File size: 2,734 Bytes
d728879
 
 
 
 
 
c2de558
 
d728879
 
 
 
c2de558
 
 
 
 
 
 
 
 
 
 
d728879
 
 
 
 
 
 
c2de558
d728879
c2de558
 
d728879
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
---
library_name: transformers
license: apache-2.0
base_model: openai/whisper-medium
tags:
- generated_from_trainer
datasets:
- bigcgen
metrics:
- wer
model-index:
- name: whisper-medium-bigcgen-combined-20hrs-model
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: bigcgen
      type: bigcgen
    metrics:
    - name: Wer
      type: wer
      value: 0.4210649229332088
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# whisper-medium-bigcgen-combined-20hrs-model

This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co./openai/whisper-medium) on the bigcgen dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5368
- Wer: 0.4211

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1.75e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Wer    |
|:-------------:|:------:|:----:|:---------------:|:------:|
| 3.7679        | 0.1521 | 200  | 0.8942          | 0.6455 |
| 3.4733        | 0.3042 | 400  | 0.7609          | 0.5650 |
| 2.6698        | 0.4564 | 600  | 0.6958          | 0.5375 |
| 2.5647        | 0.6085 | 800  | 0.6685          | 0.5496 |
| 2.1636        | 0.7606 | 1000 | 0.6228          | 0.5103 |
| 2.7265        | 0.9127 | 1200 | 0.5869          | 0.4706 |
| 1.5404        | 1.0654 | 1400 | 0.5990          | 0.4542 |
| 1.9844        | 1.2175 | 1600 | 0.5893          | 0.4643 |
| 1.6926        | 1.3697 | 1800 | 0.5730          | 0.4413 |
| 1.8654        | 1.5218 | 2000 | 0.5550          | 0.4599 |
| 1.8045        | 1.6739 | 2200 | 0.5445          | 0.4178 |
| 1.8258        | 1.8260 | 2400 | 0.5368          | 0.4211 |
| 1.543         | 1.9781 | 2600 | 0.5371          | 0.4245 |
| 0.9667        | 2.1308 | 2800 | 0.5587          | 0.4545 |
| 1.0216        | 2.2829 | 3000 | 0.5617          | 0.4096 |


### Framework versions

- Transformers 4.47.1
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0