--- base_model: allenai/specter2_base library_name: sentence-transformers pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:8705 - loss:MultipleNegativesRankingLoss widget: - source_sentence: Vaccine Administration in High-Risk Groups sentences: - '[V+: strategies improving vaccination coverage among children with chronic diseases]. ' - 'Medical writer welcomes advice on working with medical writers. ' - 'Vaccination management. ' - source_sentence: Eosinophil recruitment and STAT6 signalling pathway in nematode infections sentences: - 'The roles of eotaxin and the STAT6 signalling pathway in eosinophil recruitment and host resistance to the nematodes Nippostrongylus brasiliensis and Heligmosomoides bakeri. ' - 'ABO blood groups from Palamau, Bihar, India. ' - 'Both stat5a and stat5b are required for antigen-induced eosinophil and T-cell recruitment into the tissue. ' - source_sentence: Constitutional Medicine Status sentences: - '[Present status of constitutional medicine]. ' - 'Convergence of submodality-specific input onto neurons in primary somatosensory cortex. ' - 'The link between health and wellbeing and constitutional recognition. ' - source_sentence: Telehealth challenges sentences: - '[Technological transformations and evolution of the medical practice: current status, issues and perspectives for the development of telemedicine]. ' - 'The untapped potential of Telehealth. ' - 'Enhanced chartreusin solubility by hydroxybenzoate hydrotropy. ' - source_sentence: Kawasaki disease immunoprophylaxis sentences: - '[Effect of immunoglobulin in the prevention of coronary artery aneurysms in Kawasaki disease]. ' - 'Management of Kawasaki disease. ' - 'IgA anti-epidermal transglutaminase antibodies in dermatitis herpetiformis and pediatric celiac disease. ' --- # SentenceTransformer based on allenai/specter2_base This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [allenai/specter2_base](https://huggingface.co./allenai/specter2_base) on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [allenai/specter2_base](https://huggingface.co./allenai/specter2_base) - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 768 tokens - **Similarity Function:** Cosine Similarity - **Training Dataset:** - json ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co./models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("sentence_transformers_model_id") # Run inference sentences = [ 'Kawasaki disease immunoprophylaxis', '[Effect of immunoglobulin in the prevention of coronary artery aneurysms in Kawasaki disease]. ', 'Management of Kawasaki disease. ', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Training Details ### Training Dataset #### json * Dataset: json * Size: 8,705 training samples * Columns: anchor, positive, and negative * Approximate statistics based on the first 1000 samples: | | anchor | positive | negative | |:--------|:--------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| | type | string | string | string | | details | | | | * Samples: | anchor | positive | negative | |:-------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------| | Telehealth challenges | [Technological transformations and evolution of the medical practice: current status, issues and perspectives for the development of telemedicine]. | The untapped potential of Telehealth. | | Racial disparities in mental health treatment | Relationships between stigma, depression, and treatment in white and African American primary care patients. | Mental Health Care Disparities Now and in the Future. | | Iatrogenic hyperkalemia in elderly