prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
#GiG import numpy as np import pandas as pd from pathlib import Path from deep_blocker import DeepBlocker from tuple_embedding_models import AutoEncoderTupleEmbedding, CTTTupleEmbedding, HybridTupleEmbedding, SIFEmbedding from vector_pairing_models import ExactTopKVectorPairing import blocking_utils from configurations import * import pickle def ctt_train_score_with_pred(folder_root, golden_set,left_table_fname, right_table_fname, cols_to_block, tuple_embedding_model, vector_pairing_model): """ Inputs table names, model type, ground truth labels. Outputs evaluation statistics with binary classifier, mainly for CTT """ folder_root = Path(folder_root) left_table_name_csv = left_table_fname+'.csv' right_table_name_csv = right_table_fname+'.csv' left_df = pd.read_csv(folder_root / left_table_name_csv) right_df = pd.read_csv(folder_root / right_table_name_csv) db = DeepBlocker(tuple_embedding_model, vector_pairing_model) candidate_set_df,predictions = db.driver(left_df, right_df, cols_to_block,True) predictions = pd.DataFrame(predictions,columns=['ltable_id','rtable_id','value']) # print(predictions) # predictions = predictions[predictions.prediction > 0.1] # golden_df = pd.read_csv(Path(folder_root) / "matches.csv") golden_df = filter_golden_set(golden_set,left_table_fname, right_table_fname) statistics_dict_binary = blocking_utils.compute_blocking_statistics((left_table_fname,right_table_fname), predictions, golden_df, left_df, right_df,CTT_BINARY_THRESHOLD) statistics_dict = blocking_utils.compute_blocking_statistics((left_table_fname,right_table_fname), candidate_set_df, golden_df, left_df, right_df,CTT_EMBEDDING_THRESHOLD) return statistics_dict,statistics_dict_binary def train_score(folder_root, golden_set, left_table_fname, right_table_fname, cols_to_block, tuple_embedding_model, vector_pairing_model,threshold): """ Inputs table names, model type, ground truth labels. Outputs evaluation statistics for any supplied model """ folder_root = Path(folder_root) left_table_name_csv = left_table_fname+'.csv' right_table_name_csv = right_table_fname+'.csv' left_df = pd.read_csv(folder_root / left_table_name_csv) right_df = pd.read_csv(folder_root / right_table_name_csv) db = DeepBlocker(tuple_embedding_model, vector_pairing_model) candidate_set_df = db.driver(left_df, right_df, cols_to_block,False) # golden_df = pd.read_csv(Path(folder_root) / "matches.csv") golden_df = filter_golden_set(golden_set,left_table_fname, right_table_fname) statistics_dict = blocking_utils.compute_blocking_statistics((left_table_fname,right_table_fname), candidate_set_df, golden_df, left_df, right_df,threshold) return statistics_dict def get_golden_set(left_table_fname, right_table_fname): """ Queries golden set from one table (used when not looping/scoring) """ output_file = 'nyc_output/'+ left_table_fname + '-output.txt' with open(output_file) as f: lines = f.readlines() line_df =
pd.DataFrame(lines,columns=['full'])
pandas.DataFrame
import os import pandas as pd import copy import jieba import numpy as np import time def readExcel(url): df=pd.read_excel(url,na_values='') return df def writeExcel(df,url=''): write = pd.ExcelWriter(url) df.to_excel(write, sheet_name='Sheet1') write.save() def genDF(df_Base,df_IPC): columns=df_Base['ๅˆๅนถๅŽ'].unique() index=df_IPC['NAME'].unique() return pd.DataFrame(None,index=index,columns=columns) pass def check(df_Input,df_Base,df_result=[]): '''''' if df_result==[]: df_result=
pd.DataFrame(None,columns=['Company','Cat'])
pandas.DataFrame
# Standard library imports import pandas as pd import numpy as np from math import pi # Local application/library specific imports from .water_demand import ( set_cropland_share, get_ky_list, get_kc_list, get_evap_i, get_eto, get_eff_rainfall_i, get_effective_rainfall, get_season_days, get_calendar_days, get_kc_values, get_water_demand, ) from .least_cost import ( get_wind_cf, get_pv_cf, get_installed_capacity, get_max_capacity, get_lcoe, get_least_cost, get_tech_generation, get_pumping_cost, get_unit_pumping_cost, ) class Model(): # water properties: eto = 'ETo_' lat = 'lat' elevation_diff = 'elevation' wind = 'wind' srad = 'srad' tmin = 'tmin' tmax = 'tmax' tavg = 'tavg' eff = 'eff_' prec = 'prec' kc = 'kc_' crop_share = 'crop_share' crop_area = 'crop_area' seasons = ['init', 'dev', 'mid', 'late'] start = '_start' end = '_end' acwr = 'ACWR' pcwr = 'PCWR' pwd = '<PASSWORD>' sswd = 'SSWD' crop_calendar = None crop_column = 'crop' ky_dict = {} kc_dict = {} pipeline = 'pipeline' well = 'point' wwtp = 'point' desal_plant = 'point' pumping_hours_per_day = 'pumpng_hours_per_day' deff = 1 aeff = 0.45 ky_values = {} kc_values = {} # energy properties: gw_depth = 'gw_depth' D = 'Pipe_diameter' L = 'Pipeline_length' A = 'Pipe_area' mV = 'Flow_velocity' # monthly Velocity mV in (m/sec) tdh = 'tdh' des_int = 'Einten_KWh/m3' des_ener = 'Edesal_GWh' pp_e = 'PP_E' # Pumping PEAK Electric demand pa_e = 'PA_E' # Pumping AVERAGE Electric demand Re = 'Re' f = 'f' trans_eff = 0 pump_eff = 'pump_eff' technologies = {} discount_rate = 0 g = 9.81 # gravitational acceleration in(m/sec2) Ken_visc = 1.004e-06 dens = 1000 k = 0.061e-3 # roughness for ductile iron pipe ww_energy_int = 'ww_energy_int' desal_energy_int = 'desal_energy_int' start_year = 0 end_year = 30 def __init__(self, df): self.df = df def print_properties(self): print('Properties names:') for val, name in zip([self.eto, self.lat, self.elevation_diff, self.wind, self.srad, self.tmin, self.tmax, self.tavg, self.crop_share, self.crop_area, self.seasons, self.start, self.end, self.crop_column, self.gw_depth, self.tdh], ['Reference evapotranspiration (.eto)', 'Latitude (.lat)', 'Elevation difference (.elevation_diff)', 'Wind speed (.wind)', 'Solar radiation (.srad)', 'Min temperature (.tmin)', 'Max temperature (.tmax)', 'Avegarage temperature (.tavg)', 'Cropland share column (.crop_share)', 'Cropland area column (.crop_area)', 'Harvest seasons names (.seasons)', 'Seasson start suffix (.start)', 'Seasson end suffix (.end)', 'Cropland column (.crop_column)', 'Groundwater table depth (.gw_depth)', 'Total dynamic head ground water (.tdh_gw)', 'Total dynamic head surface water (.tdh_sw)', 'Pipe area (.A)', 'Flow velocity (.V)', 'Friction losses (.f)', 'Reynolds Number (.Re)', ]): print(' - {}: {}'.format(name, val)) ####### water related methods ########### def set_cropland_share(self, crop_var, geo_boundary='global', boundary_name=None, inplace=False): if inplace: set_cropland_share(self.df, crop_var, geo_boundary=geo_boundary, boundary_name=boundary_name, crop_share=self.crop_share) else: return set_cropland_share(self.df.copy(), crop_var, geo_boundary=geo_boundary, boundary_name=boundary_name, crop_share=self.crop_share) def get_ky_list(self, inplace=False): if inplace: get_ky_list(self.df, crop_share=self.crop_share) else: return get_ky_list(self.df.copy(), crop_share=self.crop_share) def get_kc_list(self, inplace=False): if inplace: get_kc_list(self.df, crop_share=self.crop_share) else: return get_kc_list(self.df.copy(), crop_share=self.crop_share) def get_eto(self, inplace=False): if inplace: get_eto(self.df, eto=self.eto, lat=self.lat, elevation=self.elevation_diff, wind=self.wind, srad=self.srad, tmin=self.tmin, tmax=self.tmax, tavg=self.tavg) else: return get_eto(self.df.copy(), eto=self.eto, lat=self.lat, elevation=self.elevation_diff, wind=self.wind, srad=self.srad, tmin=self.tmin, tmax=self.tmax, tavg=self.tavg) def get_effective_rainfall(self, inplace=False): if inplace: get_effective_rainfall(self.df, eff=self.eff, prec=self.prec, eto=self.eto) else: return get_effective_rainfall(self.df.copy(), eff=self.eff, prec=self.prec, eto=self.eto) def get_calendar_days(self, inplace=False): if inplace: get_calendar_days(self.crop_calendar, seasons=self.seasons, start=self.start, end=self.end) else: return get_calendar_days(self.crop_calendar.copy(), seasons=self.seasons, start=self.start, end=self.end) def get_kc_values(self, inplace=False): if inplace: get_kc_values(crop_calendar=self.crop_calendar, seasons=self.seasons, kc_dict=self.kc_dict, crop_column=self.crop_column, start=self.start, end=self.end, kc=self.kc) else: return get_kc_values(crop_calendar=self.crop_calendar.copy(), seasons=self.seasons, kc_dict=self.kc_dict, crop_column=self.crop_column, start=self.start, end=self.end, kc=self.kc) def get_water_demand(self, inplace=False): if inplace: get_water_demand(self.df, self.crop_calendar, self.ky_dict, self.crop_column, self.aeff, self.deff, self.seasons[0], self.seasons[3], self.pumping_hours_per_day, crop_area=self.crop_area, _eto=self.eto, _kc=self.kc, _eff=self.eff, _acwr=self.acwr, _pcwr=self.pcwr, _pwd=self.pwd, _sswd=self.sswd, start=self.start, end=self.end, crop_share=self.crop_share) else: return get_water_demand(self.df.copy(), self.crop_calendar, self.ky_dict, self.crop_column, self.aeff, self.deff, self.seasons[0], self.seasons[3], self.pumping_hours_per_day, crop_area=self.crop_area, _eto=self.eto, _kc=self.kc, _eff=self.eff, _acwr=self.acwr, _pcwr=self.pcwr, _pwd=self.pwd, _sswd=self.sswd, start=self.start, end=self.end, crop_share=self.crop_share) ####### energy related methods ########### def create_efficiency_goal(self, dff, initial_eff, final_eff, init_year, end_year): if initial_eff > final_eff: final_eff = initial_eff years = np.arange(end_year - init_year + 1) + init_year efficiencies = np.linspace(initial_eff, final_eff, end_year - init_year + 1) df_eff = pd.DataFrame({'Year': years, self.pump_eff: efficiencies}) dff = dff.copy().drop(columns=[self.pump_eff]) dff = dff.merge(df_eff, how="left") return np.array(dff[self.pump_eff]) def set_efficiency_goal(self, category, efficiency_goal, names=None): if category == 'pipeline': feature = self.pipeline elif category == 'well': feature = self.well if isinstance(names, type(None)): for index, group in self.df.groupby(feature): self.df.loc[self.df[feature]==index, self.pump_eff] = \ self.create_efficiency_goal(group, group[self.pump_eff].min(), efficiency_goal['efficiency'], efficiency_goal['init_year'], efficiency_goal['end_year']) elif isinstance(names, list): for name in names: dff = self.df.loc[self.df[feature]==name] self.df.loc[self.df[feature]==name, self.pump_eff] = \ self.create_efficiency_goal(dff, dff[self.pump_eff].min(), efficiency_goal['efficiency'], efficiency_goal['init_year'], efficiency_goal['end_year']) elif isinstance(names, str): dff = self.df.loc[self.df[feature]==names] self.df.loc[self.df[feature]==names, self.pump_eff] = \ self.create_efficiency_goal(dff, dff[self.pump_eff].min(), efficiency_goal['efficiency'], efficiency_goal['init_year'], efficiency_goal['end_year']) else: raise TypeError(f'Invalid type {type(names)} for names. Names should be a string or a list of strings') def set_specifications(self, category, diameter, pumping_hours_per_day=None, pump_efficiency=1, efficiency_goal=None, amount=None, distribute=None, names=None): '''Sets the specification for pipelines or wells Parameters ---------- category : ['pipeline', 'well'] The category to configure diameter : float, int The diameter of the pipeline or well pumping_hours_per_day : float, int The average amount of hours pumped per day pump_efficiency : float Pumping energy efficiency amount : int Amount of pipelines or wells distribute : [None, 'proportionally'] If 'proportionally, distributes the amount of specified wells proportionally based on the water extractions per well field names: string, list Contains the name or names of the pipelines/wells to configure Raises ------ TypeError Invalid type for names ''' if category == 'pipeline': feature = self.pipeline elif category == 'well': feature = self.well if isinstance(names, type(None)): self.df[self.D] = diameter #in m self.df[self.pumping_hours_per_day] = pumping_hours_per_day self.df[self.pump_eff] = pump_efficiency if distribute=='proportionally': dff = self.df.groupby(['Year', feature])[['sswd']].sum().reset_index() df_amount = dff.loc[dff['Year']==2020].copy() df_amount['pipe_amount'] = np.ceil(df_amount['sswd'] / df_amount['sswd'].sum() * amount) self.df = self.df.merge(df_amount[[feature, 'pipe_amount']], on=feature) else: self.df['pipe_amount'] = amount elif isinstance(names, list): for name in names: self.df.loc[self.df[feature]==name, self.D] = diameter #in m self.df.loc[self.df[feature]==name, self.pumping_hours_per_day] = pumping_hours_per_day self.df.loc[self.df[feature]==name, self.pump_eff] = pump_efficiency if amount: self.df.loc[self.df[feature]==name, 'pipe_amount'] = amount elif isinstance(names, str): self.df.loc[self.df[feature]==names, self.D] = diameter #in m self.df.loc[self.df[feature]==names, self.pumping_hours_per_day] = pumping_hours_per_day self.df.loc[self.df[feature]==names, self.pump_eff] = pump_efficiency if amount: self.df.loc[self.df[feature]==names, 'pipe_amount'] = amount else: raise TypeError(f'Invalid type {type(names)} for names. Names should be a string or a list of strings') if efficiency_goal: self.set_efficiency_goal(category, efficiency_goal, names) def pipe_area(self): self.df[self.A] = (pi*self.df[self.D]**2)/4 def flow_velocity(self, axis=0): if axis: for i in range(1, 13): _avg_Q = '{}{}'.format(self.sswd, i) _mV = '{}{}'.format(self.mV, i) self.df[_mV] = self.df[_avg_Q] / (30 * self.df[self.pumping_hours_per_day] * 60 * 60) / self.df[self.A] else: self.df[self.mV] = self.df[self.sswd] / self.df['pipe_amount'] / (30 * self.df[self.pumping_hours_per_day] * 60 * 60) / self.df[self.A] # convert m3/month to m3/s (30day*pump_hours_day*60min/h*60s/min) def reynolds(self, axis=0): if axis: for i in range(1, 13): _mV = '{}{}'.format(self.mV, i) _Re = '{}{}'.format(self.Re, i) self.df[_Re] = (self.df[_mV] * self.df[self.D]) / self.Ken_visc else: self.df[self.Re] = self.df[self.mV] * self.df[self.D] / self.Ken_visc def friction_factor(self, axis=0): if axis: for i in range(1, 13): _Re = '{}{}'.format(self.Re, i) _f = '{}{}'.format(self.f, i) self.df[_f] = 0.25 / (np.log((self.k / (3.7 * self.df[self.D])) + (5.74 / (self.df[_Re] ** 0.9))) ** 2) else: self.df[self.f] = 0.25 / (np.log((self.k / (3.7 * self.df[self.D])) + (5.74 / (self.df[self.Re] ** 0.9))) ** 2) def get_tdh(self, friction=True, axis=0): if axis: for i in range(1, 13): _avg_Q = '{}{}'.format(self.sswd, i) _f = '{}{}'.format(self.f, i) _tdh_sw = '{}{}'.format(self.tdh, i) if friction: f_losses = (self.df[_f] * self.df[self.L] * 16 * ((self.df[_avg_Q] / (30 * self.df[self.pumping_hours_per_day] * 60 * 60)) ** 2)) / ((self.df[self.D] ** 5) * 2 * self.g * (pi ** 2)) else: f_losses = 0 self.df[_tdh_sw] = self.df[self.elevation_diff] + f_losses self.df[_tdh_sw].replace(0, np.nan, inplace=True) else: if friction: f_losses = (self.df[self.f] * self.df[self.L] * (self.df[self.mV] ** 2)) / (self.df[self.D] * 2 * self.g) else: f_losses = 0 self.df[self.tdh] = self.df[self.elevation_diff] + f_losses def get_pumping_energy(self, axis=0): if axis: for i in range(1, 13): _swpp_e = '{}{}'.format(self.pp_e, i) # surface water pumping peak electric demand _swpa_e = '{}{}'.format(self.pa_e, i) # surface water pumping average electric demand _peak_Q = '{}{}'.format(self.pwd, i) # peak water flow in the pipeline. To be updated WEAP output. _avg_Q = '{}{}'.format(self.sswd, i) # average water flow in the pipeline. To be updated with WEAP output _tdh_sw = '{}{}'.format(self.tdh, i) self.df[_swpp_e] = ((self.df[_peak_Q] * self.df[_tdh_sw] * self.g * self.dens) / (self.df[self.pump_eff] * 1000)) # to convert E from W to KW self.df[_swpa_e] = ((self.df[_avg_Q] * self.df[_tdh_sw] * self.g * self.dens) / ( self.df[self.pump_eff] * 1000 * 3600)) # to convert E from J to KWh else: if self.pwd in self.df.columns: self.df[self.pp_e] = ((self.df[self.pwd] * self.df[self.tdh] * self.g * self.dens) / (self.df[self.pump_eff] * 1000)) self.df[self.pa_e] = ((self.df[self.sswd] * self.df[self.tdh] * self.g * self.dens) / (self.df[self.pump_eff] * 1000 * 3600)) self.df.loc[self.df[self.pa_e]<0, self.pa_e] = 0 def set_treatment_energy(self, category, energy_int, names=None): '''Sets the specification for pipelines or wells Parameters ---------- category : ['wastewater', 'desalination'] The category to configure energy_int : float Energy intensity of treatment names: string, list Contains the name or names of the treatment plants to configure Raises ------ TypeError Invalid type for names ''' if category == 'wastewater': feature = self.wwtp energy_feature = self.ww_energy_int elif category == 'desalination': feature = self.desal_plant energy_feature = self.desal_energy_int if isinstance(names, type(None)): self.df[energy_feature] = energy_int elif isinstance(names, list): for name in names: self.df.loc[self.df[feature]==name, energy_feature] = energy_int #in m elif isinstance(names, str): self.df.loc[self.df[feature]==names, energy_feature] = energy_int #in m else: raise TypeError(f'Invalid type {type(names)} for names. Names should be a string or a list of strings') def get_treatment_energy(self, category): if category == 'wastewater': energy_feature = self.ww_energy_int elif category == 'desalination': energy_feature = self.desal_energy_int self.df[self.pa_e] = self.df[self.sswd] * self.df[energy_feature] ####### technologies and LCOE related methods ######### def create_wind_turbine(self, wind_turbine, life, om_cost, capital_cost, efficiency): self.technologies[wind_turbine] = self.WindTurbine(life, om_cost, capital_cost, efficiency) def create_pv_system(self, pv_system, life, om_cost, capital_cost, efficiency): self.technologies[pv_system] = self.PVSystem(life, om_cost, capital_cost, efficiency, None, 0, 1, 0, 0) def create_standard_tech(self, tech_name, life, om_cost, capital_cost, efficiency, cf, fuel_cost, fuel_req, emission_factor, env_cost): self.technologies[tech_name] = self.Technology(life, om_cost, capital_cost, efficiency, cf, fuel_cost, fuel_req, emission_factor, env_cost) def get_cf(self, technologies='all', axis=0): technologies = self.__check_tech_input(technologies) for technology in technologies: if type(self.technologies[technology]) == self.WindTurbine: self.get_wind_cf(technology, axis) elif type(self.technologies[technology]) == self.PVSystem: self.get_pv_cf(technology, axis) def get_wind_cf(self, wind_turbine, axis=0): tech = self.technologies[wind_turbine] self.technologies[wind_turbine].cf = get_wind_cf(self.df, wind=self.wind, mu=tech.mu, t=tech.t, p_rated=tech.p_rated, z=tech.z, zr=tech.zr, es=tech.es, u_arr=tech.u_arr, p_curve=tech.p_curve, axis=axis) def get_pv_cf(self, pv_system, axis=0): tech = self.technologies[pv_system] self.technologies[pv_system].cf = get_pv_cf(self.df, self.srad, axis) def get_installed_capacity(self, technologies='all', axis=0): technologies = self.__check_tech_input(technologies) for technology in technologies: tech = self.technologies[technology] self.technologies[technology].df = get_installed_capacity(self.df, tech.cf, self.pp_e, axis) def get_max_capacity(self, technologies='all', axis=0): technologies = self.__check_tech_input(technologies) for technology in technologies: tech = self.technologies[technology] if axis: self.technologies[technology].df = tech.df.join(get_max_capacity(tech.df, axis)) else: self.technologies[technology].max_cap = get_max_capacity(tech.df, axis) def get_lcoe(self, technologies='all', years='all', axis=0): technologies = self.__check_tech_input(technologies) for technology in technologies: tech = self.technologies[technology] if axis: self.technologies[technology].df['lcoe'] = get_lcoe( max_capacity=tech.df['max_cap'], total_demand=self.df['annual_el_demand'], tech_life=tech.life, om_cost=tech.om_cost, capital_cost=tech.capital_cost, discount_rate=self.discount_rate, project_life=self.end_year - self.start_year, fuel_cost=tech.fuel_cost, fuel_req=tech.fuel_req, efficiency=tech.efficiency, emission_factor=tech.emission_factor, env_cost=tech.env_cost, start_year=self.start_year, end_year=self.end_year, axis=axis) else: years = self.__get_years(years) self.technologies[technology].lcoe = pd.DataFrame() for year in years: self.technologies[technology].lcoe = \ self.technologies[technology].lcoe.append(get_lcoe( max_capacity=tech.max_cap.reset_index(), total_demand=self.df, tech_life=tech.life, om_cost=tech.om_cost, capital_cost=tech.capital_cost, discount_rate=self.discount_rate, project_life=self.end_year - self.start_year, fuel_cost=tech.fuel_cost, fuel_req=tech.fuel_req, efficiency=tech.efficiency, emission_factor=tech.emission_factor, env_cost=tech.env_cost, start_year=year, end_year=self.end_year, axis=axis), ignore_index=True) # self.technologies[technology].lcoe.reset_index(inplace=True) def get_least_cost(self, technologies='all', years='all', geo_boundary=None, axis=0): if axis: self.df['least_cost_tech'] = np.nan self.df['lcoe'] = np.nan if (geo_boundary != None) and (type(technologies) == dict): for key, value in technologies.items(): _technologies = self.__check_tech_input(value) lcoe_df = pd.DataFrame() lcoe_df[geo_boundary] = self.df[geo_boundary] for _technology in _technologies: lcoe_df[_technology] = self.technologies[_technology].df['lcoe'] lcoe = get_least_cost(lcoe_df, geo_boundary, key) self.df.loc[self.df[geo_boundary] == key, 'least_cost_tech'] = \ lcoe.loc[self.df[geo_boundary] == key, 'least_cost_technology'] self.df.loc[self.df[geo_boundary] == key, 'lcoe'] = \ lcoe.loc[self.df[geo_boundary] == key, 'lcoe'] else: _technologies = self.__check_tech_input(technologies) lcoe_df = pd.DataFrame() for _technology in _technologies: lcoe_df[_technology] = self.technologies[_technology].df['lcoe'] lcoe = get_least_cost(lcoe_df) self.df['least_cost_tech'] = lcoe['least_cost_technology'] self.df['lcoe'] = lcoe['lcoe'] else: _technologies = self.__check_tech_input(technologies) lcoe_df = pd.DataFrame() for _technology in _technologies: dff = self.technologies[_technology].lcoe.set_index(['Demand point', 'year']) lcoe_df[_technology] = dff['lcoe'] years = self.__get_years(years) self.lcoe = self.df.loc[self.df.Year.isin(years)] self.lcoe = self.lcoe.groupby(['Demand point', 'Year']).agg( { # 'Supply point': 'first', # 'links': 'first', 'province': 'first', 'sswd': 'sum', # 'type': 'first', 'swpp_e': 'max', 'swpa_e': 'sum'}) self.lcoe.rename(columns={'links': 'link', 'sswd': 'water demand', 'swpp_e': 'required capacity', 'swpa_e': 'energy demand'}, inplace=True) lcoe = get_least_cost(lcoe_df) self.lcoe['least_cost_technology'] = lcoe['least_cost_technology'] self.lcoe['lcoe'] = lcoe['lcoe'] def get_tech_generation(self): get_tech_generation(self.df, self.technologies.keys()) def get_pumping_cost(self, inplace=False): if inplace: get_pumping_cost(self.df, 'annual_el_demand', 'lcoe') else: return get_pumping_cost(self.df.copy(), 'annual_el_demand', 'lcoe') def get_unit_pumping_cost(self, inplace=False): if inplace: get_unit_pumping_cost(self.df, 'pumping_cost', self.df.filter(like=self.sswd).sum(axis=0)) else: return get_unit_pumping_cost(self.df.copy(), 'pumping_cost', self.df.filter(like=self.sswd).sum(axis=0)) ####### additional methods ############# def __check_tech_input(self, technologies): if type(technologies) == str: if technologies.lower() in ['all', 'a', 'everything']: technologies = self.technologies.keys() else: technologies = [technologies] return technologies def __get_years(self, years): if type(years) == str: if years.lower() in ['all', 'a', 'everything']: years = range(self.start_year, self.end_year + 1) elif type(years) == int: years = [years] return years class Technology(): df =
pd.DataFrame()
pandas.DataFrame
import os import json import random import numpy as np import pandas as pd from copy import deepcopy from string import ascii_uppercase, digits from shutil import copyfile, rmtree, copytree from datetime import datetime #from ai.bot import Agent from ai.bot import Agent from tasks.games.chess.chess import Chess from skills.chess.game_plumbing import Plumbing from tools.toolbox import ToolBox class chess: """ Main interface for the AI to play chess """ def legal_moves(self, chess_game): """ Input: chess_game - object containing the current chess game Description: returns all legal moves Output: numpy array containing all legal moves """ legal = np.zeros((8, 8, 8, 8)) for cur, moves in chess_game.possible_board_moves(capture=True).items(): if len(moves) > 0 and ((cur[0].isupper() and chess_game.p_move == 1) or (cur[0].islower() and chess_game.p_move == -1)): cur_pos = chess_game.board_2_array(cur) for next in moves: legal[cur_pos[1]][cur_pos[0]][next[1]][next[0]] = 1. return legal.flatten() def play_game( self, game_name, epoch, train = False, EPD = None, SILENT = True, players = [ 'skills/chess/data/active_param.json', 'human' ], tie_min = 100, game_max = float('inf') ): """ Input: game_name - string representing the name of the match epoch - integer representing the current epoch train - boolean used as training control (Default = False) [OPTIONAL] EPD - string representing the EPD hash to load the board into (Default = None) [OPTIONAl] SILENT - boolean used for control of displaying stats or not (Default = True) [OPTIONAL] players - list containing the player paramater files (Default = ['skills/chess/data/active_param.json', 'human'] [OPTIONAL] tie_min - integer representing the minimum amount of moves for an auto tie game to be possible (Default = 100) [OPTIONAL] game_max - integer representing the maximum amount of moves playable before triggering an auto tie (Default = inf) [OPTIONAL] Description: play a game of chess Output: tuple containing the game outcome and a dataframe containing the game log """ log = [] human_code = [ 'h', 'hum', 'human' ] end = False a_players = [] plumbing = Plumbing() if EPD is None: chess_game = deepcopy(Chess()) #'rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w KQkq -' else: chess_game = deepcopy(Chess(EPD=EPD)) #'rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w KQkq -' while True: for i, p in enumerate(players): while True: if str(p).lower() in human_code and len(log) < len(players): a_players.append('human') elif len(log) < len(players): a_players.append(deepcopy(Agent(param_name = p, train = train))) if 'human' in a_players: if chess_game.p_move == 1: print('\nWhites Turn [UPPER CASE]\n') else: print('\nBlacks Turn [LOWER CASE]\n') chess_game.display() enc_state = plumbing.encode_state(chess_game) if a_players[i] == 'human': cur = input('What piece do you want to move?\n') next = input('Where do you want to move the piece to?\n') a_map = np.zeros((8, 8, 8, 8)) a_map[chess_game.y.index(cur[1])][chess_game.x.index(cur[0])][chess_game.y.index(next[1])][chess_game.x.index(next[0])] = 1 a_map = a_map.flatten() b_a = np.where(a_map == 1)[0][0] else: t1 = datetime.now() legal = self.legal_moves(chess_game) #Filter legal moves for inital state legal[legal == 0] = float('-inf') probs, v, r = a_players[i].choose_action(enc_state, legal_moves = legal) max_prob = max(probs) if SILENT == False: print('\n--------------- STATS ---------------') print(f' Player | {p}') print(f' Colour | {"white" if chess_game.p_move > 0 else "black"}') print('- - - - - - - - - - - - - - - - - - -') print(f' Value | {v}') print(f' Reward | {r}') print(f' Probability | {float(max_prob)*100}%') print('-------------------------------------\n') a_bank = [j for j, v in enumerate(probs) if v == max_prob] b_a = random.choice(a_bank) a_map = np.zeros(4096) a_map[b_a] = 1 a_map = a_map.reshape((8, 8, 8, 8)) a_index = [(cy, cx, ny, nx) for cy, cx, ny, nx in zip(*np.where(a_map == 1))][0] cur = f'{chess_game.x[a_index[1]]}{chess_game.y[a_index[0]]}' next = f'{chess_game.x[a_index[3]]}{chess_game.y[a_index[2]]}' valid = False if chess_game.move(cur, next) == False: if SILENT == False or str(p).lower() in human_code: print('Invalid move') else: valid = True cur_pos = chess_game.board_2_array(cur) next_pos = chess_game.board_2_array(next) if a_players[i] == 'human': log.append({ **{f'state{i}':float(s) for i, s in enumerate(enc_state[0])}, **{f'prob{x}':1 if x == ((cur_pos[0]+(cur_pos[1]*8))*64)+(next_pos[0]+(next_pos[1]*8)) else 0 for x in range(4096)}, **{'action':b_a} }) else: log.append({ **{f'state{i}':float(s) for i, s in enumerate(enc_state[0])}, **{f'prob{x}':p for x, p in enumerate(probs)}, **{'action':b_a, 'time':(datetime.now() - t1).total_seconds()} }) if SILENT == False or a_players[i] == 'human': if chess_game.p_move > 0: print(f'w {cur.lower()}-->{next.lower()} | GAME:{epoch} BOARD:{game_name} MOVE:{len(log)} HASH:{chess_game.EPD_hash()}\n') else: print(f'b {cur.lower()}-->{next.lower()} | GAME:{epoch} BOARD:{game_name} MOVE:{len(log)} HASH:{chess_game.EPD_hash()}\n') if a_players[i] != 'human': state = chess_game.check_state(chess_game.EPD_hash()) t_code = True if state != False else False if ((state == '50M' or state == '3F') and len(log) > tie_min) or len(log) >= game_max: state = [0, 1, 0] #Auto tie elif state == 'PP': chess_game.pawn_promotion(n_part='Q') #Auto queen if state != [0, 1, 0]: state = chess_game.is_end() if len(log) > tie_min else chess_game.is_end(choice=False) else: state = chess_game.is_end() if state == [0, 0, 0]: if chess_game.check_state(chess_game.EPD_hash()) == 'PP': chess_game.pawn_promotion() if sum(state) > 0: if SILENT == False or a_players[i] == 'human': print(f'FINISHED | GAME:{epoch} BOARD:{game_name} MOVE:{len(log)} STATE:{state}\n') game_train_data = pd.DataFrame(log) game_train_data = game_train_data.astype(float) end = True break if end == True: break if valid == True: chess_game.p_move = chess_game.p_move * (-1) if end == True: break del a_players if t_code == True: print(f'Game Code Found = {state}\n') return state, game_train_data def traing_session( self, loops = 15, games = 10, boards = 1, best_of = 5, EPD = None, SILENT = True, player = 'skills/chess/data/models/test', tie_min = 100, game_max = float('inf'), full_model = False ): """ Input: games - integer representing the amount of games to train on (Default = 10) [OPTIONAL] boards - integer representing the amount of boards to play at once (Default = 1) [OPTIONAL] best_of = integer representing the amount of games to use in a round-robin (Default = 5) [OPTIONAL] EPD - string representing the EPD hash to load the board into (Default = None) [OPTIONAl] SILENT - boolean used for control of displaying stats or not (Default = True) [OPTIONAL] players - list of player parameters (Default = [{'param':'skills/chess/data/new_param.json', 'train':True}] [OPTIONAL] tie_min - integer representing the minimum amount of moves for an auto tie game to be possible (Default = 100) [OPTIONAL] game_max - integer representing the maximum amount of moves playable before triggering an auto tie (Default = inf) [OPTIONAL] full_model - boolean representing if the full model is being trained every exploration game or not (Default = False) [OPTIONAL] Description: train ai by playing multiple games of chess Output: None """ #Initalize variables LOOPS = loops T_GAMES = games #Games of self play BOARDS = boards #Amount of boards to play on at a time BEST_OF = best_of #Amount of games played when evaluating the models if os.path.exists(f'{player}/logs/training_log.csv'): t_log = pd.read_csv(f'{player}/logs/training_log.csv') else: t_log = pd.DataFrame() n_player = player + '(temp)' if os.path.exists(n_player) == False: print('CREATE NEW') os.makedirs(n_player) #Create folder copyfile(f'{player}/parameters.json', f'{n_player}/parameters.json') #Overwrite active model with new model if os.path.exists(f'{n_player}/parameters.json'): if os.path.exists(f'{player}/weights') and len(os.listdir(f"{player}/weights")) > 0: copytree( f'{player}/weights', f'{n_player}/weights' ) else: os.makedirs(f'{n_player}/weights') train_data = pd.DataFrame() #Begin training games for _ in range(LOOPS): for t, g_count in enumerate([T_GAMES, BEST_OF]): if t == 0: a_players = [f'{n_player}/parameters.json'] #Self-play game_results = {'white':0, 'black':0, 'tie':0} pass else: a_players = [f'{player}/parameters.json', f'{n_player}/parameters.json'] #Evaluate game_results = {f'{player}/parameters.json':0, f'{n_player}/parameters.json':0, 'tie':0} pass for g in range(g_count): #PLAY GAME print(f'\nSTARTING GAMES\n') state, train_data = self.play_game( 'TEST', g, train = True if t == 0 else False, EPD = EPD, SILENT = SILENT, players = a_players, tie_min = tie_min, game_max = game_max ) if t == 0: if state == [1, 0, 0]: print(f'WHITE WINS') game_results['white'] += 1 train_data['value'] = np.where(train_data['state0'] == 0., 1., -1.) elif state == [0, 0, 1]: print(f'BLACK WINS') game_results['black'] += 1 train_data['value'] = np.where(train_data['state0'] == 0., -1., 1.) else: print('TIE GAME') game_results['tie'] += 1 train_data['value'] = [0.] * len(train_data) b_elo = '' else: print(game_results) if state == [1, 0, 0]: print(f'{a_players[0]} WINS') game_results[a_players[0]] += 1 train_data['value'] = np.where(train_data['state0'] == 0., 1., -1.) b_elo = 0 if n_player == a_players[0] else 1 elif state == [0, 0, 1]: print(f'{a_players[-1]} WINS') game_results[a_players[-1]] += 1 train_data['value'] = np.where(train_data['state0'] == 0., -1., 1.) b_elo = 0 if n_player == a_players[-1] else 1 else: print('TIE GAME') game_results['tie'] += 1 train_data['value'] = [0.] * len(train_data) b_elo = 0 print(game_results) print() #UPDATE TRAINING STATE if t == 0 and sum([v for v in game_results.values()]) >= g_count: game_results = {f'{player}/parameters.json':0, f'{n_player}/parameters.json':0, 'tie':0} elif t == 0: pass elif sum([v for v in game_results.values()]) >= g_count: m_wins = max(game_results.values()) winners = [p for p in game_results if game_results[p] == m_wins] print(winners) if os.path.exists(f'{player}/weights') == False: os.makedirs(f'{player}/weights') #Create folder if len(os.listdir(f'{player}/weights')) == 0 or len(winners) == 1 and winners[0] == n_player: print('OVERWRITE') ToolBox.overwrite_model( n_player, player ) game_results = {'white':0, 'black':0, 'tie':0} else: a_players.reverse() #LOG TRAINING DATA train_data['reward'] = [0.] * len(train_data) if os.path.exists(f'{player}/logs/game_log.csv'): g_log = pd.read_csv(f'{player}/logs/game_log.csv') else: g_log = pd.DataFrame() if t == 0: train_data['ELO'] = [''] * len(train_data) else: cur_ELO = g_log['ELO'].dropna().iloc[-1] if 'ELO' in g_log and len(g_log['ELO'].dropna()) > 0 else 0 ELO = ToolBox.update_ELO( cur_ELO, #ELO_p1, cur_ELO, #ELO_p2 tie = True if state == [0, 0, 0] else False ) train_data['ELO'] = [ELO[b_elo]] * len(train_data) #print(cur_ELO, ELO, b_elo) train_data['Game-ID'] = ''.join(random.choices(ascii_uppercase + digits, k=random.randint(15, 15))) train_data['Date'] = [datetime.now()] * len(train_data) g_log = g_log.append(train_data, ignore_index=True) if os.path.exists(f'{player}/logs') == False: os.makedirs(f'{player}/logs') #Create folder g_log.to_csv(f'{player}/logs/game_log.csv', index=False) if t == 0: if full_model == True: s_headers = [h for h in g_log if 'state' in h] #m_log = pd.DataFrame(Agent(param_name = f'{n_player}/parameters.json', train = False).train(g_log[g_log['value']!=0.0].drop_duplicates(subset=s_headers, keep='last'), folder=n_player)) m_log = pd.DataFrame(Agent(param_name = f'{n_player}/parameters.json', train = False).train(g_log.drop_duplicates(subset=s_headers, keep='last'), folder=n_player)) del s_headers else: if g == g_count - 1: s_headers = [h for h in g_log if 'state' in h] m_log = pd.DataFrame(Agent(param_name = f'{n_player}/parameters.json', train = False).train(g_log.drop_duplicates(subset=s_headers, keep='last'), folder=n_player)) del s_headers else: m_log = pd.DataFrame(Agent(param_name = f'{n_player}/parameters.json', train = False).train(train_data, folder=n_player, encoder=False)) if os.path.exists(f'{player}/logs/training_log.csv'): t_log = pd.read_csv(f'{player}/logs/training_log.csv') else: t_log = pd.DataFrame() m_log['model'] = player t_log = t_log.append(m_log, ignore_index=True) del m_log t_log.to_csv(f'{player}/logs/training_log.csv', index=False) del t_log #GARBEGE CLEAN UP del g_log train_data =
pd.DataFrame()
pandas.DataFrame
import numpy as np import pytest from pandas.errors import UnsupportedFunctionCall from pandas import DataFrame, DatetimeIndex, Series import pandas._testing as tm from pandas.core.window import Expanding def test_doc_string(): df = DataFrame({"B": [0, 1, 2, np.nan, 4]}) df df.expanding(2).sum() @pytest.mark.filterwarnings( "ignore:The `center` argument on `expanding` will be removed in the future" ) def test_constructor(frame_or_series): # GH 12669 c = frame_or_series(range(5)).expanding # valid c(min_periods=1) c(min_periods=1, center=True) c(min_periods=1, center=False) @pytest.mark.parametrize("w", [2.0, "foo", np.array([2])]) @pytest.mark.filterwarnings( "ignore:The `center` argument on `expanding` will be removed in the future" ) def test_constructor_invalid(frame_or_series, w): # not valid c = frame_or_series(range(5)).expanding msg = "min_periods must be an integer" with pytest.raises(ValueError, match=msg): c(min_periods=w) msg = "center must be a boolean" with pytest.raises(ValueError, match=msg): c(min_periods=1, center=w) @pytest.mark.parametrize("method", ["std", "mean", "sum", "max", "min", "var"]) def test_numpy_compat(method): # see gh-12811 e = Expanding(Series([2, 4, 6]), window=2) msg = "numpy operations are not valid with window objects" with pytest.raises(UnsupportedFunctionCall, match=msg): getattr(e, method)(1, 2, 3) with pytest.raises(UnsupportedFunctionCall, match=msg): getattr(e, method)(dtype=np.float64) @pytest.mark.parametrize( "expander", [ 1, pytest.param( "ls", marks=pytest.mark.xfail( reason="GH#16425 expanding with offset not supported" ), ), ], ) def test_empty_df_expanding(expander): # GH 15819 Verifies that datetime and integer expanding windows can be # applied to empty DataFrames expected = DataFrame() result = DataFrame().expanding(expander).sum() tm.assert_frame_equal(result, expected) # Verifies that datetime and integer expanding windows can be applied # to empty DataFrames with datetime index expected = DataFrame(index=DatetimeIndex([])) result = DataFrame(index=DatetimeIndex([])).expanding(expander).sum() tm.assert_frame_equal(result, expected) def test_missing_minp_zero(): # https://github.com/pandas-dev/pandas/pull/18921 # minp=0 x = Series([np.nan]) result = x.expanding(min_periods=0).sum() expected = Series([0.0]) tm.assert_series_equal(result, expected) # minp=1 result = x.expanding(min_periods=1).sum() expected = Series([np.nan]) tm.assert_series_equal(result, expected) def test_expanding_axis(axis_frame): # see gh-23372. df = DataFrame(np.ones((10, 20))) axis = df._get_axis_number(axis_frame) if axis == 0: expected = DataFrame( {i: [np.nan] * 2 + [float(j) for j in range(3, 11)] for i in range(20)} ) else: # axis == 1 expected = DataFrame([[np.nan] * 2 + [float(i) for i in range(3, 21)]] * 10) result = df.expanding(3, axis=axis_frame).sum() tm.assert_frame_equal(result, expected) def test_expanding_count_with_min_periods(frame_or_series): # GH 26996 result = frame_or_series(range(5)).expanding(min_periods=3).count() expected = frame_or_series([np.nan, np.nan, 3.0, 4.0, 5.0]) tm.assert_equal(result, expected) def test_expanding_count_default_min_periods_with_null_values(frame_or_series): # GH 26996 values = [1, 2, 3, np.nan, 4, 5, 6] expected_counts = [1.0, 2.0, 3.0, 3.0, 4.0, 5.0, 6.0] result = frame_or_series(values).expanding().count() expected = frame_or_series(expected_counts) tm.assert_equal(result, expected) def test_expanding_count_with_min_periods_exceeding_series_length(frame_or_series): # GH 25857 result = frame_or_series(range(5)).expanding(min_periods=6).count() expected = frame_or_series([np.nan, np.nan, np.nan, np.nan, np.nan]) tm.assert_equal(result, expected) @pytest.mark.parametrize( "df,expected,min_periods", [ ( DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]}), [ ({"A": [1], "B": [4]}, [0]), ({"A": [1, 2], "B": [4, 5]}, [0, 1]), ({"A": [1, 2, 3], "B": [4, 5, 6]}, [0, 1, 2]), ], 3, ), ( DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]}), [ ({"A": [1], "B": [4]}, [0]), ({"A": [1, 2], "B": [4, 5]}, [0, 1]), ({"A": [1, 2, 3], "B": [4, 5, 6]}, [0, 1, 2]), ], 2, ), ( DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]}), [ ({"A": [1], "B": [4]}, [0]), ({"A": [1, 2], "B": [4, 5]}, [0, 1]), ({"A": [1, 2, 3], "B": [4, 5, 6]}, [0, 1, 2]), ], 1, ), (DataFrame({"A": [1], "B": [4]}), [], 2), (DataFrame(), [({}, [])], 1), ( DataFrame({"A": [1, np.nan, 3], "B": [np.nan, 5, 6]}), [ ({"A": [1.0], "B": [np.nan]}, [0]), ({"A": [1, np.nan], "B": [np.nan, 5]}, [0, 1]), ({"A": [1, np.nan, 3], "B": [np.nan, 5, 6]}, [0, 1, 2]), ], 3, ), ( DataFrame({"A": [1, np.nan, 3], "B": [np.nan, 5, 6]}), [ ({"A": [1.0], "B": [np.nan]}, [0]), ({"A": [1, np.nan], "B": [np.nan, 5]}, [0, 1]), ({"A": [1, np.nan, 3], "B": [np.nan, 5, 6]}, [0, 1, 2]), ], 2, ), ( DataFrame({"A": [1, np.nan, 3], "B": [np.nan, 5, 6]}), [ ({"A": [1.0], "B": [np.nan]}, [0]), ({"A": [1, np.nan], "B": [np.nan, 5]}, [0, 1]), ({"A": [1, np.nan, 3], "B": [np.nan, 5, 6]}, [0, 1, 2]), ], 1, ), ], ) def test_iter_expanding_dataframe(df, expected, min_periods): # GH 11704 expected = [DataFrame(values, index=index) for (values, index) in expected] for (expected, actual) in zip(expected, df.expanding(min_periods)): tm.assert_frame_equal(actual, expected) @pytest.mark.parametrize( "ser,expected,min_periods", [ (Series([1, 2, 3]), [([1], [0]), ([1, 2], [0, 1]), ([1, 2, 3], [0, 1, 2])], 3), (Series([1, 2, 3]), [([1], [0]), ([1, 2], [0, 1]), ([1, 2, 3], [0, 1, 2])], 2), (Series([1, 2, 3]), [([1], [0]), ([1, 2], [0, 1]), ([1, 2, 3], [0, 1, 2])], 1), (
Series([1, 2])
pandas.Series
import io import json import os import re import pickle import subprocess import pandas as pd import numpy as np from textblob import TextBlob, Blobber from textblob_de import TextBlobDE as TextBlobDE from textblob_fr import PatternTagger as PatternTaggerFR, PatternAnalyzer as PatternAnalyzerFR import nltk nltk.download('punkt') import sdi_utils.gensolution as gs import sdi_utils.set_logging as slog import sdi_utils.textfield_parser as tfp import sdi_utils.tprogress as tp supported_languages = ['EN','DE','FR'] try: api except NameError: class api: queue = list() class Message: def __init__(self, body=None, attributes=""): self.body = body self.attributes = attributes def send(port, msg): if port == outports[1]['name']: api.queue.append(msg) def set_config(config): api.config = config class config: ## Meta data config_params = dict() tags = {'sdi_utils': '','textblob':''} version = "0.1.0" operator_name = "text_sentiment" operator_description = "Text Sentiment Analysis" operator_description_long = "Text Sentiment Analysis using Textblob. " add_readme = dict() debug_mode = True config_params['debug_mode'] = {'title': 'Debug mode', 'description': 'Sending debug level information to log port', 'type': 'boolean'} last_msg = None id_set = set() operator_name = 'sentiment analysis' logger, log_stream = slog.set_logging(operator_name, loglevel=api.config.debug_mode) logger.info("Process started") time_monitor = tp.progress() def get_sentiment(text, language): if isinstance(text,str) : if language == 'DE': blob = TextBlobDE(text) return [blob.sentiment.polarity, blob.sentiment.subjectivity] elif language == 'FR' : tb = Blobber(pos_tagger=PatternTaggerFR(), analyzer=PatternAnalyzerFR()) blob = tb(text) return blob.sentiment else: blob = TextBlob(text) return [blob.sentiment.polarity, blob.sentiment.subjectivity] def process(msg): global setup_data global last_msg global hash_text_list df = msg.body att_dict = msg.attributes df['polarity'] = np.nan df['subjectivity'] = np.nan df[['polarity','subjectivity']] = df.apply(lambda row: pd.Series(get_sentiment(row['text'], row['language']),dtype='object'),axis=1) df['polarity'] = df['polarity'].round(2) df['subjectivity'] = df['subjectivity'].round(2) logger.info('Text processed: {}'.format(df.shape[0])) logger.debug('Process ended{}'.format(time_monitor.elapsed_time())) api.send(outports[0]['name'], log_stream.getvalue()) api.send(outports[1]['name'], api.Message(attributes=att_dict,body=df[['text_id','polarity','subjectivity']])) inports = [{'name': 'sentiment_list', 'type': 'message.DataFrame', "description": "Sentiment list"}, {'name': 'texts', 'type': 'message.DataFrame', "description": "DataFrame with texts"}] outports = [{'name': 'log', 'type': 'string', "description": "Logging data"}, {'name': 'data', 'type': 'message.DataFrame', "description": "data of sentiments"}] # api.set_port_callback(inports[0]['name'], setup_sentiment_list) # api.set_port_callback(inports[1]['name'], process) def test_operator(): config = api.config config.debug_mode = True config.language_filter = 'DE' config.use_sentiment_word_list = True api.set_config(config) doc_file = '/Users/Shared/data/onlinemedia/data/doc_data_cleansed.csv' df = pd.read_csv(doc_file, sep=',', nrows=1000000000) msg = api.Message(attributes={'file': {'path': doc_file}, 'format': 'pandas'}, body=df) process(msg) out_file = '/Users/Shared/data/onlinemedia/data/text_sentiment.csv' df_list = [d.body for d in api.queue]
pd.concat(df_list)
pandas.concat
""" Transfer applications. |pic1| .. |pic1| image:: ../images_source/transfer_tools/transfer.png :width: 30% """ import os import sys from subprocess import Popen, PIPE from pathlib import Path import pandas as pd import pexpect import requests import zipfile from selenium.webdriver.chrome import webdriver import urllib3 import pdfplumber import io class Access: """ Functions for accessing file systems and protocols. """ @classmethod def proxies(cls, domain): """ A function to create an http/https proxy address. :param domain: domain address. :return: Http/https proxy address. """ res = { 'http': 'http://' + \ os.environ['usr'] + \ ':' + os.environ['pwd'] + \ f'@proxyfarm.{domain}.com:8080' , 'https': 'https://' + \ os.environ['usr'] + \ ':' + os.environ['pwd'] + \ f'@proxyfarm.{domain}.com:8080' } return res class Local: """ Functions for accessing local files. """ @classmethod def zip_dir(cls, directory_list, zipname): """ Compress a directory into a single ZIP file. :param directory_list: List of files to compress into zip file. :param zipname: Name of zip file to compress files into. :return: Zip file containing files. """ outZipFile = zipfile.ZipFile(zipname, 'w', zipfile.ZIP_DEFLATED) for idx, dir in enumerate(directory_list): # if idx == 0: break if not os.path.exists(dir): print(f"Error, directory {dir} does not exist") continue # The root directory within the ZIP file. rootdir = os.path.basename(dir) try: os.listdir(dir) for dirpath, dirnames, filenames in os.walk(dir): for filename in filenames: # Write the file named filename to the archive, # giving it the archive name 'arcname'. filepath = os.path.join(dirpath, filename) parentpath = os.path.relpath(filepath, dir) arcname = os.path.join(rootdir, parentpath) outZipFile.write(filepath, arcname) except: # exception means there are no files inside the directory # so we write the normal file outZipFile.write(dir, dir.split("/")[-1]) outZipFile.close() @classmethod def clear_delete_directory(cls, directory, method="delete"): """ Clears and/or deletes a directory and its contents. :param directory: Filepath of directory. :param method: Optional delete for the directory folder. :return: Nothing. """ directory = Path(directory) for item in directory.iterdir(): if item.is_dir(): Local.clear_delete_directory(item) else: item.unlink() if method == "delete": directory.rmdir() @classmethod def fix_user_path(cls, dir): """ Fixes a local filepath. :param dir: Directory to patch. :return: Patched directory. """ dir_components = dir.split("/") search = "Users" for idx, elem in enumerate(dir_components): if elem == search: break dir_components[idx + 1] = os.environ['os_name'] r = "/".join(dir_components) return r @classmethod def get_all_filetimes(cls, dir, exclude=False): """ Creates a Pandas DataFrame of filenames and file times in a given directory. :param dir: Directory of files. :param exclude: A string to search for files to exclude. :return: Pandas DataFrame of filenames and file times to a directory. """ files = os.listdir(dir) if exclude: files = [f for f in files if exclude not in f] times = [os.path.getmtime(dir + f) for f in files] file_times = pd.DataFrame({"files": files, "times": times}) return file_times @classmethod def get_latest_file(cls, name, dir, exclude=False): """ Get the latest file in a directory. :param name: String match name of file(s). :param dir: Directory for the file search. :param exclude: A string to search for files to exclude. :return: Name of most recent file. """ # file name str to lowercase name = name.lower() # get list of files files = os.listdir(dir) if exclude: files = [f for f in files if exclude not in f] times = [os.path.getmtime(dir + f) for f in files] file_times = pd.DataFrame({"files": files, "times": times}) file_times['files_lower'] = file_times['files'].str.lower() file_times = file_times[file_times['files_lower'].str.contains(name)] read_file = file_times[file_times['times'] == max(file_times['times'])]['files'] read_file = read_file.values[0] return read_file @classmethod def read_files_like(cls, name, dir, ext_typ, sheet_name=False): """ Reads and concatenates files in a directory that match a string. Returns a Pandas DataFrame. :param name: A string search to match. :param dir: Directory to search for files in. :param ext_typ: Extension type to search for (.XLSX OR .CSV) :param sheet_name: If extension type is not ".CSV", specifies the sheet number or sheet name to read. :return: Concatenated Pandas DataFrames that match a string. """ files = os.listdir(dir) files = pd.DataFrame({"files": files}) files['files'] = files['files'].str.lower() files = files[( files['files'].str.contains(name) & files['files'].str.contains(ext_typ) )] files.reset_index(inplace=True) for idx, f in files.iterrows(): if ext_typ == "csv": dat = pd.read_csv(dir + f['files']) else: dat = pd.read_excel(dir + f['files'], sheet_name=sheet_name) if idx == 0: dat_all = dat else: dat_all =
pd.concat([dat_all, dat])
pandas.concat
import sys import pandas as pd import numpy as np from scipy import stats from itertools import compress import statsmodels.stats.multitest as smt import scikits.bootstrap as bootstrap from sklearn.decomposition import PCA from .scaler import scaler from .imputeData import imputeData class statistics: usage = """Generate a table of parametric or non-parametric statistics and merges them with the Peak Table (node table). Initial_Parameters ---------- peaktable : Pandas dataframe containing peak data. Must contain 'Name' and 'Label'. datatable : Pandas dataframe matrix containing values for statistical analysis Methods ------- set_params : Set parameters - parametric: Perform parametric statistical analysis, assuming the data is normally distributed (default: True) log_data: Perform a log ('natural', base 2 or base 10) on all data prior to statistical analysis (default: (False, 2)) scale_data: Scale the data ('standard' (centers to the mean and scales to unit variance), 'minmax' (scales between 0 and 1), 'maxabs' (scales to the absolute maximum value), 'robust' (centers to the median and scales to between 25th and 75th quantile range) (default: (True, 'standard')) impute_data: Impute any missing values using KNN impute with a set number of nearest neighbours (default: (False, 3)) group_column_name: The group column name used in the datatable (default: None) control_group_name: The control group name in the datatable, if available (default: None) group_alpha_CI: The alpha value for group confidence intervals (default: 0.05) fold_change_alpha_CI: The alpha value for mean/median fold change confidence intervals (default: 0.05) pca_alpha_CI: The alpha value for the PCA confidence intervals (default: 0.05) total_missing: Calculate the total missing values per feature (Default: False) group_missing: Calculate the missing values per feature per group (if group_column_name not None) (Default: False) pca_loadings: Calculate PC1 and PC2 loadings for each feature (Default: True) normality_test: Determine normal distribution across whole dataset using Shapiro-Wilk test (pvalues < 0.05 ~ non-normal distribution) (default: True) group_normality_test: Determine normal distribution across each group (if group_column_name not None) using Shapiro-Wilk test (pvalues < 0.05 ~ non-normal distribution) (default: True) group_mean_CI: Determine the mean with bootstrapped CI across each group (if parametric = True and group_column_name not None) (default: True) group_median_CI: Determine the median with bootstrapped CI across each group (if parametric = False and group_column_name not None) (default: True) mean_fold_change: Calculate the mean fold change with bootstrapped confidence intervals (if parametric = True, group_column_name not None and control_group_name not None) (default: False) median_fold_change: Calculate the median fold change with bootstrapped confidence intervals (if parametric = False, group_column_name not None and control_group_name not None) (default: False) levene_twoGroup: Test null hypothesis that control group and each of the other groups come from populations with equal variances (if group_column_name not None and control_group_name not None) (default: False) levene_allGroup: Test null hypothesis that all groups come from populations with equal variances (if group_column_name not None) (default: False) oneway_Anova_test: Test null hypothesis that all groups have the same population mean, with included Benjamini-Hochberg FDR (if parametric = True and group_column_name not None) (default: False) kruskal_wallis_test: Test null hypothesis that population median of all groups are equal, with included Benjamini-Hochberg FDR (if parametric = False and group_column_name not None) (default: False) ttest_oneGroup: Calculate the T-test for the mean across all the data (one group), with included Benjamini-Hochberg FDR (if parametric = True, group_column_name is None or there is only 1 group in the data) (default: False) ttest_twoGroup: Calculate the T-test for the mean of two groups, with one group being the control group, with included Benjamini-Hochberg FDR (if parametric = True, group_column_name not None and control_group_name not None) (default: False) mann_whitney_u_test: Compute the Mann-Whitney U test to determine differences in distribution between two groups, with one being the control group, with included Benjamini-Hochberg FDR (if parametric = False, group_column_name not None and control_group_name not None) (default: False) help : Print this help text calculate : Performs the statistical calculations and outputs the Peak Table (node table) with the results appended. """ def __init__(self, peaktable, datatable): peaktable = self.__checkPeakTable(self.__checkData(peaktable)) datatable = self.__checkData(datatable) #Slice the meta-data, and select only peaks from the peaktable for processing, and add the meta-data back meta = datatable.T[~datatable.T.index.isin(peaktable['Name'])].T.reset_index(drop=True) dat = datatable[peaktable['Name']].reset_index() datatable = pd.concat([meta, dat], axis=1).set_index(['index']) datatable.index.name = None self.__peaktable = peaktable self.__datatable = datatable self.set_params() def help(self): print(statistics.usage) def set_params(self, parametric=True, log_data=(False,2), scale_data=(False, 'standard'), impute_data=(False, 3), group_column_name=None, control_group_name=None, group_alpha_CI=0.05, fold_change_alpha_CI=0.05, pca_alpha_CI=0.05, total_missing=False, group_missing=False, pca_loadings=True, normality_test=True, group_normality_test=True, group_mean_CI=True, group_median_CI=True, mean_fold_change=False, median_fold_change=False, kruskal_wallis_test=False, levene_twoGroup=False, levene_allGroup=False, oneway_Anova_test=False, ttest_oneGroup=False, ttest_twoGroup=False, mann_whitney_u_test=False): parametric, log_data, scale_data, impute_data, group_column_name, control_group_name, group_alpha_CI, fold_change_alpha_CI, pca_alpha_CI, total_missing, group_missing, pca_loadings, normality_test, group_normality_test, group_mean_CI, group_median_CI, mean_fold_change, median_fold_change, oneway_Anova_test, kruskal_wallis_test, levene_twoGroup, levene_allGroup, ttest_oneGroup, ttest_twoGroup, mann_whitney_u_test = self.__paramCheck(parametric, log_data, scale_data, impute_data, group_column_name, control_group_name, group_alpha_CI, fold_change_alpha_CI, pca_alpha_CI, total_missing, group_missing, pca_loadings, normality_test, group_normality_test, group_mean_CI, group_median_CI, mean_fold_change, median_fold_change, oneway_Anova_test, kruskal_wallis_test, levene_twoGroup, levene_allGroup, ttest_oneGroup, ttest_twoGroup, mann_whitney_u_test) self.__parametric = parametric; self.__log_data = log_data; self.__scale_data = scale_data; self.__impute_data = impute_data; self.__group_column_name = group_column_name; self.__control_group_name = control_group_name; self.__group_alpha_CI = group_alpha_CI; self.__fold_change_alpha_CI = fold_change_alpha_CI; self.__pca_alpha_CI = pca_alpha_CI; self.__total_missing = total_missing; self.__group_missing = group_missing; self.__pca_loadings = pca_loadings; self.__normality_test = normality_test; self.__group_normality_test = group_normality_test; self.__group_mean_CI = group_mean_CI; self.__group_median_CI = group_median_CI; self.__mean_fold_change = mean_fold_change; self.__median_fold_change = median_fold_change; self.__oneway_Anova_test = oneway_Anova_test; self.__kruskal_wallis_test = kruskal_wallis_test; self.__levene_twoGroup = levene_twoGroup; self.__levene_allGroup = levene_allGroup; self.__ttest_oneGroup = ttest_oneGroup; self.__ttest_twoGroup = ttest_twoGroup; self.__mann_whitney_u_test = mann_whitney_u_test; def calculate(self): peaktable = self.__peaktable datatable = self.__datatable parametric = self.__parametric log_data = self.__log_data scale_data = self.__scale_data impute_data = self.__impute_data group_column_name = self.__group_column_name control_group_name = self.__control_group_name group_alpha_CI = self.__group_alpha_CI fold_change_alpha_CI = self.__fold_change_alpha_CI pca_alpha_CI = self.__pca_alpha_CI total_missing = self.__total_missing group_missing = self.__group_missing pca_loadings = self.__pca_loadings normality_test = self.__normality_test group_normality_test = self.__group_normality_test group_mean_CI = self.__group_mean_CI group_median_CI = self.__group_median_CI mean_fold_change = self.__mean_fold_change median_fold_change = self.__median_fold_change kruskal_wallis_test = self.__kruskal_wallis_test levene_twoGroup = self.__levene_twoGroup levene_allGroup = self.__levene_allGroup oneway_Anova_test = self.__oneway_Anova_test ttest_oneGroup = self.__ttest_oneGroup ttest_twoGroup = self.__ttest_twoGroup mann_whitney_u_test = self.__mann_whitney_u_test peakNames = list(peaktable['Name'].values) meta = datatable.T[~datatable.T.index.isin(peakNames)].T.reset_index(drop=True) peakData = datatable[peakNames].reset_index(drop=True) (log_bool, log_base) = log_data; if log_bool: if isinstance(log_base, str) and log_base.lower() == 'natural': peakData = peakData.applymap(np.log) elif log_base == 2: peakData = peakData.applymap(np.log2) elif log_base == 10: peakData = peakData.applymap(np.log10) else: print("Error: The chosen log type is invalid.") sys.exit() (scale_bool, scale_type) = scale_data if scale_bool: if isinstance(scale_type, str) and scale_type.lower() == 'standard': peakData = scaler(peakData, type=scale_type.lower()).reset_index(drop=True) elif isinstance(scale_type, str) and scale_type.lower() == 'minmax': peakData = scaler(peakData, type=scale_type.lower()).reset_index(drop=True) elif isinstance(scale_type, str) and scale_type.lower() == 'maxabs': peakData = scaler(peakData, type=scale_type.lower()).reset_index(drop=True) elif isinstance(scale_type, str) and scale_type.lower() == 'robust': peakData = scaler(peakData, type=scale_type.lower()).reset_index(drop=True) else: print("Error: The chosen scale type is invalid.") sys.exit() (impute_bool, k) = impute_data; if impute_bool: peakData = imputeData(peakData, k=k).reset_index(drop=True) if not isinstance(peakData, pd.DataFrame): peakData = pd.DataFrame(peakData, columns=list(peakNames)).reset_index(drop=True) #Add the meta data back in with the logged, scaled, or imputed data datatable = pd.concat([meta, peakData], axis=1).reset_index(drop=True) statsData = pd.DataFrame() if group_column_name is not None: groups = np.unique(datatable[group_column_name].values) groupData = [] # Append each group to a list for group in groups: groupData.append(datatable.loc[datatable[group_column_name] == group]) #Iterate over each peak/feature and calculate statistics for peakName in peakNames: statsDataDict = {} groupDict = {} df_totalGrpMissing = pd.DataFrame() totalGrpMissingTitles = [] df_meanFold = pd.DataFrame() df_medianFold = pd.DataFrame() df_mannWhitney = pd.DataFrame() df_ttest = pd.DataFrame() df_levene_twoGroup = pd.DataFrame() df_groupNormality = pd.DataFrame() df_grpMeanCI = pd.DataFrame() df_grpMedianCI = pd.DataFrame() mannWhitneyTitles = [] ttestTitles = [] leveneTwoGroupTitles = [] mannwhitney_pvalue_name = '' mannwhitney_statistic_name = '' # for each group populate a group dictionary if group_column_name is not None: for grpIdx, group in enumerate(groupData): # Calculate values missing within each group if group_missing: df_totalGrpMissing = self.__GroupMissing_Calc(group, groups, grpIdx, peakName, totalGrpMissingTitles, df_totalGrpMissing) statsDataDict['GroupMissingValues'] = df_totalGrpMissing x = group[[peakName]].values groupDict[groups[grpIdx]] = x[~np.isnan(x)] if control_group_name is not None: controlGroup = groupDict[control_group_name]; if group_column_name is not None: for key, group in groupDict.items(): if group_normality_test: df_groupNormality = self.__GroupNormality(key, group, df_groupNormality) statsDataDict['GroupNormality'] = df_groupNormality if parametric: if group_mean_CI: df_grpMeanCI = self.__GroupMeanCI(key, group, df_grpMeanCI, group_alpha_CI) statsDataDict['GroupMeanCI'] = df_grpMeanCI else: if group_median_CI: df_grpMedianCI = self.__GroupMedianCI(key, group, df_grpMedianCI, group_alpha_CI) statsDataDict['GroupMedianCI'] = df_grpMedianCI if key != control_group_name and control_group_name is not None: # Merge group and control, accounting for different array lengths by replacing with nan (indices need to be the same length for bootstrapping) groupPairDict = dict(controlGroup=controlGroup, caseGroup=group) groupPair = pd.DataFrame(dict([ (k,pd.Series(v)) for k,v in groupPairDict.items() ])) controlList = np.array(groupPair['controlGroup'].values) caseList = np.array(groupPair['caseGroup'].values) groupList = list(zip(controlList, caseList)) if parametric: if ttest_twoGroup: # T-test statistic calculation for two samples (one always being the control) TTEST_twoGroup_statistic, TTEST_twoGroup_pvalue = self.__TTEST_twoGroup(groupList) if mean_fold_change: meanFoldChange = self.__mean_fold(groupList) # Boostrap for confidence intervals for the mean fold change if ((len(group) > 2) and (len(controlGroup) > 2)): meanFold = lambda x: self.__mean_fold(x) CIs = bootstrap.ci(data=groupList, statfunction=meanFold, n_samples=500, alpha=fold_change_alpha_CI) else: CIs = [np.nan, np.nan] else: if mann_whitney_u_test: # Mann-Whitney U statistic calculation for two samples (one always being the control) MannWhitney_statistic, MannWhitney_pvalue = self.__MANN_WHITNEY_U(groupList) if median_fold_change: medianFoldChange = self.__median_fold(groupList) # Boostrap for confidence intervals for the median fold change if ((len(group) > 2) and (len(controlGroup) > 2)): medianFold = lambda x: self.__median_fold(x) CIs = bootstrap.ci(data=groupList, statfunction=medianFold, n_samples=500, alpha=fold_change_alpha_CI) else: CIs = [np.nan, np.nan] if levene_twoGroup: # Levene statistic calculation for two samples (one always being the control) LEVENE_twoGroup_statistic, LEVENE_twoGroup_pvalue = self.__LEVENE_twoGroup(groupList) if parametric: ttest_twoGroup_statistics_name = 'TTEST-twoGroup_statistic_' + str(key) ttest_twoGroup_pvalue_name = 'TTEST-twoGroup_pvalue_' + str(key) ttestTitles.append(ttest_twoGroup_statistics_name) ttestTitles.append(ttest_twoGroup_pvalue_name) mean_fold_change_name = 'MeanFoldChange_' + str(key) mean_fold_change_name_CIlower = 'MeanFoldChange_CI_lower_' + str(key) mean_fold_change_name_CIupper = 'MeanFoldChange_CI_upper_' + str(key) mean_fold_change_name_sig = 'MeanFoldChange_sig_' + str(key) else: mannwhitney_statistic_name = 'MannWhitneyU_statistic_' + str(key) mannwhitney_pvalue_name = 'MannWhitneyU_pvalue_' + str(key) mannWhitneyTitles.append(mannwhitney_statistic_name) mannWhitneyTitles.append(mannwhitney_pvalue_name) median_fold_change_name = 'MedianFoldChange_' + str(key) median_fold_change_name_CIlower = 'MedianFoldChange_CI_lower_' + str(key) median_fold_change_name_CIupper = 'MedianFoldChange_CI_upper_' + str(key) median_fold_change_name_sig = 'MedianFoldChange_sig_' + str(key) levene_twoGroup_statistics_name = 'LEVENE-twoGroup_statistic_' + str(key) levene_twoGroup_pvalue_name = 'LEVENE-twoGroup_pvalue_' + str(key) leveneTwoGroupTitles.append(levene_twoGroup_statistics_name) leveneTwoGroupTitles.append(levene_twoGroup_pvalue_name) if ttest_twoGroup and parametric: if df_ttest.empty: df_ttest = pd.DataFrame({ttest_twoGroup_statistics_name: [TTEST_twoGroup_statistic], ttest_twoGroup_pvalue_name: [TTEST_twoGroup_pvalue]}) else: df_ttest = pd.concat([df_ttest, pd.DataFrame({ttest_twoGroup_statistics_name: [TTEST_twoGroup_statistic], ttest_twoGroup_pvalue_name: [TTEST_twoGroup_pvalue]})], axis=1).reset_index(drop=True) statsDataDict['TTEST-twoGroup'] = df_ttest if mann_whitney_u_test and not parametric: if df_mannWhitney.empty: df_mannWhitney = pd.DataFrame({mannwhitney_statistic_name: [MannWhitney_statistic], mannwhitney_pvalue_name: [MannWhitney_pvalue]}) else: df_mannWhitney = pd.concat([df_mannWhitney, pd.DataFrame({mannwhitney_statistic_name: [MannWhitney_statistic], mannwhitney_pvalue_name: [MannWhitney_pvalue]})], axis=1).reset_index(drop=True) statsDataDict['MannWhitneyU'] = df_mannWhitney if mean_fold_change and parametric: sigMeanFold = np.add(np.sign(np.multiply(CIs[0], CIs[1])), 1).astype(bool); if df_meanFold.empty: df_meanFold = pd.DataFrame({mean_fold_change_name: [meanFoldChange], mean_fold_change_name_CIlower: CIs[0], mean_fold_change_name_CIupper: CIs[1], mean_fold_change_name_sig: [sigMeanFold]}) else: df_meanFold = pd.concat([df_meanFold,
pd.DataFrame({mean_fold_change_name: [meanFoldChange], mean_fold_change_name_CIlower: CIs[0], mean_fold_change_name_CIupper: CIs[1], mean_fold_change_name_sig: [sigMeanFold]})
pandas.DataFrame
# coding=utf-8 # pylint: disable-msg=E1101,W0612 from datetime import datetime, timedelta from numpy import nan import numpy as np import pandas as pd from pandas.types.common import is_integer, is_scalar from pandas import Index, Series, DataFrame, isnull, date_range from pandas.core.index import MultiIndex from pandas.core.indexing import IndexingError from pandas.tseries.index import Timestamp from pandas.tseries.offsets import BDay from pandas.tseries.tdi import Timedelta from pandas.compat import lrange, range from pandas import compat from pandas.util.testing import assert_series_equal, assert_almost_equal import pandas.util.testing as tm from pandas.tests.series.common import TestData JOIN_TYPES = ['inner', 'outer', 'left', 'right'] class TestSeriesIndexing(TestData, tm.TestCase): _multiprocess_can_split_ = True def test_get(self): # GH 6383 s = Series(np.array([43, 48, 60, 48, 50, 51, 50, 45, 57, 48, 56, 45, 51, 39, 55, 43, 54, 52, 51, 54])) result = s.get(25, 0) expected = 0 self.assertEqual(result, expected) s = Series(np.array([43, 48, 60, 48, 50, 51, 50, 45, 57, 48, 56, 45, 51, 39, 55, 43, 54, 52, 51, 54]), index=pd.Float64Index( [25.0, 36.0, 49.0, 64.0, 81.0, 100.0, 121.0, 144.0, 169.0, 196.0, 1225.0, 1296.0, 1369.0, 1444.0, 1521.0, 1600.0, 1681.0, 1764.0, 1849.0, 1936.0], dtype='object')) result = s.get(25, 0) expected = 43 self.assertEqual(result, expected) # GH 7407 # with a boolean accessor df = pd.DataFrame({'i': [0] * 3, 'b': [False] * 3}) vc = df.i.value_counts() result = vc.get(99, default='Missing') self.assertEqual(result, 'Missing') vc = df.b.value_counts() result = vc.get(False, default='Missing') self.assertEqual(result, 3) result = vc.get(True, default='Missing') self.assertEqual(result, 'Missing') def test_delitem(self): # GH 5542 # should delete the item inplace s = Series(lrange(5)) del s[0] expected = Series(lrange(1, 5), index=lrange(1, 5)) assert_series_equal(s, expected) del s[1] expected = Series(lrange(2, 5), index=lrange(2, 5)) assert_series_equal(s, expected) # empty s = Series() def f(): del s[0] self.assertRaises(KeyError, f) # only 1 left, del, add, del s = Series(1) del s[0] assert_series_equal(s, Series(dtype='int64', index=Index( [], dtype='int64'))) s[0] = 1 assert_series_equal(s, Series(1)) del s[0] assert_series_equal(s, Series(dtype='int64', index=Index( [], dtype='int64'))) # Index(dtype=object) s = Series(1, index=['a']) del s['a'] assert_series_equal(s, Series(dtype='int64', index=Index( [], dtype='object'))) s['a'] = 1 assert_series_equal(s, Series(1, index=['a'])) del s['a'] assert_series_equal(s, Series(dtype='int64', index=Index( [], dtype='object'))) def test_getitem_setitem_ellipsis(self): s = Series(np.random.randn(10)) np.fix(s) result = s[...] assert_series_equal(result, s) s[...] = 5 self.assertTrue((result == 5).all()) def test_getitem_negative_out_of_bounds(self): s = Series(tm.rands_array(5, 10), index=tm.rands_array(10, 10)) self.assertRaises(IndexError, s.__getitem__, -11) self.assertRaises(IndexError, s.__setitem__, -11, 'foo') def test_pop(self): # GH 6600 df = DataFrame({'A': 0, 'B': np.arange(5, dtype='int64'), 'C': 0, }) k = df.iloc[4] result = k.pop('B') self.assertEqual(result, 4) expected = Series([0, 0], index=['A', 'C'], name=4) assert_series_equal(k, expected) def test_getitem_get(self): idx1 = self.series.index[5] idx2 = self.objSeries.index[5] self.assertEqual(self.series[idx1], self.series.get(idx1)) self.assertEqual(self.objSeries[idx2], self.objSeries.get(idx2)) self.assertEqual(self.series[idx1], self.series[5]) self.assertEqual(self.objSeries[idx2], self.objSeries[5]) self.assertEqual( self.series.get(-1), self.series.get(self.series.index[-1])) self.assertEqual(self.series[5], self.series.get(self.series.index[5])) # missing d = self.ts.index[0] - BDay() self.assertRaises(KeyError, self.ts.__getitem__, d) # None # GH 5652 for s in [Series(), Series(index=list('abc'))]: result = s.get(None) self.assertIsNone(result) def test_iget(self): s = Series(np.random.randn(10), index=lrange(0, 20, 2)) # 10711, deprecated with tm.assert_produces_warning(FutureWarning): s.iget(1) # 10711, deprecated with tm.assert_produces_warning(FutureWarning): s.irow(1) # 10711, deprecated with tm.assert_produces_warning(FutureWarning): s.iget_value(1) for i in range(len(s)): result = s.iloc[i] exp = s[s.index[i]] assert_almost_equal(result, exp) # pass a slice result = s.iloc[slice(1, 3)] expected = s.ix[2:4] assert_series_equal(result, expected) # test slice is a view result[:] = 0 self.assertTrue((s[1:3] == 0).all()) # list of integers result = s.iloc[[0, 2, 3, 4, 5]] expected = s.reindex(s.index[[0, 2, 3, 4, 5]]) assert_series_equal(result, expected) def test_iget_nonunique(self): s = Series([0, 1, 2], index=[0, 1, 0]) self.assertEqual(s.iloc[2], 2) def test_getitem_regression(self): s = Series(lrange(5), index=lrange(5)) result = s[lrange(5)] assert_series_equal(result, s) def test_getitem_setitem_slice_bug(self): s = Series(lrange(10), lrange(10)) result = s[-12:] assert_series_equal(result, s) result = s[-7:] assert_series_equal(result, s[3:]) result = s[:-12] assert_series_equal(result, s[:0]) s = Series(lrange(10), lrange(10)) s[-12:] = 0 self.assertTrue((s == 0).all()) s[:-12] = 5 self.assertTrue((s == 0).all()) def test_getitem_int64(self): idx = np.int64(5) self.assertEqual(self.ts[idx], self.ts[5]) def test_getitem_fancy(self): slice1 = self.series[[1, 2, 3]] slice2 = self.objSeries[[1, 2, 3]] self.assertEqual(self.series.index[2], slice1.index[1]) self.assertEqual(self.objSeries.index[2], slice2.index[1]) self.assertEqual(self.series[2], slice1[1]) self.assertEqual(self.objSeries[2], slice2[1]) def test_getitem_boolean(self): s = self.series mask = s > s.median() # passing list is OK result = s[list(mask)] expected = s[mask] assert_series_equal(result, expected) self.assert_index_equal(result.index, s.index[mask]) def test_getitem_boolean_empty(self): s = Series([], dtype=np.int64) s.index.name = 'index_name' s = s[s.isnull()] self.assertEqual(s.index.name, 'index_name') self.assertEqual(s.dtype, np.int64) # GH5877 # indexing with empty series s = Series(['A', 'B']) expected = Series(np.nan, index=['C'], dtype=object) result = s[Series(['C'], dtype=object)] assert_series_equal(result, expected) s = Series(['A', 'B']) expected = Series(dtype=object, index=Index([], dtype='int64')) result = s[Series([], dtype=object)] assert_series_equal(result, expected) # invalid because of the boolean indexer # that's empty or not-aligned def f(): s[Series([], dtype=bool)] self.assertRaises(IndexingError, f) def f(): s[Series([True], dtype=bool)] self.assertRaises(IndexingError, f) def test_getitem_generator(self): gen = (x > 0 for x in self.series) result = self.series[gen] result2 = self.series[iter(self.series > 0)] expected = self.series[self.series > 0] assert_series_equal(result, expected) assert_series_equal(result2, expected) def test_type_promotion(self): # GH12599 s = pd.Series() s["a"] = pd.Timestamp("2016-01-01") s["b"] = 3.0 s["c"] = "foo" expected = Series([pd.Timestamp("2016-01-01"), 3.0, "foo"], index=["a", "b", "c"]) assert_series_equal(s, expected) def test_getitem_boolean_object(self): # using column from DataFrame s = self.series mask = s > s.median() omask = mask.astype(object) # getitem result = s[omask] expected = s[mask] assert_series_equal(result, expected) # setitem s2 = s.copy() cop = s.copy() cop[omask] = 5 s2[mask] = 5 assert_series_equal(cop, s2) # nans raise exception omask[5:10] = np.nan self.assertRaises(Exception, s.__getitem__, omask) self.assertRaises(Exception, s.__setitem__, omask, 5) def test_getitem_setitem_boolean_corner(self): ts = self.ts mask_shifted = ts.shift(1, freq=BDay()) > ts.median() # these used to raise...?? self.assertRaises(Exception, ts.__getitem__, mask_shifted) self.assertRaises(Exception, ts.__setitem__, mask_shifted, 1) # ts[mask_shifted] # ts[mask_shifted] = 1 self.assertRaises(Exception, ts.ix.__getitem__, mask_shifted) self.assertRaises(Exception, ts.ix.__setitem__, mask_shifted, 1) # ts.ix[mask_shifted] # ts.ix[mask_shifted] = 2 def test_getitem_setitem_slice_integers(self): s = Series(np.random.randn(8), index=[2, 4, 6, 8, 10, 12, 14, 16]) result = s[:4] expected = s.reindex([2, 4, 6, 8]) assert_series_equal(result, expected) s[:4] = 0 self.assertTrue((s[:4] == 0).all()) self.assertTrue(not (s[4:] == 0).any()) def test_getitem_out_of_bounds(self): # don't segfault, GH #495 self.assertRaises(IndexError, self.ts.__getitem__, len(self.ts)) # GH #917 s = Series([]) self.assertRaises(IndexError, s.__getitem__, -1) def test_getitem_setitem_integers(self): # caused bug without test s = Series([1, 2, 3], ['a', 'b', 'c']) self.assertEqual(s.ix[0], s['a']) s.ix[0] = 5 self.assertAlmostEqual(s['a'], 5) def test_getitem_box_float64(self): value = self.ts[5] tm.assertIsInstance(value, np.float64) def test_getitem_ambiguous_keyerror(self): s = Series(lrange(10), index=lrange(0, 20, 2)) self.assertRaises(KeyError, s.__getitem__, 1) self.assertRaises(KeyError, s.ix.__getitem__, 1) def test_getitem_unordered_dup(self): obj = Series(lrange(5), index=['c', 'a', 'a', 'b', 'b']) self.assertTrue(is_scalar(obj['c'])) self.assertEqual(obj['c'], 0) def test_getitem_dups_with_missing(self): # breaks reindex, so need to use .ix internally # GH 4246 s = Series([1, 2, 3, 4], ['foo', 'bar', 'foo', 'bah']) expected = s.ix[['foo', 'bar', 'bah', 'bam']] result = s[['foo', 'bar', 'bah', 'bam']] assert_series_equal(result, expected) def test_getitem_dups(self): s = Series(range(5), index=['A', 'A', 'B', 'C', 'C'], dtype=np.int64) expected = Series([3, 4], index=['C', 'C'], dtype=np.int64) result = s['C'] assert_series_equal(result, expected) def test_getitem_dataframe(self): rng = list(range(10)) s = pd.Series(10, index=rng) df = pd.DataFrame(rng, index=rng) self.assertRaises(TypeError, s.__getitem__, df > 5) def test_getitem_callable(self): # GH 12533 s = pd.Series(4, index=list('ABCD')) result = s[lambda x: 'A'] self.assertEqual(result, s.loc['A']) result = s[lambda x: ['A', 'B']] tm.assert_series_equal(result, s.loc[['A', 'B']]) result = s[lambda x: [True, False, True, True]] tm.assert_series_equal(result, s.iloc[[0, 2, 3]]) def test_setitem_ambiguous_keyerror(self): s = Series(lrange(10), index=lrange(0, 20, 2)) # equivalent of an append s2 = s.copy() s2[1] = 5 expected = s.append(Series([5], index=[1])) assert_series_equal(s2, expected) s2 = s.copy() s2.ix[1] = 5 expected = s.append(Series([5], index=[1])) assert_series_equal(s2, expected) def test_setitem_float_labels(self): # note labels are floats s = Series(['a', 'b', 'c'], index=[0, 0.5, 1]) tmp = s.copy() s.ix[1] = 'zoo' tmp.iloc[2] = 'zoo' assert_series_equal(s, tmp) def test_setitem_callable(self): # GH 12533 s = pd.Series([1, 2, 3, 4], index=list('ABCD')) s[lambda x: 'A'] = -1 tm.assert_series_equal(s, pd.Series([-1, 2, 3, 4], index=list('ABCD'))) def test_setitem_other_callable(self): # GH 13299 inc = lambda x: x + 1 s = pd.Series([1, 2, -1, 4]) s[s < 0] = inc expected = pd.Series([1, 2, inc, 4]) tm.assert_series_equal(s, expected) def test_slice(self): numSlice = self.series[10:20] numSliceEnd = self.series[-10:] objSlice = self.objSeries[10:20] self.assertNotIn(self.series.index[9], numSlice.index) self.assertNotIn(self.objSeries.index[9], objSlice.index) self.assertEqual(len(numSlice), len(numSlice.index)) self.assertEqual(self.series[numSlice.index[0]], numSlice[numSlice.index[0]]) self.assertEqual(numSlice.index[1], self.series.index[11]) self.assertTrue(tm.equalContents(numSliceEnd, np.array(self.series)[ -10:])) # test return view sl = self.series[10:20] sl[:] = 0 self.assertTrue((self.series[10:20] == 0).all()) def test_slice_can_reorder_not_uniquely_indexed(self): s = Series(1, index=['a', 'a', 'b', 'b', 'c']) s[::-1] # it works! def test_slice_float_get_set(self): self.assertRaises(TypeError, lambda: self.ts[4.0:10.0]) def f(): self.ts[4.0:10.0] = 0 self.assertRaises(TypeError, f) self.assertRaises(TypeError, self.ts.__getitem__, slice(4.5, 10.0)) self.assertRaises(TypeError, self.ts.__setitem__, slice(4.5, 10.0), 0) def test_slice_floats2(self): s = Series(np.random.rand(10), index=np.arange(10, 20, dtype=float)) self.assertEqual(len(s.ix[12.0:]), 8) self.assertEqual(len(s.ix[12.5:]), 7) i = np.arange(10, 20, dtype=float) i[2] = 12.2 s.index = i self.assertEqual(len(s.ix[12.0:]), 8) self.assertEqual(len(s.ix[12.5:]), 7) def test_slice_float64(self): values = np.arange(10., 50., 2) index = Index(values) start, end = values[[5, 15]] s = Series(np.random.randn(20), index=index) result = s[start:end] expected = s.iloc[5:16] assert_series_equal(result, expected) result = s.loc[start:end] assert_series_equal(result, expected) df = DataFrame(np.random.randn(20, 3), index=index) result = df[start:end] expected = df.iloc[5:16] tm.assert_frame_equal(result, expected) result = df.loc[start:end] tm.assert_frame_equal(result, expected) def test_setitem(self): self.ts[self.ts.index[5]] = np.NaN self.ts[[1, 2, 17]] = np.NaN self.ts[6] = np.NaN self.assertTrue(np.isnan(self.ts[6])) self.assertTrue(np.isnan(self.ts[2])) self.ts[np.isnan(self.ts)] = 5 self.assertFalse(np.isnan(self.ts[2])) # caught this bug when writing tests series = Series(tm.makeIntIndex(20).astype(float), index=tm.makeIntIndex(20)) series[::2] = 0 self.assertTrue((series[::2] == 0).all()) # set item that's not contained s = self.series.copy() s['foobar'] = 1 app = Series([1], index=['foobar'], name='series') expected = self.series.append(app) assert_series_equal(s, expected) # Test for issue #10193 key = pd.Timestamp('2012-01-01') series = pd.Series() series[key] = 47 expected = pd.Series(47, [key]) assert_series_equal(series, expected) series = pd.Series([], pd.DatetimeIndex([], freq='D')) series[key] = 47 expected = pd.Series(47, pd.DatetimeIndex([key], freq='D')) assert_series_equal(series, expected) def test_setitem_dtypes(self): # change dtypes # GH 4463 expected = Series([np.nan, 2, 3]) s = Series([1, 2, 3]) s.iloc[0] = np.nan assert_series_equal(s, expected) s = Series([1, 2, 3]) s.loc[0] = np.nan assert_series_equal(s, expected) s = Series([1, 2, 3]) s[0] = np.nan assert_series_equal(s, expected) s = Series([False]) s.loc[0] = np.nan assert_series_equal(s, Series([np.nan])) s = Series([False, True]) s.loc[0] = np.nan assert_series_equal(s, Series([np.nan, 1.0])) def test_set_value(self): idx = self.ts.index[10] res = self.ts.set_value(idx, 0) self.assertIs(res, self.ts) self.assertEqual(self.ts[idx], 0) # equiv s = self.series.copy() res = s.set_value('foobar', 0) self.assertIs(res, s) self.assertEqual(res.index[-1], 'foobar') self.assertEqual(res['foobar'], 0) s = self.series.copy() s.loc['foobar'] = 0 self.assertEqual(s.index[-1], 'foobar') self.assertEqual(s['foobar'], 0) def test_setslice(self): sl = self.ts[5:20] self.assertEqual(len(sl), len(sl.index)) self.assertTrue(sl.index.is_unique) def test_basic_getitem_setitem_corner(self): # invalid tuples, e.g. self.ts[:, None] vs. self.ts[:, 2] with tm.assertRaisesRegexp(ValueError, 'tuple-index'): self.ts[:, 2] with tm.assertRaisesRegexp(ValueError, 'tuple-index'): self.ts[:, 2] = 2 # weird lists. [slice(0, 5)] will work but not two slices result = self.ts[[slice(None, 5)]] expected = self.ts[:5] assert_series_equal(result, expected) # OK self.assertRaises(Exception, self.ts.__getitem__, [5, slice(None, None)]) self.assertRaises(Exception, self.ts.__setitem__, [5, slice(None, None)], 2) def test_basic_getitem_with_labels(self): indices = self.ts.index[[5, 10, 15]] result = self.ts[indices] expected = self.ts.reindex(indices) assert_series_equal(result, expected) result = self.ts[indices[0]:indices[2]] expected = self.ts.ix[indices[0]:indices[2]] assert_series_equal(result, expected) # integer indexes, be careful s = Series(np.random.randn(10), index=lrange(0, 20, 2)) inds = [0, 2, 5, 7, 8] arr_inds = np.array([0, 2, 5, 7, 8]) result = s[inds] expected = s.reindex(inds) assert_series_equal(result, expected) result = s[arr_inds] expected = s.reindex(arr_inds) assert_series_equal(result, expected) # GH12089 # with tz for values s = Series(pd.date_range("2011-01-01", periods=3, tz="US/Eastern"), index=['a', 'b', 'c']) expected = Timestamp('2011-01-01', tz='US/Eastern') result = s.loc['a'] self.assertEqual(result, expected) result = s.iloc[0] self.assertEqual(result, expected) result = s['a'] self.assertEqual(result, expected) def test_basic_setitem_with_labels(self): indices = self.ts.index[[5, 10, 15]] cp = self.ts.copy() exp = self.ts.copy() cp[indices] = 0 exp.ix[indices] = 0 assert_series_equal(cp, exp) cp = self.ts.copy() exp = self.ts.copy() cp[indices[0]:indices[2]] = 0 exp.ix[indices[0]:indices[2]] = 0 assert_series_equal(cp, exp) # integer indexes, be careful s = Series(np.random.randn(10), index=lrange(0, 20, 2)) inds = [0, 4, 6] arr_inds = np.array([0, 4, 6]) cp = s.copy() exp = s.copy() s[inds] = 0 s.ix[inds] = 0 assert_series_equal(cp, exp) cp = s.copy() exp = s.copy() s[arr_inds] = 0 s.ix[arr_inds] = 0 assert_series_equal(cp, exp) inds_notfound = [0, 4, 5, 6] arr_inds_notfound = np.array([0, 4, 5, 6]) self.assertRaises(Exception, s.__setitem__, inds_notfound, 0) self.assertRaises(Exception, s.__setitem__, arr_inds_notfound, 0) # GH12089 # with tz for values s = Series(pd.date_range("2011-01-01", periods=3, tz="US/Eastern"), index=['a', 'b', 'c']) s2 = s.copy() expected = Timestamp('2011-01-03', tz='US/Eastern') s2.loc['a'] = expected result = s2.loc['a'] self.assertEqual(result, expected) s2 = s.copy() s2.iloc[0] = expected result = s2.iloc[0] self.assertEqual(result, expected) s2 = s.copy() s2['a'] = expected result = s2['a'] self.assertEqual(result, expected) def test_ix_getitem(self): inds = self.series.index[[3, 4, 7]] assert_series_equal(self.series.ix[inds], self.series.reindex(inds)) assert_series_equal(self.series.ix[5::2], self.series[5::2]) # slice with indices d1, d2 = self.ts.index[[5, 15]] result = self.ts.ix[d1:d2] expected = self.ts.truncate(d1, d2) assert_series_equal(result, expected) # boolean mask = self.series > self.series.median() assert_series_equal(self.series.ix[mask], self.series[mask]) # ask for index value self.assertEqual(self.ts.ix[d1], self.ts[d1]) self.assertEqual(self.ts.ix[d2], self.ts[d2]) def test_ix_getitem_not_monotonic(self): d1, d2 = self.ts.index[[5, 15]] ts2 = self.ts[::2][[1, 2, 0]] self.assertRaises(KeyError, ts2.ix.__getitem__, slice(d1, d2)) self.assertRaises(KeyError, ts2.ix.__setitem__, slice(d1, d2), 0) def test_ix_getitem_setitem_integer_slice_keyerrors(self): s = Series(np.random.randn(10), index=lrange(0, 20, 2)) # this is OK cp = s.copy() cp.ix[4:10] = 0 self.assertTrue((cp.ix[4:10] == 0).all()) # so is this cp = s.copy() cp.ix[3:11] = 0 self.assertTrue((cp.ix[3:11] == 0).values.all()) result = s.ix[4:10] result2 = s.ix[3:11] expected = s.reindex([4, 6, 8, 10]) assert_series_equal(result, expected) assert_series_equal(result2, expected) # non-monotonic, raise KeyError s2 = s.iloc[lrange(5) + lrange(5, 10)[::-1]] self.assertRaises(KeyError, s2.ix.__getitem__, slice(3, 11)) self.assertRaises(KeyError, s2.ix.__setitem__, slice(3, 11), 0) def test_ix_getitem_iterator(self): idx = iter(self.series.index[:10]) result = self.series.ix[idx] assert_series_equal(result, self.series[:10]) def test_setitem_with_tz(self): for tz in ['US/Eastern', 'UTC', 'Asia/Tokyo']: orig = pd.Series(pd.date_range('2016-01-01', freq='H', periods=3, tz=tz)) self.assertEqual(orig.dtype, 'datetime64[ns, {0}]'.format(tz)) # scalar s = orig.copy() s[1] = pd.Timestamp('2011-01-01', tz=tz) exp = pd.Series([pd.Timestamp('2016-01-01 00:00', tz=tz), pd.Timestamp('2011-01-01 00:00', tz=tz), pd.Timestamp('2016-01-01 02:00', tz=tz)]) tm.assert_series_equal(s, exp) s = orig.copy() s.loc[1] = pd.Timestamp('2011-01-01', tz=tz) tm.assert_series_equal(s, exp) s = orig.copy() s.iloc[1] = pd.Timestamp('2011-01-01', tz=tz) tm.assert_series_equal(s, exp) # vector vals = pd.Series([pd.Timestamp('2011-01-01', tz=tz), pd.Timestamp('2012-01-01', tz=tz)], index=[1, 2]) self.assertEqual(vals.dtype, 'datetime64[ns, {0}]'.format(tz)) s[[1, 2]] = vals exp = pd.Series([pd.Timestamp('2016-01-01 00:00', tz=tz), pd.Timestamp('2011-01-01 00:00', tz=tz), pd.Timestamp('2012-01-01 00:00', tz=tz)]) tm.assert_series_equal(s, exp) s = orig.copy() s.loc[[1, 2]] = vals tm.assert_series_equal(s, exp) s = orig.copy() s.iloc[[1, 2]] = vals tm.assert_series_equal(s, exp) def test_setitem_with_tz_dst(self): # GH XXX tz = 'US/Eastern' orig = pd.Series(pd.date_range('2016-11-06', freq='H', periods=3, tz=tz)) self.assertEqual(orig.dtype, 'datetime64[ns, {0}]'.format(tz)) # scalar s = orig.copy() s[1] = pd.Timestamp('2011-01-01', tz=tz) exp = pd.Series([pd.Timestamp('2016-11-06 00:00', tz=tz), pd.Timestamp('2011-01-01 00:00', tz=tz), pd.Timestamp('2016-11-06 02:00', tz=tz)]) tm.assert_series_equal(s, exp) s = orig.copy() s.loc[1] = pd.Timestamp('2011-01-01', tz=tz) tm.assert_series_equal(s, exp) s = orig.copy() s.iloc[1] = pd.Timestamp('2011-01-01', tz=tz) tm.assert_series_equal(s, exp) # vector vals = pd.Series([pd.Timestamp('2011-01-01', tz=tz), pd.Timestamp('2012-01-01', tz=tz)], index=[1, 2]) self.assertEqual(vals.dtype, 'datetime64[ns, {0}]'.format(tz)) s[[1, 2]] = vals exp = pd.Series([pd.Timestamp('2016-11-06 00:00', tz=tz), pd.Timestamp('2011-01-01 00:00', tz=tz), pd.Timestamp('2012-01-01 00:00', tz=tz)]) tm.assert_series_equal(s, exp) s = orig.copy() s.loc[[1, 2]] = vals tm.assert_series_equal(s, exp) s = orig.copy() s.iloc[[1, 2]] = vals tm.assert_series_equal(s, exp) def test_where(self): s = Series(np.random.randn(5)) cond = s > 0 rs = s.where(cond).dropna() rs2 = s[cond] assert_series_equal(rs, rs2) rs = s.where(cond, -s) assert_series_equal(rs, s.abs()) rs = s.where(cond) assert (s.shape == rs.shape) assert (rs is not s) # test alignment cond = Series([True, False, False, True, False], index=s.index) s2 = -(s.abs()) expected = s2[cond].reindex(s2.index[:3]).reindex(s2.index) rs = s2.where(cond[:3]) assert_series_equal(rs, expected) expected = s2.abs() expected.ix[0] = s2[0] rs = s2.where(cond[:3], -s2) assert_series_equal(rs, expected) self.assertRaises(ValueError, s.where, 1) self.assertRaises(ValueError, s.where, cond[:3].values, -s) # GH 2745 s = Series([1, 2]) s[[True, False]] = [0, 1] expected = Series([0, 2]) assert_series_equal(s, expected) # failures self.assertRaises(ValueError, s.__setitem__, tuple([[[True, False]]]), [0, 2, 3]) self.assertRaises(ValueError, s.__setitem__, tuple([[[True, False]]]), []) # unsafe dtype changes for dtype in [np.int8, np.int16, np.int32, np.int64, np.float16, np.float32, np.float64]: s = Series(np.arange(10), dtype=dtype) mask = s < 5 s[mask] = lrange(2, 7) expected = Series(lrange(2, 7) + lrange(5, 10), dtype=dtype) assert_series_equal(s, expected) self.assertEqual(s.dtype, expected.dtype) # these are allowed operations, but are upcasted for dtype in [np.int64, np.float64]: s = Series(np.arange(10), dtype=dtype) mask = s < 5 values = [2.5, 3.5, 4.5, 5.5, 6.5] s[mask] = values expected = Series(values + lrange(5, 10), dtype='float64') assert_series_equal(s, expected) self.assertEqual(s.dtype, expected.dtype) # GH 9731 s = Series(np.arange(10), dtype='int64') mask = s > 5 values = [2.5, 3.5, 4.5, 5.5] s[mask] = values expected = Series(lrange(6) + values, dtype='float64') assert_series_equal(s, expected) # can't do these as we are forced to change the itemsize of the input # to something we cannot for dtype in [np.int8, np.int16, np.int32, np.float16, np.float32]: s = Series(np.arange(10), dtype=dtype) mask = s < 5 values = [2.5, 3.5, 4.5, 5.5, 6.5] self.assertRaises(Exception, s.__setitem__, tuple(mask), values) # GH3235 s = Series(np.arange(10), dtype='int64') mask = s < 5 s[mask] = lrange(2, 7) expected = Series(lrange(2, 7) + lrange(5, 10), dtype='int64') assert_series_equal(s, expected) self.assertEqual(s.dtype, expected.dtype) s = Series(np.arange(10), dtype='int64') mask = s > 5 s[mask] = [0] * 4 expected = Series([0, 1, 2, 3, 4, 5] + [0] * 4, dtype='int64') assert_series_equal(s, expected) s = Series(np.arange(10)) mask = s > 5 def f(): s[mask] = [5, 4, 3, 2, 1] self.assertRaises(ValueError, f) def f(): s[mask] = [0] * 5 self.assertRaises(ValueError, f) # dtype changes s = Series([1, 2, 3, 4]) result = s.where(s > 2, np.nan) expected = Series([np.nan, np.nan, 3, 4]) assert_series_equal(result, expected) # GH 4667 # setting with None changes dtype s = Series(range(10)).astype(float) s[8] = None result = s[8] self.assertTrue(isnull(result)) s = Series(range(10)).astype(float) s[s > 8] = None result = s[isnull(s)] expected = Series(np.nan, index=[9]) assert_series_equal(result, expected) def test_where_setitem_invalid(self): # GH 2702 # make sure correct exceptions are raised on invalid list assignment # slice s = Series(list('abc')) def f(): s[0:3] = list(range(27)) self.assertRaises(ValueError, f) s[0:3] = list(range(3)) expected = Series([0, 1, 2]) assert_series_equal(s.astype(np.int64), expected, ) # slice with step s = Series(list('abcdef')) def f(): s[0:4:2] = list(range(27)) self.assertRaises(ValueError, f) s = Series(list('abcdef')) s[0:4:2] = list(range(2)) expected = Series([0, 'b', 1, 'd', 'e', 'f']) assert_series_equal(s, expected) # neg slices s = Series(list('abcdef')) def f(): s[:-1] = list(range(27)) self.assertRaises(ValueError, f) s[-3:-1] = list(range(2)) expected = Series(['a', 'b', 'c', 0, 1, 'f']) assert_series_equal(s, expected) # list s = Series(list('abc')) def f(): s[[0, 1, 2]] = list(range(27)) self.assertRaises(ValueError, f) s = Series(list('abc')) def f(): s[[0, 1, 2]] = list(range(2)) self.assertRaises(ValueError, f) # scalar s = Series(list('abc')) s[0] = list(range(10)) expected = Series([list(range(10)), 'b', 'c']) assert_series_equal(s, expected) def test_where_broadcast(self): # Test a variety of differently sized series for size in range(2, 6): # Test a variety of boolean indices for selection in [ # First element should be set np.resize([True, False, False, False, False], size), # Set alternating elements] np.resize([True, False], size), # No element should be set np.resize([False], size)]: # Test a variety of different numbers as content for item in [2.0, np.nan, np.finfo(np.float).max, np.finfo(np.float).min]: # Test numpy arrays, lists and tuples as the input to be # broadcast for arr in [np.array([item]), [item], (item, )]: data = np.arange(size, dtype=float) s = Series(data) s[selection] = arr # Construct the expected series by taking the source # data or item based on the selection expected = Series([item if use_item else data[ i] for i, use_item in enumerate(selection)]) assert_series_equal(s, expected) s = Series(data) result = s.where(~selection, arr) assert_series_equal(result, expected) def test_where_inplace(self): s = Series(np.random.randn(5)) cond = s > 0 rs = s.copy() rs.where(cond, inplace=True) assert_series_equal(rs.dropna(), s[cond]) assert_series_equal(rs, s.where(cond)) rs = s.copy() rs.where(cond, -s, inplace=True) assert_series_equal(rs, s.where(cond, -s)) def test_where_dups(self): # GH 4550 # where crashes with dups in index s1 = Series(list(range(3))) s2 = Series(list(range(3))) comb = pd.concat([s1, s2]) result = comb.where(comb < 2) expected = Series([0, 1, np.nan, 0, 1, np.nan], index=[0, 1, 2, 0, 1, 2]) assert_series_equal(result, expected) # GH 4548 # inplace updating not working with dups comb[comb < 1] = 5 expected = Series([5, 1, 2, 5, 1, 2], index=[0, 1, 2, 0, 1, 2]) assert_series_equal(comb, expected) comb[comb < 2] += 10 expected = Series([5, 11, 2, 5, 11, 2], index=[0, 1, 2, 0, 1, 2]) assert_series_equal(comb, expected) def test_where_datetime(self): s = Series(date_range('20130102', periods=2)) expected = Series([10, 10], dtype='datetime64[ns]') mask = np.array([False, False]) rs = s.where(mask, [10, 10]) assert_series_equal(rs, expected) rs = s.where(mask, 10) assert_series_equal(rs, expected) rs = s.where(mask, 10.0) assert_series_equal(rs, expected) rs = s.where(mask, [10.0, 10.0]) assert_series_equal(rs, expected) rs = s.where(mask, [10.0, np.nan]) expected = Series([10, None], dtype='datetime64[ns]') assert_series_equal(rs, expected) def test_where_timedelta(self): s = Series([1, 2], dtype='timedelta64[ns]') expected = Series([10, 10], dtype='timedelta64[ns]') mask = np.array([False, False]) rs = s.where(mask, [10, 10]) assert_series_equal(rs, expected) rs = s.where(mask, 10) assert_series_equal(rs, expected) rs = s.where(mask, 10.0) assert_series_equal(rs, expected) rs = s.where(mask, [10.0, 10.0]) assert_series_equal(rs, expected) rs = s.where(mask, [10.0, np.nan]) expected = Series([10, None], dtype='timedelta64[ns]') assert_series_equal(rs, expected) def test_mask(self): # compare with tested results in test_where s = Series(np.random.randn(5)) cond = s > 0 rs = s.where(~cond, np.nan) assert_series_equal(rs, s.mask(cond)) rs = s.where(~cond) rs2 = s.mask(cond) assert_series_equal(rs, rs2) rs = s.where(~cond, -s) rs2 = s.mask(cond, -s) assert_series_equal(rs, rs2) cond = Series([True, False, False, True, False], index=s.index) s2 = -(s.abs()) rs = s2.where(~cond[:3]) rs2 = s2.mask(cond[:3]) assert_series_equal(rs, rs2) rs = s2.where(~cond[:3], -s2) rs2 = s2.mask(cond[:3], -s2) assert_series_equal(rs, rs2) self.assertRaises(ValueError, s.mask, 1) self.assertRaises(ValueError, s.mask, cond[:3].values, -s) # dtype changes s = Series([1, 2, 3, 4]) result = s.mask(s > 2, np.nan) expected = Series([1, 2, np.nan, np.nan]) assert_series_equal(result, expected) def test_mask_broadcast(self): # GH 8801 # copied from test_where_broadcast for size in range(2, 6): for selection in [ # First element should be set np.resize([True, False, False, False, False], size), # Set alternating elements] np.resize([True, False], size), # No element should be set np.resize([False], size)]: for item in [2.0, np.nan, np.finfo(np.float).max, np.finfo(np.float).min]: for arr in [np.array([item]), [item], (item, )]: data = np.arange(size, dtype=float) s = Series(data) result = s.mask(selection, arr) expected = Series([item if use_item else data[ i] for i, use_item in enumerate(selection)]) assert_series_equal(result, expected) def test_mask_inplace(self): s = Series(np.random.randn(5)) cond = s > 0 rs = s.copy() rs.mask(cond, inplace=True) assert_series_equal(rs.dropna(), s[~cond]) assert_series_equal(rs, s.mask(cond)) rs = s.copy() rs.mask(cond, -s, inplace=True) assert_series_equal(rs, s.mask(cond, -s)) def test_ix_setitem(self): inds = self.series.index[[3, 4, 7]] result = self.series.copy() result.ix[inds] = 5 expected = self.series.copy() expected[[3, 4, 7]] = 5 assert_series_equal(result, expected) result.ix[5:10] = 10 expected[5:10] = 10 assert_series_equal(result, expected) # set slice with indices d1, d2 = self.series.index[[5, 15]] result.ix[d1:d2] = 6 expected[5:16] = 6 # because it's inclusive assert_series_equal(result, expected) # set index value self.series.ix[d1] = 4 self.series.ix[d2] = 6 self.assertEqual(self.series[d1], 4) self.assertEqual(self.series[d2], 6) def test_where_numeric_with_string(self): # GH 9280 s = pd.Series([1, 2, 3]) w = s.where(s > 1, 'X') self.assertFalse(is_integer(w[0])) self.assertTrue(is_integer(w[1])) self.assertTrue(is_integer(w[2])) self.assertTrue(isinstance(w[0], str)) self.assertTrue(w.dtype == 'object') w = s.where(s > 1, ['X', 'Y', 'Z']) self.assertFalse(is_integer(w[0])) self.assertTrue(is_integer(w[1])) self.assertTrue(is_integer(w[2])) self.assertTrue(isinstance(w[0], str)) self.assertTrue(w.dtype == 'object') w = s.where(s > 1, np.array(['X', 'Y', 'Z'])) self.assertFalse(is_integer(w[0])) self.assertTrue(is_integer(w[1])) self.assertTrue(is_integer(w[2])) self.assertTrue(isinstance(w[0], str)) self.assertTrue(w.dtype == 'object') def test_setitem_boolean(self): mask = self.series > self.series.median() # similiar indexed series result = self.series.copy() result[mask] = self.series * 2 expected = self.series * 2 assert_series_equal(result[mask], expected[mask]) # needs alignment result = self.series.copy() result[mask] = (self.series * 2)[0:5] expected = (self.series * 2)[0:5].reindex_like(self.series) expected[-mask] = self.series[mask] assert_series_equal(result[mask], expected[mask]) def test_ix_setitem_boolean(self): mask = self.series > self.series.median() result = self.series.copy() result.ix[mask] = 0 expected = self.series expected[mask] = 0 assert_series_equal(result, expected) def test_ix_setitem_corner(self): inds = list(self.series.index[[5, 8, 12]]) self.series.ix[inds] = 5 self.assertRaises(Exception, self.series.ix.__setitem__, inds + ['foo'], 5) def test_get_set_boolean_different_order(self): ordered = self.series.sort_values() # setting copy = self.series.copy() copy[ordered > 0] = 0 expected = self.series.copy() expected[expected > 0] = 0 assert_series_equal(copy, expected) # getting sel = self.series[ordered > 0] exp = self.series[self.series > 0] assert_series_equal(sel, exp) def test_setitem_na(self): # these induce dtype changes expected = Series([np.nan, 3, np.nan, 5, np.nan, 7, np.nan, 9, np.nan]) s = Series([2, 3, 4, 5, 6, 7, 8, 9, 10]) s[::2] = np.nan assert_series_equal(s, expected) # get's coerced to float, right? expected = Series([np.nan, 1, np.nan, 0]) s = Series([True, True, False, False]) s[::2] = np.nan assert_series_equal(s, expected) expected = Series([np.nan, np.nan, np.nan, np.nan, np.nan, 5, 6, 7, 8, 9]) s = Series(np.arange(10)) s[:5] = np.nan assert_series_equal(s, expected) def test_basic_indexing(self): s = Series(np.random.randn(5), index=['a', 'b', 'a', 'a', 'b']) self.assertRaises(IndexError, s.__getitem__, 5) self.assertRaises(IndexError, s.__setitem__, 5, 0) self.assertRaises(KeyError, s.__getitem__, 'c') s = s.sort_index() self.assertRaises(IndexError, s.__getitem__, 5) self.assertRaises(IndexError, s.__setitem__, 5, 0) def test_int_indexing(self): s = Series(np.random.randn(6), index=[0, 0, 1, 1, 2, 2]) self.assertRaises(KeyError, s.__getitem__, 5) self.assertRaises(KeyError, s.__getitem__, 'c') # not monotonic s = Series(np.random.randn(6), index=[2, 2, 0, 0, 1, 1]) self.assertRaises(KeyError, s.__getitem__, 5) self.assertRaises(KeyError, s.__getitem__, 'c') def test_datetime_indexing(self): from pandas import date_range index = date_range('1/1/2000', '1/7/2000') index = index.repeat(3) s = Series(len(index), index=index) stamp = Timestamp('1/8/2000') self.assertRaises(KeyError, s.__getitem__, stamp) s[stamp] = 0 self.assertEqual(s[stamp], 0) # not monotonic s = Series(len(index), index=index) s = s[::-1] self.assertRaises(KeyError, s.__getitem__, stamp) s[stamp] = 0 self.assertEqual(s[stamp], 0) def test_timedelta_assignment(self): # GH 8209 s = Series([]) s.loc['B'] = timedelta(1) tm.assert_series_equal(s, Series(Timedelta('1 days'), index=['B'])) s = s.reindex(s.index.insert(0, 'A')) tm.assert_series_equal(s, Series( [np.nan, Timedelta('1 days')], index=['A', 'B'])) result = s.fillna(timedelta(1)) expected = Series(Timedelta('1 days'), index=['A', 'B']) tm.assert_series_equal(result, expected) s.loc['A'] = timedelta(1) tm.assert_series_equal(s, expected) # GH 14155 s = Series(10 * [np.timedelta64(10, 'm')]) s.loc[[1, 2, 3]] = np.timedelta64(20, 'm') expected = pd.Series(10 * [np.timedelta64(10, 'm')]) expected.loc[[1, 2, 3]] = pd.Timedelta(np.timedelta64(20, 'm')) tm.assert_series_equal(s, expected) def test_underlying_data_conversion(self): # GH 4080 df = DataFrame(dict((c, [1, 2, 3]) for c in ['a', 'b', 'c'])) df.set_index(['a', 'b', 'c'], inplace=True) s = Series([1], index=[(2, 2, 2)]) df['val'] = 0 df df['val'].update(s) expected = DataFrame( dict(a=[1, 2, 3], b=[1, 2, 3], c=[1, 2, 3], val=[0, 1, 0])) expected.set_index(['a', 'b', 'c'], inplace=True) tm.assert_frame_equal(df, expected) # GH 3970 # these are chained assignments as well pd.set_option('chained_assignment', None) df = DataFrame({"aa": range(5), "bb": [2.2] * 5}) df["cc"] = 0.0 ck = [True] * len(df) df["bb"].iloc[0] = .13 # TODO: unused df_tmp = df.iloc[ck] # noqa df["bb"].iloc[0] = .15 self.assertEqual(df['bb'].iloc[0], 0.15) pd.set_option('chained_assignment', 'raise') # GH 3217 df = DataFrame(dict(a=[1, 3], b=[np.nan, 2])) df['c'] = np.nan df['c'].update(
pd.Series(['foo'], index=[0])
pandas.Series
from datetime import date import unittest import dolphindb as ddb import pandas as pd import numpy as np from pandas.testing import assert_frame_equal from setup import HOST, PORT, WORK_DIR, DATA_DIR from numpy.testing import assert_array_equal, assert_array_almost_equal import dolphindb.settings as keys import statsmodels.api as sm def createdata(): s = ddb.session() s.connect(HOST, PORT, "admin", "123456") stript = ''' time1=10:01:01 join 10:01:03 join 10:01:05 join 10:01:05 symbol1=take(`X`Z,4) price1=3 3.3 3.2 3.1 size1=100 200 50 10 Trade=table(time1 as time,symbol1 as symbol,price1 as price,size1 as size) time2=10:01:01 join 10:01:02 join 10:01:02 join 10:01:03 symbol2=take(`X`Z,4) ask=90 150 100 52 bid=70 200 200 68 Quote=table(time2 as time,symbol2 as symbol,ask as ask,bid as bid) share Trade as shareTrade share Quote as shareQuote login("admin", "123456") if(existsDatabase("dfs://testmergepart")) dropDatabase("dfs://testmergepart") db = database("dfs://testmergepart", VALUE, "X" "Z") pt1 = db.createPartitionedTable(Trade,`pt1,`symbol).append!(Trade) pt2 = db.createPartitionedTable(Quote,`pt2,`symbol).append!(Quote) ''' s.run(stript) s.close() class TestTable(unittest.TestCase): @classmethod def setUpClass(cls) -> None: cls.s = ddb.session() cls.s.connect(HOST, PORT, "admin", "123456") createdata() cls.pd_left = pd.DataFrame({'time': pd.to_datetime( ['1970-01-01T10:01:01', '1970-01-01T10:01:03', '1970-01-01T10:01:05', '1970-01-01T10:01:05']), 'symbol': ["X", "Z", "X", "Z"], 'price': [3, 3.3, 3.2, 3.1], 'size': [100, 200, 50, 10]}) cls.pdf_right = pd.DataFrame({'time': pd.to_datetime( ['1970-01-01T10:01:01', '1970-01-01T10:01:02', '1970-01-01T10:01:02', '1970-01-01T10:01:03']), 'symbol': ["X", "Z", "X", "Z"], 'ask': [90, 150, 100, 52], 'bid': [70, 200, 200, 68]}) @classmethod def tearDownClass(cls): script=''' undef((exec name from objs(true) where shared=1),SHARED) if(existsDatabase('dfs://testmergepart')){ dropDatabase('dfs://testmergepart') } ''' cls.s.run(script) def test_create_table_by_python_dictionary(self): data = {'state': ['Ohio', 'Ohio', 'Ohio', 'Nevada', 'Nevada'], 'year': [2000, 2001, 2002, 2001, 2002], 'pop': [1.5, 1.7, 3.6, 2.4, 2.9]} tmp = self.s.table(data=data, tableAliasName="tmp") re = self.s.run("tmp") df = pd.DataFrame(data) assert_frame_equal(tmp.toDF(), df) assert_frame_equal(re, df) def test_create_table_by_pandas_dataframe(self): data = {'state': ['Ohio', 'Ohio', 'Ohio', 'Nevada', 'Nevada'], 'year': [2000, 2001, 2002, 2001, 2002], 'pop': [1.5, 1.7, 3.6, 2.4, 2.9]} df = pd.DataFrame(data) tmp = self.s.table(data=df, tableAliasName="tmp") re = self.s.run("tmp") assert_frame_equal(tmp.toDF(), df) assert_frame_equal(re, df) def test_table_toDF(self): tmp = self.s.loadText(DATA_DIR + "/USPrices_FIRST.csv") df = self.s.run("select * from loadText('{data}')".format(data=DATA_DIR + "/USPrices_FIRST.csv")) self.assertEqual(len(tmp.toDF()), len(df)) assert_frame_equal(tmp.toDF(), df) tbName = tmp.tableName() self.s.run("undef", tbName) def test_table_showSQL(self): tmp = self.s.loadText(DATA_DIR + "/USPrices_FIRST.csv") sql = tmp.showSQL() tbName = tmp.tableName() self.assertEqual(sql, 'select PERMNO,date,SHRCD,TICKER,TRDSTAT,HEXCD,CUSIP,DLSTCD,DLPRC,' 'DLRET,BIDLO,ASKHI,PRC,VOL,RET,BID,ASK,SHROUT,CFACPR,CFACSHR,OPENPRC ' 'from {tbName}'.format(tbName=tbName)) self.s.run("undef", tbName) def test_table_sql_select_where(self): data = DATA_DIR + "/USPrices_FIRST.csv" tmp = self.s.loadText(data) re = tmp.select(['PERMNO', 'date']).where(tmp.date > '2010.01.01') df = self.s.run("select PERMNO,date from loadText('{data}') where date>2010.01.01".format(data=data)) self.assertEqual(re.rows, 1510) assert_frame_equal(re.toDF(), df) re = tmp.select(['PERMNO', 'date']).where(tmp.date > '2010.01.01').sort(['date desc']) df = self.s.run( "select PERMNO,date from loadText('{data}') where date>2010.01.01 order by date desc".format(data=data)) self.assertEqual(re.rows, 1510) assert_frame_equal(re.toDF(), df) re = tmp[tmp.date > '2010.01.01'] df = self.s.run("select * from loadText('{data}') where date>2010.01.01".format(data=data)) self.assertEqual(re.rows, 1510) assert_frame_equal(re.toDF(), df) tbName = tmp.tableName() self.s.run("undef", tbName) def test_table_sql_groupby(self): data = DATA_DIR + "/USPrices_FIRST.csv" tmp = self.s.loadText(data) origin = tmp.toDF() re = tmp.groupby('PERMNO').agg({'bid': ['sum']}).toDF() df = self.s.run("select sum(bid) from loadText('{data}') group by PERMNO".format(data=data)) self.assertEqual((re['PERMNO'] == 10001).all(), True) self.assertAlmostEqual(re['sum_bid'][0], 59684.9775) assert_frame_equal(re, df) re = tmp.groupby(['PERMNO', 'date']).agg({'bid': ['sum']}).toDF() df = self.s.run("select sum(bid) from loadText('{data}') group by PERMNO,date".format(data=data)) self.assertEqual(re.shape[1], 3) self.assertEqual(len(re), 6047) self.assertEqual((origin['BID'] == re['sum_bid']).all(), True) assert_frame_equal(re, df) re = tmp.groupby(['PERMNO', 'date']).agg({'bid': ['sum'], 'ask': ['sum']}).toDF() df = self.s.run("select sum(bid),sum(ask) from loadText('{data}') group by PERMNO,date".format(data=data)) self.assertEqual(re.shape[1], 4) self.assertEqual(len(re), 6047) self.assertEqual((origin['BID'] == re['sum_bid']).all(), True) self.assertEqual((origin['ASK'] == re['sum_ask']).all(), True) assert_frame_equal(re, df) re = tmp.groupby(['PERMNO']).agg2([ddb.wsum, ddb.wavg], [('bid', 'ask')]).toDF() df = self.s.run("select wsum(bid,ask),wavg(bid,ask) from loadText('{data}') group by PERMNO".format(data=data)) assert_frame_equal(re, df) def test_table_sql_contextby(self): data = {'sym': ['A', 'B', 'B', 'A', 'A'], 'vol': [1, 3, 2, 5, 4], 'price': [16, 31, 28, 19, 22]} dt = self.s.table(data=data, tableAliasName="tmp") re = dt.contextby('sym').agg({'price': [ddb.sum]}).toDF() df = self.s.run("select sym,sum(price) from tmp context by sym") self.assertEqual((re['sym'] == ['A', 'A', 'A', 'B', 'B']).all(), True) self.assertEqual((re['sum_price'] == [57, 57, 57, 59, 59]).all(), True) assert_frame_equal(re, df) re = dt.contextby(['sym', 'vol']).agg({'price': [ddb.sum]}).toDF() df = self.s.run("select sym,vol,sum(price) from tmp context by sym,vol") self.assertEqual((re['sym'] == ['A', 'A', 'A', 'B', 'B']).all(), True) self.assertEqual((re['vol'] == [1, 4, 5, 2, 3]).all(), True) self.assertEqual((re['sum_price'] == [16, 22, 19, 28, 31]).all(), True) assert_frame_equal(re, df) re = dt.contextby('sym').agg2([ddb.wsum, ddb.wavg], [('price', 'vol')]).toDF() df = self.s.run("select sym,vol,price,wsum(price,vol),wavg(price,vol) from tmp context by sym") assert_frame_equal(re, df) def test_table_sql_pivotby(self): dt = self.s.table(data={'sym': ['C', 'MS', 'MS', 'MS', 'IBM', 'IBM', 'C', 'C', 'C'], 'price': [49.6, 29.46, 29.52, 30.02, 174.97, 175.23, 50.76, 50.32, 51.29], 'qty': [2200, 1900, 2100, 3200, 6800, 5400, 1300, 2500, 8800], 'timestamp': pd.date_range('2019-06-01', '2019-06-09')}, tableAliasName="tmp") re = dt.pivotby(index='timestamp', column='sym', value='price').toDF() expected = self.s.run('select price from tmp pivot by timestamp,sym') self.assertEqual(re.equals(expected), True) assert_frame_equal(re, expected) re = dt.pivotby(index='timestamp.month()', column='sym', value='last(price)').toDF() expected = self.s.run('select last(price) from tmp pivot by timestamp.month(),sym') self.assertEqual(re.equals(expected), True) assert_frame_equal(re, expected) re = dt.pivotby(index='timestamp.month()', column='sym', value='count(price)').toDF() expected = self.s.run('select count(price) from tmp pivot by timestamp.month(),sym') self.assertEqual(re.equals(expected), True) assert_frame_equal(re, expected) tbName = dt.tableName() self.s.run("undef", tbName) def test_table_sql_merge(self): dt1 = self.s.table(data={'id': [1, 2, 3, 3], 'value': [7, 4, 5, 0]}, tableAliasName="t1") dt2 = self.s.table(data={'id': [5, 3, 1], 'qty': [300, 500, 800]}, tableAliasName="t2") re = dt1.merge(right=dt2, on='id').toDF() expected = self.s.run('select * from ej(t1,t2,"id")') assert_frame_equal(re, expected) re = dt1.merge(right=dt2, on='id', how='left').toDF() expected = self.s.run('select * from lj(t1,t2,"id")') re.fillna(0, inplace=True) expected.fillna(0, inplace=True) assert_frame_equal(re, expected) re = dt1.merge(right=dt2, on='id', how='outer').toDF() expected = self.s.run('select * from fj(t1,t2,"id")') re.fillna(0, inplace=True) expected.fillna(0, inplace=True) assert_frame_equal(re, expected) re = dt2.merge(right=dt1, on='id', how='left semi').toDF() expected = self.s.run('select * from lsj(t2,t1,"id")') re.fillna(0, inplace=True) expected.fillna(0, inplace=True) assert_frame_equal(re, expected) self.s.run("undef", dt1.tableName()) self.s.run("undef", dt2.tableName()) def test_table_sql_mergr_asof(self): dt1 = self.s.table(data={'id': ['A', 'A', 'A', 'B', 'B'], 'date': pd.to_datetime( ['2017-02-06', '2017-02-08', '2017-02-10', '2017-02-07', '2017-02-09']), 'price': [22, 23, 20, 100, 102]}, tableAliasName="t1") dt2 = self.s.table(data={'id': ['A', 'A', 'B', 'B', 'B'], 'date': pd.to_datetime( ['2017-02-07', '2017-02-10', '2017-02-07', '2017-02-08', '2017-02-10'])}, tableAliasName="t2") re = dt2.merge_asof(right=dt1, on=['id', 'date']).toDF() expected = self.s.run('select * from aj(t2,t1,`id`date)') assert_frame_equal(re, expected) def test_table_sql_merge_cross(self): dt1 = self.s.table(data={'year': [2010, 2011, 2012]}, tableAliasName="t1") dt2 = self.s.table(data={'ticker': ['IBM', 'C', 'AAPL']}, tableAliasName="t2") re = dt1.merge_cross(dt2).toDF() expected = self.s.run('select * from cj(t1,t2)') assert_frame_equal(re, expected) def test_table_sql_merge_window(self): dt1 = self.s.table(data={'sym': ["A", "A", "B"], 'time': [np.datetime64('2012-09-30 09:56:06'), np.datetime64('2012-09-30 09:56:07'), np.datetime64('2012-09-30 09:56:06')], 'price': [10.6, 10.7, 20.6]}, tableAliasName="t1") dt2 = self.s.table( data={'sym': ["A", "A", "A", "A", "A", "A", "A", "A", "A", "A", "B", "B", "B", "B", "B", "B", "B", "B", "B", "B"], 'time': pd.date_range(start='2012-09-30 09:56:01', end='2012-09-30 09:56:10', freq='s').append( pd.date_range(start='2012-09-30 09:56:01', end='2012-09-30 09:56:10', freq='s')), 'bid': [10.05, 10.15, 10.25, 10.35, 10.45, 10.55, 10.65, 10.75, 10.85, 10.95, 20.05, 20.15, 20.25, 20.35, 20.45, 20.55, 20.65, 20.75, 20.85, 20.95], 'offer': [10.15, 10.25, 10.35, 10.45, 10.55, 10.65, 10.75, 10.85, 10.95, 11.05, 20.15, 20.25, 20.35, 20.45, 20.55, 20.65, 20.75, 20.85, 20.95, 21.01], 'volume': [100, 300, 800, 200, 600, 100, 300, 800, 200, 600, 100, 300, 800, 200, 600, 100, 300, 800, 200, 600]}, tableAliasName="t2") re = dt1.merge_window(right=dt2, leftBound=-5, rightBound=0, aggFunctions="avg(bid)", on=['sym', 'time']).toDF() expected = self.s.run('select * from wj(t1,t2,-5:0,<avg(bid)>,`sym`time)') assert_frame_equal(re, expected) re = dt1.merge_window(right=dt2, leftBound=-5, rightBound=-1, aggFunctions=["wavg(bid,volume)", "wavg(offer,volume)"], on=["sym", "time"]).toDF() expected = self.s.run('select * from wj(t1,t2,-5:-1,<[wavg(bid,volume), wavg(offer,volume)]>,`sym`time)') assert_frame_equal(re, expected) def test_table_chinese_column_name(self): df = pd.DataFrame({'็ผ–ๅท':[1, 2, 3, 4, 5], 'ๅบๅท':['ๅฃน','่ดฐ','ๅ','่‚†','ไผ']}) tmp = self.s.table(data=df, tableAliasName="chinese_t") res=tmp.toDF() assert_array_equal(res['็ผ–ๅท'], [1, 2, 3, 4, 5]) assert_array_equal(res['ๅบๅท'], ['ๅฃน','่ดฐ','ๅ','่‚†','ไผ']) def test_table_top_with_other_clause(self): df = pd.DataFrame({'id': [10, 8, 5, 6, 7, 9, 1, 4, 2, 3], 'date': pd.date_range('2012-01-01', '2012-01-10', freq="D"), 'value': np.arange(0, 10)}) tmp = self.s.table(data=df, tableAliasName="top_t") re = tmp.top(3).sort("id").toDF() assert_array_equal(re['id'], [1, 2, 3]) assert_array_equal(re['date'], np.array(['2012-01-07', '2012-01-09', '2012-01-10'], dtype="datetime64[D]")) assert_array_equal(re['value'], [6, 8, 9]) re = tmp.top(3).where("id>5").toDF() assert_array_equal(re['id'], [10, 8, 6]) assert_array_equal(re['date'], np.array(['2012-01-01', '2012-01-02', '2012-01-04'], dtype="datetime64[D]")) assert_array_equal(re['value'], [0, 1, 3]) df = pd.DataFrame({'sym': ["C", "MS", "MS", "MS", "IBM", "IBM", "C", "C", "C"], 'price': [49.6, 29.46, 29.52, 30.02, 174.97, 175.23, 50.76, 50.32, 51.29], 'qty':[2200, 1900, 2100, 3200, 6800, 5400, 1300, 2500, 8800]}) tmp = self.s.table(data=df, tableAliasName="t1") re = tmp.top(2).contextby("sym").sort("sym").toDF() assert_array_equal(re['sym'], ["C", "C", "IBM", "IBM", "MS", "MS"]) assert_array_almost_equal(re['price'], [49.6, 50.76, 174.97, 175.23, 29.46, 29.52]) assert_array_equal(re['qty'], [2200, 1300, 6800, 5400, 1900, 2100]) def test_table_sql_update_where(self): n = pd.DataFrame({'timestamp' : pd.to_datetime(['09:34:07','09:36:42','09:36:51','09:36:59','09:32:47','09:35:26','09:34:16','09:34:26','09:38:12']), 'sym' : ['C','MS','MS','MS','IBM','IBM','C','C','C'], 'price' : [49.6 ,29.46 ,29.52 ,30.02 ,174.97 ,175.23 ,50.76 ,50.32 ,51.29], 'qty' : [2200 ,1900 ,2100 ,3200 ,6800 ,5400 ,1300 ,2500 ,8800]}) dt1 = self.s.table(data=n, tableAliasName="t1") re = dt1.update(["price"], ["price*10"]).where("sym=`C").execute().toDF() assert_array_almost_equal(re["price"], [496,29.46,29.52,30.02,174.97,175.23,507.6,503.2,512.9]) def test_table_twice(self): data = {'id': [1, 2, 2, 3], 'date': np.array(['2019-02-04', '2019-02-05', '2019-02-09', '2019-02-13'], dtype='datetime64[D]'), 'ticker': ['AAPL', 'AMZN', 'AMZN', 'A'], 'price': [22, 3.5, 21, 26]} dt = self.s.table(data=data, tableAliasName="t1") dt = self.s.table(data=data, tableAliasName="t1") re = self.s.loadTable("t1").toDF() assert_array_equal(data['id'], re['id']) assert_array_equal(data['date'], re['date']) assert_array_equal(data['ticker'], re['ticker']) assert_array_equal(data['price'], re['price']) def test_table_repeatedly(self): data = {'id': [1, 2, 2, 3], 'date': np.array(['2019-02-04', '2019-02-05', '2019-02-09', '2019-02-13'], dtype='datetime64[D]'), 'ticker': ['AAPL', 'AMZN', 'AMZN', 'A'], 'price': [22, 3.5, 21, 26]} for i in range(1,100): dt = self.s.table(data=data, tableAliasName="t1") re = self.s.loadTable("t1").toDF() assert_array_equal(data['id'], re['id']) assert_array_equal(data['date'], re['date']) assert_array_equal(data['ticker'], re['ticker']) assert_array_equal(data['price'], re['price']) def test_table_csort(self): script = ''' sym = `C`MS`MS`MS`IBM`IBM`C`C`C$SYMBOL price= 49.6 29.46 29.52 30.02 174.97 175.23 50.76 50.32 51.29 qty = 2200 1900 2100 3200 6800 5400 1300 2500 8800 timestamp = [09:34:07,09:36:42,09:36:51,09:36:59,09:32:47,09:35:26,09:34:16,09:34:26,09:38:12] t1 = table(timestamp, sym, qty, price); ''' self.s.run(script) tb = self.s.loadTable(tableName="t1") re = tb.select(["timestamp", "sym", "qty", "price"]).contextby("sym").csort("timestamp").top(2).toDF() expected = self.s.run("select top 2 timestamp, sym, qty, price from t1 context by sym csort timestamp") assert_frame_equal(re, expected) re = tb.select(["timestamp", "sym", "qty", "price"]).contextby("sym").csort("timestamp").limit(-2).toDF() expected = self.s.run("select timestamp, sym, qty, price from t1 context by sym csort timestamp limit -2") assert_frame_equal(re, expected) re = tb.select(["timestamp", "sym", "qty", "price"]).contextby("sym").csort(["timestamp", "qty"]).top(2).toDF() expected = self.s.run("select timestamp, sym, qty, price from t1 context by sym csort timestamp, qty limit 2")
