File size: 11,284 Bytes
4d2a761
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
---
base_model: harheem/bge-m3-nvidia-ko-v1
language:
- en
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- dataset_size:1K<n<10K
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
- llama-cpp
- gguf-my-repo
widget:
- source_sentence: 하이브리다이저란 무엇인가요?
  sentences:
  - 하이퍼바이저는 보안에서 어떤 역할을 합니까?
  - 지난  년간 CUDA 생태계는 어떻게 발전해 왔나요?
  - 로컬 메모리 액세스 성능을 결정하는 요소는 무엇입니까?
- source_sentence: 임시 구독의 용도는 무엇입니까?
  sentences:
  - 메모리 액세스 최적화에서 프리패치의 역할은 무엇입니까?
  - CUDA 인식 MPI는 확장 측면에서 어떻게 작동합니까?
  - CUDA 8 해결하는 계산상의 과제에는 어떤 것이 있습니까?
- source_sentence: '''saxpy''는 무엇을 뜻하나요?'
  sentences:
  - CUDA C/C++의 맥락에서 SAXPY는 무엇입니까?
  - Numba는 다른 GPU 가속 방법과 어떻게 다른가요?
  - 장치 LTO는 CUDA 애플리케이션에 어떤 이점을 제공합니까?
- source_sentence: USD/Hydra란 무엇인가요?
  sentences:
  - 쿠다란 무엇인가요?
  - y 미분 계산에 사용되는 접근 방식의 단점은 무엇입니까?
  - Pascal 아키텍처는 통합 메모리를 어떻게 개선합니까?
- source_sentence: CUDAcast란 무엇인가요?
  sentences:
  - CUDACast 시리즈에서는 어떤 주제를 다룰 예정인가요?
  -  게시물에 기여한 것으로 인정받은 사람은 누구입니까?
  - WSL 2에서 NVML의 목적은 무엇입니까?
model-index:
- name: BGE base Financial Matryoshka
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 768
      type: dim_768
    metrics:
    - type: cosine_accuracy@1
      value: 0.5443037974683544
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.7749648382559775
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8523206751054853
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9409282700421941
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.5443037974683544
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2583216127519925
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.17046413502109703
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09409282700421939
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.5443037974683544
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.7749648382559775
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8523206751054853
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9409282700421941
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.7411108924386547
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.677065054807671
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.6802131506478553
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 512
      type: dim_512
    metrics:
    - type: cosine_accuracy@1
      value: 0.5386779184247539
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.7749648382559775
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8593530239099859
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9451476793248945
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.5386779184247539
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2583216127519925
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.17187060478199717
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09451476793248943
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.5386779184247539
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.7749648382559775
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8593530239099859
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9451476793248945
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.7413571133247474
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.6759917844306029
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.678939165210132
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 256
      type: dim_256
    metrics:
    - type: cosine_accuracy@1
      value: 0.540084388185654
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.7791842475386779
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8621659634317862
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9423347398030942
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.540084388185654
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.25972808251289264
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.1724331926863572
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09423347398030943
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.540084388185654
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.7791842475386779
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8621659634317862
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9423347398030942
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.7403981257690416
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.6756379344986938
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.6787046866761269
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 128
      type: dim_128
    metrics:
    - type: cosine_accuracy@1
      value: 0.5218002812939522
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.7679324894514767
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8635724331926864
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9367088607594937
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.5218002812939522
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2559774964838256
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.17271448663853725
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09367088607594935
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.5218002812939522
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.7679324894514767
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8635724331926864
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9367088607594937
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.7305864977688176
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.6641673922264634
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.6671648971944116
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 64
      type: dim_64
    metrics:
    - type: cosine_accuracy@1
      value: 0.509142053445851
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.7426160337552743
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8284106891701828
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9310829817158931
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.509142053445851
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.24753867791842477
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.16568213783403654
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09310829817158929
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.509142053445851
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.7426160337552743
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8284106891701828
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9310829817158931
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.7135661304090457
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.6444829549259928
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.6474431148702396
      name: Cosine Map@100
---

# hongkeon/bge-m3-nvidia-ko-v1-Q4_K_M-GGUF
This model was converted to GGUF format from [`harheem/bge-m3-nvidia-ko-v1`](https://huggingface.co./harheem/bge-m3-nvidia-ko-v1) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co./spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co./harheem/bge-m3-nvidia-ko-v1) for more details on the model.

## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)

```bash
brew install llama.cpp

```
Invoke the llama.cpp server or the CLI.

### CLI:
```bash
llama-cli --hf-repo hongkeon/bge-m3-nvidia-ko-v1-Q4_K_M-GGUF --hf-file bge-m3-nvidia-ko-v1-q4_k_m.gguf -p "The meaning to life and the universe is"
```

### Server:
```bash
llama-server --hf-repo hongkeon/bge-m3-nvidia-ko-v1-Q4_K_M-GGUF --hf-file bge-m3-nvidia-ko-v1-q4_k_m.gguf -c 2048
```

Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.

Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```

Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```

Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo hongkeon/bge-m3-nvidia-ko-v1-Q4_K_M-GGUF --hf-file bge-m3-nvidia-ko-v1-q4_k_m.gguf -p "The meaning to life and the universe is"
```
or 
```
./llama-server --hf-repo hongkeon/bge-m3-nvidia-ko-v1-Q4_K_M-GGUF --hf-file bge-m3-nvidia-ko-v1-q4_k_m.gguf -c 2048
```