metadata
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- autotrain
base_model:
- cnmoro/micro-bertim
- adalbertojunior/distilbert-portuguese-cased
widget:
- source_sentence: 'search_query: i love autotrain'
sentences:
- O pôr do sol pinta o céu com tons de laranja e vermelho
- Joana adora estudar matemática nas tardes de sábado
- Os pássaros voam em formação, criando um espetáculo no horizonte
pipeline_tag: sentence-similarity
datasets:
- cnmoro/AllTripletsMsMarco-PTBR
license: apache-2.0
language:
- pt
A manually pruned version of distilbert-portuguese-cased, finetuned to produce high quality embeddings in a lightweight form factor.
Model Trained Using AutoTrain
- Problem type: Sentence Transformers
Validation Metrics
loss: 0.3181200921535492
cosine_accuracy: 0.8921948650328134
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the Hugging Face Hub
model = SentenceTransformer("cnmoro/micro-bertim-embeddings")
# Run inference
sentences = [
'O pôr do sol pinta o céu com tons de laranja e vermelho',
'Joana adora estudar matemática nas tardes de sábado',
'Os pássaros voam em formação, criando um espetáculo no horizonte',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)