assert_frame_equal(re, expected)
pandas.testing.assert_frame_equal
from itertools import product import pandas as pd from pandas.testing import assert_series_equal, assert_frame_equal import pytest from solarforecastarbiter.validation import quality_mapping def test_ok_user_flagged(): assert quality_mapping.DESCRIPTION_MASK_MAPPING['OK'] == 0 assert quality_mapping.DESCRIPTION_MASK_MAPPING['USER FLAGGED'] == 1 def test_description_dict_version_compatibility(): for dict_ in quality_mapping.BITMASK_DESCRIPTION_DICT.values(): assert dict_['VERSION IDENTIFIER 0'] == 1 << 1 assert dict_['VERSION IDENTIFIER 1'] == 1 << 2 assert dict_['VERSION IDENTIFIER 2'] == 1 << 3 def test_latest_version_flag(): # test valid while only identifiers 0 - 2 present last_identifier = max( int(vi.split(' ')[-1]) for vi in quality_mapping.DESCRIPTION_MASK_MAPPING.keys() if vi.startswith('VERSION IDENTIFIER')) assert last_identifier == 2 assert (quality_mapping.LATEST_VERSION_FLAG == quality_mapping.LATEST_VERSION << 1) @pytest.mark.parametrize( 'flag_val', quality_mapping.DESCRIPTION_MASK_MAPPING.items()) def test_convert_bool_flags_to_flag_mask(flag_val): flag, mask = flag_val mask |= quality_mapping.LATEST_VERSION_FLAG ser = pd.Series([0, 0, 1, 0, 1]) flags = quality_mapping.convert_bool_flags_to_flag_mask(ser, flag, True) assert_series_equal(flags, pd.Series([ mask, mask, quality_mapping.LATEST_VERSION_FLAG, mask, quality_mapping.LATEST_VERSION_FLAG])) @pytest.mark.parametrize('flag_invert', product( quality_mapping.DESCRIPTION_MASK_MAPPING.keys(), [True, False])) def test_convert_bool_flags_to_flag_mask_none(flag_invert): assert quality_mapping.convert_bool_flags_to_flag_mask( None, *flag_invert) is None @pytest.mark.parametrize('flag_invert', product( quality_mapping.DESCRIPTION_MASK_MAPPING.keys(), [True, False])) def test_convert_bool_flags_to_flag_mask_adds_latest_version(flag_invert): ser =
pd.Series([0, 0, 0, 1, 1])
pandas.Series
# -*- coding: utf-8 -*- from __future__ import print_function import pytest import operator from collections import OrderedDict from datetime import datetime from itertools import chain import warnings import numpy as np from pandas import (notna, DataFrame, Series, MultiIndex, date_range, Timestamp, compat) import pandas as pd from pandas.core.dtypes.dtypes import CategoricalDtype from pandas.core.apply import frame_apply from pandas.util.testing import (assert_series_equal, assert_frame_equal) import pandas.util.testing as tm from pandas.conftest import _get_cython_table_params from pandas.tests.frame.common import TestData class TestDataFrameApply(TestData): def test_apply(self): with np.errstate(all='ignore'): # ufunc applied = self.frame.apply(np.sqrt) tm.assert_series_equal(np.sqrt(self.frame['A']), applied['A']) # aggregator applied = self.frame.apply(np.mean) assert applied['A'] == np.mean(self.frame['A']) d = self.frame.index[0] applied = self.frame.apply(np.mean, axis=1) assert applied[d] == np.mean(self.frame.xs(d)) assert applied.index is self.frame.index # want this # invalid axis df = DataFrame( [[1, 2, 3], [4, 5, 6], [7, 8, 9]], index=['a', 'a', 'c']) pytest.raises(ValueError, df.apply, lambda x: x, 2) # see gh-9573 df = DataFrame({'c0': ['A', 'A', 'B', 'B'], 'c1': ['C', 'C', 'D', 'D']}) df = df.apply(lambda ts: ts.astype('category')) assert df.shape == (4, 2) assert isinstance(df['c0'].dtype, CategoricalDtype) assert isinstance(df['c1'].dtype, CategoricalDtype) def test_apply_mixed_datetimelike(self): # mixed datetimelike # GH 7778 df = DataFrame({'A': date_range('20130101', periods=3), 'B': pd.to_timedelta(np.arange(3), unit='s')}) result = df.apply(lambda x: x, axis=1) assert_frame_equal(result, df) def test_apply_empty(self): # empty applied = self.empty.apply(np.sqrt) assert applied.empty applied = self.empty.apply(np.mean) assert applied.empty no_rows = self.frame[:0] result = no_rows.apply(lambda x: x.mean()) expected = Series(np.nan, index=self.frame.columns) assert_series_equal(result, expected) no_cols = self.frame.loc[:, []] result = no_cols.apply(lambda x: x.mean(), axis=1) expected = Series(np.nan, index=self.frame.index) assert_series_equal(result, expected) # 2476 xp = DataFrame(index=['a']) rs = xp.apply(lambda x: x['a'], axis=1) assert_frame_equal(xp, rs) def test_apply_with_reduce_empty(self): # reduce with an empty DataFrame x = [] result = self.empty.apply(x.append, axis=1, result_type='expand') assert_frame_equal(result, self.empty) result = self.empty.apply(x.append, axis=1, result_type='reduce') assert_series_equal(result, Series( [], index=pd.Index([], dtype=object))) empty_with_cols = DataFrame(columns=['a', 'b', 'c']) result = empty_with_cols.apply(x.append, axis=1, result_type='expand') assert_frame_equal(result, empty_with_cols) result = empty_with_cols.apply(x.append, axis=1, result_type='reduce') assert_series_equal(result, Series( [], index=pd.Index([], dtype=object))) # Ensure that x.append hasn't been called assert x == [] def test_apply_deprecate_reduce(self): with warnings.catch_warnings(record=True): x = [] self.empty.apply(x.append, axis=1, result_type='reduce') def test_apply_standard_nonunique(self): df = DataFrame( [[1, 2, 3], [4, 5, 6], [7, 8, 9]], index=['a', 'a', 'c']) rs = df.apply(lambda s: s[0], axis=1) xp = Series([1, 4, 7], ['a', 'a', 'c']) assert_series_equal(rs, xp) rs = df.T.apply(lambda s: s[0], axis=0) assert_series_equal(rs, xp) def test_with_string_args(self): for arg in ['sum', 'mean', 'min', 'max', 'std']: result = self.frame.apply(arg) expected = getattr(self.frame, arg)() tm.assert_series_equal(result, expected) result = self.frame.apply(arg, axis=1) expected = getattr(self.frame, arg)(axis=1) tm.assert_series_equal(result, expected) def test_apply_broadcast_deprecated(self): with tm.assert_produces_warning(FutureWarning): self.frame.apply(np.mean, broadcast=True) def test_apply_broadcast(self): # scalars result = self.frame.apply(np.mean, result_type='broadcast') expected = DataFrame([self.frame.mean()], index=self.frame.index) tm.assert_frame_equal(result, expected) result = self.frame.apply(np.mean, axis=1, result_type='broadcast') m = self.frame.mean(axis=1) expected = DataFrame({c: m for c in self.frame.columns}) tm.assert_frame_equal(result, expected) # lists result = self.frame.apply( lambda x: list(range(len(self.frame.columns))), axis=1, result_type='broadcast') m = list(range(len(self.frame.columns))) expected = DataFrame([m] * len(self.frame.index), dtype='float64', index=self.frame.index, columns=self.frame.columns) tm.assert_frame_equal(result, expected) result = self.frame.apply(lambda x: list(range(len(self.frame.index))), result_type='broadcast') m = list(range(len(self.frame.index))) expected = DataFrame({c: m for c in self.frame.columns}, dtype='float64', index=self.frame.index) tm.assert_frame_equal(result, expected) # preserve columns df = DataFrame(np.tile(np.arange(3), 6).reshape(6, -1) + 1, columns=list('ABC')) result = df.apply(lambda x: [1, 2, 3], axis=1, result_type='broadcast') tm.assert_frame_equal(result, df) df = DataFrame(np.tile(np.arange(3), 6).reshape(6, -1) + 1, columns=list('ABC')) result = df.apply(lambda x: Series([1, 2, 3], index=list('abc')), axis=1, result_type='broadcast') expected = df.copy() tm.assert_frame_equal(result, expected) def test_apply_broadcast_error(self): df = DataFrame( np.tile(np.arange(3, dtype='int64'), 6).reshape(6, -1) + 1, columns=['A', 'B', 'C']) # > 1 ndim with pytest.raises(ValueError): df.apply(lambda x: np.array([1, 2]).reshape(-1, 2), axis=1, result_type='broadcast') # cannot broadcast with pytest.raises(ValueError): df.apply(lambda x: [1, 2], axis=1, result_type='broadcast') with pytest.raises(ValueError): df.apply(lambda x: Series([1, 2]), axis=1, result_type='broadcast') def test_apply_raw(self): result0 = self.frame.apply(np.mean, raw=True) result1 = self.frame.apply(np.mean, axis=1, raw=True) expected0 = self.frame.apply(lambda x: x.values.mean()) expected1 = self.frame.apply(lambda x: x.values.mean(), axis=1) assert_series_equal(result0, expected0) assert_series_equal(result1, expected1) # no reduction result = self.frame.apply(lambda x: x * 2, raw=True) expected = self.frame * 2 assert_frame_equal(result, expected) def test_apply_axis1(self): d = self.frame.index[0] tapplied = self.frame.apply(np.mean, axis=1) assert tapplied[d] == np.mean(self.frame.xs(d)) def test_apply_ignore_failures(self): result = frame_apply(self.mixed_frame, np.mean, 0, ignore_failures=True).apply_standard() expected = self.mixed_frame._get_numeric_data().apply(np.mean) assert_series_equal(result, expected) def test_apply_mixed_dtype_corner(self): df = DataFrame({'A': ['foo'], 'B': [1.]}) result = df[:0].apply(np.mean, axis=1) # the result here is actually kind of ambiguous, should it be a Series # or a DataFrame? expected = Series(np.nan, index=pd.Index([], dtype='int64')) assert_series_equal(result, expected) df = DataFrame({'A': ['foo'], 'B': [1.]}) result = df.apply(lambda x: x['A'], axis=1) expected = Series(['foo'], index=[0]) assert_series_equal(result, expected) result = df.apply(lambda x: x['B'], axis=1) expected = Series([1.], index=[0]) assert_series_equal(result, expected) def test_apply_empty_infer_type(self): no_cols = DataFrame(index=['a', 'b', 'c']) no_index = DataFrame(columns=['a', 'b', 'c']) def _check(df, f): with warnings.catch_warnings(record=True): test_res = f(np.array([], dtype='f8')) is_reduction = not isinstance(test_res, np.ndarray) def _checkit(axis=0, raw=False): res = df.apply(f, axis=axis, raw=raw) if is_reduction: agg_axis = df._get_agg_axis(axis) assert isinstance(res, Series) assert res.index is agg_axis else: assert isinstance(res, DataFrame) _checkit() _checkit(axis=1) _checkit(raw=True) _checkit(axis=0, raw=True) with np.errstate(all='ignore'): _check(no_cols, lambda x: x) _check(no_cols, lambda x: x.mean()) _check(no_index, lambda x: x) _check(no_index, lambda x: x.mean()) result = no_cols.apply(lambda x: x.mean(), result_type='broadcast') assert isinstance(result, DataFrame) def test_apply_with_args_kwds(self): def add_some(x, howmuch=0): return x + howmuch def agg_and_add(x, howmuch=0): return x.mean() + howmuch def subtract_and_divide(x, sub, divide=1): return (x - sub) / divide result = self.frame.apply(add_some, howmuch=2) exp = self.frame.apply(lambda x: x + 2) assert_frame_equal(result, exp) result = self.frame.apply(agg_and_add, howmuch=2) exp = self.frame.apply(lambda x: x.mean() + 2) assert_series_equal(result, exp) res = self.frame.apply(subtract_and_divide, args=(2,), divide=2) exp = self.frame.apply(lambda x: (x - 2.) / 2.) assert_frame_equal(res, exp) def test_apply_yield_list(self): result = self.frame.apply(list) assert_frame_equal(result, self.frame) def test_apply_reduce_Series(self): self.frame.loc[::2, 'A'] = np.nan expected = self.frame.mean(1) result = self.frame.apply(np.mean, axis=1) assert_series_equal(result, expected) def test_apply_differently_indexed(self): df = DataFrame(np.random.randn(20, 10)) result0 = df.apply(Series.describe, axis=0) expected0 = DataFrame(dict((i, v.describe()) for i, v in compat.iteritems(df)), columns=df.columns) assert_frame_equal(result0, expected0) result1 = df.apply(Series.describe, axis=1) expected1 = DataFrame(dict((i, v.describe()) for i, v in compat.iteritems(df.T)), columns=df.index).T assert_frame_equal(result1, expected1) def test_apply_modify_traceback(self): data = DataFrame({'A': ['foo', 'foo', 'foo', 'foo', 'bar', 'bar', 'bar', 'bar', 'foo', 'foo', 'foo'], 'B': ['one', 'one', 'one', 'two', 'one', 'one', 'one', 'two', 'two', 'two', 'one'], 'C': ['dull', 'dull', 'shiny', 'dull', 'dull', 'shiny', 'shiny', 'dull', 'shiny', 'shiny', 'shiny'], 'D': np.random.randn(11), 'E': np.random.randn(11), 'F': np.random.randn(11)}) data.loc[4, 'C'] = np.nan def transform(row): if row['C'].startswith('shin') and row['A'] == 'foo': row['D'] = 7 return row def transform2(row): if (notna(row['C']) and row['C'].startswith('shin') and row['A'] == 'foo'): row['D'] = 7 return row try: data.apply(transform, axis=1) except AttributeError as e: assert len(e.args) == 2 assert e.args[1] == 'occurred at index 4' assert e.args[0] == "'float' object has no attribute 'startswith'" def test_apply_bug(self): # GH 6125 positions = pd.DataFrame([[1, 'ABC0', 50], [1, 'YUM0', 20], [1, 'DEF0', 20], [2, 'ABC1', 50], [2, 'YUM1', 20], [2, 'DEF1', 20]], columns=['a', 'market', 'position']) def f(r): return r['market'] expected = positions.apply(f, axis=1) positions = DataFrame([[datetime(2013, 1, 1), 'ABC0', 50], [datetime(2013, 1, 2), 'YUM0', 20], [datetime(2013, 1, 3), 'DEF0', 20], [datetime(2013, 1, 4), 'ABC1', 50], [datetime(2013, 1, 5), 'YUM1', 20], [datetime(2013, 1, 6), 'DEF1', 20]], columns=['a', 'market', 'position']) result = positions.apply(f, axis=1) assert_series_equal(result, expected) def test_apply_convert_objects(self): data = DataFrame({'A': ['foo', 'foo', 'foo', 'foo', 'bar', 'bar', 'bar', 'bar', 'foo', 'foo', 'foo'], 'B': ['one', 'one', 'one', 'two', 'one', 'one', 'one', 'two', 'two', 'two', 'one'], 'C': ['dull', 'dull', 'shiny', 'dull', 'dull', 'shiny', 'shiny', 'dull', 'shiny', 'shiny', 'shiny'], 'D': np.random.randn(11), 'E': np.random.randn(11), 'F': np.random.randn(11)}) result = data.apply(lambda x: x, axis=1) assert_frame_equal(result._convert(datetime=True), data) def test_apply_attach_name(self): result = self.frame.apply(lambda x: x.name) expected = Series(self.frame.columns, index=self.frame.columns) assert_series_equal(result, expected) result = self.frame.apply(lambda x: x.name, axis=1) expected = Series(self.frame.index, index=self.frame.index) assert_series_equal(result, expected) # non-reductions result = self.frame.apply(lambda x: np.repeat(x.name, len(x))) expected = DataFrame(np.tile(self.frame.columns, (len(self.frame.index), 1)), index=self.frame.index, columns=self.frame.columns) assert_frame_equal(result, expected) result = self.frame.apply(lambda x: np.repeat(x.name, len(x)), axis=1) expected = Series(np.repeat(t[0], len(self.frame.columns)) for t in self.frame.itertuples()) expected.index = self.frame.index assert_series_equal(result, expected) def test_apply_multi_index(self): index = MultiIndex.from_arrays([['a', 'a', 'b'], ['c', 'd', 'd']]) s = DataFrame([[1, 2], [3, 4], [5, 6]], index=index, columns=['col1', 'col2']) result = s.apply( lambda x: Series({'min': min(x), 'max': max(x)}), 1) expected = DataFrame([[1, 2], [3, 4], [5, 6]], index=index, columns=['min', 'max']) assert_frame_equal(result, expected, check_like=True) def test_apply_dict(self): # GH 8735 A = DataFrame([['foo', 'bar'], ['spam', 'eggs']]) A_dicts = Series([dict([(0, 'foo'), (1, 'spam')]), dict([(0, 'bar'), (1, 'eggs')])]) B = DataFrame([[0, 1], [2, 3]]) B_dicts = Series([dict([(0, 0), (1, 2)]), dict([(0, 1), (1, 3)])]) fn = lambda x: x.to_dict() for df, dicts in [(A, A_dicts), (B, B_dicts)]: reduce_true = df.apply(fn, result_type='reduce') reduce_false = df.apply(fn, result_type='expand') reduce_none = df.apply(fn) assert_series_equal(reduce_true, dicts) assert_frame_equal(reduce_false, df) assert_series_equal(reduce_none, dicts) def test_applymap(self): applied = self.frame.applymap(lambda x: x * 2) tm.assert_frame_equal(applied, self.frame * 2) self.frame.applymap(type) # gh-465: function returning tuples result = self.frame.applymap(lambda x: (x, x)) assert isinstance(result['A'][0], tuple) # gh-2909: object conversion to float in constructor? df = DataFrame(data=[1, 'a']) result = df.applymap(lambda x: x) assert result.dtypes[0] == object df = DataFrame(data=[1., 'a']) result = df.applymap(lambda x: x) assert result.dtypes[0] == object # see gh-2786 df = DataFrame(np.random.random((3, 4))) df2 = df.copy() cols = ['a', 'a', 'a', 'a'] df.columns = cols expected = df2.applymap(str) expected.columns = cols result = df.applymap(str) tm.assert_frame_equal(result, expected) # datetime/timedelta df['datetime'] = Timestamp('20130101') df['timedelta'] = pd.Timedelta('1 min') result = df.applymap(str) for f in ['datetime', 'timedelta']: assert result.loc[0, f] == str(df.loc[0, f]) # see gh-8222 empty_frames = [pd.DataFrame(), pd.DataFrame(columns=list('ABC')), pd.DataFrame(index=list('ABC')), pd.DataFrame({'A': [], 'B': [], 'C': []})] for frame in empty_frames: for func in [round, lambda x: x]: result = frame.applymap(func) tm.assert_frame_equal(result, frame) def test_applymap_box_timestamps(self): # #2689, #2627 ser = pd.Series(date_range('1/1/2000', periods=10)) def func(x): return (x.hour, x.day, x.month) # it works! pd.DataFrame(ser).applymap(func) def test_applymap_box(self): # ufunc will not be boxed. Same test cases as the test_map_box df = pd.DataFrame({'a': [pd.Timestamp('2011-01-01'), pd.Timestamp('2011-01-02')], 'b': [pd.Timestamp('2011-01-01', tz='US/Eastern'), pd.Timestamp('2011-01-02', tz='US/Eastern')], 'c': [pd.Timedelta('1 days'), pd.Timedelta('2 days')], 'd': [pd.Period('2011-01-01', freq='M'), pd.Period('2011-01-02', freq='M')]}) res = df.applymap(lambda x: '{0}'.format(x.__class__.__name__)) exp = pd.DataFrame({'a': ['Timestamp', 'Timestamp'], 'b': ['Timestamp', 'Timestamp'], 'c': ['Timedelta', 'Timedelta'], 'd': ['Period', 'Period']}) tm.assert_frame_equal(res, exp) def test_frame_apply_dont_convert_datetime64(self): from pandas.tseries.offsets import BDay df = DataFrame({'x1': [datetime(1996, 1, 1)]}) df = df.applymap(lambda x: x + BDay()) df = df.applymap(lambda x: x + BDay()) assert df.x1.dtype == 'M8[ns]' def test_apply_non_numpy_dtype(self): # See gh-12244 df = DataFrame({'dt': pd.date_range( "2015-01-01", periods=3, tz='Europe/Brussels')}) result = df.apply(lambda x: x) assert_frame_equal(result, df) result = df.apply(lambda x: x + pd.Timedelta('1day')) expected = DataFrame({'dt': pd.date_range( "2015-01-02", periods=3, tz='Europe/Brussels')}) assert_frame_equal(result, expected) df = DataFrame({'dt': ['a', 'b', 'c', 'a']}, dtype='category') result = df.apply(lambda x: x) assert_frame_equal(result, df) def test_apply_dup_names_multi_agg(self): # GH 21063 df = pd.DataFrame([[0, 1], [2, 3]], columns=['a', 'a']) expected = pd.DataFrame([[0, 1]], columns=['a', 'a'], index=['min']) result = df.agg(['min']) tm.assert_frame_equal(result, expected) class TestInferOutputShape(object): # the user has supplied an opaque UDF where # they are transforming the input that requires # us to infer the output def test_infer_row_shape(self): # gh-17437 # if row shape is changing, infer it df = pd.DataFrame(np.random.rand(10, 2)) result = df.apply(np.fft.fft, axis=0) assert result.shape == (10, 2) result = df.apply(np.fft.rfft, axis=0) assert result.shape == (6, 2) def test_with_dictlike_columns(self): # gh 17602 df = DataFrame([[1, 2], [1, 2]], columns=['a', 'b']) result = df.apply(lambda x: {'s': x['a'] + x['b']}, axis=1) expected = Series([{'s': 3} for t in df.itertuples()]) assert_series_equal(result, expected) df['tm'] = [pd.Timestamp('2017-05-01 00:00:00'), pd.Timestamp('2017-05-02 00:00:00')] result = df.apply(lambda x: {'s': x['a'] + x['b']}, axis=1) assert_series_equal(result, expected) # compose a series result = (df['a'] + df['b']).apply(lambda x: {'s': x}) expected = Series([{'s': 3}, {'s': 3}]) assert_series_equal(result, expected) # gh-18775 df = DataFrame() df["author"] = ["X", "Y", "Z"] df["publisher"] = ["BBC", "NBC", "N24"] df["date"] = pd.to_datetime(['17-10-2010 07:15:30', '13-05-2011 08:20:35', '15-01-2013 09:09:09']) result = df.apply(lambda x: {}, axis=1) expected = Series([{}, {}, {}]) assert_series_equal(result, expected) def test_with_dictlike_columns_with_infer(self): # gh 17602 df = DataFrame([[1, 2], [1, 2]], columns=['a', 'b']) result = df.apply(lambda x: {'s': x['a'] + x['b']}, axis=1, result_type='expand') expected = DataFrame({'s': [3, 3]}) assert_frame_equal(result, expected) df['tm'] = [pd.Timestamp('2017-05-01 00:00:00'), pd.Timestamp('2017-05-02 00:00:00')] result = df.apply(lambda x: {'s': x['a'] + x['b']}, axis=1, result_type='expand') assert_frame_equal(result, expected) def test_with_listlike_columns(self): # gh-17348 df = DataFrame({'a': Series(np.random.randn(4)), 'b': ['a', 'list', 'of', 'words'], 'ts': date_range('2016-10-01', periods=4, freq='H')}) result = df[['a', 'b']].apply(tuple, axis=1) expected = Series([t[1:] for t in df[['a', 'b']].itertuples()]) assert_series_equal(result, expected) result = df[['a', 'ts']].apply(tuple, axis=1) expected = Series([t[1:] for t in df[['a', 'ts']].itertuples()]) assert_series_equal(result, expected) # gh-18919 df = DataFrame({'x': Series([['a', 'b'], ['q']]), 'y': Series([['z'], ['q', 't']])}) df.index = MultiIndex.from_tuples([('i0', 'j0'), ('i1', 'j1')]) result = df.apply( lambda row: [el for el in row['x'] if el in row['y']], axis=1) expected = Series([[], ['q']], index=df.index) assert_series_equal(result, expected) def test_infer_output_shape_columns(self): # gh-18573 df = DataFrame({'number': [1., 2.], 'string': ['foo', 'bar'], 'datetime': [pd.Timestamp('2017-11-29 03:30:00'), pd.Timestamp('2017-11-29 03:45:00')]}) result = df.apply(lambda row: (row.number, row.string), axis=1) expected = Series([(t.number, t.string) for t in df.itertuples()]) assert_series_equal(result, expected) def test_infer_output_shape_listlike_columns(self): # gh-16353 df = DataFrame(np.random.randn(6, 3), columns=['A', 'B', 'C']) result = df.apply(lambda x: [1, 2, 3], axis=1) expected = Series([[1, 2, 3] for t in df.itertuples()]) assert_series_equal(result, expected) result = df.apply(lambda x: [1, 2], axis=1) expected = Series([[1, 2] for t in df.itertuples()]) assert_series_equal(result, expected) # gh-17970 df = DataFrame({"a": [1, 2, 3]}, index=list('abc')) result = df.apply(lambda row: np.ones(1), axis=1) expected = Series([np.ones(1) for t in df.itertuples()], index=df.index) assert_series_equal(result, expected) result = df.apply(lambda row: np.ones(2), axis=1) expected = Series([np.ones(2) for t in df.itertuples()], index=df.index) assert_series_equal(result, expected) # gh-17892 df = pd.DataFrame({'a': [pd.Timestamp('2010-02-01'), pd.Timestamp('2010-02-04'), pd.Timestamp('2010-02-05'), pd.Timestamp('2010-02-06')], 'b': [9, 5, 4, 3], 'c': [5, 3, 4, 2], 'd': [1, 2, 3, 4]}) def fun(x): return (1, 2) result = df.apply(fun, axis=1) expected = Series([(1, 2) for t in df.itertuples()]) assert_series_equal(result, expected) def test_consistent_coerce_for_shapes(self): # we want column names to NOT be propagated # just because the shape matches the input shape df = DataFrame(np.random.randn(4, 3), columns=['A', 'B', 'C']) result = df.apply(lambda x: [1, 2, 3], axis=1) expected = Series([[1, 2, 3] for t in df.itertuples()]) assert_series_equal(result, expected) result = df.apply(lambda x: [1, 2], axis=1) expected = Series([[1, 2] for t in df.itertuples()]) assert_series_equal(result, expected) def test_consistent_names(self): # if a Series is returned, we should use the resulting index names df = DataFrame( np.tile(np.arange(3, dtype='int64'), 6).reshape(6, -1) + 1, columns=['A', 'B', 'C']) result = df.apply(lambda x: Series([1, 2, 3], index=['test', 'other', 'cols']), axis=1) expected = DataFrame( np.tile(np.arange(3, dtype='int64'), 6).reshape(6, -1) + 1, columns=['test', 'other', 'cols']) assert_frame_equal(result, expected) result = df.apply( lambda x: pd.Series([1, 2], index=['test', 'other']), axis=1) expected = DataFrame( np.tile(np.arange(2, dtype='int64'), 6).reshape(6, -1) + 1, columns=['test', 'other']) assert_frame_equal(result, expected) def test_result_type(self): # result_type should be consistent no matter which # path we take in the code df = DataFrame( np.tile(np.arange(3, dtype='int64'), 6).reshape(6, -1) + 1, columns=['A', 'B', 'C']) result = df.apply(lambda x: [1, 2, 3], axis=1, result_type='expand') expected = df.copy() expected.columns = [0, 1, 2] assert_frame_equal(result, expected) result = df.apply(lambda x: [1, 2], axis=1, result_type='expand') expected = df[['A', 'B']].copy() expected.columns = [0, 1] assert_frame_equal(result, expected) # broadcast result result = df.apply(lambda x: [1, 2, 3], axis=1, result_type='broadcast') expected = df.copy() assert_frame_equal(result, expected) columns = ['other', 'col', 'names'] result = df.apply( lambda x: pd.Series([1, 2, 3], index=columns), axis=1, result_type='broadcast') expected = df.copy() assert_frame_equal(result, expected) # series result result = df.apply(lambda x: Series([1, 2, 3], index=x.index), axis=1) expected = df.copy() assert_frame_equal(result, expected) # series result with other index columns = ['other', 'col', 'names'] result = df.apply( lambda x: pd.Series([1, 2, 3], index=columns), axis=1) expected = df.copy() expected.columns = columns assert_frame_equal(result, expected) @pytest.mark.parametrize("result_type", ['foo', 1]) def test_result_type_error(self, result_type): # allowed result_type df = DataFrame( np.tile(np.arange(3, dtype='int64'), 6).reshape(6, -1) + 1, columns=['A', 'B', 'C']) with pytest.raises(ValueError): df.apply(lambda x: [1, 2, 3], axis=1, result_type=result_type) @pytest.mark.parametrize( "box", [lambda x: list(x), lambda x: tuple(x), lambda x: np.array(x, dtype='int64')], ids=['list', 'tuple', 'array']) def test_consistency_for_boxed(self, box): # passing an array or list should not affect the output shape df = DataFrame( np.tile(np.arange(3, dtype='int64'), 6).reshape(6, -1) + 1, columns=['A', 'B', 'C']) result = df.apply(lambda x: box([1, 2]), axis=1) expected = Series([box([1, 2]) for t in df.itertuples()]) assert_series_equal(result, expected) result = df.apply(lambda x: box([1, 2]), axis=1, result_type='expand') expected = DataFrame( np.tile(np.arange(2, dtype='int64'), 6).reshape(6, -1) + 1) assert_frame_equal(result, expected) def zip_frames(frames, axis=1): """ take a list of frames, zip them together under the assumption that these all have the first frames' index/columns. Returns ------- new_frame : DataFrame """ if axis == 1: columns = frames[0].columns zipped = [f.loc[:, c] for c in columns for f in frames] return pd.concat(zipped, axis=1) else: index = frames[0].index zipped = [f.loc[i, :] for i in index for f in frames] return pd.DataFrame(zipped) class TestDataFrameAggregate(TestData): def test_agg_transform(self, axis): other_axis = 1 if axis in {0, 'index'} else 0 with np.errstate(all='ignore'): f_abs = np.abs(self.frame) f_sqrt = np.sqrt(self.frame) # ufunc result = self.frame.transform(np.sqrt, axis=axis) expected = f_sqrt.copy() assert_frame_equal(result, expected) result = self.frame.apply(np.sqrt, axis=axis) assert_frame_equal(result, expected) result = self.frame.transform(np.sqrt, axis=axis) assert_frame_equal(result, expected) # list-like result = self.frame.apply([np.sqrt], axis=axis) expected = f_sqrt.copy() if axis in {0, 'index'}: expected.columns = pd.MultiIndex.from_product( [self.frame.columns, ['sqrt']]) else: expected.index = pd.MultiIndex.from_product( [self.frame.index, ['sqrt']]) assert_frame_equal(result, expected) result = self.frame.transform([np.sqrt], axis=axis) assert_frame_equal(result, expected) # multiple items in list # these are in the order as if we are applying both # functions per series and then concatting result = self.frame.apply([np.abs, np.sqrt], axis=axis) expected = zip_frames([f_abs, f_sqrt], axis=other_axis) if axis in {0, 'index'}: expected.columns = pd.MultiIndex.from_product( [self.frame.columns, ['absolute', 'sqrt']]) else: expected.index = pd.MultiIndex.from_product( [self.frame.index, ['absolute', 'sqrt']]) assert_frame_equal(result, expected) result = self.frame.transform([np.abs, 'sqrt'], axis=axis) assert_frame_equal(result, expected) def test_transform_and_agg_err(self, axis): # cannot both transform and agg def f(): self.frame.transform(['max', 'min'], axis=axis) pytest.raises(ValueError, f) def f(): with np.errstate(all='ignore'): self.frame.agg(['max', 'sqrt'], axis=axis) pytest.raises(ValueError, f) def f(): with np.errstate(all='ignore'): self.frame.transform(['max', 'sqrt'], axis=axis) pytest.raises(ValueError, f) df = pd.DataFrame({'A': range(5), 'B': 5}) def f(): with np.errstate(all='ignore'): df.agg({'A': ['abs', 'sum'], 'B': ['mean', 'max']}, axis=axis) @pytest.mark.parametrize('method', [ 'abs', 'shift', 'pct_change', 'cumsum', 'rank', ]) def test_transform_method_name(self, method): # https://github.com/pandas-dev/pandas/issues/19760 df = pd.DataFrame({"A": [-1, 2]}) result = df.transform(method) expected = operator.methodcaller(method)(df) tm.assert_frame_equal(result, expected) def test_demo(self): # demonstration tests df = pd.DataFrame({'A': range(5), 'B': 5}) result = df.agg(['min', 'max']) expected = DataFrame({'A': [0, 4], 'B': [5, 5]}, columns=['A', 'B'], index=['min', 'max']) tm.assert_frame_equal(result, expected) result = df.agg({'A': ['min', 'max'], 'B': ['sum', 'max']}) expected = DataFrame({'A': [4.0, 0.0, np.nan], 'B': [5.0, np.nan, 25.0]}, columns=['A', 'B'], index=['max', 'min', 'sum']) tm.assert_frame_equal(result.reindex_like(expected), expected) def test_agg_multiple_mixed_no_warning(self): # https://github.com/pandas-dev/pandas/issues/20909 mdf = pd.DataFrame({'A': [1, 2, 3], 'B': [1., 2., 3.], 'C': ['foo', 'bar', 'baz'], 'D': pd.date_range('20130101', periods=3)}) expected = pd.DataFrame({"A": [1, 6], 'B': [1.0, 6.0], "C": ['bar', 'foobarbaz'], "D": [pd.Timestamp('2013-01-01'), pd.NaT]}, index=['min', 'sum']) # sorted index with tm.assert_produces_warning(None): result = mdf.agg(['min', 'sum']) tm.assert_frame_equal(result, expected) with tm.assert_produces_warning(None): result = mdf[['D', 'C', 'B', 'A']].agg(['sum', 'min']) # For backwards compatibility, the result's index is # still sorted by function name, so it's ['min', 'sum'] # not ['sum', 'min']. expected = expected[['D', 'C', 'B', 'A']] tm.assert_frame_equal(result, expected) def test_agg_dict_nested_renaming_depr(self): df = pd.DataFrame({'A': range(5), 'B': 5}) # nested renaming with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): df.agg({'A': {'foo': 'min'}, 'B': {'bar': 'max'}}) def test_agg_reduce(self, axis): other_axis = 1 if axis in {0, 'index'} else 0 name1, name2 = self.frame.axes[other_axis].unique()[:2].sort_values() # all reducers expected = pd.concat([self.frame.mean(axis=axis), self.frame.max(axis=axis), self.frame.sum(axis=axis), ], axis=1) expected.columns = ['mean', 'max', 'sum'] expected = expected.T if axis in {0, 'index'} else expected result = self.frame.agg(['mean', 'max', 'sum'], axis=axis) assert_frame_equal(result, expected) # dict input with scalars func = OrderedDict([(name1, 'mean'), (name2, 'sum')]) result = self.frame.agg(func, axis=axis) expected = Series([self.frame.loc(other_axis)[name1].mean(), self.frame.loc(other_axis)[name2].sum()], index=[name1, name2]) assert_series_equal(result, expected) # dict input with lists func = OrderedDict([(name1, ['mean']), (name2, ['sum'])]) result = self.frame.agg(func, axis=axis) expected = DataFrame({ name1: Series([self.frame.loc(other_axis)[name1].mean()], index=['mean']), name2: Series([self.frame.loc(other_axis)[name2].sum()], index=['sum'])}) expected = expected.T if axis in {1, 'columns'} else expected assert_frame_equal(result, expected) # dict input with lists with multiple func = OrderedDict([(name1, ['mean', 'sum']), (name2, ['sum', 'max'])]) result = self.frame.agg(func, axis=axis) expected = DataFrame(OrderedDict([ (name1, Series([self.frame.loc(other_axis)[name1].mean(), self.frame.loc(other_axis)[name1].sum()], index=['mean', 'sum'])), (name2, Series([self.frame.loc(other_axis)[name2].sum(), self.frame.loc(other_axis)[name2].max()], index=['sum', 'max'])), ])) expected = expected.T if axis in {1, 'columns'} else expected assert_frame_equal(result, expected) def test_nuiscance_columns(self): # GH 15015 df = DataFrame({'A': [1, 2, 3], 'B': [1., 2., 3.], 'C': ['foo', 'bar', 'baz'], 'D': pd.date_range('20130101', periods=3)}) result = df.agg('min') expected = Series([1, 1., 'bar', pd.Timestamp('20130101')], index=df.columns) assert_series_equal(result, expected) result = df.agg(['min']) expected = DataFrame([[1, 1., 'bar',
pd.Timestamp('20130101')
pandas.Timestamp
#!/usr/bin/env python import pandas as pd import argparse import datetime import time import sys import investpy scrap_delay = 2 def main(): parser = argparse.ArgumentParser(description='scrap investing.com daily close') parser.add_argument('-input_file', type=str, default='data_tickers/investing_stock_info.csv', help='input file') parser.add_argument('-output_prefix', type=str, default='../stock_data/raw_daily_investing_stock/investing_stock_', help='prefix of the output file') parser.add_argument('-date', type=str, help='Specify the date') args = parser.parse_args() if args.date is None: scrap_date = datetime.date.today() args.date = str(scrap_date) filename = args.output_prefix + args.date + '.csv' df_input = pd.read_csv(args.input_file) info_list = [] print('number of tickers:', len(df_input.index)) for index,row in df_input.iterrows(): print('downloading...', row['symbol'], row['country'], '-', index) try: info = investpy.get_stock_information(row['symbol'],row['country']) info_list.append(info) except: print('failed') time.sleep(scrap_delay) df =
pd.concat(info_list)
pandas.concat
############################################################## # Author: <NAME> ############################################################## ''' Module : create_kallisto_ec_count_matrix Description : Create equivalence class matrix from kallisto. Copyright : (c) <NAME>, Dec 2018 License : MIT Maintainer : <EMAIL> Portability : POSIX Take equivalence class output from kallisto's batch mode (matrix.ec) and create an EC matrix that can be used for DE/DTU ''' import os import argparse import re import pandas as pd import numpy as np import gc parser = argparse.ArgumentParser() parser.add_argument(dest='ec_file', help="Kallisto equivalence class file (matrix.ec).") parser.add_argument(dest='counts_file', help="Kallisto counts file (matrix.tsv).") parser.add_argument(dest='samples_file', help="Kallisto samples file (matrix.cells).") parser.add_argument(dest='tx_ids_file', help='''File containing one transcript ID per line, in same order as the fasta reference used for kallisto.''') parser.add_argument(dest='out_file', help="Output file.") args = parser.parse_args() ec_file = args.ec_file counts_file = args.counts_file samples_file = args.samples_file tx_ids_file = args.tx_ids_file out_file = args.out_file ec_df = pd.read_csv(ec_file, header=None, sep='\t', names=['ec_names', 'tx_ids']) counts = pd.read_csv(counts_file, header=None, sep='\t', names=['ec_names', 'sample_id', 'count']) samples = pd.read_csv(samples_file, header=None, sep='\t')[0].values tx_ids = pd.read_csv(tx_ids_file, header=None)[0].values print('restructuring EC counts...') counts = pd.merge(counts, ec_df, on='ec_names') counts = counts.pivot_table(index=['ec_names', 'tx_ids'], columns=['sample_id'], fill_value=0) counts = counts.reset_index() counts.columns = counts.columns.droplevel() counts.columns = np.concatenate([['ec_names', 'tx_ids'], samples]) print('separating transcript IDs...') ec_tmp = ec_df[ec_df.ec_names.isin(counts.ec_names)] tx_stack = ec_tmp['tx_ids'].str.split(',').apply(pd.Series,1).stack() tx_stack = pd.DataFrame(tx_stack, columns=['tx_id']) tx_stack['ec_names'] = [i[0] for i in tx_stack.index] counts =
pd.merge(counts, tx_stack, left_on='ec_names', right_on='ec_names')
pandas.merge
from datetime import timedelta import pytest import pandas.util._test_decorators as td from pandas import ( DataFrame, to_datetime, ) @pytest.fixture(params=[True, False]) def raw(request): """raw keyword argument for rolling.apply""" return request.param @pytest.fixture( params=[ "triang", "blackman", "hamming", "bartlett", "bohman", "blackmanharris", "nuttall", "barthann", ] ) def win_types(request): return request.param @pytest.fixture(params=["kaiser", "gaussian", "general_gaussian", "exponential"]) def win_types_special(request): return request.param @pytest.fixture( params=[ "sum", "mean", "median", "max", "min", "var", "std", "kurt", "skew", "count", "sem", ] ) def arithmetic_win_operators(request): return request.param @pytest.fixture( params=[ "sum", "mean", "median", "max", "min", ] ) def arithmetic_numba_supported_operators(request): return request.param @pytest.fixture(params=["right", "left", "both", "neither"]) def closed(request): return request.param @pytest.fixture(params=[True, False]) def center(request): return request.param @pytest.fixture(params=[None, 1]) def min_periods(request): return request.param @pytest.fixture(params=[True, False]) def parallel(request): """parallel keyword argument for numba.jit""" return request.param # Can parameterize nogil & nopython over True | False, but limiting per # https://github.com/pandas-dev/pandas/pull/41971#issuecomment-860607472 @pytest.fixture(params=[False]) def nogil(request): """nogil keyword argument for numba.jit""" return request.param @pytest.fixture(params=[True]) def nopython(request): """nopython keyword argument for numba.jit""" return request.param @pytest.fixture(params=[True, False]) def adjust(request): """adjust keyword argument for ewm""" return request.param @pytest.fixture(params=[True, False]) def ignore_na(request): """ignore_na keyword argument for ewm""" return request.param @pytest.fixture( params=[pytest.param("numba", marks=td.skip_if_no("numba", "0.46.0")), "cython"] ) def engine(request): """engine keyword argument for rolling.apply""" return request.param @pytest.fixture( params=[ pytest.param(("numba", True), marks=td.skip_if_no("numba", "0.46.0")), ("cython", True), ("cython", False), ] ) def engine_and_raw(request): """engine and raw keyword arguments for rolling.apply""" return request.param @pytest.fixture def times_frame(): """Frame for testing times argument in EWM groupby.""" return DataFrame( { "A": ["a", "b", "c", "a", "b", "c", "a", "b", "c", "a"], "B": [0, 0, 0, 1, 1, 1, 2, 2, 2, 3], "C": to_datetime( [ "2020-01-01", "2020-01-01", "2020-01-01", "2020-01-02", "2020-01-10", "2020-01-22", "2020-01-03", "2020-01-23", "2020-01-23", "2020-01-04", ] ), } ) @pytest.fixture(params=["1 day", timedelta(days=1)]) def halflife_with_times(request): """Halflife argument for EWM when times is specified.""" return request.param @pytest.fixture( params=[ "object", "category", "int8", "int16", "int32", "int64", "uint8", "uint16", "uint32", "uint64", "float16", "float32", "float64", "m8[ns]", "M8[ns]", pytest.param( "datetime64[ns, UTC]", marks=pytest.mark.skip( "direct creation of extension dtype datetime64[ns, UTC] " "is not supported ATM" ), ), ] ) def dtypes(request): """Dtypes for window tests""" return request.param @pytest.fixture( params=[ DataFrame([[2, 4], [1, 2], [5, 2], [8, 1]], columns=[1, 0]), DataFrame([[2, 4], [1, 2], [5, 2], [8, 1]], columns=[1, 1]), DataFrame([[2, 4], [1, 2], [5, 2], [8, 1]], columns=["C", "C"]), DataFrame([[2, 4], [1, 2], [5, 2], [8, 1]], columns=[1.0, 0]), DataFrame([[2, 4], [1, 2], [5, 2], [8, 1]], columns=[0.0, 1]), DataFrame([[2, 4], [1, 2], [5, 2], [8, 1]], columns=["C", 1]),
DataFrame([[2.0, 4.0], [1.0, 2.0], [5.0, 2.0], [8.0, 1.0]], columns=[1, 0.0])
pandas.DataFrame
from __future__ import division import pytest import numpy as np from datetime import timedelta from pandas import ( Interval, IntervalIndex, Index, isna, notna, interval_range, Timestamp, Timedelta, compat, date_range, timedelta_range, DateOffset) from pandas.compat import lzip from pandas.tseries.offsets import Day from pandas._libs.interval import IntervalTree from pandas.tests.indexes.common import Base import pandas.util.testing as tm import pandas as pd @pytest.fixture(scope='class', params=['left', 'right', 'both', 'neither']) def closed(request): return request.param @pytest.fixture(scope='class', params=[None, 'foo']) def name(request): return request.param class TestIntervalIndex(Base): _holder = IntervalIndex def setup_method(self, method): self.index = IntervalIndex.from_arrays([0, 1], [1, 2]) self.index_with_nan = IntervalIndex.from_tuples( [(0, 1), np.nan, (1, 2)]) self.indices = dict(intervalIndex=tm.makeIntervalIndex(10)) def create_index(self, closed='right'): return IntervalIndex.from_breaks(range(11), closed=closed) def create_index_with_nan(self, closed='right'): mask = [True, False] + [True] * 8 return IntervalIndex.from_arrays( np.where(mask, np.arange(10), np.nan), np.where(mask, np.arange(1, 11), np.nan), closed=closed) def test_constructors(self, closed, name): left, right = Index([0, 1, 2, 3]), Index([1, 2, 3, 4]) ivs = [Interval(l, r, closed=closed) for l, r in lzip(left, right)] expected = IntervalIndex._simple_new( left=left, right=right, closed=closed, name=name) result = IntervalIndex(ivs, name=name) tm.assert_index_equal(result, expected) result = IntervalIndex.from_intervals(ivs, name=name) tm.assert_index_equal(result, expected) result = IntervalIndex.from_breaks( np.arange(5), closed=closed, name=name) tm.assert_index_equal(result, expected) result = IntervalIndex.from_arrays( left.values, right.values, closed=closed, name=name) tm.assert_index_equal(result, expected) result = IntervalIndex.from_tuples( lzip(left, right), closed=closed, name=name) tm.assert_index_equal(result, expected) result = Index(ivs, name=name) assert isinstance(result, IntervalIndex) tm.assert_index_equal(result, expected) # idempotent tm.assert_index_equal(Index(expected), expected) tm.assert_index_equal(IntervalIndex(expected), expected) result = IntervalIndex.from_intervals(expected) tm.assert_index_equal(result, expected) result = IntervalIndex.from_intervals( expected.values, name=expected.name) tm.assert_index_equal(result, expected) left, right = expected.left, expected.right result = IntervalIndex.from_arrays( left, right, closed=expected.closed, name=expected.name) tm.assert_index_equal(result, expected) result = IntervalIndex.from_tuples( expected.to_tuples(), closed=expected.closed, name=expected.name) tm.assert_index_equal(result, expected) breaks = expected.left.tolist() + [expected.right[-1]] result = IntervalIndex.from_breaks( breaks, closed=expected.closed, name=expected.name) tm.assert_index_equal(result, expected) @pytest.mark.parametrize('data', [[np.nan], [np.nan] * 2, [np.nan] * 50]) def test_constructors_nan(self, closed, data): # GH 18421 expected_values = np.array(data, dtype=object) expected_idx = IntervalIndex(data, closed=closed) # validate the expected index assert expected_idx.closed == closed tm.assert_numpy_array_equal(expected_idx.values, expected_values) result = IntervalIndex.from_tuples(data, closed=closed) tm.assert_index_equal(result, expected_idx) tm.assert_numpy_array_equal(result.values, expected_values) result = IntervalIndex.from_breaks([np.nan] + data, closed=closed) tm.assert_index_equal(result, expected_idx) tm.assert_numpy_array_equal(result.values, expected_values) result = IntervalIndex.from_arrays(data, data, closed=closed) tm.assert_index_equal(result, expected_idx) tm.assert_numpy_array_equal(result.values, expected_values) if closed == 'right': # Can't specify closed for IntervalIndex.from_intervals result = IntervalIndex.from_intervals(data) tm.assert_index_equal(result, expected_idx) tm.assert_numpy_array_equal(result.values, expected_values) @pytest.mark.parametrize('data', [ [], np.array([], dtype='int64'), np.array([], dtype='float64'), np.array([], dtype=object)]) def test_constructors_empty(self, data, closed): # GH 18421 expected_dtype = data.dtype if isinstance(data, np.ndarray) else object expected_values = np.array([], dtype=object) expected_index = IntervalIndex(data, closed=closed) # validate the expected index assert expected_index.empty assert expected_index.closed == closed assert expected_index.dtype.subtype == expected_dtype tm.assert_numpy_array_equal(expected_index.values, expected_values) result = IntervalIndex.from_tuples(data, closed=closed) tm.assert_index_equal(result, expected_index) tm.assert_numpy_array_equal(result.values, expected_values) result = IntervalIndex.from_breaks(data, closed=closed) tm.assert_index_equal(result, expected_index) tm.assert_numpy_array_equal(result.values, expected_values) result = IntervalIndex.from_arrays(data, data, closed=closed) tm.assert_index_equal(result, expected_index) tm.assert_numpy_array_equal(result.values, expected_values) if closed == 'right': # Can't specify closed for IntervalIndex.from_intervals result = IntervalIndex.from_intervals(data) tm.assert_index_equal(result, expected_index) tm.assert_numpy_array_equal(result.values, expected_values) def test_constructors_errors(self): # scalar msg = ('IntervalIndex\(...\) must be called with a collection of ' 'some kind, 5 was passed') with tm.assert_raises_regex(TypeError, msg): IntervalIndex(5) # not an interval msg = ("type <(class|type) 'numpy.int64'> with value 0 " "is not an interval") with tm.assert_raises_regex(TypeError, msg): IntervalIndex([0, 1]) with tm.assert_raises_regex(TypeError, msg): IntervalIndex.from_intervals([0, 1]) # invalid closed msg = "invalid options for 'closed': invalid" with tm.assert_raises_regex(ValueError, msg): IntervalIndex.from_arrays([0, 1], [1, 2], closed='invalid') # mismatched closed within intervals msg = 'intervals must all be closed on the same side' with
tm.assert_raises_regex(ValueError, msg)
pandas.util.testing.assert_raises_regex
import submodels_module as modelbank import numpy as np from itertools import combinations import matplotlib as mpl mpl.use('Agg') import matplotlib.pyplot as plt import pandas as pd import load_format_data #Determine the most generalizable model from the top CV models def get_loss_list(model_list): model_loss_list,model_loss_std_list,model_name_list=[],[],[] for model in model_list: # model.get_best_trial() model_name_list.append(model.model_name) model_loss_list.append(model.model_stats['cv_avg_loss']) model_loss_std_list.append(model.model_stats['cv_std_loss']) results=
pd.DataFrame([model_name_list,model_loss_list,model_loss_std_list])
pandas.DataFrame
from datetime import ( datetime, timedelta, ) import re import numpy as np import pytest from pandas._libs import iNaT from pandas.errors import InvalidIndexError import pandas.util._test_decorators as td from pandas.core.dtypes.common import is_integer import pandas as pd from pandas import ( Categorical, DataFrame, DatetimeIndex, Index, MultiIndex, Series, Timestamp, date_range, isna, notna, ) import pandas._testing as tm import pandas.core.common as com # We pass through a TypeError raised by numpy _slice_msg = "slice indices must be integers or None or have an __index__ method" class TestDataFrameIndexing: def test_getitem(self, float_frame): # Slicing sl = float_frame[:20] assert len(sl.index) == 20 # Column access for _, series in sl.items(): assert len(series.index) == 20 assert tm.equalContents(series.index, sl.index) for key, _ in float_frame._series.items(): assert float_frame[key] is not None assert "random" not in float_frame with pytest.raises(KeyError, match="random"): float_frame["random"] def test_getitem2(self, float_frame): df = float_frame.copy() df["$10"] = np.random.randn(len(df)) ad = np.random.randn(len(df)) df["@awesome_domain"] = ad with pytest.raises(KeyError, match=re.escape("'df[\"$10\"]'")): df.__getitem__('df["$10"]') res = df["@awesome_domain"] tm.assert_numpy_array_equal(ad, res.values) def test_setitem_list(self, float_frame): float_frame["E"] = "foo" data = float_frame[["A", "B"]] float_frame[["B", "A"]] = data tm.assert_series_equal(float_frame["B"], data["A"], check_names=False) tm.assert_series_equal(float_frame["A"], data["B"], check_names=False) msg = "Columns must be same length as key" with pytest.raises(ValueError, match=msg): data[["A"]] = float_frame[["A", "B"]] newcolumndata = range(len(data.index) - 1) msg = ( rf"Length of values \({len(newcolumndata)}\) " rf"does not match length of index \({len(data)}\)" ) with pytest.raises(ValueError, match=msg): data["A"] = newcolumndata def test_setitem_list2(self): df = DataFrame(0, index=range(3), columns=["tt1", "tt2"], dtype=np.int_) df.loc[1, ["tt1", "tt2"]] = [1, 2] result = df.loc[df.index[1], ["tt1", "tt2"]] expected = Series([1, 2], df.columns, dtype=np.int_, name=1) tm.assert_series_equal(result, expected) df["tt1"] = df["tt2"] = "0" df.loc[df.index[1], ["tt1", "tt2"]] = ["1", "2"] result = df.loc[df.index[1], ["tt1", "tt2"]] expected = Series(["1", "2"], df.columns, name=1) tm.assert_series_equal(result, expected) def test_getitem_boolean(self, mixed_float_frame, mixed_int_frame, datetime_frame): # boolean indexing d = datetime_frame.index[10] indexer = datetime_frame.index > d indexer_obj = indexer.astype(object) subindex = datetime_frame.index[indexer] subframe = datetime_frame[indexer] tm.assert_index_equal(subindex, subframe.index) with pytest.raises(ValueError, match="Item wrong length"): datetime_frame[indexer[:-1]] subframe_obj = datetime_frame[indexer_obj] tm.assert_frame_equal(subframe_obj, subframe) with pytest.raises(ValueError, match="Boolean array expected"): datetime_frame[datetime_frame] # test that Series work indexer_obj = Series(indexer_obj, datetime_frame.index) subframe_obj = datetime_frame[indexer_obj] tm.assert_frame_equal(subframe_obj, subframe) # test that Series indexers reindex # we are producing a warning that since the passed boolean # key is not the same as the given index, we will reindex # not sure this is really necessary with tm.assert_produces_warning(UserWarning): indexer_obj = indexer_obj.reindex(datetime_frame.index[::-1]) subframe_obj = datetime_frame[indexer_obj] tm.assert_frame_equal(subframe_obj, subframe) # test df[df > 0] for df in [ datetime_frame, mixed_float_frame, mixed_int_frame, ]: data = df._get_numeric_data() bif = df[df > 0] bifw = DataFrame( {c: np.where(data[c] > 0, data[c], np.nan) for c in data.columns}, index=data.index, columns=data.columns, ) # add back other columns to compare for c in df.columns: if c not in bifw: bifw[c] = df[c] bifw = bifw.reindex(columns=df.columns) tm.assert_frame_equal(bif, bifw, check_dtype=False) for c in df.columns: if bif[c].dtype != bifw[c].dtype: assert bif[c].dtype == df[c].dtype def test_getitem_boolean_casting(self, datetime_frame): # don't upcast if we don't need to df = datetime_frame.copy() df["E"] = 1 df["E"] = df["E"].astype("int32") df["E1"] = df["E"].copy() df["F"] = 1 df["F"] = df["F"].astype("int64") df["F1"] = df["F"].copy() casted = df[df > 0] result = casted.dtypes expected = Series( [np.dtype("float64")] * 4 + [np.dtype("int32")] * 2 + [np.dtype("int64")] * 2, index=["A", "B", "C", "D", "E", "E1", "F", "F1"], ) tm.assert_series_equal(result, expected) # int block splitting df.loc[df.index[1:3], ["E1", "F1"]] = 0 casted = df[df > 0] result = casted.dtypes expected = Series( [np.dtype("float64")] * 4 + [np.dtype("int32")] + [np.dtype("float64")] + [np.dtype("int64")] + [np.dtype("float64")], index=["A", "B", "C", "D", "E", "E1", "F", "F1"], ) tm.assert_series_equal(result, expected) def test_getitem_boolean_list(self): df = DataFrame(np.arange(12).reshape(3, 4)) def _checkit(lst): result = df[lst] expected = df.loc[df.index[lst]] tm.assert_frame_equal(result, expected) _checkit([True, False, True]) _checkit([True, True, True]) _checkit([False, False, False]) def test_getitem_boolean_iadd(self): arr = np.random.randn(5, 5) df = DataFrame(arr.copy(), columns=["A", "B", "C", "D", "E"]) df[df < 0] += 1 arr[arr < 0] += 1 tm.assert_almost_equal(df.values, arr) def test_boolean_index_empty_corner(self): # #2096 blah = DataFrame(np.empty([0, 1]), columns=["A"], index=DatetimeIndex([])) # both of these should succeed trivially k = np.array([], bool) blah[k] blah[k] = 0 def test_getitem_ix_mixed_integer(self): df = DataFrame( np.random.randn(4, 3), index=[1, 10, "C", "E"], columns=[1, 2, 3] ) result = df.iloc[:-1] expected = df.loc[df.index[:-1]] tm.assert_frame_equal(result, expected) result = df.loc[[1, 10]] expected = df.loc[Index([1, 10])] tm.assert_frame_equal(result, expected) def test_getitem_ix_mixed_integer2(self): # 11320 df = DataFrame( { "rna": (1.5, 2.2, 3.2, 4.5), -1000: [11, 21, 36, 40], 0: [10, 22, 43, 34], 1000: [0, 10, 20, 30], }, columns=["rna", -1000, 0, 1000], ) result = df[[1000]] expected = df.iloc[:, [3]] tm.assert_frame_equal(result, expected) result = df[[-1000]] expected = df.iloc[:, [1]] tm.assert_frame_equal(result, expected) def test_getattr(self, float_frame): tm.assert_series_equal(float_frame.A, float_frame["A"]) msg = "'DataFrame' object has no attribute 'NONEXISTENT_NAME'" with pytest.raises(AttributeError, match=msg): float_frame.NONEXISTENT_NAME def test_setattr_column(self): df = DataFrame({"foobar": 1}, index=range(10)) df.foobar = 5 assert (df.foobar == 5).all() def test_setitem(self, float_frame): # not sure what else to do here series = float_frame["A"][::2] float_frame["col5"] = series assert "col5" in float_frame assert len(series) == 15 assert len(float_frame) == 30 exp = np.ravel(np.column_stack((series.values, [np.nan] * 15))) exp = Series(exp, index=float_frame.index, name="col5") tm.assert_series_equal(float_frame["col5"], exp) series = float_frame["A"] float_frame["col6"] = series tm.assert_series_equal(series, float_frame["col6"], check_names=False) # set ndarray arr = np.random.randn(len(float_frame)) float_frame["col9"] = arr assert (float_frame["col9"] == arr).all() float_frame["col7"] = 5 assert (float_frame["col7"] == 5).all() float_frame["col0"] = 3.14 assert (float_frame["col0"] == 3.14).all() float_frame["col8"] = "foo" assert (float_frame["col8"] == "foo").all() # this is partially a view (e.g. some blocks are view) # so raise/warn smaller = float_frame[:2] msg = r"\nA value is trying to be set on a copy of a slice from a DataFrame" with pytest.raises(com.SettingWithCopyError, match=msg): smaller["col10"] = ["1", "2"] assert smaller["col10"].dtype == np.object_ assert (smaller["col10"] == ["1", "2"]).all() def test_setitem2(self): # dtype changing GH4204 df = DataFrame([[0, 0]]) df.iloc[0] = np.nan expected = DataFrame([[np.nan, np.nan]]) tm.assert_frame_equal(df, expected) df = DataFrame([[0, 0]]) df.loc[0] = np.nan tm.assert_frame_equal(df, expected) def test_setitem_boolean(self, float_frame): df = float_frame.copy() values = float_frame.values df[df["A"] > 0] = 4 values[values[:, 0] > 0] = 4 tm.assert_almost_equal(df.values, values) # test that column reindexing works series = df["A"] == 4 series = series.reindex(df.index[::-1]) df[series] = 1 values[values[:, 0] == 4] = 1 tm.assert_almost_equal(df.values, values) df[df > 0] = 5 values[values > 0] = 5 tm.assert_almost_equal(df.values, values) df[df == 5] = 0 values[values == 5] = 0 tm.assert_almost_equal(df.values, values) # a df that needs alignment first df[df[:-1] < 0] = 2 np.putmask(values[:-1], values[:-1] < 0, 2) tm.assert_almost_equal(df.values, values) # indexed with same shape but rows-reversed df df[df[::-1] == 2] = 3 values[values == 2] = 3 tm.assert_almost_equal(df.values, values) msg = "Must pass DataFrame or 2-d ndarray with boolean values only" with pytest.raises(TypeError, match=msg): df[df * 0] = 2 # index with DataFrame mask = df > np.abs(df) expected = df.copy() df[df > np.abs(df)] = np.nan expected.values[mask.values] = np.nan tm.assert_frame_equal(df, expected) # set from DataFrame expected = df.copy() df[df > np.abs(df)] = df * 2 np.putmask(expected.values, mask.values, df.values * 2) tm.assert_frame_equal(df, expected) def test_setitem_cast(self, float_frame): float_frame["D"] = float_frame["D"].astype("i8") assert float_frame["D"].dtype == np.int64 # #669, should not cast? # this is now set to int64, which means a replacement of the column to # the value dtype (and nothing to do with the existing dtype) float_frame["B"] = 0 assert float_frame["B"].dtype == np.int64 # cast if pass array of course float_frame["B"] = np.arange(len(float_frame)) assert issubclass(float_frame["B"].dtype.type, np.integer) float_frame["foo"] = "bar" float_frame["foo"] = 0 assert float_frame["foo"].dtype == np.int64 float_frame["foo"] = "bar" float_frame["foo"] = 2.5 assert float_frame["foo"].dtype == np.float64 float_frame["something"] = 0 assert float_frame["something"].dtype == np.int64 float_frame["something"] = 2 assert float_frame["something"].dtype == np.int64 float_frame["something"] = 2.5 assert float_frame["something"].dtype == np.float64 def test_setitem_corner(self, float_frame): # corner case df = DataFrame({"B": [1.0, 2.0, 3.0], "C": ["a", "b", "c"]}, index=np.arange(3)) del df["B"] df["B"] = [1.0, 2.0, 3.0] assert "B" in df assert len(df.columns) == 2 df["A"] = "beginning" df["E"] = "foo" df["D"] = "bar" df[datetime.now()] = "date" df[datetime.now()] = 5.0 # what to do when empty frame with index dm = DataFrame(index=float_frame.index) dm["A"] = "foo" dm["B"] = "bar" assert len(dm.columns) == 2 assert dm.values.dtype == np.object_ # upcast dm["C"] = 1 assert dm["C"].dtype == np.int64 dm["E"] = 1.0 assert dm["E"].dtype == np.float64 # set existing column dm["A"] = "bar" assert "bar" == dm["A"][0] dm = DataFrame(index=np.arange(3)) dm["A"] = 1 dm["foo"] = "bar" del dm["foo"] dm["foo"] = "bar" assert dm["foo"].dtype == np.object_ dm["coercible"] = ["1", "2", "3"] assert dm["coercible"].dtype == np.object_ def test_setitem_corner2(self): data = { "title": ["foobar", "bar", "foobar"] + ["foobar"] * 17, "cruft": np.random.random(20), } df = DataFrame(data) ix = df[df["title"] == "bar"].index df.loc[ix, ["title"]] = "foobar" df.loc[ix, ["cruft"]] = 0 assert df.loc[1, "title"] == "foobar" assert df.loc[1, "cruft"] == 0 def test_setitem_ambig(self): # Difficulties with mixed-type data from decimal import Decimal # Created as float type dm = DataFrame(index=range(3), columns=range(3)) coercable_series = Series([Decimal(1) for _ in range(3)], index=range(3)) uncoercable_series = Series(["foo", "bzr", "baz"], index=range(3)) dm[0] = np.ones(3) assert len(dm.columns) == 3 dm[1] = coercable_series assert len(dm.columns) == 3 dm[2] = uncoercable_series assert len(dm.columns) == 3 assert dm[2].dtype == np.object_ def test_setitem_None(self, float_frame): # GH #766 float_frame[None] = float_frame["A"] tm.assert_series_equal( float_frame.iloc[:, -1], float_frame["A"], check_names=False ) tm.assert_series_equal( float_frame.loc[:, None], float_frame["A"], check_names=False ) tm.assert_series_equal(float_frame[None], float_frame["A"], check_names=False) repr(float_frame) def test_loc_setitem_boolean_mask_allfalse(self): # GH 9596 df = DataFrame( {"a": ["1", "2", "3"], "b": ["11", "22", "33"], "c": ["111", "222", "333"]} ) result = df.copy() result.loc[result.b.isna(), "a"] = result.a tm.assert_frame_equal(result, df) def test_getitem_fancy_slice_integers_step(self): df = DataFrame(np.random.randn(10, 5)) # this is OK result = df.iloc[:8:2] # noqa df.iloc[:8:2] = np.nan assert isna(df.iloc[:8:2]).values.all() def test_getitem_setitem_integer_slice_keyerrors(self): df = DataFrame(np.random.randn(10, 5), index=range(0, 20, 2)) # this is OK cp = df.copy() cp.iloc[4:10] = 0 assert (cp.iloc[4:10] == 0).values.all() # so is this cp = df.copy() cp.iloc[3:11] = 0 assert (cp.iloc[3:11] == 0).values.all() result = df.iloc[2:6] result2 = df.loc[3:11] expected = df.reindex([4, 6, 8, 10]) tm.assert_frame_equal(result, expected) tm.assert_frame_equal(result2, expected) # non-monotonic, raise KeyError df2 = df.iloc[list(range(5)) + list(range(5, 10))[::-1]] with pytest.raises(KeyError, match=r"^3$"): df2.loc[3:11] with pytest.raises(KeyError, match=r"^3$"): df2.loc[3:11] = 0 @td.skip_array_manager_invalid_test # already covered in test_iloc_col_slice_view def test_fancy_getitem_slice_mixed(self, float_frame, float_string_frame): sliced = float_string_frame.iloc[:, -3:] assert sliced["D"].dtype == np.float64 # get view with single block # setting it triggers setting with copy sliced = float_frame.iloc[:, -3:] assert np.shares_memory(sliced["C"]._values, float_frame["C"]._values) msg = r"\nA value is trying to be set on a copy of a slice from a DataFrame" with pytest.raises(com.SettingWithCopyError, match=msg): sliced.loc[:, "C"] = 4.0 assert (float_frame["C"] == 4).all() def test_getitem_setitem_non_ix_labels(self): df = tm.makeTimeDataFrame() start, end = df.index[[5, 10]] result = df.loc[start:end] result2 = df[start:end] expected = df[5:11] tm.assert_frame_equal(result, expected) tm.assert_frame_equal(result2, expected) result = df.copy() result.loc[start:end] = 0 result2 = df.copy() result2[start:end] = 0 expected = df.copy() expected[5:11] = 0 tm.assert_frame_equal(result, expected) tm.assert_frame_equal(result2, expected) def test_ix_multi_take(self): df = DataFrame(np.random.randn(3, 2)) rs = df.loc[df.index == 0, :] xp = df.reindex([0]) tm.assert_frame_equal(rs, xp) # GH#1321 df = DataFrame(np.random.randn(3, 2)) rs = df.loc[df.index == 0, df.columns == 1] xp = df.reindex(index=[0], columns=[1]) tm.assert_frame_equal(rs, xp) def test_getitem_fancy_scalar(self, float_frame): f = float_frame ix = f.loc # individual value for col in f.columns: ts = f[col] for idx in f.index[::5]: assert ix[idx, col] == ts[idx] @td.skip_array_manager_invalid_test # TODO(ArrayManager) rewrite not using .values def test_setitem_fancy_scalar(self, float_frame): f = float_frame expected = float_frame.copy() ix = f.loc # individual value for j, col in enumerate(f.columns): ts = f[col] # noqa for idx in f.index[::5]: i = f.index.get_loc(idx) val = np.random.randn() expected.values[i, j] = val ix[idx, col] = val tm.assert_frame_equal(f, expected) def test_getitem_fancy_boolean(self, float_frame): f = float_frame ix = f.loc expected = f.reindex(columns=["B", "D"]) result = ix[:, [False, True, False, True]] tm.assert_frame_equal(result, expected) expected = f.reindex(index=f.index[5:10], columns=["B", "D"]) result = ix[f.index[5:10], [False, True, False, True]] tm.assert_frame_equal(result, expected) boolvec = f.index > f.index[7] expected = f.reindex(index=f.index[boolvec]) result = ix[boolvec] tm.assert_frame_equal(result, expected) result = ix[boolvec, :] tm.assert_frame_equal(result, expected) result = ix[boolvec, f.columns[2:]] expected = f.reindex(index=f.index[boolvec], columns=["C", "D"]) tm.assert_frame_equal(result, expected) @td.skip_array_manager_invalid_test # TODO(ArrayManager) rewrite not using .values def test_setitem_fancy_boolean(self, float_frame): # from 2d, set with booleans frame = float_frame.copy() expected = float_frame.copy() mask = frame["A"] > 0 frame.loc[mask] = 0.0 expected.values[mask.values] = 0.0 tm.assert_frame_equal(frame, expected) frame = float_frame.copy() expected = float_frame.copy() frame.loc[mask, ["A", "B"]] = 0.0 expected.values[mask.values, :2] = 0.0 tm.assert_frame_equal(frame, expected) def test_getitem_fancy_ints(self, float_frame): result = float_frame.iloc[[1, 4, 7]] expected = float_frame.loc[float_frame.index[[1, 4, 7]]] tm.assert_frame_equal(result, expected) result = float_frame.iloc[:, [2, 0, 1]] expected = float_frame.loc[:, float_frame.columns[[2, 0, 1]]] tm.assert_frame_equal(result, expected) def test_getitem_setitem_boolean_misaligned(self, float_frame): # boolean index misaligned labels mask = float_frame["A"][::-1] > 1 result = float_frame.loc[mask] expected = float_frame.loc[mask[::-1]] tm.assert_frame_equal(result, expected) cp = float_frame.copy() expected = float_frame.copy() cp.loc[mask] = 0 expected.loc[mask] = 0 tm.assert_frame_equal(cp, expected) def test_getitem_setitem_boolean_multi(self): df = DataFrame(np.random.randn(3, 2)) # get k1 = np.array([True, False, True]) k2 = np.array([False, True]) result = df.loc[k1, k2] expected = df.loc[[0, 2], [1]] tm.assert_frame_equal(result, expected) expected = df.copy() df.loc[np.array([True, False, True]), np.array([False, True])] = 5 expected.loc[[0, 2], [1]] = 5 tm.assert_frame_equal(df, expected) def test_getitem_setitem_float_labels(self): index = Index([1.5, 2, 3, 4, 5]) df = DataFrame(np.random.randn(5, 5), index=index) result = df.loc[1.5:4] expected = df.reindex([1.5, 2, 3, 4]) tm.assert_frame_equal(result, expected) assert len(result) == 4 result = df.loc[4:5] expected = df.reindex([4, 5]) # reindex with int tm.assert_frame_equal(result, expected, check_index_type=False) assert len(result) == 2 result = df.loc[4:5] expected = df.reindex([4.0, 5.0]) # reindex with float tm.assert_frame_equal(result, expected) assert len(result) == 2 # loc_float changes this to work properly result = df.loc[1:2] expected = df.iloc[0:2] tm.assert_frame_equal(result, expected) df.loc[1:2] = 0 result = df[1:2] assert (result == 0).all().all() # #2727 index = Index([1.0, 2.5, 3.5, 4.5, 5.0]) df = DataFrame(np.random.randn(5, 5), index=index) # positional slicing only via iloc! msg = ( "cannot do positional indexing on Float64Index with " r"these indexers \[1.0\] of type float" ) with pytest.raises(TypeError, match=msg): df.iloc[1.0:5] result = df.iloc[4:5] expected = df.reindex([5.0]) tm.assert_frame_equal(result, expected) assert len(result) == 1 cp = df.copy() with pytest.raises(TypeError, match=_slice_msg): cp.iloc[1.0:5] = 0 with pytest.raises(TypeError, match=msg): result = cp.iloc[1.0:5] == 0 assert result.values.all() assert (cp.iloc[0:1] == df.iloc[0:1]).values.all() cp = df.copy() cp.iloc[4:5] = 0 assert (cp.iloc[4:5] == 0).values.all() assert (cp.iloc[0:4] == df.iloc[0:4]).values.all() # float slicing result = df.loc[1.0:5] expected = df tm.assert_frame_equal(result, expected) assert len(result) == 5 result = df.loc[1.1:5] expected = df.reindex([2.5, 3.5, 4.5, 5.0]) tm.assert_frame_equal(result, expected) assert len(result) == 4 result = df.loc[4.51:5] expected = df.reindex([5.0]) tm.assert_frame_equal(result, expected) assert len(result) == 1 result = df.loc[1.0:5.0] expected = df.reindex([1.0, 2.5, 3.5, 4.5, 5.0]) tm.assert_frame_equal(result, expected) assert len(result) == 5 cp = df.copy() cp.loc[1.0:5.0] = 0 result = cp.loc[1.0:5.0] assert (result == 0).values.all() def test_setitem_single_column_mixed_datetime(self): df = DataFrame( np.random.randn(5, 3), index=["a", "b", "c", "d", "e"], columns=["foo", "bar", "baz"], ) df["timestamp"] = Timestamp("20010102") # check our dtypes result = df.dtypes expected = Series( [np.dtype("float64")] * 3 + [np.dtype("datetime64[ns]")], index=["foo", "bar", "baz", "timestamp"], ) tm.assert_series_equal(result, expected) # GH#16674 iNaT is treated as an integer when given by the user df.loc["b", "timestamp"] = iNaT assert not isna(df.loc["b", "timestamp"]) assert df["timestamp"].dtype == np.object_ assert df.loc["b", "timestamp"] == iNaT # allow this syntax (as of GH#3216) df.loc["c", "timestamp"] = np.nan assert isna(df.loc["c", "timestamp"]) # allow this syntax df.loc["d", :] = np.nan assert not isna(df.loc["c", :]).all() def test_setitem_mixed_datetime(self): # GH 9336 expected = DataFrame( { "a": [0, 0, 0, 0, 13, 14], "b": [ datetime(2012, 1, 1), 1, "x", "y", datetime(2013, 1, 1), datetime(2014, 1, 1), ], } ) df = DataFrame(0, columns=list("ab"), index=range(6)) df["b"] = pd.NaT df.loc[0, "b"] = datetime(2012, 1, 1) df.loc[1, "b"] = 1 df.loc[[2, 3], "b"] = "x", "y" A = np.array( [ [13, np.datetime64("2013-01-01T00:00:00")], [14, np.datetime64("2014-01-01T00:00:00")], ] ) df.loc[[4, 5], ["a", "b"]] = A tm.assert_frame_equal(df, expected) def test_setitem_frame_float(self, float_frame): piece = float_frame.loc[float_frame.index[:2], ["A", "B"]] float_frame.loc[float_frame.index[-2] :, ["A", "B"]] = piece.values result = float_frame.loc[float_frame.index[-2:], ["A", "B"]].values expected = piece.values tm.assert_almost_equal(result, expected) def test_setitem_frame_mixed(self, float_string_frame): # GH 3216 # already aligned f = float_string_frame.copy() piece = DataFrame( [[1.0, 2.0], [3.0, 4.0]], index=f.index[0:2], columns=["A", "B"] ) key = (f.index[slice(None, 2)], ["A", "B"]) f.loc[key] = piece tm.assert_almost_equal(f.loc[f.index[0:2], ["A", "B"]].values, piece.values) def test_setitem_frame_mixed_rows_unaligned(self, float_string_frame): # GH#3216 rows unaligned f = float_string_frame.copy() piece = DataFrame( [[1.0, 2.0], [3.0, 4.0], [5.0, 6.0], [7.0, 8.0]], index=list(f.index[0:2]) + ["foo", "bar"], columns=["A", "B"], ) key = (f.index[slice(None, 2)], ["A", "B"]) f.loc[key] = piece tm.assert_almost_equal( f.loc[f.index[0:2:], ["A", "B"]].values, piece.values[0:2] ) def test_setitem_frame_mixed_key_unaligned(self, float_string_frame): # GH#3216 key is unaligned with values f = float_string_frame.copy() piece = f.loc[f.index[:2], ["A"]] piece.index = f.index[-2:] key = (f.index[slice(-2, None)], ["A", "B"]) f.loc[key] = piece piece["B"] = np.nan tm.assert_almost_equal(f.loc[f.index[-2:], ["A", "B"]].values, piece.values) def test_setitem_frame_mixed_ndarray(self, float_string_frame): # GH#3216 ndarray f = float_string_frame.copy() piece = float_string_frame.loc[f.index[:2], ["A", "B"]] key = (f.index[slice(-2, None)], ["A", "B"]) f.loc[key] = piece.values tm.assert_almost_equal(f.loc[f.index[-2:], ["A", "B"]].values, piece.values) def test_setitem_frame_upcast(self): # needs upcasting df = DataFrame([[1, 2, "foo"], [3, 4, "bar"]], columns=["A", "B", "C"]) df2 = df.copy() df2.loc[:, ["A", "B"]] = df.loc[:, ["A", "B"]] + 0.5 expected = df.reindex(columns=["A", "B"]) expected += 0.5 expected["C"] = df["C"] tm.assert_frame_equal(df2, expected) def test_setitem_frame_align(self, float_frame): piece = float_frame.loc[float_frame.index[:2], ["A", "B"]] piece.index = float_frame.index[-2:] piece.columns = ["A", "B"] float_frame.loc[float_frame.index[-2:], ["A", "B"]] = piece result = float_frame.loc[float_frame.index[-2:], ["A", "B"]].values expected = piece.values tm.assert_almost_equal(result, expected) def test_getitem_setitem_ix_duplicates(self): # #1201 df = DataFrame(np.random.randn(5, 3), index=["foo", "foo", "bar", "baz", "bar"]) result = df.loc["foo"] expected = df[:2] tm.assert_frame_equal(result, expected) result = df.loc["bar"] expected = df.iloc[[2, 4]] tm.assert_frame_equal(result, expected) result = df.loc["baz"] expected = df.iloc[3] tm.assert_series_equal(result, expected) def test_getitem_ix_boolean_duplicates_multiple(self): # #1201 df = DataFrame(np.random.randn(5, 3), index=["foo", "foo", "bar", "baz", "bar"]) result = df.loc[["bar"]] exp = df.iloc[[2, 4]] tm.assert_frame_equal(result, exp) result = df.loc[df[1] > 0] exp = df[df[1] > 0] tm.assert_frame_equal(result, exp) result = df.loc[df[0] > 0] exp = df[df[0] > 0] tm.assert_frame_equal(result, exp) @pytest.mark.parametrize("bool_value", [True, False]) def test_getitem_setitem_ix_bool_keyerror(self, bool_value): # #2199 df = DataFrame({"a": [1, 2, 3]}) message = f"{bool_value}: boolean label can not be used without a boolean index" with pytest.raises(KeyError, match=message): df.loc[bool_value] msg = "cannot use a single bool to index into setitem" with pytest.raises(KeyError, match=msg): df.loc[bool_value] = 0 # TODO: rename? remove? def test_single_element_ix_dont_upcast(self, float_frame): float_frame["E"] = 1 assert issubclass(float_frame["E"].dtype.type, (int, np.integer)) result = float_frame.loc[float_frame.index[5], "E"] assert
is_integer(result)
pandas.core.dtypes.common.is_integer
import unittest from context import grama as gr from context import data from numpy import NaN from pandas import DataFrame, RangeIndex from pandas.testing import assert_frame_equal class TestPivotLonger(unittest.TestCase): """Test implementation of pivot_longer """ def test_pivot_longer(self): """ Test basic functionality of pivot_longer """ wide = gr.df_make(One=[1,2,3], Two=[4,5,6]) long = gr.tran_pivot_longer( wide, columns=("One","Two"), names_to="columns", values_to="values" ) expected = gr.df_make( columns=["One","One","One","Two","Two","Two"], values=[1,2,3,4,5,6] ) assert_frame_equal(long, expected) def test_pivot_longer_index_not_rangeindex(self): """ Test if pivot_longer makes a RangeIndex if current index is not a RangeIndex and preserves the orignal as new column named "index" """ wide = DataFrame( { "One": {"A": 1.0, "B": 2.0, "C": 3.0}, "Two": {"A": 1.0, "B": 2.0, "C": 3.0}, } ) long = gr.tran_pivot_longer( wide, columns=("One","Two"), names_to="columns", values_to="values" ) expected = DataFrame( { "index": ["A", "B", "C", "A", "B", "C"], "columns": ["One", "One", "One", "Two", "Two", "Two"], "values": [1.0, 2.0, 3.0, 1.0, 2.0, 3.0], } ) assert_frame_equal(long, expected) def test_pivot_longer_rename_not_rangeindex(self): """ Test if pivot_longer makes a RangeIndex if current index is not a RangeIndex and preserves the orignal as a new column "index_to" """ wide = DataFrame( { "One": {"A": 1.0, "B": 2.0, "C": 3.0}, "Two": {"A": 1.0, "B": 2.0, "C": 3.0}, } ) long = gr.tran_pivot_longer( wide, columns=("One","Two"), index_to="idx", names_to="columns", values_to="values" ) expected = DataFrame( { "idx": ["A", "B", "C", "A", "B", "C"], "columns": ["One", "One", "One", "Two", "Two", "Two"], "values": [1.0, 2.0, 3.0, 1.0, 2.0, 3.0], } )
assert_frame_equal(long, expected)
pandas.testing.assert_frame_equal
# -*- coding: utf-8 -*- """Supports Kp index values. Downloads data from ftp.gfz-potsdam.de or SWPC. Parameters ---------- platform 'sw' name 'kp' tag - '' : Standard Kp data - 'forecast' : Grab forecast data from SWPC (next 3 days) - 'recent' : Grab last 30 days of Kp data from SWPC Note ---- Standard Kp files are stored by the first day of each month. When downloading use kp.download(start, stop, freq='MS') to only download days that could possibly have data. 'MS' gives a monthly start frequency. The forecast data is stored by generation date, where each file contains the forecast for the next three days. Forecast data downloads are only supported for the current day. When loading forecast data, the date specified with the load command is the date the forecast was generated. The data loaded will span three days. To always ensure you are loading the most recent data, load the data with tomorrow's date. :: kp = pysat.Instrument('sw', 'kp', tag='recent') kp.download() kp.load(date=kp.tomorrow()) Recent data is also stored by the generation date from the SWPC. Each file contains 30 days of Kp measurements. The load date issued to pysat corresponds to the generation date. The recent and forecast data should not be used with the data padding option available from pysat.Instrument objects. Warnings -------- The 'forecast' Kp data loads three days at a time. The data padding feature and multi_file_day feature available from the pyast.Instrument object is not appropriate for Kp 'forecast' data. This material is based upon work supported by the National Science Foundation under Grant Number 1259508. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. Custom Functions ---------------- filter_geoquiet Filters pysat.Instrument data for given time after Kp drops below gate. """ import functools import numpy as np import os import pandas as pds import pysat import logging logger = logging.getLogger(__name__) platform = 'sw' name = 'kp' tags = {'': '', 'forecast': 'SWPC Forecast data next (3 days)', 'recent': 'SWPC provided Kp for past 30 days'} sat_ids = {'': ['', 'forecast', 'recent']} # generate todays date to support loading forecast data now = pysat.datetime.now() today = pysat.datetime(now.year, now.month, now.day) # set test dates _test_dates = {'': {'': pysat.datetime(2009, 1, 1), 'forecast': today + pds.DateOffset(days=1)}} def load(fnames, tag=None, sat_id=None): """Load Kp index files Parameters ------------ fnames : pandas.Series Series of filenames tag : str or NoneType tag or None (default=None) sat_id : str or NoneType satellite id or None (default=None) Returns --------- data : pandas.DataFrame Object containing satellite data meta : pysat.Meta Object containing metadata such as column names and units Notes ----- Called by pysat. Not intended for direct use by user. """ from pysat.utils.time import parse_date meta = pysat.Meta() if tag == '': # Kp data stored monthly, need to return data daily # the daily date is attached to filename # parse off the last date, load month of data, downselect to desired # day data = pds.DataFrame() # set up fixed width format for these files colspec = [(0, 2), (2, 4), (4, 6), (7, 10), (10, 13), (13, 16), (16, 19), (19, 23), (23, 26), (26, 29), (29, 32), (32, 50)] for filename in fnames: # the daily date is attached to filename # parse off the last date, load month of data, downselect to the # desired day fname = filename[0:-11] date = pysat.datetime.strptime(filename[-10:], '%Y-%m-%d') temp = pds.read_fwf(fname, colspecs=colspec, skipfooter=4, header=None, parse_dates=[[0, 1, 2]], date_parser=parse_date, index_col='0_1_2') idx, = np.where((temp.index >= date) & (temp.index < date + pds.DateOffset(days=1))) temp = temp.iloc[idx, :] data = pds.concat([data, temp], axis=0) # drop last column as it has data I don't care about data = data.iloc[:, 0:-1] # each column increments UT by three hours # produce a single data series that has Kp value monotonically # increasing in time with appropriate datetime indices s = pds.Series() for i in np.arange(8): temp = pds.Series(data.iloc[:, i].values, index=data.index+pds.DateOffset(hours=int(3*i))) s = s.append(temp) s = s.sort_index() s.index.name = 'time' # now, Kp comes in non-user friendly values # 2-, 2o, and 2+ relate to 1.6, 2.0, 2.3 # will convert for user friendliness first = np.array([float(x[0]) for x in s]) flag = np.array([x[1] for x in s]) ind, = np.where(flag == '+') first[ind] += 1.0 / 3.0 ind, = np.where(flag == '-') first[ind] -= 1.0 / 3.0 result = pds.DataFrame(first, columns=['Kp'], index=s.index) fill_val = np.nan elif tag == 'forecast': # load forecast data result = pds.read_csv(fnames[0], index_col=0, parse_dates=True) fill_val = -1 elif tag == 'recent': # load recent Kp data result = pds.read_csv(fnames[0], index_col=0, parse_dates=True) fill_val = -1 # Initalize the meta data for kk in result.keys(): initialize_kp_metadata(meta, kk, fill_val) return result, meta def list_files(tag=None, sat_id=None, data_path=None, format_str=None): """Return a Pandas Series of every file for chosen satellite data Parameters ----------- tag : string or NoneType Denotes type of file to load. (default=None) sat_id : string or NoneType Specifies the satellite ID for a constellation. Not used. (default=None) data_path : string or NoneType Path to data directory. If None is specified, the value previously set in Instrument.files.data_path is used. (default=None) format_str : string or NoneType User specified file format. If None is specified, the default formats associated with the supplied tags are used. (default=None) Returns -------- pysat.Files.from_os : pysat._files.Files A class containing the verified available files Notes ----- Called by pysat. Not intended for direct use by user. """ if data_path is not None: if tag == '': # files are by month, going to add date to monthly filename for # each day of the month. The load routine will load a month of # data and use the appended date to select out appropriate data. if format_str is None: format_str = 'kp{year:2d}{month:02d}.tab' out = pysat.Files.from_os(data_path=data_path, format_str=format_str, two_digit_year_break=94) if not out.empty: out.loc[out.index[-1] + pds.DateOffset(months=1) - pds.DateOffset(days=1)] = out.iloc[-1] out = out.asfreq('D', 'pad') out = out + '_' + out.index.strftime('%Y-%m-%d') return out elif tag == 'forecast': format_str = 'kp_forecast_{year:04d}-{month:02d}-{day:02d}.txt' files = pysat.Files.from_os(data_path=data_path, format_str=format_str) # pad list of files data to include most recent file under tomorrow if not files.empty: pds_offset = pds.DateOffset(days=1) files.loc[files.index[-1] + pds_offset] = files.values[-1] files.loc[files.index[-1] + pds_offset] = files.values[-1] return files elif tag == 'recent': format_str = 'kp_recent_{year:04d}-{month:02d}-{day:02d}.txt' files = pysat.Files.from_os(data_path=data_path, format_str=format_str) # pad list of files data to include most recent file under tomorrow if not files.empty: pds_offset = pds.DateOffset(days=1) files.loc[files.index[-1] + pds_offset] = files.values[-1] files.loc[files.index[-1] + pds_offset] = files.values[-1] return files else: raise ValueError('Unrecognized tag name for Space Weather Index ' + 'Kp') else: raise ValueError('A data_path must be passed to the loading routine ' + 'for Kp') def download(date_array, tag, sat_id, data_path, user=None, password=None): """Routine to download Kp index data Parameters ----------- tag : string or NoneType Denotes type of file to load. Accepted types are '' and 'forecast'. (default=None) sat_id : string or NoneType Specifies the satellite ID for a constellation. Not used. (default=None) data_path : string or NoneType Path to data directory. If None is specified, the value previously set in Instrument.files.data_path is used. (default=None) Note ---- Called by pysat. Not intended for direct use by user. Warnings -------- Only able to download current forecast data, not archived forecasts. """ # download standard Kp data if tag == '': import ftplib from ftplib import FTP import sys ftp = FTP('ftp.gfz-potsdam.de') # connect to host, default port ftp.login() # user anonymous, passwd anonymous@ ftp.cwd('/pub/home/obs/kp-ap/tab') dnames = list() for date in date_array: fname = 'kp{year:02d}{month:02d}.tab' fname = fname.format(year=(date.year - date.year//100*100), month=date.month) local_fname = fname saved_fname = os.path.join(data_path, local_fname) if not fname in dnames: try: logger.info('Downloading file for '+date.strftime('%b %Y')) sys.stdout.flush() ftp.retrbinary('RETR '+fname, open(saved_fname, 'wb').write) dnames.append(fname) except ftplib.error_perm as exception: if str(exception.args[0]).split(" ", 1)[0] != '550': # leaving a bare raise below so that ftp errors # are properly reported as coming from ftp # and gives the correct line number. # We aren't expecting any 'normal' ftp errors # here, other than a 550 'no file' error, thus # accurately raising FTP issues is the way to go raise else: # file isn't actually there, just let people know # then continue on os.remove(saved_fname) logger.info('File not available for '+date.strftime('%x')) ftp.close() elif tag == 'forecast': import requests logger.info('This routine can only download the current forecast, ' + 'not archived forecasts') # download webpage furl = 'https://services.swpc.noaa.gov/text/3-day-geomag-forecast.txt' r = requests.get(furl) # parse text to get the date the prediction was generated date_str = r.text.split(':Issued: ')[-1].split(' UTC')[0] date = pysat.datetime.strptime(date_str, '%Y %b %d %H%M') # data is the forecast value for the next three days raw_data = r.text.split('NOAA Kp index forecast ')[-1] # get date of the forecasts date_str = raw_data[0:6] + ' ' + str(date.year) forecast_date = pysat.datetime.strptime(date_str, '%d %b %Y') # strings we will use to parse the downloaded text lines = ['00-03UT', '03-06UT', '06-09UT', '09-12UT', '12-15UT', '15-18UT', '18-21UT', '21-00UT'] # storage for daily forecasts # get values for each day, then combine together day1 = [] day2 = [] day3 = [] for line in lines: raw = raw_data.split(line)[-1].split('\n')[0] day1.append(int(raw[0:10])) day2.append(int(raw[10:20])) day3.append(int(raw[20:])) times =
pds.date_range(forecast_date, periods=24, freq='3H')
pandas.date_range
# Version 2.0 of the t-SNE Stock Market Example: with triggers and better defined functions. # Try with simulated data so we know that they are clustered #___________________________________________________________________________________________________ Import packages import numpy as np import pandas as pd from sklearn.manifold import TSNE import matplotlib.pyplot as plt from matplotlib import colors from fbm import FBM # Use the normalization? Shouldn't be needed # from sklearn.preprocessing import normalize import imageio from timeit import default_timer as timer import umap #___________________________________________________________________________________________________ Control triggers ####################### Triggers ######################## # 0: no, 1: yes plot_bar = 0 # Bar plots of returns for all companies for a given number of days (randomized) compute_tsne = 0 plot_tsne_synth = 0 # Plots a single plot of t-SNE for the snythetic dataset plot_tsne_gif = 0 # Plots a gif of all the possible windows of t-SNE compute_umap = 0 plot_umap = 0 ###################### Parameters ######################## window_time = 40 # Window of time for the "dynamic t-SNE" days_bar_plot = 3 # Number of bar plots (also number of days it will be plotted for) #___________________________________________________________________________________________________ Import data raw_data = np.asarray(
pd.read_csv('all_stocks_5yr.csv')
pandas.read_csv
from nose.tools import with_setup import pandas as pd from ..widget import utils as utils from ..widget.encoding import Encoding df = None encoding = None def _setup(): global df, encoding records = [ { "buildingID": 0, "date": "6/1/13", "temp_diff": 12, "mystr": "alejandro", "mystr2": "1", }, { "buildingID": 1, "date": "6/1/13", "temp_diff": 0, "mystr": "alejandro", "mystr2": "1", }, { "buildingID": 2, "date": "6/1/14", "temp_diff": 11, "mystr": "alejandro", "mystr2": "1", }, { "buildingID": 0, "date": "6/1/15", "temp_diff": 5, "mystr": "alejandro", "mystr2": "1.0", }, { "buildingID": 1, "date": "6/1/16", "temp_diff": 19, "mystr": "alejandro", "mystr2": "1", }, { "buildingID": 2, "date": "6/1/17", "temp_diff": 32, "mystr": "alejandro", "mystr2": "1", }, ] df = pd.DataFrame(records) encoding = Encoding(chart_type="table", x="date", y="temp_diff") def _teardown(): pass @with_setup(_setup, _teardown) def test_on_render_viz(): df["date"] = pd.to_datetime(df["date"]) df["mystr2"] = pd.to_numeric(df["mystr2"]) assert utils.infer_vegalite_type(df["buildingID"]) == "Q" assert utils.infer_vegalite_type(df["date"]) == "T" assert utils.infer_vegalite_type(df["temp_diff"]) == "Q" assert utils.infer_vegalite_type(df["mystr"]) == "N" assert utils.infer_vegalite_type(df["mystr2"]) == "Q" def test_select_x(): assert utils.select_x(None) is None def _check(d, expected): x = utils.select_x(d) assert x == expected data = dict( col1=[1.0, 2.0, 3.0], # Q col2=["A", "B", "C"], # N col3=pd.date_range("2012", periods=3, freq="A"), ) # T _check(data, "col3") data = dict(col1=[1.0, 2.0, 3.0], col2=["A", "B", "C"]) # Q # N _check(data, "col2") data = dict(col1=[1.0, 2.0, 3.0]) # Q _check(data, "col1") # Custom order data = dict( col1=[1.0, 2.0, 3.0], # Q col2=["A", "B", "C"], # N col3=pd.date_range("2012", periods=3, freq="A"), # T col4=pd.date_range("2012", periods=3, freq="A"), ) # T selected_x = utils.select_x(data, ["N", "T", "Q", "O"]) assert selected_x == "col2" # Len < 1 assert utils.select_x(dict()) is None def test_select_y(): def _check(d, expected): x = "col1" y = utils.select_y(d, x) assert y == expected data = dict( col1=[1.0, 2.0, 3.0], # Chosen X col2=["A", "B", "C"], # N col3=pd.date_range("2012", periods=3, freq="A"), # T col4=pd.date_range("2012", periods=3, freq="A"), # T col5=[1.0, 2.0, 3.0], ) # Q _check(data, "col5") data = dict( col1=[1.0, 2.0, 3.0], # Chosen X col2=["A", "B", "C"], # N col3=
pd.date_range("2012", periods=3, freq="A")
pandas.date_range
import pandas as pd df = pd.read_csv('D:/5674-833_4th/part5/stock-data.csv') #๋ฌธ์ž์—ด์ธ ๋‚ ์งœ ๋ฐ์ดํ„ฐ๋ฅผ ํŒ๋‹ค์Šค Timestamp๋กœ ๋ณ€ํ™˜ df['new_date']=pd.to_datetime(df['Date']) df.set_index('new_date',inplace= True) # print(df.loc['2018'].head()) # df_ym = df.loc['2018-07'] # print(df_ym) # today =
pd.to_datetime('2018-12-25')
pandas.to_datetime
import pandas as pd from src.features import build_features from sklearn.model_selection import train_test_split def make_dataset(): """ This function laods the raw data, builds some features and saves the df. It is not meant to be called but once to produce the dataset. """ raw_data = pd.read_csv("C:/Users/groes/OneDrive/Documents/701CW_2/Intro_to_AI/data/raw/df_all_data_w_desc_2021-06-22.csv") df = build_features.build_features(raw_data) df.to_csv("C:/Users/groes/OneDrive/Documents/701CW_2/Intro_to_AI/data/processed/4.0-processed_data_w_listprice.csv") ###### SPLITTING DATASET INTO TRAINING AND VALIDATION ####### # Create an array that for each home makes a boolean. The number of trues are percentage_trainingset % def create_training_validation_set(df, percentage_trainingset): mask = np.random.rand(len(df)) < percentage_trainingset trainDF =
pd.DataFrame(df[mask])
pandas.DataFrame
import pandas as pd from pandas._testing import assert_frame_equal import pytest import numpy as np from scripts.normalize_data import ( remove_whitespace_from_column_names, normalize_expedition_section_cols, remove_bracket_text, remove_whitespace, ddm2dec, remove_empty_unnamed_columns, normalize_columns ) class RemoveSpacesFromColumns: def test_replaces_leading_and_trailing_spaces_from_columns(self): df = pd.DataFrame(columns=[' Aa', 'Bb12 ', ' Cc', 'Dd ', ' Ed Ed ', ' 12 ' ]) res = remove_whitespace_from_column_names(df) assert res == ['Aa', 'Bb12', 'Cc', 'Dd', 'Ee Ee', '12'] def test_returns_columns_if_no_leading_and_trailing_spaces(self): df = pd.DataFrame(columns=['Aa', 'Bb', 'Cc', 'Dd', 'Ed Ed']) res = remove_whitespace_from_column_names(df) assert res == ['Aa', 'Bb', 'Cc', 'Dd', 'Ee Ee' ] class TestNormalizeExpeditionSectionCols: def test_dataframe_does_not_change_if_expection_section_columns_exist(self): data = { "Col": [0, 1], "Exp": ["1", "10"], "Site": ["U1", "U2"], "Hole": ["h", "H"], "Core": ["2", "20"], "Type": ["t", "T"], "Section": ["3", "3"], "A/W": ["a", "A"], } df = pd.DataFrame(data) expected = pd.DataFrame(data) df = normalize_expedition_section_cols(df) assert_frame_equal(df, expected) def test_dataframe_does_not_change_if_expection_section_Sample_exist(self): data = { "Col": [0, 1], "Sample": ["1-U1h-2t-3-a", "10-U2H-20T-3-A"], "Exp": ["1", "10"], "Site": ["U1", "U2"], "Hole": ["h", "H"], "Core": ["2", "20"], "Type": ["t", "T"], "Section": ["3", "3"], "A/W": ["a", "A"], } df = pd.DataFrame(data) expected = pd.DataFrame(data) df = normalize_expedition_section_cols(df) assert_frame_equal(df, expected) def test_dataframe_does_not_change_if_expection_section_Label_exist(self): data = { "Col": [0, 1], "Label ID": ["1-U1h-2t-3-a", "10-U2H-20T-3-A"], "Exp": ["1", "10"], "Site": ["U1", "U2"], "Hole": ["h", "H"], "Core": ["2", "20"], "Type": ["t", "T"], "Section": ["3", "3"], "A/W": ["a", "A"], } df = pd.DataFrame(data) expected = pd.DataFrame(data) df = normalize_expedition_section_cols(df) assert_frame_equal(df, expected) def test_adds_missing_expection_section_using_Label(self): data = { "Col": [0, 1], "Label ID": ["1-U1h-2t-3-a", "10-U2H-20T-3-A"], } df = pd.DataFrame(data) data = { "Col": [0, 1], "Label ID": ["1-U1h-2t-3-a", "10-U2H-20T-3-A"], "Exp": ["1", "10"], "Site": ["U1", "U2"], "Hole": ["h", "H"], "Core": ["2", "20"], "Type": ["t", "T"], "Section": ["3", "3"], "A/W": ["a", "A"], } expected = pd.DataFrame(data) df = normalize_expedition_section_cols(df) assert_frame_equal(df, expected) def test_adds_missing_expection_section_using_Sample(self): data = { "Col": [0, 1], "Sample": ["1-U1h-2t-3-a", "10-U2H-20T-3-A"], } df = pd.DataFrame(data) data = { "Col": [0, 1], "Sample": ["1-U1h-2t-3-a", "10-U2H-20T-3-A"], "Exp": ["1", "10"], "Site": ["U1", "U2"], "Hole": ["h", "H"], "Core": ["2", "20"], "Type": ["t", "T"], "Section": ["3", "3"], "A/W": ["a", "A"], } expected = pd.DataFrame(data) df = normalize_expedition_section_cols(df) assert_frame_equal(df, expected) def test_handles_missing_aw_col(self): data = { "Col": [0, 1], "Sample": ["1-U1h-2t-3", "10-U2H-20T-3"], "Exp": ["1", "10"], "Site": ["U1", "U2"], "Hole": ["h", "H"], "Core": ["2", "20"], "Type": ["t", "T"], "Section": ["3", "3"], } df = pd.DataFrame(data) expected =
pd.DataFrame(data)
pandas.DataFrame
""" Script to processes basic data from all query files to notebooks1.csv. After notebooks1.csv is created, files can be downloaded with download.py. """ import time import os import datetime import json import sys import argparse import requests import pandas as pd from consts import ( URL, COUNT_TRIGGER, BREAK, JSON_PATH, PATH, HEADERS, TOKENS, NUM_WORKERS, s3 ) from funcs import ( debug_print, write_to_log, df_to_s3, s3_to_df, list_s3_dir ) def main(): parser = argparse.ArgumentParser() parser.add_argument( "--update", action="store_const", dest="updating", const=True, default=False, help=( "Search notebooks that have been added " + "or updated since last search, along with new " + "notebooks" ) ) parser.add_argument( "--local", action="store_const", dest="local", const=True, default=False, help="Saves output locally instead of in S3." ) parser.add_argument( "--needed", metavar = "num_needed", type = int ) args = parser.parse_args() updating = args.updating local = args.local num_needed = args.needed if num_needed == None: print('test') num_needed = 0 for i in range(NUM_WORKERS): try: with open('num_needed_{0}.save'.format(i),'r') as f: num_needed += int(f.readlines()[0]) except: print("Parallelize_query.py was not completed.") print("Please complete query and try again.") sys.exit(0) clean_metadata(num_needed, updating, local) debug_print( "Notebooks1, Owners1, and Repos1 were created and saved. " ) def clean_metadata(num_needed, updating, local): """ Extract information from metadata JSON files and save to CSVs. Equivalent to Adam's 1_nb_metadata_cleaning.ipynb. """ try: if local: pass else: notebooks_done = s3_to_df("csv/notebooks1.csv") owners_done = s3_to_df("csv/owners1.csv") repos_done = s3_to_df("csv/repos1.csv") notebook_files_done = set(notebooks_done.file) owner_ids_done = set(owners_done.owner_id) repo_ids_done = set(repos_done.repo_id) print('Metadata already processed for {0} notebooks, {1} owners, and {2} repos.'.format( len(notebook_files_done), len(owner_ids_done), len(repo_ids_done) )) except: notebook_files_done = [] owner_ids_done = [] repo_ids_done = [] print("Metadata not processed for any files.") # Get all query files. if local: nb_search_files = os.listdir(JSON_PATH) else: nb_search_files = list_s3_dir('json/') # Sort query files by size then by page number. nb_search_files = sorted( nb_search_files, key = lambda x: ( int(x.split("_")[2].split("..")[0]), int(x.split("_")[3][1:].split(".")[0]) ) ) debug_print("We have {0} query files.".format(len(nb_search_files))) notebooks = {} repos = {} owners = {} for j, json_file_name in enumerate(nb_search_files): # Keep track of progress. if (j+1) % COUNT_TRIGGER/100 == 0 or j+1 == len(nb_search_files): debug_print("{0} / {1} data files processed".format( j+1, len(nb_search_files) )) file_components = json_file_name.replace(".json","").split("_") filesize = file_components[2] query_page = int(file_components[3][1:]) if local: with open(JSON_PATH+json_file_name, "r") as json_file: # Parse file name to get size and query page. file_dict = json.load(json_file) else: obj = s3.Object( "notebook-research", "json/{0}".format(json_file_name) ) file_dict = json.loads(obj.get()["Body"].read().decode("UTF-8")) # Report missing data. if "incomplete_results" in file_dict: if file_dict["incomplete_results"] == True: msg = "{0} has incomplete results".format(json_file_name) write_to_log("../logs/nb_metadata_cleaning_log.txt", msg) days_since = file_dict["days_since"] if "items" in file_dict: if len(file_dict["items"]) == 0: msg = "{0} has 0 items".format(json_file_name) write_to_log("../logs/nb_metadata_cleaning_log.txt", msg) else: # Save data for each item. for i in range(len(file_dict["items"])): item = file_dict["items"][i] item_repo = item["repository"] repo_id = item_repo["id"] owner_id = item_repo["owner"]["id"] # Don"t save forked notebooks. if item_repo["fork"]: continue # Full path is unique for each file. name = "{0}/{1}/{2}".format( item_repo["owner"]["login"], item_repo["name"], item["path"] ).replace("/","..") if name not in notebook_files_done: notebook = { "file": name, "html_url": item["html_url"], "name" : item["name"], "path": item["path"], "repo_id": repo_id, "owner_id": owner_id, "filesize": filesize, "query_page": query_page, "days_since": days_since } notebooks[name] = notebook if repo_id not in repos and repo_id not in repo_ids_done: repo = { "repo_name": item_repo["name"], "owner_id": owner_id, "repo_description": item_repo["description"], "repo_fork": item_repo["fork"], "repo_html_url": item_repo["html_url"], "repo_private": item_repo["private"], } repos[repo_id] = repo if owner_id not in owners and owner_id not in owner_ids_done: owner = { "owner_html_url": item_repo["owner"]["html_url"], "owner_login": item_repo["owner"]["login"], } owners[owner_id] = owner # If updating we dont always need the full page. if updating and len(notebooks) == num_needed: break else: msg = "{0} has no items object".format(json_file_name) write_to_log("../logs/nb_metadata_cleaning_log.txt", msg) if updating and len(notebooks) == num_needed: break # Display status debug_print(("\nAfter processing all query files, " "we have {0} new notebooks.").format(len(notebooks))) debug_print("Written by {0} owners.".format(len(owners))) debug_print("Held in {0} repositories.".format(len(repos))) # Translate dictionaries to DataFrames and save to CSV. # Ordered by days since, if duplicates keep the most recent # (i.e. keep last, which was found more days since 1-1-19). notebooks_df = pd.DataFrame(notebooks).transpose()\ .sort_values(by=["days_since","file"]).drop_duplicates( subset =["file"], keep="last" ) owners_df = pd.DataFrame(owners).transpose().reset_index().rename( columns = {"index":"owner_id"}, index = str ) repos_df = pd.DataFrame(repos).transpose().reset_index().rename( columns = {"index":"repo_id"}, index = str ) if local: pd.concat([notebooks_df, notebooks_done]).to_csv("{0}/notebooks1.csv".format(PATH), index = False) pd.concat([owners_df, owners_done]).to_csv("{0}/owners1.csv".format(PATH), index = False) pd.concat([repos_df, repos_done]).to_csv("{0}/repos1.csv".format(PATH), index = False) else: df_to_s3(pd.concat([notebooks_df, notebooks_done]), "csv/notebooks1.csv") df_to_s3(pd.concat([owners_df, owners_done]), "csv/owners1.csv") df_to_s3(
pd.concat([repos_df, repos_done])
pandas.concat
"""Mock data for bwaw.insights tests.""" import pandas as pd ACTIVE_BUSES = pd.DataFrame([ ['213', 21.0921481, '1001', '2021-02-09 15:45:27', 52.224536, '2'], ['213', 21.0911025, '1001', '2021-02-09 15:46:22', 52.2223788, '2'], ['138', 21.0921481, '1001', '2021-02-09 15:45:27', 52.224536, '05'], ['138', 21.0911025, '1001', '2021-02-09 15:46:22', 52.2223788, '05'] ], columns=['Lines', 'Lon', 'VehicleNumber', 'Time', 'Lat', 'Brigade']) ACTIVE_BUSES['Time'] = pd.to_datetime(ACTIVE_BUSES['Time']) COORDINATES = pd.DataFrame([ ['1001', '01', 52.224536, 21.0921481, 'al.Zieleniecka', '2020-10-12 00:00:00.0'] ], columns=['ID', 'Number', 'Latitude', 'Longitude', 'Destination', 'Validity']) TIMETABLE = [{'Brigade': '2', 'Destination': 'al.Zieleniecka', 'Time': '15:46:00'}] SPEED_INCIDENT = pd.DataFrame([ [16.378041, 52.223457, 21.091625, '2021-02-09 15:45:54.500'] ], columns=['Speed', 'Lat', 'Lon', 'Time']) SPEED_INCIDENT['Time'] =
pd.to_datetime(SPEED_INCIDENT['Time'])
pandas.to_datetime
''' MIT License Copyright (c) 2020 <NAME> Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ''' import sys import pandas as pd import requests from datetime import datetime def prod40(fte, prod): df = pd.read_csv(fte, encoding='latin-1') #drop Region = Nan: includes all invalid dates df = df[df['Region_origen'].notna()] df['Cod_region_origen'] = df['Cod_region_origen'].astype(int) df['Cod_region_destino'] = df['Cod_region_destino'].astype(int) #stardardize fechas df['Inicio_semana'] = pd.to_datetime(df['Inicio_semana'], format='%d-%m-%Y') df['Fin_semana'] = pd.to_datetime(df['Fin_semana'], format='%d-%m-%Y') df['Inicio_semana'] = df['Inicio_semana'].astype(str) df['Fin_semana'] = df['Fin_semana'].astype(str) #drop columnas Ano y mes df.drop(columns=['Aรฑo', 'Mes'], inplace=True) print(df.to_string()) df.to_csv(prod + 'TransporteAereo_std.csv', index=False) def prod40_from_API(url, api_key, prod): print('Generating prod40 from API') response = requests.get(url + api_key) my_list = response.json()['aรฉreo nacional - movimientos y pasajeros'] #print(my_list) df = pd.DataFrame(my_list, dtype=str) #print(list(df)) # hay que comparar el mes con el principio de inicioSemana y finsemana: # Si son iguales, corresponde al mes # si no, corresponde al dia. for i in range(len(df)): mes = df.loc[i, 'mes'] iniSemana = df.loc[i, 'inicioSemana'] finDe = df.loc[i, 'finsemana'] anio = df.loc[i,'anio'] print('mes: ' + mes) print('iniSemana: ' + iniSemana[:2]) print('finDe: ' + finDe[:2]) if int(mes) == int(iniSemana[:2]): # print('mes primero en inisemana') df.loc[i, 'inicioSemana'] = pd.to_datetime(df.loc[i, 'inicioSemana'], dayfirst=False) else: # print('dia primero en inisemana') df.loc[i, 'inicioSemana'] = pd.to_datetime(df.loc[i, 'inicioSemana'], dayfirst=True) if int(mes) == int(finDe[:2]): # print('mes primero en finde') df.loc[i, 'finsemana'] = pd.to_datetime(df.loc[i, 'finsemana'], dayfirst=False) else: # print('dia primero en finde') df.loc[i, 'finsemana'] = pd.to_datetime(df.loc[i, 'finsemana'], dayfirst=True) df['inicioSemana'] = pd.to_datetime(df['inicioSemana'], dayfirst=True) df['finsemana'] = pd.to_datetime(df['finsemana'], dayfirst=True) # drop unused columns df.drop(columns=['anio', 'mes'], inplace=True) df_localidades = pd.read_csv('../input/JAC/JAC_localidades.csv') # add to origen codigo_region, y region df_aux =
pd.merge(df, df_localidades, left_on='origen', right_on='Localidad')
pandas.merge
"""Store the data in a nice big dataframe""" import sys from datetime import datetime, timedelta import pandas as pd import geopandas as gpd import numpy as np class Combine: """Combine defined countries together""" THE_EU = [ 'Austria', 'Italy', 'Belgium', 'Latvia', 'Bulgaria', 'Lithuania', 'Croatia', 'Luxembourg', 'Cyprus', 'Malta', 'Czechia', 'Netherlands', 'Denmark', 'Poland', 'Estonia', 'Portugal', 'Finland', 'Romania', 'France', 'Slovakia', 'Germany', 'Slovenia', 'Greece', 'Spain', 'Hungary', 'Sweden', 'Ireland' ] def __init__(self, options): """Init""" self.options = options self.timeseries = [] self.countries = None self.description = None self.merged = None self.cc = None self.populations = [] self.national_populations = None self.get_populations() self.countries_long = {'nl': 'The Netherlands', 'sco': 'Scotland', 'eng': 'England', 'wal': 'Wales', 'ni': 'Northern Ireland'} self.jhu = JHU(self) def judat(self): """Dumb helper for another library""" self.timeseries.append(NLTimeseries(False).national(False)) self.combine_national(False) #self.merged['Week'] = self.merged.index.strftime('%U') #self.merged = self.merged.groupby(['Week']) \ #.agg({'Aantal': 'sum'}) print(self.merged) def process(self): """Do it""" cumulative = False if self.options.pivot: cumulative = True for nation in self.cc: usejhu = True if self.options.nation: print(f'Processing National data {nation}') if nation in ['wal', 'sco', 'eng']: self.timeseries.append(UKTimeseries(False).national(nation,cumulative)) usejhu = False #if nation == 'nl': #self.timeseries.append(NLTimeseries(False).national(cumulative)) #usejhu = False if usejhu: self.timeseries.append(XXTimeseries(False, {nation: self.countries_long[nation]}).national(cumulative)) else: print(f'Processing combined data {nation}') if nation in ['wal', 'sco', 'eng']: self.timeseries.append(UKTimeseries(True).get_data()) usejhu = False if nation == 'nl': self.timeseries.append(NLTimeseries(True).get_data()) usejhu = False if usejhu: self.timeseries.append(XXTimeseries(True).get_data()) if len(self.timeseries) == 0: print('No country Data to process') sys.exit() if self.options.pivot: self.combine_pivot() return if self.options.nation: self.combine_national() return self.get_combined_data() def combine_pivot(self): """Pivot data for pandas_alive""" print('Pivotting data') self.merged = pd.concat(self.timeseries) self.merged['Datum'] = pd.to_datetime(self.merged['Datum']) # So we can add it as an option later column = 'Overleden' #column = 'Aantal' # Convert to 100K instead of millions for country in self.cc: self.merged.loc[(self.merged.country == country), 'population'] \ = self.national_populations[country] * 10 # Per-Capita self.merged[column] = self.merged[column] / self.merged['population'] self.merged = self.merged.pivot(index='Datum', columns='country', values=column).fillna(0) self.trim_data() print(self.merged) def combine_national(self, trim=True): """Combine national totals""" self.merged = pd.concat(self.timeseries) self.merged['Datum'] = pd.to_datetime(self.merged['Datum']) self.merged = self.merged.set_index('Datum') self.merged.sort_index(inplace=True) for country in self.cc: self.merged.loc[(self.merged.country == country), 'population'] \ = self.national_populations[country] * 10 self.merged.loc[(self.merged.country == country), 'cname'] \ = self.countries_long[country] for column in ['Aantal', 'Ziekenhuisopname', 'Overleden']: if column not in self.merged.columns: continue pgpd = f"{column}-gpd" radaily = f"{column}-radaily" raweekly = f"{column}-raweekly" ranonpc = f"{column}-ranonpc" self.merged[pgpd] = self.merged[column] / self.merged['population'] self.merged[radaily] = self.merged.groupby('country', sort=False)[pgpd] \ .transform(lambda x: x.rolling(7, 1).mean()) self.merged[raweekly] = self.merged.groupby('country', sort=False)[pgpd] \ .transform(lambda x: x.rolling(7).sum()) self.merged[ranonpc] = self.merged.groupby('country', sort=False)[column] \ .transform(lambda x: x.rolling(7).sum()) if(trim): self.trim_data() def trim_data(self): if self.options.startdate is not None: self.merged = self.merged.query(f'{self.options.startdate} <= Datum') if self.options.enddate is not None: self.merged = self.merged.query(f'Datum <= {self.options.enddate}') def get(self): """Return the data set""" return self.merged def get_populations(self): """National populations for the calculations that need it""" self.national_populations = pd.read_csv('data/populations.csv', delimiter=',', index_col=0, header=None, squeeze=True).to_dict() def get_max(self, column): """Max value in df""" return self.merged[column].max() def get_combined_data(self): """Get a single dataframe containing all countries we deal with I did this so I could draw combined chorpleths but that has Proven to be somewhat more challenging than I originally thought """ print('Calculating combined data') dataframe = pd.concat(self.timeseries) dataframe = dataframe.set_index('Datum') dataframe = dataframe.sort_index() dataframe['pop_pc'] = dataframe['population'] / 1e5 # Filter out countries we do not want for country in self.countries: dataframe = dataframe[~dataframe['country'].isin([country])] # Finally create smoothed columns dataframe['radaily'] = dataframe.groupby('Gemeentecode', sort=False)['Aantal'] \ .transform(lambda x: x.rolling(7, 1).mean()) dataframe['weekly'] = dataframe.groupby('Gemeentecode', sort=False)['Aantal'] \ .transform(lambda x: x.rolling(7).sum()) dataframe['radaily_pc'] = dataframe['radaily'] / dataframe['pop_pc'] dataframe['weekly_pc'] = dataframe['weekly'] / dataframe['pop_pc'] if self.options.startdate is not None: dataframe = dataframe.query(f'{self.options.startdate} <= Datum') if self.options.enddate is not None: dataframe = dataframe.query(f'Datum <= {self.options.enddate}') print('Finished calculating combined data') self.merged = dataframe def parse_countries(self, country_str): """Sort out country data""" ret = [] if country_str is None: country_list = self.countries_long.keys() else: country_list = country_str.split(',') if 'eu' in country_list: country_list.remove('eu') country_list += self.THE_EU print('Setting EU') for country in country_list: country = country.lower() count = None #if 'nether' in country: #count = 'nl' if 'scot' in country: count = 'sco' if 'eng' in country: count = 'eng' if 'wal' in country: count = 'wal' #if 'ni' in country: # count = 'ni' if count is not None: ret.append(count) else: retcountry = self.jhu.get_country(country) if retcountry: ret.append(retcountry) self.cc = ret self.countries = list(set(self.countries_long.keys()) - set(ret)) self.description = '_'.join(ret) def project_for_date(self, date): """Project infections per Gemeente and make league table""" if date is None: date = self.merged.index.max().strftime('%Y%m%d') datemax = datetime.datetime.strptime(date, '%Y%m%d') datemin = (datemax - timedelta(days=4)).strftime('%Y%m%d') self.merged = self.merged.query(f'{datemin} <= Datum <= {date}') self.merged = self.merged.groupby(['Gemeentecode']) \ .agg({'Aantal': 'sum', 'Gemeentenaam': 'first', 'pop_pc': 'first', 'population': 'first', 'country': 'first'}) self.merged['percapita'] = self.merged['Aantal'] / self.merged['pop_pc'] self.merged.sort_values(by=['percapita'], ascending=False, inplace=True) class Timeseries: """Abstract class for timeseries""" def __init__(self, process=True): self.merged = None self.cumulative = False if process: self.get_pop() self.get_map() self.get_source_data() def get_data(self): """Pass back the data series""" return self.merged def get_source_data(self): """Placeholder""" def get_pop(self): """Placeholder""" def get_map(self): """Placeholder""" def set_cumulative(self, value): """Daily or cumulative""" self.cumulative = value class JHU: """Get data from <NAME>""" JHD = '../COVID-19/csse_covid_19_data' def __init__(self, combined): """Init""" self.dataframe = None self.combined = combined self.load() def get_country(self, country): """Check Country is in JHU data""" row = self.dataframe.loc[self.dataframe['Combined_Key'] == country] if len(row) == 0: return False self.combined.countries_long[row['iso2'].values[0].lower()] = country self.combined.national_populations[row['iso2'].values[0].lower()] \ = row['Population'].values[0] return row['iso2'].values[0].lower() def load(self): """Load JHU lookup table""" dataframe = pd.read_csv(f'{self.JHD}/UID_ISO_FIPS_LookUp_Table.csv', delimiter=',') dataframe['Combined_Key'] = dataframe['Combined_Key'].str.lower() dataframe['Population'] = dataframe['Population'] / 1e6 self.dataframe = dataframe class XXTimeseries(Timeseries): """Generic JHU Data class""" # TODO: Duplicated code JHD = '../COVID-19/csse_covid_19_data' def __init__(self, process=True, country=None): """Init""" Timeseries.__init__(self, process) print(country.keys()) self.countrycode = list(country.keys())[0] self.country = country[self.countrycode] self.cumullative = False def national(self, cumulative): self.set_cumulative(cumulative) """Get columns""" timeseries = 'csse_covid_19_time_series/time_series_covid19_deaths_global.csv' overleden = self.calculate(timeseries, 'Overleden') timeseries = 'csse_covid_19_time_series/time_series_covid19_confirmed_global.csv' aantal = self.calculate(timeseries, 'Aantal') aantal['Overleden'] = overleden['Overleden'] return aantal.assign(country=self.countrycode) def calculate(self, timeseries, column): """Get national totals""" file = f'{self.JHD}/{timeseries}' dataframe = pd.read_csv(file, delimiter=',') dataframe['Country/Region'] = dataframe['Country/Region'].str.lower() row = dataframe.loc[dataframe['Country/Region'] == self.country] row = row.loc[row['Province/State'].isnull()] row = row.reset_index(drop=True) row.drop(columns=['Province/State', 'Lat', 'Long'], inplace=True) row.set_index('Country/Region', inplace=True) dataframe = row.T if not self.cumulative: dataframe[column] = dataframe[self.country] - dataframe[self.country].shift(1) else: dataframe[column] = dataframe[self.country] dataframe.drop(columns=[self.country], inplace=True) dataframe.dropna(inplace=True) dataframe = dataframe.reset_index() dataframe.rename(columns={'index': 'Datum'}, inplace=True) return dataframe class BETimeseries(Timeseries): """Belgium data""" def __init__(self, process=True): """Init""" Timeseries.__init__(self, process) def national(self, cumulative): """Get national totals""" self.set_cumulative(cumulative) dataframe = pd.read_csv('data/belgiumt.csv', delimiter=',') dataframe.dropna(inplace=True) dataframe.rename(columns={'CASES': 'Aantal', 'DATE': 'Datum'}, inplace=True) dataframe = dataframe.groupby(['Datum']).agg({'Aantal': 'sum'}) dataframe = dataframe.reset_index() dataframe = dataframe.assign(country='be') return dataframe def get_source_data(self): """Get BE source data for infections""" dataframe =
