wwydmanski commited on
Commit
c69babb
·
verified ·
1 Parent(s): 7d5987d

Upload folder using huggingface_hub

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,456 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: allenai/specter2_base
3
+ library_name: sentence-transformers
4
+ pipeline_tag: sentence-similarity
5
+ tags:
6
+ - sentence-transformers
7
+ - sentence-similarity
8
+ - feature-extraction
9
+ - generated_from_trainer
10
+ - dataset_size:8705
11
+ - loss:MultipleNegativesRankingLoss
12
+ widget:
13
+ - source_sentence: Vaccine Administration in High-Risk Groups
14
+ sentences:
15
+ - '[V+: strategies improving vaccination coverage among children with chronic diseases]. '
16
+ - 'Medical writer welcomes advice on working with medical writers. '
17
+ - 'Vaccination management. '
18
+ - source_sentence: Eosinophil recruitment and STAT6 signalling pathway in nematode
19
+ infections
20
+ sentences:
21
+ - 'The roles of eotaxin and the STAT6 signalling pathway in eosinophil recruitment
22
+ and host resistance to the nematodes Nippostrongylus brasiliensis and Heligmosomoides
23
+ bakeri. '
24
+ - 'ABO blood groups from Palamau, Bihar, India. '
25
+ - 'Both stat5a and stat5b are required for antigen-induced eosinophil and T-cell
26
+ recruitment into the tissue. '
27
+ - source_sentence: Constitutional Medicine Status
28
+ sentences:
29
+ - '[Present status of constitutional medicine]. '
30
+ - 'Convergence of submodality-specific input onto neurons in primary somatosensory
31
+ cortex. '
32
+ - 'The link between health and wellbeing and constitutional recognition. '
33
+ - source_sentence: Telehealth challenges
34
+ sentences:
35
+ - '[Technological transformations and evolution of the medical practice: current
36
+ status, issues and perspectives for the development of telemedicine]. '
37
+ - 'The untapped potential of Telehealth. '
38
+ - 'Enhanced chartreusin solubility by hydroxybenzoate hydrotropy. '
39
+ - source_sentence: Kawasaki disease immunoprophylaxis
40
+ sentences:
41
+ - '[Effect of immunoglobulin in the prevention of coronary artery aneurysms in Kawasaki
42
+ disease]. '
43
+ - 'Management of Kawasaki disease. '
44
+ - 'IgA anti-epidermal transglutaminase antibodies in dermatitis herpetiformis and
45
+ pediatric celiac disease. '
46
+ ---
47
+
48
+ # SentenceTransformer based on allenai/specter2_base
49
+
50
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [allenai/specter2_base](https://huggingface.co/allenai/specter2_base) on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
51
+
52
+ ## Model Details
53
+
54
+ ### Model Description
55
+ - **Model Type:** Sentence Transformer
56
+ - **Base model:** [allenai/specter2_base](https://huggingface.co/allenai/specter2_base) <!-- at revision 3447645e1def9117997203454fa4495937bfbd83 -->
57
+ - **Maximum Sequence Length:** 512 tokens
58
+ - **Output Dimensionality:** 768 tokens
59
+ - **Similarity Function:** Cosine Similarity
60
+ - **Training Dataset:**
61
+ - json
62
+ <!-- - **Language:** Unknown -->
63
+ <!-- - **License:** Unknown -->
64
+
65
+ ### Model Sources
66
+
67
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
68
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
69
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
70
+
71
+ ### Full Model Architecture
72
+
73
+ ```
74
+ SentenceTransformer(
75
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
76
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
77
+ )
78
+ ```
79
+
80
+ ## Usage
81
+
82
+ ### Direct Usage (Sentence Transformers)
83
+
84
+ First install the Sentence Transformers library:
85
+
86
+ ```bash
87
+ pip install -U sentence-transformers
88
+ ```
89
+
90
+ Then you can load this model and run inference.
