gokulsrinivasagan's picture
End of training
b638c3d verified
metadata
library_name: transformers
language:
  - en
license: apache-2.0
base_model: google/bert_uncased_L-2_H-256_A-4
tags:
  - generated_from_trainer
datasets:
  - glue
metrics:
  - accuracy
model-index:
  - name: bert_uncased_L-2_H-256_A-4_rte
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: GLUE RTE
          type: glue
          args: rte
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.6028880866425993

bert_uncased_L-2_H-256_A-4_rte

This model is a fine-tuned version of google/bert_uncased_L-2_H-256_A-4 on the GLUE RTE dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6523
  • Accuracy: 0.6029

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 256
  • eval_batch_size: 256
  • seed: 10
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.6981 1.0 10 0.6832 0.5740
0.6877 2.0 20 0.6789 0.5740
0.6794 3.0 30 0.6746 0.5812
0.6685 4.0 40 0.6703 0.5740
0.6592 5.0 50 0.6674 0.5848
0.6447 6.0 60 0.6637 0.6029
0.6238 7.0 70 0.6565 0.5957
0.6077 8.0 80 0.6523 0.6029
0.5805 9.0 90 0.6558 0.5884
0.5502 10.0 100 0.6610 0.5848
0.5119 11.0 110 0.6632 0.6065
0.4778 12.0 120 0.6787 0.6029
0.4415 13.0 130 0.7027 0.5957

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.2.1+cu118
  • Datasets 2.17.0
  • Tokenizers 0.20.3