pd.read_csv('data/belgium.csv', delimiter=',')
pandas.read_csv
''' Functions for the neural network ''' import os import numpy as np import numba as nb import pandas as pd # Project imports from utils import tickers, strategy, dates, fundamentals, io # Other imports and type-hinting from pandas import DataFrame as pandasDF def main(nn_config: dict, strat_config: dict): ''' Main function to run the nn Parameters ---------- nn_config : dict Configuration parameters for the nn strat_config : dict Configuration parameters for the solver Returns ------- None ''' # Check if the data-folder has been made check_folder() for case in ['training', 'testing']: print('Obtaining the ' + case + ' data') # Get a list of tickers, based on the available data if case == 'training': ticker_list = tickers.get_random_tickers(nn_config['tickers']) else: ticker_list = tickers.get_tickers_exc_sample(nn_config['testing tickers'], ticker_list) # Generate the nn input df = get_nn_input(ticker_list, nn_config, strat_config, ) # Calculate the P/L mean value so that it is saved for future use in # testing and training the NN if case == 'training': nn_config['mean trade'] = df['Profit/Loss'].mean() # Save the configuration settings as a json file io.save_dict(nn_config, 'nn/data/' + nn_config['strat name'], ) # Produce the labels for each trade df['labels'] = np.where( df['Profit/Loss'].values < nn_config['mean trade'], 0, 1, ) # Save the input data into the data-folder df.to_csv('nn/data/' + nn_config['strat name'] + ' ' + case + '.csv', index = False, ) return def get_nn_input(tickers: list, nn_config: dict, strat_config: dict) -> pandasDF: ''' Get the dataframe of all inputs to the nn Parameters ---------- tickers : list A list of tickers to generate the inputs for nn_config : dict Configuration parameters for the nn strat_config : dict Configuration parameters for the solver Returns ------- df : pandasDF The processed inputs for the nn ''' # Get the backseries of data for each trade per each ticker df = get_time_series_data(nn_config, strat_config, tickers, ) # Drop the columns we no longer want for the nn df = df.drop(columns = (strat_config['return feats'] + strat_config['time series feats'] + strat_config['drop cols'] ), ) if nn_config['include fundamentals']: df = include_fundamentals(df) # Drop the fiscal quarter column since it is no longer required df = df.drop(columns = 'fiscal_quarter') # Rearrange the columns such that ticker, Profit/Loss and labels appear # at the end, this is helpful for sorting the data in the nn code cols = [col for col in df.columns.tolist() if col not in ['Profit/Loss', 'ticker']] df = df[cols + ['Profit/Loss', 'ticker']] # Drop any null entries, to stop any bad-data getting into the nn return df.dropna() def include_fundamentals(df: pandasDF): dfs = [] for ticker in df['ticker'].unique(): df_tmp = df[df['ticker'] == ticker] try: fund = fundamentals.get_all_fundamentals(ticker) df_tmp = dates.backwards_date_merge(df_tmp, fund, 'Date', 'fiscal_quarter', 'date') dfs.append(df_tmp) except Exception as e: print(ticker, ' : ', e) return pd.concat(dfs) def single_stock_data(ticker: str, nn_config: dict) -> pandasDF: ''' Get a single stock's time-series history as a nn feature. I.e. one could use the spy as a feature to the NN. Parameters ---------- ticker : str The ticker to get the time-series data for nn_config : dict The config params for the nn. Returns ------- df : pandasDF The time series data for a single ticker. ''' df = pd.read_csv(f'data/{ticker}.csv') # Add the time-series columns, and then normalise them for col in ['Open', 'Low', 'High', 'Close', 'Volume']: df = time_series_cols(df, col, nn_config['time lags']) # Drop the unncessary columns when returning return df.drop(columns = ['Open', 'Low', 'High', 'Close', 'Volume', 'Adj Close'] ) def normalise_prices(df: pandasDF, price_cols: list): ''' Normalise all price related time-series on the same scale. ''' # Find all columns which are price related cols = [] for feat in price_cols: cols += get_lagged_col_names(df, feat) # Normalise these cols agaisnt the max value in each row return normalise_time_series(df, cols) def normalise_non_price(df: pandasDF, other_feats: list): ''' For each non-price related time-series, normalise them ''' for feat in other_feats: cols = get_lagged_col_names(df, feat) df = normalise_time_series(df, cols) return df def get_lagged_col_names(df: pandasDF, feat: str) -> list: ''' Get all lagged column names for the specific feature ''' return [col for col in df.columns.tolist() if feat in col] def normalise_time_series(df: pandasDF, cols: list) -> pandasDF: ''' For a set of columns normalise by using a standard scaling approach ''' df[cols] = df[cols].apply(lambda x: (x-x.mean())/x.std(ddof = 0), axis = 1, ) return df def get_time_series_data(nn_config: dict, strat_config: dict, ticker_list: list) -> pandasDF: ''' Produce a dataframe containing the time-series data for a random selection of tickers. The output df contains the backseries of data for each trade made in the buying and selling algorithm. Parameters ---------- nn_config : dict The config params for the nn strat_config : dict The config params for the trading strategy ticker_list : list A list of tickers to run the buy/sell for, and produce input data for the nn date_filter : str The earliest date to consider across all stocks for training Returns ------- dfs : list A dataframe containing all trades ''' # Open an empty list to store the processed dataframes per each ticker dfs = [] # For each ticker in the ticker list, run the buy/sell and pre-process # the data for input into the nn for ticker in ticker_list: df =
pd.read_csv(f'data/{ticker}.csv')
pandas.read_csv
import pytest import datetime from pymapd._loaders import _build_input_rows from pymapd import _pandas_loaders from omnisci.mapd.MapD import TStringRow, TStringValue, TColumn, TColumnData import pandas as pd import numpy as np from omnisci.mapd.ttypes import TColumnType from omnisci.common.ttypes import TTypeInfo def assert_columnar_equal(result, expected): for i, (a, b) in enumerate(zip(result, expected)): np.testing.assert_array_equal(a.nulls, b.nulls) np.testing.assert_array_equal(a.data.int_col, b.data.int_col) np.testing.assert_array_equal(a.data.real_col, b.data.real_col) np.testing.assert_array_equal(a.data.str_col, b.data.str_col) class TestLoaders: def test_build_input_rows(self): data = [(1, 'a'), (2, 'b')] result = _build_input_rows(data) expected = [TStringRow(cols=[TStringValue(str_val='1', is_null=None), TStringValue(str_val='a', is_null=None)]), TStringRow(cols=[TStringValue(str_val='2', is_null=None), TStringValue(str_val='b', is_null=None)])] assert result == expected def test_build_input_rows_with_array(self): data = [(1, 'a'), (2, 'b'), (3, ['c', 'd', 'e'])] result = _build_input_rows(data) expected = [TStringRow(cols=[TStringValue(str_val='1', is_null=None), TStringValue(str_val='a', is_null=None)]), TStringRow(cols=[TStringValue(str_val='2', is_null=None), TStringValue(str_val='b', is_null=None)]), TStringRow(cols=[TStringValue(str_val='3', is_null=None), TStringValue(str_val='{c,d,e}', is_null=None)])] assert result == expected def test_build_table_columnar(self): from pymapd._pandas_loaders import build_input_columnar data = pd.DataFrame({"a": [1, 2, 3], "b": [1.1, 2.2, 3.3]}) nulls = [False] * 3 result = build_input_columnar(data, preserve_index=False) expected = [ TColumn(TColumnData(int_col=[1, 2, 3]), nulls=nulls), TColumn(TColumnData(real_col=[1.1, 2.2, 3.3]), nulls=nulls) ] assert_columnar_equal(result[0], expected) def test_build_table_columnar_pandas(self): data = pd.DataFrame({ "boolean_": [True, False], "smallint_": np.array([0, 1], dtype=np.int16), "int_": np.array([0, 1], dtype=np.int32), "bigint_": np.array([0, 1], dtype=np.int64), "float_": np.array([0, 1], dtype=np.float32), "double_": np.array([0, 1], dtype=np.float64), "varchar_": ["a", "b"], "text_": ['a', 'b'], "time_": [datetime.time(0, 11, 59), datetime.time(13)], "timestamp_": [pd.Timestamp("2016"),
pd.Timestamp("2017")
pandas.Timestamp
""" Copyright 2019 <NAME>. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import datetime as dt import itertools from abc import ABCMeta, abstractmethod from concurrent.futures import Future from copy import copy from typing import Iterable, Optional, Tuple, Union import gs_quant import pandas as pd from gs_quant.base import RiskKey from gs_quant.config import DisplayOptions from gs_quant.datetime import point_sort_order __column_sort_fns = { 'label1': point_sort_order, 'mkt_point': point_sort_order, 'point': point_sort_order } __risk_columns = ('date', 'time', 'mkt_type', 'mkt_asset', 'mkt_class', 'mkt_point') class ResultInfo(metaclass=ABCMeta): def __init__( self, risk_key: RiskKey, unit: Optional[dict] = None, error: Optional[Union[str, dict]] = None, request_id: Optional[str] = None ): self.__risk_key = risk_key self.__unit = unit self.__error = error self.__request_id = request_id @property @abstractmethod def raw_value(self): ... @property def risk_key(self) -> RiskKey: return self.__risk_key @property def unit(self) -> dict: """The units of this result""" return self.__unit @property def error(self) -> Union[str, dict]: """Any error associated with this result""" return self.__error @property def request_id(self) -> Optional[str]: """The request Id associated with this result""" return self.__request_id @staticmethod def composition_info(components: Iterable): from gs_quant.markets.markets import historical_risk_key dates = [] values = [] errors = {} risk_key = None unit = None for component in components: date = component.risk_key.date risk_key = historical_risk_key(component.risk_key) if risk_key is None else risk_key if risk_key.market.location != component.risk_key.market.location: raise ValueError('Cannot compose results with different markets') if isinstance(component, (ErrorValue, Exception)): errors[date] = component else: values.append(component.raw_value) dates.append(date) unit = unit or component.unit return dates, values, errors, risk_key, unit @abstractmethod def _get_raw_df(self, display_options: DisplayOptions = None): ... class ErrorValue(ResultInfo): def __init__(self, risk_key: RiskKey, error: Union[str, dict], request_id: Optional[str] = None): super().__init__(risk_key, error=error, request_id=request_id) def __repr__(self): return self.error def _get_raw_df(self, display_options: DisplayOptions = None): return pd.DataFrame(self, index=[0], columns=['value']) @property def raw_value(self): return None class UnsupportedValue(ResultInfo): def __init__(self, risk_key: RiskKey, request_id: Optional[str] = None): super().__init__(risk_key, request_id=request_id) def __repr__(self): return 'Unsupported Value' def _get_raw_df(self, display_options: DisplayOptions = None): options = display_options if display_options is not None else gs_quant.config.display_options show_na = options.show_na if show_na: return pd.DataFrame(None, index=[0], columns=['value']) else: return None @property def raw_value(self): return 'Unsupported Value' class ScalarWithInfo(ResultInfo, metaclass=ABCMeta): def __init__(self, risk_key: RiskKey, value: Union[float, str], unit: Optional[dict] = None, error: Optional[Union[str, dict]] = None, request_id: Optional[str] = None): float.__init__(value) ResultInfo.__init__(self, risk_key, unit=unit, error=error, request_id=request_id) @property @abstractmethod def raw_value(self): ... @staticmethod def compose(components: Iterable): dates, values, errors, risk_key, unit = ResultInfo.composition_info(components) return SeriesWithInfo(pd.Series(index=pd.DatetimeIndex(dates).date, data=values), risk_key=risk_key, unit=unit, error=errors) def _get_raw_df(self, display_options: DisplayOptions = None): return pd.DataFrame(self, index=[0], columns=['value']) class FloatWithInfo(ScalarWithInfo, float): def __new__(cls, risk_key: RiskKey, value: Union[float, str], unit: Optional[str] = None, error: Optional[str] = None, request_id: Optional[str] = None): return float.__new__(cls, value) @property def raw_value(self) -> float: return float(self) def __repr__(self): return self.error if self.error else float.__repr__(self) def __add__(self, other): if isinstance(other, FloatWithInfo): if self.unit == other.unit: return FloatWithInfo(combine_risk_key(self.risk_key, other.risk_key), self.raw_value + other.raw_value, self.unit) else: raise ValueError('FloatWithInfo unit mismatch') return super(FloatWithInfo, self).__add__(other) def __mul__(self, other): if isinstance(other, FloatWithInfo): return FloatWithInfo(combine_risk_key(self.risk_key, other.risk_key), self.raw_value * other.raw_value, self.unit) else: return FloatWithInfo(self.risk_key, self.raw_value * other, self.unit) def to_frame(self): return self class StringWithInfo(ScalarWithInfo, str): def __new__(cls, risk_key: RiskKey, value: Union[float, str], unit: Optional[dict] = None, error: Optional[str] = None, request_id: Optional[str] = None): return str.__new__(cls, value) @property def raw_value(self) -> str: return str(self) def __repr__(self): return self.error if self.error else str.__repr__(self) class SeriesWithInfo(pd.Series, ResultInfo): _internal_names = pd.DataFrame._internal_names + \ ['_ResultInfo__' + i for i in dir(ResultInfo) if isinstance(getattr(ResultInfo, i), property)] _internal_names_set = set(_internal_names) def __init__( self, *args, risk_key: Optional[RiskKey] = None, unit: Optional[dict] = None, error: Optional[Union[str, dict]] = None, request_id: Optional[str] = None, **kwargs ): pd.Series.__init__(self, *args, **kwargs) ResultInfo.__init__(self, risk_key, unit=unit, error=error, request_id=request_id) def __repr__(self): if self.error: return pd.Series.__repr__(self) + "\nErrors: " + str(self.error) return pd.Series.__repr__(self) @property def _constructor(self): return SeriesWithInfo @property def _constructor_expanddim(self): return DataFrameWithInfo @property def raw_value(self) -> pd.Series: return pd.Series(self) def _get_raw_df(self, display_options: DisplayOptions = None): df = pd.DataFrame(self).reset_index() df.columns = ['dates', 'value'] return df class DataFrameWithInfo(pd.DataFrame, ResultInfo): _internal_names = pd.DataFrame._internal_names + \ ['_ResultInfo__' + i for i in dir(ResultInfo) if isinstance(getattr(ResultInfo, i), property)] _internal_names_set = set(_internal_names) def __init__( self, *args, risk_key: Optional[RiskKey] = None, unit: Optional[dict] = None, error: Optional[Union[str, dict]] = None, request_id: Optional[str] = None, **kwargs ): pd.DataFrame.__init__(self, *args, **kwargs) ResultInfo.__init__(self, risk_key, unit=unit, error=error, request_id=request_id) def __repr__(self): if self.error: return pd.DataFrame.__repr__(self) + "\nErrors: " + str(self.errors) return pd.DataFrame.__repr__(self) @property def _constructor(self): return DataFrameWithInfo @property def _constructor_sliced(self): return SeriesWithInfo @property def raw_value(self) -> pd.DataFrame: if self.empty: return pd.DataFrame(self) df = self.copy() if isinstance(self.index.values[0], dt.date): df.index.name = 'dates' df.reset_index(inplace=True) return
pd.DataFrame(df)
pandas.DataFrame
import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt from IPython.core.display import display from scipy.stats import chi2_contingency import glob import os import warnings warnings.filterwarnings("ignore") pd.options.display.float_format = '{:.4f}'.format class DataExplorer(): def load_data_from_folder(self, folderpath = "data/"): """ Import all csv.file from the folder with given extension Returns the dictionary of pandas folderpath: example "data/" """ my_dict = {} encodings = ['utf-8', 'cp1252','iso-8859-1','unicode_escape','ascii'] for filename in glob.glob(os.path.join(folderpath, '*.csv')): filename = filename.replace("\\","/") loaded = False i = 0 while loaded == False: if i == len(encodings): print("[WARNING] The file named %s could not be loaded.\n" % filename) break else: try: df = pd.read_csv(filename, encoding = encodings[i]) my_dict[filename.split(".")[0].split("/")[1]] = df print("Filename:",filename.split(".")[0].split("/")[1],", loaded with encoding:", encodings[i]) print("Shape:", df.shape) display(df.head(5)) loaded = True break except: i += 1 return my_dict def describe(self, df, cols = None): """ Data description (min, max, quantiles, missing data...) """ if cols == None: cols = df.columns print(df.columns) print("\n Info ---------------------------") df[cols].info() # Description print("\n Description ---------------------------") description = df[cols].describe([0.1, 0.25, 0.75, 0.9], include = "all") description.loc['unique'] = df.nunique() display(description) # Unique values print("\n Unique values ---------------------------") display(df[cols].nunique()) print("\n Missing ---------------------------") # Missing data total = df[cols].isnull().sum().sort_values(ascending=False) percent = (df[cols].isnull().sum()/df[cols].isnull().count()).sort_values(ascending=False) missing_data = pd.concat([total, percent], axis=1, keys=['N_MissingData', 'MissingDataPercent']) display(missing_data) def freq_analysis(self, df, cols = None, show_text = True): """ Plot distribution for all columns show_text: If true, for categorical variables print the quantity """ if cols == None: cols = df.columns for col in cols: if np.issubdtype(df[col].dtype, np.number): sns.distplot(df[col].dropna(), kde = False) plt.title(col) plt.show() else: if len(df[col].unique()) <= 100: # Categorical varialbe with few categories fig, ax = plt.subplots(figsize = (8,8)) count = df[col].value_counts(ascending = False) count.iloc[::-1].plot(kind = 'barh') total = count.sum() cumsum = count.cumsum() textstr = "Nยฐ of categories to represent 40%: {0:.0f} \n Nยฐ of categories to represent 60%: {1:.0f} \n Nยฐ categories to represent 80%: {2:.0f}".format( \ len(count.loc[:np.argmax(cumsum>total*0.4)]),len(count.loc[:np.argmax(cumsum>total*0.6)]),len(count.loc[:np.argmax(cumsum>total*0.8)])) ax.text(0.3, 0.05, textstr, transform=ax.transAxes, fontsize=14, verticalalignment='bottom', bbox=dict(boxstyle='round', facecolor='white', edgecolor = 'k',alpha=0.5)) if show_text: for i, v in enumerate(count.iloc[::-1].values): #ax.text(v+3, i-0.25, str(v),color='blue') if count.nunique()>2: ax.text(v+2, i-0.25, "{0:.1f}%".format(cumsum[-i-1]/total*100),color='blue') plt.title(col) plt.show() def correlation_analysis(self, df, cols = None, pairplot = False): """ Visualize correlation between columns Correlation pair plot between highest corr pairs """ if cols == None: cols = df.columns corr = df[cols].corr() annot = (len(corr) <= 15) # Only lower diag sns.set(style="white") mask = np.zeros_like(corr, dtype=np.bool) mask[np.triu_indices_from(mask)] = True f, ax = plt.subplots(figsize=(11, 9)) cmap = sns.diverging_palette(220, 10, as_cmap=True) sns.heatmap(corr, mask=mask, cmap=cmap, vmax=.3, center=0, square=True, linewidths=.5, cbar_kws={"shrink": .5}, annot = annot) ax.set_ylim(corr.shape[0]-1e-9, -1e-9) plt.show() # Another one f, ax = plt.subplots(figsize=(12, 9)) sns.heatmap(corr, vmax=.8, square=True, annot = annot, linewidth = 0.2); ax.set_ylim(corr.shape[0]-1e-9, -1e-9) plt.show() # Cluster map clustergrid = sns.clustermap(corr, square = True, annot = annot, linewidth = 0.2, figsize = (8,8), fmt = ".2f") clustergrid.ax_heatmap.set_ylim(corr.shape[0]-1e-9, -1e-9) plt.show() # Pair plot for highest correlation pairs if pairplot == True: corr_matrix = corr.abs() sol = (corr_matrix.where(np.triu(np.ones(corr_matrix.shape), k=1).astype(np.bool)) .stack() .sort_values(ascending=False)) highest_corr_pair = sol.index.values[:3] highest_corr_cols = [] for pair in highest_corr_pair: for x in pair: if not x in highest_corr_cols: highest_corr_cols.append(x) sns.pairplot(df[highest_corr_cols]) plt.title("Highest correlation pairs") plt.show() def correlation_analysis_with_target(self, df, target, k = 10): """ Correlation plot of columns that have the largest correlation with target target: target column k: number of columns to consider, default 5 """ fig, ax = plt.subplots() corrmat = df.corr().abs() cols = corrmat.nlargest(k, target)[target].index cm = np.corrcoef(df[cols].values.T) sns.set(font_scale=1.25) hm = sns.heatmap(cm, cbar=True, annot=True, square=True, fmt='.2f', annot_kws={'size': 10}, yticklabels=cols.values, xticklabels=cols.values) ax.set_ylim(cm.shape[0]-1e-9, -1e-9) plt.show() def outlier_analysis(self, df, cols = None): """ Box plot outliers """ if cols == None: cols = df.columns for col in cols: if np.issubdtype(df[col].dtype, np.number) and not (df[col].isnull().values.any()): sns.boxplot(df[col]) plt.title(col) plt.show() def boxplot(self, xcol, ycol, data): """ xcol, ycol: string, column name Box plot """ plt.subplots(figsize=(16, 8)) sns.boxplot(x=xcol,y=ycol, data = data) plt.show() def pairplot(self, data, cols): """ Correlation plot between all pairs of columns """ sns.pairplot(data[cols]) def catplot(self, x, hue, col, data): """ x: value to count hue: color category col: type category Plot the count of categories """ sns.catplot(x=x, hue = hue, col = col, data = data, kind = "count") def datetime_analysis(self, df, colname): """ df: dataframe date_col is a STRING corresponding to a column name that represents a date Count plot all frequencies """ date_df = df[[colname]].copy() date_df[colname] =
pd.to_datetime(date_df[colname])
pandas.to_datetime
import os.path import json import zipfile import numpy as np import pandas as pd import requests from openpyxl import load_workbook import ukcensusapi.Nomisweb as Api import ukpopulation.utils as utils class SNPPData: """ Functionality for downloading and collating UK Subnational Population Projection (NPP) data Nomisweb stores the England data (only) Wales/Scotland/NI are not the responsiblity of ONS and are made avilable online by the relevant statistical agency """ def __init__(self, cache_dir=utils.default_cache_dir()): self.cache_dir = cache_dir self.data_api = Api.Nomisweb(self.cache_dir) self.data = {} self.data[utils.EN] = self.__do_england() self.data[utils.WA] = self.__do_wales() self.data[utils.SC] = self.__do_scotland() self.data[utils.NI] = self.__do_nireland() # LADs * 26 years * 91 ages * 2 genders # assert len(self.data) == (326+22+32+11) * 26 * 91 * 2 def min_year(self, code): """ Returns the first year in the projection, assumes a single LAD or country code """ # convert to country if necessary if "0" in code: code = utils.country(code)[0] return min(self.data[code].PROJECTED_YEAR_NAME.unique()) def max_year(self, code): """ Returns the final year in the projection, assumes a single LAD or country code """ # convert to country if necessary if "0" in code: code = utils.country(code)[0] return max(self.data[code].PROJECTED_YEAR_NAME.unique()) def all_lads(self, countries): """ Returns all the LAD codes in the country or countries specified Supports EN WA SC NI EW GB UK """ if isinstance(countries, str): countries = [countries] lads = [] for country in countries: if country in self.data: lads.extend(self.data[country].GEOGRAPHY_CODE.unique()) else: # warn if missing or invalid print("WARNING: no LAD codes for country %s", country) return lads def filter(self, geog_codes, years=None, ages=range(0, 91), genders=[1, 2]): # convert inputs to arrays if single values supplied (for isin) if isinstance(geog_codes, str): geog_codes = [geog_codes] if np.isscalar(ages): ages = [ages] if np.isscalar(genders): genders = [genders] # Handle problem with empty list not being recognised as Null, was causing problem in utils.trim_range() below if not years: years = None countries = utils.country(geog_codes) # TODO fix incorrect assumption is that all countries have the same year range years = utils.trim_range(years, self.min_year(countries[0]), self.max_year(countries[0])) retval = pd.DataFrame() # {"GEOGRAPHY_CODE": [], "PROJECTED_YEAR_NAME": [], "C_AGE": [], "GENDER":[], "OBS_VALUE": []}) # loop over datasets as needed for country in countries: # apply filters retval = retval.append(self.data[country][(self.data[country].GEOGRAPHY_CODE.isin(geog_codes)) & (self.data[country].PROJECTED_YEAR_NAME.isin(years)) & (self.data[country].C_AGE.isin(ages)) & (self.data[country].GENDER.isin(genders))], ignore_index=True, sort=False) # check for any codes requested that werent present (this check is far easier to to on the result) invalid_codes = np.setdiff1d(geog_codes, retval.GEOGRAPHY_CODE.unique()) if len(invalid_codes) > 0: raise ValueError("Filter for LAD code(s): %s for years %s returned no data (check also age/gender filters)" % (str(invalid_codes), str(years))) return retval def aggregate(self, categories, geog_codes, years=None, ages=range(0, 91), genders=[1, 2]): data = self.filter(geog_codes, years, ages, genders) # invert categories (they're the ones to aggregate, not preserve) return data.groupby(utils.check_and_invert(categories))["OBS_VALUE"].sum().reset_index() # year_range can include year that dont need to be extrapolated # Filtering age and gender is not (currently) supported def extrapolate(self, npp, geog_codes, year_range): if isinstance(geog_codes, str): geog_codes = [geog_codes] geog_codes = utils.split_by_country(geog_codes) all_codes_all_years = pd.DataFrame() for country in geog_codes: if not geog_codes[country]: continue max_year = self.max_year(country) last_year = self.filter(geog_codes[country], max_year) (in_range, ex_range) = utils.split_range(year_range, max_year) # years that dont need to be extrapolated all_years = self.filter(geog_codes[country], in_range) if in_range else pd.DataFrame() for year in ex_range: data = last_year.copy() scaling = npp.year_ratio("ppp", country, max_year, year) data = data.merge(scaling[["GENDER", "C_AGE", "OBS_VALUE"]], on=["GENDER", "C_AGE"]) data["OBS_VALUE"] = data.OBS_VALUE_x * data.OBS_VALUE_y data.PROJECTED_YEAR_NAME = year all_years = all_years.append(data.drop(["OBS_VALUE_x", "OBS_VALUE_y"], axis=1), ignore_index=True, sort=False) all_codes_all_years = all_codes_all_years.append(all_years, ignore_index=True, sort=False) return all_codes_all_years def extrapolagg(self, categories, npp, geog_codes, year_range): """ Extrapolate and then aggregate """ data = self.extrapolate(npp, geog_codes, year_range) # invert categories (they're the ones to aggregate, not preserve) return data.groupby(utils.check_and_invert(categories))["OBS_VALUE"].sum().reset_index() def create_variant(self, variant_name, npp, geog_codes, year_range): """ Apply NPP variant to SNPP: SNPP(v) = SNPP(0) * sum(a,g) [ NPP(v) / NPP(0) ] Preserves age-gender structure of SNPP data """ result = pd.DataFrame() if isinstance(geog_codes, str): geog_codes = [geog_codes] for geog_code in geog_codes: (pre_range, in_range) = utils.split_range(year_range, npp.min_year() - 1) # for any years prior to NPP we just use the SNPP data as-is (i.e. "ppp") pre_data = self.filter(geog_code, pre_range) if pre_range else pd.DataFrame() if len(pre_data) > 0: print("WARNING: variant {} not applied for years {} that predate the NPP data".format(variant_name, pre_range)) # return if there's nothing in the NPP range if not in_range: result.append(pre_data) continue data = self.extrapolate(npp, geog_code, in_range).sort_values( ["C_AGE", "GENDER", "PROJECTED_YEAR_NAME"]).reset_index(drop=True) scaling = npp.variant_ratio(variant_name, utils.country(geog_code), year_range).reset_index().sort_values( ["C_AGE", "GENDER", "PROJECTED_YEAR_NAME"]) # scaling.to_csv(variant_name + ".csv", index=False) print("DF: ", len(data), ":", len(scaling)) assert (len(data) == len(scaling)) data.OBS_VALUE = data.OBS_VALUE * scaling.OBS_VALUE # prepend any pre-NPP data result = result.append(pre_data.append(data)) return result def __do_england(self): # return self.__do_england_ons() # 2014 return self.__do_england_nomisweb() # 2018 # nomisweb data is now 2018-based def __do_england_nomisweb(self): print("Collating SNPP data for England...") # need to do this in 2 batches as entire table has >1000000 rows table_internal = "NM_2006_1" # SNPP query_params = { "gender": "1,2", "c_age": "101...191", "MEASURES": "20100", "date": "latest", # 2018-based "projected_year": "2018...2031", "select": "geography_code,projected_year_name,gender,c_age,obs_value", "geography": "1946157057...1946157382" } snpp_e = self.data_api.get_data(table_internal, query_params) query_params["projected_year"] = "2032...2043" snpp_e = snpp_e.append(self.data_api.get_data(table_internal, query_params)) # make age actual year snpp_e.C_AGE = snpp_e.C_AGE - 101 # snpp_e[(snpp_e.GEOGRAPHY_CODE=="E08000021") & (snpp_e.PROJECTED_YEAR_NAME==2039)].to_csv("snpp_ncle_2016.csv") # assert(len(snpp_e) == 26*2*91*326) # 326 LADs x 91 ages x 2 genders x 26 years return snpp_e # Alternative method of downloading the en data from ONS website(Only works with 2014 as it stands). def __do_england_ons(self): print("Collating SNPP data for England...") england_src = "https://www.ons.gov.uk/file?uri=/peoplepopulationandcommunity/populationandmigration/populationprojections/datasets/localauthoritiesinenglandz1/2014based/snppz1population.zip" england_raw = self.cache_dir + "/snpp_e.csv" england_zip = self.cache_dir + "/snpp_e.zip" if os.path.isfile(england_raw): snpp_e = pd.read_csv(england_raw) else: response = requests.get(england_src) with open(england_zip, 'wb') as fd: for chunk in response.iter_content(chunk_size=1024): fd.write(chunk) print("Downloaded", england_zip) z = zipfile.ZipFile(england_zip) # print(z.namelist()) snpp_e = pd.DataFrame() for gender in [1, 2]: filename = "2014 SNPP Population " + ("males" if gender == 1 else "females") + ".csv" chunk = pd.read_csv(z.open(filename)) \ .drop(["AREA_NAME", "COMPONENT", "SEX"], axis=1) \ .query('AGE_GROUP != "All ages"') # .AGE_GROUP.replace({"90 and over": "90"} chunk.AGE_GROUP = chunk.AGE_GROUP.replace({"90 and over": "90"}) chunk = chunk.melt(id_vars=["AREA_CODE", "AGE_GROUP"]) # chunk = chunk[chunk.AGE_GROUP != "all ages"] # chunk = chunk.stack().reset_index() chunk.columns = ["GEOGRAPHY_CODE", "C_AGE", "PROJECTED_YEAR_NAME", "OBS_VALUE"] chunk["GENDER"] = gender snpp_e = snpp_e.append(chunk) # assert(len(snpp_e) == 26*2*91*326) # 326 districts x 91 ages x 2 genders x 26 years snpp_e.to_csv(england_raw, index=False) # snpp_e[(snpp_e.GEOGRAPHY_CODE=="E08000021") & (snpp_e.PROJECTED_YEAR_NAME==2039)].to_csv("snpp_ncle_2014.csv") return snpp_e # Wales def __do_wales(self): print("Collating SNPP data for Wales...") cache_dir = utils.default_cache_dir() wales_raw = cache_dir + "/snpp_w.csv" if os.path.isfile(wales_raw): snpp_w = pd.read_csv(wales_raw) else: fields = ['Area_AltCode1', 'Year_Code', 'Data', 'Gender_Code', 'Age_Code', 'Area_Hierarchy', 'Variant_Code'] # StatsWales is an OData endpoint, so select fields of interest url = "http://open.statswales.gov.wales/dataset/popu6010?$select={}".format(",".join(fields)) # use OData syntax to filter P (persons), AllAges (all ages), Area_Hierarchy 691 (LADs) url += "&$filter=Gender_Code ne 'P' and Area_Hierarchy gt 690 and Area_Hierarchy lt 694 and Variant_Code eq 'Principal'" # data = [] while True: print(url) r = requests.get(url) r_data = r.json() data += r_data['value'] if "odata.nextLink" in r_data: url = r_data["odata.nextLink"] else: break snpp_w = pd.DataFrame(data) # Remove unwanted and rename wanted columns snpp_w = snpp_w.drop(["Area_Hierarchy", "Variant_Code"], axis=1) snpp_w = snpp_w.rename(columns={"Age_Code": "C_AGE", "Area_AltCode1": "GEOGRAPHY_CODE", "Data": "OBS_VALUE", "Gender_Code": "GENDER", "Year_Code": "PROJECTED_YEAR_NAME"}) # Remove all but SYOA and make numeric snpp_w = snpp_w[(snpp_w.C_AGE != "AllAges") & (snpp_w.C_AGE != "00To15") & (snpp_w.C_AGE != "16To64") & ( snpp_w.C_AGE != "65Plus")] snpp_w.loc[snpp_w.C_AGE == "90Plus", "C_AGE"] = "90" snpp_w.C_AGE = pd.to_numeric(snpp_w.C_AGE) # convert gender to census convention 1=M, 2=F snpp_w.GENDER = snpp_w.GENDER.map({"M": 1, "F": 2}) # assert(len(snpp_w) == 26*2*91*22) # 22 LADs x 91 ages x 2 genders x 26 years print(wales_raw) snpp_w.to_csv(wales_raw, index=False) return snpp_w def __do_scotland(self): lookup = { 'Aberdeen City': 'S12000033', 'Aberdeenshire': 'S12000034', 'Angus': 'S12000041', 'Argyll & Bute': 'S12000035', 'City of Edinburgh': 'S12000036', 'Clackmannanshire': 'S12000005', 'Dumfries & Galloway': 'S12000006', 'Dundee City': 'S12000042', 'East Ayrshire': 'S12000008', 'East Dunbartonshire': 'S12000045', 'East Lothian': 'S12000010', 'East Renfrewshire': 'S12000011', 'Falkirk': 'S12000014', 'Fife': 'S12000015', 'Glasgow City': 'S12000046', 'Highland': 'S12000017', 'Inverclyde': 'S12000018', 'Midlothian': 'S12000019', 'Moray': 'S12000020', 'Na h-Eileanan Siar': 'S12000013', 'North Ayrshire': 'S12000021', 'North Lanarkshire': 'S12000044', 'Orkney Islands': 'S12000023', 'Perth & Kinross': 'S12000024', 'Renfrewshire': 'S12000038', 'Scottish Borders': 'S12000026', 'Shetland Islands': 'S12000027', 'South Ayrshire': 'S12000028', 'South Lanarkshire': 'S12000029', 'Stirling': 'S12000030', 'West Dunbartonshire': 'S12000039', 'West Lothian': 'S12000040' } print("Collating SNPP data for Scotland...") scotland_raw = self.cache_dir + "/snpp_s.csv" scotland_src = "https://www.nrscotland.gov.uk/files//statistics/population-projections/sub-national-pp-18/detailed-tables/pop-proj-principal-2018-council-area.zip" scotland_zip = self.cache_dir + "/snpp_s_2018.zip" if os.path.isfile(scotland_raw): snpp_s = pd.read_csv(scotland_raw) else: response = requests.get(scotland_src) with open(scotland_zip, 'wb') as fd: for chunk in response.iter_content(chunk_size=1024): fd.write(chunk) print("Downloaded", scotland_zip) z = zipfile.ZipFile(scotland_zip) snpp_s = pd.DataFrame() for filename in z.namelist(): council_area = filename[37:-4] if council_area in ["Metadata", "Scotland"]: continue GEOGRAPHY_CODE = lookup[council_area] chunk = pd.read_csv(z.open(filename), encoding="ISO-8859-1", header=102) # Drop Nan Rows chunk = chunk.dropna(axis=0, how="all") # Drop Last row with containing Copyright Cell. chunk = chunk.drop(chunk.tail(1).index[0]) chunk = chunk.rename(columns={"Unnamed: 0": "C_AGE"}) chunk["GEOGRAPHY_CODE"] = GEOGRAPHY_CODE chunk["GENDER"] = '' # Drop rows where C_AGE == "All Ages" chunk = chunk.drop(chunk.index[chunk["C_AGE"] == "All ages"]) chunk.loc[(chunk.C_AGE == '90 and over'), 'C_AGE'] = 90 chunk = chunk.reset_index(drop=True) chunk.loc[ chunk.index[(chunk["C_AGE"] == "MALES")][0] + 1:chunk.index[(chunk["C_AGE"] == "FEMALES")][0] - 4, "GENDER"] = 1 chunk.loc[chunk.index[(chunk["C_AGE"] == "FEMALES")][0] + 1:, "GENDER"] = 2 chunk = chunk[chunk.GENDER != ''] for year in range(2018, 2044): appendable_chunk = chunk[["GEOGRAPHY_CODE", "C_AGE", str(year), "GENDER"]].rename( columns={str(year): "OBS_VALUE"}) appendable_chunk["PROJECTED_YEAR_NAME"] = year snpp_s = snpp_s.append(appendable_chunk) snpp_s.reset_index(drop=True) snpp_s['OBS_VALUE'] = snpp_s['OBS_VALUE'].str.replace(',', '') snpp_s['OBS_VALUE'] = pd.to_numeric(snpp_s['OBS_VALUE']) snpp_s.to_csv(scotland_raw, index=False) return snpp_s def __do_nireland(self): # Niron # (1 worksheet per LAD equivalent) print("Collating SNPP data for Northern Ireland...") ni_src = "https://www.nisra.gov.uk/sites/nisra.gov.uk/files/publications/SNPP16_LGD14_SYA_1641.xlsx" ni_raw = self.cache_dir + "/snpp_ni.csv" if os.path.isfile(ni_raw): snpp_ni = pd.read_csv(ni_raw) else: response = requests.get(ni_src) with open(self.cache_dir + "/ni_raw.xlsx", 'wb') as fd: for chunk in response.iter_content(chunk_size=1024): fd.write(chunk) # easier to hard-code the worksheet names we need (since unlikely to change frequently) districts = ["Antrim & Newtownabbey", "Ards & North Down", "Armagh Banbridge & Craigavon", "Belfast", "Causeway Coast & Glens", "Derry & Strabane", "Fermanagh & Omagh", "Lisburn & Castlereagh", "Mid & East Antrim", "Mid Ulster", "Newry Mourne & Down"] xls_ni = load_workbook(self.cache_dir + "/ni_raw.xlsx", read_only=True) snpp_ni = pd.DataFrame() for d in districts: # 1 extra row compared to 2014 data (below was A2) area_code = xls_ni[d]["A3"].value # 2 extra rows compared to 2014 data (below was A3:A95) males = utils.read_cell_range(xls_ni[d], "A5", "AA97") females = utils.read_cell_range(xls_ni[d], "A100", "AA192") dfm = pd.DataFrame(data=males[1:, 1:], index=males[1:, 0], columns=males[0, 1:]).drop( ["Age"]).stack().reset_index() dfm.columns = ["C_AGE", "PROJECTED_YEAR_NAME", "OBS_VALUE"] dfm["GENDER"] = pd.Series(1, dfm.index) dfm["GEOGRAPHY_CODE"] = pd.Series(area_code, dfm.index) dfm.loc[dfm.C_AGE == "90+", "C_AGE"] = "90" dff =
pd.DataFrame(data=females[1:, 1:], index=females[1:, 0], columns=females[0, 1:])
pandas.DataFrame
import unittest import logging import os import numpy as np import pandas as pd import cmapPy.pandasGEXpress as GCToo import cmapPy.pandasGEXpress.parse as parse import broadinstitute_psp.utils.setup_logger as setup_logger import broadinstitute_psp.tear.continuous_renormalization as renorm # Setup logger logger = logging.getLogger(setup_logger.LOGGER_NAME) # Use functional tests assets from the tear directory if os.path.basename(os.getcwd()) == "tear": FUNCTIONAL_TESTS_DIR = os.path.join("./functional_tests") elif os.path.basename(os.getcwd()) == "broadinstitute_psp": FUNCTIONAL_TESTS_DIR = os.path.join("tear/functional_tests") class TestContinuousRenormalization(unittest.TestCase): def test_main(self): in_gct_path = os.path.join(FUNCTIONAL_TESTS_DIR, "test_renorm_main.gct") out_name = os.path.join(FUNCTIONAL_TESTS_DIR, "test_renorm_out.gct") # update the args string args_string = ("-i {} -o {} -gct").format(in_gct_path, out_name) args = renorm.build_parser().parse_args(args_string.split()) renorm.continuous_renormalization(args) # Read in result out_gct = parse.parse(out_name) e_values = np.array( [[-0.41, -0.13, 0.07, 0.09, 0.18, 0.24, 0.08], [0.40, 0.11, 0.06, -0.11, -0.22, -0.26, -0.09], [0.40, -0.40, 0.30, -0.20, 0.05, -0.10, 0.10], [0.10, 0.06, -0.07, 0.05, -0.09, 0.08, 0.10]]) self.assertTrue(np.allclose(e_values, out_gct.data_df, atol=1e-2)) # Clean up os.remove(out_name) def test_to_log_renorm(self): slopes = pd.Series([-0.3, 0.1, -0.1, 0.3]) is_log_renormed_return = renorm.is_log_renormed(slopes, 0.2) is_log_renormed_expected = pd.Series([True, False, False, True]) self.assertTrue((is_log_renormed_return == is_log_renormed_expected).all()) def test_tot_samp_offsets(self): df_in = pd.DataFrame([[1, -1, 0, 1], [2, 0, -2, 2], [0, 0, 0, 0], [-0.5, 0.5, 0.5, 0]]) return_tot_samp_offsets = renorm.calculate_total_sample_offsets(df_in) expect_tot_samp_offsets = pd.Series([3.5, 1.5, 2.5, 3]) self.assertTrue(np.allclose(return_tot_samp_offsets, expect_tot_samp_offsets, atol=1e-6)) def test_calc_out_mat(self): df_in = pd.DataFrame([[1, 2, 3, 4], [4, 3, 2, 1], [0, 0, 0, 0], [1, 1, 1, 1]]) offset_in = pd.DataFrame([[0, 0, 0, 0], [3, 2, 1, 0], [0, 1, 2, 3], [0, 0, 0, 0]]) return_out_df = renorm.calculate_out_matrix(df_in, offset_in) expect_out_df = pd.DataFrame([[1, 2, 3, 4], [1, 1, 1, 1], [0, -1, -2, -3], [1, 1, 1, 1]]) self.assertTrue(np.allclose(return_out_df, expect_out_df, atol=1e-6)) def test_calc_pep_samp_offsets(self): data_df_in = pd.DataFrame([[0.8, 0.6, 0.5, 0.36], [1, 1, 1, 1]]) row_metadata_df_in = pd.DataFrame([[True, True], [False, False]], columns = ["is_log_renormed", "whatever"]) es_in = pd.Series([0.2, 0.5, 0.6, 1.0]) pep_y_offsets_in = pd.Series([0.4, 0]) fit_params_in = pd.DataFrame([[(1, 1), (1, 1)], [(1, 1), (1, 1)]], columns = ["deg1", "log"]) func_return = renorm.calculate_peptide_sample_offsets(data_df_in, row_metadata_df_in, es_in, fit_params_in, pep_y_offsets_in) expected_return = pd.DataFrame([[0.85, 0.78, 0.75, 0.67], [0, 0, 0, 0]]) self.assertTrue(np.allclose(expected_return, func_return, atol=1e-2)) def test_calc_fit(self): data_df_in = pd.DataFrame([[0.8, 0.6, 0.5, 0.36], [0.9, 1, 1, 1]]) es_in = pd.Series([0.2, 0.5, 0.6, 1.0]) pep_y_offsets_in = pd.Series([0.1, 0.1]) func_return = renorm.calculate_fit(data_df_in, es_in, pep_y_offsets_in) expect_return = pd.DataFrame([[[-0.54, 0.88], (1.6, 1.66)], [[0.11, 0.91], (1.8, 0.03)]], columns=["deg1", "log"]) for row_idx, vals in expect_return.iterrows(): for col_idx, vals in expect_return.iteritems(): self.assertTrue(np.allclose(expect_return.loc[row_idx, col_idx], func_return.loc[row_idx, col_idx], atol=1e-2)) def test_make_y(self): x_in = pd.Series([0.1, 0.3, 0.5, 0.8]) deg_model = [1, 1] log_model = (1, 1) deg_return = renorm.make_y(x_in, deg_model) log_return = renorm.make_y(x_in, log_model, 1) expect_deg_return = pd.Series([1, 1, 1, 1]) expect_log_return =
pd.Series([1.47, 1.42, 1.37, 1.31])
pandas.Series
import logging import os import unittest import pandas as pd import moneytrack as mt logging.basicConfig(level=logging.DEBUG) field_names = mt.Config.FieldNames class DatasetTests(unittest.TestCase): def test_a(self): sim = mt.simulation.AccountSimulatorFixedRate(date=pd.to_datetime("2021-01-01"), ayr=0.05, balance=100) for i in range(100): sim.step(0) print(sim.get_daily_account_history()) def test_b(self): sim1 = mt.simulation.AccountSimulatorFixedRate( date=
pd.to_datetime("2021-01-01")
pandas.to_datetime
#!/usr/bin/env python # -*- coding:utf-8 _*- """ @author: <NAME> @file: grow_path.py @time: 2021/01/19/13:42 """ import os import time import argparse import numpy as np import pandas as pd from rdkit import Chem from rdkit.Chem import Descriptors from rdkit.Chem.rdMolDescriptors import CalcExactMolWt import subprocess from pandarallel import pandarallel import configparser from scoring.ranking import read_dock_file pandarallel.initialize(verbose=0) def cal_mutation_dic(workdir, max_gen): mut_dic_all = dict() while max_gen > 0: mut_file = os.path.join(workdir, "generation_" + str(max_gen), "filter.csv") print(mut_file) with open(mut_file, "r") as f: lines = f.readlines() lines = [i.strip().split(",") for i in lines] mut_dic = {i[-6].split("-dp")[0].split("-C")[0]: [i[0], i[1].split("-dp")[0].split("-C")[0], i[-5], i[-4]] for i in lines} mut_dic_all["gen" + str(max_gen)] = mut_dic max_gen -= 1 return mut_dic_all def merge_multi_generation(workdir, max_gen, file_path, dl_mode, config_path): df_lst = [pd.read_csv(os.path.join(workdir, "generation_" + str(i), "docked_gen_" + str(i) + ".csv")) for i in range(1, max_gen + 1)] if dl_mode == 2: dl_df = read_dock_file(os.path.join(workdir, "generation_{}_pre".format(max_gen), "docking_outputs_with_score.sdf")) dl_df["le_ln"] = dl_df.apply( lambda x: x["docking score"] / Chem.MolFromSmiles(x["smiles"]).GetNumHeavyAtoms(), axis=1) dl_df.columns = [i.lower() for i in list(dl_df.columns)] dl_df = dl_df.drop(columns=["molecule"]) dl_df = dl_df.reindex(columns=df_lst[0].columns) config = configparser.ConfigParser() config.read(config_path) score_cutoff = config.getfloat("deep learning", "dl_score_cutoff") dl_df = dl_df[dl_df["docking score"] < score_cutoff] df_lst.append(dl_df) final_df = pd.concat(df_lst, axis=0).drop_duplicates(subset=["smiles"]) final_df.to_csv(file_path, index=False) return final_df def grow_path(mut_dic_all, mut_id): mut_id = mut_id.split("-dp")[0].split("-C")[0] try: gen_mol = int(mut_id.split("_")[1]) except IndexError: print(mut_id) return None mut_info_lst = [] while gen_mol > 0: mut_info = mut_dic_all["gen" + str(gen_mol)][mut_id] if "." in mut_info[2]: gen_mol -= 1 continue mut_info_lst.append(mut_info) mut_id = mut_info[1] gen_mol -= 1 return mut_info_lst def add_prop(merged_df_path): merged_df =
pd.read_csv(merged_df_path)
pandas.read_csv
import pymysql import pandas as pd import numpy as np import tushare as ts from tqdm import tqdm from sqlalchemy import create_engine from getdata import read_mysql_and_insert from datetime import date,timedelta,datetime pro = ts.pro_api(token='๏ผŸ๏ผŸ๏ผŸ') def strategy(): """ auto strategy """ # ่Žทๅ–ๅค„็†ๅฅฝๅŽ็š„่‚ก็ฅจไฟกๆฏ all_stock_info = deal_all_stock_info() # ๆœ€็ปˆ็ป“ๆžœ่ฎฐๅฝ• result =
pd.DataFrame(index=all_stock_info.ts_code)
pandas.DataFrame
""" Functions and methods to extract statistics concerning the most used emojis in twitter datasets. """ from collections import Counter import emoji import seaborn as sns import pandas as pd import sys import resource from tqdm import tqdm from IPython.core.debugger import set_trace from tqdm import tqdm import matplotlib.pyplot as plt from pathlib import Path import numpy as np import bz2 import json from IPython.core.debugger import set_trace import warnings import pickle as pk from numpy.random import permutation import pdb import traceback import sys from src.constants import ( flags, em_letters, em_numbers, em_hours, TWEET_EM_COUNT_PATH, TWEET_PATHS_PATH, EXPORT_DIR, TWEET_PATH, TWEET_SAMPLES_DIR, COLOR1, COLOR2, TITLE_SIZE, LABEL_SIZE, ) from src.utils import tononymize_list, genderonymize_list, keep_fe0f_emojis warnings.filterwarnings("ignore") sns.set() def filter_access_paths(tweet_paths): """ filter the paths we have rights for """ access_paths = [] print(f"Length before filtering{len(tweet_paths)}") for tweet_path in tqdm(tweet_paths): try: bz2.open(tweet_path, "rt") access_paths.append(tweet_path) except PermissionError as e: continue print(f"Length after filtering: {len(access_paths)}") return access_paths def load_or_compute_tweetpaths(tweetpaths_path): """ Return a list of the paths we search information in """ if Path(tweetpaths_path).exists(): print("Loading precomputed paths structure") tweet_paths = pk.load(open(tweetpaths_path, "rb")) else: print("Computing paths structure") main_path = TWEET_SAMPLES_DIR if not main_path.exists(): raise ValueError( "You need to be on the DLab machine to run the Tweeter function" ) subpaths = np.random.permutation(list(main_path.iterdir())) # we are only interested in the twitter_stream directories subpaths = [ path for path in subpaths if path.stem.startswith("twitter_stream")] tweet_paths = [ tweet_path for subpath in subpaths for tweet_path in list(subpath.rglob("*.json.bz2")) ] tweet_paths = filter_access_paths(tweet_paths) pk.dump(tweet_paths, open(tweetpaths_path, "wb")) return tweet_paths def compute_twitter_data(save_path, N_LIM=30000, seed=15): """ Gather randomized subset of the data present at tweets_pritzer_sample. Args: save_path (str): path to save the generated file to N_LIM (int): number of files we take from each day directory Returns: [pd.df]: dataframe with columns 'id','lang', and 'text' """ N_SAVE = 100 assert N_LIM > N_SAVE save_path = Path(save_path) np.random.seed(seed) tweet_paths = load_or_compute_tweetpaths(TWEET_PATHS_PATH) tweet_paths = np.random.permutation(tweet_paths)[:N_LIM] tweet_df = [] print(f"Analyzing {N_LIM} files") first_pass = True tweet_paths = [ Path( "/dlabdata1/gligoric/spritzer/tweets_pritzer_sample/twitter_stream_2019_03_13/13/09/13.json.bz2" ) ] + tweet_paths.tolist() for i, tweet_path in enumerate(tqdm(tweet_paths)): # tweeter file reading new_tweets = [] try: with bz2.open(tweet_path, "rt") as bzinput: for line in bzinput: try: tweet = json.loads(line) except json.JSONDecodeError: continue if len(tweet.keys()) < 5: continue tweet = {key: tweet[key] for key in ["id", "lang", "text"]} # we only care for english-labelled data if tweet["lang"] != "en": continue new_tweets.append(tweet) tweet_df += new_tweets except KeyboardInterrupt: sys.exit() pass except Exception as e: print("Exception!", type(e), e) continue # RAM saving on the shared machine if i % N_SAVE == 0 and i != 0: if first_pass: mode = "w" header = True first_pass = False else: mode = "a" header = False tweet_df = pd.DataFrame(tweet_df) tweet_df.to_csv(save_path, mode=mode, header=header) tweet_df = [] # type conversion and saving tweet_df = pd.DataFrame(tweet_df) tweet_df.to_csv(save_path, mode="a", header=False) print("Tweet information generation terminated successfully.") def update_emoji_count(dic, text): """ Update the counts of each emoji wrt to text Args: dic(dict): mapping emojis--> count text (str): text to use to update dic """ for em in extract_emojis(text, True): if em not in emoji.UNICODE_EMOJI: print("EMOJI NOT PRESENT") continue dic[em] = dic.get(em, 0) + 1 def compute_emdf(path, tweet_df): """ compute the em_df from tweet_df. em_df = mapping from emojis to their counts in tweet_df Args: path (str): path to em_df tweet_df (pd.df): dataframe as returned by read_twitter_data Returns: [pd.df]: em_df """ emojis_count = {} for text in tqdm(["text"]): update_emoji_count(emojis_count, text) em_df = pd.Series(emojis_count).sort_values(ascending=False) em_df = em_df.reset_index().dropna().set_index("index") em_df.to_csv(path) return em_df def load_or_compute_em_df(em_path, tweet_path=None): """ load or compute the em_df depending if the provided path exists or not Args: path (str): path to em_df tweet_df (pd.df): dataframe as returned by read_twitter_data Returns: [pd.df]: em_df """ if Path(em_path).exists(): return pd.read_csv(em_path, index_col=0, names=["counts"], header=0)["counts"] emojis_count = {} reader =
pd.read_csv(tweet_path, chunksize=10000)
pandas.read_csv
from __future__ import absolute_import from __future__ import print_function import os import pandas as pd import numpy as np import sys import shutil from sklearn.preprocessing import MinMaxScaler def dataframe_from_csv(path, header=0, index_col=False): return pd.read_csv(path, header=header, index_col=index_col) var_to_consider = [ "glucose", "Invasive BP Diastolic", "Invasive BP Systolic", "O2 Saturation", "Respiratory Rate", "Motor", "Eyes", "MAP (mmHg)", "Heart Rate", "GCS Total", "Verbal", "pH", "FiO2", "Temperature (C)", ] # Filter on useful column for this benchmark def filter_patients_on_columns_model(patients): columns = [ "patientunitstayid", "gender", "age", "ethnicity", "apacheadmissiondx", "admissionheight", "hospitaladmitoffset", "admissionweight", "hospitaldischargestatus", "unitdischargeoffset", "unitdischargestatus", ] return patients[columns] # Select unique patient id def cohort_stay_id(patients): cohort = patients.patientunitstayid.unique() return cohort # Convert gender from F/M to numbers g_map = {"Female": 1, "Male": 2, "": 0, "NaN": 0, "Unknown": 0, "Other": 0} def transform_gender(gender_series): global g_map return { "gender": gender_series.fillna("").apply( lambda s: g_map[s] if s in g_map else g_map[""] ) } # Convert ethnicity to numbers e_map = { "Asian": 1, "African American": 2, "Caucasian": 3, "Hispanic": 4, "Native American": 5, "NaN": 0, "": 0, } def transform_ethnicity(ethnicity_series): global e_map return { "ethnicity": ethnicity_series.fillna("").apply( lambda s: e_map[s] if s in e_map else e_map[""] ) } # Convert hospital/unit discharge status into numbers h_s_map = {"Expired": 1, "Alive": 0, "": 2, "NaN": 2} def transform_hospital_discharge_status(status_series): global h_s_map return { "hospitaldischargestatus": status_series.fillna("").apply( lambda s: h_s_map[s] if s in h_s_map else h_s_map[""] ) } def transform_unit_discharge_status(status_series): global h_s_map return { "unitdischargestatus": status_series.fillna("").apply( lambda s: h_s_map[s] if s in h_s_map else h_s_map[""] ) } # Convert diagnosis into numbers def transform_dx_into_id(df): df.apacheadmissiondx.fillna("nodx", inplace=True) dx_type = df.apacheadmissiondx.unique() dict_dx_key =
pd.factorize(dx_type)
pandas.factorize
# BSD 2-CLAUSE LICENSE # Redistribution and use in source and binary forms, with or without modification, # are permitted provided that the following conditions are met: # Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR # #ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # original author: <NAME> """Class for benchmarking model templates.""" from typing import Dict from typing import List import numpy as np import pandas as pd import plotly.graph_objs as go from plotly.colors import DEFAULT_PLOTLY_COLORS from tqdm.autonotebook import tqdm from greykite.common.constants import ACTUAL_COL from greykite.common.constants import PREDICTED_COL from greykite.common.constants import PREDICTED_LOWER_COL from greykite.common.constants import PREDICTED_UPPER_COL from greykite.common.constants import TIME_COL from greykite.common.constants import VALUE_COL from greykite.common.evaluation import EvaluationMetricEnum from greykite.common.evaluation import add_finite_filter_to_scorer from greykite.common.logging import LoggingLevelEnum from greykite.common.logging import log_message from greykite.common.python_utils import get_pattern_cols from greykite.common.viz.timeseries_plotting import plot_multivariate from greykite.common.viz.timeseries_plotting import plot_multivariate_grouped from greykite.framework.benchmark.benchmark_class_helper import forecast_pipeline_rolling_evaluation from greykite.framework.constants import FORECAST_STEP_COL from greykite.framework.templates.autogen.forecast_config import ForecastConfig from greykite.framework.templates.forecaster import Forecaster from greykite.sklearn.cross_validation import RollingTimeSeriesSplit class BenchmarkForecastConfig: """Class for benchmarking multiple ForecastConfig on a rolling window basis. Attributes ---------- df : `pandas.DataFrame` Timeseries data to forecast. Contains columns [`time_col`, `value_col`], and optional regressor columns. Regressor columns should include future values for prediction. configs : `Dict` [`str`, `ForecastConfig`] Dictionary of model configurations. A model configuration is a ``ForecastConfig``. See :class:`~greykite.framework.templates.autogen.forecast_config.ForecastConfig` for details on valid ``ForecastConfig``. Validity of the ``configs`` for benchmarking is checked via the ``validate`` method. tscv : `~greykite.sklearn.cross_validation.RollingTimeSeriesSplit` Cross-validation object that determines the rolling window evaluation. See :class:`~greykite.sklearn.cross_validation.RollingTimeSeriesSplit` for details. The ``forecast_horizon`` and ``periods_between_train_test`` parameters of ``configs`` are matched against that of ``tscv``. A ValueError is raised if there is a mismatch. forecaster : `~greykite.framework.templates.forecaster.Forecaster` Forecaster used to create the forecasts. is_run : bool, default False Indicator of whether the `run` method is executed. After executing `run`, this indicator is set to True. Some class methods like ``get_forecast`` requires ``is_run`` to be True to be executed. result : `dict` Stores the benchmarking results. Has the same keys as ``configs``. forecasts : `pandas.DataFrame`, default None Merged DataFrame of forecasts, upper and lower confidence interval for all input ``configs``. Also stores train end date and forecast step for each prediction. """ def __init__( self, df: pd.DataFrame, configs: Dict[str, ForecastConfig], tscv: RollingTimeSeriesSplit, forecaster: Forecaster = Forecaster()): self.df = df self.configs = configs self.tscv = tscv self.forecaster = forecaster self.is_run = False # output self.result = dict.fromkeys(configs.keys()) self.forecasts = None def validate(self): """Validates the inputs to the class for the method ``run``. Raises a ValueError if there is a mismatch between the following parameters of ``configs`` and ``tscv``: - ``forecast_horizon`` - ``periods_between_train_test`` Raises ValueError if all the ``configs`` do not have the same ``coverage`` parameter. """ coverage_list = [] for config_name, config in self.configs.items(): # Checks forecast_horizon if config.forecast_horizon != self.tscv.forecast_horizon: raise ValueError(f"{config_name}'s 'forecast_horizon' ({config.forecast_horizon}) does " f"not match that of 'tscv' ({self.tscv.forecast_horizon}).") # Checks periods_between_train_test if config.evaluation_period_param.periods_between_train_test != self.tscv.periods_between_train_test: raise ValueError(f"{config_name}'s 'periods_between_train_test' ({config.evaluation_period_param.periods_between_train_test}) " f"does not match that of 'tscv' ({self.tscv.periods_between_train_test}).") coverage_list.append(config.coverage) # Computes pipeline parameters pipeline_params = self.forecaster.apply_forecast_config( df=self.df, config=config) self.result[config_name] = dict(pipeline_params=pipeline_params) # Checks all coverages are same if coverage_list[1:] != coverage_list[:-1]: raise ValueError("All forecast configs must have same coverage.") def run(self): """Runs every config and stores the output of the :func:`~greykite.framework.pipeline.pipeline.forecast_pipeline`. This function runs only if the ``configs`` and ``tscv`` are jointly valid. Returns ------- self : Returns self. Stores pipeline output of every config in ``self.result``. """ self.validate() with tqdm(self.result.items(), ncols=800, leave=True) as progress_bar: for (config_name, config) in progress_bar: # Description will be displayed on the left of progress bar progress_bar.set_description(f"Benchmarking '{config_name}' ") rolling_evaluation = forecast_pipeline_rolling_evaluation( pipeline_params=config["pipeline_params"], tscv=self.tscv) config["rolling_evaluation"] = rolling_evaluation self.is_run = True def extract_forecasts(self): """Extracts forecasts, upper and lower confidence interval for each individual config. This is saved as a ``pandas.DataFrame`` with the name ``rolling_forecast_df`` within the corresponding config of ``self.result``. e.g. if config key is "silverkite", then the forecasts are stored in ``self.result["silverkite"]["rolling_forecast_df"]``. This method also constructs a merged DataFrame of forecasts, upper and lower confidence interval for all input ``configs``. """ if not self.is_run: raise ValueError("Please execute 'run' method to create forecasts.") merged_df = pd.DataFrame() for config_name, config in self.result.items(): rolling_evaluation = config["rolling_evaluation"] rolling_forecast_df = pd.DataFrame() for num, (split_key, split_value) in enumerate(rolling_evaluation.items()): forecast = split_value["pipeline_result"].forecast # Subsets forecast_horizon rows from the end of forecast dataframe forecast_df = forecast.df.iloc[-forecast.forecast_horizon:] forecast_df.insert(0, "train_end_date", forecast.train_end_date) forecast_df.insert(1, FORECAST_STEP_COL, np.arange(forecast.forecast_horizon) + 1) forecast_df.insert(2, "split_num", num) rolling_forecast_df = pd.concat([rolling_forecast_df, forecast_df], axis=0) rolling_forecast_df = rolling_forecast_df.reset_index(drop=True) self.result[config_name]["rolling_forecast_df"] = rolling_forecast_df # Merges the forecasts of individual config # Augments prediction columns with config name pred_cols = [PREDICTED_COL] if PREDICTED_LOWER_COL in rolling_forecast_df.columns: pred_cols.append(PREDICTED_LOWER_COL) if PREDICTED_UPPER_COL in rolling_forecast_df.columns: pred_cols.append(PREDICTED_UPPER_COL) mapper = { col: f"{config_name}_{col}" for col in pred_cols } if merged_df.empty: temp_df = rolling_forecast_df.rename(columns=mapper) else: temp_df = rolling_forecast_df[pred_cols].rename(columns=mapper) merged_df = pd.concat([merged_df, temp_df], axis=1) self.forecasts = merged_df.reset_index(drop=True) def plot_forecasts_by_step( self, forecast_step: int, config_names: List = None, xlabel: str = TIME_COL, ylabel: str = VALUE_COL, title: str = None, showlegend: bool = True): """Returns a ``forecast_step`` ahead rolling forecast plot. The plot consists one line for each valid. ``config_names``. If available, the corresponding actual values are also plotted. For a more customizable plot, see :func:`~greykite.common.viz.timeseries_plotting.plot_multivariate` Parameters ---------- forecast_step : `int` Which forecast step to plot. A forecast step is an integer between 1 and the forecast horizon, inclusive, indicating the number of periods from train end date to the prediction date (# steps ahead). config_names : `list` [`str`], default None Which config results to plot. A list of config names. If None, uses all the available config keys. xlabel : `str` or None, default TIME_COL x-axis label. ylabel : `str` or None, default VALUE_COL y-axis label. title : `str` or None, default None Plot title. If None, default is based on ``forecast_step``. showlegend : `bool`, default True Whether to show the legend. Returns ------- fig : `plotly.graph_objs.Figure` Interactive plotly graph. Plots multiple column(s) in ``self.forecasts`` against ``TIME_COL``. See `~greykite.common.viz.timeseries_plotting.plot_forecast_vs_actual` return value for how to plot the figure and add customization. """ if self.forecasts is None: self.extract_forecasts() if forecast_step > self.tscv.forecast_horizon: raise ValueError(f"`forecast_step` ({forecast_step}) must be less than or equal to " f"forecast horizon ({self.tscv.forecast_horizon}).") config_names = self.get_valid_config_names(config_names) y_cols = [TIME_COL, ACTUAL_COL] + \ [f"{config_name}_{PREDICTED_COL}" for config_name in config_names] df = self.forecasts[self.forecasts[FORECAST_STEP_COL] == forecast_step] df = df[y_cols] if title is None: title = f"{forecast_step}-step ahead rolling forecasts" fig = plot_multivariate( df=df, x_col=TIME_COL, y_col_style_dict="plotly", xlabel=xlabel, ylabel=ylabel, title=title, showlegend=showlegend) return fig def plot_forecasts_by_config( self, config_name: str, colors: List = DEFAULT_PLOTLY_COLORS, xlabel: str = TIME_COL, ylabel: str = VALUE_COL, title: str = None, showlegend: bool = True): """Returns a rolling plot of the forecasts by ``config_name`` against ``TIME_COL``. The plot consists of one line for each available split. Some lines may overlap if test period in corresponding splits intersect. Hence every line is given a different color. If available, the corresponding actual values are also plotted. For a more customizable plot, see :func:`~greykite.common.viz.timeseries_plotting.plot_multivariate_grouped` Parameters ---------- config_name : `str` Which config result to plot. The name must match the name of one of the input ``configs``. colors : [`str`, `List` [`str`]], default ``DEFAULT_PLOTLY_COLORS`` Which colors to use to build the color palette. This can be a list of RGB colors or a `str` from ``PLOTLY_SCALES``. To use a single color for all lines, pass a `List` with a single color. xlabel : `str` or None, default TIME_COL x-axis label. ylabel : `str` or None, default VALUE_COL y-axis label. title : `str` or None, default None Plot title. If None, default is based on ``config_name``. showlegend : `bool`, default True Whether to show the legend. Returns ------- fig : `plotly.graph_objs.Figure` Interactive plotly graph. Plots multiple column(s) in ``self.forecasts`` against ``TIME_COL``. """ if self.forecasts is None: self.extract_forecasts() config_name = self.get_valid_config_names([config_name])[0] if title is None: title = f"Rolling forecast for {config_name}" fig = plot_multivariate_grouped( df=self.forecasts, x_col=TIME_COL, y_col_style_dict={ ACTUAL_COL: { "line": { "width": 1, "dash": "solid" } } }, grouping_x_col="split_num", grouping_x_col_values=None, grouping_y_col_style_dict={ f"{config_name}_{PREDICTED_COL}": { "name": "split", "line": { "width": 1, "dash": "solid" } } }, colors=colors, xlabel=xlabel, ylabel=ylabel, title=title, showlegend=showlegend) return fig def get_evaluation_metrics( self, metric_dict: Dict, config_names: List = None): """Returns rolling train and test evaluation metric values. Parameters ---------- metric_dict : `dict` [`str`, `callable`] Evaluation metrics to compute. - key: evaluation metric name, used to create column name in output. - value: metric function to apply to forecast df in each split to generate the column value. Signature (y_true: `str`, y_pred: `str`) -> transformed value: `float`. For example:: metric_dict = { "median_residual": lambda y_true, y_pred: np.median(y_true - y_pred), "mean_squared_error": lambda y_true, y_pred: np.mean((y_true - y_pred)**2) } Some predefined functions are available in `~greykite.common.evaluation`. For example:: metric_dict = { "correlation": lambda y_true, y_pred: correlation(y_true, y_pred), "RMSE": lambda y_true, y_pred: root_mean_squared_error(y_true, y_pred), "Q_95": lambda y_true, y_pred: partial(quantile_loss(y_true, y_pred, q=0.95)) } As shorthand, it is sufficient to provide the corresponding ``EvaluationMetricEnum`` member. These are auto-expanded into the appropriate function. So the following is equivalent:: metric_dict = { "correlation": EvaluationMetricEnum.Correlation, "RMSE": EvaluationMetricEnum.RootMeanSquaredError, "Q_95": EvaluationMetricEnum.Quantile95 } config_names : `list` [`str`], default None Which config results to plot. A list of config names. If None, uses all the available config keys. Returns ------- evaluation_metrics_df : pd.DataFrame A DataFrame containing splitwise train and test evaluation metrics for ``metric_dict`` and ``config_names``. For example. Let's assume:: metric_dict = { "RMSE": EvaluationMetricEnum.RootMeanSquaredError, "Q_95": EvaluationMetricEnum.Quantile95 } config_names = ["default_prophet", "custom_silverkite"] These are valid ``config_names`` and there are 2 splits for each. Then evaluation_metrics_df = config_name split_num train_RMSE test_RMSE train_Q_95 test_Q_95 default_prophet 0 * * * * default_prophet 1 * * * * custom_silverkite 0 * * * * custom_silverkite 1 * * * * where * represents computed values. """ if not self.is_run: raise ValueError("Please execute the 'run' method before computing evaluation metrics.") metric_dict = self.autocomplete_metric_dict( metric_dict=metric_dict, enum_class=EvaluationMetricEnum) config_names = self.get_valid_config_names(config_names=config_names) evaluation_metrics_df = pd.DataFrame() for config_name in config_names: rolling_evaluation = self.result[config_name]["rolling_evaluation"] for num, (split_key, split_value) in enumerate(rolling_evaluation.items()): forecast = split_value["pipeline_result"].forecast split_metrics = { "config_name": config_name, "split_num": num} # Updates train metrics df_train = forecast.df_train split_metrics.update({ f"train_{metric_name}": metric_func( df_train[forecast.actual_col], df_train[forecast.predicted_col] ) for metric_name, metric_func in metric_dict.items() }) # Updates test metrics df_test = forecast.df_test if df_test.shape[0] > 0 and forecast.test_na_count < df_test.shape[0]: split_metrics.update({ f"test_{metric_name}": metric_func( df_test[forecast.actual_col], df_test[forecast.predicted_col] ) for metric_name, metric_func in metric_dict.items() }) else: split_metrics.update({ f"test_{metric_name}": np.nan for metric_name, metric_func in metric_dict.items() }) split_metrics_df = pd.DataFrame(split_metrics, index=[num]) evaluation_metrics_df = pd.concat([evaluation_metrics_df, split_metrics_df]) # Resets index and fills missing values (e.g. when correlation is not defined) with np.nan evaluation_metrics_df = evaluation_metrics_df.reset_index(drop=True).fillna(value=np.nan) temp_df = evaluation_metrics_df.copy() # Rearranges columns so that train and test error of a config are side by side evaluation_metrics_df = pd.DataFrame() evaluation_metrics_df["config_name"] = temp_df["config_name"] evaluation_metrics_df["split_num"] = temp_df["split_num"] for metric_name in metric_dict.keys(): evaluation_metrics_df[f"train_{metric_name}"] = temp_df[f"train_{metric_name}"] evaluation_metrics_df[f"test_{metric_name}"] = temp_df[f"test_{metric_name}"] return evaluation_metrics_df def plot_evaluation_metrics( self, metric_dict: Dict, config_names: List = None, xlabel: str = None, ylabel: str = "Metric value", title: str = None, showlegend: bool = True): """Returns a barplot of the train and test values of ``metric_dict`` of ``config_names``. Value of a metric for all ``config_names`` are plotted as a grouped bar. Train and test values of a metric are plot side-by-side for easy comparison. Parameters ---------- metric_dict : `dict` [`str`, `callable`] Evaluation metrics to compute. Same as `~greykite.framework.framework.benchmark.benchmark_class.BenchmarkForecastConfig.get_evaluation_metrics`. To get the best visualization, keep number of metrics <= 2. config_names : `list` [`str`], default None Which config results to plot. A list of config names. If None, uses all the available config keys. xlabel : `str` or None, default None x-axis label. ylabel : `str` or None, default "Metric value" y-axis label. title : `str` or None, default None Plot title. showlegend : `bool`, default True Whether to show the legend. Returns ------- fig : `plotly.graph_objs.Figure` Interactive plotly bar plot. """ evaluation_metrics_df = self.get_evaluation_metrics( metric_dict=metric_dict, config_names=config_names) # This function groups by config name evaluation_metrics_df = (evaluation_metrics_df .drop(columns=["split_num"]) .groupby("config_name") .mean() .dropna(how="all")) # Rearranges columns so that train and test error of a config are side by side plot_df = pd.DataFrame() for metric_name in metric_dict.keys(): plot_df[f"train_{metric_name}"] = evaluation_metrics_df[f"train_{metric_name}"] plot_df[f"test_{metric_name}"] = evaluation_metrics_df[f"test_{metric_name}"] if title is None: title = "Average evaluation metric across rolling windows" data = [] # Each row (index) is a config. Adds each row to the bar plot. for index in plot_df.index: data.append( go.Bar( name=index, x=plot_df.columns, y=plot_df.loc[index].values ) ) layout = go.Layout( xaxis=dict(title=xlabel), yaxis=dict(title=ylabel), title=title, showlegend=showlegend, barmode="group", ) fig = go.Figure(data=data, layout=layout) return fig def get_grouping_evaluation_metrics( self, metric_dict: Dict, config_names: List = None, which: str = "train", groupby_time_feature: str = None, groupby_sliding_window_size: int = None, groupby_custom_column: pd.Series = None): """Returns splitwise rolling evaluation metric values. These values are grouped by the grouping method chosen by ``groupby_time_feature``, ``groupby_sliding_window_size`` and ``groupby_custom_column``. See `~greykite.framework.output.univariate_forecast.UnivariateForecast.get_grouping_evaluation` for details on grouping method. Parameters ---------- metric_dict : `dict` [`str`, `callable`] Evaluation metrics to compute. Same as `~greykite.framework.framework.benchmark.benchmark_class.BenchmarkForecastConfig.get_evaluation_metrics`. config_names : `list` [`str`], default None Which config results to plot. A list of config names. If None, uses all the available config keys. which: `str` "train" or "test". Which dataset to evaluate. groupby_time_feature : `str` or None, default None If provided, groups by a column generated by `~greykite.common.features.timeseries_features.build_time_features_df`. See that function for valid values. groupby_sliding_window_size : `int` or None, default None If provided, sequentially partitions data into groups of size ``groupby_sliding_window_size``. groupby_custom_column : `pandas.Series` or None, default None If provided, groups by this column value. Should be same length as the DataFrame. Returns ------- grouped_evaluation_df : `pandas.DataFrame` A DataFrame containing splitwise train and test evaluation metrics for ``metric_dict`` and ``config_names``. The evaluation metrics are grouped by the grouping method. """ if not self.is_run: raise ValueError("Please execute the 'run' method before computing " "grouped evaluation metrics.") metric_dict = self.autocomplete_metric_dict( metric_dict=metric_dict, enum_class=EvaluationMetricEnum) config_names = self.get_valid_config_names(config_names=config_names) grouped_evaluation_df = pd.DataFrame() for config_name in config_names: rolling_evaluation = self.result[config_name]["rolling_evaluation"] for num, (split_key, split_value) in enumerate(rolling_evaluation.items()): forecast = split_value["pipeline_result"].forecast split_evaluation_df = pd.DataFrame() for metric_name, metric_func in metric_dict.items(): grouped_df = forecast.get_grouping_evaluation( score_func=metric_func, score_func_name=metric_name, which=which, groupby_time_feature=groupby_time_feature, groupby_sliding_window_size=groupby_sliding_window_size, groupby_custom_column=groupby_custom_column) # Adds grouped_df to split_evaluation_df, handling the case if split_evaluation_df is empty # If the actual values are missing, grouped_df.shape[0] might be 0 if grouped_df.shape[0] > 0: if split_evaluation_df.empty: split_evaluation_df = grouped_df else: groupby_col = split_evaluation_df.columns[0] split_evaluation_df = pd.merge(split_evaluation_df, grouped_df, on=groupby_col) else: # This column name is the same as that obtained from # `~greykite.framework.output.univariate_forecast.UnivariateForecast.get_grouping_evaluation` split_evaluation_df[f"{which} {metric_name}"] = np.nan split_evaluation_df.insert(0, "config_name", config_name) split_evaluation_df.insert(1, "split_num", num) grouped_evaluation_df = pd.concat([grouped_evaluation_df, split_evaluation_df]) grouped_evaluation_df = grouped_evaluation_df.reset_index(drop=True) return grouped_evaluation_df def plot_grouping_evaluation_metrics( self, metric_dict: Dict, config_names: List = None, which: str = "train", groupby_time_feature: str = None, groupby_sliding_window_size: int = None, groupby_custom_column: pd.Series = None, xlabel=None, ylabel="Metric value", title=None, showlegend=True): """Returns a line plot of the grouped evaluation values of ``metric_dict`` of ``config_names``. These values are grouped by the grouping method chosen by ``groupby_time_feature``, ``groupby_sliding_window_size`` and ``groupby_custom_column``. See `~greykite.framework.output.univariate_forecast.UnivariateForecast.get_grouping_evaluation` for details on grouping method. Parameters ---------- metric_dict : `dict` [`str`, `callable`] Evaluation metrics to compute. Same as `~greykite.framework.framework.benchmark.benchmark_class.BenchmarkForecastConfig.get_evaluation_metrics`. To get the best visualization, keep number of metrics <= 2. config_names : `list` [`str`], default None Which config results to plot. A list of config names. If None, uses all the available config keys. which: `str` "train" or "test". Which dataset to evaluate. groupby_time_feature : `str` or None, optional If provided, groups by a column generated by `~greykite.common.features.timeseries_features.build_time_features_df`. See that function for valid values. groupby_sliding_window_size : `int` or None, optional If provided, sequentially partitions data into groups of size ``groupby_sliding_window_size``. groupby_custom_column : `pandas.Series` or None, optional If provided, groups by this column value. Should be same length as the DataFrame. xlabel : `str` or None, default None x-axis label. If None, label is determined by the groupby column name. ylabel : `str` or None, default "Metric value" y-axis label. title : `str` or None, default None Plot title. If None, default is based on ``config_name``. showlegend : `bool`, default True Whether to show the legend. Returns ------- fig : `plotly.graph_objs.Figure` Interactive plotly graph. """ grouped_evaluation_df = self.get_grouping_evaluation_metrics( metric_dict=metric_dict, config_names=config_names, which=which, groupby_time_feature=groupby_time_feature, groupby_sliding_window_size=groupby_sliding_window_size, groupby_custom_column=groupby_custom_column) # Figures out groupby_col name by process of elimination cols = [col for col in grouped_evaluation_df.columns if col not in ["config_name", "split_num"]] groupby_col = get_pattern_cols(cols, pos_pattern=".*", neg_pattern=which)[0] plot_df = (grouped_evaluation_df .drop(columns=["split_num"]) # Drops redundant column .groupby(["config_name", groupby_col]) # Averages values across splits .mean() .dropna(how="all") # Drops rows with all NA values .unstack(level=0) # Moves config_name from multiindex rows to multiindex columns .sort_index(axis=1) # Sorts on groupby_col to plot groups in logical order ) # Flattens and renames multiindex columns cols = [groupby_col] + ["_".join(v) for v in plot_df.columns] plot_df = pd.DataFrame(plot_df.to_records()) plot_df.columns = cols if xlabel is None: xlabel = groupby_col if title is None: title = f"{which} performance by {xlabel} across rolling windows" fig = plot_multivariate( df=plot_df, x_col=groupby_col, y_col_style_dict="plotly", xlabel=xlabel, ylabel=ylabel, title=title, showlegend=showlegend) return fig def get_runtimes(self, config_names: List = None): """Returns rolling average runtime in seconds for ``config_names``. Parameters ---------- config_names : `list` [`str`], default None Which config results to plot. A list of config names. If None, uses all the available config keys. Returns ------- runtimes_df : pd.DataFrame A DataFrame containing splitwise runtime in seconds for ``config_names``. For example. Let's assume:: config_names = ["default_prophet", "custom_silverkite"] These are valid ``config_names`` and there are 2 splits for each. Then runtimes_df = config_name split_num runtime_sec default_prophet 0 * default_prophet 1 * custom_silverkite 0 * custom_silverkite 1 * where * represents computed values. """ if not self.is_run: raise ValueError("Please execute the 'run' method to obtain runtimes.") config_names = self.get_valid_config_names(config_names=config_names) runtimes_df = pd.DataFrame() for config_name in config_names: rolling_evaluation = self.result[config_name]["rolling_evaluation"] for num, (split_key, split_value) in enumerate(rolling_evaluation.items()): split_runtime_df = pd.DataFrame({ "config_name": config_name, "split_num": num, "runtime_sec": split_value["runtime_sec"] }, index=[num]) runtimes_df =
pd.concat([runtimes_df, split_runtime_df])
pandas.concat
import pytz import pytest import dateutil import warnings import numpy as np from datetime import timedelta from itertools import product import pandas as pd import pandas._libs.tslib as tslib import pandas.util.testing as tm from pandas.errors import PerformanceWarning from pandas.core.indexes.datetimes import cdate_range from pandas import (DatetimeIndex, PeriodIndex, Series, Timestamp, Timedelta, date_range, TimedeltaIndex, _np_version_under1p10, Index, datetime, Float64Index, offsets, bdate_range) from pandas.tseries.offsets import BMonthEnd, CDay, BDay from pandas.tests.test_base import Ops START, END = datetime(2009, 1, 1), datetime(2010, 1, 1) class TestDatetimeIndexOps(Ops): tz = [None, 'UTC', 'Asia/Tokyo', 'US/Eastern', 'dateutil/Asia/Singapore', 'dateutil/US/Pacific'] def setup_method(self, method): super(TestDatetimeIndexOps, self).setup_method(method) mask = lambda x: (isinstance(x, DatetimeIndex) or isinstance(x, PeriodIndex)) self.is_valid_objs = [o for o in self.objs if mask(o)] self.not_valid_objs = [o for o in self.objs if not mask(o)] def test_ops_properties(self): f = lambda x: isinstance(x, DatetimeIndex) self.check_ops_properties(DatetimeIndex._field_ops, f) self.check_ops_properties(DatetimeIndex._object_ops, f) self.check_ops_properties(DatetimeIndex._bool_ops, f) def test_ops_properties_basic(self): # sanity check that the behavior didn't change # GH7206 for op in ['year', 'day', 'second', 'weekday']: pytest.raises(TypeError, lambda x: getattr(self.dt_series, op)) # attribute access should still work! s = Series(dict(year=2000, month=1, day=10)) assert s.year == 2000 assert s.month == 1 assert s.day == 10 pytest.raises(AttributeError, lambda: s.weekday) def test_asobject_tolist(self): idx = pd.date_range(start='2013-01-01', periods=4, freq='M', name='idx') expected_list = [Timestamp('2013-01-31'), Timestamp('2013-02-28'), Timestamp('2013-03-31'), Timestamp('2013-04-30')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject assert isinstance(result, Index) assert result.dtype == object tm.assert_index_equal(result, expected) assert result.name == expected.name assert idx.tolist() == expected_list idx = pd.date_range(start='2013-01-01', periods=4, freq='M', name='idx', tz='Asia/Tokyo') expected_list = [Timestamp('2013-01-31', tz='Asia/Tokyo'), Timestamp('2013-02-28', tz='Asia/Tokyo'), Timestamp('2013-03-31', tz='Asia/Tokyo'), Timestamp('2013-04-30', tz='Asia/Tokyo')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject assert isinstance(result, Index) assert result.dtype == object tm.assert_index_equal(result, expected) assert result.name == expected.name assert idx.tolist() == expected_list idx = DatetimeIndex([datetime(2013, 1, 1), datetime(2013, 1, 2), pd.NaT, datetime(2013, 1, 4)], name='idx') expected_list = [Timestamp('2013-01-01'), Timestamp('2013-01-02'), pd.NaT, Timestamp('2013-01-04')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject assert isinstance(result, Index) assert result.dtype == object tm.assert_index_equal(result, expected) assert result.name == expected.name assert idx.tolist() == expected_list def test_minmax(self): for tz in self.tz: # monotonic idx1 = pd.DatetimeIndex(['2011-01-01', '2011-01-02', '2011-01-03'], tz=tz) assert idx1.is_monotonic # non-monotonic idx2 = pd.DatetimeIndex(['2011-01-01', pd.NaT, '2011-01-03', '2011-01-02', pd.NaT], tz=tz) assert not idx2.is_monotonic for idx in [idx1, idx2]: assert idx.min() == Timestamp('2011-01-01', tz=tz) assert idx.max() == Timestamp('2011-01-03', tz=tz) assert idx.argmin() == 0 assert idx.argmax() == 2 for op in ['min', 'max']: # Return NaT obj = DatetimeIndex([]) assert pd.isna(getattr(obj, op)()) obj = DatetimeIndex([pd.NaT]) assert pd.isna(getattr(obj, op)()) obj = DatetimeIndex([pd.NaT, pd.NaT, pd.NaT]) assert pd.isna(getattr(obj, op)()) def test_numpy_minmax(self): dr = pd.date_range(start='2016-01-15', end='2016-01-20') assert np.min(dr) == Timestamp('2016-01-15 00:00:00', freq='D') assert np.max(dr) == Timestamp('2016-01-20 00:00:00', freq='D') errmsg = "the 'out' parameter is not supported" tm.assert_raises_regex(ValueError, errmsg, np.min, dr, out=0) tm.assert_raises_regex(ValueError, errmsg, np.max, dr, out=0) assert np.argmin(dr) == 0 assert np.argmax(dr) == 5 if not _np_version_under1p10: errmsg = "the 'out' parameter is not supported" tm.assert_raises_regex( ValueError, errmsg, np.argmin, dr, out=0) tm.assert_raises_regex( ValueError, errmsg, np.argmax, dr, out=0) def test_round(self): for tz in self.tz: rng = pd.date_range(start='2016-01-01', periods=5, freq='30Min', tz=tz) elt = rng[1] expected_rng = DatetimeIndex([ Timestamp('2016-01-01 00:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 00:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 01:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 02:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 02:00:00', tz=tz, freq='30T'), ]) expected_elt = expected_rng[1] tm.assert_index_equal(rng.round(freq='H'), expected_rng) assert elt.round(freq='H') == expected_elt msg = pd.tseries.frequencies._INVALID_FREQ_ERROR with tm.assert_raises_regex(ValueError, msg): rng.round(freq='foo') with tm.assert_raises_regex(ValueError, msg): elt.round(freq='foo') msg = "<MonthEnd> is a non-fixed frequency" tm.assert_raises_regex(ValueError, msg, rng.round, freq='M') tm.assert_raises_regex(ValueError, msg, elt.round, freq='M') # GH 14440 & 15578 index = pd.DatetimeIndex(['2016-10-17 12:00:00.0015'], tz=tz) result = index.round('ms') expected = pd.DatetimeIndex(['2016-10-17 12:00:00.002000'], tz=tz) tm.assert_index_equal(result, expected) for freq in ['us', 'ns']: tm.assert_index_equal(index, index.round(freq)) index = pd.DatetimeIndex(['2016-10-17 12:00:00.00149'], tz=tz) result = index.round('ms') expected = pd.DatetimeIndex(['2016-10-17 12:00:00.001000'], tz=tz) tm.assert_index_equal(result, expected) index = pd.DatetimeIndex(['2016-10-17 12:00:00.001501031']) result = index.round('10ns') expected = pd.DatetimeIndex(['2016-10-17 12:00:00.001501030']) tm.assert_index_equal(result, expected) with tm.assert_produces_warning(): ts = '2016-10-17 12:00:00.001501031' pd.DatetimeIndex([ts]).round('1010ns') def test_repeat_range(self): rng = date_range('1/1/2000', '1/1/2001') result = rng.repeat(5) assert result.freq is None assert len(result) == 5 * len(rng) for tz in self.tz: index = pd.date_range('2001-01-01', periods=2, freq='D', tz=tz) exp = pd.DatetimeIndex(['2001-01-01', '2001-01-01', '2001-01-02', '2001-01-02'], tz=tz) for res in [index.repeat(2), np.repeat(index, 2)]: tm.assert_index_equal(res, exp) assert res.freq is None index = pd.date_range('2001-01-01', periods=2, freq='2D', tz=tz) exp = pd.DatetimeIndex(['2001-01-01', '2001-01-01', '2001-01-03', '2001-01-03'], tz=tz) for res in [index.repeat(2), np.repeat(index, 2)]: tm.assert_index_equal(res, exp) assert res.freq is None index = pd.DatetimeIndex(['2001-01-01', 'NaT', '2003-01-01'], tz=tz) exp = pd.DatetimeIndex(['2001-01-01', '2001-01-01', '2001-01-01', 'NaT', 'NaT', 'NaT', '2003-01-01', '2003-01-01', '2003-01-01'], tz=tz) for res in [index.repeat(3), np.repeat(index, 3)]: tm.assert_index_equal(res, exp) assert res.freq is None def test_repeat(self): reps = 2 msg = "the 'axis' parameter is not supported" for tz in self.tz: rng = pd.date_range(start='2016-01-01', periods=2, freq='30Min', tz=tz) expected_rng = DatetimeIndex([ Timestamp('2016-01-01 00:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 00:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 00:30:00', tz=tz, freq='30T'), Timestamp('2016-01-01 00:30:00', tz=tz, freq='30T'), ]) res = rng.repeat(reps) tm.assert_index_equal(res, expected_rng) assert res.freq is None tm.assert_index_equal(np.repeat(rng, reps), expected_rng) tm.assert_raises_regex(ValueError, msg, np.repeat, rng, reps, axis=1) def test_representation(self): idx = [] idx.append(DatetimeIndex([], freq='D')) idx.append(DatetimeIndex(['2011-01-01'], freq='D')) idx.append(DatetimeIndex(['2011-01-01', '2011-01-02'], freq='D')) idx.append(DatetimeIndex( ['2011-01-01', '2011-01-02', '2011-01-03'], freq='D')) idx.append(DatetimeIndex( ['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00' ], freq='H', tz='Asia/Tokyo')) idx.append(DatetimeIndex( ['2011-01-01 09:00', '2011-01-01 10:00', pd.NaT], tz='US/Eastern')) idx.append(DatetimeIndex( ['2011-01-01 09:00', '2011-01-01 10:00', pd.NaT], tz='UTC')) exp = [] exp.append("""DatetimeIndex([], dtype='datetime64[ns]', freq='D')""") exp.append("DatetimeIndex(['2011-01-01'], dtype='datetime64[ns]', " "freq='D')") exp.append("DatetimeIndex(['2011-01-01', '2011-01-02'], " "dtype='datetime64[ns]', freq='D')") exp.append("DatetimeIndex(['2011-01-01', '2011-01-02', '2011-01-03'], " "dtype='datetime64[ns]', freq='D')") exp.append("DatetimeIndex(['2011-01-01 09:00:00+09:00', " "'2011-01-01 10:00:00+09:00', '2011-01-01 11:00:00+09:00']" ", dtype='datetime64[ns, Asia/Tokyo]', freq='H')") exp.append("DatetimeIndex(['2011-01-01 09:00:00-05:00', " "'2011-01-01 10:00:00-05:00', 'NaT'], " "dtype='datetime64[ns, US/Eastern]', freq=None)") exp.append("DatetimeIndex(['2011-01-01 09:00:00+00:00', " "'2011-01-01 10:00:00+00:00', 'NaT'], " "dtype='datetime64[ns, UTC]', freq=None)""") with pd.option_context('display.width', 300): for indx, expected in zip(idx, exp): for func in ['__repr__', '__unicode__', '__str__']: result = getattr(indx, func)() assert result == expected def test_representation_to_series(self): idx1 = DatetimeIndex([], freq='D') idx2 = DatetimeIndex(['2011-01-01'], freq='D') idx3 = DatetimeIndex(['2011-01-01', '2011-01-02'], freq='D') idx4 = DatetimeIndex( ['2011-01-01', '2011-01-02', '2011-01-03'], freq='D') idx5 = DatetimeIndex(['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00'], freq='H', tz='Asia/Tokyo') idx6 = DatetimeIndex(['2011-01-01 09:00', '2011-01-01 10:00', pd.NaT], tz='US/Eastern') idx7 = DatetimeIndex(['2011-01-01 09:00', '2011-01-02 10:15']) exp1 = """Series([], dtype: datetime64[ns])""" exp2 = """0 2011-01-01 dtype: datetime64[ns]""" exp3 = """0 2011-01-01 1 2011-01-02 dtype: datetime64[ns]""" exp4 = """0 2011-01-01 1 2011-01-02 2 2011-01-03 dtype: datetime64[ns]""" exp5 = """0 2011-01-01 09:00:00+09:00 1 2011-01-01 10:00:00+09:00 2 2011-01-01 11:00:00+09:00 dtype: datetime64[ns, Asia/Tokyo]""" exp6 = """0 2011-01-01 09:00:00-05:00 1 2011-01-01 10:00:00-05:00 2 NaT dtype: datetime64[ns, US/Eastern]""" exp7 = """0 2011-01-01 09:00:00 1 2011-01-02 10:15:00 dtype: datetime64[ns]""" with pd.option_context('display.width', 300): for idx, expected in zip([idx1, idx2, idx3, idx4, idx5, idx6, idx7], [exp1, exp2, exp3, exp4, exp5, exp6, exp7]): result = repr(Series(idx)) assert result == expected def test_summary(self): # GH9116 idx1 = DatetimeIndex([], freq='D') idx2 = DatetimeIndex(['2011-01-01'], freq='D') idx3 = DatetimeIndex(['2011-01-01', '2011-01-02'], freq='D') idx4 = DatetimeIndex( ['2011-01-01', '2011-01-02', '2011-01-03'], freq='D') idx5 = DatetimeIndex(['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00'], freq='H', tz='Asia/Tokyo') idx6 = DatetimeIndex(['2011-01-01 09:00', '2011-01-01 10:00', pd.NaT], tz='US/Eastern') exp1 = """DatetimeIndex: 0 entries Freq: D""" exp2 = """DatetimeIndex: 1 entries, 2011-01-01 to 2011-01-01 Freq: D""" exp3 = """DatetimeIndex: 2 entries, 2011-01-01 to 2011-01-02 Freq: D""" exp4 = """DatetimeIndex: 3 entries, 2011-01-01 to 2011-01-03 Freq: D""" exp5 = ("DatetimeIndex: 3 entries, 2011-01-01 09:00:00+09:00 " "to 2011-01-01 11:00:00+09:00\n" "Freq: H") exp6 = """DatetimeIndex: 3 entries, 2011-01-01 09:00:00-05:00 to NaT""" for idx, expected in zip([idx1, idx2, idx3, idx4, idx5, idx6], [exp1, exp2, exp3, exp4, exp5, exp6]): result = idx.summary() assert result == expected def test_resolution(self): for freq, expected in zip(['A', 'Q', 'M', 'D', 'H', 'T', 'S', 'L', 'U'], ['day', 'day', 'day', 'day', 'hour', 'minute', 'second', 'millisecond', 'microsecond']): for tz in self.tz: idx = pd.date_range(start='2013-04-01', periods=30, freq=freq, tz=tz) assert idx.resolution == expected def test_union(self): for tz in self.tz: # union rng1 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) other1 = pd.date_range('1/6/2000', freq='D', periods=5, tz=tz) expected1 = pd.date_range('1/1/2000', freq='D', periods=10, tz=tz) rng2 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) other2 = pd.date_range('1/4/2000', freq='D', periods=5, tz=tz) expected2 = pd.date_range('1/1/2000', freq='D', periods=8, tz=tz) rng3 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) other3 = pd.DatetimeIndex([], tz=tz) expected3 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) for rng, other, expected in [(rng1, other1, expected1), (rng2, other2, expected2), (rng3, other3, expected3)]: result_union = rng.union(other) tm.assert_index_equal(result_union, expected) def test_add_iadd(self): for tz in self.tz: # offset offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)] for delta in offsets: rng = pd.date_range('2000-01-01', '2000-02-01', tz=tz) result = rng + delta expected = pd.date_range('2000-01-01 02:00', '2000-02-01 02:00', tz=tz) tm.assert_index_equal(result, expected) rng += delta tm.assert_index_equal(rng, expected) # int rng = pd.date_range('2000-01-01 09:00', freq='H', periods=10, tz=tz) result = rng + 1 expected = pd.date_range('2000-01-01 10:00', freq='H', periods=10, tz=tz) tm.assert_index_equal(result, expected) rng += 1 tm.assert_index_equal(rng, expected) idx = DatetimeIndex(['2011-01-01', '2011-01-02']) msg = "cannot add a datelike to a DatetimeIndex" with tm.assert_raises_regex(TypeError, msg): idx + Timestamp('2011-01-01') with tm.assert_raises_regex(TypeError, msg): Timestamp('2011-01-01') + idx def test_add_dti_dti(self): # previously performed setop (deprecated in 0.16.0), now raises # TypeError (GH14164) dti = date_range('20130101', periods=3) dti_tz = date_range('20130101', periods=3).tz_localize('US/Eastern') with pytest.raises(TypeError): dti + dti with pytest.raises(TypeError): dti_tz + dti_tz with pytest.raises(TypeError): dti_tz + dti with pytest.raises(TypeError): dti + dti_tz def test_difference(self): for tz in self.tz: # diff rng1 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) other1 = pd.date_range('1/6/2000', freq='D', periods=5, tz=tz) expected1 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) rng2 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) other2 = pd.date_range('1/4/2000', freq='D', periods=5, tz=tz) expected2 = pd.date_range('1/1/2000', freq='D', periods=3, tz=tz) rng3 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) other3 = pd.DatetimeIndex([], tz=tz) expected3 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) for rng, other, expected in [(rng1, other1, expected1), (rng2, other2, expected2), (rng3, other3, expected3)]: result_diff = rng.difference(other) tm.assert_index_equal(result_diff, expected) def test_sub_isub(self): for tz in self.tz: # offset offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)] for delta in offsets: rng = pd.date_range('2000-01-01', '2000-02-01', tz=tz) expected = pd.date_range('1999-12-31 22:00', '2000-01-31 22:00', tz=tz) result = rng - delta tm.assert_index_equal(result, expected) rng -= delta tm.assert_index_equal(rng, expected) # int rng = pd.date_range('2000-01-01 09:00', freq='H', periods=10, tz=tz) result = rng - 1 expected = pd.date_range('2000-01-01 08:00', freq='H', periods=10, tz=tz) tm.assert_index_equal(result, expected) rng -= 1 tm.assert_index_equal(rng, expected) def test_sub_dti_dti(self): # previously performed setop (deprecated in 0.16.0), now changed to # return subtraction -> TimeDeltaIndex (GH ...) dti = date_range('20130101', periods=3) dti_tz = date_range('20130101', periods=3).tz_localize('US/Eastern') dti_tz2 = date_range('20130101', periods=3).tz_localize('UTC') expected = TimedeltaIndex([0, 0, 0]) result = dti - dti tm.assert_index_equal(result, expected) result = dti_tz - dti_tz tm.assert_index_equal(result, expected) with pytest.raises(TypeError): dti_tz - dti with pytest.raises(TypeError): dti - dti_tz with pytest.raises(TypeError): dti_tz - dti_tz2 # isub dti -= dti tm.assert_index_equal(dti, expected) # different length raises ValueError dti1 = date_range('20130101', periods=3) dti2 = date_range('20130101', periods=4) with pytest.raises(ValueError): dti1 - dti2 # NaN propagation dti1 = DatetimeIndex(['2012-01-01', np.nan, '2012-01-03']) dti2 = DatetimeIndex(['2012-01-02', '2012-01-03', np.nan]) expected = TimedeltaIndex(['1 days', np.nan, np.nan]) result = dti2 - dti1 tm.assert_index_equal(result, expected) def test_sub_period(self): # GH 13078 # not supported, check TypeError p = pd.Period('2011-01-01', freq='D') for freq in [None, 'D']: idx = pd.DatetimeIndex(['2011-01-01', '2011-01-02'], freq=freq) with pytest.raises(TypeError): idx - p with pytest.raises(TypeError): p - idx def test_comp_nat(self): left = pd.DatetimeIndex([pd.Timestamp('2011-01-01'), pd.NaT, pd.Timestamp('2011-01-03')]) right = pd.DatetimeIndex([pd.NaT, pd.NaT, pd.Timestamp('2011-01-03')]) for l, r in [(left, right), (left.asobject, right.asobject)]: result = l == r expected = np.array([False, False, True]) tm.assert_numpy_array_equal(result, expected) result = l != r expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(l == pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT == r, expected) expected = np.array([True, True, True]) tm.assert_numpy_array_equal(l != pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT != l, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(l < pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT > l, expected) def test_value_counts_unique(self): # GH 7735 for tz in self.tz: idx = pd.date_range('2011-01-01 09:00', freq='H', periods=10) # create repeated values, 'n'th element is repeated by n+1 times idx = DatetimeIndex(np.repeat(idx.values, range(1, len(idx) + 1)), tz=tz) exp_idx = pd.date_range('2011-01-01 18:00', freq='-1H', periods=10, tz=tz) expected = Series(range(10, 0, -1), index=exp_idx, dtype='int64') for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(), expected) expected = pd.date_range('2011-01-01 09:00', freq='H', periods=10, tz=tz) tm.assert_index_equal(idx.unique(), expected) idx = DatetimeIndex(['2013-01-01 09:00', '2013-01-01 09:00', '2013-01-01 09:00', '2013-01-01 08:00', '2013-01-01 08:00', pd.NaT], tz=tz) exp_idx = DatetimeIndex(['2013-01-01 09:00', '2013-01-01 08:00'], tz=tz) expected = Series([3, 2], index=exp_idx) for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(), expected) exp_idx = DatetimeIndex(['2013-01-01 09:00', '2013-01-01 08:00', pd.NaT], tz=tz) expected = Series([3, 2, 1], index=exp_idx) for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(dropna=False), expected) tm.assert_index_equal(idx.unique(), exp_idx) def test_nonunique_contains(self): # GH 9512 for idx in map(DatetimeIndex, ([0, 1, 0], [0, 0, -1], [0, -1, -1], ['2015', '2015', '2016'], ['2015', '2015', '2014'])): assert idx[0] in idx def test_order(self): # with freq idx1 = DatetimeIndex(['2011-01-01', '2011-01-02', '2011-01-03'], freq='D', name='idx') idx2 = DatetimeIndex(['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00'], freq='H', tz='Asia/Tokyo', name='tzidx') for idx in [idx1, idx2]: ordered = idx.sort_values() tm.assert_index_equal(ordered, idx) assert ordered.freq == idx.freq ordered = idx.sort_values(ascending=False) expected = idx[::-1] tm.assert_index_equal(ordered, expected) assert ordered.freq == expected.freq assert ordered.freq.n == -1 ordered, indexer = idx.sort_values(return_indexer=True) tm.assert_index_equal(ordered, idx) tm.assert_numpy_array_equal(indexer, np.array([0, 1, 2]), check_dtype=False) assert ordered.freq == idx.freq ordered, indexer = idx.sort_values(return_indexer=True, ascending=False) expected = idx[::-1] tm.assert_index_equal(ordered, expected) tm.assert_numpy_array_equal(indexer, np.array([2, 1, 0]), check_dtype=False) assert ordered.freq == expected.freq assert ordered.freq.n == -1 # without freq for tz in self.tz: idx1 = DatetimeIndex(['2011-01-01', '2011-01-03', '2011-01-05', '2011-01-02', '2011-01-01'], tz=tz, name='idx1') exp1 = DatetimeIndex(['2011-01-01', '2011-01-01', '2011-01-02', '2011-01-03', '2011-01-05'], tz=tz, name='idx1') idx2 = DatetimeIndex(['2011-01-01', '2011-01-03', '2011-01-05', '2011-01-02', '2011-01-01'], tz=tz, name='idx2') exp2 = DatetimeIndex(['2011-01-01', '2011-01-01', '2011-01-02', '2011-01-03', '2011-01-05'], tz=tz, name='idx2') idx3 = DatetimeIndex([pd.NaT, '2011-01-03', '2011-01-05', '2011-01-02', pd.NaT], tz=tz, name='idx3') exp3 = DatetimeIndex([pd.NaT, pd.NaT, '2011-01-02', '2011-01-03', '2011-01-05'], tz=tz, name='idx3') for idx, expected in [(idx1, exp1), (idx2, exp2), (idx3, exp3)]: ordered = idx.sort_values() tm.assert_index_equal(ordered, expected) assert ordered.freq is None ordered = idx.sort_values(ascending=False) tm.assert_index_equal(ordered, expected[::-1]) assert ordered.freq is None ordered, indexer = idx.sort_values(return_indexer=True) tm.assert_index_equal(ordered, expected) exp = np.array([0, 4, 3, 1, 2]) tm.assert_numpy_array_equal(indexer, exp, check_dtype=False) assert ordered.freq is None ordered, indexer = idx.sort_values(return_indexer=True, ascending=False) tm.assert_index_equal(ordered, expected[::-1]) exp = np.array([2, 1, 3, 4, 0]) tm.assert_numpy_array_equal(indexer, exp, check_dtype=False) assert ordered.freq is None def test_getitem(self): idx1 = pd.date_range('2011-01-01', '2011-01-31', freq='D', name='idx') idx2 = pd.date_range('2011-01-01', '2011-01-31', freq='D', tz='Asia/Tokyo', name='idx') for idx in [idx1, idx2]: result = idx[0] assert result == Timestamp('2011-01-01', tz=idx.tz) result = idx[0:5] expected = pd.date_range('2011-01-01', '2011-01-05', freq='D', tz=idx.tz, name='idx') tm.assert_index_equal(result, expected) assert result.freq == expected.freq result = idx[0:10:2] expected = pd.date_range('2011-01-01', '2011-01-09', freq='2D', tz=idx.tz, name='idx') tm.assert_index_equal(result, expected) assert result.freq == expected.freq result = idx[-20:-5:3] expected = pd.date_range('2011-01-12', '2011-01-24', freq='3D', tz=idx.tz, name='idx') tm.assert_index_equal(result, expected) assert result.freq == expected.freq result = idx[4::-1] expected = DatetimeIndex(['2011-01-05', '2011-01-04', '2011-01-03', '2011-01-02', '2011-01-01'], freq='-1D', tz=idx.tz, name='idx') tm.assert_index_equal(result, expected) assert result.freq == expected.freq def test_drop_duplicates_metadata(self): # GH 10115 idx = pd.date_range('2011-01-01', '2011-01-31', freq='D', name='idx') result = idx.drop_duplicates() tm.assert_index_equal(idx, result) assert idx.freq == result.freq idx_dup = idx.append(idx) assert idx_dup.freq is None # freq is reset result = idx_dup.drop_duplicates() tm.assert_index_equal(idx, result) assert result.freq is None def test_drop_duplicates(self): # to check Index/Series compat base = pd.date_range('2011-01-01', '2011-01-31', freq='D', name='idx') idx = base.append(base[:5]) res = idx.drop_duplicates() tm.assert_index_equal(res, base) res = Series(idx).drop_duplicates() tm.assert_series_equal(res, Series(base)) res = idx.drop_duplicates(keep='last') exp = base[5:].append(base[:5]) tm.assert_index_equal(res, exp) res = Series(idx).drop_duplicates(keep='last') tm.assert_series_equal(res, Series(exp, index=np.arange(5, 36))) res = idx.drop_duplicates(keep=False) tm.assert_index_equal(res, base[5:]) res = Series(idx).drop_duplicates(keep=False) tm.assert_series_equal(res, Series(base[5:], index=np.arange(5, 31))) def test_take(self): # GH 10295 idx1 = pd.date_range('2011-01-01', '2011-01-31', freq='D', name='idx') idx2 = pd.date_range('2011-01-01', '2011-01-31', freq='D', tz='Asia/Tokyo', name='idx') for idx in [idx1, idx2]: result = idx.take([0]) assert result == Timestamp('2011-01-01', tz=idx.tz) result = idx.take([0, 1, 2]) expected = pd.date_range('2011-01-01', '2011-01-03', freq='D', tz=idx.tz, name='idx') tm.assert_index_equal(result, expected) assert result.freq == expected.freq result = idx.take([0, 2, 4]) expected = pd.date_range('2011-01-01', '2011-01-05', freq='2D', tz=idx.tz, name='idx') tm.assert_index_equal(result, expected) assert result.freq == expected.freq result = idx.take([7, 4, 1]) expected = pd.date_range('2011-01-08', '2011-01-02', freq='-3D', tz=idx.tz, name='idx') tm.assert_index_equal(result, expected) assert result.freq == expected.freq result = idx.take([3, 2, 5]) expected = DatetimeIndex(['2011-01-04', '2011-01-03', '2011-01-06'], freq=None, tz=idx.tz, name='idx') tm.assert_index_equal(result, expected) assert result.freq is None result = idx.take([-3, 2, 5]) expected = DatetimeIndex(['2011-01-29', '2011-01-03', '2011-01-06'], freq=None, tz=idx.tz, name='idx') tm.assert_index_equal(result, expected) assert result.freq is None def test_take_invalid_kwargs(self): idx = pd.date_range('2011-01-01', '2011-01-31', freq='D', name='idx') indices = [1, 6, 5, 9, 10, 13, 15, 3] msg = r"take\(\) got an unexpected keyword argument 'foo'" tm.assert_raises_regex(TypeError, msg, idx.take, indices, foo=2) msg = "the 'out' parameter is not supported" tm.assert_raises_regex(ValueError, msg, idx.take, indices, out=indices) msg = "the 'mode' parameter is not supported" tm.assert_raises_regex(ValueError, msg, idx.take, indices, mode='clip') def test_infer_freq(self): # GH 11018 for freq in ['A', '2A', '-2A', 'Q', '-1Q', 'M', '-1M', 'D', '3D', '-3D', 'W', '-1W', 'H', '2H', '-2H', 'T', '2T', 'S', '-3S']: idx = pd.date_range('2011-01-01 09:00:00', freq=freq, periods=10) result = pd.DatetimeIndex(idx.asi8, freq='infer') tm.assert_index_equal(idx, result) assert result.freq == freq def test_nat_new(self): idx = pd.date_range('2011-01-01', freq='D', periods=5, name='x') result = idx._nat_new() exp = pd.DatetimeIndex([pd.NaT] * 5, name='x') tm.assert_index_equal(result, exp) result = idx._nat_new(box=False) exp = np.array([tslib.iNaT] * 5, dtype=np.int64) tm.assert_numpy_array_equal(result, exp) def test_shift(self): # GH 9903 for tz in self.tz: idx = pd.DatetimeIndex([], name='xxx', tz=tz) tm.assert_index_equal(idx.shift(0, freq='H'), idx) tm.assert_index_equal(idx.shift(3, freq='H'), idx) idx = pd.DatetimeIndex(['2011-01-01 10:00', '2011-01-01 11:00' '2011-01-01 12:00'], name='xxx', tz=tz) tm.assert_index_equal(idx.shift(0, freq='H'), idx) exp = pd.DatetimeIndex(['2011-01-01 13:00', '2011-01-01 14:00' '2011-01-01 15:00'], name='xxx', tz=tz) tm.assert_index_equal(idx.shift(3, freq='H'), exp) exp = pd.DatetimeIndex(['2011-01-01 07:00', '2011-01-01 08:00' '2011-01-01 09:00'], name='xxx', tz=tz) tm.assert_index_equal(idx.shift(-3, freq='H'), exp) def test_nat(self): assert pd.DatetimeIndex._na_value is pd.NaT assert pd.DatetimeIndex([])._na_value is pd.NaT for tz in [None, 'US/Eastern', 'UTC']: idx = pd.DatetimeIndex(['2011-01-01', '2011-01-02'], tz=tz) assert idx._can_hold_na tm.assert_numpy_array_equal(idx._isnan, np.array([False, False])) assert not idx.hasnans tm.assert_numpy_array_equal(idx._nan_idxs, np.array([], dtype=np.intp)) idx = pd.DatetimeIndex(['2011-01-01', 'NaT'], tz=tz) assert idx._can_hold_na tm.assert_numpy_array_equal(idx._isnan, np.array([False, True])) assert idx.hasnans tm.assert_numpy_array_equal(idx._nan_idxs, np.array([1], dtype=np.intp)) def test_equals(self): # GH 13107 for tz in [None, 'UTC', 'US/Eastern', 'Asia/Tokyo']: idx = pd.DatetimeIndex(['2011-01-01', '2011-01-02', 'NaT']) assert idx.equals(idx) assert idx.equals(idx.copy()) assert idx.equals(idx.asobject) assert idx.asobject.equals(idx) assert idx.asobject.equals(idx.asobject) assert not idx.equals(list(idx)) assert not idx.equals(pd.Series(idx)) idx2 = pd.DatetimeIndex(['2011-01-01', '2011-01-02', 'NaT'], tz='US/Pacific') assert not idx.equals(idx2) assert not idx.equals(idx2.copy()) assert not idx.equals(idx2.asobject) assert not idx.asobject.equals(idx2) assert not idx.equals(list(idx2)) assert not idx.equals(pd.Series(idx2)) # same internal, different tz idx3 = pd.DatetimeIndex._simple_new(idx.asi8, tz='US/Pacific') tm.assert_numpy_array_equal(idx.asi8, idx3.asi8) assert not idx.equals(idx3) assert not idx.equals(idx3.copy()) assert not idx.equals(idx3.asobject) assert not idx.asobject.equals(idx3) assert not idx.equals(list(idx3)) assert not idx.equals(pd.Series(idx3)) class TestDateTimeIndexToJulianDate(object): def test_1700(self): r1 = Float64Index([2345897.5, 2345898.5, 2345899.5, 2345900.5, 2345901.5]) r2 = date_range(start=Timestamp('1710-10-01'), periods=5, freq='D').to_julian_date() assert isinstance(r2, Float64Index) tm.assert_index_equal(r1, r2) def test_2000(self): r1 = Float64Index([2451601.5, 2451602.5, 2451603.5, 2451604.5, 2451605.5]) r2 = date_range(start=Timestamp('2000-02-27'), periods=5, freq='D').to_julian_date() assert isinstance(r2, Float64Index) tm.assert_index_equal(r1, r2) def test_hour(self): r1 = Float64Index( [2451601.5, 2451601.5416666666666666, 2451601.5833333333333333, 2451601.625, 2451601.6666666666666666]) r2 = date_range(start=Timestamp('2000-02-27'), periods=5, freq='H').to_julian_date() assert isinstance(r2, Float64Index) tm.assert_index_equal(r1, r2) def test_minute(self): r1 = Float64Index( [2451601.5, 2451601.5006944444444444, 2451601.5013888888888888, 2451601.5020833333333333, 2451601.5027777777777777]) r2 = date_range(start=Timestamp('2000-02-27'), periods=5, freq='T').to_julian_date() assert isinstance(r2, Float64Index) tm.assert_index_equal(r1, r2) def test_second(self): r1 = Float64Index( [2451601.5, 2451601.500011574074074, 2451601.5000231481481481, 2451601.5000347222222222, 2451601.5000462962962962]) r2 = date_range(start=Timestamp('2000-02-27'), periods=5, freq='S').to_julian_date() assert isinstance(r2, Float64Index) tm.assert_index_equal(r1, r2) # GH 10699 @pytest.mark.parametrize('klass,assert_func', zip([Series, DatetimeIndex], [tm.assert_series_equal, tm.assert_index_equal])) def test_datetime64_with_DateOffset(klass, assert_func): s = klass(date_range('2000-01-01', '2000-01-31'), name='a') result = s + pd.DateOffset(years=1) result2 = pd.DateOffset(years=1) + s exp = klass(date_range('2001-01-01', '2001-01-31'), name='a') assert_func(result, exp) assert_func(result2, exp) result = s - pd.DateOffset(years=1) exp = klass(date_range('1999-01-01', '1999-01-31'), name='a') assert_func(result, exp) s = klass([Timestamp('2000-01-15 00:15:00', tz='US/Central'), pd.Timestamp('2000-02-15', tz='US/Central')], name='a') result = s + pd.offsets.Day() result2 = pd.offsets.Day() + s exp = klass([Timestamp('2000-01-16 00:15:00', tz='US/Central'), Timestamp('2000-02-16', tz='US/Central')], name='a') assert_func(result, exp) assert_func(result2, exp) s = klass([Timestamp('2000-01-15 00:15:00', tz='US/Central'), pd.Timestamp('2000-02-15', tz='US/Central')], name='a') result = s + pd.offsets.MonthEnd() result2 = pd.offsets.MonthEnd() + s exp = klass([Timestamp('2000-01-31 00:15:00', tz='US/Central'), Timestamp('2000-02-29', tz='US/Central')], name='a') assert_func(result, exp) assert_func(result2, exp) # array of offsets - valid for Series only if klass is Series: with tm.assert_produces_warning(PerformanceWarning): s = klass([Timestamp('2000-1-1'), Timestamp('2000-2-1')]) result = s + Series([pd.offsets.DateOffset(years=1), pd.offsets.MonthEnd()]) exp = klass([Timestamp('2001-1-1'), Timestamp('2000-2-29') ]) assert_func(result, exp) # same offset result = s + Series([pd.offsets.DateOffset(years=1), pd.offsets.DateOffset(years=1)]) exp = klass([Timestamp('2001-1-1'), Timestamp('2001-2-1')]) assert_func(result, exp) s = klass([Timestamp('2000-01-05 00:15:00'),
Timestamp('2000-01-31 00:23:00')
pandas.Timestamp
import pandas as pd import snowflake.connector import getpass as pwd
pd.set_option('display.max_rows', None)
pandas.set_option
