Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -19,7 +19,9 @@ models=[
|
|
19 |
pipe0 = pipeline("image-classification", f"{models[0]}")
|
20 |
pipe1 = pipeline("image-classification", f"{models[1]}")
|
21 |
pipe2 = pipeline("image-classification", f"{models[2]}")
|
|
|
22 |
|
|
|
23 |
def image_classifier0(image):
|
24 |
labels = ["Real","AI"]
|
25 |
outputs = pipe0(image)
|
@@ -30,7 +32,8 @@ def image_classifier0(image):
|
|
30 |
print (result_test)
|
31 |
for result in outputs:
|
32 |
results[result['label']] = result['score']
|
33 |
-
print (results)
|
|
|
34 |
return results
|
35 |
def image_classifier1(image):
|
36 |
labels = ["Real","AI"]
|
@@ -42,7 +45,8 @@ def image_classifier1(image):
|
|
42 |
print (result_test)
|
43 |
for result in outputs:
|
44 |
results[result['label']] = result['score']
|
45 |
-
print (results)
|
|
|
46 |
return results
|
47 |
def image_classifier2(image):
|
48 |
labels = ["Real","AI"]
|
@@ -54,16 +58,15 @@ def image_classifier2(image):
|
|
54 |
print (result_test)
|
55 |
for result in outputs:
|
56 |
results[result['label']] = result['score']
|
57 |
-
print (results)
|
|
|
58 |
return results
|
59 |
|
60 |
def softmax(vector):
|
61 |
e = exp(vector)
|
62 |
return e / e.sum()
|
63 |
|
64 |
-
|
65 |
-
|
66 |
-
fin_sum=[]
|
67 |
|
68 |
def aiornot0(image):
|
69 |
labels = ["Real", "AI"]
|
@@ -220,12 +223,12 @@ with gr.Blocks() as app:
|
|
220 |
|
221 |
btn.click(fin_clear,None,fin)
|
222 |
load_btn.click(load_url,in_url,[inp,mes])
|
223 |
-
btn.click(aiornot0,[inp],[outp0,n_out0]).then(tot_prob,None,fin)
|
224 |
-
btn.click(aiornot1,[inp],[outp1,n_out1]).then(tot_prob,None,fin)
|
225 |
-
btn.click(aiornot2,[inp],[outp2,n_out2]).then(tot_prob,None,fin)
|
226 |
|
227 |
-
btn.click(image_classifier0,[inp],[n_out3])
|
228 |
-
btn.click(image_classifier1,[inp],[n_out4])
|
229 |
-
btn.click(image_classifier2,[inp],[n_out5])
|
230 |
|
231 |
app.queue(concurrency_count=20).launch()
|
|
|
19 |
pipe0 = pipeline("image-classification", f"{models[0]}")
|
20 |
pipe1 = pipeline("image-classification", f"{models[1]}")
|
21 |
pipe2 = pipeline("image-classification", f"{models[2]}")
|
22 |
+
|
23 |
|
24 |
+
fin_sum=[]
|
25 |
def image_classifier0(image):
|
26 |
labels = ["Real","AI"]
|
27 |
outputs = pipe0(image)
|
|
|
32 |
print (result_test)
|
33 |
for result in outputs:
|
34 |
results[result['label']] = result['score']
|
35 |
+
print (results)
|
36 |
+
fin_sum.append(results)
|
37 |
return results
|
38 |
def image_classifier1(image):
|
39 |
labels = ["Real","AI"]
|
|
|
45 |
print (result_test)
|
46 |
for result in outputs:
|
47 |
results[result['label']] = result['score']
|
48 |
+
print (results)
|
49 |
+
fin_sum.append(results)
|
50 |
return results
|
51 |
def image_classifier2(image):
|
52 |
labels = ["Real","AI"]
|
|
|
58 |
print (result_test)
|
59 |
for result in outputs:
|
60 |
results[result['label']] = result['score']
|
61 |
+
print (results)
|
62 |
+
fin_sum.append(results)
|
63 |
return results
|
64 |
|
65 |
def softmax(vector):
|
66 |
e = exp(vector)
|
67 |
return e / e.sum()
|
68 |
|
69 |
+
|
|
|
|
|
70 |
|
71 |
def aiornot0(image):
|
72 |
labels = ["Real", "AI"]
|
|
|
223 |
|
224 |
btn.click(fin_clear,None,fin)
|
225 |
load_btn.click(load_url,in_url,[inp,mes])
|
226 |
+
btn.click(aiornot0,[inp],[outp0,n_out0]).then(tot_prob,None,fin,show_progress=False)
|
227 |
+
btn.click(aiornot1,[inp],[outp1,n_out1]).then(tot_prob,None,fin,show_progress=False)
|
228 |
+
btn.click(aiornot2,[inp],[outp2,n_out2]).then(tot_prob,None,fin,show_progress=False)
|
229 |
|
230 |
+
btn.click(image_classifier0,[inp],[n_out3]).then(tot_prob,None,fin,show_progress=False)
|
231 |
+
btn.click(image_classifier1,[inp],[n_out4]).then(tot_prob,None,fin,show_progress=False)
|
232 |
+
btn.click(image_classifier2,[inp],[n_out5]).then(tot_prob,None,fin,show_progress=False)
|
233 |
|
234 |
app.queue(concurrency_count=20).launch()
|