End of training
Browse files
README.md
CHANGED
@@ -25,16 +25,16 @@ model-index:
|
|
25 |
metrics:
|
26 |
- name: Precision
|
27 |
type: precision
|
28 |
-
value: 0.
|
29 |
- name: Recall
|
30 |
type: recall
|
31 |
-
value: 0.
|
32 |
- name: F1
|
33 |
type: f1
|
34 |
-
value: 0.
|
35 |
- name: Accuracy
|
36 |
type: accuracy
|
37 |
-
value: 0.
|
38 |
---
|
39 |
|
40 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -44,11 +44,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
44 |
|
45 |
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the indian_names dataset.
|
46 |
It achieves the following results on the evaluation set:
|
47 |
-
- Loss: 0.
|
48 |
-
- Precision: 0.
|
49 |
-
- Recall: 0.
|
50 |
-
- F1: 0.
|
51 |
-
- Accuracy: 0.
|
52 |
|
53 |
## Model description
|
54 |
|
@@ -73,22 +73,32 @@ The following hyperparameters were used during training:
|
|
73 |
- seed: 42
|
74 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
75 |
- lr_scheduler_type: linear
|
76 |
-
- num_epochs:
|
77 |
|
78 |
### Training results
|
79 |
|
80 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
81 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
82 |
-
| No log | 1.0 |
|
83 |
-
| No log | 2.0 |
|
84 |
-
|
|
85 |
-
|
|
86 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
|
88 |
|
89 |
### Framework versions
|
90 |
|
91 |
-
- Transformers 4.33.
|
92 |
- Pytorch 2.0.1+cu118
|
93 |
-
- Datasets 2.14.
|
94 |
- Tokenizers 0.13.3
|
|
|
25 |
metrics:
|
26 |
- name: Precision
|
27 |
type: precision
|
28 |
+
value: 0.9941348973607038
|
29 |
- name: Recall
|
30 |
type: recall
|
31 |
+
value: 0.9921951219512195
|
32 |
- name: F1
|
33 |
type: f1
|
34 |
+
value: 0.9931640625
|
35 |
- name: Accuracy
|
36 |
type: accuracy
|
37 |
+
value: 0.9998052125131481
|
38 |
---
|
39 |
|
40 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
44 |
|
45 |
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the indian_names dataset.
|
46 |
It achieves the following results on the evaluation set:
|
47 |
+
- Loss: 0.0012
|
48 |
+
- Precision: 0.9941
|
49 |
+
- Recall: 0.9922
|
50 |
+
- F1: 0.9932
|
51 |
+
- Accuracy: 0.9998
|
52 |
|
53 |
## Model description
|
54 |
|
|
|
73 |
- seed: 42
|
74 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
75 |
- lr_scheduler_type: linear
|
76 |
+
- num_epochs: 15
|
77 |
|
78 |
### Training results
|
79 |
|
80 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
81 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
82 |
+
| No log | 1.0 | 63 | 0.1413 | 0.0 | 0.0 | 0.0 | 0.9745 |
|
83 |
+
| No log | 2.0 | 126 | 0.1211 | 0.0 | 0.0 | 0.0 | 0.9745 |
|
84 |
+
| No log | 3.0 | 189 | 0.0656 | 0.6231 | 0.2790 | 0.3854 | 0.9811 |
|
85 |
+
| No log | 4.0 | 252 | 0.0380 | 0.7297 | 0.6059 | 0.6620 | 0.9894 |
|
86 |
+
| No log | 5.0 | 315 | 0.0259 | 0.8341 | 0.7259 | 0.7762 | 0.9931 |
|
87 |
+
| No log | 6.0 | 378 | 0.0136 | 0.8842 | 0.8712 | 0.8776 | 0.9963 |
|
88 |
+
| No log | 7.0 | 441 | 0.0076 | 0.9286 | 0.9268 | 0.9277 | 0.9981 |
|
89 |
+
| 0.0748 | 8.0 | 504 | 0.0054 | 0.9409 | 0.9473 | 0.9441 | 0.9985 |
|
90 |
+
| 0.0748 | 9.0 | 567 | 0.0042 | 0.9520 | 0.9678 | 0.9598 | 0.9991 |
|
91 |
+
| 0.0748 | 10.0 | 630 | 0.0025 | 0.9738 | 0.9795 | 0.9767 | 0.9995 |
|
92 |
+
| 0.0748 | 11.0 | 693 | 0.0019 | 0.9863 | 0.9863 | 0.9863 | 0.9997 |
|
93 |
+
| 0.0748 | 12.0 | 756 | 0.0015 | 0.9961 | 0.9912 | 0.9936 | 0.9998 |
|
94 |
+
| 0.0748 | 13.0 | 819 | 0.0014 | 0.9912 | 0.9912 | 0.9912 | 0.9998 |
|
95 |
+
| 0.0748 | 14.0 | 882 | 0.0013 | 0.9912 | 0.9912 | 0.9912 | 0.9998 |
|
96 |
+
| 0.0748 | 15.0 | 945 | 0.0012 | 0.9941 | 0.9922 | 0.9932 | 0.9998 |
|
97 |
|
98 |
|
99 |
### Framework versions
|
100 |
|
101 |
+
- Transformers 4.33.1
|
102 |
- Pytorch 2.0.1+cu118
|
103 |
+
- Datasets 2.14.5
|
104 |
- Tokenizers 0.13.3
|