Spaces:
Runtime error
Runtime error
File size: 8,216 Bytes
6364b8e 8a5741e fa62b45 436d80d e452552 268e717 096bee8 65ffebf aea93af f62c5a9 aea93af 65ffebf 0fed497 65ffebf 9a02f65 5c124fc b54625a aea93af 65ffebf 0fed497 65ffebf 35ca24c b54625a aea93af 65ffebf 0fed497 65ffebf f62c5a9 35ca24c b54625a aea93af f62c5a9 096bee8 436d80d 6364b8e aea93af 1d051e4 387ecb3 6364b8e 387ecb3 b69e293 6364b8e b69e293 436d80d bec3144 e452552 6364b8e 5c55b9f 9a7bb33 a446974 88cf8f1 f78f796 c0cd7e7 c9eb8a2 c0cd7e7 d87e4e8 c0cd7e7 387ecb3 f0307a8 387ecb3 8ac9fae b69e293 387ecb3 cafb60e 88cf8f1 387ecb3 88cf8f1 9a7bb33 a446974 88cf8f1 f78f796 dc236e4 4f3d9c8 dc236e4 387ecb3 0fed497 387ecb3 9b288a0 b69e293 387ecb3 cafb60e 88cf8f1 387ecb3 88cf8f1 9a7bb33 a446974 88cf8f1 f78f796 dc236e4 9f5e757 4f3d9c8 9f5e757 a446974 096bee8 a446974 539820e a446974 1637cc2 4eabc16 0fed497 94d2b70 4f3d9c8 f7e06d1 7a546ad 4eabc16 94d2b70 4f3d9c8 5558d7a 4f3d9c8 2fc37ec 5558d7a 6364b8e 4f3d9c8 2ad5c84 4f3d9c8 9a7bb33 a446974 4f3d9c8 c9eb8a2 bc2df81 9a7bb33 c9eb8a2 bc2df81 9a7bb33 c9eb8a2 9f5e757 65ffebf ffe64ec 8008e61 1cb739f 783e750 e04f9fe 8008e61 eece2c5 ffe64ec 0fed497 a446974 4f3d9c8 8bb99b0 ffe64ec 8bb99b0 65ffebf afd8070 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 |
import gradio as gr
import torch
from transformers import AutoFeatureExtractor, AutoModelForImageClassification, pipeline
#from transformers import pipeline
import os
from numpy import exp
import pandas as pd
from PIL import Image
import urllib.request
import uuid
uid=uuid.uuid4()
models=[
"Nahrawy/AIorNot",
"umm-maybe/AI-image-detector",
"arnolfokam/ai-generated-image-detector",
]
pipe0 = pipeline("image-classification", f"{models[0]}")
pipe1 = pipeline("image-classification", f"{models[1]}")
pipe2 = pipeline("image-classification", f"{models[2]}")
fin_sum=[]
def image_classifier0(image):
labels = ["AI","Real"]
outputs = pipe0(image)
results = {}
result_test={}
for idx,result in enumerate(outputs):
results[labels[idx]] = outputs[idx]['score']
#print (result_test)
#for result in outputs:
# results[result['label']] = result['score']
#print (results)
fin_sum.append(results)
return results
def image_classifier1(image):
labels = ["AI","Real"]
outputs = pipe1(image)
results = {}
result_test={}
for idx,result in enumerate(outputs):
results[labels[idx]] = outputs[idx]['score']
#print (result_test)
#for result in outputs:
# results[result['label']] = result['score']
#print (results)
fin_sum.append(results)
return results
def image_classifier2(image):
labels = ["AI","Real"]
outputs = pipe2(image)
results = {}
result_test={}
for idx,result in enumerate(outputs):
results[labels[idx]] = outputs[idx]['score']
#print (result_test)
#for result in outputs:
# results[result['label']] = result['score']
#print (results)
fin_sum.append(results)
return results
def softmax(vector):
e = exp(vector)
return e / e.sum()
def aiornot0(image):
labels = ["Real", "AI"]
mod=models[0]
feature_extractor0 = AutoFeatureExtractor.from_pretrained(mod)
model0 = AutoModelForImageClassification.from_pretrained(mod)
input = feature_extractor0(image, return_tensors="pt")
with torch.no_grad():
outputs = model0(**input)
logits = outputs.logits
probability = softmax(logits)
px = pd.DataFrame(probability.numpy())
prediction = logits.argmax(-1).item()
label = labels[prediction]
html_out = f"""
<h1>This image is likely: {label}</h1><br><h3>
Probabilites:<br>
Real: {px[1][0]}<br>
AI: {px[0][0]}"""
results = {}
for idx,result in enumerate(px):
results[labels[idx]] = px[idx][0]
#results[labels['label']] = result['score']
fin_sum.append(results)
return gr.HTML.update(html_out),results
def aiornot1(image):
labels = ["AI", "Real"]
mod=models[1]
feature_extractor1 = AutoFeatureExtractor.from_pretrained(mod)
model1 = AutoModelForImageClassification.from_pretrained(mod)
input = feature_extractor1(image, return_tensors="pt")
with torch.no_grad():
outputs = model1(**input)
logits = outputs.logits
probability = softmax(logits)
px = pd.DataFrame(probability.numpy())
