|
--- |
|
base_model: harheem/bge-m3-nvidia-ko-v1 |
|
language: |
|
- en |
|
library_name: sentence-transformers |
|
license: apache-2.0 |
|
metrics: |
|
- cosine_accuracy@1 |
|
- cosine_accuracy@3 |
|
- cosine_accuracy@5 |
|
- cosine_accuracy@10 |
|
- cosine_precision@1 |
|
- cosine_precision@3 |
|
- cosine_precision@5 |
|
- cosine_precision@10 |
|
- cosine_recall@1 |
|
- cosine_recall@3 |
|
- cosine_recall@5 |
|
- cosine_recall@10 |
|
- cosine_ndcg@10 |
|
- cosine_mrr@10 |
|
- cosine_map@100 |
|
pipeline_tag: sentence-similarity |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- dataset_size:1K<n<10K |
|
- loss:MatryoshkaLoss |
|
- loss:MultipleNegativesRankingLoss |
|
- llama-cpp |
|
- gguf-my-repo |
|
widget: |
|
- source_sentence: 하이브리다이저란 무엇인가요? |
|
sentences: |
|
- 하이퍼바이저는 보안에서 어떤 역할을 합니까? |
|
- 지난 몇 년간 CUDA 생태계는 어떻게 발전해 왔나요? |
|
- 로컬 메모리 액세스 성능을 결정하는 요소는 무엇입니까? |
|
- source_sentence: 임시 구독의 용도는 무엇입니까? |
|
sentences: |
|
- 메모리 액세스 최적화에서 프리패치의 역할은 무엇입니까? |
|
- CUDA 인식 MPI는 확장 측면에서 어떻게 작동합니까? |
|
- CUDA 8이 해결하는 계산상의 과제에는 어떤 것이 있습니까? |
|
- source_sentence: '''saxpy''는 무엇을 뜻하나요?' |
|
sentences: |
|
- CUDA C/C++의 맥락에서 SAXPY는 무엇입니까? |
|
- Numba는 다른 GPU 가속 방법과 어떻게 다른가요? |
|
- 장치 LTO는 CUDA 애플리케이션에 어떤 이점을 제공합니까? |
|
- source_sentence: USD/Hydra란 무엇인가요? |
|
sentences: |
|
- 쿠다란 무엇인가요? |
|
- y 미분 계산에 사용되는 접근 방식의 단점은 무엇입니까? |
|
- Pascal 아키텍처는 통합 메모리를 어떻게 개선합니까? |
|
- source_sentence: CUDAcast란 무엇인가요? |
|
sentences: |
|
- CUDACast 시리즈에서는 어떤 주제를 다룰 예정인가요? |
|
- 이 게시물에 기여한 것으로 인정받은 사람은 누구입니까? |
|
- WSL 2에서 NVML의 목적은 무엇입니까? |
|
model-index: |
|
- name: BGE base Financial Matryoshka |
|
results: |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 768 |
|
type: dim_768 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.5443037974683544 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.7749648382559775 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.8523206751054853 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.9409282700421941 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.5443037974683544 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.2583216127519925 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.17046413502109703 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.09409282700421939 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.5443037974683544 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.7749648382559775 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.8523206751054853 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.9409282700421941 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.7411108924386547 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.677065054807671 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.6802131506478553 |
|
name: Cosine Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 512 |
|
type: dim_512 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.5386779184247539 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.7749648382559775 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.8593530239099859 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.9451476793248945 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.5386779184247539 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.2583216127519925 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.17187060478199717 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.09451476793248943 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.5386779184247539 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.7749648382559775 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.8593530239099859 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.9451476793248945 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.7413571133247474 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.6759917844306029 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.678939165210132 |
|
name: Cosine Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 256 |
|
type: dim_256 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.540084388185654 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.7791842475386779 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.8621659634317862 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.9423347398030942 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.540084388185654 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.25972808251289264 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.1724331926863572 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.09423347398030943 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.540084388185654 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.7791842475386779 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.8621659634317862 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.9423347398030942 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.7403981257690416 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.6756379344986938 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.6787046866761269 |
|
name: Cosine Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 128 |
|
type: dim_128 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.5218002812939522 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.7679324894514767 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.8635724331926864 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.9367088607594937 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.5218002812939522 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.2559774964838256 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.17271448663853725 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.09367088607594935 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.5218002812939522 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.7679324894514767 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.8635724331926864 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.9367088607594937 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.7305864977688176 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.6641673922264634 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.6671648971944116 |
|
name: Cosine Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 64 |
|
type: dim_64 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.509142053445851 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.7426160337552743 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.8284106891701828 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.9310829817158931 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.509142053445851 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.24753867791842477 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.16568213783403654 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.09310829817158929 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.509142053445851 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.7426160337552743 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.8284106891701828 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.9310829817158931 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.7135661304090457 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.6444829549259928 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.6474431148702396 |
|
name: Cosine Map@100 |
|
--- |
|
|
|
# hongkeon/bge-m3-nvidia-ko-v1-Q4_K_M-GGUF |
|
This model was converted to GGUF format from [`harheem/bge-m3-nvidia-ko-v1`](https://huggingface.co./harheem/bge-m3-nvidia-ko-v1) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co./spaces/ggml-org/gguf-my-repo) space. |
|
Refer to the [original model card](https://huggingface.co./harheem/bge-m3-nvidia-ko-v1) for more details on the model. |
|
|
|
## Use with llama.cpp |
|
Install llama.cpp through brew (works on Mac and Linux) |
|
|
|
```bash |
|
brew install llama.cpp |
|
|
|
``` |
|
Invoke the llama.cpp server or the CLI. |
|
|
|
### CLI: |
|
```bash |
|
llama-cli --hf-repo hongkeon/bge-m3-nvidia-ko-v1-Q4_K_M-GGUF --hf-file bge-m3-nvidia-ko-v1-q4_k_m.gguf -p "The meaning to life and the universe is" |
|
``` |
|
|
|
### Server: |
|
```bash |
|
llama-server --hf-repo hongkeon/bge-m3-nvidia-ko-v1-Q4_K_M-GGUF --hf-file bge-m3-nvidia-ko-v1-q4_k_m.gguf -c 2048 |
|
``` |
|
|
|
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. |
|
|
|
Step 1: Clone llama.cpp from GitHub. |
|
``` |
|
git clone https://github.com/ggerganov/llama.cpp |
|
``` |
|
|
|
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). |
|
``` |
|
cd llama.cpp && LLAMA_CURL=1 make |
|
``` |
|
|
|
Step 3: Run inference through the main binary. |
|
``` |
|
./llama-cli --hf-repo hongkeon/bge-m3-nvidia-ko-v1-Q4_K_M-GGUF --hf-file bge-m3-nvidia-ko-v1-q4_k_m.gguf -p "The meaning to life and the universe is" |
|
``` |
|
or |
|
``` |
|
./llama-server --hf-repo hongkeon/bge-m3-nvidia-ko-v1-Q4_K_M-GGUF --hf-file bge-m3-nvidia-ko-v1-q4_k_m.gguf -c 2048 |
|
``` |
|
|