bert_uncased_L-2_H-256_A-4_rte

This model is a fine-tuned version of google/bert_uncased_L-2_H-256_A-4 on the GLUE RTE dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6523
  • Accuracy: 0.6029

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 256
  • eval_batch_size: 256
  • seed: 10
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.6981 1.0 10 0.6832 0.5740
0.6877 2.0 20 0.6789 0.5740
0.6794 3.0 30 0.6746 0.5812
0.6685 4.0 40 0.6703 0.5740
0.6592 5.0 50 0.6674 0.5848
0.6447 6.0 60 0.6637 0.6029
0.6238 7.0 70 0.6565 0.5957
0.6077 8.0 80 0.6523 0.6029
0.5805 9.0 90 0.6558 0.5884
0.5502 10.0 100 0.6610 0.5848
0.5119 11.0 110 0.6632 0.6065
0.4778 12.0 120 0.6787 0.6029
0.4415 13.0 130 0.7027 0.5957

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.2.1+cu118
  • Datasets 2.17.0
  • Tokenizers 0.20.3
Downloads last month
105
Safetensors
Model size
9.59M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for gokulsrinivasagan/bert_uncased_L-2_H-256_A-4_rte

Finetuned
(12)
this model

Dataset used to train gokulsrinivasagan/bert_uncased_L-2_H-256_A-4_rte

Evaluation results