File size: 2,529 Bytes
470310a b638c3d 470310a b638c3d 470310a b638c3d 470310a b638c3d 470310a b638c3d 470310a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
---
library_name: transformers
language:
- en
license: apache-2.0
base_model: google/bert_uncased_L-2_H-256_A-4
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
model-index:
- name: bert_uncased_L-2_H-256_A-4_rte
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: GLUE RTE
type: glue
args: rte
metrics:
- name: Accuracy
type: accuracy
value: 0.6028880866425993
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert_uncased_L-2_H-256_A-4_rte
This model is a fine-tuned version of [google/bert_uncased_L-2_H-256_A-4](https://huggingface.co./google/bert_uncased_L-2_H-256_A-4) on the GLUE RTE dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6523
- Accuracy: 0.6029
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 256
- eval_batch_size: 256
- seed: 10
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.6981 | 1.0 | 10 | 0.6832 | 0.5740 |
| 0.6877 | 2.0 | 20 | 0.6789 | 0.5740 |
| 0.6794 | 3.0 | 30 | 0.6746 | 0.5812 |
| 0.6685 | 4.0 | 40 | 0.6703 | 0.5740 |
| 0.6592 | 5.0 | 50 | 0.6674 | 0.5848 |
| 0.6447 | 6.0 | 60 | 0.6637 | 0.6029 |
| 0.6238 | 7.0 | 70 | 0.6565 | 0.5957 |
| 0.6077 | 8.0 | 80 | 0.6523 | 0.6029 |
| 0.5805 | 9.0 | 90 | 0.6558 | 0.5884 |
| 0.5502 | 10.0 | 100 | 0.6610 | 0.5848 |
| 0.5119 | 11.0 | 110 | 0.6632 | 0.6065 |
| 0.4778 | 12.0 | 120 | 0.6787 | 0.6029 |
| 0.4415 | 13.0 | 130 | 0.7027 | 0.5957 |
### Framework versions
- Transformers 4.46.3
- Pytorch 2.2.1+cu118
- Datasets 2.17.0
- Tokenizers 0.20.3
|