|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: openai/whisper-medium |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- bigcgen |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: whisper-medium-bigcgen-combined-20hrs-model |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: bigcgen |
|
type: bigcgen |
|
metrics: |
|
- name: Wer |
|
type: wer |
|
value: 0.4210649229332088 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# whisper-medium-bigcgen-combined-20hrs-model |
|
|
|
This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co./openai/whisper-medium) on the bigcgen dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.5368 |
|
- Wer: 0.4211 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1.75e-05 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 8 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- training_steps: 5000 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:------:|:----:|:---------------:|:------:| |
|
| 3.7679 | 0.1521 | 200 | 0.8942 | 0.6455 | |
|
| 3.4733 | 0.3042 | 400 | 0.7609 | 0.5650 | |
|
| 2.6698 | 0.4564 | 600 | 0.6958 | 0.5375 | |
|
| 2.5647 | 0.6085 | 800 | 0.6685 | 0.5496 | |
|
| 2.1636 | 0.7606 | 1000 | 0.6228 | 0.5103 | |
|
| 2.7265 | 0.9127 | 1200 | 0.5869 | 0.4706 | |
|
| 1.5404 | 1.0654 | 1400 | 0.5990 | 0.4542 | |
|
| 1.9844 | 1.2175 | 1600 | 0.5893 | 0.4643 | |
|
| 1.6926 | 1.3697 | 1800 | 0.5730 | 0.4413 | |
|
| 1.8654 | 1.5218 | 2000 | 0.5550 | 0.4599 | |
|
| 1.8045 | 1.6739 | 2200 | 0.5445 | 0.4178 | |
|
| 1.8258 | 1.8260 | 2400 | 0.5368 | 0.4211 | |
|
| 1.543 | 1.9781 | 2600 | 0.5371 | 0.4245 | |
|
| 0.9667 | 2.1308 | 2800 | 0.5587 | 0.4545 | |
|
| 1.0216 | 2.2829 | 3000 | 0.5617 | 0.4096 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.47.1 |
|
- Pytorch 2.5.1+cu124 |
|
- Datasets 3.2.0 |
|
- Tokenizers 0.21.0 |
|
|