Omnibus commited on
Commit
e452552
1 Parent(s): b69e293

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -4
app.py CHANGED
@@ -2,7 +2,8 @@ import gradio as gr
2
  import torch
3
  from transformers import AutoFeatureExtractor, AutoModelForImageClassification, pipeline
4
  from numpy import exp
5
-
 
6
  def softmax(vector):
7
  e = exp(vector)
8
  return e / e.sum()
@@ -27,10 +28,12 @@ def aiornot0(image):
27
  print (logits)
28
  probability = softmax(logits)
29
  print(f'PROBABILITY ::: {probability}')
30
-
 
 
31
  prediction = logits.argmax(-1).item()
32
  label = labels[prediction]
33
- return label
34
  def aiornot1(image):
35
  labels = ["Real", "AI"]
36
  mod=models[1]
@@ -67,7 +70,8 @@ with gr.Blocks() as app:
67
  btn = gr.Button()
68
 
69
  with gr.Column():
70
- outp0 = gr.Textbox(label=f'{models[0]}')
 
71
  outp1 = gr.Textbox(label=f'{models[1]}')
72
  outp2 = gr.Textbox(label=f'{models[2]}')
73
  btn.click(aiornot0,[inp],outp0)
 
2
  import torch
3
  from transformers import AutoFeatureExtractor, AutoModelForImageClassification, pipeline
4
  from numpy import exp
5
+ import pandas as pd
6
+
7
  def softmax(vector):
8
  e = exp(vector)
9
  return e / e.sum()
 
28
  print (logits)
29
  probability = softmax(logits)
30
  print(f'PROBABILITY ::: {probability}')
31
+ print(probability[0])
32
+ px = pd.DataFrame(probability.numpy())
33
+
34
  prediction = logits.argmax(-1).item()
35
  label = labels[prediction]
36
+ return px
37
  def aiornot1(image):
38
  labels = ["Real", "AI"]
39
  mod=models[1]
 
70
  btn = gr.Button()
71
 
72
  with gr.Column():
73
+ #outp0 = gr.Textbox(label=f'{models[0]}')
74
+ outp0 = gr.BarPlot(label=f'{models[0]}', vertical=False)
75
  outp1 = gr.Textbox(label=f'{models[1]}')
76
  outp2 = gr.Textbox(label=f'{models[2]}')
77
  btn.click(aiornot0,[inp],outp0)