91
+ ```python
92
+ from sentence_transformers import SentenceTransformer
93
+
94
+ # Download from the 🤗 Hub
95
+ model = SentenceTransformer("sentence_transformers_model_id")
96
+ # Run inference
97
+ sentences = [
98
+ 'Kawasaki disease immunoprophylaxis',
99
+ '[Effect of immunoglobulin in the prevention of coronary artery aneurysms in Kawasaki disease]. ',
100
+ 'Management of Kawasaki disease. ',
101
+ ]
102
+ embeddings = model.encode(sentences)
103
+ print(embeddings.shape)
104
+ # [3, 768]
105
+
106
+ # Get the similarity scores for the embeddings
107
+ similarities = model.similarity(embeddings, embeddings)
108
+ print(similarities.shape)
109
+ # [3, 3]
110
+ ```
111
+
112
+ <!--
113
+ ### Direct Usage (Transformers)
114
+
115
+ <details><summary>Click to see the direct usage in Transformers</summary>
116
+
117
+ </details>
118
+ -->
119
+
120
+ <!--
121
+ ### Downstream Usage (Sentence Transformers)
122
+
123
+ You can finetune this model on your own dataset.
124
+
125
+ <details><summary>Click to expand</summary>
126
+
127
+ </details>
128
+ -->
129
+
130
+ <!--
131
+ ### Out-of-Scope Use
132
+
133
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
134
+ -->
135
+
136
+ <!--
137
+ ## Bias, Risks and Limitations
138
+
139
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
140
+ -->
141
+
142
+ <!--
143
+ ### Recommendations
144
+
145
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
146
+ -->
147
+
148
+ ## Training Details
149
+
150
+ ### Training Dataset
151
+
152
+ #### json
153
+
154
+ * Dataset: json
155
+ * Size: 8,705 training samples
156
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
157
+ * Approximate statistics based on the first 1000 samples:
158
+ | | anchor | positive | negative |
159
+ |:--------|:--------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
160
+ | type | string | string | string |
161
+ | details | <ul><li>min: 4 tokens</li><li>mean: 7.6 tokens</li><li>max: 18 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 19.26 tokens</li><li>max: 42 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 11.72 tokens</li><li>max: 46 tokens</li></ul> |
162
+ * Samples:
163
+ | anchor | positive | negative |
164
+ |:-------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------|
165
+ | <code>Telehealth challenges</code> | <code>[Technological transformations and evolution of the medical practice: current status, issues and perspectives for the development of telemedicine]. </code> | <code>The untapped potential of Telehealth. </code> |
166
+ | <code>Racial disparities in mental health treatment</code> | <code>Relationships between stigma, depression, and treatment in white and African American primary care patients. </code> | <code>Mental Health Care Disparities Now and in the Future. </code> |
167
+ | <code>Iatrogenic hyperkalemia in elderly patients with cardiovascular disease</code> | <code>Iatrogenic hyperkalemia as a serious problem in therapy of cardiovascular diseases in elderly patients. </code> | <code>The cardiovascular implications of hypokalemia. </code> |
168
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
169
+ ```json
170
+ {
171
+ "scale": 20.0,
172
+ "similarity_fct": "cos_sim"
173
+ }
174
+ ```
175
+
176
+ ### Training Hyperparameters
177
+ #### Non-Default Hyperparameters
178
+
179
+ - `per_device_train_batch_size`: 32
