esp-to-lsm-model-split
This model is a fine-tuned version of Helsinki-NLP/opus-mt-es-es on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.5118
- Bleu: 85.2207
- Ter: 8.9524
- Rouge1: 0.9459
- Rouge2: 0.8835
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.00015
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Bleu | Ter | Rouge1 | Rouge2 |
---|---|---|---|---|---|---|---|
0.997 | 1.0 | 75 | 0.7490 | 39.0819 | 32.0952 | 0.8972 | 0.8107 |
0.4353 | 2.0 | 150 | 0.5363 | 78.0900 | 11.9048 | 0.9174 | 0.8421 |
0.2602 | 3.0 | 225 | 0.5100 | 47.9363 | 15.3333 | 0.9230 | 0.8407 |
0.2316 | 4.0 | 300 | 0.4974 | 79.0734 | 11.5238 | 0.9214 | 0.8392 |
0.1203 | 5.0 | 375 | 0.4946 | 80.3010 | 10.7619 | 0.9343 | 0.8695 |
0.1216 | 6.0 | 450 | 0.5038 | 80.6212 | 10.6667 | 0.9313 | 0.8571 |
0.0754 | 7.0 | 525 | 0.4650 | 69.5096 | 9.1429 | 0.9366 | 0.8773 |
0.0848 | 8.0 | 600 | 0.5086 | 83.6847 | 9.6190 | 0.9340 | 0.8599 |
0.0504 | 9.0 | 675 | 0.4904 | 82.1068 | 11.2381 | 0.9389 | 0.8777 |
0.0367 | 10.0 | 750 | 0.5040 | 84.9459 | 9.4286 | 0.9425 | 0.8787 |
0.0386 | 11.0 | 825 | 0.4964 | 84.3063 | 9.6190 | 0.9417 | 0.8770 |
0.0377 | 12.0 | 900 | 0.4992 | 84.2254 | 9.2381 | 0.9437 | 0.8809 |
0.0244 | 13.0 | 975 | 0.5052 | 84.7862 | 9.4286 | 0.9407 | 0.8762 |
0.0237 | 14.0 | 1050 | 0.5037 | 82.0504 | 9.8095 | 0.9396 | 0.8706 |
0.0173 | 15.0 | 1125 | 0.5105 | 85.2564 | 9.0476 | 0.9453 | 0.8821 |
0.0193 | 16.0 | 1200 | 0.5129 | 85.2911 | 8.9524 | 0.9460 | 0.8854 |
0.0184 | 17.0 | 1275 | 0.5121 | 84.8249 | 9.2381 | 0.9444 | 0.8808 |
0.0142 | 18.0 | 1350 | 0.5088 | 85.2207 | 8.9524 | 0.9459 | 0.8835 |
0.0131 | 19.0 | 1425 | 0.5127 | 85.2207 | 8.9524 | 0.9459 | 0.8835 |
0.0122 | 20.0 | 1500 | 0.5118 | 85.2207 | 8.9524 | 0.9459 | 0.8835 |
Framework versions
- Transformers 4.26.1
- Pytorch 2.5.0+cu121
- Datasets 3.0.2
- Tokenizers 0.13.3
- Downloads last month
- 46