File size: 2,415 Bytes
edbbaaf
 
 
 
 
 
83fe4a1
edbbaaf
 
 
 
 
 
 
 
 
 
 
 
83fe4a1
 
edbbaaf
 
 
 
 
 
b79ea2c
edbbaaf
 
b79ea2c
edbbaaf
 
b79ea2c
edbbaaf
 
b79ea2c
edbbaaf
 
 
 
 
 
 
83fe4a1
edbbaaf
b79ea2c
 
 
af98386
 
edbbaaf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc85824
edbbaaf
 
 
 
 
b79ea2c
edbbaaf
 
 
ef2154c
 
b79ea2c
 
 
 
 
edbbaaf
 
 
 
b79ea2c
edbbaaf
92c050f
edbbaaf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
datasets:
- ner
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: my_awesome_wnut_model
  results:
  - task:
      name: Token Classification
      type: token-classification
    dataset:
      name: ner
      type: ner
      config: indian_names
      split: train
      args: indian_names
    metrics:
    - name: Precision
      type: precision
      value: 0.9999768614928964
    - name: Recall
      type: recall
      value: 0.9999305876908838
    - name: F1
      type: f1
      value: 0.9999537240565493
    - name: Accuracy
      type: accuracy
      value: 0.9999695484028137
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# my_awesome_wnut_model

This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co./distilbert-base-uncased) on the ner dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0001
- Precision: 1.0000
- Recall: 0.9999
- F1: 1.0000
- Accuracy: 1.0000

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.0405        | 1.0   | 688  | 0.0024          | 0.9962    | 0.9969 | 0.9965 | 0.9980   |
| 0.0078        | 2.0   | 1376 | 0.0017          | 0.9972    | 0.9989 | 0.9981 | 0.9990   |
| 0.0024        | 3.0   | 2064 | 0.0004          | 0.9995    | 0.9998 | 0.9997 | 0.9998   |
| 0.0008        | 4.0   | 2752 | 0.0002          | 0.9999    | 0.9999 | 0.9999 | 0.9999   |
| 0.001         | 5.0   | 3440 | 0.0001          | 1.0000    | 0.9999 | 1.0000 | 1.0000   |


### Framework versions

- Transformers 4.33.2
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.13.3