whisper-medium-bigcgen-combined-20hrs-model

This model is a fine-tuned version of openai/whisper-medium on the bigcgen dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5368
  • Wer: 0.4211

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1.75e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
3.7679 0.1521 200 0.8942 0.6455
3.4733 0.3042 400 0.7609 0.5650
2.6698 0.4564 600 0.6958 0.5375
2.5647 0.6085 800 0.6685 0.5496
2.1636 0.7606 1000 0.6228 0.5103
2.7265 0.9127 1200 0.5869 0.4706
1.5404 1.0654 1400 0.5990 0.4542
1.9844 1.2175 1600 0.5893 0.4643
1.6926 1.3697 1800 0.5730 0.4413
1.8654 1.5218 2000 0.5550 0.4599
1.8045 1.6739 2200 0.5445 0.4178
1.8258 1.8260 2400 0.5368 0.4211
1.543 1.9781 2600 0.5371 0.4245
0.9667 2.1308 2800 0.5587 0.4545
1.0216 2.2829 3000 0.5617 0.4096

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
13
Safetensors
Model size
764M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for csikasote/whisper-medium-bigcgen-combined-20hrs-model

Finetuned
(539)
this model

Evaluation results