prediction = logits.argmax(-1).item()
label = labels[prediction]
html_out = f"""
<h1>This image is likely: {label}</h1><br><h3>
Probabilites:<br>
Real: {px[1][0]}<br>
AI: {px[0][0]}"""
results = {}
for idx,result in enumerate(px):
results[labels[idx]] = px[idx][0]
#results[labels['label']] = result['score']
fin_sum.append(results)
return gr.HTML.update(html_out),results
def aiornot2(image):
labels = ["Real", "AI"]
mod=models[2]
feature_extractor2 = AutoFeatureExtractor.from_pretrained("microsoft/resnet-50")
model2 = AutoModelForImageClassification.from_pretrained(mod)
input = feature_extractor2(image, return_tensors="pt")
with torch.no_grad():
outputs = model2(**input)
logits = outputs.logits
probability = softmax(logits)
px = pd.DataFrame(probability.numpy())
prediction = logits.argmax(-1).item()
label = labels[prediction]
html_out = f"""
<h1>This image is likely: {label}</h1><br><h3>
Probabilites:<br>
Real: {px[0][0]}<br>
AI: {px[1][0]}"""
results = {}
for idx,result in enumerate(px):
results[labels[idx]] = px[idx][0]
#results[labels['label']] = result['score']
fin_sum.append(results)
return gr.HTML.update(html_out),results
def load_url(url):
try:
urllib.request.urlretrieve(
f'{url}',
f"{uid}tmp_im.png")
image = Image.open(f"{uid}tmp_im.png")
mes = "Image Loaded"
except Exception as e:
image=None
mes=f"Image not Found<br>Error: {e}"
return image,mes
def tot_prob():
try:
fin_out = fin_sum[0]["Real"]+fin_sum[1]["Real"]+fin_sum[2]["Real"]+fin_sum[3]["Real"]+fin_sum[4]["Real"]+fin_sum[5]["Real"]
fin_out = fin_out/6
fin_sub = 1-fin_out
out={
"Real":f"{fin_out}",
"AI":f"{fin_sub}"
}
#fin_sum.clear()
#print (fin_out)
return out
except Exception as e:
pass
print (e)
return None
def fin_clear():
fin_sum.clear()
return None
with gr.Blocks() as app:
gr.Markdown("""<center><h1>AI Image Detector<br><h4>(Test Demo - accuracy varies by model)""")
with gr.Column():
inp = gr.Image(type='pil')
in_url=gr.Textbox(label="Image URL")
with gr.Row():
load_btn=gr.Button("Load URL")
btn = gr.Button("Detect AI")
mes = gr.HTML("""""")
with gr.Group():
with gr.Row():
fin=gr.Label(label="Final Probability")
with gr.Row():
with gr.Box():
lab0 = gr.HTML(f"""<b>Testing on Model: <a href='https://huggingface.co./{models[0]}'>{models[0]}</a></b>""")
nun0 = gr.HTML("""""")
with gr.Box():
lab1 = gr.HTML(f"""<b>Testing on Model: <a href='https://huggingface.co./{models[1]}'>{models[1]}</a></b>""")
nun1 = gr.HTML("""""")
with gr.Box():
lab2 = gr.HTML(f"""<b>Testing on Model: <a href='https://huggingface.co./{models[2]}'>{models[2]}</a></b>""")
nun2 = gr.HTML("""""")
with gr.Row():
with gr.Box():
n_out0=gr.Label(label="Output")
outp0 = gr.HTML("""""")
with gr.Box():
n_out1=gr.Label(label="Output")
outp1 = gr.HTML("""""")
with gr.Box():
n_out2=gr.Label(label="Output")
outp2 = gr.HTML("""""")
with gr.Row():
with gr.Box():
n_out3=gr.Label(label="Output")
outp3 = gr.HTML("""""")
with gr.Box():
n_out4=gr.Label(label="Output")
outp4 = gr.HTML("""""")
with gr.Box():
n_out5=gr.Label(label="Output")
outp5 = gr.HTML("""""")
hid_box=gr.Textbox(visible=False)
def upd(image):
rand_im = uuid.uuid4()
image.save(f"{rand_im}-vid_tmp_proc.png")
#out = os.path.abspath(f"{rand_im}-vid_tmp_proc.png")
#out_url = f'https://omnibus_AI_or_Not_dev.hf.space/file={out}'
out_url = f"{rand_im}-vid_tmp_proc.png"
return out_url
#inp.change(upd,inp,inp)
btn.click(fin_clear,None,fin,show_progress=False)
load_btn.click(load_url,in_url,[inp,mes])
btn.click(aiornot0,[inp],[outp0,n_out0]).then(tot_prob,None,fin,show_progress=False)
btn.click(aiornot1,[inp],[outp1,n_out1]).then(tot_prob,None,fin,show_progress=False)
btn.click(aiornot2,[inp],[outp2,n_out2]).then(tot_prob,None,fin,show_progress=False)
btn.click(image_classifier0,[inp],[n_out3]).then(tot_prob,None,fin,show_progress=False)
btn.click(image_classifier1,[inp],[n_out4]).then(tot_prob,None,fin,show_progress=False)
btn.click(image_classifier2,[inp],[n_out5]).then(tot_prob,None,fin,show_progress=False)
app.queue(concurrency_count=60).launch() |