vania2911's picture
update model card README.md
f657da9
|
raw
history blame
3.22 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
metrics:
  - bleu
  - rouge
model-index:
  - name: esp-to-lsm-model-split
    results: []

esp-to-lsm-model-split

This model is a fine-tuned version of Helsinki-NLP/opus-mt-es-es on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5258
  • Bleu: 83.8782
  • Ter: 10.6805
  • Rouge1: 0.9238
  • Rouge2: 0.8539

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.00015
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Bleu Ter Rouge1 Rouge2
1.0312 1.0 75 0.6799 70.9487 17.7958 0.8736 0.7858
0.4186 2.0 150 0.4926 50.7542 12.2855 0.9190 0.8516
0.2945 3.0 225 0.4174 72.8458 17.0732 0.9290 0.8649
0.1752 4.0 300 0.4505 81.4327 10.3884 0.9254 0.8485
0.1483 5.0 375 0.4863 39.1763 10.7498 0.9139 0.8411
0.1049 6.0 450 0.4795 81.2675 10.0271 0.9250 0.8572
0.0808 7.0 525 0.4824 80.2681 11.9241 0.9145 0.8251
0.0723 8.0 600 0.4388 83.9041 11.0208 0.9308 0.8690
0.0652 9.0 675 0.4277 85.0942 9.3948 0.9306 0.8718
0.0469 10.0 750 0.4310 84.8003 9.2141 0.9337 0.8766
0.043 11.0 825 0.4471 84.1771 9.9368 0.9297 0.8669
0.0278 12.0 900 0.4326 86.4289 8.5818 0.9404 0.8829
0.0258 13.0 975 0.4369 85.7966 8.7624 0.9363 0.8772
0.0258 14.0 1050 0.4296 86.5295 8.4914 0.9393 0.8856
0.0216 15.0 1125 0.4379 78.3156 14.7245 0.9321 0.8710
0.0132 16.0 1200 0.4400 87.1342 8.0397 0.9392 0.8839
0.0129 17.0 1275 0.4438 86.9282 8.1301 0.9383 0.8831
0.0109 18.0 1350 0.4445 86.7807 8.4914 0.9372 0.8813
0.0109 19.0 1425 0.4455 86.7006 8.4914 0.9371 0.8808
0.014 20.0 1500 0.4472 86.8515 8.3107 0.9378 0.882

Framework versions

  • Transformers 4.26.1
  • Pytorch 2.5.0+cu121
  • Datasets 3.0.2
  • Tokenizers 0.13.3