Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -19,6 +19,9 @@ models=[
|
|
19 |
"Nahrawy/AIorNot",
|
20 |
"umm-maybe/AI-image-detector",
|
21 |
"arnolfokam/ai-generated-image-detector",
|
|
|
|
|
|
|
22 |
|
23 |
]
|
24 |
|
@@ -95,6 +98,79 @@ def aiornot2(image):
|
|
95 |
results[labels[idx]] = px[idx][0]
|
96 |
#results[labels['label']] = result['score']
|
97 |
return gr.HTML.update(html_out),results
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
def load_url(url):
|
99 |
try:
|
100 |
urllib.request.urlretrieve(
|
@@ -128,9 +204,25 @@ with gr.Blocks() as app:
|
|
128 |
with gr.Box():
|
129 |
lab2 = gr.HTML(f"""<b>Testing on Model: <a href='https://huggingface.co/{models[2]}'>{models[2]}</a></b>""")
|
130 |
n_out2=gr.Label(label="Output")
|
131 |
-
outp2 = gr.HTML("""""")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
load_btn.click(load_url,in_url,[inp,mes])
|
133 |
btn.click(aiornot0,[inp],[outp0,n_out0])
|
134 |
btn.click(aiornot1,[inp],[outp1,n_out1])
|
135 |
btn.click(aiornot2,[inp],[outp2,n_out2])
|
|
|
|
|
|
|
136 |
app.launch()
|
|
|
19 |
"Nahrawy/AIorNot",
|
20 |
"umm-maybe/AI-image-detector",
|
21 |
"arnolfokam/ai-generated-image-detector",
|
22 |
+
"Binyamin/Hybrid_1",
|
23 |
+
"HuggingSara/model_soups",
|
24 |
+
"psyne/AIResnetClone",
|
25 |
|
26 |
]
|
27 |
|
|
|
98 |
results[labels[idx]] = px[idx][0]
|
99 |
#results[labels['label']] = result['score']
|
100 |
return gr.HTML.update(html_out),results
|
101 |
+
def aiornot3(image):
|
102 |
+
labels = ["Real", "AI"]
|
103 |
+
mod=models[3]
|
104 |
+
feature_extractor3 = AutoFeatureExtractor.from_pretrained(mod)
|
105 |
+
model3 = AutoModelForImageClassification.from_pretrained(mod)
|
106 |
+
input = feature_extractor3(image, return_tensors="pt")
|
107 |
+
with torch.no_grad():
|
108 |
+
outputs = model3(**input)
|
109 |
+
logits = outputs.logits
|
110 |
+
probability = softmax(logits)
|
111 |
+
px = pd.DataFrame(probability.numpy())
|
112 |
+
prediction = logits.argmax(-1).item()
|
113 |
+
label = labels[prediction]
|
114 |
+
html_out = f"""
|
115 |
+
<h1>This image is likely: {label}</h1><br><h3>
|
116 |
+
|
117 |
+
Probabilites:<br>
|
118 |
+
Real: {px[0][0]}<br>
|
119 |
+
AI: {px[1][0]}"""
|
120 |
+
results = {}
|
121 |
+
for idx,result in enumerate(px):
|
122 |
+
results[labels[idx]] = px[idx][0]
|
123 |
+
#results[labels['label']] = result['score']
|
124 |
+
return gr.HTML.update(html_out),results
|
125 |
+
def aiornot4(image):
|
126 |
+
labels = ["Real", "AI"]
|
127 |
+
mod=models[4]
|
128 |
+
feature_extractor4 = AutoFeatureExtractor.from_pretrained(mod)
|
129 |
+
model4 = AutoModelForImageClassification.from_pretrained(mod)
|
130 |
+
input = feature_extractor4(image, return_tensors="pt")
|
131 |
+
with torch.no_grad():
|
132 |
+
outputs = model4(**input)
|
133 |
+
logits = outputs.logits
|
134 |
+
probability = softmax(logits)
