|
--- |
|
library_name: sentence-transformers |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- autotrain |
|
base_model: |
|
- cnmoro/micro-bertim |
|
- adalbertojunior/distilbert-portuguese-cased |
|
widget: |
|
- source_sentence: 'search_query: i love autotrain' |
|
sentences: |
|
- O pôr do sol pinta o céu com tons de laranja e vermelho |
|
- Joana adora estudar matemática nas tardes de sábado |
|
- Os pássaros voam em formação, criando um espetáculo no horizonte |
|
pipeline_tag: sentence-similarity |
|
datasets: |
|
- cnmoro/AllTripletsMsMarco-PTBR |
|
license: apache-2.0 |
|
language: |
|
- pt |
|
--- |
|
|
|
A manually pruned version of [distilbert-portuguese-cased](https://huggingface.co./adalbertojunior/distilbert-portuguese-cased), finetuned to produce high quality embeddings in a lightweight form factor. |
|
|
|
# Model Trained Using AutoTrain |
|
|
|
- Problem type: Sentence Transformers |
|
|
|
## Validation Metrics |
|
loss: 0.3181200921535492 |
|
|
|
cosine_accuracy: 0.8921948650328134 |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the Hugging Face Hub |
|
model = SentenceTransformer("cnmoro/micro-bertim-embeddings") |
|
# Run inference |
|
sentences = [ |
|
'O pôr do sol pinta o céu com tons de laranja e vermelho', |
|
'Joana adora estudar matemática nas tardes de sábado', |
|
'Os pássaros voam em formação, criando um espetáculo no horizonte', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
``` |