End of training
Browse files
README.md
CHANGED
@@ -25,16 +25,16 @@ model-index:
|
|
25 |
metrics:
|
26 |
- name: Precision
|
27 |
type: precision
|
28 |
-
value:
|
29 |
- name: Recall
|
30 |
type: recall
|
31 |
-
value: 0.
|
32 |
- name: F1
|
33 |
type: f1
|
34 |
-
value: 0.
|
35 |
- name: Accuracy
|
36 |
type: accuracy
|
37 |
-
value: 0.
|
38 |
---
|
39 |
|
40 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -44,9 +44,9 @@ should probably proofread and complete it, then remove this comment. -->
|
|
44 |
|
45 |
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the ner dataset.
|
46 |
It achieves the following results on the evaluation set:
|
47 |
-
- Loss: 0.
|
48 |
-
- Precision: 1.
|
49 |
-
- Recall:
|
50 |
- F1: 1.0000
|
51 |
- Accuracy: 1.0000
|
52 |
|
@@ -73,27 +73,22 @@ The following hyperparameters were used during training:
|
|
73 |
- seed: 42
|
74 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
75 |
- lr_scheduler_type: linear
|
76 |
-
- num_epochs:
|
77 |
|
78 |
### Training results
|
79 |
|
80 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
81 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
-
| 0.
|
86 |
-
| 0.
|
87 |
-
| 0.0032 | 6.0 | 3756 | 0.0003 | 0.9999 | 0.9998 | 0.9999 | 1.0000 |
|
88 |
-
| 0.003 | 7.0 | 4382 | 0.0001 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
|
89 |
-
| 0.0013 | 8.0 | 5008 | 0.0000 | 1.0 | 1.0 | 1.0 | 1.0 |
|
90 |
-
| 0.0013 | 9.0 | 5634 | 0.0001 | 1.0000 | 0.9999 | 0.9999 | 1.0000 |
|
91 |
-
| 0.0011 | 10.0 | 6260 | 0.0000 | 1.0 | 1.0000 | 1.0000 | 1.0000 |
|
92 |
|
93 |
|
94 |
### Framework versions
|
95 |
|
96 |
-
- Transformers 4.33.
|
97 |
- Pytorch 2.0.1+cu118
|
98 |
- Datasets 2.14.5
|
99 |
- Tokenizers 0.13.3
|
|
|
25 |
metrics:
|
26 |
- name: Precision
|
27 |
type: precision
|
28 |
+
value: 0.9999768614928964
|
29 |
- name: Recall
|
30 |
type: recall
|
31 |
+
value: 0.9999305876908838
|
32 |
- name: F1
|
33 |
type: f1
|
34 |
+
value: 0.9999537240565493
|
35 |
- name: Accuracy
|
36 |
type: accuracy
|
37 |
+
value: 0.9999695484028137
|
38 |
---
|
39 |
|
40 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
44 |
|
45 |
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the ner dataset.
|
46 |
It achieves the following results on the evaluation set:
|
47 |
+
- Loss: 0.0001
|
48 |
+
- Precision: 1.0000
|
49 |
+
- Recall: 0.9999
|
50 |
- F1: 1.0000
|
51 |
- Accuracy: 1.0000
|
52 |
|
|
|
73 |
- seed: 42
|
74 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
75 |
- lr_scheduler_type: linear
|
76 |
+
- num_epochs: 5
|
77 |
|
78 |
### Training results
|
79 |
|
80 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
81 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
82 |
+
| 0.0405 | 1.0 | 688 | 0.0024 | 0.9962 | 0.9969 | 0.9965 | 0.9980 |
|
83 |
+
| 0.0078 | 2.0 | 1376 | 0.0017 | 0.9972 | 0.9989 | 0.9981 | 0.9990 |
|
84 |
+
| 0.0024 | 3.0 | 2064 | 0.0004 | 0.9995 | 0.9998 | 0.9997 | 0.9998 |
|
85 |
+
| 0.0008 | 4.0 | 2752 | 0.0002 | 0.9999 | 0.9999 | 0.9999 | 0.9999 |
|
86 |
+
| 0.001 | 5.0 | 3440 | 0.0001 | 1.0000 | 0.9999 | 1.0000 | 1.0000 |
|
|
|
|
|
|
|
|
|
|
|
87 |
|
88 |
|
89 |
### Framework versions
|
90 |
|
91 |
+
- Transformers 4.33.2
|
92 |
- Pytorch 2.0.1+cu118
|
93 |
- Datasets 2.14.5
|
94 |
- Tokenizers 0.13.3
|