|
135 |
+
px = pd.DataFrame(probability.numpy())
|
136 |
+
prediction = logits.argmax(-1).item()
|
137 |
+
label = labels[prediction]
|
138 |
+
html_out = f"""
|
139 |
+
<h1>This image is likely: {label}</h1><br><h3>
|
140 |
+
|
141 |
+
Probabilites:<br>
|
142 |
+
Real: {px[0][0]}<br>
|
143 |
+
AI: {px[1][0]}"""
|
144 |
+
results = {}
|
145 |
+
for idx,result in enumerate(px):
|
146 |
+
results[labels[idx]] = px[idx][0]
|
147 |
+
#results[labels['label']] = result['score']
|
148 |
+
return gr.HTML.update(html_out),results
|
149 |
+
def aiornot5(image):
|
150 |
+
labels = ["AI", "Real"]
|
151 |
+
mod=models[5]
|
152 |
+
feature_extractor5 = AutoFeatureExtractor.from_pretrained(mod)
|
153 |
+
model5 = AutoModelForImageClassification.from_pretrained(mod)
|
154 |
+
input = feature_extractor5(image, return_tensors="pt")
|
155 |
+
with torch.no_grad():
|
156 |
+
outputs = model5(**input)
|
157 |
+
logits = outputs.logits
|
158 |
+
probability = softmax(logits)
|
159 |
+
px = pd.DataFrame(probability.numpy())
|
160 |
+
prediction = logits.argmax(-1).item()
|
161 |
+
label = labels[prediction]
|
162 |
+
html_out = f"""
|
163 |
+
<h1>This image is likely: {label}</h1><br><h3>
|
164 |
+
|
165 |
+
Probabilites:<br>
|
166 |
+
Real: {px[1][0]}<br>
|
167 |
+
AI: {px[0][0]}"""
|
168 |
+
|
169 |
+
results = {}
|
170 |
+
for idx,result in enumerate(px):
|
171 |
+
results[labels[idx]] = px[idx][0]
|
172 |
+
#results[labels['label']] = result['score']
|
173 |
+
return gr.HTML.update(html_out),results
|
174 |
def load_url(url):
|
175 |
try:
|
176 |
urllib.request.urlretrieve(
|
|
|
204 |
with gr.Box():
|
205 |
lab2 = gr.HTML(f"""<b>Testing on Model: <a href='https://huggingface.co/{models[2]}'>{models[2]}</a></b>""")
|
206 |
n_out2=gr.Label(label="Output")
|
207 |
+
outp2 = gr.HTML("""""")
|
208 |
+
with gr.Row():
|
209 |
+
with gr.Box():
|
210 |
+
lab3 = gr.HTML(f"""<b>Testing on Model: <a href='https://huggingface.co/{models[3]}'>{models[3]}</a></b>""")
|
211 |
+
n_out3=gr.Label(label="Output")
|
212 |
+
outp3 = gr.HTML("""""")
|
213 |
+
with gr.Box():
|
214 |
+
lab4 = gr.HTML(f"""<b>Testing on Model: <a href='https://huggingface.co/{models[4]}'>{models[4]}</a></b>""")
|
215 |
+
n_out4=gr.Label(label="Output")
|
216 |
+
outp4 = gr.HTML("""""")
|
217 |
+
with gr.Box():
|
218 |
+
lab5 = gr.HTML(f"""<b>Testing on Model: <a href='https://huggingface.co/{models[5]}'>{models[5]}</a></b>""")
|
219 |
+
n_out5=gr.Label(label="Output")
|
220 |
+
outp5 = gr.HTML("""""")
|
221 |
load_btn.click(load_url,in_url,[inp,mes])
|
222 |
btn.click(aiornot0,[inp],[outp0,n_out0])
|
223 |
btn.click(aiornot1,[inp],[outp1,n_out1])
|
224 |
btn.click(aiornot2,[inp],[outp2,n_out2])
|
225 |
+
btn.click(aiornot3,[inp],[outp3,n_out3])
|
226 |
+
btn.click(aiornot4,[inp],[outp4,n_out4])
|
227 |
+
btn.click(aiornot5,[inp],[outp5,n_out5])
|
228 |
app.launch()
|