180
+ - `per_device_eval_batch_size`: 32
181
+ - `learning_rate`: 2e-05
182
+ - `num_train_epochs`: 1
183
+ - `lr_scheduler_type`: cosine_with_restarts
184
+ - `warmup_ratio`: 0.1
185
+ - `bf16`: True
186
+ - `batch_sampler`: no_duplicates
187
+
188
+ #### All Hyperparameters
189
+ <details><summary>Click to expand</summary>
190
+
191
+ - `overwrite_output_dir`: False
192
+ - `do_predict`: False
193
+ - `eval_strategy`: no
194
+ - `prediction_loss_only`: True
195
+ - `per_device_train_batch_size`: 32
196
+ - `per_device_eval_batch_size`: 32
197
+ - `per_gpu_train_batch_size`: None
198
+ - `per_gpu_eval_batch_size`: None
199
+ - `gradient_accumulation_steps`: 1
200
+ - `eval_accumulation_steps`: None
201
+ - `torch_empty_cache_steps`: None
202
+ - `learning_rate`: 2e-05
203
+ - `weight_decay`: 0.0
204
+ - `adam_beta1`: 0.9
205
+ - `adam_beta2`: 0.999
206
+ - `adam_epsilon`: 1e-08
207
+ - `max_grad_norm`: 1.0
208
+ - `num_train_epochs`: 1
209
+ - `max_steps`: -1
210
+ - `lr_scheduler_type`: cosine_with_restarts
211
+ - `lr_scheduler_kwargs`: {}
212
+ - `warmup_ratio`: 0.1
213
+ - `warmup_steps`: 0
214
+ - `log_level`: passive
215
+ - `log_level_replica`: warning
216
+ - `log_on_each_node`: True
217
+ - `logging_nan_inf_filter`: True
218
+ - `save_safetensors`: True
219
+ - `save_on_each_node`: False
220
+ - `save_only_model`: False
221
+ - `restore_callback_states_from_checkpoint`: False
222
+ - `no_cuda`: False
223
+ - `use_cpu`: False
224
+ - `use_mps_device`: False
225
+ - `seed`: 42
226
+ - `data_seed`: None
227
+ - `jit_mode_eval`: False
228
+ - `use_ipex`: False
229
+ - `bf16`: True
230
+ - `fp16`: False
231
+ - `fp16_opt_level`: O1
232
+ - `half_precision_backend`: auto
233
+ - `bf16_full_eval`: False
234
+ - `fp16_full_eval`: False
235
+ - `tf32`: None
236
+ - `local_rank`: 0
237
+ - `ddp_backend`: None
238
+ - `tpu_num_cores`: None
239
+ - `tpu_metrics_debug`: False
240
+ - `debug`: []
241
+ - `dataloader_drop_last`: False
242
+ - `dataloader_num_workers`: 0
243
+ - `dataloader_prefetch_factor`: None
244
+ - `past_index`: -1
245
+ - `disable_tqdm`: False
246
+ - `remove_unused_columns`: True
247
+ - `label_names`: None
248
+ - `load_best_model_at_end`: False
249
+ - `ignore_data_skip`: False
250
+ - `fsdp`: []
251
+ - `fsdp_min_num_params`: 0
252
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
253
+ - `fsdp_transformer_layer_cls_to_wrap`: None
254
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
255
+ - `deepspeed`: None
256
+ - `label_smoothing_factor`: 0.0
257
+ - `optim`: adamw_torch
258
+ - `optim_args`: None
259
+ - `adafactor`: False
260
+ - `group_by_length`: False
261
+ - `length_column_name`: length
262
+ - `ddp_find_unused_parameters`: None
263
+ - `ddp_bucket_cap_mb`: None
264
+ - `ddp_broadcast_buffers`: False
265
+ - `dataloader_pin_memory`: True
266
+ - `dataloader_persistent_workers`: False
267
+ - `skip_memory_metrics`: True
268
+ - `use_legacy_prediction_loop`: False
269
+ - `push_to_hub`: False
270
+ - `resume_from_checkpoint`: None
271
+ - `hub_model_id`: None
272
+ - `hub_strategy`: every_save
273
+ - `hub_private_repo`: False
274
+ - `hub_always_push`: False
275
+ - `gradient_checkpointing`: False
276
+ - `gradient_checkpointing_kwargs`: None
277
+ - `include_inputs_for_metrics`: False
278
+ - `eval_do_concat_batches`: True
279
+ - `fp16_backend`: auto