# Copyright 2016 <NAME> and The Novo Nordisk Foundation Center for Biosustainability, DTU. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import multiprocessing import os from queue import Empty import numpy as np import six from IProgress import ProgressBar, Bar, ETA from cameo.parallel import SequentialView from pandas import DataFrame from sqlalchemy import and_ from sqlalchemy.orm import sessionmaker from marsi import config from marsi.chemistry import SOLUBILITY from marsi.chemistry import rdkit from marsi.chemistry.molecule import Molecule from marsi.config import default_session, engine from marsi.io.db import Database from marsi.io.db import Metabolite from marsi.nearest_neighbors.model import NearestNeighbors, DistributedNearestNeighbors, DBNearestNeighbors from marsi.utils import data_dir, INCHI_KEY_TYPE, unpickle_large, pickle_large __all__ = ['build_nearest_neighbors_model', 'load_nearest_neighbors_model'] MODEL_FILE = os.path.join(data_dir, "fingerprints_default_%s_sol_%s.pickle") class FeatureReader(object): """ Accessory class to build fingerprints in chunks. Attributes ---------- db : str The name of the database to connect to. fpformat : str The fingerprint format (see pybel.fps). solubility : str One of 'high', 'medium', 'low', 'all'. connection_args : dict Other arguments of connect """ def __init__(self, db, fpformat='maccs', solubility='high', **connection_args): self.db = db self.fpformat = fpformat self.solubility = solubility self.connection_args = connection_args def __call__(self, index): subset = Database.metabolites[index[0]:index[1]] indices = [] fingerprints = [] fingerprint_lengths = [] for m in subset: if SOLUBILITY[self.solubility](m.solubility): fingerprint = m.fingerprint(fpformat=self.fpformat) fingerprints.append(fingerprint) indices.append(m.inchi_key) fingerprint_lengths.append(len(fingerprint)) _indices = np.ndarray((len(indices), 1), dtype=INCHI_KEY_TYPE) for i in range(_indices.shape[0]): _indices[i] = indices[i] del indices return _indices, fingerprints, fingerprint_lengths def build_feature_table(database, fpformat='ecfp10', chunk_size=None, solubility='high', database_name=config.db_name, view=SequentialView()): reader = FeatureReader(database_name, fpformat=fpformat, solubility=solubility) chunk_size = math.ceil(chunk_size) n_chunks = math.ceil(len(database) / chunk_size) chunks = [((i - 1) * chunk_size, i * chunk_size) for i in range(1, n_chunks + 1)] res = view.map(reader, chunks) indices = np.ndarray((0, 1), dtype=INCHI_KEY_TYPE) fingerprints = [] fingerprint_lengths = [] for r in res: indices = np.concatenate([indices, r[0]]) fingerprints += r[1] fingerprint_lengths += r[2] return indices, fingerprints, fingerprint_lengths def _build_nearest_neighbors_model(indices, features, lengths, n_models): chunk_size = math.ceil(len(indices) / n_models) chunks = [((i - 1) * chunk_size, i * chunk_size) for i in range(1, n_models + 1)] models = [] for start, end in chunks: models.append(NearestNeighbors(indices[start:end], features[start:end], lengths[start:end])) return DistributedNearestNeighbors(models) def build_nearest_neighbors_model(database, fpformat='fp4', solubility='high', n_models=5, chunk_size=1e6, view=SequentialView): """ Loads a NN model. If a 'default_model.pickle' exists in data it will load the model. Otherwise it will build a model from the Database. This can take several hours depending on the size of the database. Parameters ---------- database : marsi.io.mongodb.CollectionWrapper A Database interface to the metabolites. chunk_size : int Maximum number of entries per chunk. fpformat : str The format of the fingerprint (see pybel.fps) solubility : str One of high, medium, low or all. view : cameo.parallel.SequentialView, cameo.parallel.MultiprocesingView A view to control parallelization. n_models : int The number of NearestNeighbors models. """ indices, features, lens = build_feature_table(database, fpformat=fpformat, chunk_size=chunk_size, solubility=solubility, view=view) return _build_nearest_neighbors_model(indices, features, lens, n_models) def load_nearest_neighbors_model(chunk_size=1e6, fpformat="fp4", solubility='all', session=default_session, view=SequentialView(), model_size=100000, source="db", costum_query=None): """ Loads a NN model. If a 'default_model.pickle' exists in data it will load the model. Otherwise it will build a model from the Database. This can take several hours depending on the size of the database. Parameters ---------- chunk_size : int Maximum number of entries per chunk. fpformat : str The format of the fingerprint (see pybel.fps) solubility : str One of high, medium, low or all. view : cameo.parallel.SequentialView, cameo.parallel.MultiprocesingView A view to control parallelization. model_size : int The size of each NearestNeighbor in the ensemble. """ if source == "file": load_nearest_neighbors_model_from_file(chunk_size=chunk_size, fpformat=fpformat, solubility=solubility, view=view, model_size=model_size) else: load_nearest_neighbors_model_from_db(fpformat=fpformat, solubility=solubility, model_size=model_size, session=session, costum_query=costum_query) def load_nearest_neighbors_model_from_db(fpformat="fp4", solubility='all', model_size=1000, session=default_session, custom_query=None): """ Loads a NN model. If a 'default_model.pickle' exists in data it will load the model. Otherwise it will build a model from the Database. This can take several hours depending on the size of the database. Parameters ---------- fpformat : str The format of the fingerprint (see pybel.fps) solubility : str One of high, medium, low or all. model_size : int The size of each NearestNeighbor in the ensemble. session : Session SQLAlchemy session. custom_query : ClauseElement A query to filter elements from the database. """ if custom_query is not None: indices = np.array(session.query(Metabolite.inchi_key).filter(custom_query).all(), dtype=INCHI_KEY_TYPE) else: indices = np.array(session.query(Metabolite.inchi_key).all(), dtype=INCHI_KEY_TYPE) n_models = math.ceil(len(indices) / model_size) chunk_size = math.ceil(len(indices) / n_models) chunks = [((i - 1) * chunk_size, i * chunk_size) for i in range(1, n_models + 1)] models = [] for start, end in chunks: models.append(DBNearestNeighbors(indices[start:end], session, fpformat)) return DistributedNearestNeighbors(models) def load_nearest_neighbors_model_from_file(chunk_size=1e6, fpformat="fp4", solubility='all', view=SequentialView(), model_size=100000): """ Loads a NN model from file. If a 'default_model.pickle' exists in data it will load the model. Otherwise it will build a model from the Database. This can take several hours depending on the size of the database. Parameters ---------- chunk_size : int Maximum number of entries per chunk. fpformat : str The format of the fingerprint (see pybel.fps) solubility : str One of high, medium, low or all. view : cameo.parallel.SequentialView, cameo.parallel.MultiprocesingView A view to control parallelization. model_size : int The size of each NearestNeighbor in the ensemble. """ if solubility not in SOLUBILITY: raise ValueError('%s not one of %s' % (solubility, ", ".join(SOLUBILITY.keys()))) model_file = MODEL_FILE % (fpformat, solubility) if os.path.exists(model_file): _indices, _features, _lengths = unpickle_large(model_file, progress=True) else: print("Building search model (fp: %s, solubility: %s)" % (fpformat, solubility)) _indices, _features, _lengths = build_feature_table(Database.metabolites, chunk_size=chunk_size, fpformat=fpformat, solubility=solubility, view=view) pickle_large((_indices, _features, _lengths), model_file, progress=True) n_models = math.ceil(len(_indices) / model_size) nn_model = _build_nearest_neighbors_model(_indices, _features, _lengths, n_models) return nn_model class DataBuilder(multiprocessing.Process): def __init__(self, inchi, task_queue, results_queue, atoms_weight, bonds_weight, timeout, *args, **kwargs): super(DataBuilder, self).__init__(*args, **kwargs) self._inchi = inchi self._session = None self._tasks = task_queue self._results = results_queue self._atoms_weight = atoms_weight self._bonds_weight = bonds_weight self._timeout = timeout @property def session(self): if self._session is None: session_maker = sessionmaker(engine) self._session = session_maker() return self._session @property def molecule(self): return rdkit.inchi_to_molecule(self._inchi) def run(self): while not self._tasks.empty(): try: inchi_key, distance = self._tasks.get(block=False, timeout=10) except Empty: continue else: result = self.apply_similarity(inchi_key, distance) self._results.put(result) if self._session is not None: self.session.close() self.session.bind.dispose() def apply_similarity(self, inchi_key, distance): met = Metabolite.get(inchi_key=inchi_key, session=self.session) try: molecule = met.molecule('rdkit', get3d=False) structural_similarity = rdkit.structural_similarity(self.molecule, molecule, atoms_weight=self._atoms_weight, bonds_weight=self._bonds_weight, timeout=self._timeout) return [inchi_key, met.formula, met.num_atoms, met.num_bonds, 1 - distance, structural_similarity] except Exception as e: print(e) return None def search_closest_compounds(molecule, nn_model=None, fp_cut=0.5, fpformat="maccs", atoms_diff=3, bonds_diff=3, rings_diff=2, session=default_session, atoms_weight=0.5, bonds_weight=0.5, timeout=120): """ Finds the closest compounds given a Molecule. Parameters ---------- molecule : marsi.chemistry.molecule.Molecule A molecule representation. nn_model : marsi.nearest_neighbors.model.DistributedNearestNeighbors A nearest neighbors model. fp_cut : float A cutoff value for fingerprint similarity. fpformat : str A valid fingerprint format. atoms_diff : int The max number of atoms that can be different (in number, not type). bonds_diff : int The max number of bonds that can be different (in number, not type). rings_diff : int The max number of rings that can be different (in number, not type). session : Session SQLAlchemy session. atoms_weight : float The weight of having matching atoms in the structural similarity bonds_weight : float The weight of having matching bonds in the structural similarity Returns ------- pandas.DataFrame A data frame with the closest InChI Keys as index and the properties calculated for each hit. """ assert isinstance(molecule, Molecule) if nn_model is None: query = and_(Metabolite.num_atoms >= molecule.num_atoms - atoms_diff, Metabolite.num_atoms <= molecule.num_atoms + atoms_diff, Metabolite.num_bonds >= molecule.num_bonds - bonds_diff, Metabolite.num_bonds <= molecule.num_bonds + bonds_diff, Metabolite.num_rings >= molecule.num_rings - rings_diff, Metabolite.num_rings <= molecule.num_rings + rings_diff) nn_model = load_nearest_neighbors_model_from_db(fpformat=fpformat, custom_query=query, session=session) assert isinstance(nn_model, DistributedNearestNeighbors) neighbors = nn_model.radius_nearest_neighbors(molecule.fingerprint(fpformat), radius=1 - fp_cut) if molecule.inchi_key in neighbors: del neighbors[molecule.inchi_key] dataframe =
DataFrame(columns=["formula", "atoms", "bonds", "tanimoto_similarity", "structural_score"])
pandas.DataFrame
import pandas as pd import os def get_oneday_data(machine_path, machine_id, day): data =
pd.read_csv(machine_path, header=None)
pandas.read_csv
from zipline.api import symbol from zipline import run_algorithm import pandas as pd def validate_single_stock(ticker): def init(context): symbol(ticker) def handle_data(context, data): pass start = pd.to_datetime("2017-01-09").tz_localize('US/Eastern') end =
pd.to_datetime("2017-01-11")
pandas.to_datetime
import openpyxl import pandas as pd from datetime import datetime, timedelta import xlsxwriter now = datetime.now() date_time = now.strftime("%m_%d_%Y %I_%M_%p") federal_tax_rate_path = "./federaltaxrates.csv" state_tax_rate_path = "./statetaxrates.csv" city_tax_rate_path = "./NYCtaxrates.csv" # calculate social security tax class EffectiveFederalTax: def __init__(self, salary, marital_status): self.salary = salary self.marital_status = marital_status def calculateSocialSecurityTaxDue(self): if self.salary >= 147000: return 9114 else: return round(self.salary * 0.062, 2) # calculate federal income tax + remainder of fica (medicare) for single filers class EffectiveFederalTaxSingle(EffectiveFederalTax): def __init__(self, salary, deductions): super().__init__(salary, "single") self.deductions = deductions def calculateFederalIncomeTaxDue(self): federal_tax_rate_table = pd.read_csv(federal_tax_rate_path) federal_tax_bracket_tier = 0 single_income_column = federal_tax_rate_table.columns.get_loc("Single Income") single_income_percentage_tax_column = federal_tax_rate_table.columns.get_loc("Single Tax Rate") max_index = len(list(federal_tax_rate_table.index)) - 1 while federal_tax_bracket_tier <= max_index and \ int(federal_tax_rate_table.iloc[federal_tax_bracket_tier, single_income_column]) < \ (self.salary - self.deductions): federal_tax_bracket_tier += 1 federal_tax_bracket_tier -= 1 federal_tax_due = 0 counter = 0 while counter <= federal_tax_bracket_tier - 1: federal_tax_due += (federal_tax_rate_table.iloc[counter + 1, single_income_column] - federal_tax_rate_table.iloc[counter, single_income_column])\ * (float((federal_tax_rate_table.iloc[counter, single_income_percentage_tax_column]) .strip("%")) / 100) counter += 1 marginal_tax_due = (self.salary - self.deductions - federal_tax_rate_table.iloc[federal_tax_bracket_tier, single_income_column]) \ * (float((federal_tax_rate_table.iloc[federal_tax_bracket_tier, single_income_percentage_tax_column]).strip("%")) / 100) federal_tax_due += marginal_tax_due return round(federal_tax_due, 2) def calculateMedicareTaxDue(self): if self.salary <= 200000: return round(self.salary * 0.0145, 2) else: return round(self.salary * 0.0145 + (self.salary - 200000) * 0.009, 2) def calculateTotalFederalTaxesDue(self): return self.calculateSocialSecurityTaxDue() + self.calculateFederalIncomeTaxDue() \ + self.calculateMedicareTaxDue() # calculate federal income tax + remainder of fica (medicare) for married filers class EffectiveFederalTaxMarried(EffectiveFederalTax): def __init__(self, salary, deductions): super().__init__(salary, "Married") self.deductions = deductions def calculateFederalIncomeTaxDue(self): federal_tax_rate_table = pd.read_csv(federal_tax_rate_path) federal_tax_bracket_tier = 0 married_income_column = federal_tax_rate_table.columns.get_loc("Married Income") married_income_percentage_tax_column = federal_tax_rate_table.columns.get_loc("Married Tax Rate") max_index = len(list(federal_tax_rate_table.index)) - 1 while federal_tax_bracket_tier <= max_index and \ int(federal_tax_rate_table.iloc[federal_tax_bracket_tier, married_income_column]) \ < (self.salary - self.deductions): federal_tax_bracket_tier += 1 federal_tax_bracket_tier -= 1 federal_tax_due = 0 counter = 0 while counter <= federal_tax_bracket_tier - 1: federal_tax_due += (federal_tax_rate_table.iloc[counter + 1, married_income_column] - federal_tax_rate_table.iloc[counter, married_income_column])\ * (float((federal_tax_rate_table.iloc[counter, married_income_percentage_tax_column]) .strip("%")) / 100) counter += 1 marginal_tax_due = (self.salary - self.deductions - federal_tax_rate_table.iloc[federal_tax_bracket_tier, married_income_column])\ * (float((federal_tax_rate_table.iloc[federal_tax_bracket_tier, married_income_percentage_tax_column]).strip("%")) / 100) federal_tax_due += marginal_tax_due return round(federal_tax_due, 2) def calculateMedicareTaxDue(self): if self.salary <= 250000: return round(self.salary * 0.0145, 2) else: return round(self.salary * 0.0145 + (self.salary - 250000) * 0.009, 2) def calculateTotalFederalTaxesDue(self): return self.calculateSocialSecurityTaxDue() + self.calculateFederalIncomeTaxDue() \ + self.calculateMedicareTaxDue() class EffectiveStateTax: def __init__(self, salary, state, marital_status): self.salary = salary self.state = state self.marital_status = marital_status # calculate state income tax for single filers class EffectiveStateTaxSingle(EffectiveStateTax): def __init__(self, salary, state, deductions): super().__init__(salary, state, "single") self.deductions = deductions def calculateStateIncomeTaxDue(self): state_tax_rate_table = pd.read_csv(state_tax_rate_path) my_state_tax_rate_table = state_tax_rate_table.loc[state_tax_rate_table["State"] == str(self.state)] single_income_column = my_state_tax_rate_table.columns.get_loc("Single Filer Brackets") single_income_percentage_tax_column = my_state_tax_rate_table.columns.get_loc("Single Filer Rates") max_index = my_state_tax_rate_table["Single Filer Rates"].notnull().sum() - 1 if my_state_tax_rate_table.iloc[max_index, single_income_percentage_tax_column] == "none": return 0 state_tax_bracket_tier = 0 while state_tax_bracket_tier <= max_index and \ int(my_state_tax_rate_table.iloc[state_tax_bracket_tier, single_income_column]) \ < (self.salary - self.deductions): state_tax_bracket_tier += 1 state_tax_bracket_tier -= 1 state_tax_due = 0 counter = 0 while counter <= state_tax_bracket_tier - 1: state_tax_due += (my_state_tax_rate_table.iloc[counter + 1, single_income_column] - my_state_tax_rate_table.iloc[counter, single_income_column])\ * (float((my_state_tax_rate_table.iloc[counter, single_income_percentage_tax_column]) .strip("%")) / 100) counter += 1 marginal_tax_due = (self.salary - self.deductions - my_state_tax_rate_table.iloc[state_tax_bracket_tier, single_income_column])\ * (float((my_state_tax_rate_table.iloc[state_tax_bracket_tier, single_income_percentage_tax_column]).strip("%")) / 100) state_tax_due += marginal_tax_due return (round(state_tax_due, 2)) # calculate state income tax for married filers class EffectiveStateTaxMarried(EffectiveStateTax): def __init__(self, salary, state, deductions): super().__init__(salary, state, "married") self.deductions = deductions def calculateStateIncomeTaxDue(self): state_tax_rate_table = pd.read_csv(state_tax_rate_path) my_state_tax_rate_table = state_tax_rate_table.loc[state_tax_rate_table["State"] == str(self.state)] married_income_column = my_state_tax_rate_table.columns.get_loc("Married Filing Jointly Brackets") married_income_percentage_tax_column = my_state_tax_rate_table.columns.get_loc("Married Filing Jointly Rates") max_index = my_state_tax_rate_table["Married Filing Jointly Rates"].notnull().sum() - 1 if my_state_tax_rate_table.iloc[max_index, married_income_percentage_tax_column] == "none": return 0 state_tax_bracket_tier = 0 while state_tax_bracket_tier <= max_index and \ int(my_state_tax_rate_table.iloc[state_tax_bracket_tier, married_income_column]) \ < (self.salary - self.deductions): state_tax_bracket_tier += 1 state_tax_bracket_tier -= 1 state_tax_due = 0 counter = 0 while counter <= state_tax_bracket_tier - 1: state_tax_due += (my_state_tax_rate_table.iloc[counter + 1, married_income_column] - my_state_tax_rate_table.iloc[counter, married_income_column])\ * (float((my_state_tax_rate_table.iloc[counter, married_income_percentage_tax_column]) .strip("%")) / 100) counter += 1 marginal_tax_due = (self.salary - self.deductions - my_state_tax_rate_table.iloc[state_tax_bracket_tier, married_income_column])\ * (float((my_state_tax_rate_table.iloc[state_tax_bracket_tier, married_income_percentage_tax_column]).strip("%")) / 100) state_tax_due += marginal_tax_due return (round(state_tax_due, 2)) class EffectiveCityTax: def __init__(self, salary, city, marital_status): self.salary = salary self.city = city self.marital_status = marital_status # calculate city income tax for single filers class EffectiveCityTaxSingle(EffectiveCityTax): def __init__(self, salary, city, deductions): super().__init__(salary, city, "single") self.deductions = deductions def calculateCityIncomeTaxDue(self): city_tax_rate_table = pd.read_csv(city_tax_rate_path) city_tax_bracket_tier = 0 single_income_column = city_tax_rate_table.columns.get_loc("Single Income") single_income_percentage_tax_column = city_tax_rate_table.columns.get_loc("Single Tax Rate") max_index = len(list(city_tax_rate_table.index)) - 1 while city_tax_bracket_tier <= max_index and \ int(city_tax_rate_table.iloc[city_tax_bracket_tier, single_income_column]) < (self.salary - self.deductions): city_tax_bracket_tier += 1 city_tax_bracket_tier -= 1 city_tax_due = 0 counter = 0 while counter <= city_tax_bracket_tier - 1: city_tax_due += (city_tax_rate_table.iloc[counter + 1, single_income_column] - city_tax_rate_table.iloc[counter, single_income_column]) \ * (float((city_tax_rate_table.iloc[counter, single_income_percentage_tax_column]) .strip("%")) / 100) counter += 1 marginal_tax_due = (self.salary - self.deductions - city_tax_rate_table.iloc[city_tax_bracket_tier, single_income_column]) \ * (float((city_tax_rate_table.iloc[city_tax_bracket_tier, single_income_percentage_tax_column]).strip("%")) / 100) city_tax_due += marginal_tax_due return round(city_tax_due, 2) # calculate city income tax for married filers class EffectiveCityTaxMarried(EffectiveCityTax): def __init__(self, salary, city, deductions): super().__init__(salary, city, "married") self.deductions = deductions def calculateCityIncomeTaxDue(self): city_tax_rate_table = pd.read_csv(city_tax_rate_path) city_tax_bracket_tier = 0 married_income_column = city_tax_rate_table.columns.get_loc("Married Income") married_income_percentage_tax_column = city_tax_rate_table.columns.get_loc("Married Tax Rate") max_index = len(list(city_tax_rate_table.index)) - 1 while city_tax_bracket_tier <= max_index and \ int(city_tax_rate_table.iloc[city_tax_bracket_tier, married_income_column]) < (self.salary - self.deductions): city_tax_bracket_tier += 1 city_tax_bracket_tier -= 1 city_tax_due = 0 counter = 0 while counter <= city_tax_bracket_tier - 1: city_tax_due += (city_tax_rate_table.iloc[counter + 1, married_income_column] - city_tax_rate_table.iloc[counter, married_income_column]) \ * (float((city_tax_rate_table.iloc[counter, married_income_percentage_tax_column]) .strip("%")) / 100) counter += 1 marginal_tax_due = (self.salary - self.deductions - city_tax_rate_table.iloc[city_tax_bracket_tier, married_income_column]) \ * (float((city_tax_rate_table.iloc[city_tax_bracket_tier, married_income_percentage_tax_column]).strip("%")) / 100) city_tax_due += marginal_tax_due return round(city_tax_due, 2) # calculate effective tax rate from the classes/inheritance structure we have created class TaxProfile: def __init__(self, my_salary, spouse_salary, marital_status, state, city, federal_deductions, state_deductions, city_deductions): self.my_salary = my_salary self.spouse_salary = spouse_salary self.salary = my_salary + spouse_salary self.marital_status = marital_status self.state = state self.city = city self.federal_deductions = federal_deductions self.state_deductions = state_deductions self.city_deductions = city_deductions def createTaxAnalysisWorkBook(self): workbook = xlsxwriter.Workbook("./" + "Tax_Analysis_" + str(date_time) + ".xlsx") workbook.close() assumptions_table = [["salary", "{:,.2f}".format(self.salary)], ["marital_status", str(self.marital_status)], ["state", str(self.state)], ["city", str(self.city)], ["federal_deductions", "{:,.2f}".format(self.federal_deductions)], ["state_deductions", "{:,.2f}".format(self.state_deductions)], ["city_deductions", "{:,.2f}".format(self.city_deductions)]] assumption_columns = ["Field", "Assumption"] assumptions = pd.DataFrame(assumptions_table, columns=assumption_columns) path = "./" + "Tax_Analysis_" + str(date_time) + ".xlsx" with pd.ExcelWriter(str(path), engine="openpyxl", mode="a", if_sheet_exists="replace") as writer: assumptions.to_excel(writer, sheet_name="Sheet1") # calculate tax rate/breakdown for federal, state, and city and (if flag is not set to "please just return # effective tax rate") export to workbook def taxAnalytics(self, flag): if self.marital_status == "married": my_social_security_tax_object = EffectiveFederalTax(self.my_salary, "married") spouse_social_security_tax_object = EffectiveFederalTax(self.spouse_salary, "married") social_security_tax_objects = [my_social_security_tax_object, spouse_social_security_tax_object] federal_tax_object = EffectiveFederalTaxMarried(self.salary, self.federal_deductions) state_tax_object = EffectiveStateTaxMarried(self.salary, self.state, self.state_deductions) city_tax_object = EffectiveCityTaxMarried(self.salary, self.city, self.city_deductions) else: my_social_security_tax_object = EffectiveFederalTax(self.my_salary, "single") social_security_tax_objects = [my_social_security_tax_object] federal_tax_object = EffectiveFederalTaxSingle(self.salary, self.federal_deductions) state_tax_object = EffectiveStateTaxSingle(self.salary, self.state, self.state_deductions) city_tax_object = EffectiveCityTaxSingle(self.salary, self.city, self.city_deductions) social_security_tax_amount = 0 for social_security_tax_object in social_security_tax_objects: social_security_tax_amount += social_security_tax_object.calculateSocialSecurityTaxDue() medicare_tax_amount = federal_tax_object.calculateMedicareTaxDue() fica_tax_amount = social_security_tax_amount + medicare_tax_amount federal_income_tax_amount = federal_tax_object.calculateFederalIncomeTaxDue() total_federal_tax_amount = round(social_security_tax_amount + medicare_tax_amount + federal_income_tax_amount, 2) state_income_tax_amount = state_tax_object.calculateStateIncomeTaxDue() if self.city == "New York City": city_income_tax_amount = city_tax_object.calculateCityIncomeTaxDue() else: city_income_tax_amount = 0 total_tax_amount = total_federal_tax_amount + state_income_tax_amount + city_income_tax_amount if flag == "please just return effective tax rate": return total_tax_amount / self.salary analytics_table = [["total tax paid", "{:,.2f}".format(total_tax_amount)], ["effective tax rate", str("{:.2%}".format(total_tax_amount / self.salary))], ["total federal tax paid", "{:,.2f}".format(total_federal_tax_amount)], ["effective federal tax rate", str("{:.2%}".format(total_federal_tax_amount / self.salary))], ["total fica tax paid", "{:,.2f}".format(fica_tax_amount)], ["fica tax rate", str("{:.2%}".format(fica_tax_amount / self.salary))], ["federal income tax paid", "{:,.2f}".format(federal_income_tax_amount)], ["effective federal income tax rate", str("{:.2%}".format(federal_income_tax_amount / self.salary))], ["total state income tax paid", "{:,.2f}".format(state_income_tax_amount)], ["effective state income tax rate", str("{:.2%}".format(state_income_tax_amount / self.salary))], ["total city income tax paid", "{:,.2f}".format(city_income_tax_amount)], ["effective city income tax rate", str("{:.2%}".format(city_income_tax_amount / self.salary))]] self.createTaxAnalysisWorkBook() dataframe =
pd.DataFrame(analytics_table)
pandas.DataFrame
# -*- coding: utf-8 -*- import numpy as np import pandas as pd import json import matplotlib.pyplot as plt from datetime import datetime from sys import stdout from sklearn.preprocessing import scale from sklearn.gaussian_process import GaussianProcessRegressor from sklearn.gaussian_process.kernels import RBF, ConstantKernel, WhiteKernel from sklearn.utils.validation import indexable from sklearn.model_selection import check_cv from sklearn.metrics.scorer import check_scoring from sklearn.model_selection._validation import _fit_and_score from sklearn.externals.joblib import Parallel, delayed def compute_features(): # Load json data with open('json_file.json') as data_file: patients = json.load(data_file) print("JSON file loaded") # Features computation print("Features computation launched") visits = [] for patient in patients.values(): for i in range(1, len(patient['visits']) + 1): visits.append(patient['visits'][str(i)]) n_visits = len(visits) print("n_visits = %s" % n_visits) # Features DataFrame with encounter_nums index encounter_nums = [int(visit.get('encounter_num')) for visit in visits] X = pd.DataFrame(index=encounter_nums) # Time vector & censoring indicator print("Adding labels...", end="") next_visit = [visit.get('next_visit') for visit in visits] T = np.array([1e10 if str(t) == 'none' else t for t in next_visit]).astype( int) end_dates = pd.to_datetime([visit.get('end_date') for visit in visits]) C = pd.to_datetime('2016-01-15 00:00:00') - end_dates days, seconds = C.days, C.seconds C = days * 24 + seconds // 3600 # in hours (discrete) delta = (T <= C).astype(int) Y = T Y[delta == 0] = C[delta == 0] labels = pd.DataFrame({'Y': Y, 'delta': delta}, index=encounter_nums) X = pd.concat([X, labels], axis=1) print(" done") # Basic features print("Adding basic features...", end="") # Add also patient_num & encounter_num for future random choice patient_num, encounter_num = [], [] sex, baseline_HB, genotype_SS, age, transfu_count = [], [], [], [], [] LS_ALONE, LS_INACTIVE, MH_ACS, MH_AVN, MH_DIALISIS = [], [], [], [], [] MH_HEART_FAILURE, MH_ISCHEMIC_STROKE, MH_LEG_ULCER = [], [], [] MH_NEPHROPATHY, MH_PHTN, MH_PRIAPISM, MH_RETINOPATHY = [], [], [], [] OPIOID_TO_DISCHARGE, ORAL_OPIOID, USED_MORPHINE = [], [], [] USED_OXYCODONE, duration, previous_visit, rea = [], [], [], [] for patient in patients.values(): for _ in range(1, len(patient['visits']) + 1): patient_num.append(patient['patient_num']) sex.append(1 if int(patient['sex']) == 1 else 0) baseline_HB.append(patient['baseline_HB']) genotype_SS.append(patient['genotype_SS']) for visit in visits: encounter_num.append(visit.get('encounter_num')) age.append(visit.get('age')) rea.append(visit.get('rea')) LS_ALONE.append(visit.get('LS_ALONE')) LS_INACTIVE.append(visit.get('LS_INACTIVE')) MH_ACS.append(visit.get('MH_ACS')) MH_AVN.append(visit.get('MH_AVN')) MH_DIALISIS.append(visit.get('MH_DIALISIS')) MH_HEART_FAILURE.append(visit.get('MH_HEART_FAILURE')) MH_ISCHEMIC_STROKE.append(visit.get('MH_ISCHEMIC_STROKE')) MH_LEG_ULCER.append(visit.get('MH_LEG_ULCER')) MH_NEPHROPATHY.append(visit.get('MH_NEPHROPATHY')) MH_PHTN.append(visit.get('MH_PHTN')) MH_PRIAPISM.append(visit.get('MH_PRIAPISM')) MH_RETINOPATHY.append(visit.get('MH_RETINOPATHY')) ORAL_OPIOID.append(visit.get('ORAL_OPIOID')) USED_MORPHINE.append(visit.get('USED_MORPHINE')) USED_OXYCODONE.append(visit.get('USED_OXYCODONE')) duration.append(visit.get('duration')) previous_visit.append(visit.get('previous_visit')) transfu_count.append(visit.get('transfu_count')) threshold = 24 * 30 * 18 # 18 months previous_visit = [0 if (t == 'none' or t > threshold) else 1 for t in previous_visit] MH_ACS = [1 if int(x) == 2 else x for x in MH_ACS] MH_AVN = [1 if int(x) == 2 else x for x in MH_AVN] MH_DIALISIS = [1 if int(x) == 2 else x for x in MH_DIALISIS] MH_HEART_FAILURE = [1 if int(x) == 2 else x for x in MH_HEART_FAILURE] MH_ISCHEMIC_STROKE = [1 if int(x) == 2 else x for x in MH_ISCHEMIC_STROKE] MH_LEG_ULCER = [1 if int(x) == 2 else x for x in MH_LEG_ULCER] MH_NEPHROPATHY = [1 if int(x) == 2 else x for x in MH_NEPHROPATHY] MH_PHTN = [1 if int(x) == 2 else x for x in MH_PHTN] MH_PRIAPISM = [1 if int(x) == 2 else x for x in MH_PRIAPISM] MH_RETINOPATHY = [1 if int(x) == 2 else x for x in MH_RETINOPATHY] X_basic = pd.DataFrame( {'patient_num': patient_num, 'encounter_num': encounter_num, 'sex': sex, 'genotype_SS': genotype_SS, 'age': age, 'rea': rea, 'LS_INACTIVE': LS_INACTIVE, 'MH_ACS': MH_ACS, 'MH_AVN': MH_AVN, 'MH_DIALISIS': MH_DIALISIS, 'MH_HEART_FAILURE': MH_HEART_FAILURE, 'MH_ISCHEMIC_STROKE': MH_ISCHEMIC_STROKE, 'MH_LEG_ULCER': MH_LEG_ULCER, 'LS_ALONE': LS_ALONE, 'MH_NEPHROPATHY': MH_NEPHROPATHY, 'MH_PHTN': MH_PHTN, 'MH_PRIAPISM': MH_PRIAPISM, 'MH_RETINOPATHY': MH_RETINOPATHY, 'ORAL_OPIOID': ORAL_OPIOID, 'baseline_HB': baseline_HB, 'USED_MORPHINE': USED_MORPHINE, 'USED_OXYCODONE': USED_OXYCODONE, 'duration': duration, 'previous_visit': previous_visit, 'transfu_count': transfu_count}, index=encounter_nums) X = pd.concat([X, X_basic], axis=1) print(" done") # Bio data print("Adding bio features...", end="") bio_data, bio_names = pd.DataFrame(), [] for visit in visits: encounter_num = int(visit.get('encounter_num')) tmp = pd.DataFrame(index=[encounter_num]) end_date = pd.to_datetime(visit.get('end_date')) for bio_name, bio_values in visit.get('bio').items(): # keep last value bio_names.append(bio_name) values = [val['nval_num'] for val in bio_values.values()] tmp[bio_name] = values[-1] # only keep last 48h values offset = end_date - pd.DateOffset(hours=48) values, index = [], [] for dic in bio_values.values(): val_time = pd.to_datetime(dic['date_bio']) if val_time > offset: values.append(float(dic['nval_num'])) index.append(float( (val_time - offset) / pd.Timedelta( '1 hour'))) # if at least 2 pts, add slope if len(values) > 1: x, y = index, values # least-squares A = np.vstack([np.array(x), np.ones(len(x))]).T slope, _ = np.linalg.lstsq(A, y)[0] else: slope = np.nan bio_names.append(bio_name + ' slope') tmp[bio_name + ' slope'] = slope bio_data = bio_data.append(tmp) bio_names_count = pd.Series( bio_names).value_counts() * 100 / n_visits bio_percentage = 35 bio_param_kept = bio_names_count[bio_names_count > bio_percentage] bio_data = bio_data[bio_param_kept.index] print(" done") X =
pd.concat([X, bio_data], axis=1)
pandas.concat
import multiprocessing import os from queue import Queue from typing import List from injector import inject import pandas as pd from pandas import DataFrame from domain.operation.execution.services.OperationCacheService import OperationCacheService from infrastructor.connection.adapters.ConnectionAdapter import ConnectionAdapter from infrastructor.connection.file.FileProvider import FileProvider from infrastructor.exceptions.NotSupportedFeatureException import NotSupportedFeatureException from infrastructor.logging.SqlLogger import SqlLogger from models.dto.PagingModifier import PagingModifier class FileAdapter(ConnectionAdapter): @inject def __init__(self, sql_logger: SqlLogger, file_provider: FileProvider, operation_cache_service: OperationCacheService, ): self.operation_cache_service = operation_cache_service self.sql_logger = sql_logger self.file_provider = file_provider def clear_data(self, data_integration_id) -> int: target_connection = self.operation_cache_service.get_target_connection( data_integration_id=data_integration_id) target_context = self.file_provider.get_context( connection=target_connection.Connection) data_integration_columns = self.operation_cache_service.get_columns_by_integration_id( data_integration_id=data_integration_id) file_path = os.path.join(target_connection.File.Folder, target_connection.File.FileName) if target_connection.File.Csv.HasHeader: if target_connection.File.Csv.Header is not None and target_connection.File.Csv.Header != '': headers = target_connection.File.Csv.Header.split(target_connection.File.Csv.Separator) else: headers = [(data_integration_column.TargetColumnName) for data_integration_column in data_integration_columns] truncate_affected_rowcount = target_context.recreate_file( file=file_path, headers=headers, separator=target_connection.File.Csv.Separator) else: truncate_affected_rowcount = target_context.delete_file( file=file_path) return truncate_affected_rowcount def get_source_data_count(self, data_integration_id) -> int: return -1 def start_source_data_operation(self, data_integration_id: int, data_operation_job_execution_integration_id: int, limit: int, process_count: int, data_queue: Queue, data_result_queue: Queue): source_connection = self.operation_cache_service.get_source_connection( data_integration_id=data_integration_id) source_context = self.file_provider.get_context(connection=source_connection.Connection) has_header = None if source_connection.File.Csv.HasHeader: has_header = 0 headers = None separator = source_connection.File.Csv.Separator if source_connection.File.Csv.Header is not None and source_connection.File.Csv.Header != '': headers = source_connection.File.Csv.Header.split(separator) if source_connection.File.FileName is not None and source_connection.File.FileName != '': file_path = source_context.get_file_path(folder_name=source_connection.File.Folder, file_name=source_connection.File.FileName) source_context.get_unpredicted_data(file=file_path, names=headers, header=has_header, separator=separator, limit=limit, process_count=process_count, data_queue=data_queue, result_queue=data_result_queue) else: csv_files = source_context.get_all_files(folder_name=source_connection.File.Folder, file_regex='(.*csv$)') for csv_file in csv_files: self.sql_logger.info(f"file read started. FilePath:{csv_file} ") source_context.get_unpredicted_data(file=csv_file, names=headers, header=has_header, separator=separator, limit=limit, process_count=process_count, data_queue=data_queue, result_queue=data_result_queue) def get_source_data(self, data_integration_id: int, paging_modifier: PagingModifier) -> DataFrame: source_connection = self.operation_cache_service.get_source_connection( data_integration_id=data_integration_id) source_context = self.file_provider.get_context(connection=source_connection.Connection) data_integration_columns = self.operation_cache_service.get_columns_by_integration_id( data_integration_id=data_integration_id) has_header = None if source_connection.File.Csv.HasHeader: has_header = 0 headers = None if source_connection.File.Csv.Header is not None and source_connection.File.Csv.Header != '': headers = source_connection.File.Csv.Header.split(source_connection.File.Csv.Separator) file_path = os.path.join(source_connection.File.Folder, source_connection.File.FileName) readed_data = source_context.get_data(file=file_path, names=headers, header=has_header, start=paging_modifier.Start, limit=paging_modifier.Limit, separator=source_connection.File.Csv.Separator) column_names = [(data_integration_column.SourceColumnName) for data_integration_column in data_integration_columns] data = readed_data[column_names] replaced_data = data.where(pd.notnull(data), None) return replaced_data.values.tolist() def prepare_insert_row(self, data, columns): insert_rows = [] for extracted_data in data: row = [] for column in columns: column_data = extracted_data[column] row.append(column_data) insert_rows.append(tuple(row)) return insert_rows def prepare_data(self, data_integration_id: int, source_data: DataFrame) -> List[any]: data_integration_columns = self.operation_cache_service.get_columns_by_integration_id( data_integration_id=data_integration_id) source_columns = [(data_integration_column.SourceColumnName) for data_integration_column in data_integration_columns] if isinstance(source_data, pd.DataFrame): data = source_data[source_columns] prepared_data = data.values.tolist() else: prepared_data = self.prepare_insert_row(data=source_data, columns=source_columns) return prepared_data def write_target_data(self, data_integration_id: int, prepared_data: List[any], ) -> int: target_connection = self.operation_cache_service.get_target_connection( data_integration_id=data_integration_id) target_context = self.file_provider.get_context(connection=target_connection.Connection) df = pd.DataFrame(prepared_data) data = df.where(
pd.notnull(df)
pandas.notnull
import pandas as pd import matplotlib.pyplot as plt import numpy as np #-------------read csv--------------------- df_2010_2011 = pd.read_csv("/mnt/nadavrap-students/STS/data/data_Shapira_20200911_2010_2011.csv") df_2012_2013 = pd.read_csv("/mnt/nadavrap-students/STS/data/data_Shapira_20200911_2012_2013.csv") df_2014_2015 = pd.read_csv("/mnt/nadavrap-students/STS/data/data_Shapira_20200911_2014_2015.csv") df_2016_2017 = pd.read_csv("/mnt/nadavrap-students/STS/data/data_Shapira_20200911_2016_2017.csv") df_2018_2019 = pd.read_csv("/mnt/nadavrap-students/STS/data/data_Shapira_20200911_2018_2019.csv") df_2010_2011['prcab'].fillna(0) df_2012_2013['prcab'].fillna(0) df_2014_2015['prcab'].fillna(0) df_2016_2017['prcab'].fillna(0) df_2018_2019['prcab'].fillna(0) print(df_2018_2019['prcab']) mask = df_2010_2011['surgyear'] != 2010 df_2011 = df_2010_2011[mask] df_2010 = df_2010_2011[~mask] mask2 = df_2012_2013['surgyear'] != 2012 df_2013 = df_2012_2013[mask2] df_2012 = df_2012_2013[~mask2] mask3 = df_2014_2015['surgyear'] != 2014 df_2015 = df_2014_2015[mask3] df_2014 = df_2014_2015[~mask3] mask4 = df_2016_2017['surgyear'] != 2016 df_2017 = df_2016_2017[mask4] df_2016 = df_2016_2017[~mask4] mask5 = df_2018_2019['surgyear'] != 2018 df_2019 = df_2018_2019[mask5] df_2018 = df_2018_2019[~mask5] avg_siteid = pd.DataFrame() avg_surgid = pd.DataFrame() # #tmpHilla=df_2018_2019.columns # tmpHilla=pd.DataFrame(df_2018_2019.columns.values.tolist()) # tmpHilla.to_csv("/tmp/pycharm_project_355/columns.csv") # my_list = df_2010_2011.columns.values.tolist() # print (my_list) # print() # my_list = df_2012_2013.columns.values.tolist() # print (my_list) # print() # my_list = df_2014_2015.columns.values.tolist() # print (my_list) # print() # my_list = df_2016_2017.columns.values.tolist() # print (my_list) # print() # my_list = df_2018_2019.columns.values.tolist() # print (my_list) # print() #-------------------merge all csv-------------------------- # dfMerge1 = pd.merge(df_2010_2011, df_2012_2013, on='surgorder') # dfMerge2 = pd.merge(dfMerge1, df_2014_2015, on='surgorder') # dfMerge = pd.merge(dfMerge2, df_2016_2017, on='surgorder') #dfMerge = pd.merge(df_2010_2011, df_2012_2013, on='SiteID') #count distinc #table.groupby('YEARMONTH').CLIENTCODE.nunique() def groupby_siteid(): df_2010 = df_2010_2011.groupby('siteid')['surgyear'].apply(lambda x: (x== 2010 ).sum()).reset_index(name='2010') df_2011 = df_2010_2011.groupby('siteid')['surgyear'].apply(lambda x: (x== 2011 ).sum()).reset_index(name='2011') df_2012 = df_2012_2013.groupby('siteid')['surgyear'].apply(lambda x: (x== 2012 ).sum()).reset_index(name='2012') df_2013 = df_2012_2013.groupby('siteid')['surgyear'].apply(lambda x: (x== 2013 ).sum()).reset_index(name='2013') df_2014 = df_2014_2015.groupby('siteid')['surgyear'].apply(lambda x: (x== 2014 ).sum()).reset_index(name='2014') df_2015 = df_2014_2015.groupby('siteid')['surgyear'].apply(lambda x: (x== 2015 ).sum()).reset_index(name='2015') df_2016 = df_2016_2017.groupby('siteid')['surgyear'].apply(lambda x: (x== 2016 ).sum()).reset_index(name='2016') df_2017 = df_2016_2017.groupby('siteid')['surgyear'].apply(lambda x: (x== 2017 ).sum()).reset_index(name='2017') df_2018 = df_2018_2019.groupby('siteid')['surgyear'].apply(lambda x: (x== 2018 ).sum()).reset_index(name='2018') df_2019 = df_2018_2019.groupby('siteid')['surgyear'].apply(lambda x: (x== 2019 ).sum()).reset_index(name='2019') df1 =pd.merge(df_2010, df_2011, on='siteid') df2 =pd.merge(df1, df_2012, on='siteid') df3 =pd.merge(df2, df_2013, on='siteid') df4 =pd.merge(df3, df_2014, on='siteid') df5 =pd.merge(df4, df_2015, on='siteid') df6 =pd.merge(df5, df_2016, on='siteid') df7 =pd.merge(df6, df_2017, on='siteid') df8 =pd.merge(df7, df_2018, on='siteid') df_sum_all_Years =pd.merge(df8, df_2019, on='siteid') cols = df_sum_all_Years.columns.difference(['siteid']) df_sum_all_Years['Distinct_years'] = df_sum_all_Years[cols].gt(0).sum(axis=1) cols_sum = df_sum_all_Years.columns.difference(['siteid','Distinct_years']) df_sum_all_Years['Year_sum'] =df_sum_all_Years.loc[:,cols_sum].sum(axis=1) df_sum_all_Years['Year_avg'] = df_sum_all_Years['Year_sum']/df_sum_all_Years['Distinct_years'] df_sum_all_Years.to_csv("total op sum all years siteid.csv") print("details on site id dist:") print ("num of all sites: ", len(df_sum_all_Years)) less_8 =df_sum_all_Years[df_sum_all_Years['Distinct_years'] !=10] less_8.to_csv("total op less 10 years siteid.csv") print("num of sites with less years: ", len(less_8)) x = np.array(less_8['Distinct_years']) print(np.unique(x)) avg_siteid['siteid'] = df_sum_all_Years['siteid'] avg_siteid['total_year_avg'] = df_sum_all_Years['Year_avg'] def groupby_surgid(): df_2010 = df_2010_2011.groupby('surgid')['surgyear'].apply(lambda x: (x== 2010 ).sum()).reset_index(name='2010') df_2011 = df_2010_2011.groupby('surgid')['surgyear'].apply(lambda x: (x== 2011 ).sum()).reset_index(name='2011') df_2012 = df_2012_2013.groupby('surgid')['surgyear'].apply(lambda x: (x== 2012 ).sum()).reset_index(name='2012') df_2013 = df_2012_2013.groupby('surgid')['surgyear'].apply(lambda x: (x== 2013 ).sum()).reset_index(name='2013') df_2014 = df_2014_2015.groupby('surgid')['surgyear'].apply(lambda x: (x== 2014 ).sum()).reset_index(name='2014') df_2015 = df_2014_2015.groupby('surgid')['surgyear'].apply(lambda x: (x== 2015 ).sum()).reset_index(name='2015') df_2016 = df_2016_2017.groupby('surgid')['surgyear'].apply(lambda x: (x== 2016 ).sum()).reset_index(name='2016') df_2017 = df_2016_2017.groupby('surgid')['surgyear'].apply(lambda x: (x== 2017 ).sum()).reset_index(name='2017') df_2018 = df_2018_2019.groupby('surgid')['surgyear'].apply(lambda x: (x== 2018 ).sum()).reset_index(name='2018') df_2019 = df_2018_2019.groupby('surgid')['surgyear'].apply(lambda x: (x== 2019 ).sum()).reset_index(name='2019') df1 =pd.merge(df_2010, df_2011, on='surgid') df2 =pd.merge(df1, df_2012, on='surgid') df3 =pd.merge(df2, df_2013, on='surgid') df4 =pd.merge(df3, df_2014, on='surgid') df5 =pd.merge(df4, df_2015, on='surgid') df6 =pd.merge(df5, df_2016, on='surgid') df7 =pd.merge(df6, df_2017, on='surgid') df8 =pd.merge(df7, df_2018, on='surgid') df_sum_all_Years =pd.merge(df8, df_2019, on='surgid') cols = df_sum_all_Years.columns.difference(['surgid']) df_sum_all_Years['Distinct_years'] = df_sum_all_Years[cols].gt(0).sum(axis=1) cols_sum = df_sum_all_Years.columns.difference(['surgid','Distinct_years']) df_sum_all_Years['Year_sum'] =df_sum_all_Years.loc[:,cols_sum].sum(axis=1) df_sum_all_Years['Year_avg'] = df_sum_all_Years['Year_sum']/df_sum_all_Years['Distinct_years'] df_sum_all_Years.to_csv("sum all years surgid.csv") print() print("details of surgid dist:") print("num of all surgid: ", len(df_sum_all_Years)) less_8 =df_sum_all_Years[df_sum_all_Years['Distinct_years'] !=10] less_8.to_csv("less 10 years surgid.csv") print("num of doctors with less years: ", len(less_8)) x = np.array(less_8['Distinct_years']) print(np.unique(x)) avg_surgid['surgid'] = df_sum_all_Years['surgid'] avg_surgid['total_year_avg'] = df_sum_all_Years['Year_avg'] def groupby_hospid(): df_2010 = df_2010_2011.groupby('hospid')['surgyear'].apply(lambda x: (x== 2010 ).sum()).reset_index(name='2010') df_2011 = df_2010_2011.groupby('hospid')['surgyear'].apply(lambda x: (x== 2011 ).sum()).reset_index(name='2011') df_2012 = df_2012_2013.groupby('hospid')['surgyear'].apply(lambda x: (x== 2012 ).sum()).reset_index(name='2012') df_2013 = df_2012_2013.groupby('hospid')['surgyear'].apply(lambda x: (x== 2013 ).sum()).reset_index(name='2013') df_2014 = df_2014_2015.groupby('hospid')['surgyear'].apply(lambda x: (x== 2014 ).sum()).reset_index(name='2014') df_2015 = df_2014_2015.groupby('hospid')['surgyear'].apply(lambda x: (x== 2015 ).sum()).reset_index(name='2015') df_2016 = df_2016_2017.groupby('hospid')['surgyear'].apply(lambda x: (x== 2016 ).sum()).reset_index(name='2016') df_2017 = df_2016_2017.groupby('hospid')['surgyear'].apply(lambda x: (x== 2017 ).sum()).reset_index(name='2017') df_2018 = df_2018_2019.groupby('hospid')['surgyear'].apply(lambda x: (x== 2018 ).sum()).reset_index(name='2018') df_2019 = df_2018_2019.groupby('hospid')['surgyear'].apply(lambda x: (x== 2019 ).sum()).reset_index(name='2019') df1 =pd.merge(df_2010, df_2011, on='hospid') df2 =
pd.merge(df1, df_2012, on='hospid')
pandas.merge
#!/usr/bin/env python #-*- coding:utf-8 -*- """ *.py: Description of what * does. Last Modified: """ __author__ = "<NAME>" __email__ = "<EMAIL>" __version__ = "0.0.1" # import gevent from .dbManager import SQLiteWrapper, MongoDBWrapper import pandas as pd from . import GeoPoint, encode, blacklist, loc_default, isempty # from . import loc_default, blacklist # from . import isempty from pylru import lrudecorator import logging log = logging.getLogger("rssgeocoder") class BaseGazetteer(object): """ Base Gazetteer class """ def __init__(self): pass def query(self, name, absoluteMatch=False): """ search for name """ pass class GeoNames(BaseGazetteer): def __init__(self, dbpath, priority=None): self.db = SQLiteWrapper(dbpath) if priority is None: # TODO: Define default priority self.priority = None else: self.priority = priority @lrudecorator(10000) def query(self, name, min_popln=0): """ Search the locations DB for the given name params: name - string min_popln - integer return: list of possible locations the input string refers to """ if name in loc_default: name = loc_default[name] if name in blacklist: return [] country = self._querycountry(name) #admin = self._querystate(name) #city = self._querycity(name, min_popln=min_popln) #alternateNames = self._query_alternatenames(name, min_popln) if country == []: admin = self._querystate(name) city = self._querycity(name, min_popln=min_popln) alternateNames = self._query_alternatenames(name, min_popln) #g1 = gevent.spawn(self._querystate, name) #g2 = gevent.spawn(self._querycity, name, min_popln=min_popln) #g3 = gevent.spawn(self._query_alternatenames, name, min_popln) #gevent.joinall([g1, g2, g3]) #admin, city, alternateNames = g1.value, g2.value, g3.value else: admin, city, alternateNames = [], [], [] ldist = (city + country + admin + alternateNames) if ldist == [] and "'" in name: log.info('splitting location name on quote mark-{}'.format(encode(name))) ldist = self._query_alternatenames(name.split("'", 1)[0]) if ldist != []: df =
pd.DataFrame([i.__dict__ for i in ldist])
pandas.DataFrame
from netCDF4 import Dataset import pandas as pd import numpy as np ncep_path = '/SubX/forecast/tas2m/daily/full/NCEP-CFSv2/' # the path where the raw data from NCEP-CFSv2 is saved gmao_path = '/SubX/forecast/tas2m/daily/full/GMAO-GEOS_V2p1/' for model in ['NCEP', 'GMAO']: if model == 'NCEP': path = ncep_path NCEP_date = [] for date in
pd.date_range('2017-07-01', '2019-12-31')
pandas.date_range
import argparse import math import json from tqdm import tqdm from nltk.tag import pos_tag import pandas as pd import networkx as nx import torch import config def get_relevant_tokens(word_count_path, threshold): d = pd.read_csv(word_count_path, sep='\t', header=None, quotechar=None, quoting=3) d.columns = ['token', 'count'] d = d.loc[d['count'] > threshold] return d.token.tolist() def prune_dt(input_dt_edges_path, relevant_tokens, output_dt_edges_path): d = pd.read_csv(input_dt_edges_path, sep='\t', header=None, quotechar=None, quoting=3) d.columns = ['word1', 'word2', 'weight'] d = d.loc[d['word1'].isin(relevant_tokens) & d['word2'].isin(relevant_tokens)] d.to_csv(output_dt_edges_path, sep='\t', index=False, header=None, quotechar=None, quoting=3) def update_POS_tags(input_DT_path, output_DT_path): d = pd.read_csv(input_DT_path, sep='\t', header=None, quotechar=None, quoting=3) d.columns = ['word1', 'word2', 'weight'] def replace_POS(e): # https://cs.nyu.edu/grishman/jet/guide/PennPOS.html d = {'NP': 'NNP', 'NPS': 'NNPS', 'PP': 'PRP', 'PP$': 'PRP$'} word, pos = e.rsplit(config.DT_token_pos_delimiter, 1) if(pos in d.keys()): return f'{word}{config.DT_token_pos_delimiter}{d[pos]}' else: return f'{word}{config.DT_token_pos_delimiter}{pos}' d.word1 = d.word1.apply(lambda x: replace_POS(x)) d.word2 = d.word2.apply(lambda x: replace_POS(x)) d.to_csv(output_DT_path, sep='\t', index=False, header=None, quotechar=None, quoting=3) def load_DT(DT_edges_path=config.prune_DT_edges_path): df = pd.read_csv(DT_edges_path, header=None, sep='\t', quotechar=None, quoting=3) df.columns = ['word1', 'word2', 'weight'] G = nx.from_pandas_edgelist(df, 'word1', 'word2', 'weight') print('Loaded the DT networkx graph') return G def edge_weight_u_v(DT_G, node1, node2): try: # ensure that shortest path over self-loops are not computed shortest_path_length = nx.algorithms.shortest_paths.generic.shortest_path_length(G=DT_G, source=node1, target=node2, weight=None) score = math.exp((-1) * (config.path_lambda) * (shortest_path_length - 1)) path_exists = True except nx.exception.NodeNotFound: score = -1 path_exists = False except nx.exception.NetworkXNoPath: score = -1 path_exists = False return path_exists, score def setup_graph_edges(DT_G, sentence): space_tokenized_sentence = sentence.split() if(config.is_en): pos_tagged_space_tokenized_sentence = [token + config.DT_token_pos_delimiter + tag for (token, tag) in pos_tag(space_tokenized_sentence)] else: # no POS tagger used in the non english DT pos_tagged_space_tokenized_sentence = space_tokenized_sentence assert(len(pos_tagged_space_tokenized_sentence) == len(space_tokenized_sentence)) # to ensure that every graph has edges - setup the mandatory self-loops _edge_index = [[i, i] for i in range(len(space_tokenized_sentence))] _edge_attr = [[1] for _ in _edge_index] for i in range(len(space_tokenized_sentence)): for j in range(i+1, len(space_tokenized_sentence)): assert(i != j) path_exists, edge_weight = edge_weight_u_v(DT_G, pos_tagged_space_tokenized_sentence[i], pos_tagged_space_tokenized_sentence[j]) if(path_exists): _edge_index.append([i, j]) _edge_attr.append([edge_weight]) _edge_index.append([j, i]) _edge_attr.append([edge_weight]) edge_index = torch.LongTensor(_edge_index).to(config.device) edge_index = torch.transpose(edge_index, 0, 1) # shape(edge_index) = [2, num_edges] edge_attr = torch.FloatTensor(_edge_attr).to(config.device) # shape(edge_attr) = [num_edges, 1] return edge_index, edge_attr def get_sentences_encoded_dict(tokenizer, sentences, max_length): assert(len(sentences) == 1 or len(sentences) == 2) if(len(sentences) == 1): encoded_dict = tokenizer.encode_plus(sentences[0], add_special_tokens=True, max_length=max_length, truncation=True, padding='max_length', return_attention_mask=True, return_tensors='pt') elif(len(sentences) == 2): encoded_dict = tokenizer.encode_plus(sentences[0], sentences[1], add_special_tokens=True, max_length=max_length, truncation=True, padding='max_length', return_attention_mask=True, return_tensors='pt') input_ids = encoded_dict['input_ids'][0].to(config.device) if(config.lm_model_name.startswith('roberta') or config.lm_model_name.startswith('xlm-roberta')): token_type_ids = torch.zeros_like(input_ids) else: token_type_ids = encoded_dict['token_type_ids'][0].to(config.device) attention_mask = encoded_dict['attention_mask'][0].to(config.device) return input_ids, token_type_ids, attention_mask def get_label_embedding(label, label_dict): assert(label in label_dict) vec = torch.zeros(len(label_dict), dtype=torch.float, device=config.device) vec[label_dict[label]] = 1 vec = torch.unsqueeze(vec, 0) # shape(vec) = [1, len(label_dict)] return vec def get_score_embedding(score): vec = torch.tensor([score], dtype=torch.float).unsqueeze(0).to(config.device) # shape(vec) = [1, 1] return vec def get_WiC_data_frame(WiC_data_path, WiC_gold_path): df_data = pd.read_csv(WiC_data_path, header=None, sep='\t') df_gold = pd.read_csv(WiC_gold_path, header=None, sep='\t') df = pd.concat([df_data, df_gold], axis=1, sort=False) df.columns = ['target', 'pos', 'indices', 'context_1', 'context_2', 'label'] print('Loaded the WiC dataset') return df def get_RTE_data_frame(RTE_data): df = pd.read_csv(RTE_data, sep='\t') print(f'RTE dataframe loaded from {RTE_data}') return df def get_STS_B_data_frame(STS_B_data, columns=config.STS_B_columns): # Loader adapted from https://colab.research.google.com/github/hybridnlp/tutorial/blob/master/07a_semantic_claim_search.ipynb rows = [] print(f'Loading STS_B dataset from {STS_B_data}') with open(STS_B_data, mode='r', encoding='utf') as f: lines = f.readlines() print(f'Reading {len(lines)} lines from {STS_B_data}') for lnr, line in enumerate(lines): cols = line.split('\t') assert len(cols) >= 7, 'line %s has %s columns instead of %s:\n\t%s' % ( lnr, len(cols), 7, "\n\t".join(cols) ) cols = cols[:7] assert len(cols) == 7 rows.append(cols) df = pd.DataFrame(rows, columns=columns) df.sent_a = df.sent_a.str.strip() df.sent_b = df.sent_b.str.strip() # score is read as a string, so add a copy with correct type df['score_f'] = df['score'].astype('float64') return df def get_MRPC_data_frame(MRPC_data, columns=config.MRPC_columns): # Loader adapted from https://colab.research.google.com/github/hybridnlp/tutorial/blob/master/07a_semantic_claim_search.ipynb rows = [] print(f'Loading MRPC dataset from {MRPC_data}') with open(MRPC_data, mode='r', encoding='utf') as f: lines = f.readlines()[1:] print(f'Reading {len(lines)} lines from {MRPC_data}') for lnr, line in enumerate(lines): cols = line.split('\t') assert len(cols) == 5 rows.append(cols) df = pd.DataFrame(rows, columns=columns) return df def get_SST_2_data_frame(SST_2_data): d = pd.read_csv(SST_2_data, sep='\t') return d def get_CoLA_data_frame(CoLA_data): d = pd.read_csv(CoLA_data, sep='\t', header=None) d.columns = ['category', 'label', 'domain', 'sentence'] return d def get_WNLI_translated_data_frame(WNLI_data): d = pd.read_csv(WNLI_data) return d def get_IITP_product_reviews_data_frame(ITP_product_reviews_data): d = pd.read_csv(ITP_product_reviews_data, header=None) d.columns = ['label', 'sentence'] d = d.convert_dtypes() return d def get_MIDAS_discourse_json(json_path): json_file = open(json_path) orig_d = json.load(json_file) prune_d = list() for d in orig_d: if(d['Discourse Mode'] in config.MIDAS_discourse_labels.keys()): prune_d.append(d) return prune_d def get_DPIL_data_frame(DPIL_data): d = pd.read_csv(DPIL_data, header=None) d.columns = ['sentence_1', 'sentence_2', 'label'] return d def get_KhondokerIslam_bengali_data_frame(KhondokerIslam_bengali_path): d = pd.read_csv(KhondokerIslam_bengali_path) return d def get_rezacsedu_sentiment_data_frame(rezacsedu_sentiment_path): d = pd.read_csv(rezacsedu_sentiment_path, header=None) d.columns = ['text', 'label'] return d def get_BEmoC_data_frame(BEmoC_path): d = pd.read_excel(BEmoC_path) return d def get_Seid_amharic_sentiment_data_frame(Seid_amharic_sentiment_path): d =
pd.read_csv(Seid_amharic_sentiment_path, header=None)
pandas.read_csv
#!/usr/bin/python # -*- coding: utf-8 -*- """ Created on Thu Jul 18 04:52:01 2019 @author: jamiesom """ import pandas as pd from electricitylci.globals import data_dir, output_dir import numpy as np from electricitylci.eia860_facilities import eia860_generator_info import re def generate_power_plant_construction(year): """This function uses an NETL study that generated the life cycle inventory for power plant construction using an economic input output model. Two types of plants are considered: sub-critical pulverized coal and a natural gas combined cycle plant. The inventory provided by the study is for an entire plant. This inventory is divided by the net generation capacity of those plants to place the inventory on the basis of a MW and then divided by an assumed plant life of 30 years, which is a conservative assumption considering the lifetime of these plants is typically much longer. These per year/per MW impacts are mapped to the fossil power generators in the U.S. where they are scaled by the net generating capacity of the plants (as provided by EIA data). These impacts are eventually divided by the generation for the year in MWh to provide the construction impacts on the basis of the functional unit. Parameters ---------- year : int Year of EIA data to use to provide net generating capacity Returns ------- dataframe This dataframe provides construction inventory for each power plant reporting to EIA. """ gen_df = eia860_generator_info(year) gen_columns=[ "plant_id", "generator_id", "technology", "prime_mover", "nameplate_capacity_mw", "energy_source_1" ] energy_sources=[ "NG",'BIT', 'DFO', 'LIG', 'SUB', 'RC', 'KER', 'RFO', 'PC', 'WC' ] compartment_mapping={ 'resource/in ground':"resource", 'resource':"resource", 'resource/in water':"resource", 'resource/in air':"resource", 'air/unspecified':"emission/air", 'resource/land':"resource", 'water/unspecified':"emission/water", 'air/low population density':"emission/air", 'soil/groundwater':"emission/water", 'air/unspecified/2,4':"emission/air", 'soil/unspecified':"emission/soil", 'soil/industrial':"emission/soil", 'soil/unspecified/2,4':"emission/soil", 'water/unspecified/2,4':"emission/water", '/':"", 'resource/groundwater':"resource", 'resource/surface water':"resource", 'water/surface water':"resource" } gas_prime = ["GT","IC","OT","CT","CS","CE","CA","ST"] coal_type = ["BIT","SUB","LIG","WC","RC"] gen_df = gen_df.loc[gen_df["energy_source_1"].isin(energy_sources), gen_columns] gen_df["plant_id"]=gen_df["plant_id"].astype(int) groupby_cols=["plant_id","technology","energy_source_1","prime_mover"] gen_df_group = gen_df.groupby(by=groupby_cols,as_index=False)["nameplate_capacity_mw"].sum() prime_energy_combo=gen_df_group.groupby(by=["prime_mover","energy_source_1"]).size().reset_index().rename(columns={0:'count'}) prime_energy_combo["const_type"]="coal" gas_const_criteria=(prime_energy_combo["prime_mover"].isin(gas_prime))&(~prime_energy_combo["energy_source_1"].isin(coal_type)) prime_energy_combo.loc[gas_const_criteria,"const_type"]="ngcc" gen_df_group=gen_df_group.merge(prime_energy_combo[['prime_mover', 'energy_source_1', 'const_type']], on=["prime_mover","energy_source_1"], how="left") inventory =
pd.read_csv(f"{data_dir}/plant_construction_inventory.csv")
pandas.read_csv
from plotly.offline import plot, iplot, init_notebook_mode from pandas.plotting import register_matplotlib_converters import seaborn as sns import matplotlib.pyplot as plt from urllib.request import urlopen from datetime import timedelta import json import numpy as np import pandas as pd import plotly.express as px import plotly.graph_objects as go import plotly.io as pio from plotly.subplots import make_subplots from plotly.offline import plot from django.shortcuts import render import requests from bs4 import BeautifulSoup from django.http import HttpResponse, JsonResponse from django.views.decorators.csrf import csrf_exempt import json import cv2 import keras import warnings from .models import Images from PIL import Image def is_grey_scale(img_path): img = Image.open(img_path).convert('RGB') w, h = img.size for i in range(w): for j in range(h): r, g, b = img.getpixel((i, j)) if r != g != b: return False return True # MKIT STARTS def load_models(): model1 = keras.models.load_model("models/first_level_hierarchy.h5") model2 = keras.models.load_model("models/second_level_hierarchy.h5") return model1, model2 def test_pneumonia(image, model1, model2): logs = ["Covid 19", "Bacterial Pneumonia", "Viral Pneumonia", "Negative"] result = dict() image = (np.array([cv2.resize(image, (150, 150))]).reshape( 1, 150, 150, 3)).astype('float32')/255 base = model1.predict(image) indx = np.argmax(base) if indx == 1: derived = model2.predict(image) indx_der = np.argmax(derived) result['Pneumonia'] = [logs[indx_der], derived[0][indx_der]*100] elif indx == 0: result['Pneumonia'] = [logs[3], base[0][indx]*100] return(result) # MKIT ENDS # statistics start plots = [] data = pd.read_csv( "datasets/covid19GlobalForecastingweek1/train.csv", parse_dates=['Date']) cleaned_data = pd.read_csv( "datasets/covid19cleancompletedataset/covid_19_clean_complete.csv", parse_dates=['Date']) cases = ['Confirmed', 'Deaths', 'Recovered', 'Active'] cleaned_data['Active'] = cleaned_data['Confirmed'] - \ cleaned_data['Deaths'] - cleaned_data['Recovered'] cleaned_data['Country/Region'] = cleaned_data['Country/Region'].replace( 'Mainland China', 'China') cleaned_data[['Province/State'] ] = cleaned_data[['Province/State']].fillna('') cleaned_data[cases] = cleaned_data[cases].fillna(0) cleaned_data.rename(columns={'Date': 'date'}, inplace=True) data = cleaned_data grouped = data.groupby( 'date')['date', 'Confirmed', 'Deaths', 'Active'].sum().reset_index() grouped = data.groupby( 'date')['date', 'Confirmed', 'Deaths', 'Active'].sum().reset_index() fig1 = px.line(grouped, x="date", y="Deaths", title="Worldwide Death Cases Over Time") grouped_india = data[data['Country/Region'] == "India"].reset_index() grouped_india_date = grouped_india.groupby( 'date')['date', 'Confirmed', 'Deaths'].sum().reset_index() plot_titles = ['India'] fig2 = px.line(grouped_india_date, x="date", y="Confirmed", title=f"Confirmed Cases in {plot_titles[0].upper()} Over Time", color_discrete_sequence=['#F61067'], height=500) data['Province/State'] = data['Province/State'].fillna('') temp = data[[col for col in data.columns if col != 'Province/State']] latest = temp[temp['date'] == max(temp['date'])].reset_index() latest_grouped = latest.groupby( 'Country/Region')['Confirmed', 'Deaths'].sum().reset_index() fig3 = px.bar(latest_grouped.sort_values('Confirmed', ascending=False)[ :40][::-1], x='Confirmed', y='Country/Region', title='Confirmed Cases Worldwide', text='Confirmed', height=1000, orientation='h') fig4 = px.bar(latest_grouped.sort_values('Deaths', ascending=False)[:30][::-1], x='Deaths', y='Country/Region', color_discrete_sequence=[ '#84DCC6'], title='Deaths Cases Worldwide', text='Deaths', height=1000, orientation='h') temp = cleaned_data.groupby( 'date')['Recovered', 'Deaths', 'Active'].sum().reset_index() temp = temp.melt(id_vars="date", value_vars=[ 'Recovered', 'Deaths', 'Active'], var_name='case', value_name='count') temp['case'].value_counts() pio.templates.default = "plotly_dark" fig5 = px.line(temp, x="date", y="count", color='case', title='Cases over time: Line Plot', color_discrete_sequence=['cyan', 'red', 'orange']) fig6 = px.area(temp, x="date", y="count", color='case', title='Cases over time: Area Plot', color_discrete_sequence=['cyan', 'red', 'orange']) formated_gdf = data.groupby( ['date', 'Country/Region'])['Confirmed', 'Deaths'].max() formated_gdf = data.groupby( ['date', 'Country/Region'])['Confirmed', 'Deaths'].max() formated_gdf = formated_gdf.reset_index() formated_gdf['date'] = pd.to_datetime(formated_gdf['date']) formated_gdf['date'] = formated_gdf['date'].dt.strftime('%m/%d/%Y') formated_gdf['size'] = formated_gdf['Confirmed'].pow(0.3) fig8 = px.scatter_geo(formated_gdf, locations="Country/Region", locationmode='country names', color="Confirmed", size='size', hover_name="Country/Region", range_color=[0, 1500], projection="natural earth", animation_frame="date", title='COVID-19: Spread Over Time', color_continuous_scale="portland") formated_gdf = formated_gdf.reset_index() formated_gdf['date'] = pd.to_datetime(formated_gdf['date']) formated_gdf['date'] = formated_gdf['date'].dt.strftime('%m/%d/%Y') formated_gdf['size'] = formated_gdf['Confirmed'].pow(0.3) pio.templates.default = "plotly_dark" fig7 = px.scatter_geo(formated_gdf, locations="Country/Region", locationmode='country names', color="Deaths", size='size', hover_name="Country/Region", range_color=[0, 100], projection="natural earth", animation_frame="date", title='COVID-19: Deaths Over Time', color_continuous_scale="peach") # statistics end # symptoms start symptoms = {'symptom': ['Fever', 'Dry cough', 'Fatigue', 'Sputum production', 'Shortness of breath', 'Muscle pain', 'Sore throat', 'Headache', 'Chills', 'Nausea or vomiting', 'Nasal congestion', 'Diarrhoea', 'Haemoptysis', 'Conjunctival congestion'], 'percentage': [87.9, 67.7, 38.1, 33.4, 18.6, 14.8, 13.9, 13.6, 11.4, 5.0, 4.8, 3.7, 0.9, 0.8]} symptoms = pd.DataFrame(data=symptoms, index=range(14)) symptom_graph = px.bar(symptoms[['symptom', 'percentage']].sort_values('percentage', ascending=False), y="percentage", x="symptom", color='symptom', log_y=True, template='ggplot2', title='Symptom of Coronavirus') symptom_div = plot(symptom_graph, output_type='div', include_plotlyjs=False, show_link=False, link_text="", image_width=500, config={"displaylogo": False}) plots.append(symptom_div) # symptoms end # india starts cnf = '#393e46' # confirmed - grey dth = '#ff2e63' # death - red rec = '#21bf73' # recovered - cyan act = '#fe9801' # active case - yellow register_matplotlib_converters() pio.templates.default = "plotly" # importing datasets df =
pd.read_csv('datasets/complete.csv', parse_dates=['Date'])
pandas.read_csv
import pandas as pd import datetime import numpy as np import icd def get_age(row): """Calculate the age of patient by row Arg: row: the row of pandas dataframe. return the patient age """ raw_age = row['DOD'].year - row['DOB'].year if (row['DOD'].month < row['DOB'].month) or ((row['DOD'].month == row['DOB'].month) and (row['DOD'].day < row['DOB'].day)): return raw_age - 1 else: return raw_age mimic_patients = 'mimic_csv/PATIENTS.csv' mimic_note_events = 'mimic_csv/NOTEEVENTS.csv' mimic_admissions = 'mimic_csv/ADMISSIONS.csv' mimic_diagnoses = 'mimic_csv/DIAGNOSES_ICD.csv' patient = pd.read_csv(mimic_patients) patient['DOD'] = pd.to_datetime(patient['DOD']).dt.date patient['DOB'] = pd.to_datetime(patient['DOB']).dt.date patient['DOD_HOSP'] = pd.to_datetime(patient['DOD_HOSP']) patient['age'] = patient.apply(get_age, axis=1) #for col in patient.columns: # print(col) #desc col headers patient = patient.drop(['DOD_SSN', 'DOD_HOSP'], axis=1) admission =
pd.read_csv(mimic_admissions)
pandas.read_csv
import pandas as pd # bookings_to_arr # # Accepts a pandas dataframe containing bookings data and returns a pandas # dataframe containing changes in ARR with the following columns: # - date - the date of the change # - type - the type of the change (new, upsell, downsell, and churn) # - customer_id - the id of the customer # - prior_arr - the ARR for the customer prior to the change # - next_arr - the ARR for the customer following the change # - delta_arr - the change in ARR # # The bookings (input) dataframe should contain the following columns: # - date - the date of the booking (as pandas Timestamps) # - customer_id - the unique id of the customer # - arr - the amount of ARR booked # - start_date - the start date of the contract (as pandas Timestamps) # - end_date - the end date of the contract (as pandas Timestamps) def bookings_to_arr(bookings): intervals = bookings_to_intervals(bookings) print(intervals) def bookings_to_intervals(bookings): interval_list = [] for index, row in bookings.sort_values(by=["customer_id", "start_date"]).iterrows(): interval_list.append(row) if index == 2: interval_list.append(row) # print(f"Index: {index}") # print(bookings.loc[index]) # print("\n") return pd.DataFrame(data=interval_list) test_bookings = pd.DataFrame.from_records( [ { "date": pd.Timestamp(ts_input="9/25/2019", tz="UTC"), "customer_id": 1234, "arr": 200, "start_date": pd.Timestamp(ts_input="10/1/2019", tz="UTC"), "end_date": pd.Timestamp(ts_input="9/30/2020", tz="UTC"), }, { "date": pd.Timestamp(ts_input="9/25/2018", tz="UTC"), "customer_id": 1234, "arr": 125, "start_date": pd.Timestamp(ts_input="10/1/2018", tz="UTC"), "end_date": pd.Timestamp(ts_input="9/30/2019", tz="UTC"), }, { "date": pd.Timestamp(ts_input="9/25/2020", tz="UTC"), "customer_id": 1234, "arr": 150, "start_date": pd.Timestamp(ts_input="10/1/2020", tz="UTC"), "end_date": pd.Timestamp(ts_input="9/30/2021", tz="UTC"), }, { "date": pd.Timestamp(ts_input="9/25/2021", tz="UTC"), "customer_id": 1234, "arr": 150, "start_date":
pd.Timestamp(ts_input="10/1/2021", tz="UTC")
pandas.Timestamp
import pandas as pd def load_dataset(csv_path): df_inflacao =
pd.read_csv(csv_path, sep=';', decimal=',')
pandas.read_csv
""" Compute the accuracies required to compute the overlapping scores. Namely, for each model m trained with data augmentation on one candidate corruption (trained with corruption_trainings.py), get the accuracy of m for each candidate corruption (using the ImageNet validation set corrupted with the considered corruption) Computed accuracies are saved in a pickle file at ../Results/corruption_cat Required: one model must have been trained for each considered candidate corruption using corruption_trainings.py """ import torch import numpy as np import os import sys import torchvision import pandas import sys from torch.utils.data import DataLoader p = os.path.abspath('..') sys.path.insert(1, p) import data import tools import candidate_corruptions dataset_path = sys.argv[1] list_models = sys.argv[2:] if list_models == ["all_candidates"]: list_models = ["clean"] + list(candidate_corruptions.dict_corruptions.keys()) list_corruptions = list(list_models) batch_size = 100 num_workers = 4 device = torch.device("cuda:0") load_path = "../Results/trained_models" res_array = np.zeros([len(list_models),len(list_corruptions)]) test_acc = 0 for i in range(len(list_models)): print("Get test accuracies of {} model".format(list_models[i])) classifier = torchvision.models.resnet18(num_classes=100, pretrained=False) try: classifier.load_state_dict(torch.load(os.path.join(load_path,list_models[i],"checkpoint"), map_location=device)) classifier = torch.nn.DataParallel(classifier, device_ids=[0]) except: classifier = torch.nn.DataParallel(classifier, device_ids=[0]) classifier.load_state_dict(torch.load(os.path.join(load_path,list_models[i],"checkpoint"), map_location=device)) classifier.to(device) classifier.eval() for k in range(len(list_corruptions)): test_set = data.get_Inet100(dataset_path, "test", corruptions=[list_corruptions[k]], album_mode=True) test_loader = DataLoader(test_set, batch_size=batch_size,shuffle=True, num_workers=num_workers,drop_last=True,pin_memory=True) test_set_size = len(test_set) epoch_test_size = test_set_size//batch_size with torch.no_grad() : for _, couple in enumerate(test_loader): x, l = couple x, l = x.to(device), l.to(device) y = classifier(x) test_acc = tools.update_topk_acc(test_acc,y,l,epoch_test_size,1) res_array[i,k] = test_acc.item() test_acc = 0 res_array =
pandas.DataFrame(res_array, index=list_models, columns=list_corruptions)
pandas.DataFrame
"""Run 20newsgroups data experiment.""" import os import numpy as np import random import pickle import pandas as pd import methods_20news from methods_20news import Methods from prep_20news import * from utils_20news import * from statistics import mean from statistics import median from statistics import stdev random.seed(1) np.random.seed(1) # ------------ PARAMETERS ------------ rank = 13 # (int) input rank for NMF and (S)SNMF models iterations = 11 # (odd int) number of iterations to run for analysis run_analysis = 1 # (boolean) run all methods to obtain class. acc./keywords/class. reports/heatmaps (reproduce paper results) nmf_search = 0 # (boolean) run for various tolerance values (reproduce paper results with iterations = 10) ssnmf_search = 0 # (boolean) run for various tolerances and regularizers (reproduce paper results with iterations = 10) clust_analysis = 0 # (boolean) run code to compute clustering scores (reproduce paper results) # ------------------------------------- cls_names =["Computers","Sciences","Politics","Religion","Recreation"] sub_names = ["graphics", "mac", "windows", "crypt", "electronics", "space", "guns", "mideast", \ "atheism", "christian", "autos", "baseball", "hockey"] # Load and subsample 20news data, assign a label to each category, and split data into train, val, and test sets newsgroups_train, train_labels, newsgroups_test, test_labels, newsgroups_val, val_labels, train_subcat, test_subcat, val_subcat = load_data() # Construct a full train set that consists of both train and validation set X_train_full = newsgroups_train+newsgroups_val train_labels_full = np.concatenate((train_labels, val_labels), axis=0) train_subcat_full = np.concatenate((train_subcat, val_subcat), axis=0) # Compute the TFIDF representation of the train set vectorizer_train, feature_names_train, X_train = tfidf_train(newsgroups_train, n_features = 5000) X_train, train_labels, train_subcat = shuffle_data(X_train, train_labels, train_subcat) # Apply TFIDF transformation to validation set X_val = tfidf_transform(vectorizer_train, newsgroups_val) X_val, val_labels, val_subcat = shuffle_data(X_val, val_labels, val_subcat) # Compute the TFIDF representation of the full train set vectorizer_train_full, feature_names_train_full, X_train_full = tfidf_train(X_train_full, n_features = 5000) X_train_full, train_labels_full, train_subcat_full = shuffle_data(X_train_full, train_labels_full, train_subcat_full) # Apply TFIDF transformation to test data set X_test = tfidf_transform(vectorizer_train_full, newsgroups_test) X_test, test_labels, test_subcat = shuffle_data(X_test, test_labels, test_subcat) if run_analysis == 1: # Construct an evaluation module evalualtion_module = Methods(X_train = X_train, X_val = X_val, X_test = X_test,\ train_labels = train_labels, val_labels = val_labels,\ test_labels = test_labels, X_train_full = X_train_full,\ train_labels_full = train_labels_full, cls_names = cls_names,\ feature_names_train=feature_names_train_full) # "Optimal" parameters for SSNMF Models 3,4,5,6 respectively ssnmf_tol = [1e-4,1e-4,1e-3,1e-3] lamb = [1e+2,1e+1,1e+2,1e+3] # "Optimal" NMF parameters nmf_tol = 1e-4 # Run SSNMF Analysis acc_dict, A_dict, B_dict, S_dict, S_test_dict, Yhat_dict, median_dict, iter_dict = evalualtion_module.run_analysis(ssnmf_tol= ssnmf_tol, \ nmf_tol = nmf_tol, lamb=lamb, ka=rank, itas=50, iterations=iterations) evalualtion_module.median_results(acc_dict, A_dict, B_dict, Yhat_dict, median_dict, iter_dict) if nmf_search == 1: """ Run NMF for various tolerance values.""" mean_acc = [] std_acc = [] tol_list = [1e-5,1e-4,1e-3,1e-2] for tol_idx in range(len(tol_list)): nmf_acc = [] nmf_tol = tol_list[tol_idx] print("Testing tolerance equal to {}.".format(nmf_tol)) # Construct an evaluation module evalualtion_module = Methods(X_train = X_train, X_val = X_val, X_test = X_val,\ train_labels = train_labels, val_labels = val_labels,\ test_labels = val_labels, X_train_full = X_train,\ train_labels_full = train_labels, cls_names = cls_names,\ feature_names_train=feature_names_train) for j in range(iterations): print("Iteration {}.".format(j)) nmf_svm_acc, W, nn_svm, nmf_svm_predicted, nmf_iter, H, H_test = evalualtion_module.NMF(rank=rank, nmf_tol=nmf_tol) nmf_acc.append(nmf_svm_acc) mean_acc.append(mean(nmf_acc)) std_acc.append(stdev(nmf_acc)) print("\n\nResults for {} iterations.\n".format(iterations)) for tol_idx in range(len(tol_list)): print("NMF average accuracy (with tol = {}): {:.4f} ยฑ {:.4f}.".format(tol_list[tol_idx],mean_acc[tol_idx],std_acc[tol_idx])) if ssnmf_search == 1: """ Run SSNMF for various tolerance and regularizer values.""" tol_list = [1e-4,1e-3,1e-2] lam_list = [1e+1,1e+2,1e+3] mean_dict = {"Model3": [], "Model4": [], "Model5": [], "Model6": []} std_dict = {"Model3": [], "Model4": [], "Model5": [], "Model6": []} for lam_idx in range (len(lam_list)): ssnmf_lam = lam_list[lam_idx] print("Testing lambda equal to {}.".format(ssnmf_lam)) for tol_idx in range (len(tol_list)): ssnmf_tol = tol_list[tol_idx] print("Testing tolerance equal to {}.".format(ssnmf_tol)) acc_dict = {"Model3": [], "Model4": [], "Model5": [], "Model6": []} # Construct an evaluation module evalualtion_module = Methods(X_train = X_train, X_val = X_val, X_test = X_val,\ train_labels = train_labels, val_labels = val_labels,\ test_labels = val_labels, X_train_full = X_train,\ train_labels_full = train_labels, cls_names = cls_names,\ feature_names_train=feature_names_train) for j in range(iterations): print("Iteration {}.".format(j)) for i in range(3,7): # Run SSNMF test_evals, A, B, ssnmf_predicted, ssnmf_iter, S, S_test = evalualtion_module.SSNMF(modelNum = i, ssnmf_tol = ssnmf_tol,lamb = ssnmf_lam, ka = rank, itas= 50) acc_dict["Model" + str(i)].append(test_evals[-1]) for i in range(3,7): acc = acc_dict["Model" + str(i)] mean_dict["Model" + str(i)].append(mean(acc)) std_dict["Model" + str(i)].append(stdev(acc)) print("Model {} average accuracy (with tol = {} and lam = {}): {:.4f} ยฑ {:.4f}.".format(i,ssnmf_tol,ssnmf_lam,mean(acc),stdev(acc))) for i in range(3,7): idx_final = 0 for lam_idx in range(len(lam_list)): ssnmf_lam = lam_list[lam_idx] for tol_idx in range (len(tol_list)): ssnmf_tol = tol_list[tol_idx] m_final = mean_dict["Model" + str(i)][idx_final] s_final = std_dict["Model" + str(i)][idx_final] print("Model {} average accuracy (with tol = {} and lam = {}): {:.4f} ยฑ {:.4f}.".format(i,ssnmf_tol,ssnmf_lam,m_final,s_final)) idx_final += 1 print() if clust_analysis == 1: """ Compute hard/soft clustering scores.""" clust_list = ["hard", "soft"] # Ground-truth matrix: subcat_all = np.concatenate((train_subcat_full, test_subcat), axis = None) subcat_onehot =
pd.get_dummies(subcat_all)
pandas.get_dummies
# -*- coding: utf-8 -*- """ Created on Wed Jul 14 09:27:05 2021 @author: vargh """ import numpy as np import pandas as pd from sympy import symbols, pi, Eq, integrate, diff, init_printing, solve from scipy.optimize import curve_fit from scipy.integrate import cumtrapz from scipy.interpolate import interp1d, interp2d from scipy.spatial import ConvexHull, convex_hull_plot_2d from shapely.geometry import Polygon import matplotlib.pyplot as plt from mpl_toolkits import mplot3d #init_printing() ## Functions def calc_maneuver_sum(spec_range, spec_dtr, fuel_used_interper, maneuver_time_interper, printer): calc_fuel_used = fuel_used_interper(spec_range, spec_dtr) calc_maneuver_time = maneuver_time_interper(spec_range, spec_dtr) if printer: print('Total distance range: %.2f m'%(spec_range)) print('Total fuel mass burned range: %.2f kg'%(calc_fuel_used)) print('Maneuver time: %.2f s'%(calc_maneuver_time)) return calc_fuel_used, calc_maneuver_time def calc_geom(threeD_balloon, theta): norm_vec = np.array([np.cos(theta), 0, np.sin(theta)]) proj_of_u_on_n = (np.dot(threeD_balloon, norm_vec))*norm_vec.reshape(len(norm_vec), 1) proj_of_u_on_n = threeD_balloon - proj_of_u_on_n.transpose() points = np.zeros((threeD_balloon.shape[0], 2)) points[:, 0] = proj_of_u_on_n[:, 1] points[:, 1] = proj_of_u_on_n[:, 2] hull = ConvexHull(points) bound = points[hull.vertices] perp_A_x = Polygon(bound).area cent_y = Polygon(bound).centroid.coords[0][0] norm_vec2 = np.array([np.sin(theta), 0, np.cos(theta)]) proj_of_u_on_n2 = (np.dot(threeD_balloon, norm_vec2))*norm_vec2.reshape(len(norm_vec2), 1) proj_of_u_on_n2 = threeD_balloon - proj_of_u_on_n2.transpose() points2 = np.zeros((threeD_balloon.shape[0], 2)) points2[:, 0] = proj_of_u_on_n2[:, 0] points2[:, 1] = proj_of_u_on_n2[:, 1] hull2 = ConvexHull(points2) bound2 = points2[hull2.vertices] perp_A_y = Polygon(bound2).area cent_x = Polygon(bound2).centroid.coords[0][0] return perp_A_x, perp_A_y, cent_x, cent_y def init_calc(threeD_balloon, payload_height, payload_width, payload_depth, connector_height, balloon_height, balloon_mass, COG_payload_h, COG_payload_w, rho_atmo, dim_scale, dyn_visc, F_b, thrust_f, thrust_r, m_dot_f, m_dot_r, acc_g, consider_bouyancy_drift, time_step, target_range, d_tol, dragthrustratio, min_burn_index, moment_arm_thruster): ## Initializations t = np.array([0]) # time r_m = np.array([total_rover_mass]) # full rover mass # kinematics in x, displacement, velocity and acceleration d_x = np.array([0]) # (m) v_x = np.array([0]) # (m/s) a_x = np.array([0]) # (m/s^2) # kinematics in y, displacement, velocity and acceleration d_y = np.array([0]) # (m) v_y = np.array([0]) # (m/s) a_y = np.array([0]) # (m/s^2) # moment about z m_z = np.array([0]) # (Nm) F = np.array([thrust_f]) # Thrust (N) D_x = np.array([0]) # Drag in x (N) D_y = np.array([0]) # Drag in y (N) # rotational kinematics in z, displacement, velocity, accleration alpha = np.array([0]) # (rad/s^2) omega = np.array([0]) # (rad/s) theta = np.array([0]) # (rad) rem_fuel = np.array([fuel_mass]) ballast_mass = np.array([0]) i = 0 fail = 0 burn_index = 0 while abs(d_x[i] - target_range) > d_tol and not(fail == 1): ## initial conditions prev_t = t[i] prev_r_m = r_m[i] prev_d_x = d_x[i] prev_v_x = v_x[i] prev_a_x = a_x[i] prev_d_y = d_y[i] prev_v_y = v_y[i] prev_a_y = a_y[i] prev_m_z = m_z[i] prev_F = F[i] prev_D_x = D_x[i] prev_D_y = D_y[i] prev_alpha = alpha[i] prev_omega = omega[i] prev_theta = theta[i] prev_fuel = rem_fuel[i] prev_ballast_mass = ballast_mass[i] ## time t = np.append(t, prev_t + time_step) cur_t = prev_t + time_step ## Modified perpendicular area perp_A_x, perp_A_y, cent_x, cent_y = calc_geom(threeD_balloon, prev_theta) # calculates perpendicular area in x and y and the centroid for a given theta ## Center of Gravity, Center of Drag, Moment of Inertia (not rotated) COG_balloon_h = (payload_height + connector_height + balloon_height/2) COG_balloon_w = cent_x COG_cur_h = ((r_m[i] - balloon_mass)*COG_payload_h + balloon_mass*COG_balloon_h)/(r_m[i]) # calculates changing height COG COG_cur_w = ((r_m[i] - balloon_mass)*COG_payload_w + balloon_mass*COG_balloon_w)/(r_m[i]) # calculates changing COG J_payload_u = r_m[i]*(payload_height**2 + payload_width**2) # untransformed moment of inertia of payload trans_payload_J_d = np.sqrt(COG_cur_h**2 + COG_cur_w**2) - COG_payload # distance axis of rotation must be moved J_payload_t = J_payload_u + r_m[i]*trans_payload_J_d**2 # moving axis of rotation with parallel axis theorem trans_balloon_J_d = np.sqrt((COG_balloon_h - COG_cur_h)**2 + (COG_balloon_w - COG_cur_w)**2) # distance axis of rotation must be moved J_balloon_t = J_balloon_u + balloon_mass*trans_balloon_J_d**2 # moving axis of rotation with parallel axis theorem J_tot = J_payload_t + J_balloon_t COD_balloon_h = COG_balloon_h # needs to be updated based on CFD COD_balloon_w = COG_balloon_w # needs to be updated based on CFD # Skin Friction coefficient if prev_v_x != 0: re_num = rho_atmo*prev_v_x*dim_scale/dyn_visc # Reynold's Number C_f = .027/np.power(re_num, 1/7) ## Prandtl's 1/7 Power Law else: C_f = 0 # If velocity = 0, C_f = 0 D_mag = np.sqrt(prev_D_x**2 + prev_D_y**2) # magnitude of drag res_freq = int(np.ceil(2*pi*np.sqrt(J_tot/(F_b*balloon_height)))) # calculated resonant frequency thrust = thrust_f # thrust m_dot = m_dot_f # mass flow rate if abs(D_mag/thrust) < dragthrustratio: # if thrust to drag ratio is less than max ratio, burn burn_condition = 1 else: if burn_index > min_burn_index: # if engine has burned for minimal time, and drag condition exceeded, stop burning burn_condition = 0 burn_index = 0 if burn_condition: burn_index = burn_index + 1 ## Force cur_F = thrust cur_fuel = prev_fuel - m_dot*time_step # Ballast cur_ballast_mass = prev_ballast_mass + m_dot*time_step cur_r_m = prev_r_m else: cur_F = 0 cur_r_m = prev_r_m cur_fuel = prev_fuel mass_deficit = 0 cur_ballast_mass = prev_ballast_mass perp_A_pay_x = payload_width/np.cos(prev_theta)*payload_depth # calculates perpendicular surface area of payload pay_drag_x = -.5*(C_D_payload+C_f)*perp_A_pay_x*rho_atmo*prev_v_x**2 # calculates drag from payload ball_drag_x = -.5*(C_D_balloon+C_f)*perp_A_x*rho_atmo*prev_v_x**2 # calculates drag from balloon in x ball_drag_y = -.5*(C_D_balloon+C_f)*perp_A_y*rho_atmo*prev_v_y**2 # calculates drag from balloon in y cur_D_x = pay_drag_x + ball_drag_x # calculates total drag in x cur_D_y = ball_drag_y # calculates total drag in y cur_D_mag = np.sqrt(cur_D_x**2 + cur_D_y**2) # Magnitude of drag ## Linear Kinematics tot_force_x = cur_F*np.cos(prev_theta) + cur_D_x # effective thrust in x tot_force_y = cur_F*np.sin(prev_theta) + cur_D_y # effective force in y cur_a_x = tot_force_x/cur_r_m cur_a_y = tot_force_y/cur_r_m cur_v_x = prev_v_x+cur_a_x*time_step cur_v_y = prev_v_y+cur_a_y*time_step cur_d_x = prev_d_x+cur_v_x*time_step cur_d_y = prev_d_y+cur_v_y*time_step ## Rotational Kinematics # Payload Gravity Torque g_m_a_y_pay = COG_cur_h - COG_payload_h # moment arm for gravity on the payload y g_m_a_x_pay = COG_cur_w - COG_payload_w # moment arm for gravity on the payload x g_m_a_pay = np.sqrt(g_m_a_y_pay**2 + g_m_a_x_pay**2) g_m_pay = abs((cur_r_m - balloon_mass)*acc_g * np.sin(prev_theta) * g_m_a_pay) # Balloon Gravity Torque g_m_a_y_ball = COG_cur_h - COG_balloon_h # moment arm for gravity on the payload y g_m_a_x_ball = COG_cur_w - COG_balloon_w # moment arm for gravity on the payload x g_m_a_ball = np.sqrt(g_m_a_y_pay**2 + g_m_a_x_pay**2) g_m_ball = -abs((cur_r_m - balloon_mass)*acc_g * np.sin(prev_theta) * g_m_a_ball) g_m = g_m_pay + g_m_ball # Balloon Drag Torque d_m_a_y = COD_balloon_h - COG_cur_h # moment arm for drag on the balloon y d_m_a_x = COD_balloon_w - COG_cur_w # moment arm for drag on the balloon x d_m_a = np.sqrt(d_m_a_y**2 + d_m_a_x**2) # euclidean distance ball_D_mag = np.sqrt(ball_drag_x**2 + ball_drag_y**2) # magnitude of drag on balloon d_m = d_m_a*ball_D_mag*np.cos(prev_theta) - pay_drag_x*g_m_a_pay # sum all drag moments # Bouyancy force torque, balloon b_m_a_y = COG_balloon_h - COG_cur_h # moment arm for bouyancy force y b_m_a_x = COG_balloon_w - COG_cur_w # moment arm for bouyancy force x b_m_a = np.sqrt(b_m_a_y**2 + b_m_a_x**2) # euclidean b_m = b_m_a * F_b * np.sin(prev_theta) # total buoyancy moment t_m_a = moment_arm_thruster # thruster moment arm t_m = cur_F * (moment_arm_thruster) # thruster moment m_z_tot = d_m - b_m + t_m - g_m # total moment cur_alpha = m_z_tot / J_tot cur_omega = prev_omega + cur_alpha*time_step cur_theta = prev_theta + cur_omega*time_step ## all updates F = np.append(F, cur_F) r_m = np.append(r_m, cur_r_m) D_x = np.append(D_x, cur_D_x) D_y = np.append(D_y, cur_D_y) a_x = np.append(a_x, cur_a_x) a_y = np.append(a_y, cur_a_y) v_x = np.append(v_x, cur_v_x) v_y = np.append(v_y, cur_v_y) d_x = np.append(d_x, cur_d_x) d_y = np.append(d_y, cur_d_y) m_z = np.append(m_z, m_z_tot) alpha = np.append(alpha, cur_alpha) omega = np.append(omega, cur_omega) theta = np.append(theta, cur_theta) rem_fuel = np.append(rem_fuel, cur_fuel) ballast_mass = np.append(ballast_mass, cur_ballast_mass) i = i + 1 if cur_fuel < 0: fail = 1 print('Not Enough Fuel Mass') if i % 100 == 0: print('.', end= '') if i % 5000 == 0: print('\n') all_data = np.zeros((len(t), 17)) all_data[:, 0] = t all_data[:, 1] = F all_data[:, 2] = r_m all_data[:, 3] = D_x all_data[:, 4] = D_y all_data[:, 5] = a_x all_data[:, 6] = a_y all_data[:, 7] = v_x all_data[:, 8] = v_y all_data[:, 9] = d_x all_data[:, 10] = d_y all_data[:, 11] = m_z all_data[:, 12] = alpha all_data[:, 13] = omega all_data[:, 14] = theta all_data[:, 15] = rem_fuel all_data[:, 16] = ballast_mass headers = ['time', 'force', 'mass', 'drag_x', 'drag_y', 'acceleration_x', 'acceleration_y', 'velocity_x', 'velocity_y', 'displacement_x', 'displacement_y', 'moment_z', 'alpha', 'omega', 'theta', 'fuel_mass', 'ballast_mass'] return pd.DataFrame(all_data, columns=headers) def drag_stop_calc(test, ind_ignore, maneuver_time, max_vel, forward_burn_frac, ind_at_end, threeD_balloon, payload_height, payload_width, payload_depth, connector_height, balloon_height, balloon_mass, COG_payload_h, COG_payload_w, rho_atmo, dim_scale, dyn_visc, F_b, thrust_f, thrust_r, m_dot_f, m_dot_r, acc_g, consider_bouyancy_drift, time_step, target_range, d_tol, dragthrustratio, min_burn_index, moment_arm_thruster): ## Drag Stop reverse_burn_frac = 1 - forward_burn_frac # deprecated if no reverse burn cutoff_time = maneuver_time * forward_burn_frac ## Initializations t = np.array([0]) # time r_m = np.array([total_rover_mass]) # full rover mass # kinematics in x, displacement, velocity and acceleration d_x = np.array([0]) # (m) v_x = np.array([0]) # (m/s) a_x = np.array([0]) # (m/s^2) # kinematics in y, displacement, velocity and acceleration d_y = np.array([0]) # (m) v_y = np.array([0]) # (m/s) a_y = np.array([0]) # (m/s^2) # moment about z m_z = np.array([0]) # (Nm) F = np.array([thrust_f]) # Thrust (N) D_x = np.array([0]) # Drag in x (N) D_y = np.array([0]) # Drag in y (N) # rotational kinematics in z, displacement, velocity, accleration alpha = np.array([0]) # (rad/s^2) omega = np.array([0]) # (rad/s) theta = np.array([0]) # (rad) rem_fuel = np.array([fuel_mass]) ballast_mass = np.array([0]) i = 0 fail = 0 burn_index = 0 vel_checker = 10 # lets loop accelerate the craft while vel_checker >= vel_elbow and not(fail == 1): ## initial conditions prev_t = t[i] prev_r_m = r_m[i] prev_d_x = d_x[i] prev_v_x = v_x[i] prev_a_x = a_x[i] prev_d_y = d_y[i] prev_v_y = v_y[i] prev_a_y = a_y[i] prev_m_z = m_z[i] prev_F = F[i] prev_D_x = D_x[i] prev_D_y = D_y[i] prev_alpha = alpha[i] prev_omega = omega[i] prev_theta = theta[i] prev_fuel = rem_fuel[i] prev_ballast_mass = ballast_mass[i] ## time t = np.append(t, prev_t + time_step) cur_t = prev_t + time_step ## Modified perpendicular area perp_A_x, perp_A_y, cent_x, cent_y = calc_geom(threeD_balloon, prev_theta) ## COG, COD, J (not rotated) COG_balloon_h = (payload_height + connector_height + balloon_height/2) COG_balloon_w = cent_x COG_cur_h = ((r_m[i] - balloon_mass)*COG_payload_h + balloon_mass*COG_balloon_h)/(r_m[i]) # calculates changing height COG COG_cur_w = ((r_m[i] - balloon_mass)*COG_payload_w + balloon_mass*COG_balloon_w)/(r_m[i]) # calculates changing COG J_payload_u = r_m[i]*(payload_height**2 + payload_width**2) # untransformed moment of inertia of payload trans_payload_J_d = np.sqrt(COG_cur_h**2 + COG_cur_w**2) - COG_payload # distance axis of rotation must be moved J_payload_t = J_payload_u + r_m[i]*trans_payload_J_d**2 # moving axis of rotation with parallel axis theorem trans_balloon_J_d = np.sqrt((COG_balloon_h - COG_cur_h)**2 + (COG_balloon_w - COG_cur_w)**2) # distance axis of rotation must be moved J_balloon_t = J_balloon_u + balloon_mass*trans_balloon_J_d**2 # moving axis of rotation with parallel axis theorem J_tot = J_payload_t + J_balloon_t COD_balloon_h = COG_balloon_h # needs to be updated based on CFD COD_balloon_w = COG_balloon_w # needs to be updated based on CFD if prev_v_x != 0: re_num = rho_atmo*prev_v_x*dim_scale/dyn_visc C_f = .027/np.power(re_num, 1/7) ## Prandtl's 1/7 Power Law else: C_f = 0 D_mag = np.sqrt(prev_D_x**2 + prev_D_y**2) res_freq = int(np.ceil(2*pi*np.sqrt(J_tot/(F_b*balloon_height)))) max_alpha = max_theta/4*res_freq**2 if cur_t < cutoff_time: reverse = 0 else: reverse = 1 if reverse: thrust = 0 m_dot = 0 curdtr = 0 else: thrust = thrust_f m_dot = m_dot_f curdtr = abs(D_mag/thrust) if curdtr < dragthrustratio: if reverse: burn_condition = 0 else: burn_condition = 1 else: if burn_index > min_burn_index: burn_condition = 0 burn_index = 0 if burn_condition: burn_index = burn_index + 1 ## Force cur_F = thrust cur_fuel = prev_fuel - m_dot*time_step # Ballast cur_ballast_mass = prev_ballast_mass + m_dot*time_step cur_r_m = prev_r_m else: cur_F = 0 cur_r_m = prev_r_m cur_fuel = prev_fuel mass_deficit = 0 cur_ballast_mass = prev_ballast_mass perp_A_pay_x = payload_width/np.cos(prev_theta)*payload_depth pay_drag_x = -.5*(C_D_payload+C_f)*perp_A_pay_x*rho_atmo*prev_v_x**2 ball_drag_x = -.5*(C_D_balloon+C_f)*perp_A_x*rho_atmo*prev_v_x**2 ball_drag_y = -.5*(C_D_balloon+C_f)*perp_A_y*rho_atmo*prev_v_y**2 cur_D_x = pay_drag_x + ball_drag_x cur_D_y = ball_drag_y cur_D_mag = np.sqrt(cur_D_x**2 + cur_D_y**2) ## Linear Kinematics tot_force_x = cur_F*np.cos(prev_theta) + cur_D_x tot_force_y = cur_F*np.sin(prev_theta) + cur_D_y cur_a_x = tot_force_x/cur_r_m cur_a_y = tot_force_y/cur_r_m cur_v_x = prev_v_x+cur_a_x*time_step cur_v_y = prev_v_y+cur_a_y*time_step cur_d_x = prev_d_x+cur_v_x*time_step cur_d_y = prev_d_y+cur_v_y*time_step ## Rotational Kinematics # Payload Gravity Torque g_m_a_y_pay = COG_cur_h - COG_payload_h # moment arm for gravity on the payload y g_m_a_x_pay = COG_cur_w - COG_payload_w # moment arm for gravity on the payload x g_m_a_pay = np.sqrt(g_m_a_y_pay**2 + g_m_a_x_pay**2) g_m_pay = abs((cur_r_m - balloon_mass)*acc_g * np.sin(prev_theta) * g_m_a_pay) # Balloon Gravity Torque g_m_a_y_ball = COG_cur_h - COG_balloon_h # moment arm for gravity on the payload y g_m_a_x_ball = COG_cur_w - COG_balloon_w # moment arm for gravity on the payload x g_m_a_ball = np.sqrt(g_m_a_y_pay**2 + g_m_a_x_pay**2) g_m_ball = -abs((cur_r_m - balloon_mass)*acc_g * np.sin(prev_theta) * g_m_a_ball) g_m = g_m_pay + g_m_ball # Balloon Drag Torque d_m_a_y = COD_balloon_h - COG_cur_h # moment arm for drag on the balloon y d_m_a_x = COD_balloon_w - COG_cur_w # moment arm for drag on the balloon x d_m_a = np.sqrt(d_m_a_y**2 + d_m_a_x**2) # euclidean distance ball_D_mag = np.sqrt(ball_drag_x**2 + ball_drag_y**2) # magnitude of drag on balloon d_m = d_m_a*ball_D_mag*np.cos(prev_theta) - pay_drag_x*g_m_a_pay # sum all drag moments # Bouyancy force torque, balloon b_m_a_y = COG_balloon_h - COG_cur_h # moment arm for bouyancy force y b_m_a_x = COG_balloon_w - COG_cur_w # moment arm for bouyancy force x b_m_a = np.sqrt(b_m_a_y**2 + b_m_a_x**2) # euclidean b_m = b_m_a * F_b * np.sin(prev_theta) # total buoyancy moment t_m_a = moment_arm_thruster # thruster moment arm t_m = cur_F * (moment_arm_thruster) # thruster moment m_z_tot = d_m - b_m + t_m - g_m # total moment cur_alpha = m_z_tot / J_tot cur_omega = prev_omega + cur_alpha*time_step cur_theta = prev_theta + cur_omega*time_step ## all updates F = np.append(F, cur_F) r_m = np.append(r_m, cur_r_m) D_x = np.append(D_x, cur_D_x) D_y = np.append(D_y, cur_D_y) a_x = np.append(a_x, cur_a_x) a_y = np.append(a_y, cur_a_y) v_x = np.append(v_x, cur_v_x) v_y = np.append(v_y, cur_v_y) d_x = np.append(d_x, cur_d_x) d_y = np.append(d_y, cur_d_y) m_z = np.append(m_z, m_z_tot) alpha = np.append(alpha, cur_alpha) omega = np.append(omega, cur_omega) theta = np.append(theta, cur_theta) rem_fuel = np.append(rem_fuel, cur_fuel) ballast_mass = np.append(ballast_mass, cur_ballast_mass) i = i + 1 if cur_fuel < 0: fail = 1 print('Not Enough Fuel Mass') if i % 100 == 0: print('.', end= '') if i % 5000 == 0: print('\n') if i > ind_ignore: vel_checker = prev_v_x else: vel_checker = 10 # lets loop accelerate the rover acheived_disp = d_x[-1] all_data = np.zeros((len(t), 17)) all_data[:, 0] = t all_data[:, 1] = F all_data[:, 2] = r_m all_data[:, 3] = D_x all_data[:, 4] = D_y all_data[:, 5] = a_x all_data[:, 6] = a_y all_data[:, 7] = v_x all_data[:, 8] = v_y all_data[:, 9] = d_x all_data[:, 10] = d_y all_data[:, 11] = m_z all_data[:, 12] = alpha all_data[:, 13] = omega all_data[:, 14] = theta all_data[:, 15] = rem_fuel all_data[:, 16] = ballast_mass headers = ['time', 'force', 'mass', 'drag_x', 'drag_y', 'acceleration_x', 'acceleration_y', 'velocity_x', 'velocity_y', 'displacement_x', 'displacement_y', 'moment_z', 'alpha', 'omega', 'theta', 'fuel_mass', 'ballast_mass'] if test: return acheived_disp else: return acheived_disp, pd.DataFrame(all_data, columns=headers) ## Constants ## g_0 = 9.8 # Earth gravity (m/s^2) G = 6.67E-11 # Gravitational Constant ## Rover Constants ## altitude = 300 # hovering altitude m payload_mass = 200 # rover payload mass kg structure_mass = 1103.53 # balloon mass kg ###### Body Info ##### body_atmo_pressure = 146921.2 # Atmospheric Pressure of visited body (Pa) body_mass = 1.3452E23 # mass of body (kg) body_radius = 2574.7*1000 # radius of body (m) acc_g = G*body_mass/body_radius**2 # acceleration due to gravity (m/s^2) rho_atmo = 1.225 * 4.4 # density of atmosphere of body kg/m^3 dyn_visc = 4.35 ## forward engine thrust_per_engine_f = 3.6 # thrust per engine (N) num_engines_f = 8 # number of engines (should be greater that 2 for torqueing) thrust_f = thrust_per_engine_f * num_engines_f # total thrust (N) ## backward engine thrust_per_engine_r = 3 # thrust per engine (N) num_engines_r = 1 # number of engines (should be greater that 2 for torqueing) thrust_r = thrust_per_engine_r * num_engines_r # total thrust (N) Isp = 57 # specific impulse of rocket propellant (s) vexit = g_0 * Isp # exit velocity of propellant m_dot_f = thrust_f/vexit # mass flow rate (kg/s) m_dot_r = thrust_r/vexit fuel_mass = 95 # available fuel mass (kg) ## Balloon Constants rho_He = .18 #, density of helium in the ballon (kg/m^3) volume_req = 356.76 # volume required to lift the mass of itself and the payload (m^3) balloon_mass = structure_mass + rho_He*volume_req # mass of balloon (kg) total_rover_mass = payload_mass + balloon_mass # total initial mass of rover (kg) F_b = total_rover_mass * acc_g # Balloon Shape - https://www.geogebra.org/m/ydGnFQ2c x = symbols('x') # sympy symbol filename = 'C:/Users/vargh/Desktop/Scripts/SHREC/goodyear_airfoil.csv' # generated dataset from link above gy_geom =
pd.read_csv(filename)
pandas.read_csv
# -*- coding: utf-8 -*- import nose import numpy as np from datetime import datetime from pandas.util import testing as tm from pandas.core import config as cf from pandas.compat import u from pandas.tslib import iNaT from pandas import (NaT, Float64Index, Series, DatetimeIndex, TimedeltaIndex, date_range) from pandas.types.dtypes import DatetimeTZDtype from pandas.types.missing import (array_equivalent, isnull, notnull, na_value_for_dtype) _multiprocess_can_split_ = True def test_notnull(): assert notnull(1.) assert not notnull(None) assert not notnull(np.NaN) with cf.option_context("mode.use_inf_as_null", False): assert notnull(np.inf) assert notnull(-np.inf) arr = np.array([1.5, np.inf, 3.5, -np.inf]) result = notnull(arr) assert result.all() with cf.option_context("mode.use_inf_as_null", True): assert not notnull(np.inf) assert not
notnull(-np.inf)
pandas.types.missing.notnull
import os import gzip import pandas as pd import scipy.io as sio import pathlib from enum import Enum import torch from sklearn.preprocessing import MinMaxScaler, normalize, StandardScaler class Btype(Enum): Undefined = 0 Normal = 1 ESSV_aka_PAC = 2 Aberrated = 3 ESV_aka_PVC = 4 class Rtype(Enum): Undefined = 0 End = 1 Noise = 2 NSR = 3 AFib = 4 AFlutter = 5 cur_dir = '/content/gdrive/My Drive/ssh_files/submitted - Copy' emb_file = cur_dir+'/test_emb.csv.gz' labels_file = cur_dir+'/test_labels.csv.gz' train_patients = 1000 test_patients = 100 train_subset = [] test_subset = [] train_labels_subset = [] test_labels_subset = [] #change this param to choose amount of data to work with partition = 10 with gzip.open(labels_file, 'rb') as f: header = f.readline().decode('ascii').replace("\n","").replace("\r", "") for i, line in enumerate(f): decoded = line.decode('ascii').replace("\n", "").replace("\r", "").split(",") patient, segment, frame = decoded[1], decoded[2], decoded[3] btype, rtype = Btype(int(decoded[4])), Rtype(int(decoded[5])) if btype in [Btype.Undefined] or rtype in [Rtype.Undefined, Rtype.End, Rtype.Noise]: continue # also can add condition on rtype or btype or any other to manipulate the learning data if int(patient) < train_patients and int(patient) % partition == 0: train_labels_subset.append([patient, segment, frame, btype.value, rtype.value]) elif int(patient) % partition == 0: test_labels_subset.append([patient, segment, frame, btype.value, rtype.value]) train_labels = pd.DataFrame(train_labels_subset, columns=['patient', 'segment', 'frame', 'bt_label', 'rt_label']) test_labels =
pd.DataFrame(test_labels_subset, columns=['patient', 'segment', 'frame', 'bt_label', 'rt_label'])
pandas.DataFrame
from kivy.uix.boxlayout import BoxLayout from kivy.uix.label import Label from kivy.uix.popup import Popup import pandas as pd class Ledger(BoxLayout): """ Ledger data structure: x: first number in equation (float) y: second number in equation (float) op: operator ['+', "-", '*', '/'] (str) z: result (float) """ def __init__(self, **kwargs): super(Ledger, self).__init__(**kwargs) self.col = 'x' self.row = 1 self.df = pd.DataFrame(columns=['x', 'y', 'op', 'z']) self.df.loc[1] = {'x': 0, 'y': 0, 'op': '', 'z': 0} self.clear_button_src = 'assets/graphics/clear.png' def select(self, col: str): """select active column""" if col not in ['x', 'y', 'op', 'z']: print(f"[ WARNING ] Invalid column: {col}") pass else: self.col = col def update(self, n: int, op: str = '='): """update active cell""" if op == '+': self.df.at[self.row, self.col] += n if op == '-': self.df.at[self.row, self.col] -= n if op == '*': self.df.at[self.row, self.col] *= n if op == '/': self.df.at[self.row, self.col] /= n if op == '=': self.df.at[self.row, self.col] = n self.refresh_ledger() def open_help(self): TEXT = ''' Input digits in the sandbox to tabulate numbers on the ledger. You can perform operations on numbers using the operations buttons immediately to the right. ''' p = Popup( title='Ledger Help', size_hint_y=None, height=200, content=Label(text=TEXT) ) p.open() def operation(self, op: str): """update operator column of current row and advance selection""" if op not in ['+', '-', '*', '/']: print(f"[ WARNING ] Invalid operator: {op}") print(self.df.at[self.row, 'op']) self.df.at[self.row, 'op'] = op self.parent.parent.children[1].set_value(self.df.at[self.row, 'x']) self.select('y') self.refresh_ledger() def get_row(self) -> dict: """return all values from active row""" return self.df.loc[self.row].to_dict() def submit_row(self): """calculate result, update ledger, new row""" row = self.get_row() x = self.df.at[self.row, 'x'] y = self.df.at[self.row, 'y'] print(row['op']) if row['op'] == '+': result = x + y elif row['op'] == '-': result = x - y elif row['op'] == '*': result = x * y elif row['op'] == '/': result = x / y else: result = x self.df.at[self.row, 'z'] = result self.parent.parent.children[1].set_value(result) self.new_row() def refresh_ledger(self): """refresh ledger view with current data""" # TODO: Reincorporate cuneiform translator commented out below (untested) rows = self.df.values.astype('str') self.rv.data = [ {'value': row} for row in rows ] def new_row(self): """add and select new row at bottom of ledger""" index = len(self.df.index) + 1 self.df.loc[index] = {'x': 0, 'y': 0, 'op': '', 'z': 0} self.row = index self.col = 'x' self.refresh_ledger() self.get_row() def clear(self): """clear ledger and backing dataframe""" self.df =
pd.DataFrame(columns=['x', 'y', 'op', 'z'])
pandas.DataFrame
#!/usr/bin/env python3 """ Author : <NAME> Date : 2022-02-03 Purpose: Parse tracy JSON files and produce summary .xlsx sheet. """ import argparse from typing import NamedTuple import json, pathlib, time import pandas as pd class Args(NamedTuple): """ Command-line arguments """ json_file_path: pathlib.Path output_dir: bool input_type: bool csv: bool # -------------------------------------------------- def get_args() -> Args: """ Get command-line arguments """ parser = argparse.ArgumentParser( description='Parse tracy JSONs and produce a summary excel sheet', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('json_file_path', metavar='json_file_path', type=pathlib.Path, help='Path of directory containing tracy JSONs (or directories of gene JSONs)') parser.add_argument('-o', '--output_dir', help="flag whether directory 'output' will be created", action='store_false') parser.add_argument('-i', '--input_type', help="flag whether Michael put genes into individual folders", action='store_false') parser.add_argument('--csv', help="flag whether .csv files will be produced for each gene (mostly for debugging)", action='store_true') args = parser.parse_args() return Args(args.json_file_path, args.output_dir, args.input_type, args.csv) # -------------------------------------------------- def main() -> None: start_main = time.time() # define args args = get_args() json_file_path_arg = args.json_file_path.resolve() output_dir_arg = args.output_dir input_type_arg = args.input_type csv_arg = args.csv # check output_dir flag, if true: make an output dir if output_dir_arg: output_flag = 'tracy_json_parse' output_path = json_file_path_arg.joinpath(f"{output_flag}_output-{time.strftime('%Y_%m_%d-%H%M%S', time.localtime(time.time()))}") output_path.mkdir(parents=True, exist_ok=True) else: output_path = json_file_path_arg sample_list = { '#reference': { 'aliases': ['reference', 'ref'], 'species': '#ref' }, 'AliBarber': { 'aliases': ['alibarber'], 'species': 'Bos taurus' }, 'Cochise': { 'aliases': ['cochise'], 'species': 'Bos taurus' }, 'Sansao': { 'aliases': ['sansao'], 'species': 'Bos taurus' }, 'Slugger': { 'aliases': ['slugger', 'slogger'], 'species': 'Bos taurus' }, 'LLNKune': { 'aliases': ['llnkune', 'llnkure'], 'species': 'Bos indicus' }, 'Nagaki': { 'aliases': ['nagaki'], 'species': 'Bos indicus' }, 'Raider': { 'aliases': ['raider'], 'species': 'Bos indicus' }, 'Renditium': { 'aliases': ['renditium', 'rendition'], 'species': 'Bos indicus' } } list_of_genotype_DataFrames = {} # check input_type flag, if true: if input_type_arg: for gene_dir in json_file_path_arg.iterdir(): if gene_dir.is_dir(): for sample_json in gene_dir.glob('*.json'): query_path = gene_dir list_of_genotype_DataFrames.update({gene_dir.stem: generate_genotype_DataFrame(sample_list, gene_dir.stem, query_path, output_path, csv_arg)}) else: list_of_genes = list(set([gene.stem.split('_')[0] for gene in json_file_path_arg.glob('*.json')])) for gene in list_of_genes: query_path = json_file_path_arg list_of_genotype_DataFrames.update({gene: generate_genotype_DataFrame(sample_list, gene, query_path, output_path, csv_arg)}) write_genotype_DataFrames_to_excel(list_of_genotype_DataFrames, output_path) print_runtime(f'Produced summary tracy genotyping excel file.') def generate_genotype_DataFrame(sample_list, gene_ID, query_path, output_path, csv_arg): """ Function will generate a genotype DataFrame with genotyping template """ SNP_data = generate_template(sample_list) for sample_json in query_path.glob(f'{gene_ID}*.json'): gene = sample_json.stem.split('_')[0] sample = validate_sample_name(sample_json.stem.split('_')[1], sample_list) results = parse_json(sample_json, gene, sample) SNP_data[sample]['seq'] = True SNP_data['#reference']['seq'] = True for i in results[0]: SNP_data[sample].update(i) for i in results[1]: SNP_data['#reference'].update(i) SNP_DataFrame =
pd.DataFrame.from_dict(SNP_data, orient='index')
pandas.DataFrame.from_dict
import pandas as pd import matplotlib.pyplot as plt import numpy as np from sklearn.utils import resample from scipy.ndimage import gaussian_filter from scipy import signal import cv2 ## plot the data classes as a circle to view the unbalance between the classes def plot_num_of_classes(labels): plt.figure(figsize=(20, 10)) my_circle = plt.Circle((0,0), 0.7, color="white") plt.pie(labels, labels= ['n', 'q', 'v', 's', 'f'], colors= ['red', 'green', 'blue', 'skyblue', 'orange'], autopct='%1.1f%%') p = plt.gcf() p.gca().add_artist(my_circle) plt.show() ## split the data into train, validation, and test ## validation and test each class has 100 samples ## input_size of the sample in the dataset def split(dataset, input_size=256): input_size = input_size + 1 # plus the label test_label = [] validation_label = [] validation = [] test = [] train_index = [] num_train_index = 0 ## seed the split algorithm np.random.seed(0) ## for validation and test dataset which has 100 samples for each class num_classes = 5 for i in range(num_classes): ind = np.where(dataset[:, -1] == i)[0] ## return index print('number of class :', len(ind)) idx = np.random.permutation(ind) rest = idx[:200] train_idx = idx[200:] print('number of train data per class', len(train_idx)) train_index.append(train_idx) # train.append(ecgsignal[train_idx, :]) validation.append(dataset[rest[:100], :-1]) test.append(dataset[rest[100:], :-1]) validation_label.append(dataset[rest[:100], -1]) test_label.append(dataset[rest[100:], -1]) # train_label.append(target[train_idx]) ### training data needs to be noted the number of dataset num_train_index += len(train_index[i]) print(len(train_index[i])) train = np.zeros((num_train_index, input_size)) train_label = np.zeros((num_train_index, 1)) train[0:len(train_index[0]), :] = dataset[train_index[0], :] culm = len(train_index[0]) + len(train_index[1]) train[len(train_index[0]):culm, :] = dataset[train_index[1], :] train[culm:(culm + len(train_index[2])), :] = dataset[train_index[2], :] culm += len(train_index[2]) train[culm:(culm + len(train_index[3])), :] = dataset[train_index[3], :] culm += len(train_index[3]) train[culm:(culm + len(train_index[4])), :] = dataset[train_index[4], :] culm = len(train_index[0]) + len(train_index[1]) train_label[0:len(train_index[0]), 0] = dataset[train_index[0], -1] train_label[len(train_index[0]):culm, 0] = dataset[train_index[1], -1] train_label[culm:(culm + len(train_index[2])), 0] = dataset[train_index[2], -1] culm += len(train_index[2]) train_label[culm:(culm + len(train_index[3])), 0] = dataset[train_index[3], -1] culm += len(train_index[3]) train_label[culm:(culm + len(train_index[4])), 0] = dataset[train_index[4], -1] validation = np.concatenate(validation, 0) test = np.concatenate(test, 0) test_label = np.concatenate(test_label, 0) validation_label = np.concatenate(validation_label, 0) return (train, train_label), (validation, validation_label), (test, test_label) ## upsample function ## due to the unbalance of the classes ### according to https://elitedatascience.com/imbalanced-classes def upsample(train, upsample_size=10000): df_1 = train[train[:, -1] == 1] df_2 = train[train[:, -1] == 2] df_3 = train[train[:, -1] == 3] df_4 = train[train[:, -1] == 4] idxs = np.random.choice(train[train[:, -1] == 0].shape[0], upsample_size, replace=False) df_0 = train[idxs] #df_0 = (train[train_label == 0]).sample(n=20000, random_state=42) df_1 = pd.DataFrame(df_1) df_2 = pd.DataFrame(df_2) df_3 = pd.DataFrame(df_3) df_4 =
pd.DataFrame(df_4)
pandas.DataFrame
import importlib import pandas as pd from pandas import compat from .parser import Parser import logging class UberModel(object): """ Collection of static methods used across all the ubertool models. """ def __init__(self): """Main utility class for building Ubertool model classes for model execution.""" super(UberModel, self).__init__() self.name = self.__class__.__name__ self.pd_obj = None self.pd_obj_exp = None self.pd_obj_out = None def validate_input_names(self, model_inputs, user_inputs): """ Compare the user supplied inputs with the ModelInputs() class attributes, ensuring they match by name :param model_inputs: ModelInputs() class instance :return: Boolean """ # Create temporary DataFrame where each column name is the same as ModelInputs attributes df = pd.DataFrame() for input_param in model_inputs.__dict__: df[input_param] = getattr(self, input_param) keys_a = set(df.keys()) keys_b = set(self.pd_obj.keys()) extras = keys_b - keys_a n_extras = len(extras) print(f'There are {n_extras} extra keys.') if(n_extras > 0): print(extras) missing = keys_a - keys_b n_missing = len(missing) print(f'There are {n_missing} missing keys.') if(n_missing > 0): print(missing) # Compare column names of temporary DataFrame (created above) to user-supply DataFrame from JSON #if df.columns.sort_values().equals(user_inputs.columns.sort_values()): if n_extras >= 0 and n_missing == 0: print('Input parameters match what is expected.') print(set(df.keys())) return True else: print('Inputs parameters do not have all required inputs.') msg_err1 = "Inputs parameters do not have all required inputs. Please see API documentation.\n" msg_err2 = "Expected: \n{}\n".format(df.columns.sort_values()) msg_err3 = "Received: \n{}\n".format(self.pd_obj.columns.sort_values()) missing = [item for item in keys_a if item not in keys_b] msg_missing = "missing the following field(s): \n{}\n".format(missing) extras = [item for item in keys_b if item not in keys_a] msg_extras = "the following extra field(s) were found: \n{}\n".format(extras) print(msg_err1 + msg_err2 + msg_err3 + msg_missing + msg_extras) raise ValueError(msg_err1 + msg_err2 + msg_err3 + msg_missing + msg_extras) def coerce_input_dtype(self, incoming_dtype, coerce_dtype, input_series): #logging.info(incoming_dtype) if coerce_dtype == 'object': return input_series.astype('object') elif coerce_dtype == 'float64': if incoming_dtype == 'object': #coerces strings to np.nans return pd.to_numeric(input_series, errors='coerce') elif incoming_dtype == 'float64': return input_series else: return input_series.astype('float64') elif coerce_dtype == 'int64' or 'int32': if incoming_dtype == 'object': #coerces strings to np.nans return pd.to_numeric(input_series, errors='coerce', downcast='int64') else: return input_series.astype('int64') else: print("dtype of {} is {}\n" "This format is not handled by UberModel.coerce_input_dtype()".format(input_series.name, coerce_dtype)) return input_series @staticmethod def convert_index(df_in): """ Attempt to covert indices of input DataFrame to duck typed dtype """ parser = Parser(df_in) df = parser.convert_axes() return df def populate_inputs(self, df_in): """ Validate and assign user-provided model inputs to their respective class attributes :param df_in: Pandas DataFrame object of model input parameters """ df_user = self.convert_index(df_in) # mod_name = self.name.lower() + '.' + self.name.lower() + '_exe' mod_name = "pram_flask.ubertool.ubertool." + self.name.lower() + "." + self.name.lower() + '_exe' #print(mod_name) try: # Import the model's input class (e.g. TedInputs) to compare user supplied inputs to module = importlib.import_module(mod_name) model_inputs_class = getattr(module, self.name + "Inputs") model_inputs = model_inputs_class() except ValueError as err: logging.info(mod_name) logging.info(err.args) try: if self.validate_input_names(model_inputs, df_user): # If the user-supplied DataFrame has the same column names as required by ModelInputs... # set each Series in the DataFrame to the corresponding ModelInputs attribute (member variable) # user_inputs_df = self._sanitize(df) for column in df_user.columns: coerce_dtype = str(getattr(model_inputs, column).dtype) df_series = df_user[column] initial_dtype = str(df_series.dtype) #if initial_dtype != coerce_dtype: #logging.info('var:' + column + ' coerce to: ' + coerce_dtype + ' from: ' + initial_dtype) setattr(self, column, self.coerce_input_dtype(initial_dtype, coerce_dtype, df_series)) except ValueError as err: logging.info('input validation problem') logging.info(err.args) def populate_outputs(self): # Create temporary DataFrame where each column name is the same as *ModelName*Outputs attributes """ Create and return Model Output DataFrame where each column name is a model output parameter :param model: string, name of the model as referred to in class names (e.g. terrplant, sip, stir, etc..) :param model_obj: class instance, instance of the model class for which the :return: """ # Import the model's output class (e.g. TerrplantOutputs) to create a DF to store the model outputs in mod_name = self.name.lower() + '.' + self.name.lower() + '_exe' #mod_name = "ubertool_ecorest.ubertool.ubertool." + self.name.lower() + "." + self.name.lower() + '_exe' module = importlib.import_module(mod_name) model_outputs = getattr(module, self.name + "Outputs") model_outputs_obj = model_outputs() df = pd.DataFrame() for input_param in model_outputs_obj.__dict__: df[input_param] = getattr(self, input_param) setattr(self, input_param, df[input_param]) return df def fill_output_dataframe(self): """ Combine all output properties into Pandas Dataframe """ for column in self.pd_obj_out.columns: try: output = getattr(self, column) #print(output) if isinstance(output, pd.Series): # Ensure model output is a Pandas Series. Only Series can be # reliably put into a Pandas DataFrame. self.pd_obj_out[column] = output else: print('"{}" is not a Pandas Series. Returned outputs must be a Pandas Series'.format(column)) except: print("output dataframe error on " + column) #print('output dataframe') #print(self.pd_obj_out) return def get_dict_rep(self): """ Convert DataFrames to dictionary, returning a tuple (inputs, outputs, exp_out) :param model_obj: model instance :return: (dict(input DataFrame), dict(outputs DataFrame), dict(expected outputs DataFrame)) """ name = self.name if self.name.lower() == "varroapop": try: return self.to_dict(self.pd_obj), \ self.pd_obj_out.to_dict('list'), \ self.pd_obj_exp.to_dict('list') except AttributeError: return self.to_dict(self.pd_obj), \ self.pd_obj_out.to_dict('list'), \ {} elif self.name.lower() == "sam": try: return self.to_dict(self.pd_obj), \ self.pd_obj_out, \ self.pd_obj_exp except AttributeError as ex: return self.to_dict(self.pd_obj), \ {"error": str(ex)}, \ {} try: return self.to_dict(self.pd_obj), \ self.to_dict(self.pd_obj_out), \ self.to_dict(self.pd_obj_exp) except AttributeError: return self.to_dict(self.pd_obj), \ self.to_dict(self.pd_obj_out), \ {} @staticmethod def to_dict(df): """ This is an override of the the pd.DataFrame.to_dict() method where the keys in return dictionary are cast to strings. This fixes an error where duck typing would sometimes allow non-String keys, which fails when Flask serializes the dictionary to JSON string to return the HTTP response. Original method returns: dict((str(k), v.to_dict()) for k, v in compat.iteritems(df)) :param df: :return: """ out = {} for k, v in df.items(): col = k for row, value in v.items(): out[col] = {str(row): value} return out class ModelSharedInputs(object): def __init__(self): """ Container for the shared model inputs amongst most models (e.g. version, chemical name, & PC Code) """ super(ModelSharedInputs, self).__init__() self.csrfmiddlewaretoken = pd.Series([], dtype="object") self.version = pd.Series([], dtype="object") self.chemical_name = pd.Series([], dtype="object") self.pc_code =
