Omnibus commited on
Commit
aea93af
·
1 Parent(s): f7e06d1

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +15 -12
app.py CHANGED
@@ -19,7 +19,9 @@ models=[
19
  pipe0 = pipeline("image-classification", f"{models[0]}")
20
  pipe1 = pipeline("image-classification", f"{models[1]}")
21
  pipe2 = pipeline("image-classification", f"{models[2]}")
 
22
 
 
23
  def image_classifier0(image):
24
  labels = ["Real","AI"]
25
  outputs = pipe0(image)
@@ -30,7 +32,8 @@ def image_classifier0(image):
30
  print (result_test)
31
  for result in outputs:
32
  results[result['label']] = result['score']
33
- print (results)
 
34
  return results
35
  def image_classifier1(image):
36
  labels = ["Real","AI"]
@@ -42,7 +45,8 @@ def image_classifier1(image):
42
  print (result_test)
43
  for result in outputs:
44
  results[result['label']] = result['score']
45
- print (results)
 
46
  return results
47
  def image_classifier2(image):
48
  labels = ["Real","AI"]
@@ -54,16 +58,15 @@ def image_classifier2(image):
54
  print (result_test)
55
  for result in outputs:
56
  results[result['label']] = result['score']
57
- print (results)
 
58
  return results
59
 
60
  def softmax(vector):
61
  e = exp(vector)
62
  return e / e.sum()
63
 
64
-
65
-
66
- fin_sum=[]
67
 
68
  def aiornot0(image):
69
  labels = ["Real", "AI"]
@@ -220,12 +223,12 @@ with gr.Blocks() as app:
220
 
221
  btn.click(fin_clear,None,fin)
222
  load_btn.click(load_url,in_url,[inp,mes])
223
- btn.click(aiornot0,[inp],[outp0,n_out0]).then(tot_prob,None,fin)
224
- btn.click(aiornot1,[inp],[outp1,n_out1]).then(tot_prob,None,fin)
225
- btn.click(aiornot2,[inp],[outp2,n_out2]).then(tot_prob,None,fin)
226
 
227
- btn.click(image_classifier0,[inp],[n_out3])
228
- btn.click(image_classifier1,[inp],[n_out4])
229
- btn.click(image_classifier2,[inp],[n_out5])
230
 
231
  app.queue(concurrency_count=20).launch()
 
19
  pipe0 = pipeline("image-classification", f"{models[0]}")
20
  pipe1 = pipeline("image-classification", f"{models[1]}")
21
  pipe2 = pipeline("image-classification", f"{models[2]}")
22
+
23
 
24
+ fin_sum=[]
25
  def image_classifier0(image):
26
  labels = ["Real","AI"]
27
  outputs = pipe0(image)
 
32
  print (result_test)
33
  for result in outputs:
34
  results[result['label']] = result['score']
35
+ print (results)
36
+ fin_sum.append(results)
37
  return results
38
  def image_classifier1(image):
39
  labels = ["Real","AI"]
 
45
  print (result_test)
46
  for result in outputs:
47
  results[result['label']] = result['score']
48
+ print (results)
49
+ fin_sum.append(results)
50
  return results
51
  def image_classifier2(image):
52
  labels = ["Real","AI"]
 
58
  print (result_test)
59
  for result in outputs:
60
  results[result['label']] = result['score']
61
+ print (results)
62
+ fin_sum.append(results)
63
  return results
64
 
65
  def softmax(vector):
66
  e = exp(vector)
67
  return e / e.sum()
68
 
69
+
 
 
70
 
71
  def aiornot0(image):
72
  labels = ["Real", "AI"]
 
223
 
224
  btn.click(fin_clear,None,fin)
225
  load_btn.click(load_url,in_url,[inp,mes])
226
+ btn.click(aiornot0,[inp],[outp0,n_out0]).then(tot_prob,None,fin,show_progress=False)
227
+ btn.click(aiornot1,[inp],[outp1,n_out1]).then(tot_prob,None,fin,show_progress=False)
228
+ btn.click(aiornot2,[inp],[outp2,n_out2]).then(tot_prob,None,fin,show_progress=False)
229
 
230
+ btn.click(image_classifier0,[inp],[n_out3]).then(tot_prob,None,fin,show_progress=False)
231
+ btn.click(image_classifier1,[inp],[n_out4]).then(tot_prob,None,fin,show_progress=False)
232
+ btn.click(image_classifier2,[inp],[n_out5]).then(tot_prob,None,fin,show_progress=False)
233
 
234
  app.queue(concurrency_count=20).launch()