280
+ - `push_to_hub_model_id`: None
281
+ - `push_to_hub_organization`: None
282
+ - `mp_parameters`:
283
+ - `auto_find_batch_size`: False
284
+ - `full_determinism`: False
285
+ - `torchdynamo`: None
286
+ - `ray_scope`: last
287
+ - `ddp_timeout`: 1800
288
+ - `torch_compile`: False
289
+ - `torch_compile_backend`: None
290
+ - `torch_compile_mode`: None
291
+ - `dispatch_batches`: None
292
+ - `split_batches`: None
293
+ - `include_tokens_per_second`: False
294
+ - `include_num_input_tokens_seen`: False
295
+ - `neftune_noise_alpha`: None
296
+ - `optim_target_modules`: None
297
+ - `batch_eval_metrics`: False
298
+ - `eval_on_start`: False
299
+ - `use_liger_kernel`: False
300
+ - `eval_use_gather_object`: False
301
+ - `batch_sampler`: no_duplicates
302
+ - `multi_dataset_batch_sampler`: proportional
303
+
304
+ </details>
305
+
306
+ ### Training Logs
307
+ | Epoch | Step | Training Loss |
308
+ |:------:|:----:|:-------------:|
309
+ | 0.0110 | 1 | 2.9861 |
310
+ | 0.0220 | 2 | 2.9379 |
311
+ | 0.0330 | 3 | 3.0613 |
312
+ | 0.0440 | 4 | 2.8081 |
313
+ | 0.0549 | 5 | 2.6516 |
314
+ | 0.0659 | 6 | 2.3688 |
315
+ | 0.0769 | 7 | 2.0502 |
316
+ | 0.0879 | 8 | 1.7557 |
317
+ | 0.0989 | 9 | 1.5316 |
318
+ | 0.1099 | 10 | 1.2476 |
319
+ | 0.1209 | 11 | 1.1529 |
320
+ | 0.1319 | 12 | 0.9483 |
321
+ | 0.1429 | 13 | 0.7187 |
322
+ | 0.1538 | 14 | 0.6824 |
323
+ | 0.1648 | 15 | 0.593 |
324
+ | 0.1758 | 16 | 0.4593 |
325
+ | 0.1868 | 17 | 0.3737 |
326
+ | 0.1978 | 18 | 0.5082 |
327
+ | 0.2088 | 19 | 0.4232 |
328
+ | 0.2198 | 20 | 0.3089 |
329
+ | 0.2308 | 21 | 0.2057 |
330
+ | 0.2418 | 22 | 0.2358 |
331
+ | 0.2527 | 23 | 0.2291 |
332
+ | 0.2637 | 24 | 0.2707 |
333
+ | 0.2747 | 25 | 0.1359 |
334
+ | 0.2857 | 26 | 0.2294 |
335
+ | 0.2967 | 27 | 0.157 |
336
+ | 0.3077 | 28 | 0.0678 |
337
+ | 0.3187 | 29 | 0.1022 |
338
+ | 0.3297 | 30 | 0.0713 |
339
+ | 0.3407 | 31 | 0.0899 |
340
+ | 0.3516 | 32 | 0.1385 |
341
+ | 0.3626 | 33 | 0.0809 |
342
+ | 0.3736 | 34 | 0.1053 |
343
+ | 0.3846 | 35 | 0.0925 |
344
+ | 0.3956 | 36 | 0.0675 |
345
+ | 0.4066 | 37 | 0.0841 |
346
+ | 0.4176 | 38 | 0.0366 |
347
+ | 0.4286 | 39 | 0.0768 |
348
+ | 0.4396 | 40 | 0.0529 |
349
+ | 0.4505 | 41 | 0.0516 |
350
+ | 0.4615 | 42 | 0.0342 |
351
+ | 0.4725 | 43 | 0.0456 |
352
+ | 0.4835 | 44 | 0.0344 |
353
+ | 0.4945 | 45 | 0.1337 |
354
+ | 0.5055 | 46 | 0.0883 |
355
+ | 0.5165 | 47 | 0.0691 |
356
+ | 0.5275 | 48 | 0.0322 |
357
+ | 0.5385 | 49 | 0.0731 |
358
+ | 0.5495 | 50 | 0.0376 |
359
+ | 0.5604 | 51 | 0.0464 |
360
+ | 0.5714 | 52 | 0.0173 |
361
+ | 0.5824 | 53 | 0.0516 |
362
+ | 0.5934 | 54 | 0.0703 |
363
+ | 0.6044 | 55 | 0.0273 |
364
+ | 0.6154 | 56 | 0.0374 |
365
+ | 0.6264 | 57 | 0.0292 |
366
+ | 0.6374 | 58 | 0.1195 |
367
+ | 0.6484 | 59 | 0.0852 |
368
+ | 0.6593 | 60 | 0.0697 |
369
+ | 0.6703 | 61 | 0.0653 |
370
+ | 0.6813 | 62 | 0.0426 |
371
+ | 0.6923 | 63 | 0.0288 |
372
+ | 0.7033 | 64 | 0.0344 |
373
+ | 0.7143 | 65 | 0.104 |
374
+ | 0.7253 | 66 | 0.0251 |
375
+ | 0.7363 | 67 | 0.0095 |
376
+ | 0.7473 | 68 | 0.0208 |
377
+ | 0.7582 | 69 | 0.0814 |
378
+ | 0.7692 | 70 | 0.0813 |
379
+ | 0.7802 | 71 | 0.0508 |
380
+ | 0.7912 | 72 | 0.032 |
381
+ | 0.8022 | 73 | 0.0879 |
382
+ | 0.8132 | 74 | 0.095 |
383
+ | 0.8242 | 75 | 0.0932 |
384
+ | 0.8352 | 76 | 0.0868 |
385
+ | 0.8462 | 77 | 0.0231 |
386
+ | 0.8571 | 78 | 0.0144 |
