hongkeon's picture
Upload README.md with huggingface_hub
4d2a761 verified
metadata
base_model: harheem/bge-m3-nvidia-ko-v1
language:
  - en
library_name: sentence-transformers
license: apache-2.0
metrics:
  - cosine_accuracy@1
  - cosine_accuracy@3
  - cosine_accuracy@5
  - cosine_accuracy@10
  - cosine_precision@1
  - cosine_precision@3
  - cosine_precision@5
  - cosine_precision@10
  - cosine_recall@1
  - cosine_recall@3
  - cosine_recall@5
  - cosine_recall@10
  - cosine_ndcg@10
  - cosine_mrr@10
  - cosine_map@100
pipeline_tag: sentence-similarity
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - dataset_size:1K<n<10K
  - loss:MatryoshkaLoss
  - loss:MultipleNegativesRankingLoss
  - llama-cpp
  - gguf-my-repo
widget:
  - source_sentence: 하이브리다이저란 무엇인가요?
    sentences:
      - 하이퍼바이저는 보안에서 어떤 역할을 합니까?
      - 지난  년간 CUDA 생태계는 어떻게 발전해 왔나요?
      - 로컬 메모리 액세스 성능을 결정하는 요소는 무엇입니까?
  - source_sentence: 임시 구독의 용도는 무엇입니까?
    sentences:
      - 메모리 액세스 최적화에서 프리패치의 역할은 무엇입니까?
      - CUDA 인식 MPI는 확장 측면에서 어떻게 작동합니까?
      - CUDA 8 해결하는 계산상의 과제에는 어떤 것이 있습니까?
  - source_sentence: '''saxpy''는 무엇을 뜻하나요?'
    sentences:
      - CUDA C/C++의 맥락에서 SAXPY는 무엇입니까?
      - Numba는 다른 GPU 가속 방법과 어떻게 다른가요?
      - 장치 LTO는 CUDA 애플리케이션에 어떤 이점을 제공합니까?
  - source_sentence: USD/Hydra란 무엇인가요?
    sentences:
      - 쿠다란 무엇인가요?
      - y 미분 계산에 사용되는 접근 방식의 단점은 무엇입니까?
      - Pascal 아키텍처는 통합 메모리를 어떻게 개선합니까?
  - source_sentence: CUDAcast란 무엇인가요?
    sentences:
      - CUDACast 시리즈에서는 어떤 주제를 다룰 예정인가요?
      -  게시물에 기여한 것으로 인정받은 사람은 누구입니까?
      - WSL 2에서 NVML의 목적은 무엇입니까?
model-index:
  - name: BGE base Financial Matryoshka
    results:
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 768
          type: dim_768
        metrics:
          - type: cosine_accuracy@1
            value: 0.5443037974683544
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.7749648382559775
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.8523206751054853
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.9409282700421941
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.5443037974683544
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.2583216127519925
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.17046413502109703
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.09409282700421939
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.5443037974683544
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.7749648382559775
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.8523206751054853
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.9409282700421941
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.7411108924386547
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.677065054807671
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.6802131506478553
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 512
          type: dim_512
        metrics:
          - type: cosine_accuracy@1
            value: 0.5386779184247539
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.7749648382559775
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.8593530239099859
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.9451476793248945
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.5386779184247539
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.2583216127519925
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.17187060478199717
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.09451476793248943
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.5386779184247539
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.7749648382559775
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.8593530239099859
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.9451476793248945
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.7413571133247474
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.6759917844306029
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.678939165210132
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 256
          type: dim_256
        metrics:
          - type: cosine_accuracy@1
            value: 0.540084388185654
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.7791842475386779
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.8621659634317862
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.9423347398030942
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.540084388185654
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.25972808251289264
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.1724331926863572
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.09423347398030943
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.540084388185654
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.7791842475386779
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.8621659634317862
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.9423347398030942
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.7403981257690416
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.6756379344986938
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.6787046866761269
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 128
          type: dim_128
        metrics:
          - type: cosine_accuracy@1
            value: 0.5218002812939522
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.7679324894514767
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.8635724331926864
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.9367088607594937
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.5218002812939522
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.2559774964838256
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.17271448663853725
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.09367088607594935
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.5218002812939522
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.7679324894514767
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.8635724331926864
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.9367088607594937
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.7305864977688176
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.6641673922264634
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.6671648971944116
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 64
          type: dim_64
        metrics:
          - type: cosine_accuracy@1
            value: 0.509142053445851
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.7426160337552743
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.8284106891701828
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.9310829817158931
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.509142053445851
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.24753867791842477
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.16568213783403654
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.09310829817158929
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.509142053445851
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.7426160337552743
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.8284106891701828
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.9310829817158931
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.7135661304090457
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.6444829549259928
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.6474431148702396
            name: Cosine Map@100

hongkeon/bge-m3-nvidia-ko-v1-Q4_K_M-GGUF

This model was converted to GGUF format from harheem/bge-m3-nvidia-ko-v1 using llama.cpp via the ggml.ai's GGUF-my-repo space. Refer to the original model card for more details on the model.

Use with llama.cpp

Install llama.cpp through brew (works on Mac and Linux)

brew install llama.cpp

Invoke the llama.cpp server or the CLI.

CLI:

llama-cli --hf-repo hongkeon/bge-m3-nvidia-ko-v1-Q4_K_M-GGUF --hf-file bge-m3-nvidia-ko-v1-q4_k_m.gguf -p "The meaning to life and the universe is"

Server:

llama-server --hf-repo hongkeon/bge-m3-nvidia-ko-v1-Q4_K_M-GGUF --hf-file bge-m3-nvidia-ko-v1-q4_k_m.gguf -c 2048

Note: You can also use this checkpoint directly through the usage steps listed in the Llama.cpp repo as well.

Step 1: Clone llama.cpp from GitHub.

git clone https://github.com/ggerganov/llama.cpp

Step 2: Move into the llama.cpp folder and build it with LLAMA_CURL=1 flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).

cd llama.cpp && LLAMA_CURL=1 make

Step 3: Run inference through the main binary.

./llama-cli --hf-repo hongkeon/bge-m3-nvidia-ko-v1-Q4_K_M-GGUF --hf-file bge-m3-nvidia-ko-v1-q4_k_m.gguf -p "The meaning to life and the universe is"

or

./llama-server --hf-repo hongkeon/bge-m3-nvidia-ko-v1-Q4_K_M-GGUF --hf-file bge-m3-nvidia-ko-v1-q4_k_m.gguf -c 2048