cnmoro commited on
Commit
275a66c
·
verified ·
1 Parent(s): 3ce8ad2

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +16 -18
README.md CHANGED
@@ -1,4 +1,3 @@
1
-
2
  ---
3
  library_name: sentence-transformers
4
  tags:
@@ -6,18 +5,25 @@ tags:
6
  - sentence-similarity
7
  - feature-extraction
8
  - autotrain
9
- base_model: cnmoro/micro-bertim
 
 
10
  widget:
11
  - source_sentence: 'search_query: i love autotrain'
12
  sentences:
13
- - 'search_query: huggingface auto train'
14
- - 'search_query: hugging face auto train'
15
- - 'search_query: i love autotrain'
16
  pipeline_tag: sentence-similarity
17
  datasets:
18
  - cnmoro/AllTripletsMsMarco-PTBR
 
 
 
19
  ---
20
 
 
 
21
  # Model Trained Using AutoTrain
22
 
23
  - Problem type: Sentence Transformers
@@ -27,14 +33,6 @@ loss: 0.3181200921535492
27
 
28
  cosine_accuracy: 0.8921948650328134
29
 
30
- runtime: 2141.8089
31
-
32
- samples_per_second: 246.442
33
-
34
- steps_per_second: 12.322
35
-
36
- : 1.0
37
-
38
  ## Usage
39
 
40
  ### Direct Usage (Sentence Transformers)
@@ -50,12 +48,12 @@ Then you can load this model and run inference.
50
  from sentence_transformers import SentenceTransformer
51
 
52
  # Download from the Hugging Face Hub
53
- model = SentenceTransformer("sentence_transformers_model_id")
54
  # Run inference
55
  sentences = [
56
- 'search_query: autotrain',
57
- 'search_query: auto train',
58
- 'search_query: i love autotrain',
59
  ]
60
  embeddings = model.encode(sentences)
61
  print(embeddings.shape)
@@ -63,4 +61,4 @@ print(embeddings.shape)
63
  # Get the similarity scores for the embeddings
64
  similarities = model.similarity(embeddings, embeddings)
65
  print(similarities.shape)
66
- ```
 
 
1
  ---
2
  library_name: sentence-transformers
3
  tags:
 
5
  - sentence-similarity
6
  - feature-extraction
7
  - autotrain
8
+ base_model:
9
+ - cnmoro/micro-bertim
10
+ - adalbertojunior/distilbert-portuguese-cased
11
  widget:
12
  - source_sentence: 'search_query: i love autotrain'
13
  sentences:
14
+ - O pôr do sol pinta o céu com tons de laranja e vermelho
15
+ - Joana adora estudar matemática nas tardes de sábado
16
+ - Os pássaros voam em formação, criando um espetáculo no horizonte
17
  pipeline_tag: sentence-similarity
18
  datasets:
19
  - cnmoro/AllTripletsMsMarco-PTBR
20
+ license: apache-2.0
21
+ language:
22
+ - pt
23
  ---
24
 
25
+ A manually pruned version of [distilbert-portuguese-cased](https://huggingface.co/adalbertojunior/distilbert-portuguese-cased), finetuned to produce high quality embeddings in a lightweight form factor.
26
+
27
  # Model Trained Using AutoTrain
28
 
29
  - Problem type: Sentence Transformers
 
33
 
34
  cosine_accuracy: 0.8921948650328134
35
 
 
 
 
 
 
 
 
 
36
  ## Usage
37
 
38
  ### Direct Usage (Sentence Transformers)
 
48
  from sentence_transformers import SentenceTransformer
49
 
50
  # Download from the Hugging Face Hub
51
+ model = SentenceTransformer("cnmoro/micro-bertim-embeddings")
52
  # Run inference
53
  sentences = [
54
+ 'O pôr do sol pinta o céu com tons de laranja e vermelho',
55
+ 'Joana adora estudar matemática nas tardes de sábado',
56
+ 'Os pássaros voam em formação, criando um espetáculo no horizonte',
57
  ]
58
  embeddings = model.encode(sentences)
59
  print(embeddings.shape)
 
61
  # Get the similarity scores for the embeddings
62
  similarities = model.similarity(embeddings, embeddings)
63
  print(similarities.shape)
64
+ ```