metadata
base_model: allenai/specter2_base
library_name: sentence-transformers
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:8705
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: Vaccine Administration in High-Risk Groups
sentences:
- >-
[V+: strategies improving vaccination coverage among children with
chronic diseases].
- 'Medical writer welcomes advice on working with medical writers. '
- 'Vaccination management. '
- source_sentence: Eosinophil recruitment and STAT6 signalling pathway in nematode infections
sentences:
- >-
The roles of eotaxin and the STAT6 signalling pathway in eosinophil
recruitment and host resistance to the nematodes Nippostrongylus
brasiliensis and Heligmosomoides bakeri.
- 'ABO blood groups from Palamau, Bihar, India. '
- >-
Both stat5a and stat5b are required for antigen-induced eosinophil and
T-cell recruitment into the tissue.
- source_sentence: Constitutional Medicine Status
sentences:
- '[Present status of constitutional medicine]. '
- >-
Convergence of submodality-specific input onto neurons in primary
somatosensory cortex.
- 'The link between health and wellbeing and constitutional recognition. '
- source_sentence: Telehealth challenges
sentences:
- >-
[Technological transformations and evolution of the medical practice:
current status, issues and perspectives for the development of
telemedicine].
- 'The untapped potential of Telehealth. '
- 'Enhanced chartreusin solubility by hydroxybenzoate hydrotropy. '
- source_sentence: Kawasaki disease immunoprophylaxis
sentences:
- >-
[Effect of immunoglobulin in the prevention of coronary artery aneurysms
in Kawasaki disease].
- 'Management of Kawasaki disease. '
- >-
IgA anti-epidermal transglutaminase antibodies in dermatitis
herpetiformis and pediatric celiac disease.
SentenceTransformer based on allenai/specter2_base
This is a sentence-transformers model finetuned from allenai/specter2_base on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: allenai/specter2_base
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- json
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'Kawasaki disease immunoprophylaxis',
'[Effect of immunoglobulin in the prevention of coronary artery aneurysms in Kawasaki disease]. ',
'Management of Kawasaki disease. ',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
json
- Dataset: json
- Size: 8,705 training samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 4 tokens
- mean: 7.6 tokens
- max: 18 tokens
- min: 6 tokens
- mean: 19.26 tokens
- max: 42 tokens
- min: 4 tokens
- mean: 11.72 tokens
- max: 46 tokens
- Samples:
anchor positive negative Telehealth challenges
[Technological transformations and evolution of the medical practice: current status, issues and perspectives for the development of telemedicine].
The untapped potential of Telehealth.
Racial disparities in mental health treatment
Relationships between stigma, depression, and treatment in white and African American primary care patients.
Mental Health Care Disparities Now and in the Future.
Iatrogenic hyperkalemia in elderly patients with cardiovascular disease
Iatrogenic hyperkalemia as a serious problem in therapy of cardiovascular diseases in elderly patients.
The cardiovascular implications of hypokalemia.
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 32per_device_eval_batch_size
: 32learning_rate
: 2e-05num_train_epochs
: 1lr_scheduler_type
: cosine_with_restartswarmup_ratio
: 0.1bf16
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 32per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: cosine_with_restartslr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss |
---|---|---|
0.0110 | 1 | 2.9861 |
0.0220 | 2 | 2.9379 |
0.0330 | 3 | 3.0613 |
0.0440 | 4 | 2.8081 |
0.0549 | 5 | 2.6516 |
0.0659 | 6 | 2.3688 |
0.0769 | 7 | 2.0502 |
0.0879 | 8 | 1.7557 |
0.0989 | 9 | 1.5316 |
0.1099 | 10 | 1.2476 |
0.1209 | 11 | 1.1529 |
0.1319 | 12 | 0.9483 |
0.1429 | 13 | 0.7187 |
0.1538 | 14 | 0.6824 |
0.1648 | 15 | 0.593 |
0.1758 | 16 | 0.4593 |
0.1868 | 17 | 0.3737 |
0.1978 | 18 | 0.5082 |
0.2088 | 19 | 0.4232 |
0.2198 | 20 | 0.3089 |
0.2308 | 21 | 0.2057 |
0.2418 | 22 | 0.2358 |
0.2527 | 23 | 0.2291 |
0.2637 | 24 | 0.2707 |
0.2747 | 25 | 0.1359 |
0.2857 | 26 | 0.2294 |
0.2967 | 27 | 0.157 |
0.3077 | 28 | 0.0678 |
0.3187 | 29 | 0.1022 |
0.3297 | 30 | 0.0713 |
0.3407 | 31 | 0.0899 |
0.3516 | 32 | 0.1385 |
0.3626 | 33 | 0.0809 |
0.3736 | 34 | 0.1053 |
0.3846 | 35 | 0.0925 |
0.3956 | 36 | 0.0675 |
0.4066 | 37 | 0.0841 |
0.4176 | 38 | 0.0366 |
0.4286 | 39 | 0.0768 |
0.4396 | 40 | 0.0529 |
0.4505 | 41 | 0.0516 |
0.4615 | 42 | 0.0342 |
0.4725 | 43 | 0.0456 |
0.4835 | 44 | 0.0344 |
0.4945 | 45 | 0.1337 |
0.5055 | 46 | 0.0883 |
0.5165 | 47 | 0.0691 |
0.5275 | 48 | 0.0322 |
0.5385 | 49 | 0.0731 |
0.5495 | 50 | 0.0376 |
0.5604 | 51 | 0.0464 |
0.5714 | 52 | 0.0173 |
0.5824 | 53 | 0.0516 |
0.5934 | 54 | 0.0703 |
0.6044 | 55 | 0.0273 |
0.6154 | 56 | 0.0374 |
0.6264 | 57 | 0.0292 |
0.6374 | 58 | 0.1195 |
0.6484 | 59 | 0.0852 |
0.6593 | 60 | 0.0697 |
0.6703 | 61 | 0.0653 |
0.6813 | 62 | 0.0426 |
0.6923 | 63 | 0.0288 |
0.7033 | 64 | 0.0344 |
0.7143 | 65 | 0.104 |
0.7253 | 66 | 0.0251 |
0.7363 | 67 | 0.0095 |
0.7473 | 68 | 0.0208 |
0.7582 | 69 | 0.0814 |
0.7692 | 70 | 0.0813 |
0.7802 | 71 | 0.0508 |
0.7912 | 72 | 0.032 |
0.8022 | 73 | 0.0879 |
0.8132 | 74 | 0.095 |
0.8242 | 75 | 0.0932 |
0.8352 | 76 | 0.0868 |
0.8462 | 77 | 0.0231 |
0.8571 | 78 | 0.0144 |
0.8681 | 79 | 0.0179 |
0.8791 | 80 | 0.0457 |
0.8901 | 81 | 0.0935 |
0.9011 | 82 | 0.0658 |
0.9121 | 83 | 0.0553 |
0.9231 | 84 | 0.003 |
0.9341 | 85 | 0.0036 |
0.9451 | 86 | 0.0034 |
0.9560 | 87 | 0.0032 |
0.9670 | 88 | 0.0026 |
0.9780 | 89 | 0.0042 |
0.9890 | 90 | 0.0024 |
1.0 | 91 | 0.0022 |
Framework Versions
- Python: 3.9.19
- Sentence Transformers: 3.1.1
- Transformers: 4.45.2
- PyTorch: 2.5.0
- Accelerate: 1.0.1
- Datasets: 2.19.0
- Tokenizers: 0.20.3
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}