal Arc Welding (GMAW)
- Corrosion Resistant Coatings
pipeline_tag: sentence-similarity
model-index:
- name: BGE base Financial Matryoshka
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: dim 768
type: dim_768
metrics:
- type: pearson_cosine
value: 0.9548051644723275
name: Pearson Cosine
- type: spearman_cosine
value: 0.6620048542679903
name: Spearman Cosine
- type: pearson_manhattan
value: 0.985909077336812
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.6620048542679903
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.9863519709955113
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.6620048542679903
name: Spearman Euclidean
- type: pearson_dot
value: 0.9548051701614557
name: Pearson Dot
- type: spearman_dot
value: 0.6610658947764548
name: Spearman Dot
- type: pearson_max
value: 0.9863519709955113
name: Pearson Max
- type: spearman_max
value: 0.6620048542679903
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: dim 512
type: dim_512
metrics:
- type: pearson_cosine
value: 0.9544417196413574
name: Pearson Cosine
- type: spearman_cosine
value: 0.6620048542679903
name: Spearman Cosine
- type: pearson_manhattan
value: 0.9855825558550574
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.6620048542679903
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.9862004412296757
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.6620048542679903
name: Spearman Euclidean
- type: pearson_dot
value: 0.9501184326722917
name: Pearson Dot
- type: spearman_dot
value: 0.6607798700248341
name: Spearman Dot
- type: pearson_max
value: 0.9862004412296757
name: Pearson Max
- type: spearman_max
value: 0.6620048542679903
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: dim 256
type: dim_256
metrics:
- type: pearson_cosine
value: 0.9494511778471465
name: Pearson Cosine
- type: spearman_cosine
value: 0.6620048542679903
name: Spearman Cosine
- type: pearson_manhattan
value: 0.9830259644213172
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.6620048542679903
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.9835562939431381
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.6620048542679903
name: Spearman Euclidean
- type: pearson_dot
value: 0.9469313992827345
name: Pearson Dot
- type: spearman_dot
value: 0.6607798700248341
name: Spearman Dot
- type: pearson_max
value: 0.9835562939431381
name: Pearson Max
- type: spearman_max
value: 0.6620048542679903
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: dim 128
type: dim_128
metrics:
- type: pearson_cosine
value: 0.9397052405386266
name: Pearson Cosine
- type: spearman_cosine
value: 0.6620048542679903
name: Spearman Cosine
- type: pearson_manhattan
value: 0.9762184586055923
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.6620048542679903
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.9781975526221939
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.6620048542679903
name: Spearman Euclidean
- type: pearson_dot
value: 0.9271211389022183
name: Pearson Dot
- type: spearman_dot
value: 0.6607798700248341
name: Spearman Dot
- type: pearson_max
value: 0.9781975526221939
name: Pearson Max
- type: spearman_max
value: 0.6620048542679903
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: dim 64
type: dim_64
metrics:
- type: pearson_cosine
value: 0.9149032642312528
name: Pearson Cosine
- type: spearman_cosine
value: 0.6620048542679903
name: Spearman Cosine
- type: pearson_manhattan
value: 0.968215524939354
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.6620048542679903
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.9708485057392984
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.6620048542679903
name: Spearman Euclidean
- type: pearson_dot
value: 0.8940456314300972
name: Pearson Dot
- type: spearman_dot
value: 0.6602255244962898
name: Spearman Dot
- type: pearson_max
value: 0.9708485057392984
name: Pearson Max
- type: spearman_max
value: 0.6620048542679903
name: Spearman Max
---
# BGE base Financial Matryoshka
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co./BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co./BAAI/bge-base-en-v1.5)
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
- **Language:** en
- **License:** apache-2.0
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co./models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("thetayne/finetuned_model_0613")
# Run inference
sentences = [
'Corrosion Resistant Coatings',
'Corrosion Resistant Coatings',
'Mower Blade',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Semantic Similarity
* Dataset: `dim_768`
* Evaluated with [EmbeddingSimilarityEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:----------|
| pearson_cosine | 0.9548 |
| **spearman_cosine** | **0.662** |
| pearson_manhattan | 0.9859 |
| spearman_manhattan | 0.662 |
| pearson_euclidean | 0.9864 |
| spearman_euclidean | 0.662 |
| pearson_dot | 0.9548 |
| spearman_dot | 0.6611 |
| pearson_max | 0.9864 |
| spearman_max | 0.662 |
#### Semantic Similarity
* Dataset: `dim_512`
* Evaluated with [EmbeddingSimilarityEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:----------|
| pearson_cosine | 0.9544 |
| **spearman_cosine** | **0.662** |
| pearson_manhattan | 0.9856 |
| spearman_manhattan | 0.662 |
| pearson_euclidean | 0.9862 |
| spearman_euclidean | 0.662 |
| pearson_dot | 0.9501 |
| spearman_dot | 0.6608 |
| pearson_max | 0.9862 |
| spearman_max | 0.662 |
#### Semantic Similarity
* Dataset: `dim_256`
* Evaluated with [EmbeddingSimilarityEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:----------|
| pearson_cosine | 0.9495 |
| **spearman_cosine** | **0.662** |
| pearson_manhattan | 0.983 |
| spearman_manhattan | 0.662 |
| pearson_euclidean | 0.9836 |
| spearman_euclidean | 0.662 |
| pearson_dot | 0.9469 |
| spearman_dot | 0.6608 |
| pearson_max | 0.9836 |
| spearman_max | 0.662 |
#### Semantic Similarity
* Dataset: `dim_128`
* Evaluated with [EmbeddingSimilarityEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:----------|
| pearson_cosine | 0.9397 |
| **spearman_cosine** | **0.662** |
| pearson_manhattan | 0.9762 |
| spearman_manhattan | 0.662 |
| pearson_euclidean | 0.9782 |
| spearman_euclidean | 0.662 |
| pearson_dot | 0.9271 |
| spearman_dot | 0.6608 |
| pearson_max | 0.9782 |
| spearman_max | 0.662 |
#### Semantic Similarity
* Dataset: `dim_64`
* Evaluated with [EmbeddingSimilarityEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:----------|
| pearson_cosine | 0.9149 |
| **spearman_cosine** | **0.662** |
| pearson_manhattan | 0.9682 |
| spearman_manhattan | 0.662 |
| pearson_euclidean | 0.9708 |
| spearman_euclidean | 0.662 |
| pearson_dot | 0.894 |
| spearman_dot | 0.6602 |
| pearson_max | 0.9708 |
| spearman_max | 0.662 |
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 1,625 training samples
* Columns: sentence_A
, sentence_B
, and score
* Approximate statistics based on the first 1000 samples:
| | sentence_A | sentence_B | score |
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:------------------------------------------------|
| type | string | string | int |
| details |
Thermal Fatigue
| Ferritic Stainless Steel
| 0
|
| High Temperature Wear
| Drill String
| 0
|
| Carbide Coatings
| Carbide Coatings
| 1
|
* Loss: [CosineSimilarityLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
```json
{
"loss_fct": "torch.nn.modules.loss.MSELoss"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 4
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `bf16`: True
- `tf32`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates
#### All Hyperparameters