BGE base Financial Matryoshka
This is a sentence-transformers model finetuned from BAAI/bge-m3. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-m3
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 1024 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("sentence_transformers_model_id")
sentences = [
'CUDAcast란 무엇인가요?',
'CUDACast 시리즈에서는 어떤 주제를 다룰 예정인가요?',
'이 게시물에 기여한 것으로 인정받은 사람은 누구입니까?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.5443 |
cosine_accuracy@3 |
0.775 |
cosine_accuracy@5 |
0.8523 |
cosine_accuracy@10 |
0.9409 |
cosine_precision@1 |
0.5443 |
cosine_precision@3 |
0.2583 |
cosine_precision@5 |
0.1705 |
cosine_precision@10 |
0.0941 |
cosine_recall@1 |
0.5443 |
cosine_recall@3 |
0.775 |
cosine_recall@5 |
0.8523 |
cosine_recall@10 |
0.9409 |
cosine_ndcg@10 |
0.7411 |
cosine_mrr@10 |
0.6771 |
cosine_map@100 |
0.6802 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.5387 |
cosine_accuracy@3 |
0.775 |
cosine_accuracy@5 |
0.8594 |
cosine_accuracy@10 |
0.9451 |
cosine_precision@1 |
0.5387 |
cosine_precision@3 |
0.2583 |
cosine_precision@5 |
0.1719 |
cosine_precision@10 |
0.0945 |
cosine_recall@1 |
0.5387 |
cosine_recall@3 |
0.775 |
cosine_recall@5 |
0.8594 |
cosine_recall@10 |
0.9451 |
cosine_ndcg@10 |
0.7414 |
cosine_mrr@10 |
0.676 |
cosine_map@100 |
0.6789 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.5401 |
cosine_accuracy@3 |
0.7792 |
cosine_accuracy@5 |
0.8622 |
cosine_accuracy@10 |
0.9423 |
cosine_precision@1 |
0.5401 |
cosine_precision@3 |
0.2597 |
cosine_precision@5 |
0.1724 |
cosine_precision@10 |
0.0942 |
cosine_recall@1 |
0.5401 |
cosine_recall@3 |
0.7792 |
cosine_recall@5 |
0.8622 |
cosine_recall@10 |
0.9423 |
cosine_ndcg@10 |
0.7404 |
cosine_mrr@10 |
0.6756 |
cosine_map@100 |
0.6787 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.5218 |
cosine_accuracy@3 |
0.7679 |
cosine_accuracy@5 |
0.8636 |
cosine_accuracy@10 |
0.9367 |
cosine_precision@1 |
0.5218 |
cosine_precision@3 |
0.256 |
cosine_precision@5 |
0.1727 |
cosine_precision@10 |
0.0937 |
cosine_recall@1 |
0.5218 |
cosine_recall@3 |
0.7679 |
cosine_recall@5 |
0.8636 |
cosine_recall@10 |
0.9367 |
cosine_ndcg@10 |
0.7306 |
cosine_mrr@10 |
0.6642 |
cosine_map@100 |
0.6672 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.5091 |
cosine_accuracy@3 |
0.7426 |
cosine_accuracy@5 |
0.8284 |
cosine_accuracy@10 |
0.9311 |
cosine_precision@1 |
0.5091 |
cosine_precision@3 |
0.2475 |
cosine_precision@5 |
0.1657 |
cosine_precision@10 |
0.0931 |
cosine_recall@1 |
0.5091 |
cosine_recall@3 |
0.7426 |
cosine_recall@5 |
0.8284 |
cosine_recall@10 |
0.9311 |
cosine_ndcg@10 |
0.7136 |
cosine_mrr@10 |
0.6445 |
cosine_map@100 |
0.6474 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 6,397 training samples
- Columns:
positive
and anchor
- Approximate statistics based on the first 1000 samples:
|
positive |
anchor |
type |
string |
string |
details |
- min: 11 tokens
- mean: 48.46 tokens
- max: 107 tokens
|
- min: 9 tokens
- mean: 21.0 tokens
- max: 48 tokens
|
- Samples:
positive |
anchor |
Warp-stride 및 block-stride 루프는 스레드 동작을 재구성하고 공유 메모리 액세스 패턴을 최적화하는 데 사용되었습니다. |
코드에서 공유 메모리 액세스 패턴을 최적화하기 위해 어떤 유형의 루프가 사용되었습니까? |
Nsight Compute의 규칙은 성능 병목 현상을 식별하기 위한 구조화된 프레임워크를 제공하고 최적화 프로세스를 간소화하기 위한 실행 가능한 통찰력을 제공합니다. |
Nsight Compute의 맥락에서 규칙이 중요한 이유는 무엇입니까? |
NVIDIA Nsight와 같은 도구의 가용성으로 인해 개발자가 단일 GPU에서 디버깅할 수 있게 되어 CUDA 개발 속도가 크게 향상되었습니다. CUDA 메모리 검사기는 메모리 액세스 문제를 식별하여 코드 품질을 향상시키는 데 도움이 됩니다. |
디버깅 도구의 가용성이 CUDA 개발에 어떤 영향을 미쳤습니까? |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epoch
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 16
gradient_accumulation_steps
: 16
learning_rate
: 2e-05
lr_scheduler_type
: cosine
warmup_ratio
: 0.1
bf16
: True
tf32
: True
load_best_model_at_end
: True
optim
: adamw_torch_fused
batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: epoch
prediction_loss_only
: True
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 16
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 16
eval_accumulation_steps
: None
learning_rate
: 2e-05
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 3
max_steps
: -1
lr_scheduler_type
: cosine
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.1
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: True
fp16
: False
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: True
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: True
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch_fused
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: False
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
dispatch_batches
: None
split_batches
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
batch_sampler
: no_duplicates
multi_dataset_batch_sampler
: proportional
Training Logs
Epoch |
Step |
Training Loss |
dim_128_cosine_map@100 |
dim_256_cosine_map@100 |
dim_512_cosine_map@100 |
dim_64_cosine_map@100 |
dim_768_cosine_map@100 |
0.8 |
10 |
1.3103 |
- |
- |
- |
- |
- |
0.96 |
12 |
- |
0.6512 |
0.6539 |
0.6688 |
0.6172 |
0.6679 |
1.6 |
20 |
0.4148 |
- |
- |
- |
- |
- |
2.0 |
25 |
- |
0.6615 |
0.6688 |
0.6783 |
0.6417 |
0.6763 |
2.4 |
30 |
0.2683 |
- |
- |
- |
- |
- |
2.88 |
36 |
- |
0.6672 |
0.6787 |
0.6789 |
0.6474 |
0.6802 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.0
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.31.0
- Datasets: 2.18.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}