387
+ | 0.8681 | 79 | 0.0179 |
388
+ | 0.8791 | 80 | 0.0457 |
389
+ | 0.8901 | 81 | 0.0935 |
390
+ | 0.9011 | 82 | 0.0658 |
391
+ | 0.9121 | 83 | 0.0553 |
392
+ | 0.9231 | 84 | 0.003 |
393
+ | 0.9341 | 85 | 0.0036 |
394
+ | 0.9451 | 86 | 0.0034 |
395
+ | 0.9560 | 87 | 0.0032 |
396
+ | 0.9670 | 88 | 0.0026 |
397
+ | 0.9780 | 89 | 0.0042 |
398
+ | 0.9890 | 90 | 0.0024 |
399
+ | 1.0 | 91 | 0.0022 |
400
+
401
+
402
+ ### Framework Versions
403
+ - Python: 3.9.19
404
+ - Sentence Transformers: 3.1.1
405
+ - Transformers: 4.45.2
406
+ - PyTorch: 2.5.0
407
+ - Accelerate: 1.0.1
408
+ - Datasets: 2.19.0
409
+ - Tokenizers: 0.20.3
410
+
411
+ ## Citation
412
+
413
+ ### BibTeX
414
+
415
+ #### Sentence Transformers
416
+ ```bibtex
417
+ @inproceedings{reimers-2019-sentence-bert,
418
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
419
+ author = "Reimers, Nils and Gurevych, Iryna",
420
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
421
+ month = "11",
422
+ year = "2019",
423
+ publisher = "Association for Computational Linguistics",
424
+ url = "https://arxiv.org/abs/1908.10084",
425
+ }
426
+ ```
427
+
428
+ #### MultipleNegativesRankingLoss
429
+ ```bibtex
430
+ @misc{henderson2017efficient,
431
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
432
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
433
+ year={2017},
434
+ eprint={1705.00652},
435
+ archivePrefix={arXiv},
436
+ primaryClass={cs.CL}
437
+ }
438
+ ```
439
+
440
+ <!--
441
+ ## Glossary
442
+
443
+ *Clearly define terms in order to be accessible across audiences.*
444
+ -->
445
+
446
+ <!--
447
+ ## Model Card Authors
448
+
449
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
450
+ -->
451
+
452
+ <!--
453
+ ## Model Card Contact
454
+
455
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
456
+ -->
config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "allenai/specter2_base",
3
+ "adapters": {
4
+ "adapters": {},
5
+ "config_map": {},
6
+ "fusion_config_map": {},
7
+ "fusions": {}
8
+ },
9
+ "architectures": [
10
+ "BertModel"
11
+ ],
12
+ "attention_probs_dropout_prob": 0.1,
13
+ "classifier_dropout": null,
14
+ "hidden_act": "gelu",
15
+ "hidden_dropout_prob": 0.1,
16
+ "hidden_size": 768,
17
+ "initializer_range": 0.02,
18
+ "intermediate_size": 3072,
19
+ "layer_norm_eps": 1e-12,
20
+ "max_position_embeddings": 512,
21
+ "model_type": "bert",
22
+ "num_attention_heads": 12,
23
+ "num_hidden_layers": 12,
24
+ "pad_token_id": 0,
25
+ "position_embedding_type": "absolute",
26
+ "torch_dtype": "float32",
27
+ "transformers_version": "4.45.2",
28
+ "type_vocab_size": 2,
29
+ "use_cache": true,
30
+ "vocab_size": 31090
31
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.1",
4
+ "transformers": "4.45.2",
5
+ "pytorch": "2.5.0"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:947aaf825081d24a38f3bf7dfa0d2427cc62a2c776f90deeb9d5f72ed95d6a3e
3
+ size 439696224
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "101": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "102": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "103": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "104": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": false,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 1000000000000000019884624838656,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff