bert_uncased_L-2_H-256_A-4_rte
This model is a fine-tuned version of google/bert_uncased_L-2_H-256_A-4 on the GLUE RTE dataset. It achieves the following results on the evaluation set:
- Loss: 0.6523
- Accuracy: 0.6029
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 256
- eval_batch_size: 256
- seed: 10
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.6981 | 1.0 | 10 | 0.6832 | 0.5740 |
0.6877 | 2.0 | 20 | 0.6789 | 0.5740 |
0.6794 | 3.0 | 30 | 0.6746 | 0.5812 |
0.6685 | 4.0 | 40 | 0.6703 | 0.5740 |
0.6592 | 5.0 | 50 | 0.6674 | 0.5848 |
0.6447 | 6.0 | 60 | 0.6637 | 0.6029 |
0.6238 | 7.0 | 70 | 0.6565 | 0.5957 |
0.6077 | 8.0 | 80 | 0.6523 | 0.6029 |
0.5805 | 9.0 | 90 | 0.6558 | 0.5884 |
0.5502 | 10.0 | 100 | 0.6610 | 0.5848 |
0.5119 | 11.0 | 110 | 0.6632 | 0.6065 |
0.4778 | 12.0 | 120 | 0.6787 | 0.6029 |
0.4415 | 13.0 | 130 | 0.7027 | 0.5957 |
Framework versions
- Transformers 4.46.3
- Pytorch 2.2.1+cu118
- Datasets 2.17.0
- Tokenizers 0.20.3
- Downloads last month
- 105
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for gokulsrinivasagan/bert_uncased_L-2_H-256_A-4_rte
Base model
google/bert_uncased_L-2_H-256_A-4