Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -17,16 +17,16 @@ models=[
|
|
17 |
def aiornot0(image):
|
18 |
labels = ["Real", "AI"]
|
19 |
mod=models[0]
|
20 |
-
|
21 |
-
|
22 |
-
input =
|
23 |
with torch.no_grad():
|
24 |
-
outputs =
|
25 |
print (outputs)
|
26 |
logits = outputs.logits
|
27 |
print (logits)
|
28 |
probability = softmax(logits)
|
29 |
-
print(probability)
|
30 |
|
31 |
prediction = logits.argmax(-1).item()
|
32 |
label = labels[prediction]
|
@@ -34,11 +34,11 @@ def aiornot0(image):
|
|
34 |
def aiornot1(image):
|
35 |
labels = ["Real", "AI"]
|
36 |
mod=models[1]
|
37 |
-
|
38 |
-
|
39 |
-
input =
|
40 |
with torch.no_grad():
|
41 |
-
outputs =
|
42 |
print (outputs)
|
43 |
logits = outputs.logits
|
44 |
print (logits)
|
@@ -48,11 +48,11 @@ def aiornot1(image):
|
|
48 |
def aiornot2(image):
|
49 |
labels = ["Real", "AI"]
|
50 |
mod=models[2]
|
51 |
-
|
52 |
-
|
53 |
-
input =
|
54 |
with torch.no_grad():
|
55 |
-
outputs =
|
56 |
print (outputs)
|
57 |
logits = outputs.logits
|
58 |
print (logits)
|
|
|
17 |
def aiornot0(image):
|
18 |
labels = ["Real", "AI"]
|
19 |
mod=models[0]
|
20 |
+
feature_extractor0 = AutoFeatureExtractor.from_pretrained(mod)
|
21 |
+
model0 = AutoModelForImageClassification.from_pretrained(mod)
|
22 |
+
input = feature_extractor0(image, return_tensors="pt")
|
23 |
with torch.no_grad():
|
24 |
+
outputs = model0(**input)
|
25 |
print (outputs)
|
26 |
logits = outputs.logits
|
27 |
print (logits)
|
28 |
probability = softmax(logits)
|
29 |
+
print(f'PROBABILITY ::: {probability}')
|
30 |
|
31 |
prediction = logits.argmax(-1).item()
|
32 |
label = labels[prediction]
|
|
|
34 |
def aiornot1(image):
|
35 |
labels = ["Real", "AI"]
|
36 |
mod=models[1]
|
37 |
+
feature_extractor1 = AutoFeatureExtractor.from_pretrained(mod)
|
38 |
+
model1 = AutoModelForImageClassification.from_pretrained(mod)
|
39 |
+
input = feature_extractor1(image, return_tensors="pt")
|
40 |
with torch.no_grad():
|
41 |
+
outputs = model1(**input)
|
42 |
print (outputs)
|
43 |
logits = outputs.logits
|
44 |
print (logits)
|
|
|
48 |
def aiornot2(image):
|
49 |
labels = ["Real", "AI"]
|
50 |
mod=models[2]
|
51 |
+
feature_extractor2 = AutoFeatureExtractor.from_pretrained(mod)
|
52 |
+
model2 = AutoModelForImageClassification.from_pretrained(mod)
|
53 |
+
input = feature_extractor2(image, return_tensors="pt")
|
54 |
with torch.no_grad():
|
55 |
+
outputs = model2(**input)
|
56 |
print (outputs)
|
57 |
logits = outputs.logits
|
58 |
print (logits)
|