pd.Series([], dtype="object")
pandas.Series
# %% import pandas as pd import numpy as np import requests # http ์š”์ฒญ ๋ชจ๋“ˆ from bs4 import BeautifulSoup # ์›น ํฌ๋กค๋ง ๋ชจ๋“ˆ from urllib.request import urlopen # ์›น ํฌ๋กค๋ง ๋ชจ๋“ˆ from urllib.parse import quote_plus, urlencode from pandas import DataFrame, Series # ์‹œ๋ฆฌ์ฆˆ, ๋ฐ์ดํ„ฐํ”„๋ ˆ์ž„ ๋ชจ๋“ˆ from pandas import ExcelFile, ExcelWriter # ์—‘์…€ ์ฝ๊ธฐ, ์“ฐ๊ธฐ ๋ชจ๋“ˆ import pickle import seaborn as sns import matplotlib.pyplot as plt from pandas import DataFrame from django.conf import settings # %%
pd.set_option("display.max_columns", 15)
pandas.set_option
#!/usr/bin/env python # -*- coding: utf-8 -*- #----------------------------------------------------------------------------- # Copyright (c) 2015, IBM Corp. # All rights reserved. # # Distributed under the terms of the BSD Simplified License. # # The full license is in the LICENSE file, distributed with this software. #----------------------------------------------------------------------------- # Python 2 Compatibility from __future__ import print_function from __future__ import division from __future__ import unicode_literals from __future__ import absolute_import from builtins import dict from builtins import zip from builtins import str from builtins import int from future import standard_library standard_library.install_aliases() from collections import OrderedDict import itertools import math import warnings from numbers import Number import pandas as pd import numpy as np import six import ibmdbpy from ibmdbpy.utils import chunklist """ Statistics module for IdaDataFrames """ def _numeric_stats(idadf, stat, columns): """ Compute various stats from one or several numerical columns of an IdaDataFrame. Parameters ---------- idadf : IdaDataFrame Data source. stat : str Name of the statistic to be computed. columns : str or list of str Name of the columns that belong to the IdaDataFrame. Returns ------- Tuple or float64 One value for each column. For a one column input a float64 value is returned except for median Notes ----- Currently, the following functions are supported: count, mean, median, std, var, min, max, sum. Should return a tuple. Only available for numerical columns. """ # Calculate count, mean, median, std, var, min, max if isinstance(columns, six.string_types): columns = [columns] if isinstance(stat, six.string_types): if stat == "count": select_string = 'COUNT(\"' + '\"), COUNT(\"'.join(columns) + '\")' elif stat == "mean": select_string = ('AVG(CAST(\"' + '\" AS FLOAT)), AVG(CAST(\"'.join(columns) + '\" AS FLOAT))') elif stat == "median": return _get_percentiles(idadf, 0.5, columns).values[0] elif stat == "std": tuple_count = _numeric_stats(idadf, 'count', columns) # in case of only one column, ensure tuple_count is iterable if len(columns) == 1: tuple_count = [tuple_count] count_dict = dict((x, y) for x, y in zip(columns, tuple_count)) agg_list = [] for column in columns: agg_list.append("STDDEV(\"%s\")*(SQRT(%s)/SQRT(%s))" %(column, count_dict[column], count_dict[column]-1)) select_string = ', '.join(agg_list) elif stat == "var": tuple_count = _numeric_stats(idadf, 'count', columns) if len(columns) == 1: tuple_count = [tuple_count] count_dict = dict((x, int(y)) for x, y in zip(columns, tuple_count)) agg_list = [] for column in columns: agg_list.append("VAR(\"%s\")*(%s.0/%s.0)" %(column, count_dict[column], count_dict[column]-1)) select_string = ', '.join(agg_list) elif stat == "min": select_string = 'MIN(\"' + '\"), MIN(\"'.join(columns) + '\")' elif stat == "max": select_string = 'MAX(\"' + '\"), MAX(\"'.join(columns) + '\")' elif stat == "sum": select_string = 'SUM(\"' + '\"), SUM(\"'.join(columns) + '\")' name = idadf.internal_state.current_state return idadf.ida_query("SELECT %s FROM %s" %(select_string, name)).values[0] def _get_percentiles(idadf, percentiles, columns): """ Return percentiles over all entries of a column or list of columns in the IdaDataFrame. Parameters ---------- idadf : IdaDataFrame percentiles: Float or list of floats. All values in percentiles must be > 0 and < 1 columns: String or list of string Name of columns belonging to the IdaDataFrame. Returns ------- DataFrame """ if isinstance(columns, six.string_types): columns = [columns] if isinstance(percentiles, Number): percentiles = [percentiles] name = idadf.internal_state.current_state # Get na values for each columns tuple_na = _get_number_of_nas(idadf, columns) nrow = idadf.shape[0] data = pd.DataFrame() for index_col, column in enumerate(columns): nb_not_missing = nrow - tuple_na[index_col] indexes = [float(x)*float(nb_not_missing-1) + 1 for x in percentiles] low = [math.floor(x) for x in indexes] high = [math.ceil(x) for x in indexes] tuplelist = [] i = 0 for flag in [((x+1) == y) for x, y in zip(low, high)]: if flag: tuplelist.append((i, i+1)) i += 2 else: tuplelist.append((i, i)) i += 1 unique = low + high unique = set(unique) unique = sorted(unique) unique = [str(x) for x in unique] indexes_string = ",".join(unique) df = idadf.ida_query("(SELECT \""+column+"\" AS \""+column+"\" FROM (SELECT "+ "ROW_NUMBER() OVER(ORDER BY \""+column+"\") as rn, \""+ column + "\" FROM (SELECT * FROM " + name + ")) WHERE rn in("+ indexes_string +"))") #indexvalues = list(df[df.columns[0]]) indexvalues = list(df) #import pdb ; pdb.set_trace() #print(tuplelist) #print(indexvalues) indexfinal = [(float(str(indexvalues[x[0]]))+float(str(indexvalues[x[1]])))/2 for x in tuplelist] new_data = pd.DataFrame(indexfinal) data[column] = (new_data.T).values[0] percentile_names = [x for x in percentiles] data.index = percentile_names return data def _categorical_stats(idadf, stat, columns): # TODO: """ Computes various stats from one or several categorical columns of the IdaDataFrame. This is not implemented. Parameters ---------- idadf : IdaDataFrame stat : str Name of the statistic function to be computed. columns : str or list of str Name of columns belonging to the IdaDataFrame. Returns ------- Tuple. """ # Calculates count, unique, top, freq raise NotImplementedError("TODO") def _get_number_of_nas(idadf, columns): """ Return the count of missing values for a list of columns in the IdaDataFrame. Parameters ---------- idadf : IdaDataFrame columns : str or list One column as a string or a list of columns in the idaDataFrame. Returns ------- Tuple """ if isinstance(columns, six.string_types): columns = [columns] name = idadf.internal_state.current_state query_list = list() for column in columns: string = ("(SELECT COUNT(*) AS \"" + column + "\" FROM " + name + " WHERE \"" + column + "\" IS NULL)") query_list.append(string) query_string = ', '.join(query_list) # TODO: Improvement idea : Get nrow (shape) and substract by count("COLUMN") return idadf.ida_query("SELECT * FROM " + query_string, first_row_only = True) def _count_level(idadf, columnlist=None): """ Count distinct levels across a list of columns of an IdaDataFrame grouped by themselves. Parameters ---------- columnlist : list List of column names that exist in the IdaDataFrame. By default, these are all columns in IdaDataFrame. Returns ------- Tuple Notes ----- The function assumes the follwing: * The columns given as parameter exists in the IdaDataframe. * The parameter columnlist is an optional list. * Columns are referenced by their own name (character string). """ if columnlist is None: columnlist = idadf.columns name = idadf.internal_state.current_state query_list = [] for column in columnlist: # Here cast ? query_list.append("(SELECT COUNT(*) AS \"" + column +"\" FROM (" + "SELECT \"" + column + "\" FROM " + name + " GROUP BY \"" + column + "\" ))") #query_list.append("(SELECT CAST(COUNT(*) AS BIGINT) AS \"" + column +"\" FROM (" + # "SELECT \"" + column + "\" FROM " + name + " ))") query_string = ', '.join(query_list) column_string = '\"' + '\", \"'.join(columnlist) + '\"' return idadf.ida_query("SELECT " + column_string + " FROM " + query_string, first_row_only = True) def _count_level_groupby(idadf, columnlist=None): """ Count distinct levels across a list of columns in the IdaDataFrame grouped by themselves. This is used to get the dimension of the resulting cross table. Parameters ---------- columnlist : list List of column names existing in the IdaDataFrame. By default, these are columns of self Returns ------- Tuple Notes ----- The function assumes the follwing: * The columns given as parameter exists in the IdaDataframe. * The parameter columnlist is a optional and is a list. * Columns are referenced by their own name (character string). """ if columnlist is None: columnlist = idadf.columns name = idadf.internal_state.current_state column_string = '\"' + '\", \"'.join(columnlist) + '\"' query = (("SELECT COUNT(*) FROM (SELECT %s, COUNT(*) as COUNT "+ "FROM %s GROUP BY %s ORDER BY %s, COUNT ASC)") %(column_string, name, column_string, column_string)) return idadf.ida_query(query, first_row_only = True) # TODO: REFACTORING: factors function should maybe return a tuple ? def _factors_count(idadf, columnlist, valuelist=None): """ Count non-missing values for all columns in a list (valuelist) over the IdaDataFrame grouped by a list of columns(columnlist). Parameters ---------- columnlist : list List of column names that exist in self. valuelist : list List of column names that exist in self. Assumptions ----------- * The columns given as parameter exists in the IdaDataframe * The parameter columnlist is a optional and is a list * Columns are referenced by their own name (character string) Returns ------- DataFrame """ column_string = '\"' + '\", \"'.join(columnlist) + '\"' name = idadf.internal_state.current_state if valuelist is None: query = (("SELECT %s, COUNT(*) as COUNT FROM %s GROUP BY %s ORDER BY %s, COUNT ASC") %(column_string, name, column_string, column_string)) else: agg_list = [] for value in valuelist: query = "COUNT(\"%s\") as \"%s\""%(value,value) agg_list.append(query) agg_string = ', '.join(agg_list) value_string = '\"' + '", "'.join(valuelist) + '\"' query = (("SELECT %s,%s FROM %s GROUP BY %s ORDER BY %s,%s ASC") %(column_string, agg_string, name, column_string, column_string, value_string)) return idadf.ida_query(query) def _factors_sum(idadf, columnlist, valuelist): """ Compute the arithmetic sum over for all columns in a list (valuelist) over the IdaDataFrame grouped by a list of columns (columnlist). Parameters ---------- columnlist : list List of column names that exist in self. valuelist : list List of column names that exist in self. Assumptions ----------- * The columns given as parameter exists in the IdaDataframe * The parameter columnlist is a optional and is a list * Columns are referenced by their own name (character string) Returns ------- DataFrame """ column_string = '\"' + '\", \"'.join(columnlist) + '\"' name = idadf.internal_state.current_state agg_list = [] for value in valuelist: query = "SUM(\"%s\") as \"%s\""%(value, value) agg_list.append(query) agg_string = ', '.join(agg_list) value_string = '\"' + '", "'.join(valuelist) + '\"' query = (("SELECT %s,%s FROM %s GROUP BY %s ORDER BY %s,%s ASC") %(column_string, agg_string, name, column_string, column_string, value_string)) return idadf.ida_query(query) def _factors_avg(idadf, columnlist, valuelist): """ Compute the arithmetic average for all columns in a list (valuelist) over the IdaDataFrame grouped by a list of columns (columnlist). Parameters ---------- columnlist : list List of column names that exist in self. valuelist : list List of column names that exist in self. Assumptions ----------- * The columns given as parameter exists in the IdaDataframe * The parameter columnlist and valuelist are array-like * Columns are referenced by their own name (character string) Returns ------- DataFrame """ column_string = '\"' + '\", \"'.join(columnlist) + '\"' name = idadf.internal_state.current_state agg_list = [] for value in valuelist: agg = (("CAST(AVG(CAST(\"%s\" AS DECIMAL(10,6))) AS DECIMAL(10,6)) \"%s\"") %(value, value)) agg_list.append(agg) agg_string = ', '.join(agg_list) value_string = '\"' + '", "'.join(valuelist) + '\"' query = (("SELECT %s,%s FROM %s GROUP BY %s ORDER BY %s,%s ASC") %(column_string, agg_string, name, column_string, column_string, value_string)) return idadf.ida_query(query) ############################################################################### ### Pivot Table ############################################################################### def pivot_table(idadf, values=None, columns=None, max_entries=1000, sort=None, factor_threshold=None, interactive=False, aggfunc='count'): """ See IdaDataFrame.pivot_table """ # TODO : Support index if aggfunc.lower() not in ['count', 'sum', 'avg', 'average', 'mean']: print("For now only 'count' and 'sum' and 'mean' as aggregation function is supported") return if (columns is None) & (factor_threshold is None): print("Please provide parameter factor_threshold for automatic selection of columns") return if isinstance(columns, six.string_types): columns = [columns] if isinstance(values, six.string_types): values = [values] if (values is None) and (aggfunc.lower() != "count"): raise ValueError("Cannot aggregate using another function than count if" + "no value(s) was/were given") ####### Identify automatically categorical fields ######### # Load distinct count for each and evaluate categorical or not data = idadf._table_def(factor_threshold) # if columns is None: factors = data.loc[data['VALTYPE'] == "CATEGORICAL", ['TYPENAME', 'FACTORS']] if len(factors) == 0: print("No categorical columns to tabulate") return else: factors = data.loc[columns, ['TYPENAME', 'FACTORS']] if sort == "alpha": factors.sort_index(inplace=True, ascending=1) elif sort == "factor": factors.sort(['FACTORS'], inplace=True, ascending=1) if columns is None: print("Automatic selection of columns :", factors.index.values) columns = factors.index.values nb_row = _count_level_groupby(idadf, factors.index.values)[0] * len(columns) nb_col = len(factors.index.values) nb_entries = nb_row * nb_col if nb_entries > max_entries: # Overflow risk print("Number of entries :", nb_entries) print("Value counts for factors:") factor_values = factors[['FACTORS']] factor_values.columns = [''] print(factor_values.T) print("WARNING :Attempt to make a table with more than " + str(max_entries)+ " elements. Either increase max_entries " + "parameter or remove columns with too many levels.") return print("Output dataframe has dimensions", nb_row, "x", (nb_col+1)) if interactive is True: display_yes = ibmdbpy.utils.query_yes_no("Do you want to download it in memory ?") if not display_yes: return categorical_columns = list(factors.index) if aggfunc.lower() == 'count': dataframe = _factors_count(idadf, categorical_columns, values) # Download dataframe if aggfunc.lower() == 'sum': dataframe = _factors_sum(idadf, categorical_columns, values) # Download dataframe if aggfunc.lower() in ['avg', 'average', 'mean']: dataframe = _factors_avg(idadf, categorical_columns, values) # Download dataframe if values is not None: agg_values = values else: agg_values = aggfunc.upper() if isinstance(agg_values, six.string_types): agg_values = [agg_values] dataframe.columns = categorical_columns + agg_values # Name the aggregate column # Formatting result if len(agg_values) == 1: dataframe[None] = agg_values[0] else: catdataframe = dataframe[categorical_columns] dataframe = catdataframe.join(dataframe[agg_values].stack().reset_index(1)) dataframe['level_1'] =
pd.Categorical(dataframe['level_1'], agg_values)
pandas.Categorical
from collections import abc, deque from decimal import Decimal from io import StringIO from warnings import catch_warnings import numpy as np from numpy.random import randn import pytest from pandas.core.dtypes.dtypes import CategoricalDtype import pandas as pd from pandas import ( Categorical, DataFrame, DatetimeIndex, Index, MultiIndex, Series, concat, date_range, read_csv, ) import pandas._testing as tm from pandas.core.arrays import SparseArray from pandas.core.construction import create_series_with_explicit_dtype from pandas.tests.extension.decimal import to_decimal @pytest.fixture(params=[True, False]) def sort(request): """Boolean sort keyword for concat and DataFrame.append.""" return request.param class TestConcatenate: def test_concat_copy(self): df = DataFrame(np.random.randn(4, 3)) df2 = DataFrame(np.random.randint(0, 10, size=4).reshape(4, 1)) df3 = DataFrame({5: "foo"}, index=range(4)) # These are actual copies. result = concat([df, df2, df3], axis=1, copy=True) for b in result._mgr.blocks: assert b.values.base is None # These are the same. result = concat([df, df2, df3], axis=1, copy=False) for b in result._mgr.blocks: if b.is_float: assert b.values.base is df._mgr.blocks[0].values.base elif b.is_integer: assert b.values.base is df2._mgr.blocks[0].values.base elif b.is_object: assert b.values.base is not None # Float block was consolidated. df4 = DataFrame(np.random.randn(4, 1)) result = concat([df, df2, df3, df4], axis=1, copy=False) for b in result._mgr.blocks: if b.is_float: assert b.values.base is None elif b.is_integer: assert b.values.base is df2._mgr.blocks[0].values.base elif b.is_object: assert b.values.base is not None def test_concat_with_group_keys(self): df = DataFrame(np.random.randn(4, 3)) df2 = DataFrame(np.random.randn(4, 4)) # axis=0 df = DataFrame(np.random.randn(3, 4)) df2 = DataFrame(np.random.randn(4, 4)) result = concat([df, df2], keys=[0, 1]) exp_index = MultiIndex.from_arrays( [[0, 0, 0, 1, 1, 1, 1], [0, 1, 2, 0, 1, 2, 3]] ) expected = DataFrame(np.r_[df.values, df2.values], index=exp_index) tm.assert_frame_equal(result, expected) result = concat([df, df], keys=[0, 1]) exp_index2 = MultiIndex.from_arrays([[0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 1, 2]]) expected = DataFrame(np.r_[df.values, df.values], index=exp_index2) tm.assert_frame_equal(result, expected) # axis=1 df = DataFrame(np.random.randn(4, 3)) df2 = DataFrame(np.random.randn(4, 4)) result = concat([df, df2], keys=[0, 1], axis=1) expected = DataFrame(np.c_[df.values, df2.values], columns=exp_index) tm.assert_frame_equal(result, expected) result = concat([df, df], keys=[0, 1], axis=1) expected = DataFrame(np.c_[df.values, df.values], columns=exp_index2) tm.assert_frame_equal(result, expected) def test_concat_keys_specific_levels(self): df = DataFrame(np.random.randn(10, 4)) pieces = [df.iloc[:, [0, 1]], df.iloc[:, [2]], df.iloc[:, [3]]] level = ["three", "two", "one", "zero"] result = concat( pieces, axis=1, keys=["one", "two", "three"], levels=[level], names=["group_key"], ) tm.assert_index_equal(result.columns.levels[0], Index(level, name="group_key")) tm.assert_index_equal(result.columns.levels[1], Index([0, 1, 2, 3])) assert result.columns.names == ["group_key", None] def test_concat_dataframe_keys_bug(self, sort): t1 = DataFrame( {"value": Series([1, 2, 3], index=Index(["a", "b", "c"], name="id"))} ) t2 = DataFrame({"value": Series([7, 8], index=Index(["a", "b"], name="id"))}) # it works result = concat([t1, t2], axis=1, keys=["t1", "t2"], sort=sort) assert list(result.columns) == [("t1", "value"), ("t2", "value")] def test_concat_series_partial_columns_names(self): # GH10698 foo = Series([1, 2], name="foo") bar = Series([1, 2]) baz = Series([4, 5]) result = concat([foo, bar, baz], axis=1) expected = DataFrame( {"foo": [1, 2], 0: [1, 2], 1: [4, 5]}, columns=["foo", 0, 1] ) tm.assert_frame_equal(result, expected) result = concat([foo, bar, baz], axis=1, keys=["red", "blue", "yellow"]) expected = DataFrame( {"red": [1, 2], "blue": [1, 2], "yellow": [4, 5]}, columns=["red", "blue", "yellow"], ) tm.assert_frame_equal(result, expected) result = concat([foo, bar, baz], axis=1, ignore_index=True) expected = DataFrame({0: [1, 2], 1: [1, 2], 2: [4, 5]}) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("mapping", ["mapping", "dict"]) def test_concat_mapping(self, mapping, non_dict_mapping_subclass): constructor = dict if mapping == "dict" else non_dict_mapping_subclass frames = constructor( { "foo": DataFrame(np.random.randn(4, 3)), "bar": DataFrame(np.random.randn(4, 3)), "baz": DataFrame(np.random.randn(4, 3)), "qux": DataFrame(np.random.randn(4, 3)), } ) sorted_keys = list(frames.keys()) result = concat(frames) expected = concat([frames[k] for k in sorted_keys], keys=sorted_keys) tm.assert_frame_equal(result, expected) result = concat(frames, axis=1) expected = concat([frames[k] for k in sorted_keys], keys=sorted_keys, axis=1) tm.assert_frame_equal(result, expected) keys = ["baz", "foo", "bar"] result = concat(frames, keys=keys) expected = concat([frames[k] for k in keys], keys=keys) tm.assert_frame_equal(result, expected) def test_concat_ignore_index(self, sort): frame1 = DataFrame( {"test1": ["a", "b", "c"], "test2": [1, 2, 3], "test3": [4.5, 3.2, 1.2]} ) frame2 = DataFrame({"test3": [5.2, 2.2, 4.3]}) frame1.index = Index(["x", "y", "z"]) frame2.index = Index(["x", "y", "q"]) v1 = concat([frame1, frame2], axis=1, ignore_index=True, sort=sort) nan = np.nan expected = DataFrame( [ [nan, nan, nan, 4.3], ["a", 1, 4.5, 5.2], ["b", 2, 3.2, 2.2], ["c", 3, 1.2, nan], ], index=Index(["q", "x", "y", "z"]), ) if not sort: expected = expected.loc[["x", "y", "z", "q"]] tm.assert_frame_equal(v1, expected) @pytest.mark.parametrize( "name_in1,name_in2,name_in3,name_out", [ ("idx", "idx", "idx", "idx"), ("idx", "idx", None, None), ("idx", None, None, None), ("idx1", "idx2", None, None), ("idx1", "idx1", "idx2", None), ("idx1", "idx2", "idx3", None), (None, None, None, None), ], ) def test_concat_same_index_names(self, name_in1, name_in2, name_in3, name_out): # GH13475 indices = [ Index(["a", "b", "c"], name=name_in1), Index(["b", "c", "d"], name=name_in2), Index(["c", "d", "e"], name=name_in3), ] frames = [ DataFrame({c: [0, 1, 2]}, index=i) for i, c in zip(indices, ["x", "y", "z"]) ] result = pd.concat(frames, axis=1) exp_ind = Index(["a", "b", "c", "d", "e"], name=name_out) expected = DataFrame( { "x": [0, 1, 2, np.nan, np.nan], "y": [np.nan, 0, 1, 2, np.nan], "z": [np.nan, np.nan, 0, 1, 2], }, index=exp_ind, ) tm.assert_frame_equal(result, expected) def test_concat_multiindex_with_keys(self): index = MultiIndex( levels=[["foo", "bar", "baz", "qux"], ["one", "two", "three"]], codes=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], names=["first", "second"], ) frame = DataFrame( np.random.randn(10, 3), index=index, columns=Index(["A", "B", "C"], name="exp"), ) result = concat([frame, frame], keys=[0, 1], names=["iteration"]) assert result.index.names == ("iteration",) + index.names tm.assert_frame_equal(result.loc[0], frame) tm.assert_frame_equal(result.loc[1], frame) assert result.index.nlevels == 3 def test_concat_multiindex_with_none_in_index_names(self): # GH 15787 index = pd.MultiIndex.from_product([[1], range(5)], names=["level1", None]) df = DataFrame({"col": range(5)}, index=index, dtype=np.int32) result = concat([df, df], keys=[1, 2], names=["level2"]) index = pd.MultiIndex.from_product( [[1, 2], [1], range(5)], names=["level2", "level1", None] ) expected = DataFrame({"col": list(range(5)) * 2}, index=index, dtype=np.int32) tm.assert_frame_equal(result, expected) result = concat([df, df[:2]], keys=[1, 2], names=["level2"]) level2 = [1] * 5 + [2] * 2 level1 = [1] * 7 no_name = list(range(5)) + list(range(2)) tuples = list(zip(level2, level1, no_name)) index = pd.MultiIndex.from_tuples(tuples, names=["level2", "level1", None]) expected = DataFrame({"col": no_name}, index=index, dtype=np.int32) tm.assert_frame_equal(result, expected) def test_concat_keys_and_levels(self): df = DataFrame(np.random.randn(1, 3)) df2 = DataFrame(np.random.randn(1, 4)) levels = [["foo", "baz"], ["one", "two"]] names = ["first", "second"] result = concat( [df, df2, df, df2], keys=[("foo", "one"), ("foo", "two"), ("baz", "one"), ("baz", "two")], levels=levels, names=names, ) expected = concat([df, df2, df, df2]) exp_index = MultiIndex( levels=levels + [[0]], codes=[[0, 0, 1, 1], [0, 1, 0, 1], [0, 0, 0, 0]], names=names + [None], ) expected.index = exp_index tm.assert_frame_equal(result, expected) # no names result = concat( [df, df2, df, df2], keys=[("foo", "one"), ("foo", "two"), ("baz", "one"), ("baz", "two")], levels=levels, ) assert result.index.names == (None,) * 3 # no levels result = concat( [df, df2, df, df2], keys=[("foo", "one"), ("foo", "two"), ("baz", "one"), ("baz", "two")], names=["first", "second"], ) assert result.index.names == ("first", "second", None) tm.assert_index_equal( result.index.levels[0], Index(["baz", "foo"], name="first") ) def test_concat_keys_levels_no_overlap(self): # GH #1406 df = DataFrame(np.random.randn(1, 3), index=["a"]) df2 = DataFrame(np.random.randn(1, 4), index=["b"]) msg = "Values not found in passed level" with pytest.raises(ValueError, match=msg): concat([df, df], keys=["one", "two"], levels=[["foo", "bar", "baz"]]) msg = "Key one not in level" with pytest.raises(ValueError, match=msg): concat([df, df2], keys=["one", "two"], levels=[["foo", "bar", "baz"]]) def test_concat_rename_index(self): a = DataFrame( np.random.rand(3, 3), columns=list("ABC"), index=Index(list("abc"), name="index_a"), ) b = DataFrame( np.random.rand(3, 3), columns=list("ABC"), index=Index(list("abc"), name="index_b"), ) result = concat([a, b], keys=["key0", "key1"], names=["lvl0", "lvl1"]) exp = concat([a, b], keys=["key0", "key1"], names=["lvl0"]) names = list(exp.index.names) names[1] = "lvl1" exp.index.set_names(names, inplace=True) tm.assert_frame_equal(result, exp) assert result.index.names == exp.index.names def test_crossed_dtypes_weird_corner(self): columns = ["A", "B", "C", "D"] df1 = DataFrame( { "A": np.array([1, 2, 3, 4], dtype="f8"), "B": np.array([1, 2, 3, 4], dtype="i8"), "C": np.array([1, 2, 3, 4], dtype="f8"), "D": np.array([1, 2, 3, 4], dtype="i8"), }, columns=columns, ) df2 = DataFrame( { "A": np.array([1, 2, 3, 4], dtype="i8"), "B": np.array([1, 2, 3, 4], dtype="f8"), "C": np.array([1, 2, 3, 4], dtype="i8"), "D": np.array([1, 2, 3, 4], dtype="f8"), }, columns=columns, ) appended = df1.append(df2, ignore_index=True) expected = DataFrame( np.concatenate([df1.values, df2.values], axis=0), columns=columns ) tm.assert_frame_equal(appended, expected) df = DataFrame(np.random.randn(1, 3), index=["a"]) df2 = DataFrame(np.random.randn(1, 4), index=["b"]) result = concat([df, df2], keys=["one", "two"], names=["first", "second"]) assert result.index.names == ("first", "second") def test_dups_index(self): # GH 4771 # single dtypes df = DataFrame( np.random.randint(0, 10, size=40).reshape(10, 4), columns=["A", "A", "C", "C"], ) result = concat([df, df], axis=1) tm.assert_frame_equal(result.iloc[:, :4], df) tm.assert_frame_equal(result.iloc[:, 4:], df) result = concat([df, df], axis=0) tm.assert_frame_equal(result.iloc[:10], df) tm.assert_frame_equal(result.iloc[10:], df) # multi dtypes df = concat( [ DataFrame(np.random.randn(10, 4), columns=["A", "A", "B", "B"]), DataFrame( np.random.randint(0, 10, size=20).reshape(10, 2), columns=["A", "C"] ), ], axis=1, ) result = concat([df, df], axis=1) tm.assert_frame_equal(result.iloc[:, :6], df) tm.assert_frame_equal(result.iloc[:, 6:], df) result = concat([df, df], axis=0) tm.assert_frame_equal(result.iloc[:10], df) tm.assert_frame_equal(result.iloc[10:], df) # append result = df.iloc[0:8, :].append(df.iloc[8:]) tm.assert_frame_equal(result, df) result = df.iloc[0:8, :].append(df.iloc[8:9]).append(df.iloc[9:10]) tm.assert_frame_equal(result, df) expected = concat([df, df], axis=0) result = df.append(df) tm.assert_frame_equal(result, expected) def test_with_mixed_tuples(self, sort): # 10697 # columns have mixed tuples, so handle properly df1 = DataFrame({"A": "foo", ("B", 1): "bar"}, index=range(2)) df2 = DataFrame({"B": "foo", ("B", 1): "bar"}, index=range(2)) # it works concat([df1, df2], sort=sort) def test_handle_empty_objects(self, sort): df = DataFrame(np.random.randn(10, 4), columns=list("abcd")) baz = df[:5].copy() baz["foo"] = "bar" empty = df[5:5] frames = [baz, empty, empty, df[5:]] concatted = concat(frames, axis=0, sort=sort) expected = df.reindex(columns=["a", "b", "c", "d", "foo"]) expected["foo"] = expected["foo"].astype("O") expected.loc[0:4, "foo"] = "bar" tm.assert_frame_equal(concatted, expected) # empty as first element with time series # GH3259 df = DataFrame( dict(A=range(10000)), index=date_range("20130101", periods=10000, freq="s") ) empty = DataFrame() result = concat([df, empty], axis=1) tm.assert_frame_equal(result, df) result = concat([empty, df], axis=1) tm.assert_frame_equal(result, df) result = concat([df, empty]) tm.assert_frame_equal(result, df) result = concat([empty, df]) tm.assert_frame_equal(result, df) def test_concat_mixed_objs(self): # concat mixed series/frames # G2385 # axis 1 index = date_range("01-Jan-2013", periods=10, freq="H") arr = np.arange(10, dtype="int64") s1 = Series(arr, index=index) s2 = Series(arr, index=index) df = DataFrame(arr.reshape(-1, 1), index=index) expected = DataFrame( np.repeat(arr, 2).reshape(-1, 2), index=index, columns=[0, 0] ) result = concat([df, df], axis=1) tm.assert_frame_equal(result, expected) expected = DataFrame( np.repeat(arr, 2).reshape(-1, 2), index=index, columns=[0, 1] ) result = concat([s1, s2], axis=1) tm.assert_frame_equal(result, expected) expected = DataFrame( np.repeat(arr, 3).reshape(-1, 3), index=index, columns=[0, 1, 2] ) result = concat([s1, s2, s1], axis=1) tm.assert_frame_equal(result, expected) expected = DataFrame( np.repeat(arr, 5).reshape(-1, 5), index=index, columns=[0, 0, 1, 2, 3] ) result = concat([s1, df, s2, s2, s1], axis=1) tm.assert_frame_equal(result, expected) # with names s1.name = "foo" expected = DataFrame( np.repeat(arr, 3).reshape(-1, 3), index=index, columns=["foo", 0, 0] ) result = concat([s1, df, s2], axis=1) tm.assert_frame_equal(result, expected) s2.name = "bar" expected = DataFrame( np.repeat(arr, 3).reshape(-1, 3), index=index, columns=["foo", 0, "bar"] ) result = concat([s1, df, s2], axis=1) tm.assert_frame_equal(result, expected) # ignore index expected = DataFrame( np.repeat(arr, 3).reshape(-1, 3), index=index, columns=[0, 1, 2] ) result = concat([s1, df, s2], axis=1, ignore_index=True) tm.assert_frame_equal(result, expected) # axis 0 expected = DataFrame( np.tile(arr, 3).reshape(-1, 1), index=index.tolist() * 3, columns=[0] ) result = concat([s1, df, s2]) tm.assert_frame_equal(result, expected) expected = DataFrame(np.tile(arr, 3).reshape(-1, 1), columns=[0]) result = concat([s1, df, s2], ignore_index=True) tm.assert_frame_equal(result, expected) def test_empty_dtype_coerce(self): # xref to #12411 # xref to #12045 # xref to #11594 # see below # 10571 df1 = DataFrame(data=[[1, None], [2, None]], columns=["a", "b"]) df2 = DataFrame(data=[[3, None], [4, None]], columns=["a", "b"]) result = concat([df1, df2]) expected = df1.dtypes tm.assert_series_equal(result.dtypes, expected) def test_dtype_coerceion(self): # 12411 df = DataFrame({"date": [pd.Timestamp("20130101").tz_localize("UTC"), pd.NaT]}) result = concat([df.iloc[[0]], df.iloc[[1]]]) tm.assert_series_equal(result.dtypes, df.dtypes) # 12045 import datetime df = DataFrame( {"date": [datetime.datetime(2012, 1, 1), datetime.datetime(1012, 1, 2)]} ) result = concat([df.iloc[[0]], df.iloc[[1]]]) tm.assert_series_equal(result.dtypes, df.dtypes) # 11594 df = DataFrame({"text": ["some words"] + [None] * 9}) result = concat([df.iloc[[0]], df.iloc[[1]]]) tm.assert_series_equal(result.dtypes, df.dtypes) def test_concat_series(self): ts = tm.makeTimeSeries() ts.name = "foo" pieces = [ts[:5], ts[5:15], ts[15:]] result = concat(pieces) tm.assert_series_equal(result, ts) assert result.name == ts.name result = concat(pieces, keys=[0, 1, 2]) expected = ts.copy() ts.index = DatetimeIndex(np.array(ts.index.values, dtype="M8[ns]")) exp_codes = [np.repeat([0, 1, 2], [len(x) for x in pieces]), np.arange(len(ts))] exp_index = MultiIndex(levels=[[0, 1, 2], ts.index], codes=exp_codes) expected.index = exp_index tm.assert_series_equal(result, expected) def test_concat_series_axis1(self, sort=sort): ts = tm.makeTimeSeries() pieces = [ts[:-2], ts[2:], ts[2:-2]] result = concat(pieces, axis=1) expected = DataFrame(pieces).T tm.assert_frame_equal(result, expected) result = concat(pieces, keys=["A", "B", "C"], axis=1) expected = DataFrame(pieces, index=["A", "B", "C"]).T tm.assert_frame_equal(result, expected) # preserve series names, #2489 s = Series(randn(5), name="A") s2 = Series(randn(5), name="B") result = concat([s, s2], axis=1) expected = DataFrame({"A": s, "B": s2}) tm.assert_frame_equal(result, expected) s2.name = None result = concat([s, s2], axis=1) tm.assert_index_equal(result.columns, Index(["A", 0], dtype="object")) # must reindex, #2603 s = Series(randn(3), index=["c", "a", "b"], name="A") s2 = Series(randn(4), index=["d", "a", "b", "c"], name="B") result = concat([s, s2], axis=1, sort=sort) expected = DataFrame({"A": s, "B": s2}) tm.assert_frame_equal(result, expected) def test_concat_series_axis1_names_applied(self): # ensure names argument is not ignored on axis=1, #23490 s = Series([1, 2, 3]) s2 =
Series([4, 5, 6])
pandas.Series
# Copyright 2017 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Data Commons Python Client API unit tests. Unit tests for Population and Observation methods in the Data Commons Python Client API. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import base64 from pandas.util.testing import assert_series_equal from unittest import mock import datacommons as dc import datacommons.utils as utils import pandas as pd import json import unittest import zlib def post_request_mock(*args, **kwargs): """ A mock POST requests sent in the requests package. """ # Create the mock response object. class MockResponse: def __init__(self, json_data, status_code): self.json_data = json_data self.status_code = status_code def json(self): return self.json_data # Get the request json and allowed constraining properties req = kwargs['json'] headers = kwargs['headers'] constrained_props = [ { 'property': 'placeOfBirth', 'value': 'BornInOtherStateInTheUnitedStates' }, { 'property': 'age', 'value': 'Years5To17' } ] # If the API key does not match, then return 403 Forbidden if 'x-api-key' not in headers or headers['x-api-key'] != 'TEST-API-KEY': return MockResponse({}, 403) # Mock responses for post requests to get_populations. if args[0] == utils._API_ROOT + utils._API_ENDPOINTS['get_populations']\ and req['population_type'] == 'Person'\ and req['pvs'] == constrained_props: if req['dcids'] == ['geoId/06085', 'geoId/4805000']: # Response returned when querying for multiple valid dcids. res_json = json.dumps([ { 'dcid': 'geoId/06085', 'population': 'dc/p/crgfn8blpvl35' }, { 'dcid': 'geoId/4805000', 'population': 'dc/p/f3q9whmjwbf36' } ]) return MockResponse({'payload': res_json}, 200) if req['dcids'] == ['geoId/06085', 'dc/MadDcid']: # Response returned when querying for a dcid that does not exist. res_json = json.dumps([ { 'dcid': 'geoId/06085', 'population': 'dc/p/crgfn8blpvl35' }, ]) return MockResponse({'payload': res_json}, 200) if req['dcids'] == ['dc/MadDcid', 'dc/MadderDcid'] or req['dcids'] == []: # Response returned when both given dcids do not exist or no dcids are # provided to the method. res_json = json.dumps([]) return MockResponse({'payload': res_json}, 200) # Mock responses for post requests to get_observations if args[0] == utils._API_ROOT + utils._API_ENDPOINTS['get_observations']\ and req['measured_property'] == 'count'\ and req['stats_type'] == 'measuredValue'\ and req['observation_date'] == '2018-12'\ and req['observation_period'] == 'P1M'\ and req['measurement_method'] == 'BLSSeasonallyAdjusted': if req['dcids'] == ['dc/p/x6t44d8jd95rd', 'dc/p/lr52m1yr46r44', 'dc/p/fs929fynprzs']: # Response returned when querying for multiple valid dcids. res_json = json.dumps([ { 'dcid': 'dc/p/x6t44d8jd95rd', 'observation': '18704962.000000' }, { 'dcid': 'dc/p/lr52m1yr46r44', 'observation': '3075662.000000' }, { 'dcid': 'dc/p/fs929fynprzs', 'observation': '1973955.000000' } ]) return MockResponse({'payload': res_json}, 200) if req['dcids'] == ['dc/p/x6t44d8jd95rd', 'dc/MadDcid']: # Response returned when querying for a dcid that does not exist. res_json = json.dumps([ { 'dcid': 'dc/p/x6t44d8jd95rd', 'observation': '18704962.000000' }, ]) return MockResponse({'payload': res_json}, 200) if req['dcids'] == ['dc/MadDcid', 'dc/MadderDcid'] or req['dcids'] == []: # Response returned when both given dcids do not exist or no dcids are # provided to the method. res_json = json.dumps([]) return MockResponse({'payload': res_json}, 200) # Mock responses for post requests to get_place_obs if args[0] == utils._API_ROOT + utils._API_ENDPOINTS['get_place_obs']\ and req['place_type'] == 'City'\ and req['observation_date'] == '2017'\ and req['population_type'] == 'Person'\ and req['pvs'] == constrained_props: res_json = json.dumps({ 'places': [ { 'name': '<NAME>', 'place': 'geoId/4247344', 'populations': { 'dc/p/pq6frs32sfvk': { 'observations': [ { 'marginOfError': 39, 'measuredProp': 'count', 'measuredValue': 67, } ], } } } ] }) return MockResponse({ 'payload': base64.b64encode(zlib.compress(res_json.encode('utf-8'))) }, 200) # Otherwise, return an empty response and a 404. return MockResponse({}, 404) def get_request_mock(*args, **kwargs): """ A mock GET requests sent in the requests package. """ # Create the mock response object. class MockResponse: def __init__(self, json_data, status_code): self.json_data = json_data self.status_code = status_code def json(self): return self.json_data headers = kwargs['headers'] # If the API key does not match, then return 403 Forbidden if 'x-api-key' not in headers or headers['x-api-key'] != 'TEST-API-KEY': return MockResponse({}, 403) # Mock responses for get requests to get_pop_obs. if args[0] == utils._API_ROOT + utils._API_ENDPOINTS['get_pop_obs'] + '?dcid=geoId/06085': # Response returned when querying for a city in the graph. res_json = json.dumps({ 'name': 'Mountain View', 'placeType': 'City', 'populations': { 'dc/p/013ldrstf6lnf': { 'numConstraints': 6, 'observations': [ { 'marginOfError': 119, 'measuredProp': 'count', 'measuredValue': 225, 'measurementMethod': 'CensusACS5yrSurvey', 'observationDate': '2014' }, { 'marginOfError': 108, 'measuredProp': 'count', 'measuredValue': 180, 'measurementMethod': 'CensusACS5yrSurvey', 'observationDate': '2012' } ], 'popType': 'Person', 'propertyValues': { 'age': 'Years16Onwards', 'gender': 'Male', 'income': 'USDollar30000To34999', 'incomeStatus': 'WithIncome', 'race': 'USC_HispanicOrLatinoRace', 'workExperience': 'USC_NotWorkedFullTime' } } } }) return MockResponse({ 'payload': base64.b64encode(zlib.compress(res_json.encode('utf-8'))) }, 200) # Otherwise, return an empty response and a 404. return MockResponse({}, 404) class TestGetPopulations(unittest.TestCase): """ Unit tests for get_populations. """ _constraints = { 'placeOfBirth': 'BornInOtherStateInTheUnitedStates', 'age': 'Years5To17' } @mock.patch('requests.post', side_effect=post_request_mock) def test_multiple_dcids(self, post_mock): """ Calling get_populations with proper dcids returns valid results. """ # Set the API key dc.set_api_key('TEST-API-KEY') # Call get_populations populations = dc.get_populations(['geoId/06085', 'geoId/4805000'], 'Person', constraining_properties=self._constraints) self.assertDictEqual(populations, { 'geoId/06085': 'dc/p/crgfn8blpvl35', 'geoId/4805000': 'dc/p/f3q9whmjwbf36' }) @mock.patch('requests.post', side_effect=post_request_mock) def test_bad_dcids(self, post_mock): """ Calling get_populations with dcids that do not exist returns empty results. """ # Set the API key dc.set_api_key('TEST-API-KEY') # Call get_populations pops_1 = dc.get_populations(['geoId/06085', 'dc/MadDcid'], 'Person', constraining_properties=self._constraints) pops_2 = dc.get_populations(['dc/MadDcid', 'dc/MadderDcid'], 'Person', constraining_properties=self._constraints) # Verify the results self.assertDictEqual(pops_1, {'geoId/06085': 'dc/p/crgfn8blpvl35'}) self.assertDictEqual(pops_2, {}) @mock.patch('requests.post', side_effect=post_request_mock) def test_no_dcids(self, post_mock): """ Calling get_populations with no dcids returns empty results. """ # Set the API key dc.set_api_key('TEST-API-KEY') pops = dc.get_populations( [], 'Person', constraining_properties=self._constraints) self.assertDictEqual(pops, {}) # ---------------------------- PANDAS UNIT TESTS ---------------------------- @mock.patch('requests.post', side_effect=post_request_mock) def test_series_multiple_dcids(self, post_mock): """ Calling get_populations with a Pandas Series and proper dcids returns a Pandas Series with valid results. """ # Set the API key dc.set_api_key('TEST-API-KEY') # Get the input and expected output dcids = pd.Series(['geoId/06085', 'geoId/4805000']) expected = pd.Series(['dc/p/crgfn8blpvl35', 'dc/p/f3q9whmjwbf36']) # Call get_populations actual = dc.get_populations( dcids, 'Person', constraining_properties=self._constraints) assert_series_equal(actual, expected) @mock.patch('requests.post', side_effect=post_request_mock) def test_series_bad_dcids(self, post_mock): """ Calling get_populations with a Pandas Series and dcids that do not exist returns empty results. """ # Set the API key dc.set_api_key('TEST-API-KEY') # Get input and expected output dcids_1 = pd.Series(['geoId/06085', 'dc/MadDcid']) dcids_2 = pd.Series(['dc/MadDcid', 'dc/MadderDcid']) expected_1 = pd.Series(['dc/p/crgfn8blpvl35', '']) expected_2 =
pd.Series(['', ''])
pandas.Series
import math import pandas as pd import numpy as np import matplotlib.pyplot as plt def clean_portfolio(portfolio): """ Clean the portfolio dataset. - It makes columns for the channels - Changes the name of the id column to offer_id Input: - portfolio: original dataset Returns: - portfolio_clean """ portfolio_clean = portfolio.copy() # Create dummy columns for the channels column d_chann = pd.get_dummies(portfolio_clean.channels.apply(pd.Series).stack(), prefix="channel").sum(level=0) portfolio_clean = pd.concat([portfolio_clean, d_chann], axis=1, sort=False) portfolio_clean.drop(columns='channels', inplace=True) # Change column name portfolio_clean.rename(columns={'id':'offer_id'}, inplace=True) return portfolio_clean def clean_profile(profile): """ Clean the profile dataset. - Fix the date format - Change the column name id to customer_id - Create column to identify customers with demographic data - Add dummy columns for gender Input: - profile: original dataset Returns: - profile_clean """ profile_clean = profile.copy() # Transform date from int to datetime date = lambda x: pd.to_datetime(str(x), format='%Y%m%d') profile_clean.became_member_on = profile_clean.became_member_on.apply(date) # Create column that separates customers with valida data profile_clean['valid'] = (profile_clean.age != 118).astype(int) # Change the name of id column to customer_id profile_clean.rename(columns={'id':'customer_id'}, inplace=True) # Create dummy columns for the gender column dummy_gender = pd.get_dummies(profile_clean.gender, prefix="gender") profile_clean = pd.concat([profile_clean, dummy_gender], axis=1, sort=False) return profile_clean def clean_transcript(transcript): """ Clean the transcript dataset. - Split value in several columns for offers and transactions - Split event column into sevelar columns - Change column name person to customer_id Input: - transcript: original dataset Returns: - transcript_clean """ transcript_clean = transcript.copy() # Split event into several dummy columns transcript_clean.event = transcript_clean.event.str.replace(' ', '_') dummy_event = pd.get_dummies(transcript_clean.event, prefix="event") transcript_clean = pd.concat([transcript_clean, dummy_event], axis=1, sort=False) transcript_clean.drop(columns='event', inplace=True) # Get the offer_id data from the value column transcript_clean['offer_id'] = [[*v.values()][0] if [*v.keys()][0] in ['offer id', 'offer_id'] else None for v in transcript_clean.value] # Get the transaction amount data from the value column transcript_clean['amount'] = [np.round([*v.values()][0], decimals=2) if [*v.keys()][0] == 'amount' else None for v in transcript_clean.value] transcript_clean.drop(columns='value', inplace=True) # Change the name of person column to customer_id transcript_clean.rename(columns={'person':'customer_id'}, inplace=True) return transcript_clean def merge_datasets(portfolio_clean, profile_clean, transcript_clean): """ Merge the three data sets into one Input: - portfolio_clean - profile_clean - transcript_clean Output: - df: merged dataframe """ trans_prof = pd.merge(transcript_clean, profile_clean, on='customer_id', how="left") df =
pd.merge(trans_prof, portfolio_clean, on='offer_id', how='left')
pandas.merge
#!/usr/bin/python3 # import the module import os import glob import pandas as pd import csv from sqlalchemy import create_engine import psycopg2 import config #you need to create this config.py file and update the variables with your database, username and password import subprocess import sys #Note: you need to indicate which directory (e.g. path/to/pur1997) in argv[1] # Get a database connection conn_string = "host="+config.HOST+" dbname="+config.DB+" user="+config.username+" password="+config.password # Get a database connection conn = psycopg2.connect(conn_string) # Create a cursor object. Allows us to execute the SQL query cursor = conn.cursor() def load_data(schema, table): sql_command = "SELECT * FROM {}.{};".format(str(schema), str(table)) # Load the data data = pd.read_sql(sql_command, conn) return (data) # Download data that is already uploaded (find where you left off) chem_df = load_data(config.dpr_schema, config.use_data) # make lists for filtering the data already_in = list(chem_df['use_no']) chem_list = list(
pd.read_csv("/home/bmain/pesticide/chem_com.csv")
pandas.read_csv
# -*- coding: utf-8 -*- from __future__ import print_function from datetime import datetime, timedelta import functools import itertools import numpy as np import numpy.ma as ma import numpy.ma.mrecords as mrecords from numpy.random import randn import pytest from pandas.compat import ( PY3, PY36, OrderedDict, is_platform_little_endian, lmap, long, lrange, lzip, range, zip) from pandas.core.dtypes.cast import construct_1d_object_array_from_listlike from pandas.core.dtypes.common import is_integer_dtype import pandas as pd from pandas import ( Categorical, DataFrame, Index, MultiIndex, Series, Timedelta, Timestamp, compat, date_range, isna) from pandas.tests.frame.common import TestData import pandas.util.testing as tm MIXED_FLOAT_DTYPES = ['float16', 'float32', 'float64'] MIXED_INT_DTYPES = ['uint8', 'uint16', 'uint32', 'uint64', 'int8', 'int16', 'int32', 'int64'] class TestDataFrameConstructors(TestData): def test_constructor(self): df = DataFrame() assert len(df.index) == 0 df = DataFrame(data={}) assert len(df.index) == 0 def test_constructor_mixed(self): index, data = tm.getMixedTypeDict() # TODO(wesm), incomplete test? indexed_frame = DataFrame(data, index=index) # noqa unindexed_frame = DataFrame(data) # noqa assert self.mixed_frame['foo'].dtype == np.object_ def test_constructor_cast_failure(self): foo = DataFrame({'a': ['a', 'b', 'c']}, dtype=np.float64) assert foo['a'].dtype == object # GH 3010, constructing with odd arrays df = DataFrame(np.ones((4, 2))) # this is ok df['foo'] = np.ones((4, 2)).tolist() # this is not ok pytest.raises(ValueError, df.__setitem__, tuple(['test']), np.ones((4, 2))) # this is ok df['foo2'] = np.ones((4, 2)).tolist() def test_constructor_dtype_copy(self): orig_df = DataFrame({ 'col1': [1.], 'col2': [2.], 'col3': [3.]}) new_df = pd.DataFrame(orig_df, dtype=float, copy=True) new_df['col1'] = 200. assert orig_df['col1'][0] == 1. def test_constructor_dtype_nocast_view(self): df = DataFrame([[1, 2]]) should_be_view = DataFrame(df, dtype=df[0].dtype) should_be_view[0][0] = 99 assert df.values[0, 0] == 99 should_be_view = DataFrame(df.values, dtype=df[0].dtype) should_be_view[0][0] = 97 assert df.values[0, 0] == 97 def test_constructor_dtype_list_data(self): df = DataFrame([[1, '2'], [None, 'a']], dtype=object) assert df.loc[1, 0] is None assert df.loc[0, 1] == '2' def test_constructor_list_frames(self): # see gh-3243 result = DataFrame([DataFrame([])]) assert result.shape == (1, 0) result = DataFrame([DataFrame(dict(A=lrange(5)))]) assert isinstance(result.iloc[0, 0], DataFrame) def test_constructor_mixed_dtypes(self): def _make_mixed_dtypes_df(typ, ad=None): if typ == 'int': dtypes = MIXED_INT_DTYPES arrays = [np.array(np.random.rand(10), dtype=d) for d in dtypes] elif typ == 'float': dtypes = MIXED_FLOAT_DTYPES arrays = [np.array(np.random.randint( 10, size=10), dtype=d) for d in dtypes] zipper = lzip(dtypes, arrays) for d, a in zipper: assert(a.dtype == d) if ad is None: ad = dict() ad.update({d: a for d, a in zipper}) return DataFrame(ad) def _check_mixed_dtypes(df, dtypes=None): if dtypes is None: dtypes = MIXED_FLOAT_DTYPES + MIXED_INT_DTYPES for d in dtypes: if d in df: assert(df.dtypes[d] == d) # mixed floating and integer coexinst in the same frame df = _make_mixed_dtypes_df('float') _check_mixed_dtypes(df) # add lots of types df = _make_mixed_dtypes_df('float', dict(A=1, B='foo', C='bar')) _check_mixed_dtypes(df) # GH 622 df = _make_mixed_dtypes_df('int') _check_mixed_dtypes(df) def test_constructor_complex_dtypes(self): # GH10952 a = np.random.rand(10).astype(np.complex64) b = np.random.rand(10).astype(np.complex128) df = DataFrame({'a': a, 'b': b}) assert a.dtype == df.a.dtype assert b.dtype == df.b.dtype def test_constructor_dtype_str_na_values(self, string_dtype): # https://github.com/pandas-dev/pandas/issues/21083 df = DataFrame({'A': ['x', None]}, dtype=string_dtype) result = df.isna() expected = DataFrame({"A": [False, True]}) tm.assert_frame_equal(result, expected) assert df.iloc[1, 0] is None df = DataFrame({'A': ['x', np.nan]}, dtype=string_dtype) assert np.isnan(df.iloc[1, 0]) def test_constructor_rec(self): rec = self.frame.to_records(index=False) if PY3: # unicode error under PY2 rec.dtype.names = list(rec.dtype.names)[::-1] index = self.frame.index df = DataFrame(rec) tm.assert_index_equal(df.columns, pd.Index(rec.dtype.names)) df2 = DataFrame(rec, index=index) tm.assert_index_equal(df2.columns, pd.Index(rec.dtype.names)) tm.assert_index_equal(df2.index, index) rng = np.arange(len(rec))[::-1] df3 = DataFrame(rec, index=rng, columns=['C', 'B']) expected = DataFrame(rec, index=rng).reindex(columns=['C', 'B']) tm.assert_frame_equal(df3, expected) def test_constructor_bool(self): df = DataFrame({0: np.ones(10, dtype=bool), 1: np.zeros(10, dtype=bool)}) assert df.values.dtype == np.bool_ def test_constructor_overflow_int64(self): # see gh-14881 values = np.array([2 ** 64 - i for i in range(1, 10)], dtype=np.uint64) result = DataFrame({'a': values}) assert result['a'].dtype == np.uint64 # see gh-2355 data_scores = [(6311132704823138710, 273), (2685045978526272070, 23), (8921811264899370420, 45), (long(17019687244989530680), 270), (long(9930107427299601010), 273)] dtype = [('uid', 'u8'), ('score', 'u8')] data = np.zeros((len(data_scores),), dtype=dtype) data[:] = data_scores df_crawls = DataFrame(data) assert df_crawls['uid'].dtype == np.uint64 @pytest.mark.parametrize("values", [np.array([2**64], dtype=object), np.array([2**65]), [2**64 + 1], np.array([-2**63 - 4], dtype=object), np.array([-2**64 - 1]), [-2**65 - 2]]) def test_constructor_int_overflow(self, values): # see gh-18584 value = values[0] result = DataFrame(values) assert result[0].dtype == object assert result[0][0] == value def test_constructor_ordereddict(self): import random nitems = 100 nums = lrange(nitems) random.shuffle(nums) expected = ['A%d' % i for i in nums] df = DataFrame(OrderedDict(zip(expected, [[0]] * nitems))) assert expected == list(df.columns) def test_constructor_dict(self): frame = DataFrame({'col1': self.ts1, 'col2': self.ts2}) # col2 is padded with NaN assert len(self.ts1) == 30 assert len(self.ts2) == 25 tm.assert_series_equal(self.ts1, frame['col1'], check_names=False) exp = pd.Series(np.concatenate([[np.nan] * 5, self.ts2.values]), index=self.ts1.index, name='col2') tm.assert_series_equal(exp, frame['col2']) frame = DataFrame({'col1': self.ts1, 'col2': self.ts2}, columns=['col2', 'col3', 'col4']) assert len(frame) == len(self.ts2) assert 'col1' not in frame assert isna(frame['col3']).all() # Corner cases assert len(DataFrame({})) == 0 # mix dict and array, wrong size - no spec for which error should raise # first with pytest.raises(ValueError): DataFrame({'A': {'a': 'a', 'b': 'b'}, 'B': ['a', 'b', 'c']}) # Length-one dict micro-optimization frame = DataFrame({'A': {'1': 1, '2': 2}}) tm.assert_index_equal(frame.index, pd.Index(['1', '2'])) # empty dict plus index idx = Index([0, 1, 2]) frame = DataFrame({}, index=idx) assert frame.index is idx # empty with index and columns idx = Index([0, 1, 2]) frame = DataFrame({}, index=idx, columns=idx) assert frame.index is idx assert frame.columns is idx assert len(frame._series) == 3 # with dict of empty list and Series frame = DataFrame({'A': [], 'B': []}, columns=['A', 'B']) tm.assert_index_equal(frame.index, Index([], dtype=np.int64)) # GH 14381 # Dict with None value frame_none = DataFrame(dict(a=None), index=[0]) frame_none_list = DataFrame(dict(a=[None]), index=[0]) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): assert frame_none.get_value(0, 'a') is None with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): assert frame_none_list.get_value(0, 'a') is None tm.assert_frame_equal(frame_none, frame_none_list) # GH10856 # dict with scalar values should raise error, even if columns passed msg = 'If using all scalar values, you must pass an index' with pytest.raises(ValueError, match=msg): DataFrame({'a': 0.7}) with pytest.raises(ValueError, match=msg): DataFrame({'a': 0.7}, columns=['a']) @pytest.mark.parametrize("scalar", [2, np.nan, None, 'D']) def test_constructor_invalid_items_unused(self, scalar): # No error if invalid (scalar) value is in fact not used: result = DataFrame({'a': scalar}, columns=['b']) expected = DataFrame(columns=['b']) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("value", [2, np.nan, None, float('nan')]) def test_constructor_dict_nan_key(self, value): # GH 18455 cols = [1, value, 3] idx = ['a', value] values = [[0, 3], [1, 4], [2, 5]] data = {cols[c]: Series(values[c], index=idx) for c in range(3)} result = DataFrame(data).sort_values(1).sort_values('a', axis=1) expected = DataFrame(np.arange(6, dtype='int64').reshape(2, 3), index=idx, columns=cols) tm.assert_frame_equal(result, expected) result = DataFrame(data, index=idx).sort_values('a', axis=1) tm.assert_frame_equal(result, expected) result = DataFrame(data, index=idx, columns=cols) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("value", [np.nan, None, float('nan')]) def test_constructor_dict_nan_tuple_key(self, value): # GH 18455 cols = Index([(11, 21), (value, 22), (13, value)]) idx = Index([('a', value), (value, 2)]) values = [[0, 3], [1, 4], [2, 5]] data = {cols[c]: Series(values[c], index=idx) for c in range(3)} result = (DataFrame(data) .sort_values((11, 21)) .sort_values(('a', value), axis=1)) expected = DataFrame(np.arange(6, dtype='int64').reshape(2, 3), index=idx, columns=cols) tm.assert_frame_equal(result, expected) result = DataFrame(data, index=idx).sort_values(('a', value), axis=1) tm.assert_frame_equal(result, expected) result = DataFrame(data, index=idx, columns=cols) tm.assert_frame_equal(result, expected) @pytest.mark.skipif(not PY36, reason='Insertion order for Python>=3.6') def test_constructor_dict_order_insertion(self): # GH19018 # initialization ordering: by insertion order if python>= 3.6 d = {'b': self.ts2, 'a': self.ts1} frame = DataFrame(data=d) expected = DataFrame(data=d, columns=list('ba')) tm.assert_frame_equal(frame, expected) @pytest.mark.skipif(PY36, reason='order by value for Python<3.6') def test_constructor_dict_order_by_values(self): # GH19018 # initialization ordering: by value if python<3.6 d = {'b': self.ts2, 'a': self.ts1} frame = DataFrame(data=d) expected = DataFrame(data=d, columns=list('ab')) tm.assert_frame_equal(frame, expected) def test_constructor_multi_index(self): # GH 4078 # construction error with mi and all-nan frame tuples = [(2, 3), (3, 3), (3, 3)] mi = MultiIndex.from_tuples(tuples) df = DataFrame(index=mi, columns=mi) assert pd.isna(df).values.ravel().all() tuples = [(3, 3), (2, 3), (3, 3)] mi = MultiIndex.from_tuples(tuples) df = DataFrame(index=mi, columns=mi) assert pd.isna(df).values.ravel().all() def test_constructor_error_msgs(self): msg = "Empty data passed with indices specified." # passing an empty array with columns specified. with pytest.raises(ValueError, match=msg): DataFrame(np.empty(0), columns=list('abc')) msg = "Mixing dicts with non-Series may lead to ambiguous ordering." # mix dict and array, wrong size with pytest.raises(ValueError, match=msg): DataFrame({'A': {'a': 'a', 'b': 'b'}, 'B': ['a', 'b', 'c']}) # wrong size ndarray, GH 3105 msg = r"Shape of passed values is \(3, 4\), indices imply \(3, 3\)" with pytest.raises(ValueError, match=msg): DataFrame(np.arange(12).reshape((4, 3)), columns=['foo', 'bar', 'baz'], index=pd.date_range('2000-01-01', periods=3)) # higher dim raise exception with pytest.raises(ValueError, match='Must pass 2-d input'): DataFrame(np.zeros((3, 3, 3)), columns=['A', 'B', 'C'], index=[1]) # wrong size axis labels msg = ("Shape of passed values " r"is \(3, 2\), indices " r"imply \(3, 1\)") with pytest.raises(ValueError, match=msg): DataFrame(np.random.rand(2, 3), columns=['A', 'B', 'C'], index=[1]) msg = ("Shape of passed values " r"is \(3, 2\), indices " r"imply \(2, 2\)") with pytest.raises(ValueError, match=msg): DataFrame(np.random.rand(2, 3), columns=['A', 'B'], index=[1, 2]) msg = ("If using all scalar " "values, you must pass " "an index") with pytest.raises(ValueError, match=msg): DataFrame({'a': False, 'b': True}) def test_constructor_with_embedded_frames(self): # embedded data frames df1 = DataFrame({'a': [1, 2, 3], 'b': [3, 4, 5]}) df2 = DataFrame([df1, df1 + 10]) df2.dtypes str(df2) result = df2.loc[0, 0] tm.assert_frame_equal(result, df1) result = df2.loc[1, 0] tm.assert_frame_equal(result, df1 + 10) def test_constructor_subclass_dict(self): # Test for passing dict subclass to constructor data = {'col1': tm.TestSubDict((x, 10.0 * x) for x in range(10)), 'col2': tm.TestSubDict((x, 20.0 * x) for x in range(10))} df = DataFrame(data) refdf = DataFrame({col: dict(compat.iteritems(val)) for col, val in compat.iteritems(data)}) tm.assert_frame_equal(refdf, df) data = tm.TestSubDict(compat.iteritems(data)) df = DataFrame(data) tm.assert_frame_equal(refdf, df) # try with defaultdict from collections import defaultdict data = {} self.frame['B'][:10] = np.nan for k, v in compat.iteritems(self.frame): dct = defaultdict(dict) dct.update(v.to_dict()) data[k] = dct frame = DataFrame(data) tm.assert_frame_equal(self.frame.sort_index(), frame) def test_constructor_dict_block(self): expected = np.array([[4., 3., 2., 1.]]) df = DataFrame({'d': [4.], 'c': [3.], 'b': [2.], 'a': [1.]}, columns=['d', 'c', 'b', 'a']) tm.assert_numpy_array_equal(df.values, expected) def test_constructor_dict_cast(self): # cast float tests test_data = { 'A': {'1': 1, '2': 2}, 'B': {'1': '1', '2': '2', '3': '3'}, } frame = DataFrame(test_data, dtype=float) assert len(frame) == 3 assert frame['B'].dtype == np.float64 assert frame['A'].dtype == np.float64 frame = DataFrame(test_data) assert len(frame) == 3 assert frame['B'].dtype == np.object_ assert frame['A'].dtype == np.float64 # can't cast to float test_data = { 'A': dict(zip(range(20), tm.makeStringIndex(20))), 'B': dict(zip(range(15), randn(15))) } frame = DataFrame(test_data, dtype=float) assert len(frame) == 20 assert frame['A'].dtype == np.object_ assert frame['B'].dtype == np.float64 def test_constructor_dict_dont_upcast(self): d = {'Col1': {'Row1': 'A String', 'Row2': np.nan}} df = DataFrame(d) assert isinstance(df['Col1']['Row2'], float) dm = DataFrame([[1, 2], ['a', 'b']], index=[1, 2], columns=[1, 2]) assert isinstance(dm[1][1], int) def test_constructor_dict_of_tuples(self): # GH #1491 data = {'a': (1, 2, 3), 'b': (4, 5, 6)} result = DataFrame(data) expected = DataFrame({k: list(v) for k, v in compat.iteritems(data)}) tm.assert_frame_equal(result, expected, check_dtype=False) def test_constructor_dict_multiindex(self): def check(result, expected): return tm.assert_frame_equal(result, expected, check_dtype=True, check_index_type=True, check_column_type=True, check_names=True) d = {('a', 'a'): {('i', 'i'): 0, ('i', 'j'): 1, ('j', 'i'): 2}, ('b', 'a'): {('i', 'i'): 6, ('i', 'j'): 5, ('j', 'i'): 4}, ('b', 'c'): {('i', 'i'): 7, ('i', 'j'): 8, ('j', 'i'): 9}} _d = sorted(d.items()) df = DataFrame(d) expected = DataFrame( [x[1] for x in _d], index=MultiIndex.from_tuples([x[0] for x in _d])).T expected.index = MultiIndex.from_tuples(expected.index) check(df, expected) d['z'] = {'y': 123., ('i', 'i'): 111, ('i', 'j'): 111, ('j', 'i'): 111} _d.insert(0, ('z', d['z'])) expected = DataFrame( [x[1] for x in _d], index=Index([x[0] for x in _d], tupleize_cols=False)).T expected.index = Index(expected.index, tupleize_cols=False) df = DataFrame(d) df = df.reindex(columns=expected.columns, index=expected.index) check(df, expected) def test_constructor_dict_datetime64_index(self): # GH 10160 dates_as_str = ['1984-02-19', '1988-11-06', '1989-12-03', '1990-03-15'] def create_data(constructor): return {i: {constructor(s): 2 * i} for i, s in enumerate(dates_as_str)} data_datetime64 = create_data(np.datetime64) data_datetime = create_data(lambda x: datetime.strptime(x, '%Y-%m-%d')) data_Timestamp = create_data(Timestamp) expected = DataFrame([{0: 0, 1: None, 2: None, 3: None}, {0: None, 1: 2, 2: None, 3: None}, {0: None, 1: None, 2: 4, 3: None}, {0: None, 1: None, 2: None, 3: 6}], index=[Timestamp(dt) for dt in dates_as_str]) result_datetime64 = DataFrame(data_datetime64) result_datetime = DataFrame(data_datetime) result_Timestamp = DataFrame(data_Timestamp) tm.assert_frame_equal(result_datetime64, expected) tm.assert_frame_equal(result_datetime, expected) tm.assert_frame_equal(result_Timestamp, expected) def test_constructor_dict_timedelta64_index(self): # GH 10160 td_as_int = [1, 2, 3, 4] def create_data(constructor): return {i: {constructor(s): 2 * i} for i, s in enumerate(td_as_int)} data_timedelta64 = create_data(lambda x: np.timedelta64(x, 'D')) data_timedelta = create_data(lambda x: timedelta(days=x)) data_Timedelta = create_data(lambda x: Timedelta(x, 'D')) expected = DataFrame([{0: 0, 1: None, 2: None, 3: None}, {0: None, 1: 2, 2: None, 3: None}, {0: None, 1: None, 2: 4, 3: None}, {0: None, 1: None, 2: None, 3: 6}], index=[Timedelta(td, 'D') for td in td_as_int]) result_timedelta64 = DataFrame(data_timedelta64) result_timedelta = DataFrame(data_timedelta) result_Timedelta = DataFrame(data_Timedelta) tm.assert_frame_equal(result_timedelta64, expected) tm.assert_frame_equal(result_timedelta, expected) tm.assert_frame_equal(result_Timedelta, expected) def test_constructor_period(self): # PeriodIndex a = pd.PeriodIndex(['2012-01', 'NaT', '2012-04'], freq='M') b = pd.PeriodIndex(['2012-02-01', '2012-03-01', 'NaT'], freq='D') df = pd.DataFrame({'a': a, 'b': b}) assert df['a'].dtype == a.dtype assert df['b'].dtype == b.dtype # list of periods df = pd.DataFrame({'a': a.astype(object).tolist(), 'b': b.astype(object).tolist()}) assert df['a'].dtype == a.dtype assert df['b'].dtype == b.dtype def test_nested_dict_frame_constructor(self): rng = pd.period_range('1/1/2000', periods=5) df = DataFrame(randn(10, 5), columns=rng) data = {} for col in df.columns: for row in df.index: with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): data.setdefault(col, {})[row] = df.get_value(row, col) result = DataFrame(data, columns=rng) tm.assert_frame_equal(result, df) data = {} for col in df.columns: for row in df.index: with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): data.setdefault(row, {})[col] = df.get_value(row, col) result = DataFrame(data, index=rng).T tm.assert_frame_equal(result, df) def _check_basic_constructor(self, empty): # mat: 2d matrix with shape (3, 2) to input. empty - makes sized # objects mat = empty((2, 3), dtype=float) # 2-D input frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2]) assert len(frame.index) == 2 assert len(frame.columns) == 3 # 1-D input frame = DataFrame(empty((3,)), columns=['A'], index=[1, 2, 3]) assert len(frame.index) == 3 assert len(frame.columns) == 1 # cast type frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2], dtype=np.int64) assert frame.values.dtype == np.int64 # wrong size axis labels msg = r'Shape of passed values is \(3, 2\), indices imply \(3, 1\)' with pytest.raises(ValueError, match=msg): DataFrame(mat, columns=['A', 'B', 'C'], index=[1]) msg = r'Shape of passed values is \(3, 2\), indices imply \(2, 2\)' with pytest.raises(ValueError, match=msg): DataFrame(mat, columns=['A', 'B'], index=[1, 2]) # higher dim raise exception with pytest.raises(ValueError, match='Must pass 2-d input'): DataFrame(empty((3, 3, 3)), columns=['A', 'B', 'C'], index=[1]) # automatic labeling frame = DataFrame(mat) tm.assert_index_equal(frame.index, pd.Index(lrange(2))) tm.assert_index_equal(frame.columns, pd.Index(lrange(3))) frame = DataFrame(mat, index=[1, 2]) tm.assert_index_equal(frame.columns, pd.Index(lrange(3))) frame = DataFrame(mat, columns=['A', 'B', 'C']) tm.assert_index_equal(frame.index, pd.Index(lrange(2))) # 0-length axis frame = DataFrame(empty((0, 3))) assert len(frame.index) == 0 frame = DataFrame(empty((3, 0))) assert len(frame.columns) == 0 def test_constructor_ndarray(self): self._check_basic_constructor(np.ones) frame = DataFrame(['foo', 'bar'], index=[0, 1], columns=['A']) assert len(frame) == 2 def test_constructor_maskedarray(self): self._check_basic_constructor(ma.masked_all) # Check non-masked values mat = ma.masked_all((2, 3), dtype=float) mat[0, 0] = 1.0 mat[1, 2] = 2.0 frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2]) assert 1.0 == frame['A'][1] assert 2.0 == frame['C'][2] # what is this even checking?? mat = ma.masked_all((2, 3), dtype=float) frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2]) assert np.all(~np.asarray(frame == frame)) def test_constructor_maskedarray_nonfloat(self): # masked int promoted to float mat = ma.masked_all((2, 3), dtype=int) # 2-D input frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2]) assert len(frame.index) == 2 assert len(frame.columns) == 3 assert np.all(~np.asarray(frame == frame)) # cast type frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2], dtype=np.float64) assert frame.values.dtype == np.float64 # Check non-masked values mat2 = ma.copy(mat) mat2[0, 0] = 1 mat2[1, 2] = 2 frame = DataFrame(mat2, columns=['A', 'B', 'C'], index=[1, 2]) assert 1 == frame['A'][1] assert 2 == frame['C'][2] # masked np.datetime64 stays (use NaT as null) mat = ma.masked_all((2, 3), dtype='M8[ns]') # 2-D input frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2]) assert len(frame.index) == 2 assert len(frame.columns) == 3 assert isna(frame).values.all() # cast type frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2], dtype=np.int64) assert frame.values.dtype == np.int64 # Check non-masked values mat2 = ma.copy(mat) mat2[0, 0] = 1 mat2[1, 2] = 2 frame = DataFrame(mat2, columns=['A', 'B', 'C'], index=[1, 2]) assert 1 == frame['A'].view('i8')[1] assert 2 == frame['C'].view('i8')[2] # masked bool promoted to object mat = ma.masked_all((2, 3), dtype=bool) # 2-D input frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2]) assert len(frame.index) == 2 assert len(frame.columns) == 3 assert np.all(~np.asarray(frame == frame)) # cast type frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2], dtype=object) assert frame.values.dtype == object # Check non-masked values mat2 = ma.copy(mat) mat2[0, 0] = True mat2[1, 2] = False frame = DataFrame(mat2, columns=['A', 'B', 'C'], index=[1, 2]) assert frame['A'][1] is True assert frame['C'][2] is False def test_constructor_mrecarray(self): # Ensure mrecarray produces frame identical to dict of masked arrays # from GH3479 assert_fr_equal = functools.partial(tm.assert_frame_equal, check_index_type=True, check_column_type=True, check_frame_type=True) arrays = [ ('float', np.array([1.5, 2.0])), ('int', np.array([1, 2])), ('str', np.array(['abc', 'def'])), ] for name, arr in arrays[:]: arrays.append(('masked1_' + name, np.ma.masked_array(arr, mask=[False, True]))) arrays.append(('masked_all', np.ma.masked_all((2,)))) arrays.append(('masked_none', np.ma.masked_array([1.0, 2.5], mask=False))) # call assert_frame_equal for all selections of 3 arrays for comb in itertools.combinations(arrays, 3): names, data = zip(*comb) mrecs = mrecords.fromarrays(data, names=names) # fill the comb comb = {k: (v.filled() if hasattr(v, 'filled') else v) for k, v in comb} expected = DataFrame(comb, columns=names) result = DataFrame(mrecs) assert_fr_equal(result, expected) # specify columns expected = DataFrame(comb, columns=names[::-1]) result = DataFrame(mrecs, columns=names[::-1]) assert_fr_equal(result, expected) # specify index expected = DataFrame(comb, columns=names, index=[1, 2]) result = DataFrame(mrecs, index=[1, 2]) assert_fr_equal(result, expected) def test_constructor_corner_shape(self): df = DataFrame(index=[]) assert df.values.shape == (0, 0) @pytest.mark.parametrize("data, index, columns, dtype, expected", [ (None, lrange(10), ['a', 'b'], object, np.object_), (None, None, ['a', 'b'], 'int64', np.dtype('int64')), (None, lrange(10), ['a', 'b'], int, np.dtype('float64')), ({}, None, ['foo', 'bar'], None, np.object_), ({'b': 1}, lrange(10), list('abc'), int, np.dtype('float64')) ]) def test_constructor_dtype(self, data, index, columns, dtype, expected): df = DataFrame(data, index, columns, dtype) assert df.values.dtype == expected def test_constructor_scalar_inference(self): data = {'int': 1, 'bool': True, 'float': 3., 'complex': 4j, 'object': 'foo'} df = DataFrame(data, index=np.arange(10)) assert df['int'].dtype == np.int64 assert df['bool'].dtype == np.bool_ assert df['float'].dtype == np.float64 assert df['complex'].dtype == np.complex128 assert df['object'].dtype == np.object_ def test_constructor_arrays_and_scalars(self): df = DataFrame({'a': randn(10), 'b': True}) exp = DataFrame({'a': df['a'].values, 'b': [True] * 10}) tm.assert_frame_equal(df, exp) with pytest.raises(ValueError, match='must pass an index'): DataFrame({'a': False, 'b': True}) def test_constructor_DataFrame(self): df = DataFrame(self.frame) tm.assert_frame_equal(df, self.frame) df_casted = DataFrame(self.frame, dtype=np.int64) assert df_casted.values.dtype == np.int64 def test_constructor_more(self): # used to be in test_matrix.py arr = randn(10) dm = DataFrame(arr, columns=['A'], index=np.arange(10)) assert dm.values.ndim == 2 arr = randn(0) dm = DataFrame(arr) assert dm.values.ndim == 2 assert dm.values.ndim == 2 # no data specified dm = DataFrame(columns=['A', 'B'], index=np.arange(10)) assert dm.values.shape == (10, 2) dm = DataFrame(columns=['A', 'B']) assert dm.values.shape == (0, 2) dm = DataFrame(index=np.arange(10)) assert dm.values.shape == (10, 0) # can't cast mat = np.array(['foo', 'bar'], dtype=object).reshape(2, 1) with pytest.raises(ValueError, match='cast'): DataFrame(mat, index=[0, 1], columns=[0], dtype=float) dm = DataFrame(DataFrame(self.frame._series)) tm.assert_frame_equal(dm, self.frame) # int cast dm = DataFrame({'A': np.ones(10, dtype=int), 'B': np.ones(10, dtype=np.float64)}, index=np.arange(10)) assert len(dm.columns) == 2 assert dm.values.dtype == np.float64 def test_constructor_empty_list(self): df = DataFrame([], index=[]) expected = DataFrame(index=[]) tm.assert_frame_equal(df, expected) # GH 9939 df = DataFrame([], columns=['A', 'B']) expected = DataFrame({}, columns=['A', 'B']) tm.assert_frame_equal(df, expected) # Empty generator: list(empty_gen()) == [] def empty_gen(): return yield df = DataFrame(empty_gen(), columns=['A', 'B']) tm.assert_frame_equal(df, expected) def test_constructor_list_of_lists(self): # GH #484 df = DataFrame(data=[[1, 'a'], [2, 'b']], columns=["num", "str"]) assert is_integer_dtype(df['num']) assert df['str'].dtype == np.object_ # GH 4851 # list of 0-dim ndarrays expected = DataFrame({0: np.arange(10)}) data = [np.array(x) for x in range(10)] result = DataFrame(data) tm.assert_frame_equal(result, expected) def test_constructor_sequence_like(self): # GH 3783 # collections.Squence like class DummyContainer(compat.Sequence): def __init__(self, lst): self._lst = lst def __getitem__(self, n): return self._lst.__getitem__(n) def __len__(self, n): return self._lst.__len__() lst_containers = [DummyContainer([1, 'a']), DummyContainer([2, 'b'])] columns = ["num", "str"] result = DataFrame(lst_containers, columns=columns) expected = DataFrame([[1, 'a'], [2, 'b']], columns=columns) tm.assert_frame_equal(result, expected, check_dtype=False) # GH 4297 # support Array import array result = DataFrame({'A': array.array('i', range(10))}) expected = DataFrame({'A': list(range(10))}) tm.assert_frame_equal(result, expected, check_dtype=False) expected = DataFrame([list(range(10)), list(range(10))]) result = DataFrame([array.array('i', range(10)), array.array('i', range(10))]) tm.assert_frame_equal(result, expected, check_dtype=False) def test_constructor_iterable(self): # GH 21987 class Iter(): def __iter__(self): for i in range(10): yield [1, 2, 3] expected = DataFrame([[1, 2, 3]] * 10) result = DataFrame(Iter()) tm.assert_frame_equal(result, expected) def test_constructor_iterator(self): expected = DataFrame([list(range(10)), list(range(10))]) result = DataFrame([range(10), range(10)]) tm.assert_frame_equal(result, expected) def test_constructor_generator(self): # related #2305 gen1 = (i for i in range(10)) gen2 = (i for i in range(10)) expected = DataFrame([list(range(10)), list(range(10))]) result = DataFrame([gen1, gen2]) tm.assert_frame_equal(result, expected) gen = ([i, 'a'] for i in range(10)) result = DataFrame(gen) expected = DataFrame({0: range(10), 1: 'a'}) tm.assert_frame_equal(result, expected, check_dtype=False) def test_constructor_list_of_dicts(self): data = [OrderedDict([['a', 1.5], ['b', 3], ['c', 4], ['d', 6]]), OrderedDict([['a', 1.5], ['b', 3], ['d', 6]]), OrderedDict([['a', 1.5], ['d', 6]]), OrderedDict(), OrderedDict([['a', 1.5], ['b', 3], ['c', 4]]), OrderedDict([['b', 3], ['c', 4], ['d', 6]])] result = DataFrame(data) expected = DataFrame.from_dict(dict(zip(range(len(data)), data)), orient='index') tm.assert_frame_equal(result, expected.reindex(result.index)) result = DataFrame([{}]) expected = DataFrame(index=[0]) tm.assert_frame_equal(result, expected) def test_constructor_ordered_dict_preserve_order(self): # see gh-13304 expected = DataFrame([[2, 1]], columns=['b', 'a']) data = OrderedDict() data['b'] = [2] data['a'] = [1] result = DataFrame(data) tm.assert_frame_equal(result, expected) data = OrderedDict() data['b'] = 2 data['a'] = 1 result = DataFrame([data]) tm.assert_frame_equal(result, expected) def test_constructor_ordered_dict_conflicting_orders(self): # the first dict element sets the ordering for the DataFrame, # even if there are conflicting orders from subsequent ones row_one = OrderedDict() row_one['b'] = 2 row_one['a'] = 1 row_two = OrderedDict() row_two['a'] = 1 row_two['b'] = 2 row_three = {'b': 2, 'a': 1} expected = DataFrame([[2, 1], [2, 1]], columns=['b', 'a']) result = DataFrame([row_one, row_two]) tm.assert_frame_equal(result, expected) expected = DataFrame([[2, 1], [2, 1], [2, 1]], columns=['b', 'a']) result = DataFrame([row_one, row_two, row_three]) tm.assert_frame_equal(result, expected) def test_constructor_list_of_series(self): data = [OrderedDict([['a', 1.5], ['b', 3.0], ['c', 4.0]]), OrderedDict([['a', 1.5], ['b', 3.0], ['c', 6.0]])] sdict = OrderedDict(zip(['x', 'y'], data)) idx = Index(['a', 'b', 'c']) # all named data2 = [Series([1.5, 3, 4], idx, dtype='O', name='x'), Series([1.5, 3, 6], idx, name='y')] result = DataFrame(data2) expected = DataFrame.from_dict(sdict, orient='index')
tm.assert_frame_equal(result, expected)
pandas.util.testing.assert_frame_equal
# encoding: utf-8 import argparse import os import sys import torch from torch.backends import cudnn import numpy as np import random sys.path.append('.') from data import make_data_loader from model import build_model from engine.evaluator import do_inference from config import cfg from utils.logger import setup_logger from torch.utils.tensorboard import SummaryWriter from utils.tensorboard_logger import record_dict_into_tensorboard def seed_torch(seed=2018): random.seed(seed) os.environ['PYTHONHASHSEED'] = str(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.backends.cudnn.deterministic = True def eval(cfg, target_set_name="test"): # prepare dataset train_loader, val_loader, test_loader = make_data_loader(cfg, is_train=False) # build model and load parameter model = build_model(cfg) if os.path.exists(cfg.TEST.WEIGHT) != True: if os.path.exists("./pretrained/") != True: os.makedirs("./pretrained") os.system("wget -O './pretrained/msa_transformer_model.pth' https://tmp-titan.vx-cdn.com:616/file/613ca738783a8/msa_transformer_model.pth") model.load_param("Overall", cfg.TEST.WEIGHT) #"Overall", "None" # pass alphabet to construct batch converter for dataset train_loader.dataset.get_batch_converter(model.backbone_alphabet) val_loader.dataset.get_batch_converter(model.backbone_alphabet) test_loader.dataset.get_batch_converter(model.backbone_alphabet) # input data_loader if target_set_name == "train": input_data_loader = train_loader elif target_set_name == "valid": input_data_loader = val_loader elif target_set_name == "test": input_data_loader = test_loader else: raise Exception("Wrong Dataset Name!") # build and launch engine for evaluation Eval_Record = do_inference(cfg, model, input_data_loader, None, target_set_name=target_set_name, plot_flag=True) # logging with tensorboard summaryWriter model_epoch = cfg.TEST.WEIGHT.split('/')[-1].split('.')[0].split('_')[-1] model_iteration = len(train_loader) * int(model_epoch) if model_epoch.isdigit() == True else 0 writer_test = SummaryWriter(cfg.SOLVER.OUTPUT_DIR + "/summary/eval_" + target_set_name) record_dict_into_tensorboard(writer_test, Eval_Record, model_iteration) writer_test.close() # record in csv csv_name = "metrics" import pandas as pd if Eval_Record.get("Contact Prediction") is not None: sheet_name = "Contact-Prediction" col_names = ["dataset"] value = [cfg.DATA.DATASETS.NAMES] for k in Eval_Record["Contact Prediction"]["Precision"].keys(): col_names.append(k) value.append(Eval_Record["Contact Prediction"]["Precision"][k]) df = pd.DataFrame([value], columns=col_names) xls_filename = os.path.join(cfg.SOLVER.OUTPUT_DIR, "{}.xlsx".format(csv_name)) if os.path.exists(xls_filename) != True: with pd.ExcelWriter(xls_filename, engine="openpyxl", mode='w') as writer: df.to_excel(writer, sheet_name=sheet_name) else: with
pd.ExcelWriter(xls_filename, engine="openpyxl", mode='a')
pandas.ExcelWriter
from .nwb_interface import NWBDataset from .chop import ChopInterface, chop_data, merge_chops from itertools import product import numpy as np import pandas as pd import h5py import sys import os import logging logger = logging.getLogger(__name__) PARAMS = { 'mc_maze': { 'spk_field': 'spikes', 'hospk_field': 'heldout_spikes', 'behavior_source': 'data', 'behavior_field': 'hand_vel', 'lag': 100, 'make_params': { 'align_field': 'move_onset_time', 'align_range': (-250, 450), }, 'eval_make_params': { 'align_field': 'move_onset_time', 'align_range': (-250, 450), }, 'fp_len': 200, 'psth_params': { 'cond_fields': ['trial_type', 'trial_version'], 'make_params': { 'align_field': 'move_onset_time', 'align_range': (-250, 450), }, 'kern_sd': 70, }, }, 'mc_rtt': { 'spk_field': 'spikes', 'hospk_field': 'heldout_spikes', 'rate_field': 'rates', 'horate_field': 'heldout_rates', 'behavior_source': 'data', 'behavior_field': 'finger_vel', 'lag': 140, 'make_params': { 'align_field': 'start_time', 'align_range': (0, 600), 'allow_overlap': True, }, 'eval_make_params': { 'align_field': 'start_time', 'align_range': (0, 600), 'allow_overlap': True, }, 'fp_len': 200, }, 'area2_bump': { 'spk_field': 'spikes', 'hospk_field': 'heldout_spikes', 'rate_field': 'rates', 'horate_field': 'heldout_rates', 'behavior_source': 'data', 'behavior_field': 'hand_vel', 'decode_masks': lambda x: np.stack([x.ctr_hold_bump == 0, x.ctr_hold_bump == 1]).T, 'lag': -20, 'make_params': { 'align_field': 'move_onset_time', 'align_range': (-100, 500), }, 'eval_make_params': { 'align_field': 'move_onset_time', 'align_range': (-100, 500), 'allow_overlap': True, }, 'fp_len': 200, 'psth_params': { 'cond_fields': ['cond_dir', 'ctr_hold_bump'], 'make_params': { 'align_field': 'move_onset_time', 'align_range': (-100, 500), }, 'kern_sd': 40, }, }, 'dmfc_rsg': { 'spk_field': 'spikes', 'hospk_field': 'heldout_spikes', 'behavior_source': 'trial_info', 'behavior_mask': lambda x: x.is_outlier == 0, 'behavior_field': ['is_eye', 'theta', 'is_short', 'ts', 'tp'], 'jitter': lambda x: np.stack([ np.zeros(len(x)), np.where(x.split == 'test', np.zeros(len(x)), np.clip(1500.0 - x.get('tp', pd.Series(np.nan)).to_numpy(), 0.0, 300.0)) ]).T, 'make_params': { 'align_field': 'go_time', 'align_range': (-1500, 0), 'allow_overlap': True, }, 'eval_make_params': { 'start_field': 'set_time', 'end_field': 'go_time', 'align_field': 'go_time', }, 'eval_tensor_params': { 'seg_len': 1500, 'pad': 'front' }, 'fp_len': 200, 'psth_params': { 'cond_fields': ['is_eye', 'theta', 'is_short', 'ts'], 'make_params': { 'start_field': 'set_time', 'end_field': 'go_time', 'align_field': 'go_time', }, 'kern_sd': 70, 'pad': 'front', 'seg_len': 1500, 'skip_mask': lambda x: x.is_outlier == 1, }, }, 'mc_maze_large': { 'spk_field': 'spikes', 'hospk_field': 'heldout_spikes', 'rate_field': 'rates', 'horate_field': 'heldout_rates', 'behavior_source': 'data', 'behavior_field': 'hand_vel', 'lag': 120, 'make_params': { 'align_field': 'move_onset_time', 'align_range': (-250, 450), }, 'eval_make_params': { 'align_field': 'move_onset_time', 'align_range': (-250, 450), }, 'fp_len': 200, 'psth_params': { 'cond_fields': ['trial_type', 'trial_version'], 'make_params': { 'align_field': 'move_onset_time', 'align_range': (-250, 450), }, 'kern_sd': 50, }, }, 'mc_maze_medium': { 'spk_field': 'spikes', 'hospk_field': 'heldout_spikes', 'rate_field': 'rates', 'horate_field': 'heldout_rates', 'behavior_source': 'data', 'behavior_field': 'hand_vel', 'lag': 120, 'make_params': { 'align_field': 'move_onset_time', 'align_range': (-250, 450), }, 'eval_make_params': { 'align_field': 'move_onset_time', 'align_range': (-250, 450), }, 'fp_len': 200, 'psth_params': { 'cond_fields': ['trial_type', 'trial_version'], 'make_params': { 'align_field': 'move_onset_time', 'align_range': (-250, 450), }, 'kern_sd': 50, }, }, 'mc_maze_small': { 'spk_field': 'spikes', 'hospk_field': 'heldout_spikes', 'rate_field': 'rates', 'horate_field': 'heldout_rates', 'behavior_source': 'data', 'behavior_field': 'hand_vel', 'lag': 120, 'make_params': { 'align_field': 'move_onset_time', 'align_range': (-250, 450), }, 'eval_make_params': { 'align_field': 'move_onset_time', 'align_range': (-250, 450), }, 'fp_len': 200, 'psth_params': { 'cond_fields': ['trial_type', 'trial_version'], 'make_params': { 'align_field': 'move_onset_time', 'align_range': (-250, 450), }, 'kern_sd': 50, }, }, } def make_train_input_tensors(dataset, dataset_name, trial_split='train', update_params=None, save_file=True, return_dict=True, save_path="train_input.h5", include_behavior=False, include_forward_pred=False, seed=0): """Makes model training input tensors. Creates 3d arrays containing heldin and heldout spikes for train trials (and other data if indicated) and saves them as .h5 files and/or returns them in a dict Parameters ---------- dataset : NWBDataset An instance of NWBDataset to make tensors from dataset_name : {'mc_maze', 'mc_rtt', 'area2_bum', 'dmfc_rsg', 'mc_maze_large', 'mc_maze_medium', 'mc_maze_small'} Name of dataset. Used to select default parameters from PARAMS trial_split : {'train', 'val'}, array-like, or list, optional The selection of trials to make the tensors with. It can be the predefined trial splits 'train' or 'val', an array-like boolean mask (see the include_trials argument of `NWBDataset.make_trial_data`), or a list containing the previous two types, which will include trials that are in any of the splits in the list. By default 'train' update_params : dict, optional New parameters with which to update default dict from PARAMS save_file : bool, optional Whether to save the reshaped data to an h5 file, by default True return_dict : bool, optional Whether to return the reshaped data in a data dict with the same keys as the h5 files, by default True save_path : str, optional Path to where the h5 output file should be saved include_behavior : bool, optional Whether to include behavioral data in the returned tensors, by default False include_forward_pred : bool, optional Whether to include forward-prediction spiking data in the returned tensors, by default False seed : int, optional Seed for random generator used for jitter Returns ------- dict of np.array A dict containing 3d numpy arrays of spiking data for indicated trials, and possibly additional data based on provided arguments """ assert isinstance(dataset, NWBDataset), "`dataset` must be an instance of NWBDataset" assert dataset_name in PARAMS.keys(), f"`dataset_name` must be one of {list(PARAMS.keys())}" assert isinstance(trial_split, (pd.Series, np.ndarray, list)) or trial_split in ['train', 'val'], \ "Invalid `trial_split` argument. Please refer to the documentation for valid choices" # Fetch and update params params = PARAMS[dataset_name].copy() if update_params is not None: params.update(update_params) # Add filename extension if necessary if not save_path.endswith('.h5'): save_path = save_path + '.h5' # unpack params spk_field = params['spk_field'] hospk_field = params['hospk_field'] make_params = params['make_params'].copy() jitter = params.get('jitter', None) # Prep mask trial_mask = _prep_mask(dataset, trial_split) # Prep jitter if necessary if jitter is not None: np.random.seed(seed) jitter_vals = _prep_jitter(dataset, trial_mask, jitter) align_field = make_params.get('align_field', make_params.get('start_field', 'start_time')) align_vals = dataset.trial_info[trial_mask][align_field] align_jit = align_vals + pd.to_timedelta(jitter_vals, unit='ms') align_jit.name = align_field.replace('_time', '_jitter_time') dataset.trial_info =
pd.concat([dataset.trial_info, align_jit], axis=1)
pandas.concat
import sys import itertools from pathlib import Path from matplotlib import pyplot as plt import pandas as pd import seaborn as sns from matplotlib import cm FIGURES_DIR = ( Path(__file__).resolve().parents[2] / "figures" / "ukbiobank" / Path(sys.argv[0]).stem ) FIGURES_DIR.mkdir(exist_ok=True, parents=True) TAB_COLORS = [cm.tab10(i) for i in range(10)] TAB_COLORS = [cm.Pastel2(i) for i in range(10)] TAB_COLORS = [cm.Pastel1(i) for i in range(10)] TAB_COLORS = [cm.Set2(i) for i in range(10)] data_dir = Path(__file__).parent / "data" score_files = data_dir.glob("scores_*.csv") scores = [] for sf in score_files: scores.append(pd.read_csv(str(sf))) df =
pd.concat(scores, ignore_index=False)
pandas.concat
"""Module to support machine learning of activity states from acc data""" from accelerometer import utils from accelerometer.models import MODELS from io import BytesIO import numpy as np import os import pandas as pd from sklearn.ensemble import RandomForestClassifier import sklearn.ensemble._forest as forest import sklearn.metrics as metrics from sklearn.metrics import confusion_matrix import joblib import tarfile import warnings import urllib import pathlib import shutil def activityClassification(epochFile, activityModel="walmsley"): """Perform classification of activity states from epoch feature data Based on a balanced random forest with a Hidden Markov Model containing transitions between predicted activity states and emissions trained using a free-living groundtruth to identify pre-defined classes of behaviour from accelerometer data. :param str epochFile: Input csv file of processed epoch data :param str activityModel: Input tar model file which contains random forest pickle model, HMM priors/transitions/emissions npy files, and npy file of METs for each activity state :return: Pandas dataframe of activity epoch data with one-hot encoded labels :rtype: pandas.DataFrame :return: Activity state labels :rtype: list(str) """ activityModel = resolveModelPath(activityModel) X = epochFile featureColsFile = getFileFromTar(activityModel, 'featureCols.txt').getvalue() featureColsList = featureColsFile.decode().split('\n') featureCols = list(filter(None, featureColsList)) with pd.option_context('mode.use_inf_as_null', True): null_rows = X[featureCols].isnull().any(axis=1) print(null_rows.sum(), "rows with missing (NaN, None, or NaT) or Inf values, out of", len(X)) X['label'] = 'none' X.loc[null_rows, 'label'] = 'inf_or_null' # Setup RF # Ignore warnings on deployed model using different version of pandas with warnings.catch_warnings(): warnings.simplefilter("ignore", category=UserWarning) rf = joblib.load(getFileFromTar(activityModel, 'rfModel.pkl')) labels = rf.classes_.tolist() rfPredictions = rf.predict(X.loc[~null_rows, featureCols].to_numpy()) # Free memory del rf # Setup HMM priors = np.load(getFileFromTar(activityModel, 'hmmPriors.npy')) transitions = np.load(getFileFromTar(activityModel, 'hmmTransitions.npy')) emissions = np.load(getFileFromTar(activityModel, 'hmmEmissions.npy')) hmmPredictions = viterbi(rfPredictions.tolist(), labels, priors, transitions, emissions) # Save predictions to pandas dataframe X.loc[~null_rows, 'label'] = hmmPredictions # Perform MET prediction... # Pandas .replace method has a small bug # See https://github.com/pandas-dev/pandas/issues/23305 # We need to force type met_vals = np.load(getFileFromTar(activityModel, 'METs.npy')) met_dict = dict(zip(labels, met_vals)) X.loc[~null_rows, 'MET'] = X.loc[~null_rows, 'label'].replace(met_dict).astype('float') # Apply one-hot encoding for l in labels: X[l] = 0 X.loc[X['label'] == l, l] = 1 # Null values aren't one-hot encoded, so set such instances to NaN for l in labels: X.loc[X[labels].sum(axis=1) == 0, l] = np.nan return X, labels MIN_TRAIN_CLASS_COUNT = 100 def trainClassificationModel( trainingFile, labelCol="label", participantCol="participant", atomicLabelCol="annotation", metCol="MET", featuresTxt="activityModels/features.txt", trainParticipants=None, testParticipants=None, rfThreads=1, rfTrees=1000, rfFeats=None, rfDepth=None, outputPredict="activityModels/test-predictions.csv", outputModel=None ): """Train model to classify activity states from epoch feature data Based on a balanced random forest with a Hidden Markov Model containing transitions between predicted activity states and emissions trained using the input training file to identify pre-defined classes of behaviour from accelerometer data. :param str trainingFile: Input csv file of training data, pre-sorted by time :param str labelCol: Input label column :param str participantCol: Input participant column :param str atomicLabelCol: Input 'atomic' annotation e.g. 'walking with dog' vs. 'walking' :param str metCol: Input MET column :param str featuresTxt: Input txt file listing feature column names :param str trainParticipants: Input comma separated list of participant IDs to train on. :param str testParticipants: Input comma separated list of participant IDs to test on. :param int rfThreads: Input num threads to use when training random forest :param int rfTrees: Input num decision trees to include in random forest :param str outputPredict: Output CSV of person, label, predicted :param str outputModel: Output tarfile object which contains random forest pickle model, HMM priors/transitions/emissions npy files, and npy file of METs for each activity state. Will only output trained model if this is not null e.g. "activityModels/sample-model.tar" :return: New model written to <outputModel> OR csv of test predictions written to <outputPredict> :rtype: void """ # Load list of features to use in analysis featureCols = getListFromTxtFile(featuresTxt) # Load in participant information, and remove null/messy labels/features train = pd.read_csv(trainingFile) train = train[~pd.isnull(train[labelCol])] allCols = [participantCol, labelCol, atomicLabelCol, metCol] + featureCols with pd.option_context('mode.use_inf_as_null', True): train = train[allCols].dropna(axis=0, how='any') # Reduce size of train/test sets if we are training/testing on some people if testParticipants is not None: testPIDs = testParticipants.split(',') test = train[train[participantCol].isin(testPIDs)] train = train[~train[participantCol].isin(testPIDs)] if trainParticipants is not None: trainPIDs = trainParticipants.split(',') train = train[train[participantCol].isin(trainPIDs)] # Train Random Forest model # First "monkeypatch" RF function to perform per-class balancing global MIN_TRAIN_CLASS_COUNT MIN_TRAIN_CLASS_COUNT = train[labelCol].value_counts().min() forest._parallel_build_trees = _parallel_build_trees # Then train RF model (which include per-class balancing) rfClassifier = RandomForestClassifier(n_estimators=rfTrees, n_jobs=rfThreads, max_features=rfFeats, max_depth=rfDepth, oob_score=True) rfModel = rfClassifier.fit(train[featureCols], train[labelCol].tolist()) # Train Hidden Markov Model states, priors, emissions, transitions = train_HMM(rfModel, train[labelCol], labelCol) rfModel.oob_decision_function_ = None # out of bound errors are no longer needed # Estimate usual METs-per-class METs = [] for s in states: MET = train[train[labelCol] == s].groupby(atomicLabelCol)[metCol].mean().mean() METs += [MET] # Now write out model if outputModel is not None: saveModelsToTar(outputModel, featureCols, rfModel, priors, transitions, emissions, METs) # Assess model performance on test participants if testParticipants is not None: print('test on participant(s):, ', testParticipants) labels = rfModel.classes_.tolist() rfPredictions = rfModel.predict(test[featureCols]) hmmPredictions = viterbi(rfPredictions.tolist(), labels, priors, transitions, emissions) test['predicted'] = hmmPredictions # And write out to file outCols = [participantCol, labelCol, 'predicted'] test[outCols].to_csv(outputPredict, index=False) print('Output predictions written to: ', outputPredict) def train_HMM(rfModel, y_trainF, labelCol): """Train Hidden Markov Model Use data not considered in construction of random forest to estimate probabilities of: i) starting in a given state; ii) transitioning from one state to another; and iii) probabilitiy of the random forest being correct when predicting a given class (emission probability) :param sklearn.RandomForestClassifier rfModel: Input random forest object :param dataframe.Column y_trainF: Input groundtruth for each intance :param str labelCol: Input label column :return: states - List of unique activity state labels rtype: numpy.array :return: priors - Prior probabilities for each activity state rtype: numpy.array :return: transitions - Probability matrix of transitioning from one activity state to another rtype: numpy.array :return: emissions - Probability matrix of RF prediction being true rtype: numpy.array """ states = rfModel.classes_ # Get out of bag (OOB) predictions from Random Forest predOOB = pd.DataFrame(rfModel.oob_decision_function_) predOOB.columns = states predOOB['labelOOB'] = predOOB.idxmax(axis=1) predOOB['groundTruth'] = y_trainF.values # Initial state probabilities prior = [] for s in states: sProb = len(y_trainF[y_trainF == s]) / (len(y_trainF) * 1.0) prior += [sProb] # Emission probabilities emissions = np.zeros((len(states), len(states))) j = 0 for predictedState in states: k = 0 for actualState in states: emissions[j, k] = predOOB[actualState][predOOB['groundTruth'] == predictedState].sum() emissions[j, k] /= len(predOOB[predOOB['groundTruth'] == predictedState]) k += 1 j += 1 # Transition probabilities train = y_trainF.to_frame() train['nextLabel'] = train[labelCol].shift(-1) transitions = np.zeros((len(states), len(states))) j = 0 for s1 in states: k = 0 for s2 in states: transitions[j, k] = len(train[(train[labelCol] == s1) & (train['nextLabel'] == s2)] ) / (len(train[train[labelCol] == s1]) * 1.0) k += 1 j += 1 # Return HMM matrices return states, prior, emissions, transitions def viterbi(observations, states, priors, transitions, emissions, probabilistic=False): """Perform HMM smoothing over observations via Viteri algorithm :param list(str) observations: List/sequence of activity states :param numpy.array states: List of unique activity state labels :param numpy.array priors: Prior probabilities for each activity state :param numpy.array transitions: Probability matrix of transitioning from one activity state to another :param numpy.array emissions: Probability matrix of RF prediction being true :param bool probabilistic: Write probabilistic output for each state, rather than writing most likely state for any given prediction. :return: Smoothed list/sequence of activity states :rtype: list(str) """ def norm(x): return x / x.sum() tinyNum = 0.000001 nObservations = len(observations) nStates = len(states) v = np.zeros((nObservations, nStates)) # initialise viterbi table # Set prior state values for first observation... for state in range(0, len(states)): v[0, state] = np.log(priors[state] * emissions[state, states.index(observations[0])] + tinyNum) # Fill in remaning matrix observations # Use log space as multiplying successively smaller p values) for k in range(1, nObservations): for state in range(0, len(states)): v[k, state] = np.log(emissions[state, states.index(observations[k])] + tinyNum) + \ np.max(v[k - 1, :] + np.log(transitions[:, state] + tinyNum), axis=0) # Now construct viterbiPath (propagating backwards) viterbiPath = observations # Pick most probable state for final observation viterbiPath[nObservations - 1] = states[np.argmax(v[nObservations - 1, :], axis=0)] # Probabilistic method will give probability of each label if probabilistic: viterbiProba = np.zeros((nObservations, nStates)) # initialize table viterbiProba[nObservations - 1, :] = norm(v[nObservations - 1, :]) # And then work backwards to pick most probable state for all other observations for k in list(reversed(range(0, nObservations - 1))): viterbiPath[k] = states[np.argmax( v[k, :] + np.log(transitions[:, states.index(viterbiPath[k + 1])] + tinyNum), axis=0)] if probabilistic: viterbiProba[k, :] = norm(v[k, :] + np.log(transitions[:, states.index(viterbiPath[k + 1])] + tinyNum)) # Output as list... return viterbiProba if probabilistic else viterbiPath GLOBAL_INDICES = [] def _parallel_build_trees(tree, forest, X, y, sample_weight, tree_idx, n_trees, verbose=0, class_weight=None, n_samples_bootstrap=None): """Monkeypatch scikit learn to use per-class balancing Private function used to fit a single tree in parallel. """ if verbose > 1: print("building tree %d of %d" % (tree_idx + 1, n_trees)) indices = np.empty(shape=0, dtype='int64') for y_class in np.unique(y): sample_indices, selected = np.where(y == y_class) # SELECT min_count FROM CLASS WITH REPLACEMENT sample_indices = np.random.choice(sample_indices, size=MIN_TRAIN_CLASS_COUNT, replace=True) indices = np.concatenate((indices, sample_indices)) # IGNORE sample_weight AND SIMPLY PASS SELECTED DATA tree.fit(X[indices, :], y[indices], check_input=True) GLOBAL_INDICES.append(indices) return tree def perParticipantSummaryHTML(dfParam, yTrueCol, yPredCol, pidCol, outHTML): """Provide HTML summary of how well activity classification model works at the per-participant level :param dataframe dfParam: Input pandas dataframe :param str yTrueCol: Input for y_true column label :param str yPregCol: Input for y_pred column label :param str pidCol: Input for participant ID column label :param str outHTML: Output file to print HTML summary to :return: HTML file reporting kappa, accuracy, and confusion matrix :rtype: void """ # get kappa & accuracy on a per-participant basis pIDs = dfParam[pidCol].unique() pIDKappa = [] pIDAccuracy = [] for pID in pIDs: d_tmp = dfParam[dfParam[pidCol] == pID] pIDKappa += [metrics.cohen_kappa_score(d_tmp[yTrueCol], d_tmp[yPredCol])] pIDAccuracy += [metrics.accuracy_score(d_tmp[yTrueCol], d_tmp[yPredCol])] d_summary = pd.DataFrame() d_summary['pid'] = pIDs d_summary['kappa'] = pIDKappa d_summary['accuracy'] = pIDAccuracy # print out values to html string kappaSDHTML = "Mean Kappa (SD) = " kappaSDHTML += utils.meanSDstr(d_summary['kappa'].mean(), d_summary['kappa'].std(), 2) accuracySDHTML = "Mean accuracy (SD) = " accuracySDHTML += utils.meanSDstr(d_summary['accuracy'].mean() * 100, d_summary['accuracy'].std() * 100, 1) + ' %' kappaCIHTML = "Mean Kappa (95% CI) = " kappaCIHTML += utils.meanCIstr(d_summary['kappa'].mean(), d_summary['kappa'].std(), len(d_summary), 2) accuracyCIHTML = "Mean accuracy (95% CI) = " accuracyCIHTML += utils.meanCIstr(d_summary['accuracy'].mean() * 100, d_summary['accuracy'].std() * 100, len(d_summary), 1) + ' %' # get confusion matrix to pandas dataframe y_true = dfParam[yTrueCol] y_pred = dfParam[yPredCol] labels = sorted(list(set(y_true) | set(y_pred))) cnf_matrix = confusion_matrix(y_true, y_pred, labels) df_confusion =
pd.DataFrame(data=cnf_matrix, columns=labels, index=labels)
pandas.DataFrame
#!/usr/bin/env python # -*- coding: utf-8 -*- import streamlit as st import pandas as pd import numpy as np import geopandas as gpd from pathlib import Path from PIL import Image import altair as alt import pydeck as pdk import numpy as np from api_key import mapbox_key import matplotlib.pyplot as plt import plotly.express as px import plotly.graph_objects as go import pydeckmapping from importlib import reload reload(pydeckmapping) from shapely.geometry import Point from pydeckmapping import build_map import datetime import sys sys.path.append('/Users/david/Dropbox/PhD/Scripts/Spatial analyses') import pyspace reload(pyspace) from pyproj import Transformer transformer = Transformer.from_crs("epsg:2056", "epsg:4326") st.image('https://reseau-delta.ch/assets/ci_content/images/logo.png',width = 180) st.markdown(st.__version__) st.title("Plateforme d'analyse des donnรฉes du rรฉseau de soins Delta") text_intro = """ Les donnรฉes analysรฉes sur cette plateforme correspondent aux donnรฉes Delta de l'annรฉe {} et portent sur plus de {} patients dont {} ร  Genรจve. Il y a {} prescriteurs dont {} MPR Delta, {} distributeurs et {} cercles. """ ################################ ###########LOAD DATA############ ################################ @st.cache(allow_output_mutation=True) def load_data(path,DATE_COLUMN = None): """Load data into DataFrame""" data = pd.read_csv(path) lowercase = lambda x: str(x).lower() data.rename(lowercase, axis='columns', inplace=True) if DATE_COLUMN is not None: data[DATE_COLUMN] = pd.to_datetime(data[DATE_COLUMN]) return data @st.cache(allow_output_mutation=True) def load_gdf(path): """Load data into GeoDataFrame""" data = gpd.read_file(path) lowercase = lambda x: str(x).lower() data.rename(lowercase, axis='columns', inplace=True) return data date = '20200318' #####################################GENERAL DATASETS########################################### data_folder = Path("../Data").resolve() buildings_ge = pd.read_pickle('../Data/buildings_ge.pkl') drug_path = data_folder/'Clean_data'/'{}_drug.csv'.format(date) geom_path = data_folder/'Clean_data'/'{}_geometries.geojson'.format(date) patient_path = data_folder/'Clean_data'/'{}_patient.geojson'.format(date) cercle_path = data_folder/'Clean_data'/'{}_cercle.csv'.format(date) event_path = data_folder / 'Clean_data'/'{}_event.geojson'.format(date) mpr_path = data_folder / 'Clean_data'/'{}_mpr.geojson'.format(date) distributor_path = data_folder/'Clean_data/{}_distributor.geojson'.format(date) prescriber_path = data_folder / 'Clean_data/{}_prescriber.geojson'.format(date) provider_path = data_folder / 'Clean_data/{}_provider.geojson'.format(date) animator_path = data_folder / 'Clean_data/{}_animator.geojson'.format(date) prestation_path = data_folder/'Clean_data'/'{}_prestation.csv'.format(date) data_load_state = st.text('Loading data...') # Create a text element and let the reader know the data is loading. df_geometries = load_gdf(path = geom_path) #Import geometries gdf_distributor = load_gdf(distributor_path) gdf_prescriber = load_gdf(prescriber_path) gdf_provider = load_gdf(provider_path) gdf_animator = load_gdf(animator_path) gdf_event = load_gdf(event_path) gdf_mpr = load_gdf(mpr_path) df_cercle = load_data(cercle_path) df_drug = load_data(path = drug_path,DATE_COLUMN = 'delivereddate') #Load drug data gdf_patient = load_gdf(path = patient_path) # Load patient data data_load_state.text('Loading data...done!') # Notify the reader that the data was successfully loaded. atc_data = load_data(path = '../Data/atc_nomenclature.csv') #Load the ATC nomenclature from WHO df_atc_levels = pd.read_csv('../Data/atc_levels.csv') #Import ATC levels cantons = gpd.read_file('/Users/david/Dropbox/PhD/Data/Databases/SITG/SHAPEFILE_LV95_LN02/swissBOUNDARIES3D_1_3_TLM_KANTONSGEBIET.shp') communes = gpd.read_file('/Users/david/Dropbox/PhD/Data/Databases/SITG/SHAPEFILE_LV95_LN02/swissBOUNDARIES3D_1_3_TLM_HOHEITSGEBIET.shp') communes_ge = communes[communes.KANTONSNUM == 25] MIP = ['indometacin','acemetacin','ketoprofen','phenylbutazon','piroxicam','meloxicam','etoricoxib','pethidin','chinidin','flecainid','sotalol','nitrofurantoin','zolpidem','estradiol','trimipamine','acรฉmรฉtacine','amiodarone'] ################################################################################################# ################################## DATA PREPARATION ############################################# atc_data = atc_data.fillna('') gdf_mpr['mpr_yy_bth'] = gdf_mpr['mprbirthday'].str.split('.').str[2] gdf_mpr['mpr_yy_entry'] = gdf_mpr['mprentrydate'].str.split('.').str[2] gdf_mpr['mpr_yy_exit'] = gdf_mpr['mprexitdate'].str.split('.').str[2] gdf_mpr = gdf_mpr.drop(['mprentrydate','mprbirthday','mprexitdate'],axis = 1).drop_duplicates() gdf_mpr[['mpr_yy_bth','mpr_yy_entry','mpr_yy_exit']] = gdf_mpr[['mpr_yy_bth','mpr_yy_entry','mpr_yy_exit']].astype('float') no_dupli = gdf_mpr.groupby(['id']).mean().reset_index() no_dupli = no_dupli.drop(['e','n'],axis = 1) gdf_mpr = gdf_mpr.drop(['mpr_yy_bth','mpr_yy_entry','mpr_yy_exit'],axis = 1).merge(no_dupli, on = 'id').drop_duplicates().reset_index() gdf_mpr = gdf_mpr[['id','name','mprsex','mpr_yy_bth','mpr_yy_entry','mpr_yy_exit','e','n','geometry']].drop_duplicates(subset = ['id']) gdf_mpr['age'] = 2018-gdf_mpr.mpr_yy_bth gdf_mpr.loc[gdf_mpr.age > 200, 'age'] = 65 ###To be changed (better to change in Data Preparation and replace yy_bth before age calculation) gdf_mpr.loc[gdf_mpr.age < 0,'age'] = np.nan bins = [30, 45, 60, 75] gdf_mpr['age_cat'] = pd.cut(gdf_mpr['age'], bins) dict_atc_levels= dict(zip(df_atc_levels.atc, df_atc_levels.level)) gdf_event_cercle = pd.merge(gdf_event,df_cercle, left_on = 'id',right_on = 'eventid', how = 'left') uniq_cercle_geom = gdf_event_cercle.drop_duplicates(subset = 'circlename',keep='first').reset_index(drop = True) # uniq_cercle_geom['longitude'],uniq_cercle_geom['latitude'] = uniq_cercle_geom.to_crs(epsg = 4326).geometry.x,uniq_cercle_geom.to_crs(epsg = 4326).geometry.y uniq_cercle_geom[['latitude','longitude']]= uniq_cercle_geom.apply(lambda x: transformer.transform(x.e,x.n),axis = 1,result_type = 'expand') geojson_file_CQ = '../Data/CQ_polygons.geojson' bins = [0,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100,105,110,115] gdf_patient['age_cat'] = pd.cut(gdf_patient['age'], bins) ################################################################################################# ################################ PERSONAL ID ############################################## st.sidebar.markdown('## Insert your personal ID') st.sidebar.markdown('Example : 40e8ac4dbc023d86a815f8476a1884e4') personal_id = st.sidebar.text_input('Personal ID') if personal_id not in df_drug.prescriberid.values: st.sidebar.markdown('### *Invalid ID*') else: st.sidebar.markdown('### *Valid ID*') colors_id = {} for i in df_drug.prescriberid.values: colors_id[i] = 'blue' if i == personal_id: colors_id[i] = 'red' ################################################################################################# ################################ INTRODUCTION TEXT ############################################## text_intro = text_intro.format(2018,gdf_patient.id.nunique(),gdf_patient[gdf_patient.networkname == 'Delta Genรจve'].id.nunique(),df_drug.prescriberid.nunique(),df_drug[df_drug.mpr_delta == 1].prescriberid.nunique(),df_drug.distributorid.nunique(),52) st.markdown(text_intro) st.sidebar.markdown('# *Analyses*') ################################################################################################# ################################ SHOW RAW DATA ################################################## if st.sidebar.checkbox('Show raw prescription data',key = 'Drug prescription data'): st.subheader('Raw data') st.write(df_drug.head()) ################################################################################################# #################################AGE FILTERING ################################################## st.markdown('### Age filtering') age_filter = st.slider("Patient Age", 0, 110, (25, 75), step = 5) patients = gdf_patient[(gdf_patient.age >= age_filter[0])&(gdf_patient.age <= age_filter[1])].id.values filtered_drug = df_drug[df_drug.patientid.isin(patients)] filtered_drug =
pd.merge(filtered_drug,df_geometries[['id','lat','lon']],how = 'left',left_on = 'patientid',right_on = 'id')
pandas.merge
#!/usr/bin/env python3 import pdb import pandas as pd from pylru import lrudecorator import seaborn as sns BII_URL = 'http://ipbes.s3.amazonaws.com/weighted/' \ 'historical-BIIAb-npp-country-1880-2014.csv' @lrudecorator(10) def get_raw_bii_data(): return pd.read_csv(BII_URL) def findt(ss): rval = [None] * len(ss) rval[0] = True for i in range(1, len(ss)): rval[i] = not pd.isnull(ss.iloc[i]) and ss.iloc[i] != ss.iloc[i - 1] return pd.Series(rval) def get_bii_data(dropna=True): bii = get_raw_bii_data() cols = list(filter(lambda nn: nn[0:6] == 'BIIAb_' or nn[0:4] == 'GDP_', bii.columns)) bii2 = bii.loc[:, ['fips', 'ar5', 'name', 'iso3', 'npp_mean'] + cols] if dropna: bii2.dropna(inplace=True) cols = tuple(filter(lambda col: col[0:6] == 'BIIAb_', bii2.columns)) for col in bii2.loc[:, cols].columns: bii2.insert(5, col.replace('Ab_', 'Ab2_'), bii2[col].div(bii2.npp_mean)) t7 = pd.wide_to_long(bii2, ['BIIAb', 'BIIAb2', 'GDP'], i=['name'], j='Year', sep='_') t7.reset_index(inplace=True) t7 = t7.assign(year=t7.Year.astype(int)) del t7['Year'] return t7 def get_wid_data(): url_temp = 'http://ipbes.s3.amazonaws.com/by-country/%s.csv' metrics = ('sfiinc992j', 'afiinc992t', 'afiinc992j', 'afiinc992i') data = dict() for metric in metrics: data[metric] = pd.read_csv(url_temp % metric, encoding='utf-8') return data def get_eci_data(dropna=False): bii = get_raw_bii_data() cols = list(filter(lambda nn: nn[0:4] == 'ECI_', bii.columns)) bii2 = bii.loc[:, ['fips', 'ar5', 'name', 'iso3',] + cols] if dropna: bii2.dropna(inplace=True) t7 = pd.wide_to_long(bii2, 'ECI', i=['name'], j='Year', sep='_') t7.reset_index(inplace=True) t7 = t7.assign(year=t7.Year.astype(int)) del t7['Year'] return t7 def get_rol_data(dropna=False): bii = get_raw_bii_data() cols = {'WJP Rule of Law Index: Overall Score': 'ROLI', 'Factor 1: Constraints on Government Powers': 'ROLI_1', 'Factor 2: Absence of Corruption': 'ROLI_2', 'Factor 3: Open Government ': 'ROLI_3', 'Factor 4: Fundamental Rights': 'ROLI_4', 'Factor 5: Order and Security': 'ROLI_5', 'Factor 6: Regulatory Enforcement': 'ROLI_6', 'Factor 7: Civil Justice': 'ROLI_7', 'Factor 8: Criminal Justice': 'ROLI_8' } bii2 = bii.loc[:, ['fips', 'ar5', 'name', 'iso3'] + list(cols.keys())] if dropna: bii2.dropna(inplace=True) bii2.rename(columns=cols, inplace=True) return bii2 def get_language_data(): url = 'http://ipbes.s3.amazonaws.com/by-country/language-distance.csv' return pd.read_csv(url, encoding='utf-8') def get_area_data(): url = 'http://ipbes.s3.amazonaws.com/by-country/wb-area.csv' return
pd.read_csv(url, encoding='utf-8')
pandas.read_csv
import os import pandas as pd from Lib.get_texts import get_generated_lyrics, get_lyrics_dataset from Lib.get_structure import get_lyrics_structure from Lib.get_sentiment import calculate_sentiment_scores from Lib.get_bagofwords import get_repetition_scores, combine_bag_of_words, lemmatize_lyrics # This method performs the calculations of the evaluation metrics for a corpus of texts # Information are stored in a pandas dataframe # parameters: Text corpus as list, name of the *csv file def evaluate_text(texts, name): # get song structure pd.set_option("display.max_columns", 20) pd.set_option("large_repr", "truncate") df = get_lyrics_structure(texts) print(df) # get bag of words counters = lemmatize_lyrics(texts) df_words = combine_bag_of_words(counters) rep_scores = get_repetition_scores(counters) df["bagofwords"] = counters df["repscores"] = rep_scores print(df) # get sentiment df2 = calculate_sentiment_scores(texts) df =
pd.concat([df, df2], axis=1)
pandas.concat
