--- library_name: transformers language: - en license: apache-2.0 base_model: google/bert_uncased_L-2_H-256_A-4 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: bert_uncased_L-2_H-256_A-4_rte results: - task: name: Text Classification type: text-classification dataset: name: GLUE RTE type: glue args: rte metrics: - name: Accuracy type: accuracy value: 0.6028880866425993 --- # bert_uncased_L-2_H-256_A-4_rte This model is a fine-tuned version of [google/bert_uncased_L-2_H-256_A-4](https://huggingface.co./google/bert_uncased_L-2_H-256_A-4) on the GLUE RTE dataset. It achieves the following results on the evaluation set: - Loss: 0.6523 - Accuracy: 0.6029 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6981 | 1.0 | 10 | 0.6832 | 0.5740 | | 0.6877 | 2.0 | 20 | 0.6789 | 0.5740 | | 0.6794 | 3.0 | 30 | 0.6746 | 0.5812 | | 0.6685 | 4.0 | 40 | 0.6703 | 0.5740 | | 0.6592 | 5.0 | 50 | 0.6674 | 0.5848 | | 0.6447 | 6.0 | 60 | 0.6637 | 0.6029 | | 0.6238 | 7.0 | 70 | 0.6565 | 0.5957 | | 0.6077 | 8.0 | 80 | 0.6523 | 0.6029 | | 0.5805 | 9.0 | 90 | 0.6558 | 0.5884 | | 0.5502 | 10.0 | 100 | 0.6610 | 0.5848 | | 0.5119 | 11.0 | 110 | 0.6632 | 0.6065 | | 0.4778 | 12.0 | 120 | 0.6787 | 0.6029 | | 0.4415 | 13.0 | 130 | 0.7027 | 0.5957 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.2.1+cu118 - Datasets 2.17.0 - Tokenizers 0.20.3