Update README.md
Browse files
README.md
CHANGED
@@ -1,4 +1,3 @@
|
|
1 |
-
|
2 |
---
|
3 |
library_name: sentence-transformers
|
4 |
tags:
|
@@ -6,18 +5,25 @@ tags:
|
|
6 |
- sentence-similarity
|
7 |
- feature-extraction
|
8 |
- autotrain
|
9 |
-
base_model:
|
|
|
|
|
10 |
widget:
|
11 |
- source_sentence: 'search_query: i love autotrain'
|
12 |
sentences:
|
13 |
-
-
|
14 |
-
-
|
15 |
-
-
|
16 |
pipeline_tag: sentence-similarity
|
17 |
datasets:
|
18 |
- cnmoro/AllTripletsMsMarco-PTBR
|
|
|
|
|
|
|
19 |
---
|
20 |
|
|
|
|
|
21 |
# Model Trained Using AutoTrain
|
22 |
|
23 |
- Problem type: Sentence Transformers
|
@@ -27,14 +33,6 @@ loss: 0.3181200921535492
|
|
27 |
|
28 |
cosine_accuracy: 0.8921948650328134
|
29 |
|
30 |
-
runtime: 2141.8089
|
31 |
-
|
32 |
-
samples_per_second: 246.442
|
33 |
-
|
34 |
-
steps_per_second: 12.322
|
35 |
-
|
36 |
-
: 1.0
|
37 |
-
|
38 |
## Usage
|
39 |
|
40 |
### Direct Usage (Sentence Transformers)
|
@@ -50,12 +48,12 @@ Then you can load this model and run inference.
|
|
50 |
from sentence_transformers import SentenceTransformer
|
51 |
|
52 |
# Download from the Hugging Face Hub
|
53 |
-
model = SentenceTransformer("
|
54 |
# Run inference
|
55 |
sentences = [
|
56 |
-
'
|
57 |
-
'
|
58 |
-
'
|
59 |
]
|
60 |
embeddings = model.encode(sentences)
|
61 |
print(embeddings.shape)
|
@@ -63,4 +61,4 @@ print(embeddings.shape)
|
|
63 |
# Get the similarity scores for the embeddings
|
64 |
similarities = model.similarity(embeddings, embeddings)
|
65 |
print(similarities.shape)
|
66 |
-
```
|
|
|
|
|
1 |
---
|
2 |
library_name: sentence-transformers
|
3 |
tags:
|
|
|
5 |
- sentence-similarity
|
6 |
- feature-extraction
|
7 |
- autotrain
|
8 |
+
base_model:
|
9 |
+
- cnmoro/micro-bertim
|
10 |
+
- adalbertojunior/distilbert-portuguese-cased
|
11 |
widget:
|
12 |
- source_sentence: 'search_query: i love autotrain'
|
13 |
sentences:
|
14 |
+
- O pôr do sol pinta o céu com tons de laranja e vermelho
|
15 |
+
- Joana adora estudar matemática nas tardes de sábado
|
16 |
+
- Os pássaros voam em formação, criando um espetáculo no horizonte
|
17 |
pipeline_tag: sentence-similarity
|
18 |
datasets:
|
19 |
- cnmoro/AllTripletsMsMarco-PTBR
|
20 |
+
license: apache-2.0
|
21 |
+
language:
|
22 |
+
- pt
|
23 |
---
|
24 |
|
25 |
+
A manually pruned version of [distilbert-portuguese-cased](https://huggingface.co/adalbertojunior/distilbert-portuguese-cased), finetuned to produce high quality embeddings in a lightweight form factor.
|
26 |
+
|
27 |
# Model Trained Using AutoTrain
|
28 |
|
29 |
- Problem type: Sentence Transformers
|
|
|
33 |
|
34 |
cosine_accuracy: 0.8921948650328134
|
35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
## Usage
|
37 |
|
38 |
### Direct Usage (Sentence Transformers)
|
|
|
48 |
from sentence_transformers import SentenceTransformer
|
49 |
|
50 |
# Download from the Hugging Face Hub
|
51 |
+
model = SentenceTransformer("cnmoro/micro-bertim-embeddings")
|
52 |
# Run inference
|
53 |
sentences = [
|
54 |
+
'O pôr do sol pinta o céu com tons de laranja e vermelho',
|
55 |
+
'Joana adora estudar matemática nas tardes de sábado',
|
56 |
+
'Os pássaros voam em formação, criando um espetáculo no horizonte',
|
57 |
]
|
58 |
embeddings = model.encode(sentences)
|
59 |
print(embeddings.shape)
|
|
|
61 |
# Get the similarity scores for the embeddings
|
62 |
similarities = model.similarity(embeddings, embeddings)
|
63 |
print(similarities.shape)
|
64 |
+
```
|