File size: 1,741 Bytes
3ce8ad2 275a66c 3ce8ad2 275a66c 3ce8ad2 275a66c 3ce8ad2 275a66c 3ce8ad2 275a66c 3ce8ad2 275a66c 3ce8ad2 275a66c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 |
---
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- autotrain
base_model:
- cnmoro/micro-bertim
- adalbertojunior/distilbert-portuguese-cased
widget:
- source_sentence: 'search_query: i love autotrain'
sentences:
- O pôr do sol pinta o céu com tons de laranja e vermelho
- Joana adora estudar matemática nas tardes de sábado
- Os pássaros voam em formação, criando um espetáculo no horizonte
pipeline_tag: sentence-similarity
datasets:
- cnmoro/AllTripletsMsMarco-PTBR
license: apache-2.0
language:
- pt
---
A manually pruned version of [distilbert-portuguese-cased](https://huggingface.co./adalbertojunior/distilbert-portuguese-cased), finetuned to produce high quality embeddings in a lightweight form factor.
# Model Trained Using AutoTrain
- Problem type: Sentence Transformers
## Validation Metrics
loss: 0.3181200921535492
cosine_accuracy: 0.8921948650328134
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the Hugging Face Hub
model = SentenceTransformer("cnmoro/micro-bertim-embeddings")
# Run inference
sentences = [
'O pôr do sol pinta o céu com tons de laranja e vermelho',
'Joana adora estudar matemática nas tardes de sábado',
'Os pássaros voam em formação, criando um espetáculo no horizonte',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
``` |