patients with cardiovascular disease | Iatrogenic hyperkalemia as a serious problem in therapy of cardiovascular diseases in elderly patients. | The cardiovascular implications of hypokalemia. | * Loss: [MultipleNegativesRankingLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "cos_sim" } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `per_device_train_batch_size`: 32 - `per_device_eval_batch_size`: 32 - `learning_rate`: 2e-05 - `num_train_epochs`: 1 - `lr_scheduler_type`: cosine_with_restarts - `warmup_ratio`: 0.1 - `bf16`: True - `batch_sampler`: no_duplicates #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: no - `prediction_loss_only`: True - `per_device_train_batch_size`: 32 - `per_device_eval_batch_size`: 32 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 2e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 1 - `max_steps`: -1 - `lr_scheduler_type`: cosine_with_restarts - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: True - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional
### Training Logs | Epoch | Step | Training Loss | |:------:|:----:|:-------------:| | 0.0110 | 1 | 2.9861 | | 0.0220 | 2 | 2.9379 | | 0.0330 | 3 | 3.0613 | | 0.0440 | 4 | 2.8081 | | 0.0549 | 5 | 2.6516 | | 0.0659 | 6 | 2.3688 | | 0.0769 | 7 | 2.0502 | | 0.0879 | 8 | 1.7557 | | 0.0989 | 9 | 1.5316 | | 0.1099 | 10 | 1.2476 | | 0.1209 | 11 | 1.1529 | | 0.1319 | 12 | 0.9483 | | 0.1429 | 13 | 0.7187 | | 0.1538 | 14 | 0.6824 | | 0.1648 | 15 | 0.593 | | 0.1758 | 16 | 0.4593 | | 0.1868 | 17 | 0.3737 | | 0.1978 | 18 | 0.5082 | | 0.2088 | 19 | 0.4232 | | 0.2198 | 20 | 0.3089 | | 0.2308 | 21 | 0.2057 | | 0.2418 | 22 | 0.2358 | | 0.2527 | 23 | 0.2291 | | 0.2637 | 24 | 0.2707 | | 0.2747 | 25 | 0.1359 | | 0.2857 | 26 | 0.2294 | | 0.2967 | 27 | 0.157 | | 0.3077 | 28 | 0.0678 | | 0.3187 | 29 | 0.1022 | | 0.3297 | 30 | 0.0713 | | 0.3407 | 31 | 0.0899 | | 0.3516 | 32 | 0.1385 | | 0.3626 | 33 | 0.0809 | | 0.3736 | 34 | 0.1053 | | 0.3846 | 35 | 0.0925 | | 0.3956 | 36 | 0.0675 | | 0.4066 | 37 | 0.0841 | | 0.4176 | 38 | 0.0366 | | 0.4286 | 39 | 0.0768 | | 0.4396 | 40 | 0.0529 | | 0.4505 | 41 | 0.0516 | | 0.4615 | 42 | 0.0342 | | 0.4725 | 43 | 0.0456 | | 0.4835 | 44 | 0.0344 | | 0.4945 | 45 | 0.1337 | | 0.5055 | 46 | 0.0883 | | 0.5165 | 47 | 0.0691 | | 0.5275 | 48 | 0.0322 | | 0.5385 | 49 | 0.0731 | | 0.5495 | 50 | 0.0376 | | 0.5604 | 51 | 0.0464 | | 0.5714 | 52 | 0.0173 | | 0.5824 | 53 | 0.0516 | | 0.5934 | 54 | 0.0703 | | 0.6044 | 55 | 0.0273 | | 0.6154 | 56 | 0.0374 | | 0.6264 | 57 | 0.0292 | | 0.6374 | 58 | 0.1195 | | 0.6484 | 59 | 0.0852 | | 0.6593 | 60 | 0.0697 | | 0.6703 | 61 | 0.0653 | | 0.6813 | 62 | 0.0426 | | 0.6923 | 63 | 0.0288 | | 0.7033 | 64 | 0.0344 | | 0.7143 | 65 | 0.104 | | 0.7253 | 66 | 0.0251 | | 0.7363 | 67 | 0.0095 | | 0.7473 | 68 | 0.0208 | | 0.7582 | 69 | 0.0814 | | 0.7692 | 70 | 0.0813 | | 0.7802 | 71 | 0.0508 | | 0.7912 | 72 | 0.032 | | 0.8022 | 73 | 0.0879 | | 0.8132 | 74 | 0.095 | | 0.8242 | 75 | 0.0932 | | 0.8352 | 76 | 0.0868 | | 0.8462 | 77 | 0.0231 | | 0.8571 | 78 | 0.0144 | | 0.8681 | 79 | 0.0179 | | 0.8791 | 80 | 0.0457 | | 0.8901 | 81 | 0.0935 | | 0.9011 | 82 | 0.0658 | | 0.9121 | 83 | 0.0553 | | 0.9231 | 84 | 0.003 | | 0.9341 | 85 | 0.0036 | | 0.9451 | 86 | 0.0034 | | 0.9560 | 87 | 0.0032 | | 0.9670 | 88 | 0.0026 | | 0.9780 | 89 | 0.0042 | | 0.9890 | 90 | 0.0024 | | 1.0 | 91 | 0.0022 | ### Framework Versions - Python: 3.9.19 - Sentence Transformers: 3.1.1 - Transformers: 4.45.2 - PyTorch: 2.5.0 - Accelerate: 1.0.1 - Datasets: 2.19.0 - Tokenizers: 0.20.3 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```