""" Download, transform and simulate various datasets. """ # Author: <NAME> <<EMAIL>> # <NAME> <<EMAIL>> # License: MIT from os.path import join from re import sub from collections import Counter from itertools import product from urllib.parse import urljoin from string import ascii_lowercase from zipfile import ZipFile from io import BytesIO, StringIO from sqlite3 import connect from scipy.io import loadmat import io from rich.progress import track import requests import numpy as np import pandas as pd from sklearn.utils import check_X_y from imblearn.datasets import make_imbalance from research.utils import img_array_to_pandas UCI_URL = "https://archive.ics.uci.edu/ml/machine-learning-databases/" KEEL_URL = "http://sci2s.ugr.es/keel/keel-dataset/datasets/imbalanced/" GIC_URL = "http://www.ehu.eus/ccwintco/uploads/" OPENML_URL = "https://www.openml.org/data/get_csv/" FETCH_URLS = { "breast_tissue": urljoin(UCI_URL, "00192/BreastTissue.xls"), "ecoli": urljoin(UCI_URL, "ecoli/ecoli.data"), "eucalyptus": urljoin(OPENML_URL, "3625/dataset_194_eucalyptus.arff"), "glass": urljoin(UCI_URL, "glass/glass.data"), "haberman": urljoin(UCI_URL, "haberman/haberman.data"), "heart": urljoin(UCI_URL, "statlog/heart/heart.dat"), "iris": urljoin(UCI_URL, "iris/bezdekIris.data"), "libras": urljoin(UCI_URL, "libras/movement_libras.data"), "liver": urljoin(UCI_URL, "liver-disorders/bupa.data"), "pima": "https://gist.githubusercontent.com/ktisha/c21e73a1bd1700294ef790c56c8aec1f" "/raw/819b69b5736821ccee93d05b51de0510bea00294/pima-indians-diabetes.csv", "vehicle": urljoin(UCI_URL, "statlog/vehicle/"), "wine": urljoin(UCI_URL, "wine/wine.data"), "new_thyroid_1": urljoin( urljoin(KEEL_URL, "imb_IRlowerThan9/"), "new-thyroid1.zip" ), "new_thyroid_2": urljoin( urljoin(KEEL_URL, "imb_IRlowerThan9/"), "new-thyroid2.zip" ), "cleveland": urljoin( urljoin(KEEL_URL, "imb_IRhigherThan9p2/"), "cleveland-0_vs_4.zip" ), "led": urljoin( urljoin(KEEL_URL, "imb_IRhigherThan9p2/"), "led7digit-0-2-4-5-6-7-8-9_vs_1.zip" ), "page_blocks_1_3": urljoin( urljoin(KEEL_URL, "imb_IRhigherThan9p1/"), "page-blocks-1-3_vs_4.zip" ), "vowel": urljoin(urljoin(KEEL_URL, "imb_IRhigherThan9p1/"), "vowel0.zip"), "yeast_1": urljoin(urljoin(KEEL_URL, "imb_IRlowerThan9/"), "yeast1.zip"), "banknote_authentication": urljoin( UCI_URL, "00267/data_banknote_authentication.txt" ), "arcene": urljoin(UCI_URL, "arcene/"), "audit": urljoin(UCI_URL, "00475/audit_data.zip"), "spambase": urljoin(UCI_URL, "spambase/spambase.data"), "parkinsons": urljoin(UCI_URL, "parkinsons/parkinsons.data"), "ionosphere": urljoin(UCI_URL, "ionosphere/ionosphere.data"), "breast_cancer": urljoin(UCI_URL, "breast-cancer-wisconsin/wdbc.data"), "adult": urljoin(UCI_URL, "adult/adult.data"), "abalone": urljoin(UCI_URL, "abalone/abalone.data"), "acute": urljoin(UCI_URL, "acute/diagnosis.data"), "annealing": urljoin(UCI_URL, "annealing/anneal.data"), "census": urljoin(UCI_URL, "census-income-mld/census-income.data.gz"), "contraceptive": urljoin(UCI_URL, "cmc/cmc.data"), "covertype": urljoin(UCI_URL, "covtype/covtype.data.gz"), "credit_approval": urljoin(UCI_URL, "credit-screening/crx.data"), "dermatology": urljoin(UCI_URL, "dermatology/dermatology.data"), "echocardiogram": urljoin(UCI_URL, "echocardiogram/echocardiogram.data"), "flags": urljoin(UCI_URL, "flags/flag.data"), "heart_disease": [ urljoin(UCI_URL, "heart-disease/processed.cleveland.data"), urljoin(UCI_URL, "heart-disease/processed.hungarian.data"), urljoin(UCI_URL, "heart-disease/processed.switzerland.data"), urljoin(UCI_URL, "heart-disease/processed.va.data"), ], "hepatitis": urljoin(UCI_URL, "hepatitis/hepatitis.data"), "german_credit": urljoin(UCI_URL, "statlog/german/german.data"), "thyroid": urljoin(UCI_URL, "thyroid-disease/thyroid0387.data"), "first_order_theorem": urljoin(OPENML_URL, "1587932/phpPbCMyg"), "gas_drift": urljoin(OPENML_URL, "1588715/phpbL6t4U"), "autouniv_au7": urljoin(OPENML_URL, "1593748/phpmRPvKy"), "autouniv_au4": urljoin(OPENML_URL, "1593744/phpiubDlf"), "mice_protein": urljoin(OPENML_URL, "17928620/phpchCuL5"), "steel_plates": urljoin(OPENML_URL, "18151921/php5s7Ep8"), "cardiotocography": urljoin(OPENML_URL, "1593756/phpW0AXSQ"), "waveform": urljoin(OPENML_URL, "60/dataset_60_waveform-5000.arff"), "volkert": urljoin(OPENML_URL, "19335689/file1c556e3db171.arff"), "asp_potassco": urljoin(OPENML_URL, "21377447/file18547f421393.arff"), "wine_quality": urljoin(OPENML_URL, "4965268/wine-quality-red.arff"), "mfeat_zernike": urljoin(OPENML_URL, "22/dataset_22_mfeat-zernike.arff"), "gesture_segmentation": urljoin(OPENML_URL, "1798765/phpYLeydd"), "texture": urljoin(OPENML_URL, "4535764/phpBDgUyY"), "usps": urljoin(OPENML_URL, "19329737/usps.arff"), "japanese_vowels": urljoin(OPENML_URL, "52415/JapaneseVowels.arff"), "pendigits": urljoin(OPENML_URL, "32/dataset_32_pendigits.arff"), "image_segmentation": urljoin(OPENML_URL, "18151937/phpyM5ND4"), "baseball": urljoin(OPENML_URL, "3622/dataset_189_baseball.arff"), "indian_pines": [ urljoin(GIC_URL, "2/22/Indian_pines.mat"), urljoin(GIC_URL, "c/c4/Indian_pines_gt.mat"), ], "salinas": [ urljoin(GIC_URL, "f/f1/Salinas.mat"), urljoin(GIC_URL, "f/fa/Salinas_gt.mat"), ], "salinas_a": [ urljoin(GIC_URL, "d/df/SalinasA.mat"), urljoin(GIC_URL, "a/aa/SalinasA_gt.mat"), ], "pavia_centre": [ urljoin(GIC_URL, "e/e3/Pavia.mat"), urljoin(GIC_URL, "5/53/Pavia_gt.mat"), ], "pavia_university": [ urljoin(GIC_URL, "e/ee/PaviaU.mat"), urljoin(GIC_URL, "5/50/PaviaU_gt.mat"), ], "kennedy_space_center": [ urljoin(GIC_URL, "2/26/KSC.mat"), urljoin(GIC_URL, "a/a6/KSC_gt.mat"), ], "botswana": [ urljoin(GIC_URL, "7/72/Botswana.mat"), urljoin(GIC_URL, "5/58/Botswana_gt.mat"), ], } RANDOM_STATE = 0 class Datasets: """Base class to download and save datasets.""" def __init__(self, names="all"): self.names = names @staticmethod def _modify_columns(data): """Rename and reorder columns of dataframe.""" X, y = data.drop(columns="target"), data.target X.columns = range(len(X.columns)) return pd.concat([X, y], axis=1) def download(self): """Download the datasets.""" if self.names == "all": func_names = [func_name for func_name in dir(self) if "fetch_" in func_name] else: func_names = [ f"fetch_{name}".lower().replace(" ", "_") for name in self.names ] self.content_ = [] for func_name in track(func_names, description="Datasets"): name = func_name.replace("fetch_", "").upper().replace("_", " ") fetch_data = getattr(self, func_name) data = self._modify_columns(fetch_data()) self.content_.append((name, data)) return self def save(self, path, db_name): """Save datasets.""" with connect(join(path, f"{db_name}.db")) as connection: for name, data in self.content_: data.to_sql(name, connection, index=False, if_exists="replace") class ImbalancedBinaryDatasets(Datasets): """Class to download, transform and save binary class imbalanced datasets.""" MULTIPLICATION_FACTORS = [2, 3] @staticmethod def _calculate_ratio(multiplication_factor, y): """Calculate ratio based on IRs multiplication factor.""" ratio = Counter(y).copy() ratio[1] = int(ratio[1] / multiplication_factor) return ratio def _make_imbalance(self, data, multiplication_factor): """Undersample the minority class.""" X_columns = [col for col in data.columns if col != "target"] X, y = check_X_y(data.loc[:, X_columns], data.target) if multiplication_factor > 1.0: sampling_strategy = self._calculate_ratio(multiplication_factor, y) X, y = make_imbalance( X, y, sampling_strategy=sampling_strategy, random_state=RANDOM_STATE ) data = pd.DataFrame(np.column_stack((X, y))) data.iloc[:, -1] = data.iloc[:, -1].astype(int) return data def download(self): """Download the datasets and append undersampled versions of them.""" super(ImbalancedBinaryDatasets, self).download() undersampled_datasets = [] for (name, data), factor in list( product(self.content_, self.MULTIPLICATION_FACTORS) ): ratio = self._calculate_ratio(factor, data.target) if ratio[1] >= 15: data = self._make_imbalance(data, factor) undersampled_datasets.append((f"{name} ({factor})", data)) self.content_ += undersampled_datasets return self def fetch_breast_tissue(self): """Download and transform the Breast Tissue Data Set. The minority class is identified as the `car` and `fad` labels and the majority class as the rest of the labels. http://archive.ics.uci.edu/ml/datasets/breast+tissue """ data = pd.read_excel(FETCH_URLS["breast_tissue"], sheet_name="Data") data = data.drop(columns="Case #").rename(columns={"Class": "target"}) data["target"] = data["target"].isin(["car", "fad"]).astype(int) return data def fetch_ecoli(self): """Download and transform the Ecoli Data Set. The minority class is identified as the `pp` label and the majority class as the rest of the labels. https://archive.ics.uci.edu/ml/datasets/ecoli """ data = pd.read_csv(FETCH_URLS["ecoli"], header=None, delim_whitespace=True) data = data.drop(columns=0).rename(columns={8: "target"}) data["target"] = data["target"].isin(["pp"]).astype(int) return data def fetch_eucalyptus(self): """Download and transform the Eucalyptus Data Set. The minority class is identified as the `best` label and the majority class as the rest of the labels. https://www.openml.org/d/188 """ data = pd.read_csv(FETCH_URLS["eucalyptus"]) data = data.iloc[:, -9:].rename(columns={"Utility": "target"}) data = data[data != "?"].dropna() data["target"] = data["target"].isin(["best"]).astype(int) return data def fetch_glass(self): """Download and transform the Glass Identification Data Set. The minority class is identified as the `1` label and the majority class as the rest of the labels. https://archive.ics.uci.edu/ml/datasets/glass+identification """ data = pd.read_csv(FETCH_URLS["glass"], header=None) data = data.drop(columns=0).rename(columns={10: "target"}) data["target"] = data["target"].isin([1]).astype(int) return data def fetch_haberman(self): """Download and transform the Haberman's Survival Data Set. The minority class is identified as the `1` label and the majority class as the `0` label. https://archive.ics.uci.edu/ml/datasets/Haberman's+Survival """ data = pd.read_csv(FETCH_URLS["haberman"], header=None) data.rename(columns={3: "target"}, inplace=True) data["target"] = data["target"].isin([2]).astype(int) return data def fetch_heart(self): """Download and transform the Heart Data Set. The minority class is identified as the `2` label and the majority class as the `1` label. http://archive.ics.uci.edu/ml/datasets/statlog+(heart) """ data = pd.read_csv(FETCH_URLS["heart"], header=None, delim_whitespace=True) data.rename(columns={13: "target"}, inplace=True) data["target"] = data["target"].isin([2]).astype(int) return data def fetch_iris(self): """Download and transform the Iris Data Set. The minority class is identified as the `1` label and the majority class as the rest of the labels. https://archive.ics.uci.edu/ml/datasets/iris """ data = pd.read_csv(FETCH_URLS["iris"], header=None) data.rename(columns={4: "target"}, inplace=True) data["target"] = data["target"].isin(["Iris-setosa"]).astype(int) return data def fetch_libras(self): """Download and transform the Libras Movement Data Set. The minority class is identified as the `1` label and the majority class as the rest of the labels. https://archive.ics.uci.edu/ml/datasets/Libras+Movement """ data = pd.read_csv(FETCH_URLS["libras"], header=None) data.rename(columns={90: "target"}, inplace=True) data["target"] = data["target"].isin([1]).astype(int) return data def fetch_liver(self): """Download and transform the Liver Disorders Data Set. The minority class is identified as the `1` label and the majority class as the '2' label. https://archive.ics.uci.edu/ml/datasets/liver+disorders """ data = pd.read_csv(FETCH_URLS["liver"], header=None) data.rename(columns={6: "target"}, inplace=True) data["target"] = data["target"].isin([1]).astype(int) return data def fetch_pima(self): """Download and transform the Pima Indians Diabetes Data Set. The minority class is identified as the `1` label and the majority class as the '0' label. https://www.kaggle.com/uciml/pima-indians-diabetes-database """ data = pd.read_csv(FETCH_URLS["pima"], header=None, skiprows=9) data.rename(columns={8: "target"}, inplace=True) return data def fetch_vehicle(self): """Download and transform the Vehicle Silhouettes Data Set. The minority class is identified as the `1` label and the majority class as the rest of the labels. https://archive.ics.uci.edu/ml/datasets/Statlog+(Vehicle+Silhouettes) """ data = pd.DataFrame() for letter in ascii_lowercase[0:9]: partial_data = pd.read_csv( urljoin(FETCH_URLS["vehicle"], "xa%s.dat" % letter), header=None, delim_whitespace=True, ) partial_data = partial_data.rename(columns={18: "target"}) partial_data["target"] = partial_data["target"].isin(["van"]).astype(int) data = data.append(partial_data) return data def fetch_wine(self): """Download and transform the Wine Data Set. The minority class is identified as the `2` label and the majority class as the rest of the labels. https://archive.ics.uci.edu/ml/datasets/wine """ data = pd.read_csv(FETCH_URLS["wine"], header=None) data.rename(columns={0: "target"}, inplace=True) data["target"] = data["target"].isin([2]).astype(int) return data def fetch_new_thyroid_1(self): """Download and transform the Thyroid 1 Disease Data Set. The minority class is identified as the `positive` label and the majority class as the `negative` label. http://sci2s.ugr.es/keel/dataset.php?cod=145 """ zipped_data = requests.get(FETCH_URLS["new_thyroid_1"]).content unzipped_data = ( ZipFile(BytesIO(zipped_data)).read("new-thyroid1.dat").decode("utf-8") ) data = pd.read_csv( StringIO(sub(r"@.+\n+", "", unzipped_data)), header=None, sep=", ", engine="python", ) data.rename(columns={5: "target"}, inplace=True) data["target"] = data["target"].isin(["positive"]).astype(int) return data def fetch_new_thyroid_2(self): """Download and transform the Thyroid 2 Disease Data Set. The minority class is identified as the `positive` label and the majority class as the `negative` label. http://sci2s.ugr.es/keel/dataset.php?cod=146 """ zipped_data = requests.get(FETCH_URLS["new_thyroid_2"]).content unzipped_data = ( ZipFile(BytesIO(zipped_data)).read("newthyroid2.dat").decode("utf-8") ) data = pd.read_csv( StringIO(sub(r"@.+\n+", "", unzipped_data)), header=None, sep=", ", engine="python", ) data.rename(columns={5: "target"}, inplace=True) data["target"] = data["target"].isin(["positive"]).astype(int) return data def fetch_cleveland(self): """Download and transform the Heart Disease Cleveland Data Set. The minority class is identified as the `positive` label and the majority class as the `negative` label. http://sci2s.ugr.es/keel/dataset.php?cod=980 """ zipped_data = requests.get(FETCH_URLS["cleveland"]).content unzipped_data = ( ZipFile(BytesIO(zipped_data)).read("cleveland-0_vs_4.dat").decode("utf-8") ) data = pd.read_csv(StringIO(sub(r"@.+\n+", "", unzipped_data)), header=None) data.rename(columns={13: "target"}, inplace=True) data["target"] = data["target"].isin(["positive"]).astype(int) return data def fetch_dermatology(self): """Download and transform the Dermatology Data Set. The minority class is identified as the `positive` label and the majority class as the `negative` label. http://sci2s.ugr.es/keel/dataset.php?cod=1330 """ data = pd.read_csv(FETCH_URLS["dermatology"], header=None) data.rename(columns={34: "target"}, inplace=True) data.drop(columns=33, inplace=True) data["target"] = data["target"].isin(["positive"]).astype(int) return data def fetch_led(self): """Download and transform the LED Display Domain Data Set. The minority class is identified as the `positive` label and the majority class as the `negative` label. http://sci2s.ugr.es/keel/dataset.php?cod=998 """ zipped_data = requests.get(FETCH_URLS["led"]).content unzipped_data = ( ZipFile(BytesIO(zipped_data)) .read("led7digit-0-2-4-5-6-7-8-9_vs_1.dat") .decode("utf-8") ) data = pd.read_csv(StringIO(sub(r"@.+\n+", "", unzipped_data)), header=None) data.rename(columns={7: "target"}, inplace=True) data["target"] = data["target"].isin(["positive"]).astype(int) return data def fetch_page_blocks_1_3(self): """Download and transform the Page Blocks 1-3 Data Set. The minority class is identified as the `positive` label and the majority class as the `negative` label. http://sci2s.ugr.es/keel/dataset.php?cod=124 """ zipped_data = requests.get(FETCH_URLS["page_blocks_1_3"]).content unzipped_data = ( ZipFile(BytesIO(zipped_data)) .read("page-blocks-1-3_vs_4.dat") .decode("utf-8") ) data = pd.read_csv(StringIO(sub(r"@.+\n+", "", unzipped_data)), header=None) data.rename(columns={10: "target"}, inplace=True) data["target"] = data["target"].isin(["positive"]).astype(int) return data def fetch_vowel(self): """Download and transform the Vowel Recognition Data Set. The minority class is identified as the `positive` label and the majority class as the `negative` label. http://sci2s.ugr.es/keel/dataset.php?cod=127 """ zipped_data = requests.get(FETCH_URLS["vowel"]).content unzipped_data = ZipFile(BytesIO(zipped_data)).read("vowel0.dat").decode("utf-8") data = pd.read_csv(StringIO(sub(r"@.+\n+", "", unzipped_data)), header=None) data.rename(columns={13: "target"}, inplace=True) data["target"] = data["target"].isin([" positive"]).astype(int) return data def fetch_yeast_1(self): """Download and transform the Yeast 1 Data Set. The minority class is identified as the `positive` label and the majority class as the `negative` label. http://sci2s.ugr.es/keel/dataset.php?cod=153 """ zipped_data = requests.get(FETCH_URLS["yeast_1"]).content unzipped_data = ZipFile(BytesIO(zipped_data)).read("yeast1.dat").decode("utf-8") data = pd.read_csv(StringIO(sub(r"@.+\n+", "", unzipped_data)), header=None) data.rename(columns={8: "target"}, inplace=True) data["target"] = data["target"].isin([" positive"]).astype(int) return data class BinaryDatasets(Datasets): """Class to download, transform and save binary class datasets.""" def fetch_banknote_authentication(self): """Download and transform the Banknote Authentication Data Set. https://archive.ics.uci.edu/ml/datasets/banknote+authentication """ data = pd.read_csv(FETCH_URLS["banknote_authentication"], header=None) data.rename(columns={4: "target"}, inplace=True) return data def fetch_arcene(self): """Download and transform the Arcene Data Set. https://archive.ics.uci.edu/ml/datasets/Arcene """ url = FETCH_URLS["arcene"] data, labels = [], [] for data_type in ("train", "valid"): data.append( pd.read_csv( urljoin(url, f"ARCENE/arcene_{data_type}.data"), header=None, sep=" ", ).drop(columns=list(range(1998, 10001))) ) labels.append( pd.read_csv( urljoin( url, ("ARCENE/" if data_type == "train" else "") + f"arcene_{data_type}.labels", ), header=None, ).rename(columns={0: "target"}) ) data = pd.concat(data, ignore_index=True) labels = pd.concat(labels, ignore_index=True) data = pd.concat([data, labels], axis=1) data["target"] = data["target"].isin([1]).astype(int) return data def fetch_audit(self): """Download and transform the Audit Data Set. https://archive.ics.uci.edu/ml/datasets/Audit+Data """ zipped_data = requests.get(FETCH_URLS["audit"]).content unzipped_data = ( ZipFile(BytesIO(zipped_data)) .read("audit_data/audit_risk.csv") .decode("utf-8") ) data = pd.read_csv(StringIO(sub(r"@.+\n+", "", unzipped_data)), engine="python") data = ( data.drop(columns=["LOCATION_ID"]) .rename(columns={"Risk": "target"}) .dropna() ) return data def fetch_spambase(self): """Download and transform the Spambase Data Set. https://archive.ics.uci.edu/ml/datasets/Spambase """ data = pd.read_csv(FETCH_URLS["spambase"], header=None) data.rename(columns={57: "target"}, inplace=True) return data def fetch_parkinsons(self): """Download and transform the Parkinsons Data Set. https://archive.ics.uci.edu/ml/datasets/parkinsons """ data = pd.read_csv(FETCH_URLS["parkinsons"]) data = pd.concat( [ data.drop(columns=["name", "status"]), data[["status"]].rename(columns={"status": "target"}), ], axis=1, ) data["target"] = data["target"].isin([0]).astype(int) return data def fetch_ionosphere(self): """Download and transform the Ionosphere Data Set. https://archive.ics.uci.edu/ml/datasets/ionosphere """ data = pd.read_csv(FETCH_URLS["ionosphere"], header=None) data = data.drop(columns=[0, 1]).rename(columns={34: "target"}) data["target"] = data["target"].isin(["b"]).astype(int) return data def fetch_breast_cancer(self): """Download and transform the Breast Cancer Wisconsin Data Set. https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic) """ data = pd.read_csv(FETCH_URLS["breast_cancer"], header=None) data = pd.concat( [data.drop(columns=[0, 1]), data[[1]].rename(columns={1: "target"})], axis=1 ) data["target"] = data["target"].isin(["M"]).astype(int) return data class ContinuousCategoricalDatasets(Datasets): """Class to download, transform and save datasets with both continuous and categorical features.""" @staticmethod def _modify_columns(data, categorical_features): """Rename and reorder columns of dataframe.""" X, y = data.drop(columns="target"), data.target X.columns = range(len(X.columns)) return pd.concat([X, y], axis=1), categorical_features def download(self): """Download the datasets.""" if self.names == "all": func_names = [func_name for func_name in dir(self) if "fetch_" in func_name] else: func_names = [ f"fetch_{name}".lower().replace(" ", "_") for name in self.names ] self.content_ = [] for func_name in track(func_names, description="Datasets"): name = func_name.replace("fetch_", "").upper().replace("_", " ") fetch_data = getattr(self, func_name) data, categorical_features = self._modify_columns(*fetch_data()) self.content_.append((name, data, categorical_features)) return self def save(self, path, db_name): """Save datasets.""" with connect(join(path, f"{db_name}.db")) as connection: for name, data in self.content_: data.to_sql(name, connection, index=False, if_exists="replace") def fetch_adult(self): """Download and transform the Adult Data Set. https://archive.ics.uci.edu/ml/datasets/Adult """ data = pd.read_csv(FETCH_URLS["adult"], header=None, na_values=" ?").dropna() data.rename(columns={data.columns[-1]: "target"}, inplace=True) categorical_features = [1, 3, 5, 6, 7, 8, 9, 13] return data, categorical_features def fetch_abalone(self): """Download and transform the Abalone Data Set. https://archive.ics.uci.edu/ml/datasets/Abalone """ data = pd.read_csv(FETCH_URLS["abalone"], header=None) data.rename(columns={data.columns[-1]: "target"}, inplace=True) categorical_features = [0] return data, categorical_features def fetch_acute(self): """Download and transform the Acute Inflammations Data Set. https://archive.ics.uci.edu/ml/datasets/Acute+Inflammations """ data = pd.read_csv( FETCH_URLS["acute"], header=None, sep="\t", decimal=",", encoding="UTF-16" ) data["target"] = data[6].str[0] + data[7].str[0] data.drop(columns=[6, 7], inplace=True) categorical_features = list(range(1, 6)) return data, categorical_features def fetch_annealing(self): """Download and transform the Annealing Data Set. https://archive.ics.uci.edu/ml/datasets/Annealing """ data = pd.read_csv(FETCH_URLS["annealing"], header=None, na_values="?") # some features are dropped; they have too many missing values missing_feats = (data.isnull().sum(0) / data.shape[0]) < 0.1 data = data.iloc[:, missing_feats.values] data[2].fillna(data[2].mode().squeeze(), inplace=True) data = data.T.reset_index(drop=True).T data.rename(columns={data.columns[-1]: "target"}, inplace=True) categorical_features = [0, 1, 5, 9] return data, categorical_features def fetch_census(self): """Download and transform the Census-Income (KDD) Data Set. https://archive.ics.uci.edu/ml/datasets/Census-Income+%28KDD%29 """ data = pd.read_csv(FETCH_URLS["census"], header=None) categorical_features = ( list(range(1, 5)) + list(range(6, 16)) + list(range(19, 29)) + list(range(30, 38)) + [39] ) # some features are dropped; they have too many missing values cols_ids = [1, 6, 9, 13, 14, 20, 21, 29, 31, 37] categorical_features = np.argwhere( np.delete( data.rename(columns={k: f"nom_{k}" for k in categorical_features}) .columns.astype("str") .str.startswith("nom_"), cols_ids, ) ).squeeze() data = data.drop(columns=cols_ids).T.reset_index(drop=True).T # some rows are dropped; they have rare missing values data = data.iloc[ data.applymap(lambda x: x != " Not in universe").all(1).values, : ] data.rename(columns={data.columns[-1]: "target"}, inplace=True) return data, categorical_features def fetch_contraceptive(self): """Download and transform the Contraceptive Method Choice Data Set. https://archive.ics.uci.edu/ml/datasets/Contraceptive+Method+Choice """ data = pd.read_csv(FETCH_URLS["contraceptive"], header=None) data.rename(columns={data.columns[-1]: "target"}, inplace=True) categorical_features = [4, 5, 6, 8] return data, categorical_features def fetch_covertype(self): """Download and transform the Covertype Data Set. https://archive.ics.uci.edu/ml/datasets/Covertype """ data = pd.read_csv(FETCH_URLS["covertype"], header=None) data.rename(columns={data.columns[-1]: "target"}, inplace=True) wilderness_area = pd.Series( np.argmax(data.iloc[:, 10:14].values, axis=1), name=10 ) soil_type = pd.Series(np.argmax(data.iloc[:, 14:54].values, axis=1), name=11) data = ( data.drop(columns=list(range(10, 54))) .join(wilderness_area) .join(soil_type)[list(range(0, 12)) + ["target"]] ) categorical_features = [10, 11] return data, categorical_features def fetch_credit_approval(self): """Download and transform the Credit Approval Data Set. https://archive.ics.uci.edu/ml/datasets/Credit+Approval """ data = pd.read_csv( FETCH_URLS["credit_approval"], header=None, na_values="?" ).dropna() data.rename(columns={data.columns[-1]: "target"}, inplace=True) categorical_features = [0, 3, 4, 5, 6, 8, 9, 11, 12] return data, categorical_features def fetch_dermatology(self): """Download and transform the Dermatology Data Set. https://archive.ics.uci.edu/ml/datasets/Dermatology """ data = pd.read_csv( FETCH_URLS["dermatology"], header=None, na_values="?" ).dropna() data.rename(columns={data.columns[-1]: "target"}, inplace=True) categorical_features = list(range(data.shape[1] - 1)) categorical_features.remove(33) return data, categorical_features def fetch_echocardiogram(self): """Download and transform the Echocardiogram Data Set. https://archive.ics.uci.edu/ml/datasets/Echocardiogram """ data = pd.read_csv( FETCH_URLS["echocardiogram"], header=None, error_bad_lines=False, warn_bad_lines=False, na_values="?", ) data.drop(columns=[10, 11], inplace=True) data.dropna(inplace=True) data.rename(columns={data.columns[-1]: "target"}, inplace=True) categorical_features = [1, 3] return data, categorical_features def fetch_flags(self): """Download and transform the Flags Data Set. https://archive.ics.uci.edu/ml/datasets/Flags """ data = pd.read_csv(FETCH_URLS["flags"], header=None) target = data[6].rename("target") data = data.drop(columns=[0, 6]).T.reset_index(drop=True).T.join(target) categorical_features = [ 0, 1, 4, 8, 9, 10, 11, 12, 13, 14, 15, 21, 22, 23, 24, 25, 26, 27, ] return data, categorical_features def fetch_heart_disease(self): """Download and transform the Heart Disease Data Set. https://archive.ics.uci.edu/ml/datasets/Heart+Disease """ data = ( pd.concat( [ pd.read_csv(url, header=None, na_values="?") for url in FETCH_URLS["heart_disease"] ], ignore_index=True, ) .drop(columns=[10, 11, 12]) .dropna() ) data.rename(columns={data.columns[-1]: "target"}, inplace=True) categorical_features = [1, 2, 5, 6, 8] return data, categorical_features def fetch_hepatitis(self): """Download and transform the Hepatitis Data Set. https://archive.ics.uci.edu/ml/datasets/Hepatitis """ data = ( pd.read_csv(FETCH_URLS["hepatitis"], header=None, na_values="?") .drop(columns=[15, 18]) .dropna() ) target = data[0].rename("target") data = data.drop(columns=[0]).T.reset_index(drop=True).T.join(target) categorical_features = list(range(1, 13)) + [16] return data, categorical_features def fetch_german_credit(self): """Download and transform the German Credit Data Set. https://archive.ics.uci.edu/ml/datasets/Statlog+%28German+Credit+Data%29 """ data = pd.read_csv(FETCH_URLS["german_credit"], header=None, sep=" ") data.rename(columns={data.columns[-1]: "target"}, inplace=True) categorical_features = ( np.argwhere(data.iloc[0, :-1].apply(lambda x: str(x)[0] == "A").values) .squeeze() .tolist() ) return data, categorical_features def fetch_heart(self): """Download and transform the Heart Data Set. http://archive.ics.uci.edu/ml/datasets/statlog+(heart) """ data = pd.read_csv(FETCH_URLS["heart"], header=None, delim_whitespace=True) data.rename(columns={data.columns[-1]: "target"}, inplace=True) categorical_features = [1, 2, 5, 6, 8, 10, 12] return data, categorical_features def fetch_thyroid(self): """Download and transform the Thyroid Disease Data Set. Label 0 corresponds to no disease found. Label 1 corresponds to one or multiple diseases found. https://archive.ics.uci.edu/ml/datasets/Thyroid+Disease """ data = ( pd.read_csv(FETCH_URLS["thyroid"], header=None, na_values="?") .drop(columns=27) .dropna() .T.reset_index(drop=True) .T ) data.rename(columns={data.columns[-1]: "target"}, inplace=True) data["target"] = ( data["target"].apply(lambda x: x.split("[")[0]) != "-" ).astype(int) categorical_features = [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 20, 22, 24, 26, 27, ] return data, categorical_features class MulticlassDatasets(Datasets): """Class to download, transform and save multiclass datasets.""" def fetch_first_order_theorem(self): """Download and transform the First Order Theorem Data Set. https://www.openml.org/d/1475 """ data = pd.read_csv(FETCH_URLS["first_order_theorem"]) data.rename(columns={"Class": "target"}, inplace=True) return data def fetch_gas_drift(self): """Download and transform the Gas Drift Data Set. https://www.openml.org/d/1476 """ data = pd.read_csv(FETCH_URLS["gas_drift"]) data.rename(columns={"Class": "target"}, inplace=True) return data def fetch_autouniv_au7(self): """Download and transform the AutoUniv au7 Data Set https://www.openml.org/d/1552 """ data = pd.read_csv(FETCH_URLS["autouniv_au7"]) data.rename(columns={"Class": "target"}, inplace=True) data.target = data.target.apply(lambda x: x.replace("class", "")).astype(int) mask = (data.iloc[:, :-1].nunique() > 10).tolist() mask.append(True) data = data.loc[:, mask].copy() return data def fetch_autouniv_au4(self): """Download and transform the AutoUniv au4 Data Set https://www.openml.org/d/1548 """ data = pd.read_csv(FETCH_URLS["autouniv_au4"]) data.rename(columns={"Class": "target"}, inplace=True) data.target = data.target.apply(lambda x: x.replace("class", "")).astype(int) mask = (data.iloc[:, :-1].nunique() > 10).tolist() mask.append(True) data = data.loc[:, mask].copy() return data def fetch_mice_protein(self): """Download and transform the Mice Protein Data Set https://www.openml.org/d/40966 """ data = pd.read_csv(FETCH_URLS["mice_protein"]) data.rename(columns={"class": "target"}, inplace=True) data.drop(columns=["MouseID"], inplace=True) data.replace("?", np.nan, inplace=True) mask = (data.iloc[:, :-1].nunique() > 10).tolist() mask.append(True) mask2 = data.isna().sum() < 10 data = data.loc[:, mask & mask2].dropna().copy() data.iloc[:, :-1] = data.iloc[:, :-1].astype(float) mapper = {v: k for k, v in enumerate(data.target.unique())} data.target = data.target.map(mapper) return data def fetch_steel_plates(self): """Download and transform the Steel Plates Fault Data Set. https://www.openml.org/d/40982 """ data = pd.read_csv(FETCH_URLS["steel_plates"]) mask = (data.iloc[:, :-1].nunique() > 10).tolist() mask.append(True) data = data.loc[:, mask].copy() mapper = {v: k for k, v in enumerate(data.target.unique())} data.target = data.target.map(mapper) return data def fetch_cardiotocography(self): """Download and transform the Cardiotocography Data Set. https://www.openml.org/d/1560 """ data = pd.read_csv(FETCH_URLS["cardiotocography"]) data.rename(columns={"Class": "target"}, inplace=True) mask = (data.iloc[:, :-1].nunique() > 10).tolist() mask.append(True) data = data.loc[:, mask].copy() return data def fetch_waveform(self): """Download and transform the Waveform Database Generator (version 2) Data Set. https://www.openml.org/d/60 """ data = pd.read_csv(FETCH_URLS["waveform"]) data.rename(columns={"class": "target"}, inplace=True) return data def fetch_volkert(self): """Download and transform the Volkert Data Set. https://www.openml.org/d/41166 """ data =
pd.read_csv(FETCH_URLS["volkert"])
pandas.read_csv
''' Created on Sep 10, 2017 @author: twong ''' import json import logging import random import pandas as pd import requests _logger = logging.getLogger(__name__) def _deserialize_roster_json(roster_json): roster_cooked = json.loads(roster_json) try: players_json = roster_cooked['d'][0] except KeyError: raise RuntimeError("Failed to find data key 'd': Invalid roster JSON?") except IndexError: raise RuntimeError('Failed to find player JSON string: Invalid roster JSON or new format?') players_table = json.loads(players_json) if 'rows' not in players_table.keys(): raise RuntimeError("Failed to find 'rows' in the player table: Invalid roster JSON or new format?") if 'cols' not in players_table.keys(): raise RuntimeError("Failed to find 'cols' in the player table: Invalid roster JSON or new format?") players_table_rows = [[field['v'] for field in pos['c']] for pos in players_table['rows']] players_table_cols = [c['id'] for c in players_table['cols']] return pd.DataFrame(data=players_table_rows, columns=players_table_cols) class Team(object): PLAYER_NAME = 'FullName' PLAYER_POSITION = 'PosShortName' TEPFFL_TEAM_IDS = range(1611, 1623) TEPFFL_ROSTER_SIZE_MAX = 19 _ROSTER_URL = None _ROSTER_QUERY_TEMPLATE = '{}?rnd={}&seasonId={}&weekNumber={}&teamId={}' _ROSTER_SEASON = None _ROSTER_COLUMNS = [PLAYER_NAME, 'NflAbbreviation', PLAYER_POSITION] @classmethod def configure(cls, config): cls._ROSTER_URL = config.get('tepffl', 'url') cls._ROSTER_SEASON = config.get('tepffl', 'season') def __init__(self, team_id, week, filename=None): if self._ROSTER_URL is None: raise RuntimeError('Failed to set TEP FFL roster URL') if self._ROSTER_SEASON is None: raise RuntimeError('Failed to set TEP FFL season ID') self.team_id = team_id roster_json = None if filename is None: roster_url = self._ROSTER_QUERY_TEMPLATE.format( self._ROSTER_URL, int(random.uniform(0, 65536)), self._ROSTER_SEASON, week, self.team_id ) _logger.debug('Getting roster from {}'.format(roster_url)) response = requests.get(roster_url) if response.status_code == 200: roster_json = response.text else: raise RuntimeError( f'Failed to get roster from server: Got response code {response.status_code})' ) else: with open(filename) as f: roster_json = f.read() self._roster_df = _deserialize_roster_json(roster_json) for c in self._ROSTER_COLUMNS: if c not in self.df: raise RuntimeError(f"Failed to find '{c}' in the roster data") @property def df(self): return self._roster_df @property def roster(self): return self.df[['FullName', 'NflAbbreviation', 'PosShortName']] def add_tepffl_args(parser): team_parser = parser.add_argument_group('Team options') team_parser.add_argument( '--team-id', nargs='*', type=int, choices=Team.TEPFFL_TEAM_IDS, help='Zero or more team IDs for which to retrieve rosters (default is to retrieve all rosters)', ) def get_rosters(week, team_ids=None, position=None): if team_ids is None: team_ids = Team.TEPFFL_TEAM_IDS teams = [] for team_id in team_ids: _logger.debug('Gathering roster for team {}'.format(team_id)) team = Team(team_id, week) if len(team.roster) < Team.TEPFFL_ROSTER_SIZE_MAX: _logger.warning( f'TEP FFL team with ID {team_id} has a short roster: Expected {Team.TEPFFL_ROSTER_SIZE_MAX}, got {len(team.roster)}' ) if len(team.roster) > Team.TEPFFL_ROSTER_SIZE_MAX: _logger.error( f'TEP FFL team with ID {team_id} has an oversize roster: Expected {Team.TEPFFL_ROSTER_SIZE_MAX}, got {len(team.roster)}' ) teams.append(team) df =
pd.concat([t.roster for t in teams], ignore_index=True)
pandas.concat
import numpy as np import pandas as pd from scipy import stats from ..base import AbstractDensity class Multinomial: def __init__(self, probs): ''' Define a multinomial random variable object :param probs: The probability of each class, with classes indexed as 0 to len(probs)-1 ''' assert isinstance(probs, np.ndarray) self.idx = list(range(len(probs))) self.probs = probs/probs.sum() def rvs(self, n): return np.random.choice( a=self.idx, size=n, p=self.probs, replace=True ) def density(self, points): if isinstance(points, pd.DataFrame): assert points.shape[1] == 1 points = points.values[:,0] return [self.probs[k] for k in points] class BartSimpson(AbstractDensity): ''' The "claw" in https://projecteuclid.org/download/pdf_1/euclid.aos/1176348653; renamed as in http://www.stat.cmu.edu/~larry/=sml/densityestimation.pdf ''' def __init__(self): super().__init__() # Guassians to mix over self.gaussians = [ stats.norm(), stats.norm(loc=-1, scale=0.1), stats.norm(loc=-0.5, scale=0.1), stats.norm(loc=0, scale=0.1), stats.norm(loc=0.5, scale=0.1), stats.norm(loc=1, scale=0.1) ] # Mixing weights self.multinomial = Multinomial(probs = np.array([0.5] + [0.1]*5)) def rvs(self, n): ''' Simulate n draws ''' idxs = self.multinomial.rvs(n) values, counts = np.unique(idxs, return_counts=True) samples = [ self.gaussians[values[k]].rvs(counts[k]) for k in range(len(values)) ] samples = [v for sublist in samples for v in sublist] np.random.shuffle(samples) return
pd.DataFrame({'bart_simpson': samples})
pandas.DataFrame
""" This script reads all the bootstrap performance result files, plots histograms, and calculates averages. t-tests are done to compute p-values and confidence intervals are computed """ import pandas as pd import numpy as np import os import matplotlib.pyplot as plt import matplotlib from scipy import stats matplotlib.rcParams.update({'font.size': 8}) # well_list = ["043", "125", "129", "153", "155", "170", "175"] well_list = ["125"] for well in well_list: # loop through all wells # specify folder locations out_folder = "C:/Users/<NAME>/PycharmProjects/Tensorflow/rnn_lstm_comparison_results/mmps" + well rnn_full_results_folder = "C:/Users/<NAME>/PycharmProjects/Tensorflow/Rivanna_results/mmps" + well +\ "_results_full_bootstrap_rnn/" lstm_full_results_folder = "C:/Users/<NAME>/PycharmProjects/Tensorflow/Rivanna_results/mmps" + well +\ "_results_full_bootstrap_lstm/" rnn_storms_results_folder = "C:/Users/<NAME>/PycharmProjects/Tensorflow/Rivanna_results/mmps" + well +\ "_results_storm_bootstrap_rnn/" lstm_storms_results_folder = "C:/Users/<NAME>/PycharmProjects/Tensorflow/Rivanna_results/mmps" + well +\ "_results_storm_bootstrap_lstm/" folder_list = [rnn_full_results_folder, lstm_full_results_folder, rnn_storms_results_folder, lstm_storms_results_folder] rmse_df_list = [] nse_df_list = [] mae_df_list = [] rmse_storms_df_list = [] nse_storms_df_list = [] mae_storms_df_list = [] for folder in folder_list: folder_name1 = folder.split("/")[6].split("_")[2] folder_name2 = folder.split("/")[6].split("_")[4] folder_name = folder_name1 + "_" + folder_name2 print(folder_name) rmse_t1_list, rmse_t9_list, rmse_t18_list = [], [], [] nse_t1_list, nse_t9_list, nse_t18_list = [], [], [] mae_t1_list, mae_t9_list, mae_t18_list = [], [], [] rmse_storms_t1_list, rmse_storms_t9_list, rmse_storms_t18_list = [], [], [] nse_storms_t1_list, nse_storms_t9_list, nse_storms_t18_list = [], [], [] mae_storms_t1_list, mae_storms_t9_list, mae_storms_t18_list = [], [], [] count = 0 for file in os.listdir(folder): # extract forecast data if count % 100 == 0: print(folder, "count is", count) data = folder + file if file.endswith("_RMSE.csv"): # print(file) rmse_df = pd.read_csv(data) rmse_t1, rmse_t9, rmse_t18 = rmse_df[["0"]].iloc[0], rmse_df[["0"]].iloc[8], rmse_df[["0"]].iloc[17] rmse_t1_list.append(rmse_t1[0]) rmse_t9_list.append(rmse_t9[0]) rmse_t18_list.append(rmse_t18[0]) if file.endswith("_NSE.csv"): nse_df = pd.read_csv(data) nse_t1, nse_t9, nse_t18 = nse_df[["0"]].iloc[0], nse_df[["0"]].iloc[8], nse_df[["0"]].iloc[17] nse_t1_list.append(nse_t1[0]) nse_t9_list.append(nse_t9[0]) nse_t18_list.append(nse_t18[0]) if file.endswith("_MAE.csv"): mae_df = pd.read_csv(data) mae_t1, mae_t9, mae_t18 = mae_df[["0"]].iloc[0], mae_df[["0"]].iloc[8], mae_df[["0"]].iloc[17] mae_t1_list.append(mae_t1[0]) mae_t9_list.append(mae_t9[0]) mae_t18_list.append(mae_t18[0]) if file.endswith("_RMSE_storms.csv"): # print(file) rmse_df =
pd.read_csv(data)
pandas.read_csv
import pandas as pd import numpy as np from sklearn.preprocessing import StandardScaler, LabelEncoder from querying.tracking_query import get_play def ft_in(x): if '-' in x: meas=x.split('-') #this will be a list ['ft','in'] inches = int(meas[0])*12 + int(meas[1]) return inches else: return int(x) def clock(x,df): gameClock = df.loc[x]['gameClock'] quarter = df.loc[x]['quarter'] gameClock_split = gameClock.split(':') minutes = gameClock_split[0] seconds = gameClock_split[1] total_minutes = 15-int(minutes) + 15 * (quarter - 1) return (total_minutes * 60) + int(seconds) def get_game_season(game_id, games): return games[games['gameId']==game_id]['season'].values[0] def preprocess_players(players_df): # preprocessing steps players_df['height'] = players_df['height'].apply(ft_in) return players_df def preprocess_tracking(track18, track19, track20, play_df, play_type): ''' This function creates the tracking dataframes by play-type by year. Parameters: ----------- track18, track19, track20 - trackYY.csv dataframes play_df - play.csv dataframe play_type - string, play type, e.g., 'Extra Point' ... Returns: ----------- track_p18 - Tracking Play Type 2018 dataframe track_p19 - Tracking Play Type 2019 dataframe track_p20 - Tracking Play Type 2020 dataframe ''' track18 = track18.copy() track19 = track19.copy() track20 = track20.copy() #re-orient direction of play by offensive team direction : #We must reorient this to reflect movement in the offense direction instead of the on-field coordinates #(reorient the origin from the bottom left to top right for a change in direction). #2018 tracking data track18.loc[track18['playDirection'] == 'left', 'x'] = 120 -track18.loc[track18['playDirection']=='left','x'] track18.loc[track18['playDirection'] == 'left', 'y'] = 160/3 -track18.loc[track18['playDirection']=='left','y'] #note that we have 160/3 for the y direction since the football field is 160ft, but our units are yards #2019 tracking data track19.loc[track19['playDirection'] == 'left', 'x'] = 120 -track19.loc[track19['playDirection']=='left','x'] track19.loc[track19['playDirection'] == 'left', 'y'] = 160/3 -track19.loc[track19['playDirection']=='left','y'] #2020 tracking data track20.loc[track20['playDirection'] == 'left', 'x'] = 120 -track20.loc[track20['playDirection']=='left','x'] track20.loc[track20['playDirection'] == 'left', 'y'] = 160/3 -track20.loc[track20['playDirection']=='left','y'] #divide play dataset by type of play play_p = play_df.loc[play_df['specialTeamsPlayType']== play_type][['gameId', 'playId']] #merge play_type with tracking for each year track_p18 = pd.merge(play_p, track18, left_on = ['gameId', 'playId'], right_on = ['gameId', 'playId']) track_p19 =
pd.merge(play_p, track19, left_on = ['gameId', 'playId'], right_on = ['gameId', 'playId'])
pandas.merge
# pylint: disable=E1101,E1103,W0232 from datetime import datetime, timedelta from pandas.compat import range, lrange, lzip, u, zip import operator import re import nose import warnings import os import numpy as np from numpy.testing import assert_array_equal from pandas import period_range, date_range from pandas.core.index import (Index, Float64Index, Int64Index, MultiIndex, InvalidIndexError, NumericIndex) from pandas.tseries.index import DatetimeIndex from pandas.tseries.tdi import TimedeltaIndex from pandas.tseries.period import PeriodIndex from pandas.core.series import Series from pandas.util.testing import (assert_almost_equal, assertRaisesRegexp, assert_copy) from pandas import compat from pandas.compat import long import pandas.util.testing as tm import pandas.core.config as cf from pandas.tseries.index import _to_m8 import pandas.tseries.offsets as offsets import pandas as pd from pandas.lib import Timestamp class Base(object): """ base class for index sub-class tests """ _holder = None _compat_props = ['shape', 'ndim', 'size', 'itemsize', 'nbytes'] def verify_pickle(self,index): unpickled = self.round_trip_pickle(index) self.assertTrue(index.equals(unpickled)) def test_pickle_compat_construction(self): # this is testing for pickle compat if self._holder is None: return # need an object to create with self.assertRaises(TypeError, self._holder) def test_numeric_compat(self): idx = self.create_index() tm.assertRaisesRegexp(TypeError, "cannot perform __mul__", lambda : idx * 1) tm.assertRaisesRegexp(TypeError, "cannot perform __mul__", lambda : 1 * idx) div_err = "cannot perform __truediv__" if compat.PY3 else "cannot perform __div__" tm.assertRaisesRegexp(TypeError, div_err, lambda : idx / 1) tm.assertRaisesRegexp(TypeError, div_err, lambda : 1 / idx) tm.assertRaisesRegexp(TypeError, "cannot perform __floordiv__", lambda : idx // 1) tm.assertRaisesRegexp(TypeError, "cannot perform __floordiv__", lambda : 1 // idx) def test_boolean_context_compat(self): # boolean context compat idx = self.create_index() def f(): if idx: pass tm.assertRaisesRegexp(ValueError,'The truth value of a',f) def test_ndarray_compat_properties(self): idx = self.create_index() self.assertTrue(idx.T.equals(idx)) self.assertTrue(idx.transpose().equals(idx)) values = idx.values for prop in self._compat_props: self.assertEqual(getattr(idx, prop), getattr(values, prop)) # test for validity idx.nbytes idx.values.nbytes class TestIndex(Base, tm.TestCase): _holder = Index _multiprocess_can_split_ = True def setUp(self): self.indices = dict( unicodeIndex = tm.makeUnicodeIndex(100), strIndex = tm.makeStringIndex(100), dateIndex = tm.makeDateIndex(100), intIndex = tm.makeIntIndex(100), floatIndex = tm.makeFloatIndex(100), boolIndex = Index([True,False]), empty = Index([]), tuples = MultiIndex.from_tuples(lzip(['foo', 'bar', 'baz'], [1, 2, 3])) ) for name, ind in self.indices.items(): setattr(self, name, ind) def create_index(self): return Index(list('abcde')) def test_wrong_number_names(self): def testit(ind): ind.names = ["apple", "banana", "carrot"] for ind in self.indices.values(): assertRaisesRegexp(ValueError, "^Length", testit, ind) def test_set_name_methods(self): new_name = "This is the new name for this index" indices = (self.dateIndex, self.intIndex, self.unicodeIndex, self.empty) for ind in indices: original_name = ind.name new_ind = ind.set_names([new_name]) self.assertEqual(new_ind.name, new_name) self.assertEqual(ind.name, original_name) res = ind.rename(new_name, inplace=True) # should return None self.assertIsNone(res) self.assertEqual(ind.name, new_name) self.assertEqual(ind.names, [new_name]) #with assertRaisesRegexp(TypeError, "list-like"): # # should still fail even if it would be the right length # ind.set_names("a") with assertRaisesRegexp(ValueError, "Level must be None"): ind.set_names("a", level=0) # rename in place just leaves tuples and other containers alone name = ('A', 'B') ind = self.intIndex ind.rename(name, inplace=True) self.assertEqual(ind.name, name) self.assertEqual(ind.names, [name]) def test_hash_error(self): with tm.assertRaisesRegexp(TypeError, "unhashable type: %r" % type(self.strIndex).__name__): hash(self.strIndex) def test_new_axis(self): new_index = self.dateIndex[None, :] self.assertEqual(new_index.ndim, 2) tm.assert_isinstance(new_index, np.ndarray) def test_copy_and_deepcopy(self): from copy import copy, deepcopy for func in (copy, deepcopy): idx_copy = func(self.strIndex) self.assertIsNot(idx_copy, self.strIndex) self.assertTrue(idx_copy.equals(self.strIndex)) new_copy = self.strIndex.copy(deep=True, name="banana") self.assertEqual(new_copy.name, "banana") new_copy2 = self.intIndex.copy(dtype=int) self.assertEqual(new_copy2.dtype.kind, 'i') def test_duplicates(self): idx = Index([0, 0, 0]) self.assertFalse(idx.is_unique) def test_sort(self): self.assertRaises(TypeError, self.strIndex.sort) def test_mutability(self): self.assertRaises(TypeError, self.strIndex.__setitem__, 0, 'foo') def test_constructor(self): # regular instance creation tm.assert_contains_all(self.strIndex, self.strIndex) tm.assert_contains_all(self.dateIndex, self.dateIndex) # casting arr = np.array(self.strIndex) index = Index(arr) tm.assert_contains_all(arr, index) self.assert_numpy_array_equal(self.strIndex, index) # copy arr = np.array(self.strIndex) index = Index(arr, copy=True, name='name') tm.assert_isinstance(index, Index) self.assertEqual(index.name, 'name') assert_array_equal(arr, index) arr[0] = "SOMEBIGLONGSTRING" self.assertNotEqual(index[0], "SOMEBIGLONGSTRING") # what to do here? # arr = np.array(5.) # self.assertRaises(Exception, arr.view, Index) def test_constructor_corner(self): # corner case self.assertRaises(TypeError, Index, 0) def test_constructor_from_series(self): expected = DatetimeIndex([Timestamp('20110101'),Timestamp('20120101'),Timestamp('20130101')]) s = Series([Timestamp('20110101'),Timestamp('20120101'),Timestamp('20130101')]) result = Index(s) self.assertTrue(result.equals(expected)) result = DatetimeIndex(s) self.assertTrue(result.equals(expected)) # GH 6273 # create from a series, passing a freq s = Series(pd.to_datetime(['1-1-1990', '2-1-1990', '3-1-1990', '4-1-1990', '5-1-1990'])) result = DatetimeIndex(s, freq='MS') expected = DatetimeIndex(['1-1-1990', '2-1-1990', '3-1-1990', '4-1-1990', '5-1-1990'],freq='MS') self.assertTrue(result.equals(expected)) df = pd.DataFrame(np.random.rand(5,3)) df['date'] = ['1-1-1990', '2-1-1990', '3-1-1990', '4-1-1990', '5-1-1990'] result = DatetimeIndex(df['date'], freq='MS') # GH 6274 # infer freq of same result = pd.infer_freq(df['date']) self.assertEqual(result,'MS') def test_constructor_ndarray_like(self): # GH 5460#issuecomment-44474502 # it should be possible to convert any object that satisfies the numpy # ndarray interface directly into an Index class ArrayLike(object): def __init__(self, array): self.array = array def __array__(self, dtype=None): return self.array for array in [np.arange(5), np.array(['a', 'b', 'c']), date_range('2000-01-01', periods=3).values]: expected = pd.Index(array) result = pd.Index(ArrayLike(array)) self.assertTrue(result.equals(expected)) def test_index_ctor_infer_periodindex(self): xp = period_range('2012-1-1', freq='M', periods=3) rs = Index(xp) assert_array_equal(rs, xp) tm.assert_isinstance(rs, PeriodIndex) def test_constructor_simple_new(self): idx = Index([1, 2, 3, 4, 5], name='int') result = idx._simple_new(idx, 'int') self.assertTrue(result.equals(idx)) idx = Index([1.1, np.nan, 2.2, 3.0], name='float') result = idx._simple_new(idx, 'float') self.assertTrue(result.equals(idx)) idx = Index(['A', 'B', 'C', np.nan], name='obj') result = idx._simple_new(idx, 'obj') self.assertTrue(result.equals(idx)) def test_copy(self): i = Index([], name='Foo') i_copy = i.copy() self.assertEqual(i_copy.name, 'Foo') def test_view(self): i = Index([], name='Foo') i_view = i.view() self.assertEqual(i_view.name, 'Foo') def test_legacy_pickle_identity(self): # GH 8431 pth = tm.get_data_path() s1 = pd.read_pickle(os.path.join(pth,'s1-0.12.0.pickle')) s2 = pd.read_pickle(os.path.join(pth,'s2-0.12.0.pickle')) self.assertFalse(s1.index.identical(s2.index)) self.assertFalse(s1.index.equals(s2.index)) def test_astype(self): casted = self.intIndex.astype('i8') # it works! casted.get_loc(5) # pass on name self.intIndex.name = 'foobar' casted = self.intIndex.astype('i8') self.assertEqual(casted.name, 'foobar') def test_compat(self): self.strIndex.tolist() def test_equals(self): # same self.assertTrue(Index(['a', 'b', 'c']).equals(Index(['a', 'b', 'c']))) # different length self.assertFalse(Index(['a', 'b', 'c']).equals(Index(['a', 'b']))) # same length, different values self.assertFalse(Index(['a', 'b', 'c']).equals(Index(['a', 'b', 'd']))) # Must also be an Index self.assertFalse(Index(['a', 'b', 'c']).equals(['a', 'b', 'c'])) def test_insert(self): # GH 7256 # validate neg/pos inserts result = Index(['b', 'c', 'd']) #test 0th element self.assertTrue(Index(['a', 'b', 'c', 'd']).equals( result.insert(0, 'a'))) #test Nth element that follows Python list behavior self.assertTrue(Index(['b', 'c', 'e', 'd']).equals( result.insert(-1, 'e'))) #test loc +/- neq (0, -1) self.assertTrue(result.insert(1, 'z').equals( result.insert(-2, 'z'))) #test empty null_index = Index([]) self.assertTrue(Index(['a']).equals( null_index.insert(0, 'a'))) def test_delete(self): idx = Index(['a', 'b', 'c', 'd'], name='idx') expected = Index(['b', 'c', 'd'], name='idx') result = idx.delete(0) self.assertTrue(result.equals(expected)) self.assertEqual(result.name, expected.name) expected = Index(['a', 'b', 'c'], name='idx') result = idx.delete(-1) self.assertTrue(result.equals(expected)) self.assertEqual(result.name, expected.name) with tm.assertRaises((IndexError, ValueError)): # either depeidnig on numpy version result = idx.delete(5) def test_identical(self): # index i1 = Index(['a', 'b', 'c']) i2 = Index(['a', 'b', 'c']) self.assertTrue(i1.identical(i2)) i1 = i1.rename('foo') self.assertTrue(i1.equals(i2)) self.assertFalse(i1.identical(i2)) i2 = i2.rename('foo') self.assertTrue(i1.identical(i2)) i3 = Index([('a', 'a'), ('a', 'b'), ('b', 'a')]) i4 = Index([('a', 'a'), ('a', 'b'), ('b', 'a')], tupleize_cols=False) self.assertFalse(i3.identical(i4)) def test_is_(self): ind = Index(range(10)) self.assertTrue(ind.is_(ind)) self.assertTrue(ind.is_(ind.view().view().view().view())) self.assertFalse(ind.is_(Index(range(10)))) self.assertFalse(ind.is_(ind.copy())) self.assertFalse(ind.is_(ind.copy(deep=False))) self.assertFalse(ind.is_(ind[:])) self.assertFalse(ind.is_(ind.view(np.ndarray).view(Index))) self.assertFalse(ind.is_(np.array(range(10)))) # quasi-implementation dependent self.assertTrue(ind.is_(ind.view())) ind2 = ind.view() ind2.name = 'bob' self.assertTrue(ind.is_(ind2)) self.assertTrue(ind2.is_(ind)) # doesn't matter if Indices are *actually* views of underlying data, self.assertFalse(ind.is_(Index(ind.values))) arr = np.array(range(1, 11)) ind1 = Index(arr, copy=False) ind2 = Index(arr, copy=False) self.assertFalse(ind1.is_(ind2)) def test_asof(self): d = self.dateIndex[0] self.assertIs(self.dateIndex.asof(d), d) self.assertTrue(np.isnan(self.dateIndex.asof(d - timedelta(1)))) d = self.dateIndex[-1] self.assertEqual(self.dateIndex.asof(d + timedelta(1)), d) d = self.dateIndex[0].to_datetime() tm.assert_isinstance(self.dateIndex.asof(d), Timestamp) def test_asof_datetime_partial(self): idx = pd.date_range('2010-01-01', periods=2, freq='m') expected = Timestamp('2010-01-31') result = idx.asof('2010-02') self.assertEqual(result, expected) def test_nanosecond_index_access(self): s = Series([Timestamp('20130101')]).values.view('i8')[0] r = DatetimeIndex([s + 50 + i for i in range(100)]) x = Series(np.random.randn(100), index=r) first_value = x.asof(x.index[0]) # this does not yet work, as parsing strings is done via dateutil #self.assertEqual(first_value, x['2013-01-01 00:00:00.000000050+0000']) self.assertEqual(first_value, x[Timestamp(np.datetime64('2013-01-01 00:00:00.000000050+0000', 'ns'))]) def test_argsort(self): result = self.strIndex.argsort() expected = np.array(self.strIndex).argsort() self.assert_numpy_array_equal(result, expected) def test_comparators(self): index = self.dateIndex element = index[len(index) // 2] element = _to_m8(element) arr = np.array(index) def _check(op): arr_result = op(arr, element) index_result = op(index, element) self.assertIsInstance(index_result, np.ndarray) self.assert_numpy_array_equal(arr_result, index_result) _check(operator.eq) _check(operator.ne) _check(operator.gt) _check(operator.lt) _check(operator.ge) _check(operator.le) def test_booleanindex(self): boolIdx = np.repeat(True, len(self.strIndex)).astype(bool) boolIdx[5:30:2] = False subIndex = self.strIndex[boolIdx] for i, val in enumerate(subIndex): self.assertEqual(subIndex.get_loc(val), i) subIndex = self.strIndex[list(boolIdx)] for i, val in enumerate(subIndex): self.assertEqual(subIndex.get_loc(val), i) def test_fancy(self): sl = self.strIndex[[1, 2, 3]] for i in sl: self.assertEqual(i, sl[sl.get_loc(i)]) def test_empty_fancy(self): empty_farr = np.array([], dtype=np.float_) empty_iarr = np.array([], dtype=np.int_) empty_barr = np.array([], dtype=np.bool_) # pd.DatetimeIndex is excluded, because it overrides getitem and should # be tested separately. for idx in [self.strIndex, self.intIndex, self.floatIndex]: empty_idx = idx.__class__([]) values = idx.values self.assertTrue(idx[[]].identical(empty_idx)) self.assertTrue(idx[empty_iarr].identical(empty_idx)) self.assertTrue(idx[empty_barr].identical(empty_idx)) # np.ndarray only accepts ndarray of int & bool dtypes, so should # Index. self.assertRaises(IndexError, idx.__getitem__, empty_farr) def test_getitem(self): arr = np.array(self.dateIndex) exp = self.dateIndex[5] exp = _to_m8(exp) self.assertEqual(exp, arr[5]) def test_shift(self): shifted = self.dateIndex.shift(0, timedelta(1)) self.assertIs(shifted, self.dateIndex) shifted = self.dateIndex.shift(5, timedelta(1)) self.assert_numpy_array_equal(shifted, self.dateIndex + timedelta(5)) shifted = self.dateIndex.shift(1, 'B') self.assert_numpy_array_equal(shifted, self.dateIndex + offsets.BDay()) shifted.name = 'shifted' self.assertEqual(shifted.name, shifted.shift(1, 'D').name) def test_intersection(self): first = self.strIndex[:20] second = self.strIndex[:10] intersect = first.intersection(second) self.assertTrue(tm.equalContents(intersect, second)) # Corner cases inter = first.intersection(first) self.assertIs(inter, first) # non-iterable input assertRaisesRegexp(TypeError, "iterable", first.intersection, 0.5) idx1 = Index([1, 2, 3, 4, 5], name='idx') # if target has the same name, it is preserved idx2 = Index([3, 4, 5, 6, 7], name='idx') expected2 = Index([3, 4, 5], name='idx') result2 = idx1.intersection(idx2) self.assertTrue(result2.equals(expected2)) self.assertEqual(result2.name, expected2.name) # if target name is different, it will be reset idx3 = Index([3, 4, 5, 6, 7], name='other') expected3 = Index([3, 4, 5], name=None) result3 = idx1.intersection(idx3) self.assertTrue(result3.equals(expected3)) self.assertEqual(result3.name, expected3.name) # non monotonic idx1 = Index([5, 3, 2, 4, 1], name='idx') idx2 = Index([4, 7, 6, 5, 3], name='idx') result2 = idx1.intersection(idx2) self.assertTrue(tm.equalContents(result2, expected2)) self.assertEqual(result2.name, expected2.name) idx3 = Index([4, 7, 6, 5, 3], name='other') result3 = idx1.intersection(idx3) self.assertTrue(tm.equalContents(result3, expected3)) self.assertEqual(result3.name, expected3.name) # non-monotonic non-unique idx1 = Index(['A','B','A','C']) idx2 = Index(['B','D']) expected = Index(['B'], dtype='object') result = idx1.intersection(idx2) self.assertTrue(result.equals(expected)) def test_union(self): first = self.strIndex[5:20] second = self.strIndex[:10] everything = self.strIndex[:20] union = first.union(second) self.assertTrue(tm.equalContents(union, everything)) # Corner cases union = first.union(first) self.assertIs(union, first) union = first.union([]) self.assertIs(union, first) union = Index([]).union(first) self.assertIs(union, first) # non-iterable input assertRaisesRegexp(TypeError, "iterable", first.union, 0.5) # preserve names first.name = 'A' second.name = 'A' union = first.union(second) self.assertEqual(union.name, 'A') second.name = 'B' union = first.union(second) self.assertIsNone(union.name) def test_add(self): # - API change GH 8226 with tm.assert_produces_warning(): self.strIndex + self.strIndex firstCat = self.strIndex.union(self.dateIndex) secondCat = self.strIndex.union(self.strIndex) if self.dateIndex.dtype == np.object_: appended = np.append(self.strIndex, self.dateIndex) else: appended = np.append(self.strIndex, self.dateIndex.astype('O')) self.assertTrue(tm.equalContents(firstCat, appended)) self.assertTrue(tm.equalContents(secondCat, self.strIndex)) tm.assert_contains_all(self.strIndex, firstCat) tm.assert_contains_all(self.strIndex, secondCat) tm.assert_contains_all(self.dateIndex, firstCat) def test_append_multiple(self): index = Index(['a', 'b', 'c', 'd', 'e', 'f']) foos = [index[:2], index[2:4], index[4:]] result = foos[0].append(foos[1:]) self.assertTrue(result.equals(index)) # empty result = index.append([]) self.assertTrue(result.equals(index)) def test_append_empty_preserve_name(self): left = Index([], name='foo') right = Index([1, 2, 3], name='foo') result = left.append(right) self.assertEqual(result.name, 'foo') left = Index([], name='foo') right = Index([1, 2, 3], name='bar') result = left.append(right) self.assertIsNone(result.name) def test_add_string(self): # from bug report index = Index(['a', 'b', 'c']) index2 = index + 'foo' self.assertNotIn('a', index2) self.assertIn('afoo', index2) def test_iadd_string(self): index = pd.Index(['a', 'b', 'c']) # doesn't fail test unless there is a check before `+=` self.assertIn('a', index) index += '_x' self.assertIn('a_x', index) def test_difference(self): first = self.strIndex[5:20] second = self.strIndex[:10] answer = self.strIndex[10:20] first.name = 'name' # different names result = first.difference(second) self.assertTrue(tm.equalContents(result, answer)) self.assertEqual(result.name, None) # same names second.name = 'name' result = first.difference(second) self.assertEqual(result.name, 'name') # with empty result = first.difference([]) self.assertTrue(tm.equalContents(result, first)) self.assertEqual(result.name, first.name) # with everythin result = first.difference(first) self.assertEqual(len(result), 0) self.assertEqual(result.name, first.name) # non-iterable input assertRaisesRegexp(TypeError, "iterable", first.diff, 0.5) def test_symmetric_diff(self): # smoke idx1 = Index([1, 2, 3, 4], name='idx1') idx2 = Index([2, 3, 4, 5]) result = idx1.sym_diff(idx2) expected = Index([1, 5]) self.assertTrue(tm.equalContents(result, expected)) self.assertIsNone(result.name) # __xor__ syntax expected = idx1 ^ idx2 self.assertTrue(tm.equalContents(result, expected)) self.assertIsNone(result.name) # multiIndex idx1 = MultiIndex.from_tuples(self.tuples) idx2 = MultiIndex.from_tuples([('foo', 1), ('bar', 3)]) result = idx1.sym_diff(idx2) expected = MultiIndex.from_tuples([('bar', 2), ('baz', 3), ('bar', 3)]) self.assertTrue(tm.equalContents(result, expected)) # nans: # GH #6444, sorting of nans. Make sure the number of nans is right # and the correct non-nan values are there. punt on sorting. idx1 = Index([1, 2, 3, np.nan]) idx2 = Index([0, 1, np.nan]) result = idx1.sym_diff(idx2) # expected = Index([0.0, np.nan, 2.0, 3.0, np.nan]) nans = pd.isnull(result) self.assertEqual(nans.sum(), 2) self.assertEqual((~nans).sum(), 3) [self.assertIn(x, result) for x in [0.0, 2.0, 3.0]] # other not an Index: idx1 = Index([1, 2, 3, 4], name='idx1') idx2 = np.array([2, 3, 4, 5]) expected = Index([1, 5]) result = idx1.sym_diff(idx2) self.assertTrue(tm.equalContents(result, expected)) self.assertEqual(result.name, 'idx1') result = idx1.sym_diff(idx2, result_name='new_name') self.assertTrue(tm.equalContents(result, expected)) self.assertEqual(result.name, 'new_name') # other isn't iterable with tm.assertRaises(TypeError): Index(idx1,dtype='object') - 1 def test_pickle(self): self.verify_pickle(self.strIndex) self.strIndex.name = 'foo' self.verify_pickle(self.strIndex) self.verify_pickle(self.dateIndex) def test_is_numeric(self): self.assertFalse(self.dateIndex.is_numeric()) self.assertFalse(self.strIndex.is_numeric()) self.assertTrue(self.intIndex.is_numeric()) self.assertTrue(self.floatIndex.is_numeric()) def test_is_object(self): self.assertTrue(self.strIndex.is_object()) self.assertTrue(self.boolIndex.is_object()) self.assertFalse(self.intIndex.is_object()) self.assertFalse(self.dateIndex.is_object()) self.assertFalse(self.floatIndex.is_object()) def test_is_all_dates(self): self.assertTrue(self.dateIndex.is_all_dates) self.assertFalse(self.strIndex.is_all_dates) self.assertFalse(self.intIndex.is_all_dates) def test_summary(self): self._check_method_works(Index.summary) # GH3869 ind = Index(['{other}%s', "~:{range}:0"], name='A') result = ind.summary() # shouldn't be formatted accidentally. self.assertIn('~:{range}:0', result) self.assertIn('{other}%s', result) def test_format(self): self._check_method_works(Index.format) index = Index([datetime.now()]) formatted = index.format() expected = [str(index[0])] self.assertEqual(formatted, expected) # 2845 index = Index([1, 2.0+3.0j, np.nan]) formatted = index.format() expected = [str(index[0]), str(index[1]), u('NaN')] self.assertEqual(formatted, expected) # is this really allowed? index = Index([1, 2.0+3.0j, None]) formatted = index.format() expected = [str(index[0]), str(index[1]), u('NaN')] self.assertEqual(formatted, expected) self.strIndex[:0].format() def test_format_with_name_time_info(self): # bug I fixed 12/20/2011 inc = timedelta(hours=4) dates = Index([dt + inc for dt in self.dateIndex], name='something') formatted = dates.format(name=True) self.assertEqual(formatted[0], 'something') def test_format_datetime_with_time(self): t = Index([datetime(2012, 2, 7), datetime(2012, 2, 7, 23)]) result = t.format() expected = ['2012-02-07 00:00:00', '2012-02-07 23:00:00'] self.assertEqual(len(result), 2) self.assertEqual(result, expected) def test_format_none(self): values = ['a', 'b', 'c', None] idx = Index(values) idx.format() self.assertIsNone(idx[3]) def test_take(self): indexer = [4, 3, 0, 2] result = self.dateIndex.take(indexer) expected = self.dateIndex[indexer] self.assertTrue(result.equals(expected)) def _check_method_works(self, method): method(self.empty) method(self.dateIndex) method(self.unicodeIndex) method(self.strIndex) method(self.intIndex) method(self.tuples) def test_get_indexer(self): idx1 = Index([1, 2, 3, 4, 5]) idx2 = Index([2, 4, 6]) r1 = idx1.get_indexer(idx2) assert_almost_equal(r1, [1, 3, -1]) r1 = idx2.get_indexer(idx1, method='pad') assert_almost_equal(r1, [-1, 0, 0, 1, 1]) rffill1 = idx2.get_indexer(idx1, method='ffill') assert_almost_equal(r1, rffill1) r1 = idx2.get_indexer(idx1, method='backfill') assert_almost_equal(r1, [0, 0, 1, 1, 2]) rbfill1 = idx2.get_indexer(idx1, method='bfill') assert_almost_equal(r1, rbfill1) def test_slice_locs(self): for dtype in [int, float]: idx = Index(np.array([0, 1, 2, 5, 6, 7, 9, 10], dtype=dtype)) n = len(idx) self.assertEqual(idx.slice_locs(start=2), (2, n)) self.assertEqual(idx.slice_locs(start=3), (3, n)) self.assertEqual(idx.slice_locs(3, 8), (3, 6)) self.assertEqual(idx.slice_locs(5, 10), (3, n)) self.assertEqual(idx.slice_locs(5.0, 10.0), (3, n)) self.assertEqual(idx.slice_locs(4.5, 10.5), (3, 8)) self.assertEqual(idx.slice_locs(end=8), (0, 6)) self.assertEqual(idx.slice_locs(end=9), (0, 7)) idx2 = idx[::-1] self.assertEqual(idx2.slice_locs(8, 2), (2, 6)) self.assertEqual(idx2.slice_locs(8.5, 1.5), (2, 6)) self.assertEqual(idx2.slice_locs(7, 3), (2, 5)) self.assertEqual(idx2.slice_locs(10.5, -1), (0, n)) def test_slice_locs_dup(self): idx = Index(['a', 'a', 'b', 'c', 'd', 'd']) self.assertEqual(idx.slice_locs('a', 'd'), (0, 6)) self.assertEqual(idx.slice_locs(end='d'), (0, 6)) self.assertEqual(idx.slice_locs('a', 'c'), (0, 4)) self.assertEqual(idx.slice_locs('b', 'd'), (2, 6)) idx2 = idx[::-1] self.assertEqual(idx2.slice_locs('d', 'a'), (0, 6)) self.assertEqual(idx2.slice_locs(end='a'), (0, 6)) self.assertEqual(idx2.slice_locs('d', 'b'), (0, 4)) self.assertEqual(idx2.slice_locs('c', 'a'), (2, 6)) for dtype in [int, float]: idx = Index(np.array([10, 12, 12, 14], dtype=dtype)) self.assertEqual(idx.slice_locs(12, 12), (1, 3)) self.assertEqual(idx.slice_locs(11, 13), (1, 3)) idx2 = idx[::-1] self.assertEqual(idx2.slice_locs(12, 12), (1, 3)) self.assertEqual(idx2.slice_locs(13, 11), (1, 3)) def test_slice_locs_na(self): idx = Index([np.nan, 1, 2]) self.assertRaises(KeyError, idx.slice_locs, start=1.5) self.assertRaises(KeyError, idx.slice_locs, end=1.5) self.assertEqual(idx.slice_locs(1), (1, 3)) self.assertEqual(idx.slice_locs(np.nan), (0, 3)) idx = Index([np.nan, np.nan, 1, 2]) self.assertRaises(KeyError, idx.slice_locs, np.nan) def test_drop(self): n = len(self.strIndex) dropped = self.strIndex.drop(self.strIndex[lrange(5, 10)]) expected = self.strIndex[lrange(5) + lrange(10, n)] self.assertTrue(dropped.equals(expected)) self.assertRaises(ValueError, self.strIndex.drop, ['foo', 'bar']) dropped = self.strIndex.drop(self.strIndex[0]) expected = self.strIndex[1:] self.assertTrue(dropped.equals(expected)) ser = Index([1, 2, 3]) dropped = ser.drop(1) expected = Index([2, 3]) self.assertTrue(dropped.equals(expected)) def test_tuple_union_bug(self): import pandas import numpy as np aidx1 = np.array([(1, 'A'), (2, 'A'), (1, 'B'), (2, 'B')], dtype=[('num', int), ('let', 'a1')]) aidx2 = np.array([(1, 'A'), (2, 'A'), (1, 'B'), (2, 'B'), (1, 'C'), (2, 'C')], dtype=[('num', int), ('let', 'a1')]) idx1 = pandas.Index(aidx1) idx2 = pandas.Index(aidx2) # intersection broken? int_idx = idx1.intersection(idx2) # needs to be 1d like idx1 and idx2 expected = idx1[:4] # pandas.Index(sorted(set(idx1) & set(idx2))) self.assertEqual(int_idx.ndim, 1) self.assertTrue(int_idx.equals(expected)) # union broken union_idx = idx1.union(idx2) expected = idx2 self.assertEqual(union_idx.ndim, 1) self.assertTrue(union_idx.equals(expected)) def test_is_monotonic_incomparable(self): index = Index([5, datetime.now(), 7]) self.assertFalse(index.is_monotonic) self.assertFalse(index.is_monotonic_decreasing) def test_get_set_value(self): values = np.random.randn(100) date = self.dateIndex[67] assert_almost_equal(self.dateIndex.get_value(values, date), values[67]) self.dateIndex.set_value(values, date, 10) self.assertEqual(values[67], 10) def test_isin(self): values = ['foo', 'bar', 'quux'] idx = Index(['qux', 'baz', 'foo', 'bar']) result = idx.isin(values) expected = np.array([False, False, True, True]) self.assert_numpy_array_equal(result, expected) # empty, return dtype bool idx = Index([]) result = idx.isin(values) self.assertEqual(len(result), 0) self.assertEqual(result.dtype, np.bool_) def test_isin_nan(self): self.assert_numpy_array_equal( Index(['a', np.nan]).isin([np.nan]), [False, True]) self.assert_numpy_array_equal( Index(['a', pd.NaT]).isin([pd.NaT]), [False, True]) self.assert_numpy_array_equal( Index(['a', np.nan]).isin([float('nan')]), [False, False]) self.assert_numpy_array_equal( Index(['a', np.nan]).isin([pd.NaT]), [False, False]) # Float64Index overrides isin, so must be checked separately self.assert_numpy_array_equal( Float64Index([1.0, np.nan]).isin([np.nan]), [False, True]) self.assert_numpy_array_equal( Float64Index([1.0, np.nan]).isin([float('nan')]), [False, True]) self.assert_numpy_array_equal( Float64Index([1.0, np.nan]).isin([pd.NaT]), [False, True]) def test_isin_level_kwarg(self): def check_idx(idx): values = idx.tolist()[-2:] + ['nonexisting'] expected = np.array([False, False, True, True]) self.assert_numpy_array_equal(expected, idx.isin(values, level=0)) self.assert_numpy_array_equal(expected, idx.isin(values, level=-1)) self.assertRaises(IndexError, idx.isin, values, level=1) self.assertRaises(IndexError, idx.isin, values, level=10) self.assertRaises(IndexError, idx.isin, values, level=-2) self.assertRaises(KeyError, idx.isin, values, level=1.0) self.assertRaises(KeyError, idx.isin, values, level='foobar') idx.name = 'foobar' self.assert_numpy_array_equal(expected, idx.isin(values, level='foobar')) self.assertRaises(KeyError, idx.isin, values, level='xyzzy') self.assertRaises(KeyError, idx.isin, values, level=np.nan) check_idx(Index(['qux', 'baz', 'foo', 'bar'])) # Float64Index overrides isin, so must be checked separately check_idx(Float64Index([1.0, 2.0, 3.0, 4.0])) def test_boolean_cmp(self): values = [1, 2, 3, 4] idx = Index(values) res = (idx == values) self.assert_numpy_array_equal(res,np.array([True,True,True,True],dtype=bool)) def test_get_level_values(self): result = self.strIndex.get_level_values(0) self.assertTrue(result.equals(self.strIndex)) def test_slice_keep_name(self): idx = Index(['a', 'b'], name='asdf') self.assertEqual(idx.name, idx[1:].name) def test_join_self(self): # instance attributes of the form self.<name>Index indices = 'unicode', 'str', 'date', 'int', 'float' kinds = 'outer', 'inner', 'left', 'right' for index_kind in indices: res = getattr(self, '{0}Index'.format(index_kind)) for kind in kinds: joined = res.join(res, how=kind) self.assertIs(res, joined) def test_indexing_doesnt_change_class(self): idx = Index([1, 2, 3, 'a', 'b', 'c']) self.assertTrue(idx[1:3].identical( pd.Index([2, 3], dtype=np.object_))) self.assertTrue(idx[[0,1]].identical( pd.Index([1, 2], dtype=np.object_))) def test_outer_join_sort(self): left_idx = Index(np.random.permutation(15)) right_idx = tm.makeDateIndex(10) with tm.assert_produces_warning(RuntimeWarning): joined = left_idx.join(right_idx, how='outer') # right_idx in this case because DatetimeIndex has join precedence over # Int64Index expected = right_idx.astype(object).union(left_idx.astype(object)) tm.assert_index_equal(joined, expected) def test_nan_first_take_datetime(self): idx = Index([pd.NaT, Timestamp('20130101'), Timestamp('20130102')]) res = idx.take([-1, 0, 1]) exp = Index([idx[-1], idx[0], idx[1]]) tm.assert_index_equal(res, exp) def test_reindex_preserves_name_if_target_is_list_or_ndarray(self): # GH6552 idx = pd.Index([0, 1, 2]) dt_idx = pd.date_range('20130101', periods=3) idx.name = None self.assertEqual(idx.reindex([])[0].name, None) self.assertEqual(idx.reindex(np.array([]))[0].name, None) self.assertEqual(idx.reindex(idx.tolist())[0].name, None) self.assertEqual(idx.reindex(idx.tolist()[:-1])[0].name, None) self.assertEqual(idx.reindex(idx.values)[0].name, None) self.assertEqual(idx.reindex(idx.values[:-1])[0].name, None) # Must preserve name even if dtype changes. self.assertEqual(idx.reindex(dt_idx.values)[0].name, None) self.assertEqual(idx.reindex(dt_idx.tolist())[0].name, None) idx.name = 'foobar' self.assertEqual(idx.reindex([])[0].name, 'foobar') self.assertEqual(idx.reindex(np.array([]))[0].name, 'foobar') self.assertEqual(idx.reindex(idx.tolist())[0].name, 'foobar') self.assertEqual(idx.reindex(idx.tolist()[:-1])[0].name, 'foobar') self.assertEqual(idx.reindex(idx.values)[0].name, 'foobar') self.assertEqual(idx.reindex(idx.values[:-1])[0].name, 'foobar') # Must preserve name even if dtype changes. self.assertEqual(idx.reindex(dt_idx.values)[0].name, 'foobar') self.assertEqual(idx.reindex(dt_idx.tolist())[0].name, 'foobar') def test_reindex_preserves_type_if_target_is_empty_list_or_array(self): # GH7774 idx = pd.Index(list('abc')) def get_reindex_type(target): return idx.reindex(target)[0].dtype.type self.assertEqual(get_reindex_type([]), np.object_) self.assertEqual(get_reindex_type(np.array([])), np.object_) self.assertEqual(get_reindex_type(np.array([], dtype=np.int64)), np.object_) def test_reindex_doesnt_preserve_type_if_target_is_empty_index(self): # GH7774 idx = pd.Index(list('abc')) def get_reindex_type(target): return idx.reindex(target)[0].dtype.type self.assertEqual(get_reindex_type(pd.Int64Index([])), np.int64) self.assertEqual(get_reindex_type(pd.Float64Index([])), np.float64) self.assertEqual(get_reindex_type(pd.DatetimeIndex([])), np.datetime64) reindexed = idx.reindex(pd.MultiIndex([pd.Int64Index([]), pd.Float64Index([])], [[], []]))[0] self.assertEqual(reindexed.levels[0].dtype.type, np.int64) self.assertEqual(reindexed.levels[1].dtype.type, np.float64) class Numeric(Base): def test_numeric_compat(self): idx = self._holder(np.arange(5,dtype='int64')) didx = self._holder(np.arange(5,dtype='int64')**2 ) result = idx * 1 tm.assert_index_equal(result, idx) result = 1 * idx tm.assert_index_equal(result, idx) result = idx * idx tm.assert_index_equal(result, didx) result = idx / 1 tm.assert_index_equal(result, idx) result = idx // 1 tm.assert_index_equal(result, idx) result = idx * np.array(5,dtype='int64') tm.assert_index_equal(result, self._holder(np.arange(5,dtype='int64')*5)) result = idx * np.arange(5,dtype='int64') tm.assert_index_equal(result, didx) result = idx * Series(np.arange(5,dtype='int64')) tm.assert_index_equal(result, didx) result = idx * Series(np.arange(5,dtype='float64')+0.1) tm.assert_index_equal(result, Float64Index(np.arange(5,dtype='float64')*(np.arange(5,dtype='float64')+0.1))) # invalid self.assertRaises(TypeError, lambda : idx * date_range('20130101',periods=5)) self.assertRaises(ValueError, lambda : idx * self._holder(np.arange(3))) self.assertRaises(ValueError, lambda : idx * np.array([1,2])) def test_explicit_conversions(self): # GH 8608 # add/sub are overriden explicity for Float/Int Index idx = self._holder(np.arange(5,dtype='int64')) # float conversions arr = np.arange(5,dtype='int64')*3.2 expected = Float64Index(arr) fidx = idx * 3.2 tm.assert_index_equal(fidx,expected) fidx = 3.2 * idx tm.assert_index_equal(fidx,expected) # interops with numpy arrays expected = Float64Index(arr) a = np.zeros(5,dtype='float64') result = fidx - a tm.assert_index_equal(result,expected) expected = Float64Index(-arr) a = np.zeros(5,dtype='float64') result = a - fidx tm.assert_index_equal(result,expected) def test_ufunc_compat(self): idx = self._holder(np.arange(5,dtype='int64')) result = np.sin(idx) expected = Float64Index(np.sin(np.arange(5,dtype='int64'))) tm.assert_index_equal(result, expected) class TestFloat64Index(Numeric, tm.TestCase): _holder = Float64Index _multiprocess_can_split_ = True def setUp(self): self.mixed = Float64Index([1.5, 2, 3, 4, 5]) self.float = Float64Index(np.arange(5) * 2.5) def create_index(self): return Float64Index(np.arange(5,dtype='float64')) def test_hash_error(self): with tm.assertRaisesRegexp(TypeError, "unhashable type: %r" % type(self.float).__name__): hash(self.float) def test_repr_roundtrip(self): for ind in (self.mixed, self.float): tm.assert_index_equal(eval(repr(ind)), ind) def check_is_index(self, i): self.assertIsInstance(i, Index) self.assertNotIsInstance(i, Float64Index) def check_coerce(self, a, b, is_float_index=True): self.assertTrue(a.equals(b)) if is_float_index: self.assertIsInstance(b, Float64Index) else: self.check_is_index(b) def test_constructor(self): # explicit construction index = Float64Index([1,2,3,4,5]) self.assertIsInstance(index, Float64Index) self.assertTrue((index.values == np.array([1,2,3,4,5],dtype='float64')).all()) index = Float64Index(np.array([1,2,3,4,5])) self.assertIsInstance(index, Float64Index) index = Float64Index([1.,2,3,4,5]) self.assertIsInstance(index, Float64Index) index = Float64Index(np.array([1.,2,3,4,5])) self.assertIsInstance(index, Float64Index) self.assertEqual(index.dtype, float) index = Float64Index(np.array([1.,2,3,4,5]),dtype=np.float32) self.assertIsInstance(index, Float64Index) self.assertEqual(index.dtype, np.float64) index = Float64Index(np.array([1,2,3,4,5]),dtype=np.float32) self.assertIsInstance(index, Float64Index) self.assertEqual(index.dtype, np.float64) # nan handling result = Float64Index([np.nan, np.nan]) self.assertTrue(pd.isnull(result.values).all()) result = Float64Index(np.array([np.nan])) self.assertTrue(pd.isnull(result.values).all()) result = Index(np.array([np.nan])) self.assertTrue(pd.isnull(result.values).all()) def test_constructor_invalid(self): # invalid self.assertRaises(TypeError, Float64Index, 0.) self.assertRaises(TypeError, Float64Index, ['a','b',0.]) self.assertRaises(TypeError, Float64Index, [Timestamp('20130101')]) def test_constructor_coerce(self): self.check_coerce(self.mixed,Index([1.5, 2, 3, 4, 5])) self.check_coerce(self.float,Index(np.arange(5) * 2.5)) self.check_coerce(self.float,Index(np.array(np.arange(5) * 2.5, dtype=object))) def test_constructor_explicit(self): # these don't auto convert self.check_coerce(self.float,Index((np.arange(5) * 2.5), dtype=object), is_float_index=False) self.check_coerce(self.mixed,Index([1.5, 2, 3, 4, 5],dtype=object), is_float_index=False) def test_astype(self): result = self.float.astype(object) self.assertTrue(result.equals(self.float)) self.assertTrue(self.float.equals(result)) self.check_is_index(result) i = self.mixed.copy() i.name = 'foo' result = i.astype(object) self.assertTrue(result.equals(i)) self.assertTrue(i.equals(result)) self.check_is_index(result) def test_equals(self): i = Float64Index([1.0,2.0]) self.assertTrue(i.equals(i)) self.assertTrue(i.identical(i)) i2 = Float64Index([1.0,2.0]) self.assertTrue(i.equals(i2)) i = Float64Index([1.0,np.nan]) self.assertTrue(i.equals(i)) self.assertTrue(i.identical(i)) i2 = Float64Index([1.0,np.nan]) self.assertTrue(i.equals(i2)) def test_get_loc_na(self): idx = Float64Index([np.nan, 1, 2]) self.assertEqual(idx.get_loc(1), 1) self.assertEqual(idx.get_loc(np.nan), 0) idx = Float64Index([np.nan, 1, np.nan]) self.assertEqual(idx.get_loc(1), 1) self.assertRaises(KeyError, idx.slice_locs, np.nan) def test_contains_nans(self): i = Float64Index([1.0, 2.0, np.nan]) self.assertTrue(np.nan in i) def test_contains_not_nans(self): i = Float64Index([1.0, 2.0, np.nan]) self.assertTrue(1.0 in i) def test_doesnt_contain_all_the_things(self): i = Float64Index([np.nan]) self.assertFalse(i.isin([0]).item()) self.assertFalse(i.isin([1]).item()) self.assertTrue(i.isin([np.nan]).item()) def test_nan_multiple_containment(self): i = Float64Index([1.0, np.nan]) np.testing.assert_array_equal(i.isin([1.0]), np.array([True, False])) np.testing.assert_array_equal(i.isin([2.0, np.pi]), np.array([False, False])) np.testing.assert_array_equal(i.isin([np.nan]), np.array([False, True])) np.testing.assert_array_equal(i.isin([1.0, np.nan]), np.array([True, True])) i = Float64Index([1.0, 2.0]) np.testing.assert_array_equal(i.isin([np.nan]), np.array([False, False])) def test_astype_from_object(self): index = Index([1.0, np.nan, 0.2], dtype='object') result = index.astype(float) expected = Float64Index([1.0, np.nan, 0.2]) tm.assert_equal(result.dtype, expected.dtype) tm.assert_index_equal(result, expected) class TestInt64Index(Numeric, tm.TestCase): _holder = Int64Index _multiprocess_can_split_ = True def setUp(self): self.index = Int64Index(np.arange(0, 20, 2)) def create_index(self): return Int64Index(np.arange(5,dtype='int64')) def test_too_many_names(self): def testit(): self.index.names = ["roger", "harold"] assertRaisesRegexp(ValueError, "^Length", testit) def test_constructor(self): # pass list, coerce fine index = Int64Index([-5, 0, 1, 2]) expected = np.array([-5, 0, 1, 2], dtype=np.int64) self.assert_numpy_array_equal(index, expected) # from iterable index = Int64Index(iter([-5, 0, 1, 2])) self.assert_numpy_array_equal(index, expected) # scalar raise Exception self.assertRaises(TypeError, Int64Index, 5) # copy arr = self.index.values new_index = Int64Index(arr, copy=True) self.assert_numpy_array_equal(new_index, self.index) val = arr[0] + 3000 # this should not change index arr[0] = val self.assertNotEqual(new_index[0], val) def test_constructor_corner(self): arr = np.array([1, 2, 3, 4], dtype=object) index = Int64Index(arr) self.assertEqual(index.values.dtype, np.int64) self.assertTrue(index.equals(arr)) # preventing casting arr = np.array([1, '2', 3, '4'], dtype=object) with tm.assertRaisesRegexp(TypeError, 'casting'): Int64Index(arr) arr_with_floats = [0, 2, 3, 4, 5, 1.25, 3, -1] with tm.assertRaisesRegexp(TypeError, 'casting'): Int64Index(arr_with_floats) def test_hash_error(self): with tm.assertRaisesRegexp(TypeError, "unhashable type: %r" % type(self.index).__name__): hash(self.index) def test_copy(self): i = Int64Index([], name='Foo') i_copy = i.copy() self.assertEqual(i_copy.name, 'Foo') def test_view(self): i = Int64Index([], name='Foo') i_view = i.view() self.assertEqual(i_view.name, 'Foo') def test_coerce_list(self): # coerce things arr = Index([1, 2, 3, 4]) tm.assert_isinstance(arr, Int64Index) # but not if explicit dtype passed arr = Index([1, 2, 3, 4], dtype=object) tm.assert_isinstance(arr, Index) def test_dtype(self): self.assertEqual(self.index.dtype, np.int64) def test_is_monotonic(self): self.assertTrue(self.index.is_monotonic) self.assertTrue(self.index.is_monotonic_increasing) self.assertFalse(self.index.is_monotonic_decreasing) index = Int64Index([4, 3, 2, 1]) self.assertFalse(index.is_monotonic) self.assertTrue(index.is_monotonic_decreasing) index = Int64Index([1]) self.assertTrue(index.is_monotonic) self.assertTrue(index.is_monotonic_increasing) self.assertTrue(index.is_monotonic_decreasing) def test_is_monotonic_na(self): examples = [Index([np.nan]), Index([np.nan, 1]), Index([1, 2, np.nan]), Index(['a', 'b', np.nan]), pd.to_datetime(['NaT']), pd.to_datetime(['NaT', '2000-01-01']), pd.to_datetime(['2000-01-01', 'NaT', '2000-01-02']), pd.to_timedelta(['1 day', 'NaT']), ] for index in examples: self.assertFalse(index.is_monotonic_increasing) self.assertFalse(index.is_monotonic_decreasing) def test_equals(self): same_values = Index(self.index, dtype=object) self.assertTrue(self.index.equals(same_values)) self.assertTrue(same_values.equals(self.index)) def test_identical(self): i = Index(self.index.copy()) self.assertTrue(i.identical(self.index)) same_values_different_type = Index(i, dtype=object) self.assertFalse(i.identical(same_values_different_type)) i = self.index.copy(dtype=object) i = i.rename('foo') same_values = Index(i, dtype=object) self.assertTrue(same_values.identical(self.index.copy(dtype=object))) self.assertFalse(i.identical(self.index)) self.assertTrue(Index(same_values, name='foo', dtype=object ).identical(i)) self.assertFalse( self.index.copy(dtype=object) .identical(self.index.copy(dtype='int64'))) def test_get_indexer(self): target = Int64Index(np.arange(10)) indexer = self.index.get_indexer(target) expected = np.array([0, -1, 1, -1, 2, -1, 3, -1, 4, -1]) self.assert_numpy_array_equal(indexer, expected) def test_get_indexer_pad(self): target = Int64Index(np.arange(10)) indexer = self.index.get_indexer(target, method='pad') expected = np.array([0, 0, 1, 1, 2, 2, 3, 3, 4, 4]) self.assert_numpy_array_equal(indexer, expected) def test_get_indexer_backfill(self): target = Int64Index(np.arange(10)) indexer = self.index.get_indexer(target, method='backfill') expected = np.array([0, 1, 1, 2, 2, 3, 3, 4, 4, 5]) self.assert_numpy_array_equal(indexer, expected) def test_join_outer(self): other = Int64Index([7, 12, 25, 1, 2, 5]) other_mono = Int64Index([1, 2, 5, 7, 12, 25]) # not monotonic # guarantee of sortedness res, lidx, ridx = self.index.join(other, how='outer', return_indexers=True) noidx_res = self.index.join(other, how='outer') self.assertTrue(res.equals(noidx_res)) eres = Int64Index([0, 1, 2, 4, 5, 6, 7, 8, 10, 12, 14, 16, 18, 25]) elidx = np.array([0, -1, 1, 2, -1, 3, -1, 4, 5, 6, 7, 8, 9, -1], dtype=np.int64) eridx = np.array([-1, 3, 4, -1, 5, -1, 0, -1, -1, 1, -1, -1, -1, 2], dtype=np.int64) tm.assert_isinstance(res, Int64Index) self.assertTrue(res.equals(eres)) self.assert_numpy_array_equal(lidx, elidx) self.assert_numpy_array_equal(ridx, eridx) # monotonic res, lidx, ridx = self.index.join(other_mono, how='outer', return_indexers=True) noidx_res = self.index.join(other_mono, how='outer') self.assertTrue(res.equals(noidx_res)) eridx = np.array([-1, 0, 1, -1, 2, -1, 3, -1, -1, 4, -1, -1, -1, 5], dtype=np.int64) tm.assert_isinstance(res, Int64Index) self.assertTrue(res.equals(eres)) self.assert_numpy_array_equal(lidx, elidx) self.assert_numpy_array_equal(ridx, eridx) def test_join_inner(self): other = Int64Index([7, 12, 25, 1, 2, 5]) other_mono = Int64Index([1, 2, 5, 7, 12, 25]) # not monotonic res, lidx, ridx = self.index.join(other, how='inner', return_indexers=True) # no guarantee of sortedness, so sort for comparison purposes ind = res.argsort() res = res.take(ind) lidx = lidx.take(ind) ridx = ridx.take(ind) eres = Int64Index([2, 12]) elidx = np.array([1, 6]) eridx = np.array([4, 1]) tm.assert_isinstance(res, Int64Index) self.assertTrue(res.equals(eres)) self.assert_numpy_array_equal(lidx, elidx) self.assert_numpy_array_equal(ridx, eridx) # monotonic res, lidx, ridx = self.index.join(other_mono, how='inner', return_indexers=True) res2 = self.index.intersection(other_mono) self.assertTrue(res.equals(res2)) eridx = np.array([1, 4]) tm.assert_isinstance(res, Int64Index) self.assertTrue(res.equals(eres)) self.assert_numpy_array_equal(lidx, elidx) self.assert_numpy_array_equal(ridx, eridx) def test_join_left(self): other = Int64Index([7, 12, 25, 1, 2, 5]) other_mono = Int64Index([1, 2, 5, 7, 12, 25]) # not monotonic res, lidx, ridx = self.index.join(other, how='left', return_indexers=True) eres = self.index eridx = np.array([-1, 4, -1, -1, -1, -1, 1, -1, -1, -1], dtype=np.int64) tm.assert_isinstance(res, Int64Index) self.assertTrue(res.equals(eres)) self.assertIsNone(lidx) self.assert_numpy_array_equal(ridx, eridx) # monotonic res, lidx, ridx = self.index.join(other_mono, how='left', return_indexers=True) eridx = np.array([-1, 1, -1, -1, -1, -1, 4, -1, -1, -1], dtype=np.int64) tm.assert_isinstance(res, Int64Index) self.assertTrue(res.equals(eres)) self.assertIsNone(lidx) self.assert_numpy_array_equal(ridx, eridx) # non-unique """ idx = Index([1,1,2,5]) idx2 = Index([1,2,5,7,9]) res, lidx, ridx = idx2.join(idx, how='left', return_indexers=True) eres = idx2 eridx = np.array([0, 2, 3, -1, -1]) elidx = np.array([0, 1, 2, 3, 4]) self.assertTrue(res.equals(eres)) self.assert_numpy_array_equal(lidx, elidx) self.assert_numpy_array_equal(ridx, eridx) """ def test_join_right(self): other = Int64Index([7, 12, 25, 1, 2, 5]) other_mono = Int64Index([1, 2, 5, 7, 12, 25]) # not monotonic res, lidx, ridx = self.index.join(other, how='right', return_indexers=True) eres = other elidx = np.array([-1, 6, -1, -1, 1, -1], dtype=np.int64) tm.assert_isinstance(other, Int64Index) self.assertTrue(res.equals(eres)) self.assert_numpy_array_equal(lidx, elidx) self.assertIsNone(ridx) # monotonic res, lidx, ridx = self.index.join(other_mono, how='right', return_indexers=True) eres = other_mono elidx = np.array([-1, 1, -1, -1, 6, -1], dtype=np.int64) tm.assert_isinstance(other, Int64Index) self.assertTrue(res.equals(eres)) self.assert_numpy_array_equal(lidx, elidx) self.assertIsNone(ridx) # non-unique """ idx = Index([1,1,2,5]) idx2 = Index([1,2,5,7,9]) res, lidx, ridx = idx.join(idx2, how='right', return_indexers=True) eres = idx2 elidx = np.array([0, 2, 3, -1, -1]) eridx = np.array([0, 1, 2, 3, 4]) self.assertTrue(res.equals(eres)) self.assert_numpy_array_equal(lidx, elidx) self.assert_numpy_array_equal(ridx, eridx) idx = Index([1,1,2,5]) idx2 = Index([1,2,5,9,7]) res = idx.join(idx2, how='right', return_indexers=False) eres = idx2 self.assert(res.equals(eres)) """ def test_join_non_int_index(self): other = Index([3, 6, 7, 8, 10], dtype=object) outer = self.index.join(other, how='outer') outer2 = other.join(self.index, how='outer') expected = Index([0, 2, 3, 4, 6, 7, 8, 10, 12, 14, 16, 18], dtype=object) self.assertTrue(outer.equals(outer2)) self.assertTrue(outer.equals(expected)) inner = self.index.join(other, how='inner') inner2 = other.join(self.index, how='inner') expected = Index([6, 8, 10], dtype=object) self.assertTrue(inner.equals(inner2)) self.assertTrue(inner.equals(expected)) left = self.index.join(other, how='left') self.assertTrue(left.equals(self.index)) left2 = other.join(self.index, how='left') self.assertTrue(left2.equals(other)) right = self.index.join(other, how='right') self.assertTrue(right.equals(other)) right2 = other.join(self.index, how='right') self.assertTrue(right2.equals(self.index)) def test_join_non_unique(self): left = Index([4, 4, 3, 3]) joined, lidx, ridx = left.join(left, return_indexers=True) exp_joined = Index([3, 3, 3, 3, 4, 4, 4, 4]) self.assertTrue(joined.equals(exp_joined)) exp_lidx = np.array([2, 2, 3, 3, 0, 0, 1, 1], dtype=np.int64) self.assert_numpy_array_equal(lidx, exp_lidx) exp_ridx = np.array([2, 3, 2, 3, 0, 1, 0, 1], dtype=np.int64) self.assert_numpy_array_equal(ridx, exp_ridx) def test_join_self(self): kinds = 'outer', 'inner', 'left', 'right' for kind in kinds: joined = self.index.join(self.index, how=kind) self.assertIs(self.index, joined) def test_intersection(self): other = Index([1, 2, 3, 4, 5]) result = self.index.intersection(other) expected = np.sort(np.intersect1d(self.index.values, other.values)) self.assert_numpy_array_equal(result, expected) result = other.intersection(self.index) expected = np.sort(np.asarray(np.intersect1d(self.index.values, other.values))) self.assert_numpy_array_equal(result, expected) def test_intersect_str_dates(self): dt_dates = [datetime(2012, 2, 9), datetime(2012, 2, 22)] i1 = Index(dt_dates, dtype=object) i2 = Index(['aa'], dtype=object) res = i2.intersection(i1) self.assertEqual(len(res), 0) def test_union_noncomparable(self): from datetime import datetime, timedelta # corner case, non-Int64Index now = datetime.now() other = Index([now + timedelta(i) for i in range(4)], dtype=object) result = self.index.union(other) expected = np.concatenate((self.index, other)) self.assert_numpy_array_equal(result, expected) result = other.union(self.index) expected = np.concatenate((other, self.index)) self.assert_numpy_array_equal(result, expected) def test_cant_or_shouldnt_cast(self): # can't data = ['foo', 'bar', 'baz'] self.assertRaises(TypeError, Int64Index, data) # shouldn't data = ['0', '1', '2'] self.assertRaises(TypeError, Int64Index, data) def test_view_Index(self): self.index.view(Index) def test_prevent_casting(self): result = self.index.astype('O') self.assertEqual(result.dtype, np.object_) def test_take_preserve_name(self): index = Int64Index([1, 2, 3, 4], name='foo') taken = index.take([3, 0, 1]) self.assertEqual(index.name, taken.name) def test_int_name_format(self): from pandas import Series, DataFrame index = Index(['a', 'b', 'c'], name=0) s = Series(lrange(3), index) df = DataFrame(lrange(3), index=index) repr(s) repr(df) def test_print_unicode_columns(self): df = pd.DataFrame( {u("\u05d0"): [1, 2, 3], "\u05d1": [4, 5, 6], "c": [7, 8, 9]}) repr(df.columns) # should not raise UnicodeDecodeError def test_repr_summary(self): with cf.option_context('display.max_seq_items', 10): r = repr(pd.Index(np.arange(1000))) self.assertTrue(len(r) < 100) self.assertTrue("..." in r) def test_repr_roundtrip(self): tm.assert_index_equal(eval(repr(self.index)), self.index) def test_unicode_string_with_unicode(self): idx = Index(lrange(1000)) if compat.PY3: str(idx) else: compat.text_type(idx) def test_bytestring_with_unicode(self): idx = Index(lrange(1000)) if compat.PY3: bytes(idx) else: str(idx) def test_slice_keep_name(self): idx = Int64Index([1, 2], name='asdf') self.assertEqual(idx.name, idx[1:].name) class TestDatetimeIndex(Base, tm.TestCase): _holder = DatetimeIndex _multiprocess_can_split_ = True def create_index(self): return date_range('20130101',periods=5) def test_pickle_compat_construction(self): pass def test_numeric_compat(self): super(TestDatetimeIndex, self).test_numeric_compat() if not compat.PY3_2: for f in [lambda : np.timedelta64(1, 'D').astype('m8[ns]') * pd.date_range('2000-01-01', periods=3), lambda : pd.date_range('2000-01-01', periods=3) * np.timedelta64(1, 'D').astype('m8[ns]') ]: self.assertRaises(TypeError, f) def test_roundtrip_pickle_with_tz(self): # GH 8367 # round-trip of timezone index=date_range('20130101',periods=3,tz='US/Eastern',name='foo') unpickled = self.round_trip_pickle(index) self.assertTrue(index.equals(unpickled)) def test_reindex_preserves_tz_if_target_is_empty_list_or_array(self): # GH7774 index = date_range('20130101', periods=3, tz='US/Eastern') self.assertEqual(str(index.reindex([])[0].tz), 'US/Eastern') self.assertEqual(str(index.reindex(np.array([]))[0].tz), 'US/Eastern') class TestPeriodIndex(Base, tm.TestCase): _holder = PeriodIndex _multiprocess_can_split_ = True def create_index(self): return period_range('20130101',periods=5,freq='D') def test_pickle_compat_construction(self): pass class TestTimedeltaIndex(Base, tm.TestCase): _holder = TimedeltaIndex _multiprocess_can_split_ = True def create_index(self): return pd.to_timedelta(range(5),unit='d') + pd.offsets.Hour(1) def test_numeric_compat(self): idx = self._holder(np.arange(5,dtype='int64')) didx = self._holder(np.arange(5,dtype='int64')**2 ) result = idx * 1 tm.assert_index_equal(result, idx) result = 1 * idx tm.assert_index_equal(result, idx) result = idx / 1 tm.assert_index_equal(result, idx) result = idx // 1 tm.assert_index_equal(result, idx) result = idx * np.array(5,dtype='int64') tm.assert_index_equal(result, self._holder(np.arange(5,dtype='int64')*5)) result = idx * np.arange(5,dtype='int64') tm.assert_index_equal(result, didx) result = idx * Series(np.arange(5,dtype='int64')) tm.assert_index_equal(result, didx) result = idx * Series(np.arange(5,dtype='float64')+0.1) tm.assert_index_equal(result, Float64Index(np.arange(5,dtype='float64')*(np.arange(5,dtype='float64')+0.1))) # invalid self.assertRaises(TypeError, lambda : idx * idx) self.assertRaises(ValueError, lambda : idx * self._holder(np.arange(3))) self.assertRaises(ValueError, lambda : idx * np.array([1,2])) def test_pickle_compat_construction(self): pass class TestMultiIndex(Base, tm.TestCase): _holder = MultiIndex _multiprocess_can_split_ = True _compat_props = ['shape', 'ndim', 'size', 'itemsize'] def setUp(self): major_axis = Index(['foo', 'bar', 'baz', 'qux']) minor_axis = Index(['one', 'two']) major_labels = np.array([0, 0, 1, 2, 3, 3]) minor_labels = np.array([0, 1, 0, 1, 0, 1]) self.index_names = ['first', 'second'] self.index = MultiIndex(levels=[major_axis, minor_axis], labels=[major_labels, minor_labels], names=self.index_names, verify_integrity=False) def create_index(self): return self.index def test_boolean_context_compat2(self): # boolean context compat # GH7897 i1 = MultiIndex.from_tuples([('A', 1), ('A', 2)]) i2 = MultiIndex.from_tuples([('A', 1), ('A', 3)]) common = i1.intersection(i2) def f(): if common: pass tm.assertRaisesRegexp(ValueError,'The truth value of a',f) def test_labels_dtypes(self): # GH 8456 i = MultiIndex.from_tuples([('A', 1), ('A', 2)]) self.assertTrue(i.labels[0].dtype == 'int8') self.assertTrue(i.labels[1].dtype == 'int8') i = MultiIndex.from_product([['a'],range(40)]) self.assertTrue(i.labels[1].dtype == 'int8') i = MultiIndex.from_product([['a'],range(400)]) self.assertTrue(i.labels[1].dtype == 'int16') i = MultiIndex.from_product([['a'],range(40000)]) self.assertTrue(i.labels[1].dtype == 'int32') i = pd.MultiIndex.from_product([['a'],range(1000)]) self.assertTrue((i.labels[0]>=0).all()) self.assertTrue((i.labels[1]>=0).all()) def test_hash_error(self): with tm.assertRaisesRegexp(TypeError, "unhashable type: %r" % type(self.index).__name__): hash(self.index) def test_set_names_and_rename(self): # so long as these are synonyms, we don't need to test set_names self.assertEqual(self.index.rename, self.index.set_names) new_names = [name + "SUFFIX" for name in self.index_names] ind = self.index.set_names(new_names) self.assertEqual(self.index.names, self.index_names) self.assertEqual(ind.names, new_names) with assertRaisesRegexp(ValueError, "^Length"): ind.set_names(new_names + new_names) new_names2 = [name + "SUFFIX2" for name in new_names] res = ind.set_names(new_names2, inplace=True) self.assertIsNone(res) self.assertEqual(ind.names, new_names2) # set names for specific level (# GH7792) ind = self.index.set_names(new_names[0], level=0) self.assertEqual(self.index.names, self.index_names) self.assertEqual(ind.names, [new_names[0], self.index_names[1]]) res = ind.set_names(new_names2[0], level=0, inplace=True) self.assertIsNone(res) self.assertEqual(ind.names, [new_names2[0], self.index_names[1]]) # set names for multiple levels ind = self.index.set_names(new_names, level=[0, 1]) self.assertEqual(self.index.names, self.index_names) self.assertEqual(ind.names, new_names) res = ind.set_names(new_names2, level=[0, 1], inplace=True) self.assertIsNone(res) self.assertEqual(ind.names, new_names2) def test_set_levels(self): # side note - you probably wouldn't want to use levels and labels # directly like this - but it is possible. levels, labels = self.index.levels, self.index.labels new_levels = [[lev + 'a' for lev in level] for level in levels] def assert_matching(actual, expected): # avoid specifying internal representation # as much as possible self.assertEqual(len(actual), len(expected)) for act, exp in zip(actual, expected): act = np.asarray(act) exp = np.asarray(exp) assert_almost_equal(act, exp) # level changing [w/o mutation] ind2 = self.index.set_levels(new_levels) assert_matching(ind2.levels, new_levels) assert_matching(self.index.levels, levels) # level changing [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_levels(new_levels, inplace=True) self.assertIsNone(inplace_return) assert_matching(ind2.levels, new_levels) # level changing specific level [w/o mutation] ind2 = self.index.set_levels(new_levels[0], level=0) assert_matching(ind2.levels, [new_levels[0], levels[1]]) assert_matching(self.index.levels, levels) ind2 = self.index.set_levels(new_levels[1], level=1) assert_matching(ind2.levels, [levels[0], new_levels[1]]) assert_matching(self.index.levels, levels) # level changing multiple levels [w/o mutation] ind2 = self.index.set_levels(new_levels, level=[0, 1]) assert_matching(ind2.levels, new_levels) assert_matching(self.index.levels, levels) # level changing specific level [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_levels(new_levels[0], level=0, inplace=True) self.assertIsNone(inplace_return) assert_matching(ind2.levels, [new_levels[0], levels[1]]) assert_matching(self.index.levels, levels) ind2 = self.index.copy() inplace_return = ind2.set_levels(new_levels[1], level=1, inplace=True) self.assertIsNone(inplace_return) assert_matching(ind2.levels, [levels[0], new_levels[1]]) assert_matching(self.index.levels, levels) # level changing multiple levels [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_levels(new_levels, level=[0, 1], inplace=True) self.assertIsNone(inplace_return) assert_matching(ind2.levels, new_levels) assert_matching(self.index.levels, levels) def test_set_labels(self): # side note - you probably wouldn't want to use levels and labels # directly like this - but it is possible. levels, labels = self.index.levels, self.index.labels major_labels, minor_labels = labels major_labels = [(x + 1) % 3 for x in major_labels] minor_labels = [(x + 1) % 1 for x in minor_labels] new_labels = [major_labels, minor_labels] def assert_matching(actual, expected): # avoid specifying internal representation # as much as possible self.assertEqual(len(actual), len(expected)) for act, exp in zip(actual, expected): act = np.asarray(act) exp = np.asarray(exp) assert_almost_equal(act, exp) # label changing [w/o mutation] ind2 = self.index.set_labels(new_labels) assert_matching(ind2.labels, new_labels) assert_matching(self.index.labels, labels) # label changing [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_labels(new_labels, inplace=True) self.assertIsNone(inplace_return) assert_matching(ind2.labels, new_labels) # label changing specific level [w/o mutation] ind2 = self.index.set_labels(new_labels[0], level=0) assert_matching(ind2.labels, [new_labels[0], labels[1]]) assert_matching(self.index.labels, labels) ind2 = self.index.set_labels(new_labels[1], level=1) assert_matching(ind2.labels, [labels[0], new_labels[1]]) assert_matching(self.index.labels, labels) # label changing multiple levels [w/o mutation] ind2 = self.index.set_labels(new_labels, level=[0, 1]) assert_matching(ind2.labels, new_labels) assert_matching(self.index.labels, labels) # label changing specific level [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_labels(new_labels[0], level=0, inplace=True) self.assertIsNone(inplace_return) assert_matching(ind2.labels, [new_labels[0], labels[1]]) assert_matching(self.index.labels, labels) ind2 = self.index.copy() inplace_return = ind2.set_labels(new_labels[1], level=1, inplace=True) self.assertIsNone(inplace_return) assert_matching(ind2.labels, [labels[0], new_labels[1]]) assert_matching(self.index.labels, labels) # label changing multiple levels [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_labels(new_labels, level=[0, 1], inplace=True) self.assertIsNone(inplace_return) assert_matching(ind2.labels, new_labels) assert_matching(self.index.labels, labels) def test_set_levels_labels_names_bad_input(self): levels, labels = self.index.levels, self.index.labels names = self.index.names with tm.assertRaisesRegexp(ValueError, 'Length of levels'): self.index.set_levels([levels[0]]) with tm.assertRaisesRegexp(ValueError, 'Length of labels'): self.index.set_labels([labels[0]]) with tm.assertRaisesRegexp(ValueError, 'Length of names'): self.index.set_names([names[0]]) # shouldn't scalar data error, instead should demand list-like with tm.assertRaisesRegexp(TypeError, 'list of lists-like'): self.index.set_levels(levels[0]) # shouldn't scalar data error, instead should demand list-like with tm.assertRaisesRegexp(TypeError, 'list of lists-like'): self.index.set_labels(labels[0]) # shouldn't scalar data error, instead should demand list-like with tm.assertRaisesRegexp(TypeError, 'list-like'): self.index.set_names(names[0]) # should have equal lengths with tm.assertRaisesRegexp(TypeError, 'list of lists-like'): self.index.set_levels(levels[0], level=[0, 1]) with tm.assertRaisesRegexp(TypeError, 'list-like'): self.index.set_levels(levels, level=0) # should have equal lengths with tm.assertRaisesRegexp(TypeError, 'list of lists-like'): self.index.set_labels(labels[0], level=[0, 1]) with tm.assertRaisesRegexp(TypeError, 'list-like'): self.index.set_labels(labels, level=0) # should have equal lengths with tm.assertRaisesRegexp(ValueError, 'Length of names'): self.index.set_names(names[0], level=[0, 1]) with tm.assertRaisesRegexp(TypeError, 'string'): self.index.set_names(names, level=0) def test_metadata_immutable(self): levels, labels = self.index.levels, self.index.labels # shouldn't be able to set at either the top level or base level mutable_regex = re.compile('does not support mutable operations') with assertRaisesRegexp(TypeError, mutable_regex): levels[0] = levels[0] with assertRaisesRegexp(TypeError, mutable_regex): levels[0][0] = levels[0][0] # ditto for labels with assertRaisesRegexp(TypeError, mutable_regex): labels[0] = labels[0] with assertRaisesRegexp(TypeError, mutable_regex): labels[0][0] = labels[0][0] # and for names names = self.index.names with assertRaisesRegexp(TypeError, mutable_regex): names[0] = names[0] def test_inplace_mutation_resets_values(self): levels = [['a', 'b', 'c'], [4]] levels2 = [[1, 2, 3], ['a']] labels = [[0, 1, 0, 2, 2, 0], [0, 0, 0, 0, 0, 0]] mi1 = MultiIndex(levels=levels, labels=labels) mi2 = MultiIndex(levels=levels2, labels=labels) vals = mi1.values.copy() vals2 = mi2.values.copy() self.assertIsNotNone(mi1._tuples) # make sure level setting works new_vals = mi1.set_levels(levels2).values assert_almost_equal(vals2, new_vals) # non-inplace doesn't kill _tuples [implementation detail] assert_almost_equal(mi1._tuples, vals) # and values is still same too assert_almost_equal(mi1.values, vals) # inplace should kill _tuples mi1.set_levels(levels2, inplace=True) assert_almost_equal(mi1.values, vals2) # make sure label setting works too labels2 = [[0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0]] exp_values = np.array([(long(1), 'a')] * 6, dtype=object) new_values = mi2.set_labels(labels2).values # not inplace shouldn't change assert_almost_equal(mi2._tuples, vals2) # should have correct values assert_almost_equal(exp_values, new_values) # and again setting inplace should kill _tuples, etc mi2.set_labels(labels2, inplace=True) assert_almost_equal(mi2.values, new_values) def test_copy_in_constructor(self): levels = np.array(["a", "b", "c"]) labels = np.array([1, 1, 2, 0, 0, 1, 1]) val = labels[0] mi = MultiIndex(levels=[levels, levels], labels=[labels, labels], copy=True) self.assertEqual(mi.labels[0][0], val) labels[0] = 15 self.assertEqual(mi.labels[0][0], val) val = levels[0] levels[0] = "PANDA" self.assertEqual(mi.levels[0][0], val) def test_set_value_keeps_names(self): # motivating example from #3742 lev1 = ['hans', 'hans', 'hans', 'grethe', 'grethe', 'grethe'] lev2 = ['1', '2', '3'] * 2 idx = pd.MultiIndex.from_arrays( [lev1, lev2], names=['Name', 'Number']) df = pd.DataFrame( np.random.randn(6, 4), columns=['one', 'two', 'three', 'four'], index=idx) df = df.sortlevel() self.assertIsNone(df.is_copy) self.assertEqual(df.index.names, ('Name', 'Number')) df = df.set_value(('grethe', '4'), 'one', 99.34) self.assertIsNone(df.is_copy) self.assertEqual(df.index.names, ('Name', 'Number')) def test_names(self): # names are assigned in __init__ names = self.index_names level_names = [level.name for level in self.index.levels] self.assertEqual(names, level_names) # setting bad names on existing index = self.index assertRaisesRegexp(ValueError, "^Length of names", setattr, index, "names", list(index.names) + ["third"]) assertRaisesRegexp(ValueError, "^Length of names", setattr, index, "names", []) # initializing with bad names (should always be equivalent) major_axis, minor_axis = self.index.levels major_labels, minor_labels = self.index.labels assertRaisesRegexp(ValueError, "^Length of names", MultiIndex, levels=[major_axis, minor_axis], labels=[major_labels, minor_labels], names=['first']) assertRaisesRegexp(ValueError, "^Length of names", MultiIndex, levels=[major_axis, minor_axis], labels=[major_labels, minor_labels], names=['first', 'second', 'third']) # names are assigned index.names = ["a", "b"] ind_names = list(index.names) level_names = [level.name for level in index.levels] self.assertEqual(ind_names, level_names) def test_reference_duplicate_name(self): idx = MultiIndex.from_tuples([('a', 'b'), ('c', 'd')], names=['x', 'x']) self.assertTrue(idx._reference_duplicate_name('x')) idx = MultiIndex.from_tuples([('a', 'b'), ('c', 'd')], names=['x', 'y']) self.assertFalse(idx._reference_duplicate_name('x')) def test_astype(self): expected = self.index.copy() actual = self.index.astype('O') assert_copy(actual.levels, expected.levels) assert_copy(actual.labels, expected.labels) self.check_level_names(actual, expected.names) with assertRaisesRegexp(TypeError, "^Setting.*dtype.*object"): self.index.astype(np.dtype(int)) def test_constructor_single_level(self): single_level = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux']], labels=[[0, 1, 2, 3]], names=['first']) tm.assert_isinstance(single_level, Index) self.assertNotIsInstance(single_level, MultiIndex) self.assertEqual(single_level.name, 'first') single_level = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux']], labels=[[0, 1, 2, 3]]) self.assertIsNone(single_level.name) def test_constructor_no_levels(self): assertRaisesRegexp(ValueError, "non-zero number of levels/labels", MultiIndex, levels=[], labels=[]) both_re = re.compile('Must pass both levels and labels') with tm.assertRaisesRegexp(TypeError, both_re): MultiIndex(levels=[]) with tm.assertRaisesRegexp(TypeError, both_re): MultiIndex(labels=[]) def test_constructor_mismatched_label_levels(self): labels = [np.array([1]), np.array([2]), np.array([3])] levels = ["a"] assertRaisesRegexp(ValueError, "Length of levels and labels must be" " the same", MultiIndex, levels=levels, labels=labels) length_error = re.compile('>= length of level') label_error = re.compile(r'Unequal label lengths: \[4, 2\]') # important to check that it's looking at the right thing. with tm.assertRaisesRegexp(ValueError, length_error): MultiIndex(levels=[['a'], ['b']], labels=[[0, 1, 2, 3], [0, 3, 4, 1]]) with tm.assertRaisesRegexp(ValueError, label_error): MultiIndex(levels=[['a'], ['b']], labels=[[0, 0, 0, 0], [0, 0]]) # external API with tm.assertRaisesRegexp(ValueError, length_error): self.index.copy().set_levels([['a'], ['b']]) with tm.assertRaisesRegexp(ValueError, label_error): self.index.copy().set_labels([[0, 0, 0, 0], [0, 0]]) # deprecated properties with warnings.catch_warnings(): warnings.simplefilter('ignore') with tm.assertRaisesRegexp(ValueError, length_error): self.index.copy().levels = [['a'], ['b']] with tm.assertRaisesRegexp(ValueError, label_error): self.index.copy().labels = [[0, 0, 0, 0], [0, 0]] def assert_multiindex_copied(self, copy, original): # levels shoudl be (at least, shallow copied) assert_copy(copy.levels, original.levels) assert_almost_equal(copy.labels, original.labels) # labels doesn't matter which way copied assert_almost_equal(copy.labels, original.labels) self.assertIsNot(copy.labels, original.labels) # names doesn't matter which way copied self.assertEqual(copy.names, original.names) self.assertIsNot(copy.names, original.names) # sort order should be copied self.assertEqual(copy.sortorder, original.sortorder) def test_copy(self): i_copy = self.index.copy() self.assert_multiindex_copied(i_copy, self.index) def test_shallow_copy(self): i_copy = self.index._shallow_copy() self.assert_multiindex_copied(i_copy, self.index) def test_view(self): i_view = self.index.view() self.assert_multiindex_copied(i_view, self.index) def check_level_names(self, index, names): self.assertEqual([level.name for level in index.levels], list(names)) def test_changing_names(self): # names should be applied to levels level_names = [level.name for level in self.index.levels] self.check_level_names(self.index, self.index.names) view = self.index.view() copy = self.index.copy() shallow_copy = self.index._shallow_copy() # changing names should change level names on object new_names = [name + "a" for name in self.index.names] self.index.names = new_names self.check_level_names(self.index, new_names) # but not on copies self.check_level_names(view, level_names) self.check_level_names(copy, level_names) self.check_level_names(shallow_copy, level_names) # and copies shouldn't change original shallow_copy.names = [name + "c" for name in shallow_copy.names] self.check_level_names(self.index, new_names) def test_duplicate_names(self): self.index.names = ['foo', 'foo'] assertRaisesRegexp(KeyError, 'Level foo not found', self.index._get_level_number, 'foo') def test_get_level_number_integer(self): self.index.names = [1, 0] self.assertEqual(self.index._get_level_number(1), 0) self.assertEqual(self.index._get_level_number(0), 1) self.assertRaises(IndexError, self.index._get_level_number, 2) assertRaisesRegexp(KeyError, 'Level fourth not found', self.index._get_level_number, 'fourth') def test_from_arrays(self): arrays = [] for lev, lab in zip(self.index.levels, self.index.labels): arrays.append(np.asarray(lev).take(lab)) result = MultiIndex.from_arrays(arrays) self.assertEqual(list(result), list(self.index)) # infer correctly result = MultiIndex.from_arrays([[pd.NaT, Timestamp('20130101')], ['a', 'b']]) self.assertTrue(result.levels[0].equals(Index([Timestamp('20130101')]))) self.assertTrue(result.levels[1].equals(Index(['a','b']))) def test_from_product(self): first = ['foo', 'bar', 'buz'] second = ['a', 'b', 'c'] names = ['first', 'second'] result = MultiIndex.from_product([first, second], names=names) tuples = [('foo', 'a'), ('foo', 'b'), ('foo', 'c'), ('bar', 'a'), ('bar', 'b'), ('bar', 'c'), ('buz', 'a'), ('buz', 'b'), ('buz', 'c')] expected = MultiIndex.from_tuples(tuples, names=names) assert_array_equal(result, expected) self.assertEqual(result.names, names) def test_from_product_datetimeindex(self): dt_index = date_range('2000-01-01', periods=2) mi = pd.MultiIndex.from_product([[1, 2], dt_index]) etalon = pd.lib.list_to_object_array([(1, pd.Timestamp('2000-01-01')), (1, pd.Timestamp('2000-01-02')), (2, pd.Timestamp('2000-01-01')), (2, pd.Timestamp('2000-01-02'))]) assert_array_equal(mi.values, etalon) def test_values_boxed(self): tuples = [(1, pd.Timestamp('2000-01-01')), (2, pd.NaT), (3, pd.Timestamp('2000-01-03')), (1, pd.Timestamp('2000-01-04')), (2, pd.Timestamp('2000-01-02')), (3, pd.Timestamp('2000-01-03'))] mi = pd.MultiIndex.from_tuples(tuples) assert_array_equal(mi.values, pd.lib.list_to_object_array(tuples)) # Check that code branches for boxed values produce identical results assert_array_equal(mi.values[:4], mi[:4].values) def test_append(self): result = self.index[:3].append(self.index[3:]) self.assertTrue(result.equals(self.index)) foos = [self.index[:1], self.index[1:3], self.index[3:]] result = foos[0].append(foos[1:]) self.assertTrue(result.equals(self.index)) # empty result = self.index.append([]) self.assertTrue(result.equals(self.index)) def test_get_level_values(self): result = self.index.get_level_values(0) expected = ['foo', 'foo', 'bar', 'baz', 'qux', 'qux'] self.assert_numpy_array_equal(result, expected) self.assertEqual(result.name, 'first') result = self.index.get_level_values('first') expected = self.index.get_level_values(0) self.assert_numpy_array_equal(result, expected) def test_get_level_values_na(self): arrays = [['a', 'b', 'b'], [1, np.nan, 2]] index = pd.MultiIndex.from_arrays(arrays) values = index.get_level_values(1) expected = [1, np.nan, 2] assert_array_equal(values.values.astype(float), expected) arrays = [['a', 'b', 'b'], [np.nan, np.nan, 2]] index = pd.MultiIndex.from_arrays(arrays) values = index.get_level_values(1) expected = [np.nan, np.nan, 2] assert_array_equal(values.values.astype(float), expected) arrays = [[np.nan, np.nan, np.nan], ['a', np.nan, 1]] index = pd.MultiIndex.from_arrays(arrays) values = index.get_level_values(0) expected = [np.nan, np.nan, np.nan] assert_array_equal(values.values.astype(float), expected) values = index.get_level_values(1) expected = np.array(['a', np.nan, 1],dtype=object) assert_array_equal(values.values, expected) arrays = [['a', 'b', 'b'], pd.DatetimeIndex([0, 1, pd.NaT])] index = pd.MultiIndex.from_arrays(arrays) values = index.get_level_values(1) expected = pd.DatetimeIndex([0, 1, pd.NaT]) assert_array_equal(values.values, expected.values) arrays = [[], []] index = pd.MultiIndex.from_arrays(arrays) values = index.get_level_values(0) self.assertEqual(values.shape, (0,)) def test_reorder_levels(self): # this blows up assertRaisesRegexp(IndexError, '^Too many levels', self.index.reorder_levels, [2, 1, 0]) def test_nlevels(self): self.assertEqual(self.index.nlevels, 2) def test_iter(self): result = list(self.index) expected = [('foo', 'one'), ('foo', 'two'), ('bar', 'one'), ('baz', 'two'), ('qux', 'one'), ('qux', 'two')] self.assertEqual(result, expected) def test_legacy_pickle(self): if compat.PY3: raise nose.SkipTest("testing for legacy pickles not support on py3") path = tm.get_data_path('multiindex_v1.pickle') obj = pd.read_pickle(path) obj2 = MultiIndex.from_tuples(obj.values) self.assertTrue(obj.equals(obj2)) res = obj.get_indexer(obj) exp = np.arange(len(obj)) assert_almost_equal(res, exp) res = obj.get_indexer(obj2[::-1]) exp = obj.get_indexer(obj[::-1]) exp2 = obj2.get_indexer(obj2[::-1]) assert_almost_equal(res, exp) assert_almost_equal(exp, exp2) def test_legacy_v2_unpickle(self): # 0.7.3 -> 0.8.0 format manage path = tm.get_data_path('mindex_073.pickle') obj = pd.read_pickle(path) obj2 = MultiIndex.from_tuples(obj.values) self.assertTrue(obj.equals(obj2)) res = obj.get_indexer(obj) exp = np.arange(len(obj)) assert_almost_equal(res, exp) res = obj.get_indexer(obj2[::-1]) exp = obj.get_indexer(obj[::-1]) exp2 = obj2.get_indexer(obj2[::-1]) assert_almost_equal(res, exp) assert_almost_equal(exp, exp2) def test_roundtrip_pickle_with_tz(self): # GH 8367 # round-trip of timezone index=MultiIndex.from_product([[1,2],['a','b'],date_range('20130101',periods=3,tz='US/Eastern')],names=['one','two','three']) unpickled = self.round_trip_pickle(index) self.assertTrue(index.equal_levels(unpickled)) def test_from_tuples_index_values(self): result = MultiIndex.from_tuples(self.index) self.assertTrue((result.values == self.index.values).all()) def test_contains(self): self.assertIn(('foo', 'two'), self.index) self.assertNotIn(('bar', 'two'), self.index) self.assertNotIn(None, self.index) def test_is_all_dates(self): self.assertFalse(self.index.is_all_dates) def test_is_numeric(self): # MultiIndex is never numeric self.assertFalse(self.index.is_numeric()) def test_getitem(self): # scalar self.assertEqual(self.index[2], ('bar', 'one')) # slice result = self.index[2:5] expected = self.index[[2, 3, 4]] self.assertTrue(result.equals(expected)) # boolean result = self.index[[True, False, True, False, True, True]] result2 = self.index[np.array([True, False, True, False, True, True])] expected = self.index[[0, 2, 4, 5]] self.assertTrue(result.equals(expected)) self.assertTrue(result2.equals(expected)) def test_getitem_group_select(self): sorted_idx, _ = self.index.sortlevel(0) self.assertEqual(sorted_idx.get_loc('baz'), slice(3, 4)) self.assertEqual(sorted_idx.get_loc('foo'), slice(0, 2)) def test_get_loc(self): self.assertEqual(self.index.get_loc(('foo', 'two')), 1) self.assertEqual(self.index.get_loc(('baz', 'two')), 3) self.assertRaises(KeyError, self.index.get_loc, ('bar', 'two')) self.assertRaises(KeyError, self.index.get_loc, 'quux') # 3 levels index = MultiIndex(levels=[Index(lrange(4)), Index(lrange(4)), Index(lrange(4))], labels=[np.array([0, 0, 1, 2, 2, 2, 3, 3]), np.array([0, 1, 0, 0, 0, 1, 0, 1]), np.array([1, 0, 1, 1, 0, 0, 1, 0])]) self.assertRaises(KeyError, index.get_loc, (1, 1)) self.assertEqual(index.get_loc((2, 0)), slice(3, 5)) def test_get_loc_duplicates(self): index = Index([2, 2, 2, 2]) result = index.get_loc(2) expected = slice(0, 4) self.assertEqual(result, expected) # self.assertRaises(Exception, index.get_loc, 2) index = Index(['c', 'a', 'a', 'b', 'b']) rs = index.get_loc('c') xp = 0 assert(rs == xp) def test_get_loc_level(self): index = MultiIndex(levels=[Index(lrange(4)), Index(lrange(4)), Index(lrange(4))], labels=[np.array([0, 0, 1, 2, 2, 2, 3, 3]), np.array([0, 1, 0, 0, 0, 1, 0, 1]), np.array([1, 0, 1, 1, 0, 0, 1, 0])]) loc, new_index = index.get_loc_level((0, 1)) expected = slice(1, 2) exp_index = index[expected].droplevel(0).droplevel(0) self.assertEqual(loc, expected) self.assertTrue(new_index.equals(exp_index)) loc, new_index = index.get_loc_level((0, 1, 0)) expected = 1 self.assertEqual(loc, expected) self.assertIsNone(new_index) self.assertRaises(KeyError, index.get_loc_level, (2, 2)) index = MultiIndex(levels=[[2000], lrange(4)], labels=[np.array([0, 0, 0, 0]), np.array([0, 1, 2, 3])]) result, new_index = index.get_loc_level((2000, slice(None, None))) expected = slice(None, None) self.assertEqual(result, expected) self.assertTrue(new_index.equals(index.droplevel(0))) def test_slice_locs(self): df = tm.makeTimeDataFrame() stacked = df.stack() idx = stacked.index slob = slice(*idx.slice_locs(df.index[5], df.index[15])) sliced = stacked[slob] expected = df[5:16].stack() tm.assert_almost_equal(sliced.values, expected.values) slob = slice(*idx.slice_locs(df.index[5] + timedelta(seconds=30), df.index[15] - timedelta(seconds=30))) sliced = stacked[slob] expected = df[6:15].stack() tm.assert_almost_equal(sliced.values, expected.values) def test_slice_locs_with_type_mismatch(self): df = tm.makeTimeDataFrame() stacked = df.stack() idx = stacked.index assertRaisesRegexp(TypeError, '^Level type mismatch', idx.slice_locs, (1, 3)) assertRaisesRegexp(TypeError, '^Level type mismatch', idx.slice_locs, df.index[5] + timedelta(seconds=30), (5, 2)) df = tm.makeCustomDataframe(5, 5) stacked = df.stack() idx = stacked.index with assertRaisesRegexp(TypeError, '^Level type mismatch'): idx.slice_locs(timedelta(seconds=30)) # TODO: Try creating a UnicodeDecodeError in exception message with assertRaisesRegexp(TypeError, '^Level type mismatch'): idx.slice_locs(df.index[1], (16, "a")) def test_slice_locs_not_sorted(self): index = MultiIndex(levels=[Index(lrange(4)), Index(lrange(4)), Index(lrange(4))], labels=[np.array([0, 0, 1, 2, 2, 2, 3, 3]), np.array([0, 1, 0, 0, 0, 1, 0, 1]), np.array([1, 0, 1, 1, 0, 0, 1, 0])]) assertRaisesRegexp(KeyError, "[Kk]ey length.*greater than MultiIndex" " lexsort depth", index.slice_locs, (1, 0, 1), (2, 1, 0)) # works sorted_index, _ = index.sortlevel(0) # should there be a test case here??? sorted_index.slice_locs((1, 0, 1), (2, 1, 0)) def test_slice_locs_partial(self): sorted_idx, _ = self.index.sortlevel(0) result = sorted_idx.slice_locs(('foo', 'two'), ('qux', 'one')) self.assertEqual(result, (1, 5)) result = sorted_idx.slice_locs(None, ('qux', 'one')) self.assertEqual(result, (0, 5)) result = sorted_idx.slice_locs(('foo', 'two'), None) self.assertEqual(result, (1, len(sorted_idx))) result = sorted_idx.slice_locs('bar', 'baz') self.assertEqual(result, (2, 4)) def test_slice_locs_not_contained(self): # some searchsorted action index = MultiIndex(levels=[[0, 2, 4, 6], [0, 2, 4]], labels=[[0, 0, 0, 1, 1, 2, 3, 3, 3], [0, 1, 2, 1, 2, 2, 0, 1, 2]], sortorder=0) result = index.slice_locs((1, 0), (5, 2)) self.assertEqual(result, (3, 6)) result = index.slice_locs(1, 5) self.assertEqual(result, (3, 6)) result = index.slice_locs((2, 2), (5, 2)) self.assertEqual(result, (3, 6)) result = index.slice_locs(2, 5) self.assertEqual(result, (3, 6)) result = index.slice_locs((1, 0), (6, 3)) self.assertEqual(result, (3, 8)) result = index.slice_locs(-1, 10) self.assertEqual(result, (0, len(index))) def test_consistency(self): # need to construct an overflow major_axis = lrange(70000) minor_axis = lrange(10) major_labels = np.arange(70000) minor_labels = np.repeat(lrange(10), 7000) # the fact that is works means it's consistent index = MultiIndex(levels=[major_axis, minor_axis], labels=[major_labels, minor_labels]) # inconsistent major_labels = np.array([0, 0, 1, 1, 1, 2, 2, 3, 3]) minor_labels = np.array([0, 1, 0, 1, 1, 0, 1, 0, 1]) index = MultiIndex(levels=[major_axis, minor_axis], labels=[major_labels, minor_labels]) self.assertFalse(index.is_unique) def test_truncate(self): major_axis = Index(lrange(4)) minor_axis = Index(lrange(2)) major_labels = np.array([0, 0, 1, 2, 3, 3]) minor_labels = np.array([0, 1, 0, 1, 0, 1]) index = MultiIndex(levels=[major_axis, minor_axis], labels=[major_labels, minor_labels]) result = index.truncate(before=1) self.assertNotIn('foo', result.levels[0]) self.assertIn(1, result.levels[0]) result = index.truncate(after=1) self.assertNotIn(2, result.levels[0]) self.assertIn(1, result.levels[0]) result = index.truncate(before=1, after=2) self.assertEqual(len(result.levels[0]), 2) # after < before self.assertRaises(ValueError, index.truncate, 3, 1) def test_get_indexer(self): major_axis = Index(lrange(4)) minor_axis = Index(lrange(2)) major_labels = np.array([0, 0, 1, 2, 2, 3, 3]) minor_labels = np.array([0, 1, 0, 0, 1, 0, 1]) index = MultiIndex(levels=[major_axis, minor_axis], labels=[major_labels, minor_labels]) idx1 = index[:5] idx2 = index[[1, 3, 5]] r1 = idx1.get_indexer(idx2) assert_almost_equal(r1, [1, 3, -1]) r1 = idx2.get_indexer(idx1, method='pad') assert_almost_equal(r1, [-1, 0, 0, 1, 1]) rffill1 = idx2.get_indexer(idx1, method='ffill') assert_almost_equal(r1, rffill1) r1 = idx2.get_indexer(idx1, method='backfill') assert_almost_equal(r1, [0, 0, 1, 1, 2]) rbfill1 = idx2.get_indexer(idx1, method='bfill') assert_almost_equal(r1, rbfill1) # pass non-MultiIndex r1 = idx1.get_indexer(idx2._tuple_index) rexp1 = idx1.get_indexer(idx2) assert_almost_equal(r1, rexp1) r1 = idx1.get_indexer([1, 2, 3]) self.assertTrue((r1 == [-1, -1, -1]).all()) # create index with duplicates idx1 = Index(lrange(10) + lrange(10)) idx2 = Index(lrange(20)) assertRaisesRegexp(InvalidIndexError, "Reindexing only valid with" " uniquely valued Index objects", idx1.get_indexer, idx2) def test_format(self): self.index.format() self.index[:0].format() def test_format_integer_names(self): index = MultiIndex(levels=[[0, 1], [0, 1]], labels=[[0, 0, 1, 1], [0, 1, 0, 1]], names=[0, 1]) index.format(names=True) def test_format_sparse_display(self): index = MultiIndex(levels=[[0, 1], [0, 1], [0, 1], [0]], labels=[[0, 0, 0, 1, 1, 1], [0, 0, 1, 0, 0, 1], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0]]) result = index.format() self.assertEqual(result[3], '1 0 0 0') def test_format_sparse_config(self): warn_filters = warnings.filters warnings.filterwarnings('ignore', category=FutureWarning, module=".*format") # GH1538 pd.set_option('display.multi_sparse', False) result = self.index.format() self.assertEqual(result[1], 'foo two') self.reset_display_options() warnings.filters = warn_filters def test_to_hierarchical(self): index = MultiIndex.from_tuples([(1, 'one'), (1, 'two'), (2, 'one'), (2, 'two')]) result = index.to_hierarchical(3) expected = MultiIndex(levels=[[1, 2], ['one', 'two']], labels=[[0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1], [0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1]]) tm.assert_index_equal(result, expected) self.assertEqual(result.names, index.names) # K > 1 result = index.to_hierarchical(3, 2) expected = MultiIndex(levels=[[1, 2], ['one', 'two']], labels=[[0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1], [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1]]) tm.assert_index_equal(result, expected) self.assertEqual(result.names, index.names) # non-sorted index = MultiIndex.from_tuples([(2, 'c'), (1, 'b'), (2, 'a'), (2, 'b')], names=['N1', 'N2']) result = index.to_hierarchical(2) expected = MultiIndex.from_tuples([(2, 'c'), (2, 'c'), (1, 'b'), (1, 'b'), (2, 'a'), (2, 'a'), (2, 'b'), (2, 'b')], names=['N1', 'N2']) tm.assert_index_equal(result, expected) self.assertEqual(result.names, index.names) def test_bounds(self): self.index._bounds def test_equals(self): self.assertTrue(self.index.equals(self.index)) self.assertTrue(self.index.equal_levels(self.index)) self.assertFalse(self.index.equals(self.index[:-1])) self.assertTrue(self.index.equals(self.index._tuple_index)) # different number of levels index = MultiIndex(levels=[Index(lrange(4)), Index(lrange(4)), Index(lrange(4))], labels=[np.array([0, 0, 1, 2, 2, 2, 3, 3]), np.array([0, 1, 0, 0, 0, 1, 0, 1]), np.array([1, 0, 1, 1, 0, 0, 1, 0])]) index2 = MultiIndex(levels=index.levels[:-1], labels=index.labels[:-1]) self.assertFalse(index.equals(index2)) self.assertFalse(index.equal_levels(index2)) # levels are different major_axis = Index(lrange(4)) minor_axis = Index(lrange(2)) major_labels = np.array([0, 0, 1, 2, 2, 3]) minor_labels = np.array([0, 1, 0, 0, 1, 0]) index = MultiIndex(levels=[major_axis, minor_axis], labels=[major_labels, minor_labels]) self.assertFalse(self.index.equals(index)) self.assertFalse(self.index.equal_levels(index)) # some of the labels are different major_axis = Index(['foo', 'bar', 'baz', 'qux']) minor_axis = Index(['one', 'two']) major_labels = np.array([0, 0, 2, 2, 3, 3]) minor_labels = np.array([0, 1, 0, 1, 0, 1]) index = MultiIndex(levels=[major_axis, minor_axis], labels=[major_labels, minor_labels]) self.assertFalse(self.index.equals(index)) def test_identical(self): mi = self.index.copy() mi2 = self.index.copy() self.assertTrue(mi.identical(mi2)) mi = mi.set_names(['new1', 'new2']) self.assertTrue(mi.equals(mi2)) self.assertFalse(mi.identical(mi2)) mi2 = mi2.set_names(['new1', 'new2']) self.assertTrue(mi.identical(mi2)) mi3 = Index(mi.tolist(), names=mi.names) mi4 = Index(mi.tolist(), names=mi.names, tupleize_cols=False) self.assertTrue(mi.identical(mi3)) self.assertFalse(mi.identical(mi4)) self.assertTrue(mi.equals(mi4)) def test_is_(self): mi = MultiIndex.from_tuples(lzip(range(10), range(10))) self.assertTrue(mi.is_(mi)) self.assertTrue(mi.is_(mi.view())) self.assertTrue(mi.is_(mi.view().view().view().view())) mi2 = mi.view() # names are metadata, they don't change id mi2.names = ["A", "B"] self.assertTrue(mi2.is_(mi)) self.assertTrue(mi.is_(mi2)) self.assertTrue(mi.is_(mi.set_names(["C", "D"]))) mi2 = mi.view() mi2.set_names(["E", "F"], inplace=True) self.assertTrue(mi.is_(mi2)) # levels are inherent properties, they change identity mi3 = mi2.set_levels([lrange(10), lrange(10)]) self.assertFalse(mi3.is_(mi2)) # shouldn't change self.assertTrue(mi2.is_(mi)) mi4 = mi3.view() mi4.set_levels([[1 for _ in range(10)], lrange(10)], inplace=True) self.assertFalse(mi4.is_(mi3)) mi5 = mi.view() mi5.set_levels(mi5.levels, inplace=True) self.assertFalse(mi5.is_(mi)) def test_union(self): piece1 = self.index[:5][::-1] piece2 = self.index[3:] the_union = piece1 | piece2 tups = sorted(self.index._tuple_index) expected =
MultiIndex.from_tuples(tups)
pandas.core.index.MultiIndex.from_tuples
from __future__ import division import pandas as pd import numpy as np import scipy.stats import argparse import datetime def fileToList(group_list): with open(group_list, 'r') as fh: return [line.strip() for line in fh.readlines()] def cleanDF(df, sample_names): ''' Convert string nans to np.nan and string numbers to floats. ''' df = df.replace(['na', 'NaN', 'Na', 'nan', 'NA', 'NAN', 'Nan'], np.nan) df[sample_names] = df[sample_names].astype(float) return df def convertToOutliers(df, gene_column_name, sample_names, NUM_IQRs, up_or_down): ''' Calculates the median, and inter-quartile range for each row/isoform. Inter-quartile range is defined as the value difference between the 25th and 75th percentile. Here, NaNs are ignored for each row, therefore a different number of values may be used for each row. ''' df['row_iqr'] = scipy.stats.iqr(df[sample_names], axis=1, nan_policy='omit') df['row_median'] = np.nanquantile(df[sample_names], q=0.5, axis=1) outlier_df = pd.DataFrame() outlier_df[gene_column_name] = df[gene_column_name] if up_or_down == 'up': df['row_medPlus'] = (df['row_median'] + (NUM_IQRs*df['row_iqr'])) for col in sample_names: outlier_df[col] = (df[col] > df['row_medPlus']).astype(int) elif up_or_down == 'down': df['row_medMinus'] = (df['row_median'] - (NUM_IQRs*df['row_iqr'])) for col in sample_names: outlier_df[col] = (df[col] < df['row_medMinus']).astype(int) outlier_df[df[sample_names].isnull()] = np.nan return outlier_df def countNonNans(df, gene_column_name, sample_names, aggregate): ''' Optional. If aggregate is set to True, adds up outliers in multiple rows, if there are repeated values in gene_column_name. If aggregation is set to False, just sets up the correct columns to feed into the comparison generator. ''' not_outlier_cols = [x + '_notOutliers' for x in sample_names] outlier_cols = [x + '_outliers' for x in sample_names] agged_outliers = pd.DataFrame() if aggregate: agged_outliers[not_outlier_cols] = df.groupby(by=gene_column_name)[sample_names].agg(lambda x: pd.Series(x==0).sum()) agged_outliers[outlier_cols] = df.groupby(by=gene_column_name)[sample_names].agg(lambda x: pd.Series(x==1).sum()) agged_outliers = agged_outliers.reset_index() elif aggregate == False: agged_outliers[[gene_column_name] + outlier_cols] = df[[gene_column_name]+sample_names] agged_outliers[not_outlier_cols] = 1 - df[sample_names] return agged_outliers def makeFracTable(df, sample_list, gene_column_name): cols_outliers = [x + '_outliers' for x in sample_list] cols_notOutliers = [x + '_notOutliers' for x in sample_list] num_total_psites = pd.DataFrame() num_total_psites = pd.DataFrame() for i, col in enumerate(cols_outliers): num_total_psites[col] = df[cols_outliers[i]] + df[cols_notOutliers[i]] frac_outliers = pd.DataFrame() frac_outliers = df[cols_outliers] / num_total_psites[cols_outliers] frac_outliers[gene_column_name] = outliers[gene_column_name] frac_outliers.columns = [x.split('_')[0] for x in frac_outliers.columns] return frac_outliers def runOutliers(sample_data, sample_names, gene_column_name, up_or_down, aggregate): sample_data = cleanDF(sample_data, sample_names) outliers = convertToOutliers(sample_data, gene_column_name, sample_names, NUM_IQRs, up_or_down) outliers = countNonNans(outliers, gene_column_name, sample_names, aggregate) return outliers if __name__=="__main__": parser = argparse.ArgumentParser(description="Parse some arguments") parser.add_argument('--input_df', type=str) parser.add_argument('--iqrs_over_median', type=float, default=1.5) parser.add_argument('--gene_column_name', type=str, default='geneSymbol') parser.add_argument('--output_prefix', type=str, default='outliers') parser.add_argument('--sample_names_file', type=str, default='sample_roster.txt') parser.add_argument('--aggregate', type=str, choices=['True', 'False'], default='True') parser.add_argument('--up_or_down', type=str, choices=['up', 'down'], default='up') parser.add_argument('--write_frac_table', type=str, choices=['True', 'False'], default='False') args = parser.parse_args() data_input = args.input_df gene_column_name = args.gene_column_name write_results_to = args.output_prefix NUM_IQRs = args.iqrs_over_median sample_names = args.sample_names_file up_or_down = args.up_or_down aggregate = args.aggregate == 'True' write_frac_table = args.write_frac_table == 'True' sample_data =
pd.read_csv(data_input, sep=',')
pandas.read_csv
import numpy as np import pandas as pd from pandas.testing import assert_series_equal import pytest from ber_public.deap import dim from ber_public.deap import fab from ber_public.deap import vent def test_calculate_fabric_heat_loss(): """Output is equivalent to DEAP 4.2.0 example A""" floor_area = pd.Series([63]) roof_area = pd.Series([63]) wall_area = pd.Series([85.7]) window_area = pd.Series([29.6]) door_area = pd.Series([1.85]) floor_uvalue =
pd.Series([0.14])
pandas.Series
"""This module contains pyspark wrangler utility tests. isort:skip_file """ import pytest import pandas as pd from pywrangler.pyspark.util import ColumnCacher from pyspark.sql import functions as F pytestmark = pytest.mark.pyspark # noqa: E402 pyspark = pytest.importorskip("pyspark") # noqa: E402 from pywrangler.pyspark import util def test_ensure_column(spark): assert str(F.col("a")) == str(util.ensure_column("a")) assert str(F.col("a")) == str(util.ensure_column(F.col("a"))) def test_spark_wrangler_validate_columns_raises(spark): data = {"col1": [1, 2], "col2": [3, 4]} df = spark.createDataFrame(pd.DataFrame(data)) with pytest.raises(ValueError): util.validate_columns(df, ("col3", "col1")) def test_spark_wrangler_validate_columns_not_raises(spark): data = {"col1": [1, 2], "col2": [3, 4]} df = spark.createDataFrame(pd.DataFrame(data)) util.validate_columns(df, ("col1", "col2")) util.validate_columns(df, None) def test_prepare_orderby(spark): columns = ["a", "b"] # test empty input assert util.prepare_orderby(None) == [] # test broadcast result = [F.col("a").asc(), F.col("b").asc()] assert str(result) == str(util.prepare_orderby(columns, True)) # test exact result = [F.col("a").asc(), F.col("b").desc()] assert str(result) == str(util.prepare_orderby(columns, [True, False])) # test reverse result = [F.col("a").asc(), F.col("b").desc()] assert str(result) == str(util.prepare_orderby(columns, [False, True], reverse=True)) # raise unequal lengths with pytest.raises(ValueError): util.prepare_orderby(columns, [True, False, True]) def test_column_cacher(spark): data = {"col1": [1, 2], "col2": [3, 4]} df = spark.createDataFrame(
pd.DataFrame(data)
pandas.DataFrame
import os,sys import pandas as pd import numpy as np import skbio.io import gffpandas.gffpandas as gffpd from statistics import stdev def find_locs(kmer, blast_df): """ Finds the start and stop locations of this k-mer in each genome """ locs = [] # filter blast results to just our kmer of interest kmer_df = blast_df[blast_df['qseqid'] == kmer] if kmer_df.shape[0]==0: raise Exception("The k-mer {} was not found in the blast search".format(kmer)) # for every kmer hit in the genome, append the location for i in range(kmer_df.shape[0]): send = kmer_df['send'].values[i] sstart = kmer_df['sstart'].values[i] genome_id = kmer_df['sseqid'].values[i].split('_')[0] contig_name = kmer_df['sseqid'].values[i] locs.append([send,sstart,genome_id,contig_name]) # locs is 2d list, each row is (start, stop, genome_id, contig_name) return locs def find_gene(start, stop, genome_id, contig_name, prokka_loc): """ Finds the nearest gene upstream and downstream of the k-mer, reports their distance using the prokka annotations. """ gene_up = '' dist_up = -1 gene_down = '' dist_down = -1 # prokka renames contigs but the numbers are consistent, so we need to pull the number if("NODE" in contig_name): orig_contig_name = contig_name.split('|') assert(len(orig_contig_name)==2) orig_contig_name = orig_contig_name[1] contig_num = orig_contig_name.split('_')[1] elif(contig_name.split('_')[0] == genome_id and len(contig_name.split('_'))==2): contig_num = contig_name.split('_')[1] # SRR5573065_SRR5573065.fasta|33_length=41292_depth=1.01x elif(contig_name.split('_')[0] == genome_id and len(contig_name.split('_')) in [4,5]): contig_num = contig_name.split('|')[1].split('_')[0] else: raise Exception("Unexpected contig name found: {}".format(contig_name)) if(prokka_loc[-5:-1]=='ncbi'): gff_loc = "annotation/annotated_genomes/" else: gff_loc = "annotation/annotated_grdi_genomes/" # scan through contigs until the correct number is found, then keep the contig name with open("{0}{1}/{1}.gff".format(gff_loc,genome_id)) as file: for line in file: if("_{} ".format(contig_num) in line): prokka_contig = line.split(" ")[1] break if('prokka_contig' not in locals()): print("Contig number {2} and contig name {3} not located in {0}{1}/{1}.gff".format(gff_loc,genome_id, contig_num, contig_name)) return [gene_up, dist_up, gene_down, dist_down] # columns are: ['seq_id','source','type','start','end','score','strand','phase','attributes'] #with open(prokka_loc+genome_id+'.pkl', 'rb') as fh: # gff_df = skbio.io.read(fh, format="blast+6",into=pd.DataFrame,default_columns=True) gff_df = pd.read_pickle(prokka_loc+genome_id+'.pkl') # keep only the contig the kmer was found in and only show coding sequences (Prodigal) contig_df = gff_df[gff_df['seq_id']==prokka_contig] contig_df = contig_df[contig_df['type']=='CDS'] start = int(start) stop = int(stop) df_length = contig_df.values.shape[0] # find the nearest gene/genes # for every gene found by prokka, does it contain the kmer or is it near? for gene_num, gene_anno in enumerate(contig_df.values): gene_start = int(gene_anno[3]) gene_stop = int(gene_anno[4]) try: if(start > gene_stop): if(gene_num==df_length-1): # we are after the last gene gene_dict = dict(i.split('=') for i in gene_anno[8].split(';')) dist_up = start - gene_stop if(gene_dict['product']=='hypothetical protein'): gene_up = "HypoProt:hypothetical protein" else: gene_up = gene_dict['gene']+':'+gene_dict['product'] break # we are not at the correct gene yet continue elif(stop < gene_start): # the kmer is before the current gene gene_dict = dict(i.split('=') for i in gene_anno[8].split(';')) dist_down = gene_start-stop if(gene_dict['product']=='hypothetical protein'): gene_down = "HypoProt:hypothetical protein" else: try: gene_down = gene_dict['gene']+':'+gene_dict['product'] except KeyError: gene_down = 'none:'+ dict(i.split('=') for i in gene_anno[8].split(';'))['product'] prev_gene_anno = contig_df.values[gene_num-1] gene_dict = dict(i.split('=') for i in prev_gene_anno[8].split(';')) dist_up = start - prev_gene_anno[4] if(gene_dict['product']=='hypothetical protein'): gene_up = "HypoProt:hypothetical protein" else: gene_up = gene_dict['gene']+':'+gene_dict['product'] break elif(start >= gene_start and stop <= gene_stop): # the kmer is inside of a gene gene_dict = dict(i.split('=') for i in gene_anno[8].split(';')) dist_up = 0 if(gene_dict['product']=='hypothetical protein'): gene_up = "HypoProt:hypothetical protein" else: gene_up = gene_dict['gene']+':'+gene_dict['product'] break elif(start <= gene_stop <= stop): # kmer hanging over right end of a gene gene_dict = dict(i.split('=') for i in gene_anno[8].split(';')) dist_up = stop-gene_stop if(gene_dict['product']=='hypothetical protein'): gene_up = "HypoProt:hypothetical protein" else: gene_up = gene_dict['gene']+':'+gene_dict['product'] break elif(start <= gene_start <= stop): # kmer hanging over the left end of a gene gene_dict = dict(i.split('=') for i in gene_anno[8].split(';')) dist_up = gene_start-start if(gene_dict['product']=='hypothetical protein'): gene_up = "HypoProt:hypothetical protein" else: gene_up = gene_dict['gene']+':'+gene_dict['product'] break else: raise Exception("Unexpected kmer start: {} stop: {} in relation to gene start: {} stop: {}".format(start, stop, gene_start, gene_stop)) except KeyError: gene_up = 'none:'+ dict(i.split('=') for i in gene_anno[8].split(';'))['product'] break return [gene_up, dist_up, gene_down, dist_down] def find_hits(kmers,blast_search): """ Input: list of k-mers to search for, preformed 1 at a time A PATH TO a blast search of those k-mers through your genomes Output: A pandas df where each row shows where a kmer was found in a genome, Which gene is upstream and downstream and how far away they are. Will have (# of kmers * number of genomes) rows """ with open(blast_search) as fh: blast_df = skbio.io.read(fh, format="blast+6",into=pd.DataFrame,default_columns=True) # each row in gene_hits will be [kmer, gene_up, dist_up, gene_down, dist_down, start, stop, genome_id, contig_name] gene_hits = [] for kmer in top_feats: # locs is 2d list, each row is (start, stop, genome_id, contig_name) locs = gene_finder.find_locs(kmer, blast_df) for loc in locs: # gene_info is 1D list: gene_up, dist_up, gene_down, dist_down gene_info = gene_finder.find_gene(*loc, prokka_loc) #TODO prokka loc as "annotation/gffpandas_ncbi/" gene_hits.append([kmer]+gene_info+loc) hits_df = pd.DataFrame(data = gene_hits,columns = ['kmer', 'gene_up', 'dist_up', 'gene_down', 'dist_down', 'start', 'stop', 'genome_id', 'contig_name']) return hits_df def merge_df(df_path, drug, dataset): """ Takes path to pandas df with the columns: [kmer, gene_up, dist_up, gene_down, dist_down, start, stop, genome_id, contig_name] and returns a df with the columns: [drug, dataset, kmer, gene_up, gene_up_count, avg_dist_up, gene_down, gene_down_count, avg_dist_down] """ df = pd.read_pickle(df_path) hit_summary = [] for kmer in set(df['kmer']): # filter for only a single kmer kmer_df = df[df['kmer']==kmer] for gene_direc, gene_dist in [['gene_up','dist_up'],['gene_down','dist_down']]: for gene in set(kmer_df[gene_direc]): if(len(gene)==0): continue # filter for only a single gene gene_df = kmer_df[kmer_df[gene_direc]==gene] total_dist = 0 for dist in gene_df[gene_dist]: total_dist += abs(float(dist)) count = gene_df.shape[0] average_dist = total_dist/count if(len(gene_df[gene_dist])<2): std_dev = 0 else: std_dev = stdev([abs(int(float(i))) for i in gene_df[gene_dist]]) try: gene, name = gene.split(':') except: print("Gene: {}".format(gene)) print("{} {}".format(drug,dataset)) gene, carb, name = gene.split(':') hit_summary.append([dataset, drug, kmer, gene, name, count, average_dist, std_dev]) return hit_summary def hit_summary(dataset,out_path): drugs = ['AMP','AMC','AZM','CHL','CIP','CRO','FIS','FOX','GEN','NAL','SXT','TET','TIO','STR','KAN'] all_hits = [] for drug in drugs: if(dataset == 'grdi' and drug in ['FIS']): continue df_path = "annotations/{}_{}/hits_df.pkl".format(dataset, drug) drug_list = merge_df(df_path, drug, dataset) for hit in drug_list: all_hits.append(hit) data = np.asarray(all_hits) what_amg = np.zeros((data.shape[0]), dtype = object) amgs =
pd.read_csv("data/gene_labels.tsv",sep='\t')
pandas.read_csv
# -*- coding: utf-8 -*- """ Created on Sun Sep 1 18:10:18 2019 @author: <NAME> Code will plot the keypoint coordinates vs time in order to assign the maximum value from this plot to the real-world distance measurement. This will be the label. Coding Improvement Note: Make use of functions for things like this. """ import pandas as pd import matplotlib.pyplot as plt import numpy as np from scipy.signal import find_peaks from scipy.signal import medfilt from scipy.signal import peak_prominences from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from sklearn import svm from sklearn.ensemble import RandomForestClassifier from sklearn.linear_model import LinearRegression #Edit data within file. #Open file and set to a certain variable ankle_df = pd.read_csv('jointTracker (16).csv', header=None) #This file has me pretty clearly tracked rknee1_df = pd.read_csv('20191002_rknee_pos_1st.csv', header=None) rknee2_df = pd.read_csv('20191002_rknee_pos_2nd.csv', header=None) rknee3_df = pd.read_csv('20191002_rknee_pos_3rd.csv', header=None) rknee4_df = pd.read_csv('20191002_rknee_pos_4th.csv', header=None) rknee5_df = pd.read_csv('20191002_rknee_pos_5th.csv', header=None) rknee6_df = pd.read_csv('20191002_rknee_pos_6th.csv', header=None) rknee7_df = pd.read_csv('20191002_rknee_pos_7th.csv', header=None) rknee8_df = pd.read_csv('20191002_rknee_pos_8th.csv', header=None) real_measures = np.array([32,33,32,35,35, 32,32,32,33,35, 34,36,35,35,34,34,35,35,34,35, 31,33,37,34,33,33,33,35,35,35, 30,31,33,23,25,28,28,29,31,42, 32,31.5,24,29,37,36,31,34,28,33.5, 38,38,42,42,42,41,43,38,39,40, 32,34,41,36,36,35,37,36,38,40]) #Document real measures real_measures_df = pd.DataFrame(data=real_measures[0:]) #Convert to a DataFrame #Tabulate height and weight columns heights_df = pd.DataFrame({"Height": [69]*50 + [69.5]*10 + [67]*10}) #Heights in inches weights_df = pd.DataFrame({"Weight": [165]*50 + [215]*10 + [160]*10}) #Weights in pounds #Assign x and y position values to variables x_rknee1 = rknee1_df[0] y_rknee1 = rknee1_df[1] x_rknee2 = rknee2_df[0] y_rknee2 = rknee2_df[1] x_rknee3 = rknee3_df[0] y_rknee3 = rknee3_df[1] x_rknee4 = rknee4_df[0] y_rknee4 = rknee4_df[1] x_rknee5 = rknee5_df[0] y_rknee5 = rknee5_df[1] x_rknee6 = rknee6_df[0] y_rknee6 = rknee6_df[1] x_rknee7 = rknee7_df[0] y_rknee7 = rknee7_df[1] x_rknee8 = rknee8_df[0] y_rknee8 = rknee8_df[1] ################################Obtain X peak prominences###################### #Plot the values to view visually #plt.figure(1) #plt.plot(x_rknee1) # #plt.figure(2) #plt.plot(x_rknee2) # #plt.figure(3) #plt.plot(x_rknee3) # #plt.figure(4) #plt.plot(x_rknee4) #Apply smoothing with median filter filterx_rk_1 = medfilt(x_rknee1, kernel_size = 13) filterx_rk_2 = medfilt(x_rknee2, kernel_size = 13) filterx_rk_3 = medfilt(x_rknee3, kernel_size = 13) filterx_rk_4 = medfilt(x_rknee4, kernel_size = 13) filterx_rk_5 = medfilt(x_rknee5, kernel_size = 13) filterx_rk_6 = medfilt(x_rknee6, kernel_size = 13) filterx_rk_7 = medfilt(x_rknee7, kernel_size = 13) filterx_rk_8 = medfilt(x_rknee8, kernel_size = 13) #Plot values to view smoothed plot visually plt.figure(10) plt.plot(filterx_rk_1) plt.figure(11) plt.plot(filterx_rk_2) plt.figure(12) plt.plot(filterx_rk_3) plt.figure(13) plt.plot(filterx_rk_4) plt.figure(14) plt.plot(filterx_rk_5) plt.figure(15) plt.plot(filterx_rk_6) plt.figure(16) plt.plot(filterx_rk_7) plt.figure(17) plt.plot(filterx_rk_8) #Obtain peaks and prominences peaksx_rk1, _ = find_peaks(filterx_rk_1, height=180) promsx_1 = peak_prominences(filterx_rk_1, peaksx_rk1) promsx_1_df = pd.DataFrame(data=promsx_1[0][0:]) #, # values #... index=data[1:,0], # 1st column as index #... columns=data[0,1:]) # 1st row as the column names # Convert to DataFrame peaksx_rk2, _ = find_peaks(filterx_rk_2, height=200) promsx_2 = peak_prominences(filterx_rk_2, peaksx_rk2) promsx_2_df = pd.DataFrame(data=promsx_2[0][0:]) peaksx_rk3, _ = find_peaks(filterx_rk_3, height=220) promsx_3 = peak_prominences(filterx_rk_3, peaksx_rk3) promsx_3_df = pd.DataFrame(data=promsx_3[0][0:]) peaksx_rk4, _ = find_peaks(filterx_rk_4, height=180) promsx_4 = peak_prominences(filterx_rk_4, peaksx_rk4) promsx_4_df = pd.DataFrame(data=promsx_4[0][0:]) peaksx_rk5, _ = find_peaks(filterx_rk_5, height=230) promsx_5 = peak_prominences(filterx_rk_5, peaksx_rk5) promsx_5_df = pd.DataFrame(data=promsx_5[0][0:]) peaksx_rk6, _ = find_peaks(filterx_rk_6, height=200) promsx_6 = peak_prominences(filterx_rk_6, peaksx_rk6) promsx_6_df =
pd.DataFrame(data=promsx_6[0][0:])
pandas.DataFrame
from collections import Counter import sys from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer, HashingVectorizer from sklearn.feature_extraction import DictVectorizer import sklearn.cluster.k_means_ from sklearn.cluster.k_means_ import KMeans, MiniBatchKMeans from sklearn.cluster import SpectralClustering, DBSCAN from sklearn. decomposition import PCA, KernelPCA, SparsePCA, TruncatedSVD, IncrementalPCA from sklearn.preprocessing import StandardScaler from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA import numpy as np from nltk.corpus import stopwords import xml.etree.ElementTree as ET import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D import csv import pandas as pd from pandas.plotting import scatter_matrix def readAligedCorpus(words, path): rval = [Counter() for i in range(len(words))] stop_words = set(stopwords.words('german')) tree = ET.parse(path) root = tree.getroot() body = root.find('body') for tu in body.findall('tu'): de = '' en = '' for tuv in tu.findall('tuv'): atr = tuv.attrib lang = atr.get('{http://www.w3.org/XML/1998/namespace}lang') if lang == 'de': for seg in tuv.findall('seg'): de = seg.text.split() if lang == 'en': for seg in tuv.findall('seg'): en = seg.text.lower() en_words = en.split() for i, word in enumerate(words): if word in en_words: counter = rval[i] de = [token.lower() for token in de if token.isalpha() and not token in stop_words] #whole aligned sentence as BOW for de_w in de: counter[de_w] += 1 return rval def readFile(words, path): with open(path, 'r', encoding='utf8') as f: rval = [] stop_words = set(stopwords.words('english')) rval = [Counter() for i in range(len(words))] lines = f.readlines() for line in lines: tokens = line.split() for i, word in enumerate(words): if(word in tokens): tokens = [token.lower() for token in tokens if token.isalpha() and not token in stop_words] counter = rval[i] idx = tokens.index(word) #bow of 5 (2 on the left | 2 on the right) bow = tokens[idx-2:idx+3] #print(bow) for w in bow: counter[w] += 1 return rval corpus = readFile(['apple', 'banana', 'oranges', 'watermelons', 'strawberries', 'grape', 'peach', 'cherry', 'pear', 'plum', 'melon', 'lemon', 'coconut', 'lime', 'office', 'home', 'building', 'house', 'apartment', 'city', 'town', 'village'], 'resources/corpora/OpenSubtitles/small/combined2') corpus_biling = readAligedCorpus(['apple', 'banana', 'oranges', 'watermelons', 'strawberries', 'grape', 'peach', 'cherry', 'pear', 'plum', 'melon', 'lemon', 'coconut', 'lime', 'office', 'home', 'building', 'house', 'apartment', 'city', 'town', 'village'], 'resources/corpora/OpenSubtitles/very_small_parallel/vsmallaa') #'apple', 'banana', 'oranges', 'watermelons', 'strawberries', 'grape', 'peach', 'cherry', 'pear', 'plum', 'melon', 'lemon', 'coconut', 'lime', #'office', 'home', 'building', 'house', 'apartment', 'city', 'town', 'village' #'shoes', 'shirt', 'pants', 'jacket', 'sweatshirt', 'socks' #'car', 'plane', 'bicycle', 'motorcycle', 'scooter', 'bus', 'train' #'new york', 'los angeles', 'chicago', 'houston', 'philadelphia', 'san antonio', 'san diego', 'dallas', 'san jose', 'austin', 'seattle' #'wind', 'sun', 'water', 'fire' #'chair', 'table', 'bed', 'closet', 'commode' #'sister', 'brother', 'father', 'mother' #'nose', 'eyes', 'mouth', 'face', 'hair' vectorizer = DictVectorizer() X = vectorizer.fit_transform(corpus).toarray() vectorizer_biling = DictVectorizer() X_biling = vectorizer_biling.fit_transform(corpus_biling).toarray() X_combined = np.hstack((X, X_biling)) #sc = StandardScaler() #X_std = sc.fit_transform(X) #sc_biling = StandardScaler() #X_biling_std = sc_biling = sc_biling.fit_transform(X_biling) sc_combined = StandardScaler() X_combined_std = sc_combined.fit_transform(X_combined) #pca = PCA(n_components=2) pca = KernelPCA(kernel='rbf') #pca = SparsePCA() #pca = TruncatedSVD() #pca = IncrementalPCA() #X_pca = pca.fit_transform(X_std) #X_biling_pca = pca.fit_transform(X_biling_std) X_combined_pca = pca.fit_transform(X_combined_std) #kmeans = KMeans(n_clusters=2, init='random').fit(X_pca) #f = kmeans.predict(X_pca) #kmeans = KMeans(n_clusters=2, init='random').fit(X_biling_pca) #f = kmeans.predict(X_biling_pca) kmeans = KMeans(n_clusters=2, init='random').fit(X_combined_pca) f = kmeans.predict(X_combined_pca) print(f) print('contains number one x times: ', list(f).count(1)) print('contains number zero x times: ', list(f).count(0)) #plot function from my warmup assignment def plot(f): arr = np.array(f) if arr.shape[1] == 2: x1 = arr[:, 0] x2 = arr[:, 1] plt.scatter(x1, x2) plt.show() elif arr.shape[1] == 3: fig = plt.figure() ax = fig.add_subplot(111, projection='3d') x = [] y = [] z = [] for line in f: x.append(float(line[0])) y.append(float(line[1])) z.append(float(line[2])) ax.scatter(x, y, z, c='r', marker='o') ax.set_xlabel('X Label') ax.set_ylabel('Y Label') ax.set_zlabel('Z Label') plt.show() else: m = np.array(f, dtype=float) # first make some fake data with same layout as yours data =
pd.DataFrame(m)
pandas.DataFrame
# Copyright (c) 2018-2021, NVIDIA CORPORATION. import array as arr import datetime import io import operator import random import re import string import textwrap from copy import copy import cupy import numpy as np import pandas as pd import pyarrow as pa import pytest from numba import cuda import cudf from cudf.core._compat import PANDAS_GE_110, PANDAS_GE_120 from cudf.core.column import column from cudf.tests import utils from cudf.tests.utils import ( ALL_TYPES, DATETIME_TYPES, NUMERIC_TYPES, assert_eq, assert_exceptions_equal, does_not_raise, gen_rand, ) def test_init_via_list_of_tuples(): data = [ (5, "cats", "jump", np.nan), (2, "dogs", "dig", 7.5), (3, "cows", "moo", -2.1, "occasionally"), ] pdf = pd.DataFrame(data) gdf = cudf.DataFrame(data) assert_eq(pdf, gdf) def _dataframe_na_data(): return [ pd.DataFrame( { "a": [0, 1, 2, np.nan, 4, None, 6], "b": [np.nan, None, "u", "h", "d", "a", "m"], }, index=["q", "w", "e", "r", "t", "y", "u"], ), pd.DataFrame({"a": [0, 1, 2, 3, 4], "b": ["a", "b", "u", "h", "d"]}), pd.DataFrame( { "a": [None, None, np.nan, None], "b": [np.nan, None, np.nan, None], } ), pd.DataFrame({"a": []}), pd.DataFrame({"a": [np.nan], "b": [None]}), pd.DataFrame({"a": ["a", "b", "c", None, "e"]}), pd.DataFrame({"a": ["a", "b", "c", "d", "e"]}), ] @pytest.mark.parametrize("rows", [0, 1, 2, 100]) def test_init_via_list_of_empty_tuples(rows): data = [()] * rows pdf = pd.DataFrame(data) gdf = cudf.DataFrame(data) assert_eq( pdf, gdf, check_like=True, check_column_type=False, check_index_type=False, ) @pytest.mark.parametrize( "dict_of_series", [ {"a": pd.Series([1.0, 2.0, 3.0])}, {"a": pd.Series([1.0, 2.0, 3.0], index=[4, 5, 6])}, { "a": pd.Series([1.0, 2.0, 3.0], index=[4, 5, 6]), "b": pd.Series([1.0, 2.0, 4.0], index=[1, 2, 3]), }, {"a": [1, 2, 3], "b": pd.Series([1.0, 2.0, 3.0], index=[4, 5, 6])}, { "a": pd.Series([1.0, 2.0, 3.0], index=["a", "b", "c"]), "b": pd.Series([1.0, 2.0, 4.0], index=["c", "d", "e"]), }, { "a": pd.Series( ["a", "b", "c"], index=pd.MultiIndex.from_tuples([(1, 2), (1, 3), (2, 3)]), ), "b": pd.Series( ["a", " b", "d"], index=pd.MultiIndex.from_tuples([(1, 2), (1, 3), (2, 3)]), ), }, ], ) def test_init_from_series_align(dict_of_series): pdf = pd.DataFrame(dict_of_series) gdf = cudf.DataFrame(dict_of_series) assert_eq(pdf, gdf) for key in dict_of_series: if isinstance(dict_of_series[key], pd.Series): dict_of_series[key] = cudf.Series(dict_of_series[key]) gdf = cudf.DataFrame(dict_of_series) assert_eq(pdf, gdf) @pytest.mark.parametrize( ("dict_of_series", "expectation"), [ ( { "a": pd.Series(["a", "b", "c"], index=[4, 4, 5]), "b": pd.Series(["a", "b", "c"], index=[4, 5, 6]), }, pytest.raises( ValueError, match="Cannot align indices with non-unique values" ), ), ( { "a": pd.Series(["a", "b", "c"], index=[4, 4, 5]), "b": pd.Series(["a", "b", "c"], index=[4, 4, 5]), }, does_not_raise(), ), ], ) def test_init_from_series_align_nonunique(dict_of_series, expectation): with expectation: gdf = cudf.DataFrame(dict_of_series) if expectation == does_not_raise(): pdf = pd.DataFrame(dict_of_series) assert_eq(pdf, gdf) def test_init_unaligned_with_index(): pdf = pd.DataFrame( { "a": pd.Series([1.0, 2.0, 3.0], index=[4, 5, 6]), "b": pd.Series([1.0, 2.0, 3.0], index=[1, 2, 3]), }, index=[7, 8, 9], ) gdf = cudf.DataFrame( { "a": cudf.Series([1.0, 2.0, 3.0], index=[4, 5, 6]), "b": cudf.Series([1.0, 2.0, 3.0], index=[1, 2, 3]), }, index=[7, 8, 9], ) assert_eq(pdf, gdf, check_dtype=False) def test_series_basic(): # Make series from buffer a1 = np.arange(10, dtype=np.float64) series = cudf.Series(a1) assert len(series) == 10 np.testing.assert_equal(series.to_array(), np.hstack([a1])) def test_series_from_cupy_scalars(): data = [0.1, 0.2, 0.3] data_np = np.array(data) data_cp = cupy.array(data) s_np = cudf.Series([data_np[0], data_np[2]]) s_cp = cudf.Series([data_cp[0], data_cp[2]]) assert_eq(s_np, s_cp) @pytest.mark.parametrize("a", [[1, 2, 3], [1, 10, 30]]) @pytest.mark.parametrize("b", [[4, 5, 6], [-11, -100, 30]]) def test_append_index(a, b): df = pd.DataFrame() df["a"] = a df["b"] = b gdf = cudf.DataFrame() gdf["a"] = a gdf["b"] = b # Check the default index after appending two columns(Series) expected = df.a.append(df.b) actual = gdf.a.append(gdf.b) assert len(expected) == len(actual) assert_eq(expected.index, actual.index) expected = df.a.append(df.b, ignore_index=True) actual = gdf.a.append(gdf.b, ignore_index=True) assert len(expected) == len(actual) assert_eq(expected.index, actual.index) def test_series_init_none(): # test for creating empty series # 1: without initializing sr1 = cudf.Series() got = sr1.to_string() expect = "Series([], dtype: float64)" # values should match despite whitespace difference assert got.split() == expect.split() # 2: Using `None` as an initializer sr2 = cudf.Series(None) got = sr2.to_string() expect = "Series([], dtype: float64)" # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_basic(): np.random.seed(0) df = cudf.DataFrame() # Populate with cuda memory df["keys"] = np.arange(10, dtype=np.float64) np.testing.assert_equal(df["keys"].to_array(), np.arange(10)) assert len(df) == 10 # Populate with numpy array rnd_vals = np.random.random(10) df["vals"] = rnd_vals np.testing.assert_equal(df["vals"].to_array(), rnd_vals) assert len(df) == 10 assert tuple(df.columns) == ("keys", "vals") # Make another dataframe df2 = cudf.DataFrame() df2["keys"] = np.array([123], dtype=np.float64) df2["vals"] = np.array([321], dtype=np.float64) # Concat df = cudf.concat([df, df2]) assert len(df) == 11 hkeys = np.asarray(np.arange(10, dtype=np.float64).tolist() + [123]) hvals = np.asarray(rnd_vals.tolist() + [321]) np.testing.assert_equal(df["keys"].to_array(), hkeys) np.testing.assert_equal(df["vals"].to_array(), hvals) # As matrix mat = df.as_matrix() expect = np.vstack([hkeys, hvals]).T np.testing.assert_equal(mat, expect) # test dataframe with tuple name df_tup = cudf.DataFrame() data = np.arange(10) df_tup[(1, "foobar")] = data np.testing.assert_equal(data, df_tup[(1, "foobar")].to_array()) df = cudf.DataFrame(pd.DataFrame({"a": [1, 2, 3], "c": ["a", "b", "c"]})) pdf = pd.DataFrame(pd.DataFrame({"a": [1, 2, 3], "c": ["a", "b", "c"]})) assert_eq(df, pdf) gdf = cudf.DataFrame({"id": [0, 1], "val": [None, None]}) gdf["val"] = gdf["val"].astype("int") assert gdf["val"].isnull().all() @pytest.mark.parametrize( "pdf", [ pd.DataFrame({"a": range(10), "b": range(10, 20), "c": range(1, 11)}), pd.DataFrame( {"a": range(10), "b": range(10, 20), "d": ["a", "v"] * 5} ), ], ) @pytest.mark.parametrize( "columns", [["a"], ["b"], "a", "b", ["a", "b"]], ) @pytest.mark.parametrize("inplace", [True, False]) def test_dataframe_drop_columns(pdf, columns, inplace): pdf = pdf.copy() gdf = cudf.from_pandas(pdf) expected = pdf.drop(columns=columns, inplace=inplace) actual = gdf.drop(columns=columns, inplace=inplace) if inplace: expected = pdf actual = gdf assert_eq(expected, actual) @pytest.mark.parametrize( "pdf", [ pd.DataFrame({"a": range(10), "b": range(10, 20), "c": range(1, 11)}), pd.DataFrame( {"a": range(10), "b": range(10, 20), "d": ["a", "v"] * 5} ), ], ) @pytest.mark.parametrize( "labels", [[1], [0], 1, 5, [5, 9], pd.Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])], ) @pytest.mark.parametrize("inplace", [True, False]) def test_dataframe_drop_labels_axis_0(pdf, labels, inplace): pdf = pdf.copy() gdf = cudf.from_pandas(pdf) expected = pdf.drop(labels=labels, axis=0, inplace=inplace) actual = gdf.drop(labels=labels, axis=0, inplace=inplace) if inplace: expected = pdf actual = gdf assert_eq(expected, actual) @pytest.mark.parametrize( "pdf", [ pd.DataFrame({"a": range(10), "b": range(10, 20), "c": range(1, 11)}), pd.DataFrame( {"a": range(10), "b": range(10, 20), "d": ["a", "v"] * 5} ), ], ) @pytest.mark.parametrize( "index", [[1], [0], 1, 5, [5, 9], pd.Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])], ) @pytest.mark.parametrize("inplace", [True, False]) def test_dataframe_drop_index(pdf, index, inplace): pdf = pdf.copy() gdf = cudf.from_pandas(pdf) expected = pdf.drop(index=index, inplace=inplace) actual = gdf.drop(index=index, inplace=inplace) if inplace: expected = pdf actual = gdf assert_eq(expected, actual) @pytest.mark.parametrize( "pdf", [ pd.DataFrame( {"a": range(10), "b": range(10, 20), "d": ["a", "v"] * 5}, index=pd.MultiIndex( levels=[ ["lama", "cow", "falcon"], ["speed", "weight", "length"], ], codes=[ [0, 0, 0, 1, 1, 1, 2, 2, 2, 1], [0, 1, 2, 0, 1, 2, 0, 1, 2, 1], ], ), ) ], ) @pytest.mark.parametrize( "index,level", [ ("cow", 0), ("lama", 0), ("falcon", 0), ("speed", 1), ("weight", 1), ("length", 1), pytest.param( "cow", None, marks=pytest.mark.xfail( reason="https://github.com/pandas-dev/pandas/issues/36293" ), ), pytest.param( "lama", None, marks=pytest.mark.xfail( reason="https://github.com/pandas-dev/pandas/issues/36293" ), ), pytest.param( "falcon", None, marks=pytest.mark.xfail( reason="https://github.com/pandas-dev/pandas/issues/36293" ), ), ], ) @pytest.mark.parametrize("inplace", [True, False]) def test_dataframe_drop_multiindex(pdf, index, level, inplace): pdf = pdf.copy() gdf = cudf.from_pandas(pdf) expected = pdf.drop(index=index, inplace=inplace, level=level) actual = gdf.drop(index=index, inplace=inplace, level=level) if inplace: expected = pdf actual = gdf assert_eq(expected, actual) @pytest.mark.parametrize( "pdf", [ pd.DataFrame({"a": range(10), "b": range(10, 20), "c": range(1, 11)}), pd.DataFrame( {"a": range(10), "b": range(10, 20), "d": ["a", "v"] * 5} ), ], ) @pytest.mark.parametrize( "labels", [["a"], ["b"], "a", "b", ["a", "b"]], ) @pytest.mark.parametrize("inplace", [True, False]) def test_dataframe_drop_labels_axis_1(pdf, labels, inplace): pdf = pdf.copy() gdf = cudf.from_pandas(pdf) expected = pdf.drop(labels=labels, axis=1, inplace=inplace) actual = gdf.drop(labels=labels, axis=1, inplace=inplace) if inplace: expected = pdf actual = gdf assert_eq(expected, actual) def test_dataframe_drop_error(): df = cudf.DataFrame({"a": [1], "b": [2], "c": [3]}) pdf = df.to_pandas() assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([], {"columns": "d"}), rfunc_args_and_kwargs=([], {"columns": "d"}), expected_error_message="column 'd' does not exist", ) assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([], {"columns": ["a", "d", "b"]}), rfunc_args_and_kwargs=([], {"columns": ["a", "d", "b"]}), expected_error_message="column 'd' does not exist", ) assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=(["a"], {"columns": "a", "axis": 1}), rfunc_args_and_kwargs=(["a"], {"columns": "a", "axis": 1}), expected_error_message="Cannot specify both", ) assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([], {"axis": 1}), rfunc_args_and_kwargs=([], {"axis": 1}), expected_error_message="Need to specify at least", ) assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([[2, 0]],), rfunc_args_and_kwargs=([[2, 0]],), expected_error_message="One or more values not found in axis", ) def test_dataframe_drop_raises(): df = cudf.DataFrame( {"a": [1, 2, 3], "c": [10, 20, 30]}, index=["x", "y", "z"] ) pdf = df.to_pandas() assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=(["p"],), rfunc_args_and_kwargs=(["p"],), expected_error_message="One or more values not found in axis", ) # label dtype mismatch assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([3],), rfunc_args_and_kwargs=([3],), expected_error_message="One or more values not found in axis", ) expect = pdf.drop("p", errors="ignore") actual = df.drop("p", errors="ignore") assert_eq(actual, expect) assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([], {"columns": "p"}), rfunc_args_and_kwargs=([], {"columns": "p"}), expected_error_message="column 'p' does not exist", ) expect = pdf.drop(columns="p", errors="ignore") actual = df.drop(columns="p", errors="ignore") assert_eq(actual, expect) assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([], {"labels": "p", "axis": 1}), rfunc_args_and_kwargs=([], {"labels": "p", "axis": 1}), expected_error_message="column 'p' does not exist", ) expect = pdf.drop(labels="p", axis=1, errors="ignore") actual = df.drop(labels="p", axis=1, errors="ignore") assert_eq(actual, expect) def test_dataframe_column_add_drop_via_setitem(): df = cudf.DataFrame() data = np.asarray(range(10)) df["a"] = data df["b"] = data assert tuple(df.columns) == ("a", "b") del df["a"] assert tuple(df.columns) == ("b",) df["c"] = data assert tuple(df.columns) == ("b", "c") df["a"] = data assert tuple(df.columns) == ("b", "c", "a") def test_dataframe_column_set_via_attr(): data_0 = np.asarray([0, 2, 4, 5]) data_1 = np.asarray([1, 4, 2, 3]) data_2 = np.asarray([2, 0, 3, 0]) df = cudf.DataFrame({"a": data_0, "b": data_1, "c": data_2}) for i in range(10): df.c = df.a assert assert_eq(df.c, df.a, check_names=False) assert tuple(df.columns) == ("a", "b", "c") df.c = df.b assert assert_eq(df.c, df.b, check_names=False) assert tuple(df.columns) == ("a", "b", "c") def test_dataframe_column_drop_via_attr(): df = cudf.DataFrame({"a": []}) with pytest.raises(AttributeError): del df.a assert tuple(df.columns) == tuple("a") @pytest.mark.parametrize("axis", [0, "index"]) def test_dataframe_index_rename(axis): pdf = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6], "c": [7, 8, 9]}) gdf = cudf.DataFrame.from_pandas(pdf) expect = pdf.rename(mapper={1: 5, 2: 6}, axis=axis) got = gdf.rename(mapper={1: 5, 2: 6}, axis=axis) assert_eq(expect, got) expect = pdf.rename(index={1: 5, 2: 6}) got = gdf.rename(index={1: 5, 2: 6}) assert_eq(expect, got) expect = pdf.rename({1: 5, 2: 6}) got = gdf.rename({1: 5, 2: 6}) assert_eq(expect, got) # `pandas` can support indexes with mixed values. We throw a # `NotImplementedError`. with pytest.raises(NotImplementedError): gdf.rename(mapper={1: "x", 2: "y"}, axis=axis) def test_dataframe_MI_rename(): gdf = cudf.DataFrame( {"a": np.arange(10), "b": np.arange(10), "c": np.arange(10)} ) gdg = gdf.groupby(["a", "b"]).count() pdg = gdg.to_pandas() expect = pdg.rename(mapper={1: 5, 2: 6}, axis=0) got = gdg.rename(mapper={1: 5, 2: 6}, axis=0) assert_eq(expect, got) @pytest.mark.parametrize("axis", [1, "columns"]) def test_dataframe_column_rename(axis): pdf = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6], "c": [7, 8, 9]}) gdf = cudf.DataFrame.from_pandas(pdf) expect = pdf.rename(mapper=lambda name: 2 * name, axis=axis) got = gdf.rename(mapper=lambda name: 2 * name, axis=axis) assert_eq(expect, got) expect = pdf.rename(columns=lambda name: 2 * name) got = gdf.rename(columns=lambda name: 2 * name) assert_eq(expect, got) rename_mapper = {"a": "z", "b": "y", "c": "x"} expect = pdf.rename(columns=rename_mapper) got = gdf.rename(columns=rename_mapper) assert_eq(expect, got) def test_dataframe_pop(): pdf = pd.DataFrame( {"a": [1, 2, 3], "b": ["x", "y", "z"], "c": [7.0, 8.0, 9.0]} ) gdf = cudf.DataFrame.from_pandas(pdf) # Test non-existing column error with pytest.raises(KeyError) as raises: gdf.pop("fake_colname") raises.match("fake_colname") # check pop numeric column pdf_pop = pdf.pop("a") gdf_pop = gdf.pop("a") assert_eq(pdf_pop, gdf_pop) assert_eq(pdf, gdf) # check string column pdf_pop = pdf.pop("b") gdf_pop = gdf.pop("b") assert_eq(pdf_pop, gdf_pop) assert_eq(pdf, gdf) # check float column and empty dataframe pdf_pop = pdf.pop("c") gdf_pop = gdf.pop("c") assert_eq(pdf_pop, gdf_pop) assert_eq(pdf, gdf) # check empty dataframe edge case empty_pdf = pd.DataFrame(columns=["a", "b"]) empty_gdf = cudf.DataFrame(columns=["a", "b"]) pb = empty_pdf.pop("b") gb = empty_gdf.pop("b") assert len(pb) == len(gb) assert empty_pdf.empty and empty_gdf.empty @pytest.mark.parametrize("nelem", [0, 3, 100, 1000]) def test_dataframe_astype(nelem): df = cudf.DataFrame() data = np.asarray(range(nelem), dtype=np.int32) df["a"] = data assert df["a"].dtype is np.dtype(np.int32) df["b"] = df["a"].astype(np.float32) assert df["b"].dtype is np.dtype(np.float32) np.testing.assert_equal(df["a"].to_array(), df["b"].to_array()) @pytest.mark.parametrize("nelem", [0, 100]) def test_index_astype(nelem): df = cudf.DataFrame() data = np.asarray(range(nelem), dtype=np.int32) df["a"] = data assert df.index.dtype is np.dtype(np.int64) df.index = df.index.astype(np.float32) assert df.index.dtype is np.dtype(np.float32) df["a"] = df["a"].astype(np.float32) np.testing.assert_equal(df.index.to_array(), df["a"].to_array()) df["b"] = df["a"] df = df.set_index("b") df["a"] = df["a"].astype(np.int16) df.index = df.index.astype(np.int16) np.testing.assert_equal(df.index.to_array(), df["a"].to_array()) def test_dataframe_to_string(): pd.options.display.max_rows = 5 pd.options.display.max_columns = 8 # Test basic df = cudf.DataFrame( {"a": [1, 2, 3, 4, 5, 6], "b": [11, 12, 13, 14, 15, 16]} ) string = str(df) assert string.splitlines()[-1] == "[6 rows x 2 columns]" # Test skipped columns df = cudf.DataFrame( { "a": [1, 2, 3, 4, 5, 6], "b": [11, 12, 13, 14, 15, 16], "c": [11, 12, 13, 14, 15, 16], "d": [11, 12, 13, 14, 15, 16], } ) string = df.to_string() assert string.splitlines()[-1] == "[6 rows x 4 columns]" # Test masked df = cudf.DataFrame( {"a": [1, 2, 3, 4, 5, 6], "b": [11, 12, 13, 14, 15, 16]} ) data = np.arange(6) mask = np.zeros(1, dtype=cudf.utils.utils.mask_dtype) mask[0] = 0b00101101 masked = cudf.Series.from_masked_array(data, mask) assert masked.null_count == 2 df["c"] = masked # check data values = masked.copy() validids = [0, 2, 3, 5] densearray = masked.to_array() np.testing.assert_equal(data[validids], densearray) # valid position is corret for i in validids: assert data[i] == values[i] # null position is correct for i in range(len(values)): if i not in validids: assert values[i] is cudf.NA pd.options.display.max_rows = 10 got = df.to_string() expect = """ a b c 0 1 11 0 1 2 12 <NA> 2 3 13 2 3 4 14 3 4 5 15 <NA> 5 6 16 5 """ # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_to_string_wide(monkeypatch): monkeypatch.setenv("COLUMNS", "79") # Test basic df = cudf.DataFrame() for i in range(100): df["a{}".format(i)] = list(range(3)) pd.options.display.max_columns = 0 got = df.to_string() expect = """ a0 a1 a2 a3 a4 a5 a6 a7 ... a92 a93 a94 a95 a96 a97 a98 a99 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 ... 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 ... 2 2 2 2 2 2 2 2 [3 rows x 100 columns] """ # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_empty_to_string(): # Test for printing empty dataframe df = cudf.DataFrame() got = df.to_string() expect = "Empty DataFrame\nColumns: []\nIndex: []\n" # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_emptycolumns_to_string(): # Test for printing dataframe having empty columns df = cudf.DataFrame() df["a"] = [] df["b"] = [] got = df.to_string() expect = "Empty DataFrame\nColumns: [a, b]\nIndex: []\n" # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_copy(): # Test for copying the dataframe using python copy pkg df = cudf.DataFrame() df["a"] = [1, 2, 3] df2 = copy(df) df2["b"] = [4, 5, 6] got = df.to_string() expect = """ a 0 1 1 2 2 3 """ # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_copy_shallow(): # Test for copy dataframe using class method df = cudf.DataFrame() df["a"] = [1, 2, 3] df2 = df.copy() df2["b"] = [4, 2, 3] got = df.to_string() expect = """ a 0 1 1 2 2 3 """ # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_dtypes(): dtypes = pd.Series( [np.int32, np.float32, np.float64], index=["c", "a", "b"] ) df = cudf.DataFrame( {k: np.ones(10, dtype=v) for k, v in dtypes.iteritems()} ) assert df.dtypes.equals(dtypes) def test_dataframe_add_col_to_object_dataframe(): # Test for adding column to an empty object dataframe cols = ["a", "b", "c"] df = pd.DataFrame(columns=cols, dtype="str") data = {k: v for (k, v) in zip(cols, [["a"] for _ in cols])} gdf = cudf.DataFrame(data) gdf = gdf[:0] assert gdf.dtypes.equals(df.dtypes) gdf["a"] = [1] df["a"] = [10] assert gdf.dtypes.equals(df.dtypes) gdf["b"] = [1.0] df["b"] = [10.0] assert gdf.dtypes.equals(df.dtypes) def test_dataframe_dir_and_getattr(): df = cudf.DataFrame( { "a": np.ones(10), "b": np.ones(10), "not an id": np.ones(10), "oop$": np.ones(10), } ) o = dir(df) assert {"a", "b"}.issubset(o) assert "not an id" not in o assert "oop$" not in o # Getattr works assert df.a.equals(df["a"]) assert df.b.equals(df["b"]) with pytest.raises(AttributeError): df.not_a_column @pytest.mark.parametrize("order", ["C", "F"]) def test_empty_dataframe_as_gpu_matrix(order): df = cudf.DataFrame() # Check fully empty dataframe. mat = df.as_gpu_matrix(order=order).copy_to_host() assert mat.shape == (0, 0) df = cudf.DataFrame() nelem = 123 for k in "abc": df[k] = np.random.random(nelem) # Check all columns in empty dataframe. mat = df.head(0).as_gpu_matrix(order=order).copy_to_host() assert mat.shape == (0, 3) @pytest.mark.parametrize("order", ["C", "F"]) def test_dataframe_as_gpu_matrix(order): df = cudf.DataFrame() nelem = 123 for k in "abcd": df[k] = np.random.random(nelem) # Check all columns mat = df.as_gpu_matrix(order=order).copy_to_host() assert mat.shape == (nelem, 4) for i, k in enumerate(df.columns): np.testing.assert_array_equal(df[k].to_array(), mat[:, i]) # Check column subset mat = df.as_gpu_matrix(order=order, columns=["a", "c"]).copy_to_host() assert mat.shape == (nelem, 2) for i, k in enumerate("ac"): np.testing.assert_array_equal(df[k].to_array(), mat[:, i]) def test_dataframe_as_gpu_matrix_null_values(): df = cudf.DataFrame() nelem = 123 na = -10000 refvalues = {} for k in "abcd": df[k] = data = np.random.random(nelem) bitmask = utils.random_bitmask(nelem) df[k] = df[k].set_mask(bitmask) boolmask = np.asarray( utils.expand_bits_to_bytes(bitmask)[:nelem], dtype=np.bool_ ) data[~boolmask] = na refvalues[k] = data # Check null value causes error with pytest.raises(ValueError) as raises: df.as_gpu_matrix() raises.match("column 'a' has null values") for k in df.columns: df[k] = df[k].fillna(na) mat = df.as_gpu_matrix().copy_to_host() for i, k in enumerate(df.columns): np.testing.assert_array_equal(refvalues[k], mat[:, i]) def test_dataframe_append_empty(): pdf = pd.DataFrame( { "key": [1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4], "value": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], } ) gdf = cudf.DataFrame.from_pandas(pdf) gdf["newcol"] = 100 pdf["newcol"] = 100 assert len(gdf["newcol"]) == len(pdf) assert len(pdf["newcol"]) == len(pdf) assert_eq(gdf, pdf) def test_dataframe_setitem_from_masked_object(): ary = np.random.randn(100) mask = np.zeros(100, dtype=bool) mask[:20] = True np.random.shuffle(mask) ary[mask] = np.nan test1_null = cudf.Series(ary, nan_as_null=True) assert test1_null.nullable assert test1_null.null_count == 20 test1_nan = cudf.Series(ary, nan_as_null=False) assert test1_nan.null_count == 0 test2_null = cudf.DataFrame.from_pandas( pd.DataFrame({"a": ary}), nan_as_null=True ) assert test2_null["a"].nullable assert test2_null["a"].null_count == 20 test2_nan = cudf.DataFrame.from_pandas( pd.DataFrame({"a": ary}), nan_as_null=False ) assert test2_nan["a"].null_count == 0 gpu_ary = cupy.asarray(ary) test3_null = cudf.Series(gpu_ary, nan_as_null=True) assert test3_null.nullable assert test3_null.null_count == 20 test3_nan = cudf.Series(gpu_ary, nan_as_null=False) assert test3_nan.null_count == 0 test4 = cudf.DataFrame() lst = [1, 2, None, 4, 5, 6, None, 8, 9] test4["lst"] = lst assert test4["lst"].nullable assert test4["lst"].null_count == 2 def test_dataframe_append_to_empty(): pdf = pd.DataFrame() pdf["a"] = [] pdf["b"] = [1, 2, 3] gdf = cudf.DataFrame() gdf["a"] = [] gdf["b"] = [1, 2, 3] assert_eq(gdf, pdf) def test_dataframe_setitem_index_len1(): gdf = cudf.DataFrame() gdf["a"] = [1] gdf["b"] = gdf.index._values np.testing.assert_equal(gdf.b.to_array(), [0]) def test_empty_dataframe_setitem_df(): gdf1 = cudf.DataFrame() gdf2 = cudf.DataFrame({"a": [1, 2, 3, 4, 5]}) gdf1["a"] = gdf2["a"] assert_eq(gdf1, gdf2) def test_assign(): gdf = cudf.DataFrame({"x": [1, 2, 3]}) gdf2 = gdf.assign(y=gdf.x + 1) assert list(gdf.columns) == ["x"] assert list(gdf2.columns) == ["x", "y"] np.testing.assert_equal(gdf2.y.to_array(), [2, 3, 4]) @pytest.mark.parametrize("nrows", [1, 8, 100, 1000]) def test_dataframe_hash_columns(nrows): gdf = cudf.DataFrame() data = np.asarray(range(nrows)) data[0] = data[-1] # make first and last the same gdf["a"] = data gdf["b"] = gdf.a + 100 out = gdf.hash_columns(["a", "b"]) assert isinstance(out, cupy.ndarray) assert len(out) == nrows assert out.dtype == np.int32 # Check default out_all = gdf.hash_columns() np.testing.assert_array_equal(cupy.asnumpy(out), cupy.asnumpy(out_all)) # Check single column out_one = cupy.asnumpy(gdf.hash_columns(["a"])) # First matches last assert out_one[0] == out_one[-1] # Equivalent to the cudf.Series.hash_values() np.testing.assert_array_equal(cupy.asnumpy(gdf.a.hash_values()), out_one) @pytest.mark.parametrize("nrows", [3, 10, 100, 1000]) @pytest.mark.parametrize("nparts", [1, 2, 8, 13]) @pytest.mark.parametrize("nkeys", [1, 2]) def test_dataframe_hash_partition(nrows, nparts, nkeys): np.random.seed(123) gdf = cudf.DataFrame() keycols = [] for i in range(nkeys): keyname = "key{}".format(i) gdf[keyname] = np.random.randint(0, 7 - i, nrows) keycols.append(keyname) gdf["val1"] = np.random.randint(0, nrows * 2, nrows) got = gdf.partition_by_hash(keycols, nparts=nparts) # Must return a list assert isinstance(got, list) # Must have correct number of partitions assert len(got) == nparts # All partitions must be DataFrame type assert all(isinstance(p, cudf.DataFrame) for p in got) # Check that all partitions have unique keys part_unique_keys = set() for p in got: if len(p): # Take rows of the keycolumns and build a set of the key-values unique_keys = set(map(tuple, p.as_matrix(columns=keycols))) # Ensure that none of the key-values have occurred in other groups assert not (unique_keys & part_unique_keys) part_unique_keys |= unique_keys assert len(part_unique_keys) @pytest.mark.parametrize("nrows", [3, 10, 50]) def test_dataframe_hash_partition_masked_value(nrows): gdf = cudf.DataFrame() gdf["key"] = np.arange(nrows) gdf["val"] = np.arange(nrows) + 100 bitmask = utils.random_bitmask(nrows) bytemask = utils.expand_bits_to_bytes(bitmask) gdf["val"] = gdf["val"].set_mask(bitmask) parted = gdf.partition_by_hash(["key"], nparts=3) # Verify that the valid mask is correct for p in parted: df = p.to_pandas() for row in df.itertuples(): valid = bool(bytemask[row.key]) expected_value = row.key + 100 if valid else np.nan got_value = row.val assert (expected_value == got_value) or ( np.isnan(expected_value) and np.isnan(got_value) ) @pytest.mark.parametrize("nrows", [3, 10, 50]) def test_dataframe_hash_partition_masked_keys(nrows): gdf = cudf.DataFrame() gdf["key"] = np.arange(nrows) gdf["val"] = np.arange(nrows) + 100 bitmask = utils.random_bitmask(nrows) bytemask = utils.expand_bits_to_bytes(bitmask) gdf["key"] = gdf["key"].set_mask(bitmask) parted = gdf.partition_by_hash(["key"], nparts=3, keep_index=False) # Verify that the valid mask is correct for p in parted: df = p.to_pandas() for row in df.itertuples(): valid = bool(bytemask[row.val - 100]) # val is key + 100 expected_value = row.val - 100 if valid else np.nan got_value = row.key assert (expected_value == got_value) or ( np.isnan(expected_value) and np.isnan(got_value) ) @pytest.mark.parametrize("keep_index", [True, False]) def test_dataframe_hash_partition_keep_index(keep_index): gdf = cudf.DataFrame( {"val": [1, 2, 3, 4], "key": [3, 2, 1, 4]}, index=[4, 3, 2, 1] ) expected_df1 = cudf.DataFrame( {"val": [1], "key": [3]}, index=[4] if keep_index else None ) expected_df2 = cudf.DataFrame( {"val": [2, 3, 4], "key": [2, 1, 4]}, index=[3, 2, 1] if keep_index else range(1, 4), ) expected = [expected_df1, expected_df2] parts = gdf.partition_by_hash(["key"], nparts=2, keep_index=keep_index) for exp, got in zip(expected, parts): assert_eq(exp, got) def test_dataframe_hash_partition_empty(): gdf = cudf.DataFrame({"val": [1, 2], "key": [3, 2]}, index=["a", "b"]) parts = gdf.iloc[:0].partition_by_hash(["key"], nparts=3) assert len(parts) == 3 for part in parts: assert_eq(gdf.iloc[:0], part) @pytest.mark.parametrize("dtype1", utils.supported_numpy_dtypes) @pytest.mark.parametrize("dtype2", utils.supported_numpy_dtypes) def test_dataframe_concat_different_numerical_columns(dtype1, dtype2): df1 = pd.DataFrame(dict(x=pd.Series(np.arange(5)).astype(dtype1))) df2 = pd.DataFrame(dict(x=pd.Series(np.arange(5)).astype(dtype2))) if dtype1 != dtype2 and "datetime" in dtype1 or "datetime" in dtype2: with pytest.raises(TypeError): cudf.concat([df1, df2]) else: pres = pd.concat([df1, df2]) gres = cudf.concat([cudf.from_pandas(df1), cudf.from_pandas(df2)]) assert_eq(cudf.from_pandas(pres), gres) def test_dataframe_concat_different_column_types(): df1 = cudf.Series([42], dtype=np.float64) df2 = cudf.Series(["a"], dtype="category") with pytest.raises(ValueError): cudf.concat([df1, df2]) df2 = cudf.Series(["a string"]) with pytest.raises(TypeError): cudf.concat([df1, df2]) @pytest.mark.parametrize( "df_1", [cudf.DataFrame({"a": [1, 2], "b": [1, 3]}), cudf.DataFrame({})] ) @pytest.mark.parametrize( "df_2", [cudf.DataFrame({"a": [], "b": []}), cudf.DataFrame({})] ) def test_concat_empty_dataframe(df_1, df_2): got = cudf.concat([df_1, df_2]) expect = pd.concat([df_1.to_pandas(), df_2.to_pandas()], sort=False) # ignoring dtypes as pandas upcasts int to float # on concatenation with empty dataframes assert_eq(got, expect, check_dtype=False) @pytest.mark.parametrize( "df1_d", [ {"a": [1, 2], "b": [1, 2], "c": ["s1", "s2"], "d": [1.0, 2.0]}, {"b": [1.9, 10.9], "c": ["s1", "s2"]}, {"c": ["s1"], "b": [None], "a": [False]}, ], ) @pytest.mark.parametrize( "df2_d", [ {"a": [1, 2, 3]}, {"a": [1, None, 3], "b": [True, True, False], "c": ["s3", None, "s4"]}, {"a": [], "b": []}, {}, ], ) def test_concat_different_column_dataframe(df1_d, df2_d): got = cudf.concat( [cudf.DataFrame(df1_d), cudf.DataFrame(df2_d), cudf.DataFrame(df1_d)], sort=False, ) expect = pd.concat( [pd.DataFrame(df1_d), pd.DataFrame(df2_d), pd.DataFrame(df1_d)], sort=False, ) # numerical columns are upcasted to float in cudf.DataFrame.to_pandas() # casts nan to 0 in non-float numerical columns numeric_cols = got.dtypes[got.dtypes != "object"].index for col in numeric_cols: got[col] = got[col].astype(np.float64).fillna(np.nan) assert_eq(got, expect, check_dtype=False) @pytest.mark.parametrize( "ser_1", [pd.Series([1, 2, 3]), pd.Series([], dtype="float64")] ) @pytest.mark.parametrize("ser_2", [pd.Series([], dtype="float64")]) def test_concat_empty_series(ser_1, ser_2): got = cudf.concat([cudf.Series(ser_1), cudf.Series(ser_2)]) expect = pd.concat([ser_1, ser_2]) assert_eq(got, expect) def test_concat_with_axis(): df1 = pd.DataFrame(dict(x=np.arange(5), y=np.arange(5))) df2 = pd.DataFrame(dict(a=np.arange(5), b=np.arange(5))) concat_df = pd.concat([df1, df2], axis=1) cdf1 = cudf.from_pandas(df1) cdf2 = cudf.from_pandas(df2) # concat only dataframes concat_cdf = cudf.concat([cdf1, cdf2], axis=1) assert_eq(concat_cdf, concat_df) # concat only series concat_s = pd.concat([df1.x, df1.y], axis=1) cs1 = cudf.Series.from_pandas(df1.x) cs2 = cudf.Series.from_pandas(df1.y) concat_cdf_s = cudf.concat([cs1, cs2], axis=1) assert_eq(concat_cdf_s, concat_s) # concat series and dataframes s3 = pd.Series(np.random.random(5)) cs3 = cudf.Series.from_pandas(s3) concat_cdf_all = cudf.concat([cdf1, cs3, cdf2], axis=1) concat_df_all = pd.concat([df1, s3, df2], axis=1) assert_eq(concat_cdf_all, concat_df_all) # concat manual multi index midf1 = cudf.from_pandas(df1) midf1.index = cudf.MultiIndex( levels=[[0, 1, 2, 3], [0, 1]], codes=[[0, 1, 2, 3, 2], [0, 1, 0, 1, 0]] ) midf2 = midf1[2:] midf2.index = cudf.MultiIndex( levels=[[3, 4, 5], [2, 0]], codes=[[0, 1, 2], [1, 0, 1]] ) mipdf1 = midf1.to_pandas() mipdf2 = midf2.to_pandas() assert_eq(cudf.concat([midf1, midf2]), pd.concat([mipdf1, mipdf2])) assert_eq(cudf.concat([midf2, midf1]), pd.concat([mipdf2, mipdf1])) assert_eq( cudf.concat([midf1, midf2, midf1]), pd.concat([mipdf1, mipdf2, mipdf1]) ) # concat groupby multi index gdf1 = cudf.DataFrame( { "x": np.random.randint(0, 10, 10), "y": np.random.randint(0, 10, 10), "z": np.random.randint(0, 10, 10), "v": np.random.randint(0, 10, 10), } ) gdf2 = gdf1[5:] gdg1 = gdf1.groupby(["x", "y"]).min() gdg2 = gdf2.groupby(["x", "y"]).min() pdg1 = gdg1.to_pandas() pdg2 = gdg2.to_pandas() assert_eq(cudf.concat([gdg1, gdg2]), pd.concat([pdg1, pdg2])) assert_eq(cudf.concat([gdg2, gdg1]), pd.concat([pdg2, pdg1])) # series multi index concat gdgz1 = gdg1.z gdgz2 = gdg2.z pdgz1 = gdgz1.to_pandas() pdgz2 = gdgz2.to_pandas() assert_eq(cudf.concat([gdgz1, gdgz2]), pd.concat([pdgz1, pdgz2])) assert_eq(cudf.concat([gdgz2, gdgz1]), pd.concat([pdgz2, pdgz1])) @pytest.mark.parametrize("nrows", [0, 3, 10, 100, 1000]) def test_nonmatching_index_setitem(nrows): np.random.seed(0) gdf = cudf.DataFrame() gdf["a"] = np.random.randint(2147483647, size=nrows) gdf["b"] = np.random.randint(2147483647, size=nrows) gdf = gdf.set_index("b") test_values = np.random.randint(2147483647, size=nrows) gdf["c"] = test_values assert len(test_values) == len(gdf["c"]) assert ( gdf["c"] .to_pandas() .equals(cudf.Series(test_values).set_index(gdf._index).to_pandas()) ) def test_from_pandas(): df = pd.DataFrame({"x": [1, 2, 3]}, index=[4.0, 5.0, 6.0]) gdf = cudf.DataFrame.from_pandas(df) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) s = df.x gs = cudf.Series.from_pandas(s) assert isinstance(gs, cudf.Series) assert_eq(s, gs) @pytest.mark.parametrize("dtypes", [int, float]) def test_from_records(dtypes): h_ary = np.ndarray(shape=(10, 4), dtype=dtypes) rec_ary = h_ary.view(np.recarray) gdf = cudf.DataFrame.from_records(rec_ary, columns=["a", "b", "c", "d"]) df = pd.DataFrame.from_records(rec_ary, columns=["a", "b", "c", "d"]) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) gdf = cudf.DataFrame.from_records(rec_ary) df = pd.DataFrame.from_records(rec_ary) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) @pytest.mark.parametrize("columns", [None, ["first", "second", "third"]]) @pytest.mark.parametrize( "index", [ None, ["first", "second"], "name", "age", "weight", [10, 11], ["abc", "xyz"], ], ) def test_from_records_index(columns, index): rec_ary = np.array( [("Rex", 9, 81.0), ("Fido", 3, 27.0)], dtype=[("name", "U10"), ("age", "i4"), ("weight", "f4")], ) gdf = cudf.DataFrame.from_records(rec_ary, columns=columns, index=index) df = pd.DataFrame.from_records(rec_ary, columns=columns, index=index) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) def test_dataframe_construction_from_cupy_arrays(): h_ary = np.array([[1, 2, 3], [4, 5, 6]], np.int32) d_ary = cupy.asarray(h_ary) gdf = cudf.DataFrame(d_ary, columns=["a", "b", "c"]) df = pd.DataFrame(h_ary, columns=["a", "b", "c"]) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) gdf = cudf.DataFrame(d_ary) df = pd.DataFrame(h_ary) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) gdf = cudf.DataFrame(d_ary, index=["a", "b"]) df = pd.DataFrame(h_ary, index=["a", "b"]) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) gdf = cudf.DataFrame(d_ary) gdf = gdf.set_index(keys=0, drop=False) df = pd.DataFrame(h_ary) df = df.set_index(keys=0, drop=False) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) gdf = cudf.DataFrame(d_ary) gdf = gdf.set_index(keys=1, drop=False) df = pd.DataFrame(h_ary) df = df.set_index(keys=1, drop=False) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) def test_dataframe_cupy_wrong_dimensions(): d_ary = cupy.empty((2, 3, 4), dtype=np.int32) with pytest.raises( ValueError, match="records dimension expected 1 or 2 but found: 3" ): cudf.DataFrame(d_ary) def test_dataframe_cupy_array_wrong_index(): d_ary = cupy.empty((2, 3), dtype=np.int32) with pytest.raises( ValueError, match="Length mismatch: Expected axis has 2 elements, " "new values have 1 elements", ): cudf.DataFrame(d_ary, index=["a"]) with pytest.raises( ValueError, match="Length mismatch: Expected axis has 2 elements, " "new values have 1 elements", ): cudf.DataFrame(d_ary, index="a") def test_index_in_dataframe_constructor(): a = pd.DataFrame({"x": [1, 2, 3]}, index=[4.0, 5.0, 6.0]) b = cudf.DataFrame({"x": [1, 2, 3]}, index=[4.0, 5.0, 6.0]) assert_eq(a, b) assert_eq(a.loc[4:], b.loc[4:]) dtypes = NUMERIC_TYPES + DATETIME_TYPES + ["bool"] @pytest.mark.parametrize("nelem", [0, 2, 3, 100, 1000]) @pytest.mark.parametrize("data_type", dtypes) def test_from_arrow(nelem, data_type): df = pd.DataFrame( { "a": np.random.randint(0, 1000, nelem).astype(data_type), "b": np.random.randint(0, 1000, nelem).astype(data_type), } ) padf = pa.Table.from_pandas( df, preserve_index=False ).replace_schema_metadata(None) gdf = cudf.DataFrame.from_arrow(padf) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) s = pa.Array.from_pandas(df.a) gs = cudf.Series.from_arrow(s) assert isinstance(gs, cudf.Series) # For some reason PyArrow to_pandas() converts to numpy array and has # better type compatibility np.testing.assert_array_equal(s.to_pandas(), gs.to_array()) @pytest.mark.parametrize("nelem", [0, 2, 3, 100, 1000]) @pytest.mark.parametrize("data_type", dtypes) def test_to_arrow(nelem, data_type): df = pd.DataFrame( { "a": np.random.randint(0, 1000, nelem).astype(data_type), "b": np.random.randint(0, 1000, nelem).astype(data_type), } ) gdf = cudf.DataFrame.from_pandas(df) pa_df = pa.Table.from_pandas( df, preserve_index=False ).replace_schema_metadata(None) pa_gdf = gdf.to_arrow(preserve_index=False).replace_schema_metadata(None) assert isinstance(pa_gdf, pa.Table) assert pa.Table.equals(pa_df, pa_gdf) pa_s = pa.Array.from_pandas(df.a) pa_gs = gdf["a"].to_arrow() assert isinstance(pa_gs, pa.Array) assert pa.Array.equals(pa_s, pa_gs) pa_i = pa.Array.from_pandas(df.index) pa_gi = gdf.index.to_arrow() assert isinstance(pa_gi, pa.Array) assert pa.Array.equals(pa_i, pa_gi) @pytest.mark.parametrize("data_type", dtypes) def test_to_from_arrow_nulls(data_type): if data_type == "longlong": data_type = "int64" if data_type == "bool": s1 = pa.array([True, None, False, None, True], type=data_type) else: dtype = np.dtype(data_type) if dtype.type == np.datetime64: time_unit, _ = np.datetime_data(dtype) data_type = pa.timestamp(unit=time_unit) s1 = pa.array([1, None, 3, None, 5], type=data_type) gs1 = cudf.Series.from_arrow(s1) assert isinstance(gs1, cudf.Series) # We have 64B padded buffers for nulls whereas Arrow returns a minimal # number of bytes, so only check the first byte in this case np.testing.assert_array_equal( np.asarray(s1.buffers()[0]).view("u1")[0], gs1._column.mask_array_view.copy_to_host().view("u1")[0], ) assert pa.Array.equals(s1, gs1.to_arrow()) s2 = pa.array([None, None, None, None, None], type=data_type) gs2 = cudf.Series.from_arrow(s2) assert isinstance(gs2, cudf.Series) # We have 64B padded buffers for nulls whereas Arrow returns a minimal # number of bytes, so only check the first byte in this case np.testing.assert_array_equal( np.asarray(s2.buffers()[0]).view("u1")[0], gs2._column.mask_array_view.copy_to_host().view("u1")[0], ) assert pa.Array.equals(s2, gs2.to_arrow()) def test_to_arrow_categorical(): df = pd.DataFrame() df["a"] = pd.Series(["a", "b", "c"], dtype="category") gdf = cudf.DataFrame.from_pandas(df) pa_df = pa.Table.from_pandas( df, preserve_index=False ).replace_schema_metadata(None) pa_gdf = gdf.to_arrow(preserve_index=False).replace_schema_metadata(None) assert isinstance(pa_gdf, pa.Table) assert pa.Table.equals(pa_df, pa_gdf) pa_s = pa.Array.from_pandas(df.a) pa_gs = gdf["a"].to_arrow() assert isinstance(pa_gs, pa.Array) assert pa.Array.equals(pa_s, pa_gs) def test_from_arrow_missing_categorical(): pd_cat = pd.Categorical(["a", "b", "c"], categories=["a", "b"]) pa_cat = pa.array(pd_cat, from_pandas=True) gd_cat = cudf.Series(pa_cat) assert isinstance(gd_cat, cudf.Series) assert_eq( pd.Series(pa_cat.to_pandas()), # PyArrow returns a pd.Categorical gd_cat.to_pandas(), ) def test_to_arrow_missing_categorical(): pd_cat = pd.Categorical(["a", "b", "c"], categories=["a", "b"]) pa_cat = pa.array(pd_cat, from_pandas=True) gd_cat = cudf.Series(pa_cat) assert isinstance(gd_cat, cudf.Series) assert pa.Array.equals(pa_cat, gd_cat.to_arrow()) @pytest.mark.parametrize("data_type", dtypes) def test_from_scalar_typing(data_type): if data_type == "datetime64[ms]": scalar = ( np.dtype("int64") .type(np.random.randint(0, 5)) .astype("datetime64[ms]") ) elif data_type.startswith("datetime64"): scalar = np.datetime64(datetime.date.today()).astype("datetime64[ms]") data_type = "datetime64[ms]" else: scalar = np.dtype(data_type).type(np.random.randint(0, 5)) gdf = cudf.DataFrame() gdf["a"] = [1, 2, 3, 4, 5] gdf["b"] = scalar assert gdf["b"].dtype == np.dtype(data_type) assert len(gdf["b"]) == len(gdf["a"]) @pytest.mark.parametrize("data_type", NUMERIC_TYPES) def test_from_python_array(data_type): np_arr = np.random.randint(0, 100, 10).astype(data_type) data = memoryview(np_arr) data = arr.array(data.format, data) gs = cudf.Series(data) np.testing.assert_equal(gs.to_array(), np_arr) def test_series_shape(): ps = pd.Series([1, 2, 3, 4]) cs = cudf.Series([1, 2, 3, 4]) assert ps.shape == cs.shape def test_series_shape_empty(): ps = pd.Series(dtype="float64") cs = cudf.Series([]) assert ps.shape == cs.shape def test_dataframe_shape(): pdf = pd.DataFrame({"a": [0, 1, 2, 3], "b": [0.1, 0.2, None, 0.3]}) gdf = cudf.DataFrame.from_pandas(pdf) assert pdf.shape == gdf.shape def test_dataframe_shape_empty(): pdf = pd.DataFrame() gdf = cudf.DataFrame() assert pdf.shape == gdf.shape @pytest.mark.parametrize("num_cols", [1, 2, 10]) @pytest.mark.parametrize("num_rows", [1, 2, 20]) @pytest.mark.parametrize("dtype", dtypes) @pytest.mark.parametrize("nulls", ["none", "some", "all"]) def test_dataframe_transpose(nulls, num_cols, num_rows, dtype): pdf = pd.DataFrame() null_rep = np.nan if dtype in ["float32", "float64"] else None for i in range(num_cols): colname = string.ascii_lowercase[i] data = pd.Series(np.random.randint(0, 26, num_rows).astype(dtype)) if nulls == "some": idx = np.random.choice( num_rows, size=int(num_rows / 2), replace=False ) data[idx] = null_rep elif nulls == "all": data[:] = null_rep pdf[colname] = data gdf = cudf.DataFrame.from_pandas(pdf) got_function = gdf.transpose() got_property = gdf.T expect = pdf.transpose() assert_eq(expect, got_function) assert_eq(expect, got_property) @pytest.mark.parametrize("num_cols", [1, 2, 10]) @pytest.mark.parametrize("num_rows", [1, 2, 20]) def test_dataframe_transpose_category(num_cols, num_rows): pdf = pd.DataFrame() for i in range(num_cols): colname = string.ascii_lowercase[i] data = pd.Series(list(string.ascii_lowercase), dtype="category") data = data.sample(num_rows, replace=True).reset_index(drop=True) pdf[colname] = data gdf = cudf.DataFrame.from_pandas(pdf) got_function = gdf.transpose() got_property = gdf.T expect = pdf.transpose() assert_eq(expect, got_function.to_pandas()) assert_eq(expect, got_property.to_pandas()) def test_generated_column(): gdf = cudf.DataFrame({"a": (i for i in range(5))}) assert len(gdf) == 5 @pytest.fixture def pdf(): return pd.DataFrame({"x": range(10), "y": range(10)}) @pytest.fixture def gdf(pdf): return cudf.DataFrame.from_pandas(pdf) @pytest.mark.parametrize( "data", [ {"x": [np.nan, 2, 3, 4, 100, np.nan], "y": [4, 5, 6, 88, 99, np.nan]}, {"x": [1, 2, 3], "y": [4, 5, 6]}, {"x": [np.nan, np.nan, np.nan], "y": [np.nan, np.nan, np.nan]}, {"x": [], "y": []}, {"x": []}, ], ) @pytest.mark.parametrize( "func", [ lambda df, **kwargs: df.min(**kwargs), lambda df, **kwargs: df.max(**kwargs), lambda df, **kwargs: df.sum(**kwargs), lambda df, **kwargs: df.product(**kwargs), lambda df, **kwargs: df.cummin(**kwargs), lambda df, **kwargs: df.cummax(**kwargs), lambda df, **kwargs: df.cumsum(**kwargs), lambda df, **kwargs: df.cumprod(**kwargs), lambda df, **kwargs: df.mean(**kwargs), lambda df, **kwargs: df.sum(**kwargs), lambda df, **kwargs: df.max(**kwargs), lambda df, **kwargs: df.std(ddof=1, **kwargs), lambda df, **kwargs: df.var(ddof=1, **kwargs), lambda df, **kwargs: df.std(ddof=2, **kwargs), lambda df, **kwargs: df.var(ddof=2, **kwargs), lambda df, **kwargs: df.kurt(**kwargs), lambda df, **kwargs: df.skew(**kwargs), lambda df, **kwargs: df.all(**kwargs), lambda df, **kwargs: df.any(**kwargs), ], ) @pytest.mark.parametrize("skipna", [True, False, None]) def test_dataframe_reductions(data, func, skipna): pdf = pd.DataFrame(data=data) gdf = cudf.DataFrame.from_pandas(pdf) assert_eq(func(pdf, skipna=skipna), func(gdf, skipna=skipna)) @pytest.mark.parametrize( "data", [ {"x": [np.nan, 2, 3, 4, 100, np.nan], "y": [4, 5, 6, 88, 99, np.nan]}, {"x": [1, 2, 3], "y": [4, 5, 6]}, {"x": [np.nan, np.nan, np.nan], "y": [np.nan, np.nan, np.nan]}, {"x": [], "y": []}, {"x": []}, ], ) @pytest.mark.parametrize("func", [lambda df: df.count()]) def test_dataframe_count_reduction(data, func): pdf = pd.DataFrame(data=data) gdf = cudf.DataFrame.from_pandas(pdf) assert_eq(func(pdf), func(gdf)) @pytest.mark.parametrize( "data", [ {"x": [np.nan, 2, 3, 4, 100, np.nan], "y": [4, 5, 6, 88, 99, np.nan]}, {"x": [1, 2, 3], "y": [4, 5, 6]}, {"x": [np.nan, np.nan, np.nan], "y": [np.nan, np.nan, np.nan]}, {"x": [], "y": []}, {"x": []}, ], ) @pytest.mark.parametrize("ops", ["sum", "product", "prod"]) @pytest.mark.parametrize("skipna", [True, False, None]) @pytest.mark.parametrize("min_count", [-10, -1, 0, 1, 2, 3, 10]) def test_dataframe_min_count_ops(data, ops, skipna, min_count): psr = pd.DataFrame(data) gsr = cudf.DataFrame(data) if PANDAS_GE_120 and psr.shape[0] * psr.shape[1] < min_count: pytest.xfail("https://github.com/pandas-dev/pandas/issues/39738") assert_eq( getattr(psr, ops)(skipna=skipna, min_count=min_count), getattr(gsr, ops)(skipna=skipna, min_count=min_count), check_dtype=False, ) @pytest.mark.parametrize( "binop", [ operator.add, operator.mul, operator.floordiv, operator.truediv, operator.mod, operator.pow, operator.eq, operator.lt, operator.le, operator.gt, operator.ge, operator.ne, ], ) def test_binops_df(pdf, gdf, binop): pdf = pdf + 1.0 gdf = gdf + 1.0 d = binop(pdf, pdf) g = binop(gdf, gdf) assert_eq(d, g) @pytest.mark.parametrize("binop", [operator.and_, operator.or_, operator.xor]) def test_bitwise_binops_df(pdf, gdf, binop): d = binop(pdf, pdf + 1) g = binop(gdf, gdf + 1) assert_eq(d, g) @pytest.mark.parametrize( "binop", [ operator.add, operator.mul, operator.floordiv, operator.truediv, operator.mod, operator.pow, operator.eq, operator.lt, operator.le, operator.gt, operator.ge, operator.ne, ], ) def test_binops_series(pdf, gdf, binop): pdf = pdf + 1.0 gdf = gdf + 1.0 d = binop(pdf.x, pdf.y) g = binop(gdf.x, gdf.y) assert_eq(d, g) @pytest.mark.parametrize("binop", [operator.and_, operator.or_, operator.xor]) def test_bitwise_binops_series(pdf, gdf, binop): d = binop(pdf.x, pdf.y + 1) g = binop(gdf.x, gdf.y + 1) assert_eq(d, g) @pytest.mark.parametrize("unaryop", [operator.neg, operator.inv, operator.abs]) def test_unaryops_df(pdf, gdf, unaryop): d = unaryop(pdf - 5) g = unaryop(gdf - 5) assert_eq(d, g) @pytest.mark.parametrize( "func", [ lambda df: df.empty, lambda df: df.x.empty, lambda df: df.x.fillna(123, limit=None, method=None, axis=None), lambda df: df.drop("x", axis=1, errors="raise"), ], ) def test_unary_operators(func, pdf, gdf): p = func(pdf) g = func(gdf) assert_eq(p, g) def test_is_monotonic(gdf): pdf = pd.DataFrame({"x": [1, 2, 3]}, index=[3, 1, 2]) gdf = cudf.DataFrame.from_pandas(pdf) assert not gdf.index.is_monotonic assert not gdf.index.is_monotonic_increasing assert not gdf.index.is_monotonic_decreasing def test_iter(pdf, gdf): assert list(pdf) == list(gdf) def test_iteritems(gdf): for k, v in gdf.iteritems(): assert k in gdf.columns assert isinstance(v, cudf.Series) assert_eq(v, gdf[k]) @pytest.mark.parametrize("q", [0.5, 1, 0.001, [0.5], [], [0.005, 0.5, 1]]) @pytest.mark.parametrize("numeric_only", [True, False]) def test_quantile(q, numeric_only): ts = pd.date_range("2018-08-24", periods=5, freq="D") td = pd.to_timedelta(np.arange(5), unit="h") pdf = pd.DataFrame( {"date": ts, "delta": td, "val": np.random.randn(len(ts))} ) gdf = cudf.DataFrame.from_pandas(pdf) assert_eq(pdf["date"].quantile(q), gdf["date"].quantile(q)) assert_eq(pdf["delta"].quantile(q), gdf["delta"].quantile(q)) assert_eq(pdf["val"].quantile(q), gdf["val"].quantile(q)) if numeric_only: assert_eq(pdf.quantile(q), gdf.quantile(q)) else: q = q if isinstance(q, list) else [q] assert_eq( pdf.quantile( q if isinstance(q, list) else [q], numeric_only=False ), gdf.quantile(q, numeric_only=False), ) def test_empty_quantile(): pdf = pd.DataFrame({"x": []}) df = cudf.DataFrame({"x": []}) actual = df.quantile() expected = pdf.quantile() assert_eq(actual, expected) def test_from_pandas_function(pdf): gdf = cudf.from_pandas(pdf) assert isinstance(gdf, cudf.DataFrame) assert_eq(pdf, gdf) gdf = cudf.from_pandas(pdf.x) assert isinstance(gdf, cudf.Series) assert_eq(pdf.x, gdf) with pytest.raises(TypeError): cudf.from_pandas(123) @pytest.mark.parametrize("preserve_index", [True, False]) def test_arrow_pandas_compat(pdf, gdf, preserve_index): pdf["z"] = range(10) pdf = pdf.set_index("z") gdf["z"] = range(10) gdf = gdf.set_index("z") pdf_arrow_table = pa.Table.from_pandas(pdf, preserve_index=preserve_index) gdf_arrow_table = gdf.to_arrow(preserve_index=preserve_index) assert pa.Table.equals(pdf_arrow_table, gdf_arrow_table) gdf2 = cudf.DataFrame.from_arrow(pdf_arrow_table) pdf2 = pdf_arrow_table.to_pandas() assert_eq(pdf2, gdf2) @pytest.mark.parametrize("nrows", [1, 8, 100, 1000, 100000]) def test_series_hash_encode(nrows): data = np.asarray(range(nrows)) # Python hash returns different value which sometimes # results in enc_with_name_arr and enc_arr to be same. # And there is no other better way to make hash return same value. # So using an integer name to get constant value back from hash. s = cudf.Series(data, name=1) num_features = 1000 encoded_series = s.hash_encode(num_features) assert isinstance(encoded_series, cudf.Series) enc_arr = encoded_series.to_array() assert np.all(enc_arr >= 0) assert np.max(enc_arr) < num_features enc_with_name_arr = s.hash_encode(num_features, use_name=True).to_array() assert enc_with_name_arr[0] != enc_arr[0] @pytest.mark.parametrize("dtype", NUMERIC_TYPES + ["bool"]) def test_cuda_array_interface(dtype): np_data = np.arange(10).astype(dtype) cupy_data = cupy.array(np_data) pd_data = pd.Series(np_data) cudf_data = cudf.Series(cupy_data) assert_eq(pd_data, cudf_data) gdf = cudf.DataFrame() gdf["test"] = cupy_data pd_data.name = "test" assert_eq(pd_data, gdf["test"]) @pytest.mark.parametrize("nelem", [0, 2, 3, 100]) @pytest.mark.parametrize("nchunks", [1, 2, 5, 10]) @pytest.mark.parametrize("data_type", dtypes) def test_from_arrow_chunked_arrays(nelem, nchunks, data_type): np_list_data = [ np.random.randint(0, 100, nelem).astype(data_type) for i in range(nchunks) ] pa_chunk_array = pa.chunked_array(np_list_data) expect = pd.Series(pa_chunk_array.to_pandas()) got = cudf.Series(pa_chunk_array) assert_eq(expect, got) np_list_data2 = [ np.random.randint(0, 100, nelem).astype(data_type) for i in range(nchunks) ] pa_chunk_array2 = pa.chunked_array(np_list_data2) pa_table = pa.Table.from_arrays( [pa_chunk_array, pa_chunk_array2], names=["a", "b"] ) expect = pa_table.to_pandas() got = cudf.DataFrame.from_arrow(pa_table) assert_eq(expect, got) @pytest.mark.skip(reason="Test was designed to be run in isolation") def test_gpu_memory_usage_with_boolmask(): ctx = cuda.current_context() def query_GPU_memory(note=""): memInfo = ctx.get_memory_info() usedMemoryGB = (memInfo.total - memInfo.free) / 1e9 return usedMemoryGB cuda.current_context().deallocations.clear() nRows = int(1e8) nCols = 2 dataNumpy = np.asfortranarray(np.random.rand(nRows, nCols)) colNames = ["col" + str(iCol) for iCol in range(nCols)] pandasDF = pd.DataFrame(data=dataNumpy, columns=colNames, dtype=np.float32) cudaDF = cudf.core.DataFrame.from_pandas(pandasDF) boolmask = cudf.Series(np.random.randint(1, 2, len(cudaDF)).astype("bool")) memory_used = query_GPU_memory() cudaDF = cudaDF[boolmask] assert ( cudaDF.index._values.data_array_view.device_ctypes_pointer == cudaDF["col0"].index._values.data_array_view.device_ctypes_pointer ) assert ( cudaDF.index._values.data_array_view.device_ctypes_pointer == cudaDF["col1"].index._values.data_array_view.device_ctypes_pointer ) assert memory_used == query_GPU_memory() def test_boolmask(pdf, gdf): boolmask = np.random.randint(0, 2, len(pdf)) > 0 gdf = gdf[boolmask] pdf = pdf[boolmask] assert_eq(pdf, gdf) @pytest.mark.parametrize( "mask_shape", [ (2, "ab"), (2, "abc"), (3, "ab"), (3, "abc"), (3, "abcd"), (4, "abc"), (4, "abcd"), ], ) def test_dataframe_boolmask(mask_shape): pdf = pd.DataFrame() for col in "abc": pdf[col] = np.random.randint(0, 10, 3) pdf_mask = pd.DataFrame() for col in mask_shape[1]: pdf_mask[col] = np.random.randint(0, 2, mask_shape[0]) > 0 gdf = cudf.DataFrame.from_pandas(pdf) gdf_mask = cudf.DataFrame.from_pandas(pdf_mask) gdf = gdf[gdf_mask] pdf = pdf[pdf_mask] assert np.array_equal(gdf.columns, pdf.columns) for col in gdf.columns: assert np.array_equal( gdf[col].fillna(-1).to_pandas().values, pdf[col].fillna(-1).values ) @pytest.mark.parametrize( "mask", [ [True, False, True], pytest.param( cudf.Series([True, False, True]), marks=pytest.mark.xfail( reason="Pandas can't index a multiindex with a Series" ), ), ], ) def test_dataframe_multiindex_boolmask(mask): gdf = cudf.DataFrame( {"w": [3, 2, 1], "x": [1, 2, 3], "y": [0, 1, 0], "z": [1, 1, 1]} ) gdg = gdf.groupby(["w", "x"]).count() pdg = gdg.to_pandas() assert_eq(gdg[mask], pdg[mask]) def test_dataframe_assignment(): pdf = pd.DataFrame() for col in "abc": pdf[col] = np.array([0, 1, 1, -2, 10]) gdf = cudf.DataFrame.from_pandas(pdf) gdf[gdf < 0] = 999 pdf[pdf < 0] = 999 assert_eq(gdf, pdf) def test_1row_arrow_table(): data = [pa.array([0]), pa.array([1])] batch = pa.RecordBatch.from_arrays(data, ["f0", "f1"]) table = pa.Table.from_batches([batch]) expect = table.to_pandas() got = cudf.DataFrame.from_arrow(table) assert_eq(expect, got) def test_arrow_handle_no_index_name(pdf, gdf): gdf_arrow = gdf.to_arrow() pdf_arrow = pa.Table.from_pandas(pdf) assert pa.Table.equals(pdf_arrow, gdf_arrow) got = cudf.DataFrame.from_arrow(gdf_arrow) expect = pdf_arrow.to_pandas() assert_eq(expect, got) @pytest.mark.parametrize("num_rows", [1, 3, 10, 100]) @pytest.mark.parametrize("num_bins", [1, 2, 4, 20]) @pytest.mark.parametrize("right", [True, False]) @pytest.mark.parametrize("dtype", NUMERIC_TYPES + ["bool"]) @pytest.mark.parametrize("series_bins", [True, False]) def test_series_digitize(num_rows, num_bins, right, dtype, series_bins): data = np.random.randint(0, 100, num_rows).astype(dtype) bins = np.unique(np.sort(np.random.randint(2, 95, num_bins).astype(dtype))) s = cudf.Series(data) if series_bins: s_bins = cudf.Series(bins) indices = s.digitize(s_bins, right) else: indices = s.digitize(bins, right) np.testing.assert_array_equal( np.digitize(data, bins, right), indices.to_array() ) def test_series_digitize_invalid_bins(): s = cudf.Series(np.random.randint(0, 30, 80), dtype="int32") bins = cudf.Series([2, None, None, 50, 90], dtype="int32") with pytest.raises( ValueError, match="`bins` cannot contain null entries." ): _ = s.digitize(bins) def test_pandas_non_contiguious(): arr1 = np.random.sample([5000, 10]) assert arr1.flags["C_CONTIGUOUS"] is True df = pd.DataFrame(arr1) for col in df.columns: assert df[col].values.flags["C_CONTIGUOUS"] is False gdf = cudf.DataFrame.from_pandas(df) assert_eq(gdf.to_pandas(), df) @pytest.mark.parametrize("num_elements", [0, 2, 10, 100]) @pytest.mark.parametrize("null_type", [np.nan, None, "mixed"]) def test_series_all_null(num_elements, null_type): if null_type == "mixed": data = [] data1 = [np.nan] * int(num_elements / 2) data2 = [None] * int(num_elements / 2) for idx in range(len(data1)): data.append(data1[idx]) data.append(data2[idx]) else: data = [null_type] * num_elements # Typecast Pandas because None will return `object` dtype expect = pd.Series(data, dtype="float64") got = cudf.Series(data) assert_eq(expect, got) @pytest.mark.parametrize("num_elements", [0, 2, 10, 100]) def test_series_all_valid_nan(num_elements): data = [np.nan] * num_elements sr = cudf.Series(data, nan_as_null=False) np.testing.assert_equal(sr.null_count, 0) def test_series_rename(): pds = pd.Series([1, 2, 3], name="asdf") gds = cudf.Series([1, 2, 3], name="asdf") expect = pds.rename("new_name") got = gds.rename("new_name") assert_eq(expect, got) pds = pd.Series(expect) gds = cudf.Series(got) assert_eq(pds, gds) pds = pd.Series(expect, name="name name") gds = cudf.Series(got, name="name name") assert_eq(pds, gds) @pytest.mark.parametrize("data_type", dtypes) @pytest.mark.parametrize("nelem", [0, 100]) def test_head_tail(nelem, data_type): def check_index_equality(left, right): assert left.index.equals(right.index) def check_values_equality(left, right): if len(left) == 0 and len(right) == 0: return None np.testing.assert_array_equal(left.to_pandas(), right.to_pandas()) def check_frame_series_equality(left, right): check_index_equality(left, right) check_values_equality(left, right) gdf = cudf.DataFrame( { "a": np.random.randint(0, 1000, nelem).astype(data_type), "b": np.random.randint(0, 1000, nelem).astype(data_type), } ) check_frame_series_equality(gdf.head(), gdf[:5]) check_frame_series_equality(gdf.head(3), gdf[:3]) check_frame_series_equality(gdf.head(-2), gdf[:-2]) check_frame_series_equality(gdf.head(0), gdf[0:0]) check_frame_series_equality(gdf["a"].head(), gdf["a"][:5]) check_frame_series_equality(gdf["a"].head(3), gdf["a"][:3]) check_frame_series_equality(gdf["a"].head(-2), gdf["a"][:-2]) check_frame_series_equality(gdf.tail(), gdf[-5:]) check_frame_series_equality(gdf.tail(3), gdf[-3:]) check_frame_series_equality(gdf.tail(-2), gdf[2:]) check_frame_series_equality(gdf.tail(0), gdf[0:0]) check_frame_series_equality(gdf["a"].tail(), gdf["a"][-5:]) check_frame_series_equality(gdf["a"].tail(3), gdf["a"][-3:]) check_frame_series_equality(gdf["a"].tail(-2), gdf["a"][2:]) def test_tail_for_string(): gdf = cudf.DataFrame() gdf["id"] = cudf.Series(["a", "b"], dtype=np.object_) gdf["v"] = cudf.Series([1, 2]) assert_eq(gdf.tail(3), gdf.to_pandas().tail(3)) @pytest.mark.parametrize("drop", [True, False]) def test_reset_index(pdf, gdf, drop): assert_eq( pdf.reset_index(drop=drop, inplace=False), gdf.reset_index(drop=drop, inplace=False), ) assert_eq( pdf.x.reset_index(drop=drop, inplace=False), gdf.x.reset_index(drop=drop, inplace=False), ) @pytest.mark.parametrize("drop", [True, False]) def test_reset_named_index(pdf, gdf, drop): pdf.index.name = "cudf" gdf.index.name = "cudf" assert_eq( pdf.reset_index(drop=drop, inplace=False), gdf.reset_index(drop=drop, inplace=False), ) assert_eq( pdf.x.reset_index(drop=drop, inplace=False), gdf.x.reset_index(drop=drop, inplace=False), ) @pytest.mark.parametrize("drop", [True, False]) def test_reset_index_inplace(pdf, gdf, drop): pdf.reset_index(drop=drop, inplace=True) gdf.reset_index(drop=drop, inplace=True) assert_eq(pdf, gdf) @pytest.mark.parametrize( "data", [ { "a": [1, 2, 3, 4, 5], "b": ["a", "b", "c", "d", "e"], "c": [1.0, 2.0, 3.0, 4.0, 5.0], } ], ) @pytest.mark.parametrize( "index", [ "a", ["a", "b"], pd.CategoricalIndex(["I", "II", "III", "IV", "V"]), pd.Series(["h", "i", "k", "l", "m"]), ["b", pd.Index(["I", "II", "III", "IV", "V"])], ["c", [11, 12, 13, 14, 15]], pd.MultiIndex( levels=[ ["I", "II", "III", "IV", "V"], ["one", "two", "three", "four", "five"], ], codes=[[0, 1, 2, 3, 4], [4, 3, 2, 1, 0]], names=["col1", "col2"], ), pd.RangeIndex(0, 5), # corner case [pd.Series(["h", "i", "k", "l", "m"]), pd.RangeIndex(0, 5)], [ pd.MultiIndex( levels=[ ["I", "II", "III", "IV", "V"], ["one", "two", "three", "four", "five"], ], codes=[[0, 1, 2, 3, 4], [4, 3, 2, 1, 0]], names=["col1", "col2"], ), pd.RangeIndex(0, 5), ], ], ) @pytest.mark.parametrize("drop", [True, False]) @pytest.mark.parametrize("append", [True, False]) @pytest.mark.parametrize("inplace", [True, False]) def test_set_index(data, index, drop, append, inplace): gdf = cudf.DataFrame(data) pdf = gdf.to_pandas() expected = pdf.set_index(index, inplace=inplace, drop=drop, append=append) actual = gdf.set_index(index, inplace=inplace, drop=drop, append=append) if inplace: expected = pdf actual = gdf assert_eq(expected, actual) @pytest.mark.parametrize( "data", [ { "a": [1, 1, 2, 2, 5], "b": ["a", "b", "c", "d", "e"], "c": [1.0, 2.0, 3.0, 4.0, 5.0], } ], ) @pytest.mark.parametrize("index", ["a", pd.Index([1, 1, 2, 2, 3])]) @pytest.mark.parametrize("verify_integrity", [True]) @pytest.mark.xfail def test_set_index_verify_integrity(data, index, verify_integrity): gdf = cudf.DataFrame(data) gdf.set_index(index, verify_integrity=verify_integrity) @pytest.mark.parametrize("drop", [True, False]) @pytest.mark.parametrize("nelem", [10, 200, 1333]) def test_set_index_multi(drop, nelem): np.random.seed(0) a = np.arange(nelem) np.random.shuffle(a) df = pd.DataFrame( { "a": a, "b": np.random.randint(0, 4, size=nelem), "c": np.random.uniform(low=0, high=4, size=nelem), "d": np.random.choice(["green", "black", "white"], nelem), } ) df["e"] = df["d"].astype("category") gdf = cudf.DataFrame.from_pandas(df) assert_eq(gdf.set_index("a", drop=drop), gdf.set_index(["a"], drop=drop)) assert_eq( df.set_index(["b", "c"], drop=drop), gdf.set_index(["b", "c"], drop=drop), ) assert_eq( df.set_index(["d", "b"], drop=drop), gdf.set_index(["d", "b"], drop=drop), ) assert_eq( df.set_index(["b", "d", "e"], drop=drop), gdf.set_index(["b", "d", "e"], drop=drop), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_0(copy): # TODO (ptaylor): pandas changes `int` dtype to `float64` # when reindexing and filling new label indices with NaN gdf = cudf.datasets.randomdata( nrows=6, dtypes={ "a": "category", # 'b': int, "c": float, "d": str, }, ) pdf = gdf.to_pandas() # Validate reindex returns a copy unmodified assert_eq(pdf.reindex(copy=True), gdf.reindex(copy=copy)) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_1(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate labels are used as index when axis defaults to 0 assert_eq(pdf.reindex(index, copy=True), gdf.reindex(index, copy=copy)) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_2(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate labels are used as index when axis=0 assert_eq( pdf.reindex(index, axis=0, copy=True), gdf.reindex(index, axis=0, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_3(copy): columns = ["a", "b", "c", "d", "e"] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate labels are used as columns when axis=0 assert_eq( pdf.reindex(columns, axis=1, copy=True), gdf.reindex(columns, axis=1, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_4(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate labels are used as index when axis=0 assert_eq( pdf.reindex(labels=index, axis=0, copy=True), gdf.reindex(labels=index, axis=0, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_5(copy): columns = ["a", "b", "c", "d", "e"] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate labels are used as columns when axis=1 assert_eq( pdf.reindex(labels=columns, axis=1, copy=True), gdf.reindex(labels=columns, axis=1, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_6(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate labels are used as index when axis='index' assert_eq( pdf.reindex(labels=index, axis="index", copy=True), gdf.reindex(labels=index, axis="index", copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_7(copy): columns = ["a", "b", "c", "d", "e"] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate labels are used as columns when axis='columns' assert_eq( pdf.reindex(labels=columns, axis="columns", copy=True), gdf.reindex(labels=columns, axis="columns", copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_8(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate reindexes labels when index=labels assert_eq( pdf.reindex(index=index, copy=True), gdf.reindex(index=index, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_9(copy): columns = ["a", "b", "c", "d", "e"] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate reindexes column names when columns=labels assert_eq( pdf.reindex(columns=columns, copy=True), gdf.reindex(columns=columns, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_10(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] columns = ["a", "b", "c", "d", "e"] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate reindexes both labels and column names when # index=index_labels and columns=column_labels assert_eq( pdf.reindex(index=index, columns=columns, copy=True), gdf.reindex(index=index, columns=columns, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_change_dtype(copy): if PANDAS_GE_110: kwargs = {"check_freq": False} else: kwargs = {} index = pd.date_range("12/29/2009", periods=10, freq="D") columns = ["a", "b", "c", "d", "e"] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate reindexes both labels and column names when # index=index_labels and columns=column_labels assert_eq( pdf.reindex(index=index, columns=columns, copy=True), gdf.reindex(index=index, columns=columns, copy=copy), **kwargs, ) @pytest.mark.parametrize("copy", [True, False]) def test_series_categorical_reindex(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata(nrows=6, dtypes={"a": "category"}) pdf = gdf.to_pandas() assert_eq(pdf["a"].reindex(copy=True), gdf["a"].reindex(copy=copy)) assert_eq( pdf["a"].reindex(index, copy=True), gdf["a"].reindex(index, copy=copy) ) assert_eq( pdf["a"].reindex(index=index, copy=True), gdf["a"].reindex(index=index, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_series_float_reindex(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata(nrows=6, dtypes={"c": float}) pdf = gdf.to_pandas() assert_eq(pdf["c"].reindex(copy=True), gdf["c"].reindex(copy=copy)) assert_eq( pdf["c"].reindex(index, copy=True), gdf["c"].reindex(index, copy=copy) ) assert_eq( pdf["c"].reindex(index=index, copy=True), gdf["c"].reindex(index=index, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_series_string_reindex(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata(nrows=6, dtypes={"d": str}) pdf = gdf.to_pandas() assert_eq(pdf["d"].reindex(copy=True), gdf["d"].reindex(copy=copy)) assert_eq( pdf["d"].reindex(index, copy=True), gdf["d"].reindex(index, copy=copy) ) assert_eq( pdf["d"].reindex(index=index, copy=True), gdf["d"].reindex(index=index, copy=copy), ) def test_to_frame(pdf, gdf): assert_eq(pdf.x.to_frame(), gdf.x.to_frame()) name = "foo" gdf_new_name = gdf.x.to_frame(name=name) pdf_new_name = pdf.x.to_frame(name=name) assert_eq(pdf.x.to_frame(), gdf.x.to_frame()) name = False gdf_new_name = gdf.x.to_frame(name=name) pdf_new_name = pdf.x.to_frame(name=name) assert_eq(gdf_new_name, pdf_new_name) assert gdf_new_name.columns[0] is name def test_dataframe_empty_sort_index(): pdf = pd.DataFrame({"x": []}) gdf = cudf.DataFrame.from_pandas(pdf) expect = pdf.sort_index() got = gdf.sort_index() assert_eq(expect, got) @pytest.mark.parametrize("axis", [0, 1, "index", "columns"]) @pytest.mark.parametrize("ascending", [True, False]) @pytest.mark.parametrize("ignore_index", [True, False]) @pytest.mark.parametrize("inplace", [True, False]) @pytest.mark.parametrize("na_position", ["first", "last"]) def test_dataframe_sort_index( axis, ascending, inplace, ignore_index, na_position ): pdf = pd.DataFrame( {"b": [1, 3, 2], "a": [1, 4, 3], "c": [4, 1, 5]}, index=[3.0, 1.0, np.nan], ) gdf = cudf.DataFrame.from_pandas(pdf) expected = pdf.sort_index( axis=axis, ascending=ascending, ignore_index=ignore_index, inplace=inplace, na_position=na_position, ) got = gdf.sort_index( axis=axis, ascending=ascending, ignore_index=ignore_index, inplace=inplace, na_position=na_position, ) if inplace is True: assert_eq(pdf, gdf) else: assert_eq(expected, got) @pytest.mark.parametrize("axis", [0, 1, "index", "columns"]) @pytest.mark.parametrize( "level", [ 0, "b", 1, ["b"], "a", ["a", "b"], ["b", "a"], [0, 1], [1, 0], [0, 2], None, ], ) @pytest.mark.parametrize("ascending", [True, False]) @pytest.mark.parametrize("ignore_index", [True, False]) @pytest.mark.parametrize("inplace", [True, False]) @pytest.mark.parametrize("na_position", ["first", "last"]) def test_dataframe_mulitindex_sort_index( axis, level, ascending, inplace, ignore_index, na_position ): pdf = pd.DataFrame( { "b": [1.0, 3.0, np.nan], "a": [1, 4, 3], 1: ["a", "b", "c"], "e": [3, 1, 4], "d": [1, 2, 8], } ).set_index(["b", "a", 1]) gdf = cudf.DataFrame.from_pandas(pdf) # ignore_index is supported in v.1.0 expected = pdf.sort_index( axis=axis, level=level, ascending=ascending, inplace=inplace, na_position=na_position, ) if ignore_index is True: expected = expected got = gdf.sort_index( axis=axis, level=level, ascending=ascending, ignore_index=ignore_index, inplace=inplace, na_position=na_position, ) if inplace is True: if ignore_index is True: pdf = pdf.reset_index(drop=True) assert_eq(pdf, gdf) else: if ignore_index is True: expected = expected.reset_index(drop=True) assert_eq(expected, got) @pytest.mark.parametrize("dtype", dtypes + ["category"]) def test_dataframe_0_row_dtype(dtype): if dtype == "category": data = pd.Series(["a", "b", "c", "d", "e"], dtype="category") else: data = np.array([1, 2, 3, 4, 5], dtype=dtype) expect = cudf.DataFrame() expect["x"] = data expect["y"] = data got = expect.head(0) for col_name in got.columns: assert expect[col_name].dtype == got[col_name].dtype expect = cudf.Series(data) got = expect.head(0) assert expect.dtype == got.dtype @pytest.mark.parametrize("nan_as_null", [True, False]) def test_series_list_nanasnull(nan_as_null): data = [1.0, 2.0, 3.0, np.nan, None] expect = pa.array(data, from_pandas=nan_as_null) got = cudf.Series(data, nan_as_null=nan_as_null).to_arrow() # Bug in Arrow 0.14.1 where NaNs aren't handled expect = expect.cast("int64", safe=False) got = got.cast("int64", safe=False) assert pa.Array.equals(expect, got) def test_column_assignment(): gdf = cudf.datasets.randomdata( nrows=20, dtypes={"a": "category", "b": int, "c": float} ) new_cols = ["q", "r", "s"] gdf.columns = new_cols assert list(gdf.columns) == new_cols def test_select_dtype(): gdf = cudf.datasets.randomdata( nrows=20, dtypes={"a": "category", "b": int, "c": float, "d": str} ) pdf = gdf.to_pandas() assert_eq(pdf.select_dtypes("float64"), gdf.select_dtypes("float64")) assert_eq(pdf.select_dtypes(np.float64), gdf.select_dtypes(np.float64)) assert_eq( pdf.select_dtypes(include=["float64"]), gdf.select_dtypes(include=["float64"]), ) assert_eq( pdf.select_dtypes(include=["object", "int", "category"]), gdf.select_dtypes(include=["object", "int", "category"]), ) assert_eq( pdf.select_dtypes(include=["int64", "float64"]), gdf.select_dtypes(include=["int64", "float64"]), ) assert_eq( pdf.select_dtypes(include=np.number), gdf.select_dtypes(include=np.number), ) assert_eq( pdf.select_dtypes(include=[np.int64, np.float64]), gdf.select_dtypes(include=[np.int64, np.float64]), ) assert_eq( pdf.select_dtypes(include=["category"]), gdf.select_dtypes(include=["category"]), ) assert_eq( pdf.select_dtypes(exclude=np.number), gdf.select_dtypes(exclude=np.number), ) assert_exceptions_equal( lfunc=pdf.select_dtypes, rfunc=gdf.select_dtypes, lfunc_args_and_kwargs=([], {"includes": ["Foo"]}), rfunc_args_and_kwargs=([], {"includes": ["Foo"]}), ) assert_exceptions_equal( lfunc=pdf.select_dtypes, rfunc=gdf.select_dtypes, lfunc_args_and_kwargs=( [], {"exclude": np.number, "include": np.number}, ), rfunc_args_and_kwargs=( [], {"exclude": np.number, "include": np.number}, ), ) gdf = cudf.DataFrame( {"A": [3, 4, 5], "C": [1, 2, 3], "D": ["a", "b", "c"]} ) pdf = gdf.to_pandas() assert_eq( pdf.select_dtypes(include=["object", "int", "category"]), gdf.select_dtypes(include=["object", "int", "category"]), ) assert_eq( pdf.select_dtypes(include=["object"], exclude=["category"]), gdf.select_dtypes(include=["object"], exclude=["category"]), ) gdf = cudf.DataFrame({"a": range(10), "b": range(10, 20)}) pdf = gdf.to_pandas() assert_eq( pdf.select_dtypes(include=["category"]), gdf.select_dtypes(include=["category"]), ) assert_eq( pdf.select_dtypes(include=["float"]), gdf.select_dtypes(include=["float"]), ) assert_eq( pdf.select_dtypes(include=["object"]), gdf.select_dtypes(include=["object"]), ) assert_eq( pdf.select_dtypes(include=["int"]), gdf.select_dtypes(include=["int"]) ) assert_eq( pdf.select_dtypes(exclude=["float"]), gdf.select_dtypes(exclude=["float"]), ) assert_eq( pdf.select_dtypes(exclude=["object"]), gdf.select_dtypes(exclude=["object"]), ) assert_eq( pdf.select_dtypes(include=["int"], exclude=["object"]), gdf.select_dtypes(include=["int"], exclude=["object"]), ) assert_exceptions_equal( lfunc=pdf.select_dtypes, rfunc=gdf.select_dtypes, ) gdf = cudf.DataFrame( {"a": cudf.Series([], dtype="int"), "b": cudf.Series([], dtype="str")} ) pdf = gdf.to_pandas() assert_eq( pdf.select_dtypes(exclude=["object"]), gdf.select_dtypes(exclude=["object"]), ) assert_eq( pdf.select_dtypes(include=["int"], exclude=["object"]), gdf.select_dtypes(include=["int"], exclude=["object"]), ) def test_select_dtype_datetime(): gdf = cudf.datasets.timeseries( start="2000-01-01", end="2000-01-02", freq="3600s", dtypes={"x": int} ) gdf = gdf.reset_index() pdf = gdf.to_pandas() assert_eq(pdf.select_dtypes("datetime64"), gdf.select_dtypes("datetime64")) assert_eq( pdf.select_dtypes(np.dtype("datetime64")), gdf.select_dtypes(np.dtype("datetime64")), ) assert_eq( pdf.select_dtypes(include="datetime64"), gdf.select_dtypes(include="datetime64"), ) def test_select_dtype_datetime_with_frequency(): gdf = cudf.datasets.timeseries( start="2000-01-01", end="2000-01-02", freq="3600s", dtypes={"x": int} ) gdf = gdf.reset_index() pdf = gdf.to_pandas() assert_exceptions_equal( pdf.select_dtypes, gdf.select_dtypes, (["datetime64[ms]"],), (["datetime64[ms]"],), ) def test_array_ufunc(): gdf = cudf.DataFrame({"x": [2, 3, 4.0], "y": [9.0, 2.5, 1.1]}) pdf = gdf.to_pandas() assert_eq(np.sqrt(gdf), np.sqrt(pdf)) assert_eq(np.sqrt(gdf.x), np.sqrt(pdf.x)) @pytest.mark.parametrize("nan_value", [-5, -5.0, 0, 5, 5.0, None, "pandas"]) def test_series_to_gpu_array(nan_value): s = cudf.Series([0, 1, None, 3]) np.testing.assert_array_equal( s.to_array(nan_value), s.to_gpu_array(nan_value).copy_to_host() ) def test_dataframe_describe_exclude(): np.random.seed(12) data_length = 10000 df = cudf.DataFrame() df["x"] = np.random.normal(10, 1, data_length) df["x"] = df.x.astype("int64") df["y"] = np.random.normal(10, 1, data_length) pdf = df.to_pandas() gdf_results = df.describe(exclude=["float"]) pdf_results = pdf.describe(exclude=["float"]) assert_eq(gdf_results, pdf_results) def test_dataframe_describe_include(): np.random.seed(12) data_length = 10000 df = cudf.DataFrame() df["x"] = np.random.normal(10, 1, data_length) df["x"] = df.x.astype("int64") df["y"] = np.random.normal(10, 1, data_length) pdf = df.to_pandas() gdf_results = df.describe(include=["int"]) pdf_results = pdf.describe(include=["int"]) assert_eq(gdf_results, pdf_results) def test_dataframe_describe_default(): np.random.seed(12) data_length = 10000 df = cudf.DataFrame() df["x"] = np.random.normal(10, 1, data_length) df["y"] = np.random.normal(10, 1, data_length) pdf = df.to_pandas() gdf_results = df.describe() pdf_results = pdf.describe() assert_eq(pdf_results, gdf_results) def test_series_describe_include_all(): np.random.seed(12) data_length = 10000 df = cudf.DataFrame() df["x"] = np.random.normal(10, 1, data_length) df["x"] = df.x.astype("int64") df["y"] = np.random.normal(10, 1, data_length) df["animal"] = np.random.choice(["dog", "cat", "bird"], data_length) pdf = df.to_pandas() gdf_results = df.describe(include="all") pdf_results = pdf.describe(include="all") assert_eq(gdf_results[["x", "y"]], pdf_results[["x", "y"]]) assert_eq(gdf_results.index, pdf_results.index) assert_eq(gdf_results.columns, pdf_results.columns) assert_eq( gdf_results[["animal"]].fillna(-1).astype("str"), pdf_results[["animal"]].fillna(-1).astype("str"), ) def test_dataframe_describe_percentiles(): np.random.seed(12) data_length = 10000 sample_percentiles = [0.0, 0.1, 0.33, 0.84, 0.4, 0.99] df = cudf.DataFrame() df["x"] = np.random.normal(10, 1, data_length) df["y"] = np.random.normal(10, 1, data_length) pdf = df.to_pandas() gdf_results = df.describe(percentiles=sample_percentiles) pdf_results = pdf.describe(percentiles=sample_percentiles) assert_eq(pdf_results, gdf_results) def test_get_numeric_data(): pdf = pd.DataFrame( {"x": [1, 2, 3], "y": [1.0, 2.0, 3.0], "z": ["a", "b", "c"]} ) gdf = cudf.from_pandas(pdf) assert_eq(pdf._get_numeric_data(), gdf._get_numeric_data()) @pytest.mark.parametrize("dtype", NUMERIC_TYPES) @pytest.mark.parametrize("period", [-1, -5, -10, -20, 0, 1, 5, 10, 20]) @pytest.mark.parametrize("data_empty", [False, True]) def test_shift(dtype, period, data_empty): if data_empty: data = None else: if dtype == np.int8: # to keep data in range data = gen_rand(dtype, 100000, low=-2, high=2) else: data = gen_rand(dtype, 100000) gdf = cudf.DataFrame({"a": cudf.Series(data, dtype=dtype)}) pdf = pd.DataFrame({"a": pd.Series(data, dtype=dtype)}) shifted_outcome = gdf.a.shift(period).fillna(0) expected_outcome = pdf.a.shift(period).fillna(0).astype(dtype) if data_empty: assert_eq(shifted_outcome, expected_outcome, check_index_type=False) else: assert_eq(shifted_outcome, expected_outcome) @pytest.mark.parametrize("dtype", NUMERIC_TYPES) @pytest.mark.parametrize("period", [-1, -5, -10, -20, 0, 1, 5, 10, 20]) @pytest.mark.parametrize("data_empty", [False, True]) def test_diff(dtype, period, data_empty): if data_empty: data = None else: if dtype == np.int8: # to keep data in range data = gen_rand(dtype, 100000, low=-2, high=2) else: data = gen_rand(dtype, 100000) gdf = cudf.DataFrame({"a": cudf.Series(data, dtype=dtype)}) pdf = pd.DataFrame({"a": pd.Series(data, dtype=dtype)}) expected_outcome = pdf.a.diff(period) diffed_outcome = gdf.a.diff(period).astype(expected_outcome.dtype) if data_empty: assert_eq(diffed_outcome, expected_outcome, check_index_type=False) else: assert_eq(diffed_outcome, expected_outcome) @pytest.mark.parametrize("df", _dataframe_na_data()) @pytest.mark.parametrize("nan_as_null", [True, False, None]) def test_dataframe_isnull_isna(df, nan_as_null): gdf = cudf.DataFrame.from_pandas(df, nan_as_null=nan_as_null) assert_eq(df.isnull(), gdf.isnull()) assert_eq(df.isna(), gdf.isna()) # Test individual columns for col in df: assert_eq(df[col].isnull(), gdf[col].isnull()) assert_eq(df[col].isna(), gdf[col].isna()) @pytest.mark.parametrize("df", _dataframe_na_data()) @pytest.mark.parametrize("nan_as_null", [True, False, None]) def test_dataframe_notna_notnull(df, nan_as_null): gdf = cudf.DataFrame.from_pandas(df, nan_as_null=nan_as_null) assert_eq(df.notnull(), gdf.notnull()) assert_eq(df.notna(), gdf.notna()) # Test individual columns for col in df: assert_eq(df[col].notnull(), gdf[col].notnull()) assert_eq(df[col].notna(), gdf[col].notna()) def test_ndim(): pdf = pd.DataFrame({"x": range(5), "y": range(5, 10)}) gdf = cudf.DataFrame.from_pandas(pdf) assert pdf.ndim == gdf.ndim assert pdf.x.ndim == gdf.x.ndim s = pd.Series(dtype="float64") gs = cudf.Series() assert s.ndim == gs.ndim @pytest.mark.parametrize( "decimals", [ -3, 0, 5, pd.Series([1, 4, 3, -6], index=["w", "x", "y", "z"]), cudf.Series([-4, -2, 12], index=["x", "y", "z"]), {"w": -1, "x": 15, "y": 2}, ], ) def test_dataframe_round(decimals): pdf = pd.DataFrame( { "w": np.arange(0.5, 10.5, 1), "x": np.random.normal(-100, 100, 10), "y": np.array( [ 14.123, 2.343, np.nan, 0.0, -8.302, np.nan, 94.313, -112.236, -8.029, np.nan, ] ), "z": np.repeat([-0.6459412758761901], 10), } ) gdf = cudf.DataFrame.from_pandas(pdf) if isinstance(decimals, cudf.Series): pdecimals = decimals.to_pandas() else: pdecimals = decimals result = gdf.round(decimals) expected = pdf.round(pdecimals) assert_eq(result, expected) # with nulls, maintaining existing null mask for c in pdf.columns: arr = pdf[c].to_numpy().astype("float64") # for pandas nulls arr.ravel()[np.random.choice(10, 5, replace=False)] = np.nan pdf[c] = gdf[c] = arr result = gdf.round(decimals) expected = pdf.round(pdecimals) assert_eq(result, expected) for c in gdf.columns: np.array_equal(gdf[c].nullmask.to_array(), result[c].to_array()) @pytest.mark.parametrize( "data", [ [0, 1, 2, 3], [-2, -1, 2, 3, 5], [-2, -1, 0, 3, 5], [True, False, False], [True], [False], [], [True, None, False], [True, True, None], [None, None], [[0, 5], [1, 6], [2, 7], [3, 8], [4, 9]], [[1, True], [2, False], [3, False]], pytest.param( [["a", True], ["b", False], ["c", False]], marks=[ pytest.mark.xfail( reason="NotImplementedError: all does not " "support columns of object dtype." ) ], ), ], ) def test_all(data): # Pandas treats `None` in object type columns as True for some reason, so # replacing with `False` if np.array(data).ndim <= 1: pdata = cudf.utils.utils._create_pandas_series(data=data).replace( [None], False ) gdata = cudf.Series.from_pandas(pdata) else: pdata = pd.DataFrame(data, columns=["a", "b"]).replace([None], False) gdata = cudf.DataFrame.from_pandas(pdata) # test bool_only if pdata["b"].dtype == "bool": got = gdata.all(bool_only=True) expected = pdata.all(bool_only=True) assert_eq(got, expected) else: with pytest.raises(NotImplementedError): gdata.all(bool_only=False) with pytest.raises(NotImplementedError): gdata.all(level="a") got = gdata.all() expected = pdata.all() assert_eq(got, expected) @pytest.mark.parametrize( "data", [ [0, 1, 2, 3], [-2, -1, 2, 3, 5], [-2, -1, 0, 3, 5], [0, 0, 0, 0, 0], [0, 0, None, 0], [True, False, False], [True], [False], [], [True, None, False], [True, True, None], [None, None], [[0, 5], [1, 6], [2, 7], [3, 8], [4, 9]], [[1, True], [2, False], [3, False]], pytest.param( [["a", True], ["b", False], ["c", False]], marks=[ pytest.mark.xfail( reason="NotImplementedError: any does not " "support columns of object dtype." ) ], ), ], ) @pytest.mark.parametrize("axis", [0, 1]) def test_any(data, axis): if np.array(data).ndim <= 1: pdata = cudf.utils.utils._create_pandas_series(data=data) gdata = cudf.Series.from_pandas(pdata) if axis == 1: with pytest.raises(NotImplementedError): gdata.any(axis=axis) else: got = gdata.any(axis=axis) expected = pdata.any(axis=axis) assert_eq(got, expected) else: pdata = pd.DataFrame(data, columns=["a", "b"]) gdata = cudf.DataFrame.from_pandas(pdata) # test bool_only if pdata["b"].dtype == "bool": got = gdata.any(bool_only=True) expected = pdata.any(bool_only=True) assert_eq(got, expected) else: with pytest.raises(NotImplementedError): gdata.any(bool_only=False) with pytest.raises(NotImplementedError): gdata.any(level="a") got = gdata.any(axis=axis) expected = pdata.any(axis=axis) assert_eq(got, expected) @pytest.mark.parametrize("axis", [0, 1]) def test_empty_dataframe_any(axis): pdf = pd.DataFrame({}, columns=["a", "b"]) gdf = cudf.DataFrame.from_pandas(pdf) got = gdf.any(axis=axis) expected = pdf.any(axis=axis) assert_eq(got, expected, check_index_type=False) @pytest.mark.parametrize("indexed", [False, True]) def test_dataframe_sizeof(indexed): rows = int(1e6) index = list(i for i in range(rows)) if indexed else None gdf = cudf.DataFrame({"A": [8] * rows, "B": [32] * rows}, index=index) for c in gdf._data.columns: assert gdf._index.__sizeof__() == gdf._index.__sizeof__() cols_sizeof = sum(c.__sizeof__() for c in gdf._data.columns) assert gdf.__sizeof__() == (gdf._index.__sizeof__() + cols_sizeof) @pytest.mark.parametrize("a", [[], ["123"]]) @pytest.mark.parametrize("b", ["123", ["123"]]) @pytest.mark.parametrize( "misc_data", ["123", ["123"] * 20, 123, [1, 2, 0.8, 0.9] * 50, 0.9, 0.00001], ) @pytest.mark.parametrize("non_list_data", [123, "abc", "zyx", "rapids", 0.8]) def test_create_dataframe_cols_empty_data(a, b, misc_data, non_list_data): expected = pd.DataFrame({"a": a}) actual = cudf.DataFrame.from_pandas(expected) expected["b"] = b actual["b"] = b assert_eq(actual, expected) expected = pd.DataFrame({"a": []}) actual = cudf.DataFrame.from_pandas(expected) expected["b"] = misc_data actual["b"] = misc_data assert_eq(actual, expected) expected = pd.DataFrame({"a": a}) actual = cudf.DataFrame.from_pandas(expected) expected["b"] = non_list_data actual["b"] = non_list_data assert_eq(actual, expected) def test_empty_dataframe_describe(): pdf = pd.DataFrame({"a": [], "b": []}) gdf = cudf.from_pandas(pdf) expected = pdf.describe() actual = gdf.describe() assert_eq(expected, actual) def test_as_column_types(): col = column.as_column(cudf.Series([])) assert_eq(col.dtype, np.dtype("float64")) gds = cudf.Series(col) pds = pd.Series(pd.Series([], dtype="float64")) assert_eq(pds, gds) col = column.as_column(cudf.Series([]), dtype="float32") assert_eq(col.dtype, np.dtype("float32")) gds = cudf.Series(col) pds = pd.Series(pd.Series([], dtype="float32")) assert_eq(pds, gds) col = column.as_column(cudf.Series([]), dtype="str") assert_eq(col.dtype, np.dtype("object")) gds = cudf.Series(col) pds = pd.Series(pd.Series([], dtype="str")) assert_eq(pds, gds) col = column.as_column(cudf.Series([]), dtype="object") assert_eq(col.dtype, np.dtype("object")) gds = cudf.Series(col) pds = pd.Series(pd.Series([], dtype="object")) assert_eq(pds, gds) pds = pd.Series(np.array([1, 2, 3]), dtype="float32") gds = cudf.Series(column.as_column(np.array([1, 2, 3]), dtype="float32")) assert_eq(pds, gds) pds = pd.Series([1, 2, 3], dtype="float32") gds = cudf.Series([1, 2, 3], dtype="float32") assert_eq(pds, gds) pds = pd.Series([], dtype="float64") gds = cudf.Series(column.as_column(pds)) assert_eq(pds, gds) pds = pd.Series([1, 2, 4], dtype="int64") gds = cudf.Series(column.as_column(cudf.Series([1, 2, 4]), dtype="int64")) assert_eq(pds, gds) pds = pd.Series([1.2, 18.0, 9.0], dtype="float32") gds = cudf.Series( column.as_column(cudf.Series([1.2, 18.0, 9.0]), dtype="float32") ) assert_eq(pds, gds) pds = pd.Series([1.2, 18.0, 9.0], dtype="str") gds = cudf.Series( column.as_column(cudf.Series([1.2, 18.0, 9.0]), dtype="str") ) assert_eq(pds, gds) pds = pd.Series(pd.Index(["1", "18", "9"]), dtype="int") gds = cudf.Series( cudf.core.index.StringIndex(["1", "18", "9"]), dtype="int" ) assert_eq(pds, gds) def test_one_row_head(): gdf = cudf.DataFrame({"name": ["carl"], "score": [100]}, index=[123]) pdf = gdf.to_pandas() head_gdf = gdf.head() head_pdf = pdf.head() assert_eq(head_pdf, head_gdf) @pytest.mark.parametrize("dtype", NUMERIC_TYPES) @pytest.mark.parametrize("as_dtype", NUMERIC_TYPES) def test_series_astype_numeric_to_numeric(dtype, as_dtype): psr = pd.Series([1, 2, 4, 3], dtype=dtype) gsr = cudf.from_pandas(psr) assert_eq(psr.astype(as_dtype), gsr.astype(as_dtype)) @pytest.mark.parametrize("dtype", NUMERIC_TYPES) @pytest.mark.parametrize("as_dtype", NUMERIC_TYPES) def test_series_astype_numeric_to_numeric_nulls(dtype, as_dtype): data = [1, 2, None, 3] sr = cudf.Series(data, dtype=dtype) got = sr.astype(as_dtype) expect = cudf.Series([1, 2, None, 3], dtype=as_dtype) assert_eq(expect, got) @pytest.mark.parametrize("dtype", NUMERIC_TYPES) @pytest.mark.parametrize( "as_dtype", [ "str", "category", "datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]", ], ) def test_series_astype_numeric_to_other(dtype, as_dtype): psr = pd.Series([1, 2, 3], dtype=dtype) gsr = cudf.from_pandas(psr) assert_eq(psr.astype(as_dtype), gsr.astype(as_dtype)) @pytest.mark.parametrize( "as_dtype", [ "str", "int32", "uint32", "float32", "category", "datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]", ], ) def test_series_astype_string_to_other(as_dtype): if "datetime64" in as_dtype: data = ["2001-01-01", "2002-02-02", "2000-01-05"] else: data = ["1", "2", "3"] psr = pd.Series(data) gsr = cudf.from_pandas(psr) assert_eq(psr.astype(as_dtype), gsr.astype(as_dtype)) @pytest.mark.parametrize( "as_dtype", [ "category", "datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]", ], ) def test_series_astype_datetime_to_other(as_dtype): data = ["2001-01-01", "2002-02-02", "2001-01-05"] psr = pd.Series(data) gsr = cudf.from_pandas(psr) assert_eq(psr.astype(as_dtype), gsr.astype(as_dtype)) @pytest.mark.parametrize( "inp", [ ("datetime64[ns]", "2011-01-01 00:00:00.000000000"), ("datetime64[us]", "2011-01-01 00:00:00.000000"), ("datetime64[ms]", "2011-01-01 00:00:00.000"), ("datetime64[s]", "2011-01-01 00:00:00"), ], ) def test_series_astype_datetime_to_string(inp): dtype, expect = inp base_date = "2011-01-01" sr = cudf.Series([base_date], dtype=dtype) got = sr.astype(str)[0] assert expect == got @pytest.mark.parametrize( "as_dtype", [ "int32", "uint32", "float32", "category", "datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]", "str", ], ) def test_series_astype_categorical_to_other(as_dtype): if "datetime64" in as_dtype: data = ["2001-01-01", "2002-02-02", "2000-01-05", "2001-01-01"] else: data = [1, 2, 3, 1] psr = pd.Series(data, dtype="category") gsr = cudf.from_pandas(psr) assert_eq(psr.astype(as_dtype), gsr.astype(as_dtype)) @pytest.mark.parametrize("ordered", [True, False]) def test_series_astype_to_categorical_ordered(ordered): psr = pd.Series([1, 2, 3, 1], dtype="category") gsr = cudf.from_pandas(psr) ordered_dtype_pd = pd.CategoricalDtype( categories=[1, 2, 3], ordered=ordered ) ordered_dtype_gd = cudf.CategoricalDtype.from_pandas(ordered_dtype_pd) assert_eq( psr.astype("int32").astype(ordered_dtype_pd).astype("int32"), gsr.astype("int32").astype(ordered_dtype_gd).astype("int32"), ) @pytest.mark.parametrize("ordered", [True, False]) def test_series_astype_cat_ordered_to_unordered(ordered): pd_dtype = pd.CategoricalDtype(categories=[1, 2, 3], ordered=ordered) pd_to_dtype = pd.CategoricalDtype( categories=[1, 2, 3], ordered=not ordered ) gd_dtype = cudf.CategoricalDtype.from_pandas(pd_dtype) gd_to_dtype = cudf.CategoricalDtype.from_pandas(pd_to_dtype) psr = pd.Series([1, 2, 3], dtype=pd_dtype) gsr = cudf.Series([1, 2, 3], dtype=gd_dtype) expect = psr.astype(pd_to_dtype) got = gsr.astype(gd_to_dtype) assert_eq(expect, got) def test_series_astype_null_cases(): data = [1, 2, None, 3] # numerical to other assert_eq(cudf.Series(data, dtype="str"), cudf.Series(data).astype("str")) assert_eq( cudf.Series(data, dtype="category"), cudf.Series(data).astype("category"), ) assert_eq( cudf.Series(data, dtype="float32"), cudf.Series(data, dtype="int32").astype("float32"), ) assert_eq( cudf.Series(data, dtype="float32"), cudf.Series(data, dtype="uint32").astype("float32"), ) assert_eq( cudf.Series(data, dtype="datetime64[ms]"), cudf.Series(data).astype("datetime64[ms]"), ) # categorical to other assert_eq( cudf.Series(data, dtype="str"), cudf.Series(data, dtype="category").astype("str"), ) assert_eq( cudf.Series(data, dtype="float32"), cudf.Series(data, dtype="category").astype("float32"), ) assert_eq( cudf.Series(data, dtype="datetime64[ms]"), cudf.Series(data, dtype="category").astype("datetime64[ms]"), ) # string to other assert_eq( cudf.Series([1, 2, None, 3], dtype="int32"), cudf.Series(["1", "2", None, "3"]).astype("int32"), ) assert_eq( cudf.Series( ["2001-01-01", "2001-02-01", None, "2001-03-01"], dtype="datetime64[ms]", ), cudf.Series(["2001-01-01", "2001-02-01", None, "2001-03-01"]).astype( "datetime64[ms]" ), ) assert_eq( cudf.Series(["a", "b", "c", None], dtype="category").to_pandas(), cudf.Series(["a", "b", "c", None]).astype("category").to_pandas(), ) # datetime to other data = [ "2001-01-01 00:00:00.000000", "2001-02-01 00:00:00.000000", None, "2001-03-01 00:00:00.000000", ] assert_eq( cudf.Series(data), cudf.Series(data, dtype="datetime64[us]").astype("str"), ) assert_eq( pd.Series(data, dtype="datetime64[ns]").astype("category"), cudf.from_pandas(pd.Series(data, dtype="datetime64[ns]")).astype( "category" ), ) def test_series_astype_null_categorical(): sr = cudf.Series([None, None, None], dtype="category") expect = cudf.Series([None, None, None], dtype="int32") got = sr.astype("int32") assert_eq(expect, got) @pytest.mark.parametrize( "data", [ ( pd.Series([3, 3.0]), pd.Series([2.3, 3.9]), pd.Series([1.5, 3.9]), pd.Series([1.0, 2]), ), [ pd.Series([3, 3.0]), pd.Series([2.3, 3.9]), pd.Series([1.5, 3.9]), pd.Series([1.0, 2]), ], ], ) def test_create_dataframe_from_list_like(data): pdf = pd.DataFrame(data, index=["count", "mean", "std", "min"]) gdf = cudf.DataFrame(data, index=["count", "mean", "std", "min"]) assert_eq(pdf, gdf) pdf = pd.DataFrame(data) gdf = cudf.DataFrame(data) assert_eq(pdf, gdf) def test_create_dataframe_column(): pdf = pd.DataFrame(columns=["a", "b", "c"], index=["A", "Z", "X"]) gdf = cudf.DataFrame(columns=["a", "b", "c"], index=["A", "Z", "X"]) assert_eq(pdf, gdf) pdf = pd.DataFrame( {"a": [1, 2, 3], "b": [2, 3, 5]}, columns=["a", "b", "c"], index=["A", "Z", "X"], ) gdf = cudf.DataFrame( {"a": [1, 2, 3], "b": [2, 3, 5]}, columns=["a", "b", "c"], index=["A", "Z", "X"], ) assert_eq(pdf, gdf) @pytest.mark.parametrize( "data", [ [1, 2, 4], [], [5.0, 7.0, 8.0], pd.Categorical(["a", "b", "c"]), ["m", "a", "d", "v"], ], ) def test_series_values_host_property(data): pds = cudf.utils.utils._create_pandas_series(data=data) gds = cudf.Series(data) np.testing.assert_array_equal(pds.values, gds.values_host) @pytest.mark.parametrize( "data", [ [1, 2, 4], [], [5.0, 7.0, 8.0], pytest.param( pd.Categorical(["a", "b", "c"]), marks=pytest.mark.xfail(raises=NotImplementedError), ), pytest.param( ["m", "a", "d", "v"], marks=pytest.mark.xfail(raises=NotImplementedError), ), ], ) def test_series_values_property(data): pds = cudf.utils.utils._create_pandas_series(data=data) gds = cudf.Series(data) gds_vals = gds.values assert isinstance(gds_vals, cupy.ndarray) np.testing.assert_array_equal(gds_vals.get(), pds.values) @pytest.mark.parametrize( "data", [ {"A": [1, 2, 3], "B": [4, 5, 6]}, {"A": [1.0, 2.0, 3.0], "B": [4.0, 5.0, 6.0]}, {"A": [1, 2, 3], "B": [1.0, 2.0, 3.0]}, {"A": np.float32(np.arange(3)), "B": np.float64(np.arange(3))}, pytest.param( {"A": [1, None, 3], "B": [1, 2, None]}, marks=pytest.mark.xfail( reason="Nulls not supported by as_gpu_matrix" ), ), pytest.param( {"A": [None, None, None], "B": [None, None, None]}, marks=pytest.mark.xfail( reason="Nulls not supported by as_gpu_matrix" ), ), pytest.param( {"A": [], "B": []}, marks=pytest.mark.xfail(reason="Requires at least 1 row"), ), pytest.param( {"A": [1, 2, 3], "B": ["a", "b", "c"]}, marks=pytest.mark.xfail( reason="str or categorical not supported by as_gpu_matrix" ), ), pytest.param( {"A": pd.Categorical(["a", "b", "c"]), "B": ["d", "e", "f"]}, marks=pytest.mark.xfail( reason="str or categorical not supported by as_gpu_matrix" ), ), ], ) def test_df_values_property(data): pdf = pd.DataFrame.from_dict(data) gdf = cudf.DataFrame.from_pandas(pdf) pmtr = pdf.values gmtr = gdf.values.get() np.testing.assert_array_equal(pmtr, gmtr) def test_value_counts(): pdf = pd.DataFrame( { "numeric": [1, 2, 3, 4, 5, 6, 1, 2, 4] * 10, "alpha": ["u", "h", "d", "a", "m", "u", "h", "d", "a"] * 10, } ) gdf = cudf.DataFrame( { "numeric": [1, 2, 3, 4, 5, 6, 1, 2, 4] * 10, "alpha": ["u", "h", "d", "a", "m", "u", "h", "d", "a"] * 10, } ) assert_eq( pdf.numeric.value_counts().sort_index(), gdf.numeric.value_counts().sort_index(), check_dtype=False, ) assert_eq( pdf.alpha.value_counts().sort_index(), gdf.alpha.value_counts().sort_index(), check_dtype=False, ) @pytest.mark.parametrize( "data", [ [], [0, 12, 14], [0, 14, 12, 12, 3, 10, 12, 14], np.random.randint(-100, 100, 200), pd.Series([0.0, 1.0, None, 10.0]), [None, None, None, None], [np.nan, None, -1, 2, 3], ], ) @pytest.mark.parametrize( "values", [ np.random.randint(-100, 100, 10), [], [np.nan, None, -1, 2, 3], [1.0, 12.0, None, None, 120], [0, 14, 12, 12, 3, 10, 12, 14, None], [None, None, None], ["0", "12", "14"], ["0", "12", "14", "a"], ], ) def test_isin_numeric(data, values): index = np.random.randint(0, 100, len(data)) psr = cudf.utils.utils._create_pandas_series(data=data, index=index) gsr = cudf.Series.from_pandas(psr, nan_as_null=False) expected = psr.isin(values) got = gsr.isin(values) assert_eq(got, expected) @pytest.mark.parametrize( "data", [ [], pd.Series( ["2018-01-01", "2019-04-03", None, "2019-12-30"], dtype="datetime64[ns]", ), pd.Series( [ "2018-01-01", "2019-04-03", None, "2019-12-30", "2018-01-01", "2018-01-01", ], dtype="datetime64[ns]", ), ], ) @pytest.mark.parametrize( "values", [ [], [1514764800000000000, 1577664000000000000], [ 1514764800000000000, 1577664000000000000, 1577664000000000000, 1577664000000000000, 1514764800000000000, ], ["2019-04-03", "2019-12-30", "2012-01-01"], [ "2012-01-01", "2012-01-01", "2012-01-01", "2019-04-03", "2019-12-30", "2012-01-01", ], ], ) def test_isin_datetime(data, values): psr = cudf.utils.utils._create_pandas_series(data=data) gsr = cudf.Series.from_pandas(psr) got = gsr.isin(values) expected = psr.isin(values) assert_eq(got, expected) @pytest.mark.parametrize( "data", [ [], pd.Series(["this", "is", None, "a", "test"]), pd.Series(["test", "this", "test", "is", None, "test", "a", "test"]), pd.Series(["0", "12", "14"]), ], ) @pytest.mark.parametrize( "values", [ [], ["this", "is"], [None, None, None], ["12", "14", "19"], pytest.param( [12, 14, 19], marks=pytest.mark.xfail( not PANDAS_GE_120, reason="pandas's failure here seems like a bug(in < 1.2) " "given the reverse succeeds", ), ), ["is", "this", "is", "this", "is"], ], ) def test_isin_string(data, values): psr = cudf.utils.utils._create_pandas_series(data=data) gsr = cudf.Series.from_pandas(psr) got = gsr.isin(values) expected = psr.isin(values) assert_eq(got, expected) @pytest.mark.parametrize( "data", [ [], pd.Series(["a", "b", "c", "c", "c", "d", "e"], dtype="category"), pd.Series(["a", "b", None, "c", "d", "e"], dtype="category"), pd.Series([0, 3, 10, 12], dtype="category"), pd.Series([0, 3, 10, 12, 0, 10, 3, 0, 0, 3, 3], dtype="category"), ], ) @pytest.mark.parametrize( "values", [ [], ["a", "b", None, "f", "words"], ["0", "12", None, "14"], [0, 10, 12, None, 39, 40, 1000], [0, 0, 0, 0, 3, 3, 3, None, 1, 2, 3], ], ) def test_isin_categorical(data, values): psr = cudf.utils.utils._create_pandas_series(data=data) gsr = cudf.Series.from_pandas(psr) got = gsr.isin(values) expected = psr.isin(values) assert_eq(got, expected) @pytest.mark.parametrize( "data", [ [], pd.Series( ["this", "is", None, "a", "test"], index=["a", "b", "c", "d", "e"] ), pd.Series([0, 15, 10], index=[0, None, 9]), pd.Series( range(25), index=pd.date_range( start="2019-01-01", end="2019-01-02", freq="H" ), ), ], ) @pytest.mark.parametrize( "values", [ [], ["this", "is"], [0, 19, 13], ["2019-01-01 04:00:00", "2019-01-01 06:00:00", "2018-03-02"], ], ) def test_isin_index(data, values): psr = cudf.utils.utils._create_pandas_series(data=data) gsr = cudf.Series.from_pandas(psr) got = gsr.index.isin(values) expected = psr.index.isin(values) assert_eq(got, expected) @pytest.mark.parametrize( "data", [ pd.MultiIndex.from_arrays( [[1, 2, 3], ["red", "blue", "green"]], names=("number", "color") ), pd.MultiIndex.from_arrays([[], []], names=("number", "color")), pd.MultiIndex.from_arrays( [[1, 2, 3, 10, 100], ["red", "blue", "green", "pink", "white"]], names=("number", "color"), ), ], ) @pytest.mark.parametrize( "values,level,err", [ (["red", "orange", "yellow"], "color", None), (["red", "white", "yellow"], "color", None), ([0, 1, 2, 10, 11, 15], "number", None), ([0, 1, 2, 10, 11, 15], None, TypeError), (pd.Series([0, 1, 2, 10, 11, 15]), None, TypeError), (pd.Index([0, 1, 2, 10, 11, 15]), None, TypeError), (pd.Index([0, 1, 2, 8, 11, 15]), "number", None), (pd.Index(["red", "white", "yellow"]), "color", None), ([(1, "red"), (3, "red")], None, None), (((1, "red"), (3, "red")), None, None), ( pd.MultiIndex.from_arrays( [[1, 2, 3], ["red", "blue", "green"]], names=("number", "color"), ), None, None, ), ( pd.MultiIndex.from_arrays([[], []], names=("number", "color")), None, None, ), ( pd.MultiIndex.from_arrays( [ [1, 2, 3, 10, 100], ["red", "blue", "green", "pink", "white"], ], names=("number", "color"), ), None, None, ), ], ) def test_isin_multiindex(data, values, level, err): pmdx = data gmdx = cudf.from_pandas(data) if err is None: expected = pmdx.isin(values, level=level) if isinstance(values, pd.MultiIndex): values = cudf.from_pandas(values) got = gmdx.isin(values, level=level) assert_eq(got, expected) else: assert_exceptions_equal( lfunc=pmdx.isin, rfunc=gmdx.isin, lfunc_args_and_kwargs=([values], {"level": level}), rfunc_args_and_kwargs=([values], {"level": level}), check_exception_type=False, expected_error_message=re.escape( "values need to be a Multi-Index or set/list-like tuple " "squences when `level=None`." ), ) @pytest.mark.parametrize( "data", [ pd.DataFrame( { "num_legs": [2, 4], "num_wings": [2, 0], "bird_cats": pd.Series( ["sparrow", "pigeon"], dtype="category", index=["falcon", "dog"], ), }, index=["falcon", "dog"], ), pd.DataFrame( {"num_legs": [8, 2], "num_wings": [0, 2]}, index=["spider", "falcon"], ), pd.DataFrame( { "num_legs": [8, 2, 1, 0, 2, 4, 5], "num_wings": [2, 0, 2, 1, 2, 4, -1], } ), ], ) @pytest.mark.parametrize( "values", [ [0, 2], {"num_wings": [0, 3]}, pd.DataFrame( {"num_legs": [8, 2], "num_wings": [0, 2]}, index=["spider", "falcon"], ), pd.DataFrame( { "num_legs": [2, 4], "num_wings": [2, 0], "bird_cats": pd.Series( ["sparrow", "pigeon"], dtype="category", index=["falcon", "dog"], ), }, index=["falcon", "dog"], ), ["sparrow", "pigeon"], pd.Series(["sparrow", "pigeon"], dtype="category"), pd.Series([1, 2, 3, 4, 5]), "abc", 123, ], ) def test_isin_dataframe(data, values): pdf = data gdf = cudf.from_pandas(pdf) if cudf.utils.dtypes.is_scalar(values): assert_exceptions_equal( lfunc=pdf.isin, rfunc=gdf.isin, lfunc_args_and_kwargs=([values],), rfunc_args_and_kwargs=([values],), ) else: try: expected = pdf.isin(values) except ValueError as e: if str(e) == "Lengths must match.": pytest.xfail( not PANDAS_GE_110, "https://github.com/pandas-dev/pandas/issues/34256", ) if isinstance(values, (pd.DataFrame, pd.Series)): values = cudf.from_pandas(values) got = gdf.isin(values) assert_eq(got, expected) def test_constructor_properties(): df = cudf.DataFrame() key1 = "a" key2 = "b" val1 = np.array([123], dtype=np.float64) val2 = np.array([321], dtype=np.float64) df[key1] = val1 df[key2] = val2 # Correct use of _constructor (for DataFrame) assert_eq(df, df._constructor({key1: val1, key2: val2})) # Correct use of _constructor (for cudf.Series) assert_eq(df[key1], df[key2]._constructor(val1, name=key1)) # Correct use of _constructor_sliced (for DataFrame) assert_eq(df[key1], df._constructor_sliced(val1, name=key1)) # Correct use of _constructor_expanddim (for cudf.Series) assert_eq(df, df[key2]._constructor_expanddim({key1: val1, key2: val2})) # Incorrect use of _constructor_sliced (Raises for cudf.Series) with pytest.raises(NotImplementedError): df[key1]._constructor_sliced # Incorrect use of _constructor_expanddim (Raises for DataFrame) with pytest.raises(NotImplementedError): df._constructor_expanddim @pytest.mark.parametrize("dtype", NUMERIC_TYPES) @pytest.mark.parametrize("as_dtype", ALL_TYPES) def test_df_astype_numeric_to_all(dtype, as_dtype): if "uint" in dtype: data = [1, 2, None, 4, 7] elif "int" in dtype or "longlong" in dtype: data = [1, 2, None, 4, -7] elif "float" in dtype: data = [1.0, 2.0, None, 4.0, np.nan, -7.0] gdf = cudf.DataFrame() gdf["foo"] = cudf.Series(data, dtype=dtype) gdf["bar"] = cudf.Series(data, dtype=dtype) insert_data = cudf.Series(data, dtype=dtype) expect = cudf.DataFrame() expect["foo"] = insert_data.astype(as_dtype) expect["bar"] = insert_data.astype(as_dtype) got = gdf.astype(as_dtype) assert_eq(expect, got) @pytest.mark.parametrize( "as_dtype", [ "int32", "float32", "category", "datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]", ], ) def test_df_astype_string_to_other(as_dtype): if "datetime64" in as_dtype: # change None to "NaT" after this issue is fixed: # https://github.com/rapidsai/cudf/issues/5117 data = ["2001-01-01", "2002-02-02", "2000-01-05", None] elif as_dtype == "int32": data = [1, 2, 3] elif as_dtype == "category": data = ["1", "2", "3", None] elif "float" in as_dtype: data = [1.0, 2.0, 3.0, np.nan] insert_data = cudf.Series.from_pandas(pd.Series(data, dtype="str")) expect_data = cudf.Series(data, dtype=as_dtype) gdf = cudf.DataFrame() expect = cudf.DataFrame() gdf["foo"] = insert_data gdf["bar"] = insert_data expect["foo"] = expect_data expect["bar"] = expect_data got = gdf.astype(as_dtype) assert_eq(expect, got) @pytest.mark.parametrize( "as_dtype", [ "int64", "datetime64[s]", "datetime64[us]", "datetime64[ns]", "str", "category", ], ) def test_df_astype_datetime_to_other(as_dtype): data = [ "1991-11-20 00:00:00.000", "2004-12-04 00:00:00.000", "2016-09-13 00:00:00.000", None, ] gdf = cudf.DataFrame() expect = cudf.DataFrame() gdf["foo"] = cudf.Series(data, dtype="datetime64[ms]") gdf["bar"] = cudf.Series(data, dtype="datetime64[ms]") if as_dtype == "int64": expect["foo"] = cudf.Series( [690595200000, 1102118400000, 1473724800000, None], dtype="int64" ) expect["bar"] = cudf.Series( [690595200000, 1102118400000, 1473724800000, None], dtype="int64" ) elif as_dtype == "str": expect["foo"] = cudf.Series(data, dtype="str") expect["bar"] = cudf.Series(data, dtype="str") elif as_dtype == "category": expect["foo"] = cudf.Series(gdf["foo"], dtype="category") expect["bar"] = cudf.Series(gdf["bar"], dtype="category") else: expect["foo"] = cudf.Series(data, dtype=as_dtype) expect["bar"] = cudf.Series(data, dtype=as_dtype) got = gdf.astype(as_dtype) assert_eq(expect, got) @pytest.mark.parametrize( "as_dtype", [ "int32", "float32", "category", "datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]", "str", ], ) def test_df_astype_categorical_to_other(as_dtype): if "datetime64" in as_dtype: data = ["2001-01-01", "2002-02-02", "2000-01-05", "2001-01-01"] else: data = [1, 2, 3, 1] psr = pd.Series(data, dtype="category") pdf = pd.DataFrame() pdf["foo"] = psr pdf["bar"] = psr gdf = cudf.DataFrame.from_pandas(pdf) assert_eq(pdf.astype(as_dtype), gdf.astype(as_dtype)) @pytest.mark.parametrize("ordered", [True, False]) def test_df_astype_to_categorical_ordered(ordered): psr = pd.Series([1, 2, 3, 1], dtype="category") pdf = pd.DataFrame() pdf["foo"] = psr pdf["bar"] = psr gdf = cudf.DataFrame.from_pandas(pdf) ordered_dtype_pd = pd.CategoricalDtype( categories=[1, 2, 3], ordered=ordered ) ordered_dtype_gd = cudf.CategoricalDtype.from_pandas(ordered_dtype_pd) assert_eq( pdf.astype(ordered_dtype_pd).astype("int32"), gdf.astype(ordered_dtype_gd).astype("int32"), ) @pytest.mark.parametrize( "dtype,args", [(dtype, {}) for dtype in ALL_TYPES] + [("category", {"ordered": True}), ("category", {"ordered": False})], ) def test_empty_df_astype(dtype, args): df = cudf.DataFrame() kwargs = {} kwargs.update(args) assert_eq(df, df.astype(dtype=dtype, **kwargs)) @pytest.mark.parametrize( "errors", [ pytest.param( "raise", marks=pytest.mark.xfail(reason="should raise error here") ), pytest.param("other", marks=pytest.mark.xfail(raises=ValueError)), "ignore", pytest.param( "warn", marks=pytest.mark.filterwarnings("ignore:Traceback") ), ], ) def test_series_astype_error_handling(errors): sr = cudf.Series(["random", "words"]) got = sr.astype("datetime64", errors=errors) assert_eq(sr, got) @pytest.mark.parametrize("dtype", ALL_TYPES) def test_df_constructor_dtype(dtype): if "datetime" in dtype: data = ["1991-11-20", "2004-12-04", "2016-09-13", None] elif dtype == "str": data = ["a", "b", "c", None] elif "float" in dtype: data = [1.0, 0.5, -1.1, np.nan, None] elif "bool" in dtype: data = [True, False, None] else: data = [1, 2, 3, None] sr = cudf.Series(data, dtype=dtype) expect = cudf.DataFrame() expect["foo"] = sr expect["bar"] = sr got = cudf.DataFrame({"foo": data, "bar": data}, dtype=dtype) assert_eq(expect, got) @pytest.mark.parametrize( "data", [ cudf.datasets.randomdata( nrows=10, dtypes={"a": "category", "b": int, "c": float, "d": int} ), cudf.datasets.randomdata( nrows=10, dtypes={"a": "category", "b": int, "c": float, "d": str} ), cudf.datasets.randomdata( nrows=10, dtypes={"a": bool, "b": int, "c": float, "d": str} ), cudf.DataFrame(), cudf.DataFrame({"a": [0, 1, 2], "b": [1, None, 3]}), cudf.DataFrame( { "a": [1, 2, 3, 4], "b": [7, np.NaN, 9, 10], "c": [np.NaN, np.NaN, np.NaN, np.NaN], "d": cudf.Series([None, None, None, None], dtype="int64"), "e": [100, None, 200, None], "f": cudf.Series([10, None, np.NaN, 11], nan_as_null=False), } ), cudf.DataFrame( { "a": [10, 11, 12, 13, 14, 15], "b": cudf.Series( [10, None, np.NaN, 2234, None, np.NaN], nan_as_null=False ), } ), ], ) @pytest.mark.parametrize( "op", ["max", "min", "sum", "product", "mean", "var", "std"] ) @pytest.mark.parametrize("skipna", [True, False]) def test_rowwise_ops(data, op, skipna): gdf = data pdf = gdf.to_pandas() if op in ("var", "std"): expected = getattr(pdf, op)(axis=1, ddof=0, skipna=skipna) got = getattr(gdf, op)(axis=1, ddof=0, skipna=skipna) else: expected = getattr(pdf, op)(axis=1, skipna=skipna) got = getattr(gdf, op)(axis=1, skipna=skipna) assert_eq(expected, got, check_exact=False) @pytest.mark.parametrize( "op", ["max", "min", "sum", "product", "mean", "var", "std"] ) def test_rowwise_ops_nullable_dtypes_all_null(op): gdf = cudf.DataFrame( { "a": [1, 2, 3, 4], "b": [7, np.NaN, 9, 10], "c": [np.NaN, np.NaN, np.NaN, np.NaN], "d": cudf.Series([None, None, None, None], dtype="int64"), "e": [100, None, 200, None], "f": cudf.Series([10, None, np.NaN, 11], nan_as_null=False), } ) expected = cudf.Series([None, None, None, None], dtype="float64") if op in ("var", "std"): got = getattr(gdf, op)(axis=1, ddof=0, skipna=False) else: got = getattr(gdf, op)(axis=1, skipna=False) assert_eq(got.null_count, expected.null_count) assert_eq(got, expected) @pytest.mark.parametrize( "op,expected", [ ( "max", cudf.Series( [10.0, None, np.NaN, 2234.0, None, np.NaN], dtype="float64", nan_as_null=False, ), ), ( "min", cudf.Series( [10.0, None, np.NaN, 13.0, None, np.NaN], dtype="float64", nan_as_null=False, ), ), ( "sum", cudf.Series( [20.0, None, np.NaN, 2247.0, None, np.NaN], dtype="float64", nan_as_null=False, ), ), ( "product", cudf.Series( [100.0, None, np.NaN, 29042.0, None, np.NaN], dtype="float64", nan_as_null=False, ), ), ( "mean", cudf.Series( [10.0, None, np.NaN, 1123.5, None, np.NaN], dtype="float64", nan_as_null=False, ), ), ( "var", cudf.Series( [0.0, None, np.NaN, 1233210.25, None, np.NaN], dtype="float64", nan_as_null=False, ), ), ( "std", cudf.Series( [0.0, None, np.NaN, 1110.5, None, np.NaN], dtype="float64", nan_as_null=False, ), ), ], ) def test_rowwise_ops_nullable_dtypes_partial_null(op, expected): gdf = cudf.DataFrame( { "a": [10, 11, 12, 13, 14, 15], "b": cudf.Series( [10, None, np.NaN, 2234, None, np.NaN], nan_as_null=False, ), } ) if op in ("var", "std"): got = getattr(gdf, op)(axis=1, ddof=0, skipna=False) else: got = getattr(gdf, op)(axis=1, skipna=False) assert_eq(got.null_count, expected.null_count) assert_eq(got, expected) @pytest.mark.parametrize( "op,expected", [ ( "max", cudf.Series([10, None, None, 2234, None, 453], dtype="int64",), ), ("min", cudf.Series([10, None, None, 13, None, 15], dtype="int64",),), ( "sum", cudf.Series([20, None, None, 2247, None, 468], dtype="int64",), ), ( "product", cudf.Series([100, None, None, 29042, None, 6795], dtype="int64",), ), ( "mean", cudf.Series( [10.0, None, None, 1123.5, None, 234.0], dtype="float32", ), ), ( "var", cudf.Series( [0.0, None, None, 1233210.25, None, 47961.0], dtype="float32", ), ), ( "std", cudf.Series( [0.0, None, None, 1110.5, None, 219.0], dtype="float32", ), ), ], ) def test_rowwise_ops_nullable_int_dtypes(op, expected): gdf = cudf.DataFrame( { "a": [10, 11, None, 13, None, 15], "b": cudf.Series( [10, None, 323, 2234, None, 453], nan_as_null=False, ), } ) if op in ("var", "std"): got = getattr(gdf, op)(axis=1, ddof=0, skipna=False) else: got = getattr(gdf, op)(axis=1, skipna=False) assert_eq(got.null_count, expected.null_count) assert_eq(got, expected) @pytest.mark.parametrize( "data", [ { "t1": cudf.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ms]" ), "t2": cudf.Series( ["1940-08-31 06:00:00", "2020-08-02 10:00:00"], dtype="<M8[ms]" ), }, { "t1": cudf.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ms]" ), "t2": cudf.Series( ["1940-08-31 06:00:00", "2020-08-02 10:00:00"], dtype="<M8[ns]" ), "t3": cudf.Series( ["1960-08-31 06:00:00", "2030-08-02 10:00:00"], dtype="<M8[s]" ), }, { "t1": cudf.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ms]" ), "t2": cudf.Series( ["1940-08-31 06:00:00", "2020-08-02 10:00:00"], dtype="<M8[us]" ), }, { "t1": cudf.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ms]" ), "t2": cudf.Series( ["1940-08-31 06:00:00", "2020-08-02 10:00:00"], dtype="<M8[ms]" ), "i1": cudf.Series([1001, 2002], dtype="int64"), }, { "t1": cudf.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ms]" ), "t2": cudf.Series(["1940-08-31 06:00:00", None], dtype="<M8[ms]"), "i1": cudf.Series([1001, 2002], dtype="int64"), }, { "t1": cudf.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ms]" ), "i1": cudf.Series([1001, 2002], dtype="int64"), "f1": cudf.Series([-100.001, 123.456], dtype="float64"), }, { "t1": cudf.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ms]" ), "i1": cudf.Series([1001, 2002], dtype="int64"), "f1": cudf.Series([-100.001, 123.456], dtype="float64"), "b1": cudf.Series([True, False], dtype="bool"), }, ], ) @pytest.mark.parametrize("op", ["max", "min"]) @pytest.mark.parametrize("skipna", [True, False]) def test_rowwise_ops_datetime_dtypes(data, op, skipna): gdf = cudf.DataFrame(data) pdf = gdf.to_pandas() got = getattr(gdf, op)(axis=1, skipna=skipna) expected = getattr(pdf, op)(axis=1, skipna=skipna) assert_eq(got, expected) @pytest.mark.parametrize( "data,op,skipna", [ ( { "t1": cudf.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ms]", ), "t2": cudf.Series( ["1940-08-31 06:00:00", None], dtype="<M8[ms]" ), }, "max", True, ), ( { "t1": cudf.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ms]", ), "t2": cudf.Series( ["1940-08-31 06:00:00", None], dtype="<M8[ms]" ), }, "min", False, ), ( { "t1": cudf.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ms]", ), "t2": cudf.Series( ["1940-08-31 06:00:00", None], dtype="<M8[ms]" ), }, "min", True, ), ], ) def test_rowwise_ops_datetime_dtypes_2(data, op, skipna): gdf = cudf.DataFrame(data) pdf = gdf.to_pandas() got = getattr(gdf, op)(axis=1, skipna=skipna) expected = getattr(pdf, op)(axis=1, skipna=skipna) assert_eq(got, expected) @pytest.mark.parametrize( "data", [ ( { "t1": pd.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ns]", ), "t2": pd.Series( ["1940-08-31 06:00:00", pd.NaT], dtype="<M8[ns]" ), } ) ], ) def test_rowwise_ops_datetime_dtypes_pdbug(data): pdf = pd.DataFrame(data) gdf = cudf.from_pandas(pdf) expected = pdf.max(axis=1, skipna=False) got = gdf.max(axis=1, skipna=False) if PANDAS_GE_120: assert_eq(got, expected) else: # PANDAS BUG: https://github.com/pandas-dev/pandas/issues/36907 with pytest.raises(AssertionError, match="numpy array are different"): assert_eq(got, expected) @pytest.mark.parametrize( "data", [ [5.0, 6.0, 7.0], "single value", np.array(1, dtype="int64"), np.array(0.6273643, dtype="float64"), ], ) def test_insert(data): pdf = pd.DataFrame.from_dict({"A": [1, 2, 3], "B": ["a", "b", "c"]}) gdf = cudf.DataFrame.from_pandas(pdf) # insertion by index pdf.insert(0, "foo", data) gdf.insert(0, "foo", data) assert_eq(pdf, gdf) pdf.insert(3, "bar", data) gdf.insert(3, "bar", data) assert_eq(pdf, gdf) pdf.insert(1, "baz", data) gdf.insert(1, "baz", data) assert_eq(pdf, gdf) # pandas insert doesn't support negative indexing pdf.insert(len(pdf.columns), "qux", data) gdf.insert(-1, "qux", data) assert_eq(pdf, gdf) def test_cov(): gdf = cudf.datasets.randomdata(10) pdf = gdf.to_pandas() assert_eq(pdf.cov(), gdf.cov()) @pytest.mark.xfail(reason="cupy-based cov does not support nulls") def test_cov_nans(): pdf = pd.DataFrame() pdf["a"] = [None, None, None, 2.00758632, None] pdf["b"] = [0.36403686, None, None, None, None] pdf["c"] = [None, None, None, 0.64882227, None] pdf["d"] = [None, -1.46863125, None, 1.22477948, -0.06031689] gdf = cudf.from_pandas(pdf) assert_eq(pdf.cov(), gdf.cov()) @pytest.mark.parametrize( "gsr", [ cudf.Series([4, 2, 3]), cudf.Series([4, 2, 3], index=["a", "b", "c"]), cudf.Series([4, 2, 3], index=["a", "b", "d"]), cudf.Series([4, 2], index=["a", "b"]), cudf.Series([4, 2, 3], index=cudf.core.index.RangeIndex(0, 3)), pytest.param( cudf.Series([4, 2, 3, 4, 5], index=["a", "b", "d", "0", "12"]), marks=pytest.mark.xfail, ), ], ) @pytest.mark.parametrize("colnames", [["a", "b", "c"], [0, 1, 2]]) @pytest.mark.parametrize( "op", [ operator.add, operator.mul, operator.floordiv, operator.truediv, operator.mod, operator.pow, operator.eq, operator.lt, operator.le, operator.gt, operator.ge, operator.ne, ], ) def test_df_sr_binop(gsr, colnames, op): data = [[3.0, 2.0, 5.0], [3.0, None, 5.0], [6.0, 7.0, np.nan]] data = dict(zip(colnames, data)) gsr = gsr.astype("float64") gdf = cudf.DataFrame(data) pdf = gdf.to_pandas(nullable=True) psr = gsr.to_pandas(nullable=True) expect = op(pdf, psr) got = op(gdf, gsr).to_pandas(nullable=True) assert_eq(expect, got, check_dtype=False) expect = op(psr, pdf) got = op(gsr, gdf).to_pandas(nullable=True) assert_eq(expect, got, check_dtype=False) @pytest.mark.parametrize( "op", [ operator.add, operator.mul, operator.floordiv, operator.truediv, operator.mod, operator.pow, # comparison ops will temporarily XFAIL # see PR https://github.com/rapidsai/cudf/pull/7491 pytest.param(operator.eq, marks=pytest.mark.xfail()), pytest.param(operator.lt, marks=pytest.mark.xfail()), pytest.param(operator.le, marks=pytest.mark.xfail()), pytest.param(operator.gt, marks=pytest.mark.xfail()), pytest.param(operator.ge, marks=pytest.mark.xfail()), pytest.param(operator.ne, marks=pytest.mark.xfail()), ], ) @pytest.mark.parametrize( "gsr", [cudf.Series([1, 2, 3, 4, 5], index=["a", "b", "d", "0", "12"])] ) def test_df_sr_binop_col_order(gsr, op): colnames = [0, 1, 2] data = [[0, 2, 5], [3, None, 5], [6, 7, np.nan]] data = dict(zip(colnames, data)) gdf = cudf.DataFrame(data) pdf = pd.DataFrame.from_dict(data) psr = gsr.to_pandas() expect = op(pdf, psr).astype("float") out = op(gdf, gsr).astype("float") got = out[expect.columns] assert_eq(expect, got) @pytest.mark.parametrize("set_index", [None, "A", "C", "D"]) @pytest.mark.parametrize("index", [True, False]) @pytest.mark.parametrize("deep", [True, False]) def test_memory_usage(deep, index, set_index): # Testing numerical/datetime by comparing with pandas # (string and categorical columns will be different) rows = int(100) df = pd.DataFrame( { "A": np.arange(rows, dtype="int64"), "B": np.arange(rows, dtype="int32"), "C": np.arange(rows, dtype="float64"), } ) df["D"] = pd.to_datetime(df.A) if set_index: df = df.set_index(set_index) gdf = cudf.from_pandas(df) if index and set_index is None: # Special Case: Assume RangeIndex size == 0 assert gdf.index.memory_usage(deep=deep) == 0 else: # Check for Series only assert df["B"].memory_usage(index=index, deep=deep) == gdf[ "B" ].memory_usage(index=index, deep=deep) # Check for entire DataFrame assert_eq( df.memory_usage(index=index, deep=deep).sort_index(), gdf.memory_usage(index=index, deep=deep).sort_index(), ) @pytest.mark.xfail def test_memory_usage_string(): rows = int(100) df = pd.DataFrame( { "A": np.arange(rows, dtype="int32"), "B": np.random.choice(["apple", "banana", "orange"], rows), } ) gdf = cudf.from_pandas(df) # Check deep=False (should match pandas) assert gdf.B.memory_usage(deep=False, index=False) == df.B.memory_usage( deep=False, index=False ) # Check string column assert gdf.B.memory_usage(deep=True, index=False) == df.B.memory_usage( deep=True, index=False ) # Check string index assert gdf.set_index("B").index.memory_usage( deep=True ) == df.B.memory_usage(deep=True, index=False) def test_memory_usage_cat(): rows = int(100) df = pd.DataFrame( { "A": np.arange(rows, dtype="int32"), "B": np.random.choice(["apple", "banana", "orange"], rows), } ) df["B"] = df.B.astype("category") gdf = cudf.from_pandas(df) expected = ( gdf.B._column.cat().categories.__sizeof__() + gdf.B._column.cat().codes.__sizeof__() ) # Check cat column assert gdf.B.memory_usage(deep=True, index=False) == expected # Check cat index assert gdf.set_index("B").index.memory_usage(deep=True) == expected def test_memory_usage_list(): df = cudf.DataFrame({"A": [[0, 1, 2, 3], [4, 5, 6], [7, 8], [9]]}) expected = ( df.A._column.offsets._memory_usage() + df.A._column.elements._memory_usage() ) assert expected == df.A.memory_usage() @pytest.mark.xfail def test_memory_usage_multi(): rows = int(100) deep = True df = pd.DataFrame( { "A": np.arange(rows, dtype="int32"), "B": np.random.choice(np.arange(3, dtype="int64"), rows), "C": np.random.choice(np.arange(3, dtype="float64"), rows), } ).set_index(["B", "C"]) gdf = cudf.from_pandas(df) # Assume MultiIndex memory footprint is just that # of the underlying columns, levels, and codes expect = rows * 16 # Source Columns expect += rows * 16 # Codes expect += 3 * 8 # Level 0 expect += 3 * 8 # Level 1 assert expect == gdf.index.memory_usage(deep=deep) @pytest.mark.parametrize( "list_input", [ pytest.param([1, 2, 3, 4], id="smaller"), pytest.param([1, 2, 3, 4, 5, 6], id="larger"), ], ) @pytest.mark.parametrize( "key", [ pytest.param("list_test", id="new_column"), pytest.param("id", id="existing_column"), ], ) def test_setitem_diff_size_list(list_input, key): gdf = cudf.datasets.randomdata(5) with pytest.raises( ValueError, match=("All columns must be of equal length") ): gdf[key] = list_input @pytest.mark.parametrize( "series_input", [ pytest.param(cudf.Series([1, 2, 3, 4]), id="smaller_cudf"), pytest.param(cudf.Series([1, 2, 3, 4, 5, 6]), id="larger_cudf"), pytest.param(cudf.Series([1, 2, 3], index=[4, 5, 6]), id="index_cudf"), pytest.param(pd.Series([1, 2, 3, 4]), id="smaller_pandas"), pytest.param(pd.Series([1, 2, 3, 4, 5, 6]), id="larger_pandas"), pytest.param(pd.Series([1, 2, 3], index=[4, 5, 6]), id="index_pandas"), ], ) @pytest.mark.parametrize( "key", [ pytest.param("list_test", id="new_column"), pytest.param("id", id="existing_column"), ], ) def test_setitem_diff_size_series(series_input, key): gdf = cudf.datasets.randomdata(5) pdf = gdf.to_pandas() pandas_input = series_input if isinstance(pandas_input, cudf.Series): pandas_input = pandas_input.to_pandas() expect = pdf expect[key] = pandas_input got = gdf got[key] = series_input # Pandas uses NaN and typecasts to float64 if there's missing values on # alignment, so need to typecast to float64 for equality comparison expect = expect.astype("float64") got = got.astype("float64") assert_eq(expect, got) def test_tupleize_cols_False_set(): pdf = pd.DataFrame() gdf = cudf.DataFrame() pdf[("a", "b")] = [1] gdf[("a", "b")] = [1] assert_eq(pdf, gdf) assert_eq(pdf.columns, gdf.columns) def test_init_multiindex_from_dict(): pdf = pd.DataFrame({("a", "b"): [1]}) gdf = cudf.DataFrame({("a", "b"): [1]}) assert_eq(pdf, gdf) assert_eq(pdf.columns, gdf.columns) def test_change_column_dtype_in_empty(): pdf = pd.DataFrame({"a": [], "b": []}) gdf = cudf.from_pandas(pdf) assert_eq(pdf, gdf) pdf["b"] = pdf["b"].astype("int64") gdf["b"] = gdf["b"].astype("int64") assert_eq(pdf, gdf) def test_dataframe_from_table_empty_index(): df = cudf.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]}) odict = df._data tbl = cudf._lib.table.Table(odict) result = cudf.DataFrame._from_table(tbl) # noqa: F841 @pytest.mark.parametrize("dtype", ["int64", "str"]) def test_dataframe_from_dictionary_series_same_name_index(dtype): pd_idx1 = pd.Index([1, 2, 0], name="test_index").astype(dtype) pd_idx2 = pd.Index([2, 0, 1], name="test_index").astype(dtype) pd_series1 = pd.Series([1, 2, 3], index=pd_idx1) pd_series2 = pd.Series([1, 2, 3], index=pd_idx2) gd_idx1 = cudf.from_pandas(pd_idx1) gd_idx2 = cudf.from_pandas(pd_idx2) gd_series1 = cudf.Series([1, 2, 3], index=gd_idx1) gd_series2 = cudf.Series([1, 2, 3], index=gd_idx2) expect = pd.DataFrame({"a": pd_series1, "b": pd_series2}) got = cudf.DataFrame({"a": gd_series1, "b": gd_series2}) if dtype == "str": # Pandas actually loses its index name erroneously here... expect.index.name = "test_index" assert_eq(expect, got) assert expect.index.names == got.index.names @pytest.mark.parametrize( "arg", [slice(2, 8, 3), slice(1, 20, 4), slice(-2, -6, -2)] ) def test_dataframe_strided_slice(arg): mul = pd.DataFrame( { "Index": [1, 2, 3, 4, 5, 6, 7, 8, 9], "AlphaIndex": ["a", "b", "c", "d", "e", "f", "g", "h", "i"], } ) pdf = pd.DataFrame( {"Val": [10, 9, 8, 7, 6, 5, 4, 3, 2]}, index=pd.MultiIndex.from_frame(mul), ) gdf = cudf.DataFrame.from_pandas(pdf) expect = pdf[arg] got = gdf[arg] assert_eq(expect, got) @pytest.mark.parametrize( "data,condition,other,error", [ (pd.Series(range(5)), pd.Series(range(5)) > 0, None, None), (pd.Series(range(5)), pd.Series(range(5)) > 1, None, None), (pd.Series(range(5)), pd.Series(range(5)) > 1, 10, None), ( pd.Series(range(5)), pd.Series(range(5)) > 1, pd.Series(range(5, 10)), None, ), ( pd.DataFrame(np.arange(10).reshape(-1, 2), columns=["A", "B"]), ( pd.DataFrame(np.arange(10).reshape(-1, 2), columns=["A", "B"]) % 3 ) == 0, -pd.DataFrame(np.arange(10).reshape(-1, 2), columns=["A", "B"]), None, ), ( pd.DataFrame({"a": [1, 2, np.nan], "b": [4, np.nan, 6]}), pd.DataFrame({"a": [1, 2, np.nan], "b": [4, np.nan, 6]}) == 4, None, None, ), ( pd.DataFrame({"a": [1, 2, np.nan], "b": [4, np.nan, 6]}), pd.DataFrame({"a": [1, 2, np.nan], "b": [4, np.nan, 6]}) != 4, None, None, ), ( pd.DataFrame({"p": [-2, 3, -4, -79], "k": [9, 10, 11, 12]}), [True, True, True], None, ValueError, ), ( pd.DataFrame({"p": [-2, 3, -4, -79], "k": [9, 10, 11, 12]}), [True, True, True, False], None, ValueError, ), ( pd.DataFrame({"p": [-2, 3, -4, -79], "k": [9, 10, 11, 12]}), [[True, True, True, False], [True, True, True, False]], None, ValueError, ), ( pd.DataFrame({"p": [-2, 3, -4, -79], "k": [9, 10, 11, 12]}), [[True, True], [False, True], [True, False], [False, True]], None, None, ), ( pd.DataFrame({"p": [-2, 3, -4, -79], "k": [9, 10, 11, 12]}), cuda.to_device( np.array( [[True, True], [False, True], [True, False], [False, True]] ) ), None, None, ), ( pd.DataFrame({"p": [-2, 3, -4, -79], "k": [9, 10, 11, 12]}), cupy.array( [[True, True], [False, True], [True, False], [False, True]] ), 17, None, ), ( pd.DataFrame({"p": [-2, 3, -4, -79], "k": [9, 10, 11, 12]}), [[True, True], [False, True], [True, False], [False, True]], 17, None, ), ( pd.DataFrame({"p": [-2, 3, -4, -79], "k": [9, 10, 11, 12]}), [ [True, True, False, True], [True, True, False, True], [True, True, False, True], [True, True, False, True], ], None, ValueError, ), ( pd.Series([1, 2, np.nan]), pd.Series([1, 2, np.nan]) == 4, None, None, ), ( pd.Series([1, 2, np.nan]), pd.Series([1, 2, np.nan]) != 4, None, None, ), ( pd.Series([4, np.nan, 6]), pd.Series([4, np.nan, 6]) == 4, None, None, ), ( pd.Series([4, np.nan, 6]), pd.Series([4, np.nan, 6]) != 4, None, None, ), ( pd.Series([4, np.nan, 6], dtype="category"), pd.Series([4, np.nan, 6], dtype="category") != 4, None, None, ), ( pd.Series(["a", "b", "b", "d", "c", "s"], dtype="category"), pd.Series(["a", "b", "b", "d", "c", "s"], dtype="category") == "b", None, None, ), ( pd.Series(["a", "b", "b", "d", "c", "s"], dtype="category"), pd.Series(["a", "b", "b", "d", "c", "s"], dtype="category") == "b", "s", None, ), ( pd.Series([1, 2, 3, 2, 5]), pd.Series([1, 2, 3, 2, 5]) == 2, pd.DataFrame( { "a": pd.Series([1, 2, 3, 2, 5]), "b": pd.Series([1, 2, 3, 2, 5]), } ), NotImplementedError, ), ], ) @pytest.mark.parametrize("inplace", [True, False]) def test_df_sr_mask_where(data, condition, other, error, inplace): ps_where = data gs_where = cudf.from_pandas(data) ps_mask = ps_where.copy(deep=True) gs_mask = gs_where.copy(deep=True) if hasattr(condition, "__cuda_array_interface__"): if type(condition).__module__.split(".")[0] == "cupy": ps_condition = cupy.asnumpy(condition) else: ps_condition = np.array(condition).astype("bool") else: ps_condition = condition if type(condition).__module__.split(".")[0] == "pandas": gs_condition = cudf.from_pandas(condition) else: gs_condition = condition ps_other = other if type(other).__module__.split(".")[0] == "pandas": gs_other = cudf.from_pandas(other) else: gs_other = other if error is None: expect_where = ps_where.where( ps_condition, other=ps_other, inplace=inplace ) got_where = gs_where.where( gs_condition, other=gs_other, inplace=inplace ) expect_mask = ps_mask.mask( ps_condition, other=ps_other, inplace=inplace ) got_mask = gs_mask.mask(gs_condition, other=gs_other, inplace=inplace) if inplace: expect_where = ps_where got_where = gs_where expect_mask = ps_mask got_mask = gs_mask if pd.api.types.is_categorical_dtype(expect_where): np.testing.assert_array_equal( expect_where.cat.codes, got_where.cat.codes.astype(expect_where.cat.codes.dtype) .fillna(-1) .to_array(), ) assert_eq(expect_where.cat.categories, got_where.cat.categories) np.testing.assert_array_equal( expect_mask.cat.codes, got_mask.cat.codes.astype(expect_mask.cat.codes.dtype) .fillna(-1) .to_array(), ) assert_eq(expect_mask.cat.categories, got_mask.cat.categories) else: assert_eq( expect_where.fillna(-1), got_where.fillna(-1), check_dtype=False, ) assert_eq( expect_mask.fillna(-1), got_mask.fillna(-1), check_dtype=False ) else: assert_exceptions_equal( lfunc=ps_where.where, rfunc=gs_where.where, lfunc_args_and_kwargs=( [ps_condition], {"other": ps_other, "inplace": inplace}, ), rfunc_args_and_kwargs=( [gs_condition], {"other": gs_other, "inplace": inplace}, ), compare_error_message=False if error is NotImplementedError else True, ) assert_exceptions_equal( lfunc=ps_mask.mask, rfunc=gs_mask.mask, lfunc_args_and_kwargs=( [ps_condition], {"other": ps_other, "inplace": inplace}, ), rfunc_args_and_kwargs=( [gs_condition], {"other": gs_other, "inplace": inplace}, ), compare_error_message=False, ) @pytest.mark.parametrize( "data,condition,other,has_cat", [ ( pd.DataFrame( { "a": pd.Series(["a", "a", "b", "c", "a", "d", "d", "a"]), "b": pd.Series(["o", "p", "q", "e", "p", "p", "a", "a"]), } ), pd.DataFrame( { "a": pd.Series(["a", "a", "b", "c", "a", "d", "d", "a"]), "b": pd.Series(["o", "p", "q", "e", "p", "p", "a", "a"]), } ) != "a", None, None, ), ( pd.DataFrame( { "a": pd.Series( ["a", "a", "b", "c", "a", "d", "d", "a"], dtype="category", ), "b": pd.Series( ["o", "p", "q", "e", "p", "p", "a", "a"], dtype="category", ), } ), pd.DataFrame( { "a": pd.Series( ["a", "a", "b", "c", "a", "d", "d", "a"], dtype="category", ), "b": pd.Series( ["o", "p", "q", "e", "p", "p", "a", "a"], dtype="category", ), } ) != "a", None, True, ), ( pd.DataFrame( { "a": pd.Series( ["a", "a", "b", "c", "a", "d", "d", "a"], dtype="category", ), "b": pd.Series( ["o", "p", "q", "e", "p", "p", "a", "a"], dtype="category", ), } ), pd.DataFrame( { "a": pd.Series( ["a", "a", "b", "c", "a", "d", "d", "a"], dtype="category", ), "b": pd.Series( ["o", "p", "q", "e", "p", "p", "a", "a"], dtype="category", ), } ) == "a", None, True, ), ( pd.DataFrame( { "a": pd.Series( ["a", "a", "b", "c", "a", "d", "d", "a"], dtype="category", ), "b": pd.Series( ["o", "p", "q", "e", "p", "p", "a", "a"], dtype="category", ), } ), pd.DataFrame( { "a": pd.Series( ["a", "a", "b", "c", "a", "d", "d", "a"], dtype="category", ), "b": pd.Series( ["o", "p", "q", "e", "p", "p", "a", "a"], dtype="category", ), } ) != "a", "a", True, ), ( pd.DataFrame( { "a": pd.Series( ["a", "a", "b", "c", "a", "d", "d", "a"], dtype="category", ), "b": pd.Series( ["o", "p", "q", "e", "p", "p", "a", "a"], dtype="category", ), } ), pd.DataFrame( { "a": pd.Series( ["a", "a", "b", "c", "a", "d", "d", "a"], dtype="category", ), "b": pd.Series( ["o", "p", "q", "e", "p", "p", "a", "a"], dtype="category", ), } ) == "a", "a", True, ), ], ) def test_df_string_cat_types_mask_where(data, condition, other, has_cat): ps = data gs = cudf.from_pandas(data) ps_condition = condition if type(condition).__module__.split(".")[0] == "pandas": gs_condition = cudf.from_pandas(condition) else: gs_condition = condition ps_other = other if type(other).__module__.split(".")[0] == "pandas": gs_other = cudf.from_pandas(other) else: gs_other = other expect_where = ps.where(ps_condition, other=ps_other) got_where = gs.where(gs_condition, other=gs_other) expect_mask = ps.mask(ps_condition, other=ps_other) got_mask = gs.mask(gs_condition, other=gs_other) if has_cat is None: assert_eq( expect_where.fillna(-1).astype("str"), got_where.fillna(-1), check_dtype=False, ) assert_eq( expect_mask.fillna(-1).astype("str"), got_mask.fillna(-1), check_dtype=False, ) else: assert_eq(expect_where, got_where, check_dtype=False) assert_eq(expect_mask, got_mask, check_dtype=False) @pytest.mark.parametrize( "data,expected_upcast_type,error", [ ( pd.Series([random.random() for _ in range(10)], dtype="float32"), np.dtype("float32"), None, ), ( pd.Series([random.random() for _ in range(10)], dtype="float16"), np.dtype("float32"), None, ), ( pd.Series([random.random() for _ in range(10)], dtype="float64"), np.dtype("float64"), None, ), ( pd.Series([random.random() for _ in range(10)], dtype="float128"), None, NotImplementedError, ), ], ) def test_from_pandas_unsupported_types(data, expected_upcast_type, error): pdf = pd.DataFrame({"one_col": data}) if error == NotImplementedError: with pytest.raises(error): cudf.from_pandas(data) with pytest.raises(error): cudf.Series(data) with pytest.raises(error): cudf.from_pandas(pdf) with pytest.raises(error): cudf.DataFrame(pdf) else: df = cudf.from_pandas(data) assert_eq(data, df, check_dtype=False) assert df.dtype == expected_upcast_type df = cudf.Series(data) assert_eq(data, df, check_dtype=False) assert df.dtype == expected_upcast_type df = cudf.from_pandas(pdf) assert_eq(pdf, df, check_dtype=False) assert df["one_col"].dtype == expected_upcast_type df = cudf.DataFrame(pdf) assert_eq(pdf, df, check_dtype=False) assert df["one_col"].dtype == expected_upcast_type @pytest.mark.parametrize("nan_as_null", [True, False]) @pytest.mark.parametrize("index", [None, "a", ["a", "b"]]) def test_from_pandas_nan_as_null(nan_as_null, index): data = [np.nan, 2.0, 3.0] if index is None: pdf = pd.DataFrame({"a": data, "b": data}) expected = cudf.DataFrame( { "a": column.as_column(data, nan_as_null=nan_as_null), "b": column.as_column(data, nan_as_null=nan_as_null), } ) else: pdf = pd.DataFrame({"a": data, "b": data}).set_index(index) expected = cudf.DataFrame( { "a": column.as_column(data, nan_as_null=nan_as_null), "b": column.as_column(data, nan_as_null=nan_as_null), } ) expected = cudf.DataFrame( { "a": column.as_column(data, nan_as_null=nan_as_null), "b": column.as_column(data, nan_as_null=nan_as_null), } ) expected = expected.set_index(index) got = cudf.from_pandas(pdf, nan_as_null=nan_as_null) assert_eq(expected, got) @pytest.mark.parametrize("nan_as_null", [True, False]) def test_from_pandas_for_series_nan_as_null(nan_as_null): data = [np.nan, 2.0, 3.0] psr = pd.Series(data) expected = cudf.Series(column.as_column(data, nan_as_null=nan_as_null)) got = cudf.from_pandas(psr, nan_as_null=nan_as_null) assert_eq(expected, got) @pytest.mark.parametrize("copy", [True, False]) def test_df_series_dataframe_astype_copy(copy): gdf = cudf.DataFrame({"col1": [1, 2], "col2": [3, 4]}) pdf = gdf.to_pandas() assert_eq( gdf.astype(dtype="float", copy=copy), pdf.astype(dtype="float", copy=copy), ) assert_eq(gdf, pdf) gsr = cudf.Series([1, 2]) psr = gsr.to_pandas() assert_eq( gsr.astype(dtype="float", copy=copy), psr.astype(dtype="float", copy=copy), ) assert_eq(gsr, psr) gsr = cudf.Series([1, 2]) psr = gsr.to_pandas() actual = gsr.astype(dtype="int64", copy=copy) expected = psr.astype(dtype="int64", copy=copy) assert_eq(expected, actual) assert_eq(gsr, psr) actual[0] = 3 expected[0] = 3 assert_eq(gsr, psr) @pytest.mark.parametrize("copy", [True, False]) def test_df_series_dataframe_astype_dtype_dict(copy): gdf = cudf.DataFrame({"col1": [1, 2], "col2": [3, 4]}) pdf = gdf.to_pandas() assert_eq( gdf.astype(dtype={"col1": "float"}, copy=copy), pdf.astype(dtype={"col1": "float"}, copy=copy), ) assert_eq(gdf, pdf) gsr = cudf.Series([1, 2]) psr = gsr.to_pandas() assert_eq( gsr.astype(dtype={None: "float"}, copy=copy), psr.astype(dtype={None: "float"}, copy=copy), ) assert_eq(gsr, psr) assert_exceptions_equal( lfunc=psr.astype, rfunc=gsr.astype, lfunc_args_and_kwargs=([], {"dtype": {"a": "float"}, "copy": copy}), rfunc_args_and_kwargs=([], {"dtype": {"a": "float"}, "copy": copy}), ) gsr = cudf.Series([1, 2]) psr = gsr.to_pandas() actual = gsr.astype({None: "int64"}, copy=copy) expected = psr.astype({None: "int64"}, copy=copy) assert_eq(expected, actual) assert_eq(gsr, psr) actual[0] = 3 expected[0] = 3 assert_eq(gsr, psr) @pytest.mark.parametrize( "data,columns", [ ([1, 2, 3, 100, 112, 35464], ["a"]), (range(100), None), ([], None), ((-10, 21, 32, 32, 1, 2, 3), ["p"]), ((), None), ([[1, 2, 3], [1, 2, 3]], ["col1", "col2", "col3"]), ([range(100), range(100)], ["range" + str(i) for i in range(100)]), (((1, 2, 3), (1, 2, 3)), ["tuple0", "tuple1", "tuple2"]), ([[1, 2, 3]], ["list col1", "list col2", "list col3"]), ([range(100)], ["range" + str(i) for i in range(100)]), (((1, 2, 3),), ["k1", "k2", "k3"]), ], ) def test_dataframe_init_1d_list(data, columns): expect = pd.DataFrame(data, columns=columns) actual = cudf.DataFrame(data, columns=columns) assert_eq( expect, actual, check_index_type=False if len(data) == 0 else True ) expect = pd.DataFrame(data, columns=None) actual = cudf.DataFrame(data, columns=None) assert_eq( expect, actual, check_index_type=False if len(data) == 0 else True ) @pytest.mark.parametrize( "data,cols,index", [ ( np.ndarray(shape=(4, 2), dtype=float, order="F"), ["a", "b"], ["a", "b", "c", "d"], ), ( np.ndarray(shape=(4, 2), dtype=float, order="F"), ["a", "b"], [0, 20, 30, 10], ), ( np.ndarray(shape=(4, 2), dtype=float, order="F"), ["a", "b"], [0, 1, 2, 3], ), (np.array([11, 123, -2342, 232]), ["a"], [1, 2, 11, 12]), (np.array([11, 123, -2342, 232]), ["a"], ["khsdjk", "a", "z", "kk"]), ( cupy.ndarray(shape=(4, 2), dtype=float, order="F"), ["a", "z"], ["a", "z", "a", "z"], ), (cupy.array([11, 123, -2342, 232]), ["z"], [0, 1, 1, 0]), (cupy.array([11, 123, -2342, 232]), ["z"], [1, 2, 3, 4]), (cupy.array([11, 123, -2342, 232]), ["z"], ["a", "z", "d", "e"]), (np.random.randn(2, 4), ["a", "b", "c", "d"], ["a", "b"]), (np.random.randn(2, 4), ["a", "b", "c", "d"], [1, 0]), (cupy.random.randn(2, 4), ["a", "b", "c", "d"], ["a", "b"]), (cupy.random.randn(2, 4), ["a", "b", "c", "d"], [1, 0]), ], ) def test_dataframe_init_from_arrays_cols(data, cols, index): gd_data = data if isinstance(data, cupy.core.ndarray): # pandas can't handle cupy arrays in general pd_data = data.get() # additional test for building DataFrame with gpu array whose # cuda array interface has no `descr` attribute numba_data = cuda.as_cuda_array(data) else: pd_data = data numba_data = None # verify with columns & index pdf = pd.DataFrame(pd_data, columns=cols, index=index) gdf = cudf.DataFrame(gd_data, columns=cols, index=index) assert_eq(pdf, gdf, check_dtype=False) # verify with columns pdf = pd.DataFrame(pd_data, columns=cols) gdf = cudf.DataFrame(gd_data, columns=cols) assert_eq(pdf, gdf, check_dtype=False) pdf = pd.DataFrame(pd_data) gdf = cudf.DataFrame(gd_data) assert_eq(pdf, gdf, check_dtype=False) if numba_data is not None: gdf = cudf.DataFrame(numba_data) assert_eq(pdf, gdf, check_dtype=False) @pytest.mark.parametrize( "col_data", [ range(5), ["a", "b", "x", "y", "z"], [1.0, 0.213, 0.34332], ["a"], [1], [0.2323], [], ], ) @pytest.mark.parametrize( "assign_val", [ 1, 2, np.array(2), cupy.array(2), 0.32324, np.array(0.34248), cupy.array(0.34248), "abc", np.array("abc", dtype="object"), np.array("abc", dtype="str"), np.array("abc"), None, ], ) def test_dataframe_assign_scalar(col_data, assign_val): pdf = pd.DataFrame({"a": col_data}) gdf = cudf.DataFrame({"a": col_data}) pdf["b"] = ( cupy.asnumpy(assign_val) if isinstance(assign_val, cupy.ndarray) else assign_val ) gdf["b"] = assign_val assert_eq(pdf, gdf) @pytest.mark.parametrize( "col_data", [ 1, 2, np.array(2), cupy.array(2), 0.32324, np.array(0.34248), cupy.array(0.34248), "abc", np.array("abc", dtype="object"), np.array("abc", dtype="str"), np.array("abc"), None, ], ) @pytest.mark.parametrize( "assign_val", [ 1, 2, np.array(2), cupy.array(2), 0.32324, np.array(0.34248), cupy.array(0.34248), "abc", np.array("abc", dtype="object"), np.array("abc", dtype="str"), np.array("abc"), None, ], ) def test_dataframe_assign_scalar_with_scalar_cols(col_data, assign_val): pdf = pd.DataFrame( { "a": cupy.asnumpy(col_data) if isinstance(col_data, cupy.ndarray) else col_data }, index=["dummy_mandatory_index"], ) gdf = cudf.DataFrame({"a": col_data}, index=["dummy_mandatory_index"]) pdf["b"] = ( cupy.asnumpy(assign_val) if isinstance(assign_val, cupy.ndarray) else assign_val ) gdf["b"] = assign_val assert_eq(pdf, gdf) def test_dataframe_info_basic(): buffer = io.StringIO() str_cmp = textwrap.dedent( """\ <class 'cudf.core.dataframe.DataFrame'> StringIndex: 10 entries, a to 1111 Data columns (total 10 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 0 10 non-null float64 1 1 10 non-null float64 2 2 10 non-null float64 3 3 10 non-null float64 4 4 10 non-null float64 5 5 10 non-null float64 6 6 10 non-null float64 7 7 10 non-null float64 8 8 10 non-null float64 9 9 10 non-null float64 dtypes: float64(10) memory usage: 859.0+ bytes """ ) df = pd.DataFrame( np.random.randn(10, 10), index=["a", "2", "3", "4", "5", "6", "7", "8", "100", "1111"], ) cudf.from_pandas(df).info(buf=buffer, verbose=True) s = buffer.getvalue() assert str_cmp == s def test_dataframe_info_verbose_mem_usage(): buffer = io.StringIO() df = pd.DataFrame({"a": [1, 2, 3], "b": ["safdas", "assa", "asdasd"]}) str_cmp = textwrap.dedent( """\ <class 'cudf.core.dataframe.DataFrame'> RangeIndex: 3 entries, 0 to 2 Data columns (total 2 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 a 3 non-null int64 1 b 3 non-null object dtypes: int64(1), object(1) memory usage: 56.0+ bytes """ ) cudf.from_pandas(df).info(buf=buffer, verbose=True) s = buffer.getvalue() assert str_cmp == s buffer.truncate(0) buffer.seek(0) str_cmp = textwrap.dedent( """\ <class 'cudf.core.dataframe.DataFrame'> RangeIndex: 3 entries, 0 to 2 Columns: 2 entries, a to b dtypes: int64(1), object(1) memory usage: 56.0+ bytes """ ) cudf.from_pandas(df).info(buf=buffer, verbose=False) s = buffer.getvalue() assert str_cmp == s buffer.truncate(0) buffer.seek(0) df = pd.DataFrame( {"a": [1, 2, 3], "b": ["safdas", "assa", "asdasd"]}, index=["sdfdsf", "sdfsdfds", "dsfdf"], ) str_cmp = textwrap.dedent( """\ <class 'cudf.core.dataframe.DataFrame'> StringIndex: 3 entries, sdfdsf to dsfdf Data columns (total 2 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 a 3 non-null int64 1 b 3 non-null object dtypes: int64(1), object(1) memory usage: 91.0 bytes """ ) cudf.from_pandas(df).info(buf=buffer, verbose=True, memory_usage="deep") s = buffer.getvalue() assert str_cmp == s buffer.truncate(0) buffer.seek(0) int_values = [1, 2, 3, 4, 5] text_values = ["alpha", "beta", "gamma", "delta", "epsilon"] float_values = [0.0, 0.25, 0.5, 0.75, 1.0] df = cudf.DataFrame( { "int_col": int_values, "text_col": text_values, "float_col": float_values, } ) str_cmp = textwrap.dedent( """\ <class 'cudf.core.dataframe.DataFrame'> RangeIndex: 5 entries, 0 to 4 Data columns (total 3 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 int_col 5 non-null int64 1 text_col 5 non-null object 2 float_col 5 non-null float64 dtypes: float64(1), int64(1), object(1) memory usage: 130.0 bytes """ ) df.info(buf=buffer, verbose=True, memory_usage="deep") actual_string = buffer.getvalue() assert str_cmp == actual_string buffer.truncate(0) buffer.seek(0) def test_dataframe_info_null_counts(): int_values = [1, 2, 3, 4, 5] text_values = ["alpha", "beta", "gamma", "delta", "epsilon"] float_values = [0.0, 0.25, 0.5, 0.75, 1.0] df = cudf.DataFrame( { "int_col": int_values, "text_col": text_values, "float_col": float_values, } ) buffer = io.StringIO() str_cmp = textwrap.dedent( """\ <class 'cudf.core.dataframe.DataFrame'> RangeIndex: 5 entries, 0 to 4 Data columns (total 3 columns): # Column Dtype --- ------ ----- 0 int_col int64 1 text_col object 2 float_col float64 dtypes: float64(1), int64(1), object(1) memory usage: 130.0+ bytes """ ) df.info(buf=buffer, verbose=True, null_counts=False) actual_string = buffer.getvalue() assert str_cmp == actual_string buffer.truncate(0) buffer.seek(0) df.info(buf=buffer, verbose=True, max_cols=0) actual_string = buffer.getvalue() assert str_cmp == actual_string buffer.truncate(0) buffer.seek(0) df = cudf.DataFrame() str_cmp = textwrap.dedent( """\ <class 'cudf.core.dataframe.DataFrame'> RangeIndex: 0 entries Empty DataFrame""" ) df.info(buf=buffer, verbose=True) actual_string = buffer.getvalue() assert str_cmp == actual_string buffer.truncate(0) buffer.seek(0) df = cudf.DataFrame( { "a": [1, 2, 3, None, 10, 11, 12, None], "b": ["a", "b", "c", "sd", "sdf", "sd", None, None], } ) str_cmp = textwrap.dedent( """\ <class 'cudf.core.dataframe.DataFrame'> RangeIndex: 8 entries, 0 to 7 Data columns (total 2 columns): # Column Dtype --- ------ ----- 0 a int64 1 b object dtypes: int64(1), object(1) memory usage: 238.0+ bytes """ ) pd.options.display.max_info_rows = 2 df.info(buf=buffer, max_cols=2, null_counts=None) pd.reset_option("display.max_info_rows") actual_string = buffer.getvalue() assert str_cmp == actual_string buffer.truncate(0) buffer.seek(0) str_cmp = textwrap.dedent( """\ <class 'cudf.core.dataframe.DataFrame'> RangeIndex: 8 entries, 0 to 7 Data columns (total 2 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 a 6 non-null int64 1 b 6 non-null object dtypes: int64(1), object(1) memory usage: 238.0+ bytes """ ) df.info(buf=buffer, max_cols=2, null_counts=None) actual_string = buffer.getvalue() assert str_cmp == actual_string buffer.truncate(0) buffer.seek(0) df.info(buf=buffer, null_counts=True) actual_string = buffer.getvalue() assert str_cmp == actual_string @pytest.mark.parametrize( "data1", [ [1, 2, 3, 4, 5, 6, 7], [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0], [ 1.9876543, 2.9876654, 3.9876543, 4.1234587, 5.23, 6.88918237, 7.00001, ], [ -1.9876543, -2.9876654, -3.9876543, -4.1234587, -5.23, -6.88918237, -7.00001, ], [ 1.987654321, 2.987654321, 3.987654321, 0.1221, 2.1221, 0.112121, -21.1212, ], [ -1.987654321, -2.987654321, -3.987654321, -0.1221, -2.1221, -0.112121, 21.1212, ], ], ) @pytest.mark.parametrize( "data2", [ [1, 2, 3, 4, 5, 6, 7], [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0], [ 1.9876543, 2.9876654, 3.9876543, 4.1234587, 5.23, 6.88918237, 7.00001, ], [ -1.9876543, -2.9876654, -3.9876543, -4.1234587, -5.23, -6.88918237, -7.00001, ], [ 1.987654321, 2.987654321, 3.987654321, 0.1221, 2.1221, 0.112121, -21.1212, ], [ -1.987654321, -2.987654321, -3.987654321, -0.1221, -2.1221, -0.112121, 21.1212, ], ], ) @pytest.mark.parametrize("rtol", [0, 0.01, 1e-05, 1e-08, 5e-1, 50.12]) @pytest.mark.parametrize("atol", [0, 0.01, 1e-05, 1e-08, 50.12]) def test_cudf_isclose(data1, data2, rtol, atol): array1 = cupy.array(data1) array2 = cupy.array(data2) expected = cudf.Series(cupy.isclose(array1, array2, rtol=rtol, atol=atol)) actual = cudf.isclose( cudf.Series(data1), cudf.Series(data2), rtol=rtol, atol=atol ) assert_eq(expected, actual) actual = cudf.isclose(data1, data2, rtol=rtol, atol=atol) assert_eq(expected, actual) actual = cudf.isclose( cupy.array(data1), cupy.array(data2), rtol=rtol, atol=atol ) assert_eq(expected, actual) actual = cudf.isclose( np.array(data1), np.array(data2), rtol=rtol, atol=atol ) assert_eq(expected, actual) actual = cudf.isclose( pd.Series(data1), pd.Series(data2), rtol=rtol, atol=atol ) assert_eq(expected, actual) @pytest.mark.parametrize( "data1", [ [ -1.9876543, -2.9876654, np.nan, -4.1234587, -5.23, -6.88918237, -7.00001, ], [ 1.987654321, 2.987654321, 3.987654321, 0.1221, 2.1221, np.nan, -21.1212, ], ], ) @pytest.mark.parametrize( "data2", [ [ -1.9876543, -2.9876654, -3.9876543, -4.1234587, -5.23, -6.88918237, -7.00001, ], [ 1.987654321, 2.987654321, 3.987654321, 0.1221, 2.1221, 0.112121, -21.1212, ], [ -1.987654321, -2.987654321, -3.987654321, np.nan, np.nan, np.nan, 21.1212, ], ], ) @pytest.mark.parametrize("equal_nan", [True, False]) def test_cudf_isclose_nulls(data1, data2, equal_nan): array1 = cupy.array(data1) array2 = cupy.array(data2) expected = cudf.Series(cupy.isclose(array1, array2, equal_nan=equal_nan)) actual = cudf.isclose( cudf.Series(data1), cudf.Series(data2), equal_nan=equal_nan ) assert_eq(expected, actual, check_dtype=False) actual = cudf.isclose(data1, data2, equal_nan=equal_nan) assert_eq(expected, actual, check_dtype=False) def test_cudf_isclose_different_index(): s1 = cudf.Series( [-1.9876543, -2.9876654, -3.9876543, -4.1234587, -5.23, -7.00001], index=[0, 1, 2, 3, 4, 5], ) s2 = cudf.Series( [-1.9876543, -2.9876654, -7.00001, -4.1234587, -5.23, -3.9876543], index=[0, 1, 5, 3, 4, 2], ) expected = cudf.Series([True] * 6, index=s1.index) assert_eq(expected, cudf.isclose(s1, s2)) s1 = cudf.Series( [-1.9876543, -2.9876654, -3.9876543, -4.1234587, -5.23, -7.00001], index=[0, 1, 2, 3, 4, 5], ) s2 = cudf.Series( [-1.9876543, -2.9876654, -7.00001, -4.1234587, -5.23, -3.9876543], index=[0, 1, 5, 10, 4, 2], ) expected = cudf.Series( [True, True, True, False, True, True], index=s1.index ) assert_eq(expected, cudf.isclose(s1, s2)) s1 = cudf.Series( [-1.9876543, -2.9876654, -3.9876543, -4.1234587, -5.23, -7.00001], index=[100, 1, 2, 3, 4, 5], ) s2 = cudf.Series( [-1.9876543, -2.9876654, -7.00001, -4.1234587, -5.23, -3.9876543], index=[0, 1, 100, 10, 4, 2], ) expected = cudf.Series( [False, True, True, False, True, False], index=s1.index ) assert_eq(expected, cudf.isclose(s1, s2)) def test_dataframe_to_dict_error(): df = cudf.DataFrame({"a": [1, 2, 3], "b": [9, 5, 3]}) with pytest.raises( TypeError, match=re.escape( r"cuDF does not support conversion to host memory " r"via `to_dict()` method. Consider using " r"`.to_pandas().to_dict()` to construct a Python dictionary." ), ): df.to_dict() with pytest.raises( TypeError, match=re.escape( r"cuDF does not support conversion to host memory " r"via `to_dict()` method. Consider using " r"`.to_pandas().to_dict()` to construct a Python dictionary." ), ): df["a"].to_dict() @pytest.mark.parametrize( "df", [ pd.DataFrame({"a": [1, 2, 3, 4, 5, 10, 11, 12, 33, 55, 19]}), pd.DataFrame( { "one": [1, 2, 3, 4, 5, 10], "two": ["abc", "def", "ghi", "xyz", "pqr", "abc"], } ), pd.DataFrame( { "one": [1, 2, 3, 4, 5, 10], "two": ["abc", "def", "ghi", "xyz", "pqr", "abc"], }, index=[10, 20, 30, 40, 50, 60], ), pd.DataFrame( { "one": [1, 2, 3, 4, 5, 10], "two": ["abc", "def", "ghi", "xyz", "pqr", "abc"], }, index=["a", "b", "c", "d", "e", "f"], ), pd.DataFrame(index=["a", "b", "c", "d", "e", "f"]), pd.DataFrame(columns=["a", "b", "c", "d", "e", "f"]), pd.DataFrame(index=[10, 11, 12]), pd.DataFrame(columns=[10, 11, 12]), pd.DataFrame(), pd.DataFrame({"one": [], "two": []}), pd.DataFrame({2: [], 1: []}), pd.DataFrame( { 0: [1, 2, 3, 4, 5, 10], 1: ["abc", "def", "ghi", "xyz", "pqr", "abc"], 100: ["a", "b", "b", "x", "z", "a"], }, index=[10, 20, 30, 40, 50, 60], ), ], ) def test_dataframe_keys(df): gdf = cudf.from_pandas(df) assert_eq(df.keys(), gdf.keys()) @pytest.mark.parametrize( "ps", [ pd.Series([1, 2, 3, 4, 5, 10, 11, 12, 33, 55, 19]), pd.Series(["abc", "def", "ghi", "xyz", "pqr", "abc"]), pd.Series( [1, 2, 3, 4, 5, 10], index=["abc", "def", "ghi", "xyz", "pqr", "abc"], ), pd.Series( ["abc", "def", "ghi", "xyz", "pqr", "abc"], index=[1, 2, 3, 4, 5, 10], ), pd.Series(index=["a", "b", "c", "d", "e", "f"], dtype="float64"), pd.Series(index=[10, 11, 12], dtype="float64"), pd.Series(dtype="float64"), pd.Series([], dtype="float64"), ], ) def test_series_keys(ps): gds = cudf.from_pandas(ps) if len(ps) == 0 and not isinstance(ps.index, pd.RangeIndex): assert_eq(ps.keys().astype("float64"), gds.keys()) else: assert_eq(ps.keys(), gds.keys()) @pytest.mark.parametrize( "df", [ pd.DataFrame(), pd.DataFrame(index=[10, 20, 30]), pd.DataFrame({"first_col": [], "second_col": [], "third_col": []}), pd.DataFrame([[1, 2], [3, 4]], columns=list("AB")), pd.DataFrame([[1, 2], [3, 4]], columns=list("AB"), index=[10, 20]), pd.DataFrame([[1, 2], [3, 4]], columns=list("AB"), index=[7, 8]), pd.DataFrame( { "a": [315.3324, 3243.32432, 3232.332, -100.32], "z": [0.3223, 0.32, 0.0000232, 0.32224], } ), pd.DataFrame( { "a": [315.3324, 3243.32432, 3232.332, -100.32], "z": [0.3223, 0.32, 0.0000232, 0.32224], }, index=[7, 20, 11, 9], ), pd.DataFrame({"l": [10]}), pd.DataFrame({"l": [10]}, index=[100]), pd.DataFrame({"f": [10.2, 11.2332, 0.22, 3.3, 44.23, 10.0]}), pd.DataFrame( {"f": [10.2, 11.2332, 0.22, 3.3, 44.23, 10.0]}, index=[100, 200, 300, 400, 500, 0], ), ], ) @pytest.mark.parametrize( "other", [ pd.DataFrame([[5, 6], [7, 8]], columns=list("AB")), pd.DataFrame([[5, 6], [7, 8]], columns=list("BD")), pd.DataFrame([[5, 6], [7, 8]], columns=list("DE")), pd.DataFrame(), pd.DataFrame( {"c": [10, 11, 22, 33, 44, 100]}, index=[7, 8, 9, 10, 11, 20] ), pd.DataFrame({"f": [10.2, 11.2332, 0.22, 3.3, 44.23, 10.0]}), pd.DataFrame({"l": [10]}), pd.DataFrame({"l": [10]}, index=[200]), pd.DataFrame([]), pd.DataFrame({"first_col": [], "second_col": [], "third_col": []}), pd.DataFrame([], index=[100]), pd.DataFrame( { "a": [315.3324, 3243.32432, 3232.332, -100.32], "z": [0.3223, 0.32, 0.0000232, 0.32224], } ), pd.DataFrame( { "a": [315.3324, 3243.32432, 3232.332, -100.32], "z": [0.3223, 0.32, 0.0000232, 0.32224], }, index=[0, 100, 200, 300], ), ], ) @pytest.mark.parametrize("sort", [False, True]) @pytest.mark.parametrize("ignore_index", [True, False]) def test_dataframe_append_dataframe(df, other, sort, ignore_index): pdf = df other_pd = other gdf = cudf.from_pandas(df) other_gd = cudf.from_pandas(other) expected = pdf.append(other_pd, sort=sort, ignore_index=ignore_index) actual = gdf.append(other_gd, sort=sort, ignore_index=ignore_index) if expected.shape != df.shape: assert_eq(expected.fillna(-1), actual.fillna(-1), check_dtype=False) else: assert_eq( expected, actual, check_index_type=False if gdf.empty else True ) @pytest.mark.parametrize( "df", [ pd.DataFrame(), pd.DataFrame(index=[10, 20, 30]), pd.DataFrame({12: [], 22: []}), pd.DataFrame([[1, 2], [3, 4]], columns=[10, 20]), pd.DataFrame([[1, 2], [3, 4]], columns=[0, 1], index=[10, 20]), pd.DataFrame([[1, 2], [3, 4]], columns=[1, 0], index=[7, 8]), pd.DataFrame( { 23: [315.3324, 3243.32432, 3232.332, -100.32], 33: [0.3223, 0.32, 0.0000232, 0.32224], } ), pd.DataFrame( { 0: [315.3324, 3243.32432, 3232.332, -100.32], 1: [0.3223, 0.32, 0.0000232, 0.32224], }, index=[7, 20, 11, 9], ), ], ) @pytest.mark.parametrize( "other", [ pd.Series([10, 11, 23, 234, 13]), pytest.param( pd.Series([10, 11, 23, 234, 13], index=[11, 12, 13, 44, 33]), marks=pytest.mark.xfail( reason="pandas bug: " "https://github.com/pandas-dev/pandas/issues/35092" ), ), {1: 1}, {0: 10, 1: 100, 2: 102}, ], ) @pytest.mark.parametrize("sort", [False, True]) def test_dataframe_append_series_dict(df, other, sort): pdf = df other_pd = other gdf = cudf.from_pandas(df) if isinstance(other, pd.Series): other_gd = cudf.from_pandas(other) else: other_gd = other expected = pdf.append(other_pd, ignore_index=True, sort=sort) actual = gdf.append(other_gd, ignore_index=True, sort=sort) if expected.shape != df.shape: assert_eq(expected.fillna(-1), actual.fillna(-1), check_dtype=False) else: assert_eq( expected, actual, check_index_type=False if gdf.empty else True ) def test_dataframe_append_series_mixed_index(): df = cudf.DataFrame({"first": [], "d": []}) sr = cudf.Series([1, 2, 3, 4]) with pytest.raises( TypeError, match=re.escape( "cudf does not support mixed types, please type-cast " "the column index of dataframe and index of series " "to same dtypes." ), ): df.append(sr, ignore_index=True) @pytest.mark.parametrize( "df", [ pd.DataFrame(), pd.DataFrame(index=[10, 20, 30]), pd.DataFrame({"first_col": [], "second_col": [], "third_col": []}), pd.DataFrame([[1, 2], [3, 4]], columns=list("AB")), pd.DataFrame([[1, 2], [3, 4]], columns=list("AB"), index=[10, 20]), pd.DataFrame([[1, 2], [3, 4]], columns=list("AB"), index=[7, 8]), pd.DataFrame( { "a": [315.3324, 3243.32432, 3232.332, -100.32], "z": [0.3223, 0.32, 0.0000232, 0.32224], } ), pd.DataFrame( { "a": [315.3324, 3243.32432, 3232.332, -100.32], "z": [0.3223, 0.32, 0.0000232, 0.32224], }, index=[7, 20, 11, 9], ), pd.DataFrame({"l": [10]}), pd.DataFrame({"l": [10]}, index=[100]), pd.DataFrame({"f": [10.2, 11.2332, 0.22, 3.3, 44.23, 10.0]}), pd.DataFrame( {"f": [10.2, 11.2332, 0.22, 3.3, 44.23, 10.0]}, index=[100, 200, 300, 400, 500, 0], ), ], ) @pytest.mark.parametrize( "other", [ [pd.DataFrame([[5, 6], [7, 8]], columns=list("AB"))], [ pd.DataFrame([[5, 6], [7, 8]], columns=list("AB")), pd.DataFrame([[5, 6], [7, 8]], columns=list("BD")), pd.DataFrame([[5, 6], [7, 8]], columns=list("DE")), ], [pd.DataFrame(), pd.DataFrame(), pd.DataFrame(), pd.DataFrame()], [ pd.DataFrame( {"c": [10, 11, 22, 33, 44, 100]}, index=[7, 8, 9, 10, 11, 20] ), pd.DataFrame(),
pd.DataFrame()
pandas.DataFrame
import pandas as pd import click import os @click.command() @click.argument('input_folder') @click.argument('output_folder') def main(input_folder, output_folder): if not os.path.exists(output_folder): os.makedirs(output_folder) files = [[(x[0] + '/' + y, x[0].split('/')[-1].replace('DATA_', '').replace('_22', '')) for y in x[2]] for x in os.walk(input_folder) if '_22' in x[0].split('/')[-1]] flat_files = [file for sublist in files for file in sublist] csv_files = [file for file in flat_files if file[0].endswith('csv') and ( 'pancancer' not in file[1])] df_fiels_summary = pd.DataFrame() for summary_file, folder_name in [ file for file in csv_files if file[0].endswith('files_summary_count_per_patient.csv') ]: df_temp = pd.read_csv(summary_file) df_temp = df_temp.groupby('indiv_name').count() row = pd.DataFrame([[folder_name, df_temp.shape[0]]], columns=['folder', 'number_of_patients']) df_fiels_summary = pd.concat([df_fiels_summary, row], sort=False) if output_folder.endswith('/'): df_fiels_summary.to_excel(output_folder + 'number_of_patients.xlsx', index=False) else: df_fiels_summary.to_excel(output_folder + '/number_of_patients.xlsx', index=False) df_count_summary = pd.DataFrame() for count_file, folder_name in [ file for file in csv_files if file[0].endswith('patient_mutation_count.csv') ]: df_temp = pd.read_csv(count_file) df_temp['cancer_id'] = folder_name df_count_summary = pd.concat([df_count_summary, df_temp], sort=False) if output_folder.endswith('/'): df_count_summary.to_excel(output_folder + 'patient_mutation_count.xlsx', index=False) else: df_count_summary.to_excel(output_folder + '/patient_mutation_count.xlsx', index=False) all_mutation_count = pd.DataFrame() for count_file, folder_name in [ file for file in csv_files if file[0].endswith('patient_mutation_count.csv') ]: df_temp = pd.read_csv(count_file) df_temp['cancer'] = folder_name all_mutation_count = pd.concat([all_mutation_count, df_temp], sort=False) if output_folder.endswith('/'): all_mutation_count.to_excel(output_folder + 'number_of_mutations_all_patients.xlsx', index=False) else: all_mutation_count.to_excel(output_folder + '/number_of_mutations_all_patients.xlsx', index=False) df_all_mutation = pd.DataFrame() for all_mutations_filtered_mut_type_gene, folder_name in [ file for file in csv_files if file[0].endswith('all_mutations.csv') ]: print(folder_name) df_temp =
pd.read_csv(all_mutations_filtered_mut_type_gene)
pandas.read_csv
import pytest import numpy as np import pandas as pd from systrade.trading.brokers import PaperBroker T_START = pd.to_datetime('2019/07/10-09:30:00:000000', format='%Y/%m/%d-%H:%M:%S:%f') T_END = pd.to_datetime('2019/07/10-10:00:00:000000', format='%Y/%m/%d-%H:%M:%S:%f') TIMEINDEX = pd.date_range(start=T_START,end=T_END,freq='1min') DATA_DF = pd.DataFrame(data={'tick0':np.arange(len(TIMEINDEX)) , 'tick1':np.arange(len(TIMEINDEX)-1,-1,-1)}, index=TIMEINDEX) # DATA_DF = pd.DataFrame(data={'tick0':np.arange(len(TIMEINDEX))}, # index=TIMEINDEX) class TestPaperBroker: def test_init(self): testseries = pd.Series(np.arange(10)) with pytest.raises(TypeError): broker = PaperBroker(testseries) with pytest.raises(TypeError): broker = PaperBroker(DATA_DF,slippage_time=1.0) with pytest.raises(TypeError): broker = PaperBroker(DATA_DF,transaction_cost=lambda x: x**2) with pytest.raises(ValueError): broker = PaperBroker(DATA_DF,transaction_cost=-0.5) with pytest.raises(TypeError): broker = PaperBroker(DATA_DF,spread_pct=lambda x: x**2) with pytest.raises(ValueError): broker = PaperBroker(DATA_DF,spread_pct=-0.5) with pytest.raises(ValueError): broker = PaperBroker(DATA_DF,spread_pct=200) def test_next_extant_time(self): broker = PaperBroker(DATA_DF) t_get = pd.to_datetime('2019/07/10-09:35:05:000000', format='%Y/%m/%d-%H:%M:%S:%f') t_out = broker.next_extant_time(t_get) t_expect = pd.to_datetime('2019/07/10-09:36:00:000000', format='%Y/%m/%d-%H:%M:%S:%f') assert t_out==t_expect t_get = pd.to_datetime('2019/07/10-11:35:00:000000', format='%Y/%m/%d-%H:%M:%S:%f') with pytest.raises(ValueError): t_out = broker.next_extant_time(t_get) def test_get_timeindex_subset(self): broker = PaperBroker(DATA_DF) t0 =
pd.to_datetime('2019/07/10-09:29:00:000000', format='%Y/%m/%d-%H:%M:%S:%f')
pandas.to_datetime
import requests import os import json import pandas as pd import numpy as np from requests.exceptions import HTTPError import re import matplotlib.pyplot as plt # Part 1 Get Data With API ## Function 1-Get dataset with specific game "platform" and "type" def api_game(platform = 'pc', type = 'game'): """ The function returns game giveways information from the Game Giveaway Tracker API with specific requirement for plateform and game type. Parameters --- inputs: platform: string value that is the insert game platform, eg: pc, steam, epic-games-store, ubisoft, gog, icthio, ps4, etc. type: string value of game type, eg: game Returns --- output: game_giveaway: pandas.DataFrame of the API Columns: _id: int64 _title: object _worth: object _thumbnail: float64 _image: object _description: object _instructions: object _open_giveaway_url: object _type: object _platforms: object _end_date: object _users: int64 _status: bool _gamerpower_url: object _open_giveaway: object Example --- >>> df = api_game(type='game', platform= 'PC') >>> df.shape (1, 15) """ assert isinstance(platform,str) #parameters should be string assert isinstance(type, str) #parameters should be string try: params = {'platform': platform, 'type': type} r = requests.get('https://www.gamerpower.com/api/giveaways', params = params) game_json=json.dumps(r.json(), indent=2) game_j = json.loads(game_json) game_giveaway = pd.DataFrame(game_j) return game_giveaway # Catch exception, however if the response was successful, no Exception will be raised r.raise_for_status() except HTTPError as http_err: print(f'HTTP error occurred: {http_err}') except Exception as err: print(f'Other error occurred: {err}') ## Function 2: Get full dataset def api_game_full(): """ The function returns all game giveways information from the Game Giveaway Tracker API. Parameters --- Returns --- output: game_df: pandas.DataFrame of the API with stated parameters Columns: _id: int64 _title: object _worth: object _thumbnail: float64 _image: object _description: object _instructions: object _open_giveaway_url: object _type: object _platforms: object _end_date: object _users: int64 _status: bool _gamerpower_url: object _open_giveaway: object Example --- >>> df = api_game_full() >>> df.shape (84, 15) """ try: r = requests.get('https://www.gamerpower.com/api/giveaways') game_json=json.dumps(r.json(), indent=2) game_j = json.loads(game_json) game_df = pd.DataFrame(game_j) return game_df # Catch exception, however if the response was successful, no Exception will be raised r.raise_for_status() except HTTPError as http_err: print(f'HTTP error occurred: {http_err}') except Exception as err: print(f'Other error occurred: {err}') # Part 2 Functions With Full Dataset ## Function 1: Get descriptive statistics for each game type def game_type(game_df): """ The function is used to clean the data at first. Then return the new dataframe that contains number of games, user number mean, std, min, 25%, 50%, 75% and max value for each type. Parameters --- inputs: game_df: pandas.DataFrame of the API which is generated in part1 function2. Returns --- output: type_statistics: pandas.DataFrame descriptive statistics for each game type Example --- >>> game_df = api_game_full() >>> type_statistics=game_type(game_df) >>> type_statistics.shape (3, 8) """ assert isinstance(game_df, pd.core.frame.DataFrame) # make sure input should be dataframe df=game_df.drop(['thumbnail', 'image', 'description','open_giveaway_url', 'end_date'], axis=1) # drop column and clean data g_type=df['type'] g_users=df['users'] g_list={'type': g_type, 'number of users': g_users} gt_df= pd.DataFrame(g_list) type_statistics=gt_df.groupby('type').describe() type_statistics=type_statistics.rename(columns={'count': 'number of games for this type'}) return type_statistics ## Function 2: Get Z score and its graph for users for each type def zscore_plot(game_df): """ The function is used to calculate Z score for number of users for each game type Then get histogram graph for Z score Parameters --- inputs: game_df: pandas.DataFrame of the API which is generated in part1 function2. Returns --- output: a histogram plot for Z score of user number for each game type Example --- >>> game_df = api_game_full() >>> zscore_plot(game_df) a histogram plot shows up <matplotlib.axes._subplots.AxesSubplot at 0x11bca3ac0> """ assert isinstance(game_df, pd.core.frame.DataFrame) # make sure input should be dataframe g_type=game_df['type'] g_users=game_df['users'] g_list={'type': g_type, 'number of users': g_users} gt_df=
pd.DataFrame(g_list)
pandas.DataFrame
# -*- coding: utf-8 -*- import sys import os import pandas as pd PROJECT_ID = "dots-stock" # @param {type:"string"} REGION = "us-central1" # @param {type:"string"} USER = "shkim01" # <---CHANGE THIS BUCKET_NAME = "gs://pipeline-dots-stock" # @param {type:"string"} PIPELINE_ROOT = f"{BUCKET_NAME}/pipeline_root/{USER}" from typing import NamedTuple from kfp import dsl from kfp.v2 import compiler from kfp.v2.dsl import (Artifact, Dataset, Input, Model, Output, Metrics, ClassificationMetrics, component) from kfp.v2.google.client import AIPlatformClient @component( base_image="gcr.io/dots-stock/python-img-v5.2", ) def get_market_info( # top30_univ_dataset: Output[Dataset], market_info_dataset: Output[Dataset], today: str, n_days: int ) -> str: import pandas as pd from pandas.tseries.offsets import CustomBusinessDay from trading_calendars import get_calendar import functools import pickle import logging import networkx as nx import os from sqlalchemy import create_engine # today = pd.Timestamp.now('Asia/Seoul').strftime('%Y%m%d') # today = '20210809' cal_KRX = get_calendar('XKRX') custombd_KRX = CustomBusinessDay(holidays=cal_KRX.precomputed_holidays) logger = logging.getLogger(__name__) logger.setLevel(logging.DEBUG) # console handler ch = logging.StreamHandler() ch.setLevel(logging.DEBUG) # create formatter formatter = logging.Formatter( '%(asctime)s - %(name)s - %(levelname)s - %(message)s') ch.setFormatter(formatter) # add ch to logger logger.addHandler(ch) # Preference #----------------------------------------------------------------------------- AWS_DB_ID = 'gb_master' AWS_DB_PWD = 'qwert12345' AWS_DB_ADDRESS = 'kwdb-daily.cf6e7v8fhede.ap-northeast-2.rds.amazonaws.com' AWS_DB_PORT = '3306' DB_DATABASE_NAME_daily_naver = 'daily_naver' PROJECT_ID = 'dots-stock' db_daily_naver_con = create_engine('mysql+pymysql://{0}:{1}@{2}:{3}/{4}?charset=utf8' .format(AWS_DB_ID, AWS_DB_PWD, AWS_DB_ADDRESS, AWS_DB_PORT, DB_DATABASE_NAME_daily_naver), encoding='utf8', echo=False) # @functools.lru_cache() def get_market_from_naver_aws(date_ref): ''' daily naver ์—์„œ db๊ฐ’ ๊ทธ๋Œ€๋กœ parsing ๋‚ด์šฉ ๋ฐ›์•„์˜ค๊ธฐ ''' with db_daily_naver_con.connect() as conn: table_name = f'{date_ref}_daily_allstock_naver' str_sql = f'select * from {table_name} order by ๋“ฑ๋ฝ๋ฅ  DESC' df = pd.read_sql_query(str_sql, conn) # self.get_db_daily_naver_con()) df = df.reset_index().rename(columns={'index':'์ˆœ์œ„_์ƒ์Šน๋ฅ ', 'N':'์ˆœ์œ„_์‹œ๊ฐ€์ด์•ก'}) df['์ˆœ์œ„_์ƒ์Šน๋ฅ '] = df.์ˆœ์œ„_์ƒ์Šน๋ฅ  + 1 return df def get_krx_on_dates_n_days_ago(date_ref, n_days=20): return [date.strftime('%Y%m%d') for date in pd.bdate_range( end=date_ref, freq='C', periods=n_days, holidays=cal_KRX.precomputed_holidays) ] # 1. Market data #------------------------------------------------------------------------------ def get_markets_aws(date_ref, n_days): dates_n_days_ago = get_krx_on_dates_n_days_ago(date_ref, n_days) df_market = pd.DataFrame() for date in dates_n_days_ago: df_ = get_market_from_naver_aws(date) # logger.debug(f'date : {date} and df_.shape {df_.shape}' ) df_market = df_market.append(df_) return df_market df_market = get_markets_aws(date_ref=today, n_days=n_days) df_market.to_csv(market_info_dataset.path) return today @component( base_image="gcr.io/dots-stock/python-img-v5.2" ) def get_base_item( market_info_dataset: Input[Dataset], base_item_dataset: Output[Dataset] ): import pandas as pd # helper function def get_top30_list(df_market): cols_out = ['๋‚ ์งœ','์ข…๋ชฉ์ฝ”๋“œ','์ข…๋ชฉ๋ช…'] return (df_market .sort_values(['๋‚ ์งœ','๋“ฑ๋ฝ๋ฅ '], ascending=False) .groupby('๋‚ ์งœ') .head(30)[cols_out]) df_market = pd.read_csv(market_info_dataset.path) df_base_item = get_top30_list(df_market) df_base_item.to_csv(base_item_dataset.path) @component( base_image="gcr.io/dots-stock/python-img-v5.2" ) def get_bros( today: str, n_days: int, bros_univ_dataset: Output[Dataset] ) -> str : ''' Returns: list ''' import pandas as pd import pandas_gbq import networkx as nx from trading_calendars import get_calendar PROJECT_ID = 'dots-stock' cal_KRX = get_calendar('XKRX') # helper functions #----------------------------------------------------------------------------- def get_krx_on_dates_n_days_ago(date_ref, n_days=20): return [date.strftime('%Y%m%d') for date in pd.bdate_range( end=date_ref, freq='C', periods=n_days, holidays=cal_KRX.precomputed_holidays) ] def get_corr_pairs_gbq(date_ref, period): date_ref_ = pd.Timestamp(date_ref).strftime('%Y-%m-%d') sql = f''' SELECT DISTINCT source, target, corr_value, period, date FROM `dots-stock.krx_dataset.corr_ohlc_part1` WHERE date = "{date_ref_}" AND period = {period} ORDER BY corr_value DESC LIMIT 1000''' df = pandas_gbq.read_gbq(sql, project_id=PROJECT_ID) return df def find_bros(date_ref, period): '''clique over 3 nodes ''' df_edgelist = get_corr_pairs_gbq(date_ref, period) g = nx.from_pandas_edgelist(df_edgelist, edge_attr=True) bros_ = nx.find_cliques(g) bros_3 = [bros for bros in bros_ if len(bros) >=3] set_bros = set([i for l_i in bros_3 for i in l_i]) g_gang = g.subgraph(set_bros) df_gangs_edgelist = nx.to_pandas_edgelist(g_gang) return df_gangs_edgelist def find_gang(date_ref): df_gang = pd.DataFrame() for period in [20, 40, 60, 90, 120]: df_ = find_bros(date, period=period) df_gang = df_gang.append(df_) return df_gang # jobs dates = get_krx_on_dates_n_days_ago(date_ref=today, n_days=n_days) df_bros = pd.DataFrame() for date in dates: df = find_gang(date_ref=date) df_bros = df_bros.append(df) df_bros.to_csv(bros_univ_dataset.path) return 'OK' @component( base_image="amancevice/pandas:1.3.2-slim" ) def get_univ_for_price( # date_ref: str, base_item_dataset: Input[Dataset], bros_dataset: Input[Dataset], univ_dataset: Output[Dataset], ): import pandas as pd import logging import json logger = logging.getLogger(__name__) FORMAT = "[%(filename)s:%(lineno)s - %(funcName)20s() ] %(message)s" logging.basicConfig(format=FORMAT) logger.setLevel(logging.DEBUG) # base item df_top30s = pd.read_csv(base_item_dataset.path, index_col=0, dtype={'๋‚ ์งœ': str}).reset_index(drop=True) # load edge_list to make bros df_ed = pd.read_csv(bros_dataset.path, index_col=0).reset_index(drop=True) df_ed_r = df_ed.copy() df_ed_r.rename(columns={'target':'source', 'source':'target'}, inplace=True) df_ed2 = df_ed.append(df_ed_r, ignore_index=True) df_ed2['date'] = pd.to_datetime(df_ed2.date).dt.strftime('%Y%m%d') dic_univ = {} for date, df in df_top30s.groupby('๋‚ ์งœ'): logger.debug(f'date: {date}') l_top30 = df.์ข…๋ชฉ์ฝ”๋“œ.to_list() l_bro = df_ed2[(df_ed2.date == date) & (df_ed2.source.isin(l_top30))].target.unique().tolist() dic_univ[date] = list(set(l_top30 + l_bro )) with open(univ_dataset.path, 'w', encoding='utf8') as f: json.dump(dic_univ, f) @component( base_image="gcr.io/dots-stock/python-img-v5.2", # packages_to_install = ["tables", "pandas_gbq", "finance-datareader", "bs4", "pickle5"] # add 20210715 FIX pipeline ) def get_adj_prices( today: str, dic_univ_dataset: Input[Dataset], adj_price_dataset: Output[Dataset] ) -> str: import json import FinanceDataReader as fdr from ae_module.ae_logger import ae_log import pandas as pd # with open(dic_univ_dataset.path, 'rb') as f: # dic_univ = pickle.load(f) with open(dic_univ_dataset.path, 'r') as f: dic_univ = json.load(f) codes_stock = [] for v in dic_univ.values(): codes_stock.extend(v) # drop duplicates codes_stock = list(set(codes_stock)) def get_price_adj(code, start, end): return fdr.DataReader(code, start=start, end=end) def get_price(l_univ, date_start, date_end): df_price = pd.DataFrame() for code in l_univ : df_ = get_price_adj(code, date_start, date_end) df_['code'] = code # df_['price'] = df_['Close'] / df_.Close.iloc[0] df_price = df_price.append(df_) return df_price ae_log.debug(f'codes_stock {codes_stock.__len__()}') date_start = '20210101' date_end = today df_adj_price = get_price(codes_stock, date_start=date_start, date_end=date_end) df_adj_price.to_csv(adj_price_dataset.path) ae_log.debug(df_adj_price.shape) return 'good' @component( # base_image="gcr.io/deeplearning-platform-release/sklearn-cpu" base_image="amancevice/pandas:1.3.2-slim" ) def get_target( df_price_dataset: Input[Dataset], df_target_dataset: Output[Dataset] ): import pandas as pd import numpy as np def make_target(df): df_ = df.copy() df_.sort_values(by='date', inplace=True) df_['high_p1'] = df_.high.shift(-1) df_['high_p2'] = df_.high.shift(-2) df_['high_p3'] = df_.high.shift(-3) df_['close_p1'] = df_.close.shift(-1) df_['close_p2'] = df_.close.shift(-2) df_['close_p3'] = df_.close.shift(-3) df_['change_p1'] = (df_.close_p1 - df_.close) / df_.close df_['change_p2'] = (df_.close_p2 - df_.close) / df_.close df_['change_p3'] = (df_.close_p3 - df_.close) / df_.close df_['change_p1_over5'] = df_['change_p1'] > 0.05 df_['change_p2_over5'] = df_['change_p2'] > 0.05 df_['change_p3_over5'] = df_['change_p3'] > 0.05 df_['change_p1_over10'] = df_['change_p1'] > 0.1 df_['change_p2_over10'] = df_['change_p2'] > 0.1 df_['change_p3_over10'] = df_['change_p3'] > 0.1 df_['close_high_1'] = (df_.high_p1 - df_.close) / df_.close df_['close_high_2'] = (df_.high_p2 - df_.close) / df_.close df_['close_high_3'] = (df_.high_p3 - df_.close) / df_.close df_['close_high_1_over10'] = df_['close_high_1'] > 0.1 df_['close_high_2_over10'] = df_['close_high_2'] > 0.1 df_['close_high_3_over10'] = df_['close_high_3'] > 0.1 df_['close_high_1_over5'] = df_['close_high_1'] > 0.05 df_['close_high_2_over5'] = df_['close_high_2'] > 0.05 df_['close_high_3_over5'] = df_['close_high_3'] > 0.05 df_['target_over10'] = np.logical_or.reduce([ df_.close_high_1_over10, df_.close_high_2_over10, df_.close_high_3_over10]) df_['target_over5'] = np.logical_or.reduce([ df_.close_high_1_over5, df_.close_high_2_over5, df_.close_high_3_over5]) df_['target_close_over_10'] = np.logical_or.reduce([ df_.change_p1_over10, df_.change_p2_over10, df_.change_p3_over10]) df_['target_close_over_5'] = np.logical_or.reduce([ df_.change_p1_over5, df_.change_p2_over5, df_.change_p3_over5]) df_['target_mclass_close_over10_under5'] = \ np.where(df_['change_p1'] > 0.1, 1, np.where(df_['change_p1'] > -0.05, 0, -1)) df_['target_mclass_close_p2_over10_under5'] = \ np.where(df_['change_p2'] > 0.1, 1, np.where(df_['change_p2'] > -0.05, 0, -1)) df_['target_mclass_close_p3_over10_under5'] = \ np.where(df_['change_p3'] > 0.1, 1, np.where(df_['change_p3'] > -0.05, 0, -1)) df_.dropna(subset=['high_p3'], inplace=True) return df_ def get_target_df(df_price): df_price.reset_index(inplace=True) df_price.columns = df_price.columns.str.lower() df_target = df_price.groupby('code').apply(lambda df: make_target(df)) df_target = df_target.reset_index(drop=True) # df_target['date'] = df_target.date.str.replace('-', '') return df_target df_price = pd.read_csv(df_price_dataset.path) df_target = get_target_df(df_price=df_price) df_target.to_csv(df_target_dataset.path) @component( base_image="gcr.io/deeplearning-platform-release/sklearn-cpu", packages_to_install=["stockstats"] ) def get_techindi( df_price_dataset: Input[Dataset], df_techini_dataset: Output[Dataset] ): TECHNICAL_INDICATORS_LIST = ['macd', 'boll_ub', 'boll_lb', 'rsi_30', 'dx_30', 'close_30_sma', 'close_60_sma'] from stockstats import StockDataFrame as Sdf from sklearn.preprocessing import MaxAbsScaler import pandas as pd class FeatureEngineer: """Provides methods for preprocessing the stock price data Attributes ---------- use_technical_indicator : boolean we technical indicator or not tech_indicator_list : list a list of technical indicator names (modified from config.py) use_turbulence : boolean use turbulence index or not user_defined_feature:boolean user user defined features or not Methods ------- preprocess_data() main method to do the feature engineering """ def __init__( self, use_technical_indicator=True, tech_indicator_list=TECHNICAL_INDICATORS_LIST, user_defined_feature=False, ): self.use_technical_indicator = use_technical_indicator self.tech_indicator_list = tech_indicator_list self.user_defined_feature = user_defined_feature def preprocess_data(self, df): """main method to do the feature engineering @:param config: source dataframe @:return: a DataMatrices object """ #clean data df = self.clean_data(df) # add technical indicators using stockstats if self.use_technical_indicator == True: df = self.add_technical_indicator(df) print("Successfully added technical indicators") # add user defined feature if self.user_defined_feature == True: df = self.add_user_defined_feature(df) print("Successfully added user defined features") # fill the missing values at the beginning and the end df = df.fillna(method="bfill").fillna(method="ffill") return df def clean_data(self, data): """ clean the raw data deal with missing values reasons: stocks could be delisted, not incorporated at the time step :param data: (df) pandas dataframe :return: (df) pandas dataframe """ df = data.copy() df=df.sort_values(['date','tic'],ignore_index=True) df.index = df.date.factorize()[0] merged_closes = df.pivot_table(index = 'date',columns = 'tic', values = 'close') merged_closes = merged_closes.dropna(axis=1) tics = merged_closes.columns df = df[df.tic.isin(tics)] return df def add_technical_indicator(self, data): """ calculate technical indicators use stockstats package to add technical inidactors :param data: (df) pandas dataframe :return: (df) pandas dataframe """ df = data.copy() df = df.sort_values(by=['tic','date']) stock = Sdf.retype(df.copy()) unique_ticker = stock.tic.unique() for indicator in self.tech_indicator_list: indicator_df = pd.DataFrame() for i in range(len(unique_ticker)): try: temp_indicator = stock[stock.tic == unique_ticker[i]][indicator] temp_indicator = pd.DataFrame(temp_indicator) temp_indicator['tic'] = unique_ticker[i] temp_indicator['date'] = df[df.tic == unique_ticker[i]]['date'].to_list() indicator_df = indicator_df.append( temp_indicator, ignore_index=True ) except Exception as e: print(e) df = df.merge(indicator_df[['tic','date',indicator]],on=['tic','date'],how='left') df = df.sort_values(by=['date','tic']) return df def add_user_defined_feature(self, data): """ add user defined features :param data: (df) pandas dataframe :return: (df) pandas dataframe """ df = data.copy() df["daily_return"] = df.close.pct_change(1) df['bb_u_ratio'] = df.boll_ub / df.close df['bb_l_ratio'] = df.boll_lb / df.close df['max_scale_MACD'] = MaxAbsScaler().fit_transform(df[['macd']]) # df['return_lag_1']=df.close.pct_change(2) # df['return_lag_2']=df.close.pct_change(3) # df['return_lag_3']=df.close.pct_change(4) # df['return_lag_4']=df.close.pct_change(5) return df df_price = pd.read_csv(df_price_dataset.path) df_price.columns = df_price.columns.str.lower() df_price.rename(columns={'code':'tic'}, inplace=True) fe = FeatureEngineer(user_defined_feature=True) df_process = fe.preprocess_data(df_price) df_process.rename(columns={'tic':'code'}, inplace=True) df_process.to_csv(df_techini_dataset.path) @component( base_image="gcr.io/dots-stock/python-img-v5.2", # packages_to_install = ["tables", "pandas_gbq", "finance-datareader", "bs4", "pickle5"] # add 20210715 FIX pipeline ) def get_features( # today: str, dic_univ_dataset: Input[Dataset], market_info_dataset: Input[Dataset], bros_dataset: Input[Dataset], base_item_dataset : Input[Dataset], features_dataset: Output[Dataset] ): import json # import FinanceDataReader as fdr # from ae_module.ae_logger import ae_log import pandas as pd import numpy as np from collections import Counter from pandas.tseries.offsets import CustomBusinessDay from trading_calendars import get_calendar cal_KRX = get_calendar('XKRX') custombd_KRX = CustomBusinessDay(holidays=cal_KRX.precomputed_holidays) def get_krx_on_dates_start_end(start, end): return [date.strftime('%Y%m%d') for date in pd.bdate_range(start=start, end=end, freq='C', holidays=cal_KRX.precomputed_holidays) ] dates_krx_on = get_krx_on_dates_start_end('20210104', '20211231') #dic_univ ๊ฐ€์ ธ์˜ค๊ธฐ with open(dic_univ_dataset.path, 'r') as f: dic_univ = json.load(f) print('dic_univ', dic_univ.keys()) #df_market_info ๊ฐ€์ ธ์˜ค๊ธฐ df_market = pd.read_csv(market_info_dataset.path, index_col=0, dtype={'๋‚ ์งœ':str} ).reset_index(drop=True) print('df_market', df_market.shape) #df_base_item ๊ฐ€์ ธ์˜ค๊ธฐ df_base_item = pd.read_csv(base_item_dataset.path, index_col=0).reset_index(drop=True) #df_ed ๊ฐ€์ ธ์˜ค๊ธฐ df_ed =
pd.read_csv(bros_dataset.path, index_col=0)
pandas.read_csv
# -*- coding: utf-8 -*- """ Created on Fri Jun 26 23:51:40 2020 @author: Narendrakumar """ # Part 1 - Data Preprocessing # Importing the libraries import numpy as np import matplotlib.pyplot as plt import pandas as pd # Importing the dataset dataset =
pd.read_csv('Churn_Modelling.csv')
pandas.read_csv
import pandas as pd import numpy as np import matplotlib.pyplot as plt scenario_filenames = ["OUTPUT_110011_20201117123025"] scenario_labels =["Lockdown enabled,Self Isolation,Mask Compliance (0.5)"] MAX_DAY = 250#250#120 POPULATION = 10000.0 FIGSIZE = [20,10] plt.rcParams.update({'font.size': 22}) #### comparison of infections plt.figure(figsize=FIGSIZE) for i in range(len(scenario_labels)): if True:#i in [1,3,4]: simulation_file = "simulation_output/"+scenario_filenames[i]+".csv" df = pd.read_csv(simulation_file) dfg = df.groupby("Date").mean() last_val = (100*dfg["Infected_count"].values/POPULATION)[-1] plt.plot(list(np.arange(len(dfg["Infected_count"])))+[MAX_DAY],list(100*dfg["Infected_count"].values/POPULATION)+[last_val],label=scenario_labels[i]) #plt.plot([0,70],[5,5],"--",c='grey') plt.legend() plt.xlabel("Days since outbreak") plt.ylabel("Infected (% of Population)") plt.subplots_adjust(right=0.98,left=0.08) plt.savefig("analyze_simulation_output/infected_count_comparison.png") #### comparison of deaths plt.figure(figsize=FIGSIZE) for i in range(len(scenario_labels)): if True:#i in [1,3,4]: simulation_file = "simulation_output/"+scenario_filenames[i]+".csv" df = pd.read_csv(simulation_file) dfg = df.groupby("Date").mean() last_val = (100 * dfg["Death_count"].values / POPULATION)[-1] plt.plot(list(np.arange(len(dfg["Death_count"])))+[MAX_DAY],list(100*dfg["Death_count"].values/POPULATION)+[last_val],label=scenario_labels[i]) #plt.plot([0,70],[5,5],"--",c='grey') plt.legend() plt.xlabel("Days since outbreak") plt.ylabel("Deceased (% of Population)") plt.subplots_adjust(right=0.98,left=0.08) plt.savefig("analyze_simulation_output/death_count_comparison.png") #### comparison of recoveries plt.figure(figsize=FIGSIZE) for i in range(len(scenario_labels)): if True:#i in [1,3,4]: simulation_file = "simulation_output/"+scenario_filenames[i]+".csv" df = pd.read_csv(simulation_file) dfg = df.groupby("Date").mean() last_val = (100 * dfg["Recovered_count"].values / POPULATION)[-1] plt.plot(list(np.arange(len(dfg["Recovered_count"])))+[MAX_DAY],list(100*dfg["Recovered_count"].values/POPULATION)+[last_val],label=scenario_labels[i]) #plt.plot([0,70],[5,5],"--",c='grey') plt.legend() plt.xlabel("Days since outbreak") plt.ylabel("Recovered (% of Population)") plt.subplots_adjust(right=0.98,left=0.08) plt.savefig("analyze_simulation_output/recovered_count_comparison.png") #### comparison of number of notifications try: plt.figure(figsize=FIGSIZE) for i in range(len(scenario_labels)): if True:#i in [1,3,4]: simulation_file = "simulation_output/"+scenario_filenames[i]+".csv" df = pd.read_csv(simulation_file) dfg = df.groupby("Date").mean() last_val = (100*dfg["notified_count"].values/POPULATION)[-1] plt.plot(list(np.arange(len(dfg["notified_count"])))+[MAX_DAY],list(100*dfg["notified_count"].values/POPULATION)+[last_val],label=scenario_labels[i]) #plt.plot([0,70],[5,5],"--",c='grey') plt.legend() plt.xlabel("Days since outbreak") plt.ylabel("% of population notified to isolate") plt.subplots_adjust(right=0.98, left=0.08) plt.savefig("analyze_simulation_output/notified_count_comparison.png") except Exception as e: pass # compare locked zones try: plt.figure(figsize=FIGSIZE) for i in range(len(scenario_labels)): if True:#i in [1,3,4]: simulation_file = "simulation_output/"+scenario_filenames[i]+".csv" df = pd.read_csv(simulation_file) dfg = df.groupby("Date").mean() last_val = (dfg["locked_zones"].values)[-1] plt.plot(list(np.arange(len(dfg["locked_zones"])))+[MAX_DAY],list(dfg["locked_zones"].values)+[last_val],label=scenario_labels[i]) plt.legend() plt.xlabel("Days since outbreak") plt.ylabel("Zone ID") plt.subplots_adjust(right=0.98, left=0.08) plt.savefig("analyze_simulation_output/locked_zones_comparison.png") except Exception as e: pass # number of entities per zone: try: simulation_file = "simulation_output/" + scenario_filenames[0] df = pd.read_csv(simulation_file+"_overall_agent_status.csv") df["Date_Time"]=pd.to_datetime(df["Date_Time"]) dfg = df.query("Date_Time >'2020-01-01' and Date_Time <'2020-01-03'").drop_duplicates("currentLocationID") residential_counts_zone = dfg.query("currentLocationType == 'residential'").groupby("zone_id").count()["id"].values employment_counts_zone = dfg.query("currentLocationType == 'employment'").groupby("zone_id").count()["id"].values school_counts_zone = dfg.query("currentLocationType == 'school'").groupby("zone_id").count()["id"].values shopping_mall = dfg.query("currentLocationType == 'shopping_mall'").groupby("zone_id").count()["id"].values zone_counts = np.vstack((residential_counts_zone, employment_counts_zone, shopping_mall, school_counts_zone)).T zone_counts = pd.DataFrame(zone_counts,columns=["residential","employment","shopping_mall","school"]) zone_counts.to_csv("analyze_simulation_output/locations_per_zone.csv") except Exception as e: print("error:",e) # analyse individual user dataset SHOPPING_MALL_VISITS = [] plt.figure(figsize=FIGSIZE) for i in range(len(scenario_labels)): simulation_file = "simulation_output/" + scenario_filenames[i] df1=pd.read_csv(simulation_file+"_overall_agent_status.csv") df1["Date_Time"]=
pd.to_datetime(df1["Date_Time"])
pandas.to_datetime