csikasote's picture
End of training
c2de558 verified
metadata
library_name: transformers
license: apache-2.0
base_model: openai/whisper-medium
tags:
  - generated_from_trainer
datasets:
  - bigcgen
metrics:
  - wer
model-index:
  - name: whisper-medium-bigcgen-combined-20hrs-model
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: bigcgen
          type: bigcgen
        metrics:
          - name: Wer
            type: wer
            value: 0.4210649229332088

whisper-medium-bigcgen-combined-20hrs-model

This model is a fine-tuned version of openai/whisper-medium on the bigcgen dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5368
  • Wer: 0.4211

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1.75e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
3.7679 0.1521 200 0.8942 0.6455
3.4733 0.3042 400 0.7609 0.5650
2.6698 0.4564 600 0.6958 0.5375
2.5647 0.6085 800 0.6685 0.5496
2.1636 0.7606 1000 0.6228 0.5103
2.7265 0.9127 1200 0.5869 0.4706
1.5404 1.0654 1400 0.5990 0.4542
1.9844 1.2175 1600 0.5893 0.4643
1.6926 1.3697 1800 0.5730 0.4413
1.8654 1.5218 2000 0.5550 0.4599
1.8045 1.6739 2200 0.5445 0.4178
1.8258 1.8260 2400 0.5368 0.4211
1.543 1.9781 2600 0.5371 0.4245
0.9667 2.1308 2800 0.5587 0.4545
1.0216 2.2829 3000 0.5617 0.4096

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0