wwydmanski's picture
Upload folder using huggingface_hub
c69babb verified
metadata
base_model: allenai/specter2_base
library_name: sentence-transformers
pipeline_tag: sentence-similarity
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:8705
  - loss:MultipleNegativesRankingLoss
widget:
  - source_sentence: Vaccine Administration in High-Risk Groups
    sentences:
      - >-
        [V+: strategies improving vaccination coverage among children with
        chronic diseases]. 
      - 'Medical writer welcomes advice on working with medical writers. '
      - 'Vaccination management. '
  - source_sentence: Eosinophil recruitment and STAT6 signalling pathway in nematode infections
    sentences:
      - >-
        The roles of eotaxin and the STAT6 signalling pathway in eosinophil
        recruitment and host resistance to the nematodes Nippostrongylus
        brasiliensis and Heligmosomoides bakeri. 
      - 'ABO blood groups from Palamau, Bihar, India. '
      - >-
        Both stat5a and stat5b are required for antigen-induced eosinophil and
        T-cell recruitment into the tissue. 
  - source_sentence: Constitutional Medicine Status
    sentences:
      - '[Present status of constitutional medicine]. '
      - >-
        Convergence of submodality-specific input onto neurons in primary
        somatosensory cortex. 
      - 'The link between health and wellbeing and constitutional recognition. '
  - source_sentence: Telehealth challenges
    sentences:
      - >-
        [Technological transformations and evolution of the medical practice:
        current status, issues and perspectives for the development of
        telemedicine]. 
      - 'The untapped potential of Telehealth. '
      - 'Enhanced chartreusin solubility by hydroxybenzoate hydrotropy. '
  - source_sentence: Kawasaki disease immunoprophylaxis
    sentences:
      - >-
        [Effect of immunoglobulin in the prevention of coronary artery aneurysms
        in Kawasaki disease]. 
      - 'Management of Kawasaki disease. '
      - >-
        IgA anti-epidermal transglutaminase antibodies in dermatitis
        herpetiformis and pediatric celiac disease. 

SentenceTransformer based on allenai/specter2_base

This is a sentence-transformers model finetuned from allenai/specter2_base on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: allenai/specter2_base
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 tokens
  • Similarity Function: Cosine Similarity
  • Training Dataset:
    • json

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'Kawasaki disease immunoprophylaxis',
    '[Effect of immunoglobulin in the prevention of coronary artery aneurysms in Kawasaki disease]. ',
    'Management of Kawasaki disease. ',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Training Details

Training Dataset

json

  • Dataset: json
  • Size: 8,705 training samples
  • Columns: anchor, positive, and negative
  • Approximate statistics based on the first 1000 samples:
    anchor positive negative
    type string string string
    details
    • min: 4 tokens
    • mean: 7.6 tokens
    • max: 18 tokens
    • min: 6 tokens
    • mean: 19.26 tokens
    • max: 42 tokens
    • min: 4 tokens
    • mean: 11.72 tokens
    • max: 46 tokens
  • Samples:
    anchor positive negative
    Telehealth challenges [Technological transformations and evolution of the medical practice: current status, issues and perspectives for the development of telemedicine]. The untapped potential of Telehealth.
    Racial disparities in mental health treatment Relationships between stigma, depression, and treatment in white and African American primary care patients. Mental Health Care Disparities Now and in the Future.
    Iatrogenic hyperkalemia in elderly patients with cardiovascular disease Iatrogenic hyperkalemia as a serious problem in therapy of cardiovascular diseases in elderly patients. The cardiovascular implications of hypokalemia.
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 32
  • learning_rate: 2e-05
  • num_train_epochs: 1
  • lr_scheduler_type: cosine_with_restarts
  • warmup_ratio: 0.1
  • bf16: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: no
  • prediction_loss_only: True
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 32
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: cosine_with_restarts
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss
0.0110 1 2.9861
0.0220 2 2.9379
0.0330 3 3.0613
0.0440 4 2.8081
0.0549 5 2.6516
0.0659 6 2.3688
0.0769 7 2.0502
0.0879 8 1.7557
0.0989 9 1.5316
0.1099 10 1.2476
0.1209 11 1.1529
0.1319 12 0.9483
0.1429 13 0.7187
0.1538 14 0.6824
0.1648 15 0.593
0.1758 16 0.4593
0.1868 17 0.3737
0.1978 18 0.5082
0.2088 19 0.4232
0.2198 20 0.3089
0.2308 21 0.2057
0.2418 22 0.2358
0.2527 23 0.2291
0.2637 24 0.2707
0.2747 25 0.1359
0.2857 26 0.2294
0.2967 27 0.157
0.3077 28 0.0678
0.3187 29 0.1022
0.3297 30 0.0713
0.3407 31 0.0899
0.3516 32 0.1385
0.3626 33 0.0809
0.3736 34 0.1053
0.3846 35 0.0925
0.3956 36 0.0675
0.4066 37 0.0841
0.4176 38 0.0366
0.4286 39 0.0768
0.4396 40 0.0529
0.4505 41 0.0516
0.4615 42 0.0342
0.4725 43 0.0456
0.4835 44 0.0344
0.4945 45 0.1337
0.5055 46 0.0883
0.5165 47 0.0691
0.5275 48 0.0322
0.5385 49 0.0731
0.5495 50 0.0376
0.5604 51 0.0464
0.5714 52 0.0173
0.5824 53 0.0516
0.5934 54 0.0703
0.6044 55 0.0273
0.6154 56 0.0374
0.6264 57 0.0292
0.6374 58 0.1195
0.6484 59 0.0852
0.6593 60 0.0697
0.6703 61 0.0653
0.6813 62 0.0426
0.6923 63 0.0288
0.7033 64 0.0344
0.7143 65 0.104
0.7253 66 0.0251
0.7363 67 0.0095
0.7473 68 0.0208
0.7582 69 0.0814
0.7692 70 0.0813
0.7802 71 0.0508
0.7912 72 0.032
0.8022 73 0.0879
0.8132 74 0.095
0.8242 75 0.0932
0.8352 76 0.0868
0.8462 77 0.0231
0.8571 78 0.0144
0.8681 79 0.0179
0.8791 80 0.0457
0.8901 81 0.0935
0.9011 82 0.0658
0.9121 83 0.0553
0.9231 84 0.003
0.9341 85 0.0036
0.9451 86 0.0034
0.9560 87 0.0032
0.9670 88 0.0026
0.9780 89 0.0042
0.9890 90 0.0024
1.0 91 0.0022

Framework Versions

  • Python: 3.9.19
  • Sentence Transformers: 3.1.1
  • Transformers: 4.45.2
  • PyTorch: 2.5.0
  • Accelerate: 1.0.1
  • Datasets: 2.19.0
  • Tokenizers: 0.20.3

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}